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Preface to the Second Edition

In recent years, the use of specialized statistical methods for categorical data has
increased dramatically, particularly for applications in the biomedical and social
sciences. Partly this reflects the development during the past few decades of
sophisticated methods for analyzing categorical data. It also reflects the increas-
ing methodological sophistication of scientists and applied statisticians, most of
whom now realize that it is unnecessary and often inappropriate to use methods
for continuous data with categorical responses.

This book presents the most important methods for analyzing categorical data. It
summarizes methods that have long played a prominent role, such as chi-squared
tests. It gives special emphasis, however, to modeling techniques, in particular to
logistic regression.

The presentation in this book has a low technical level and does not require famil-
iarity with advanced mathematics such as calculus or matrix algebra. Readers should
possess a background that includes material from a two-semester statistical methods
sequence for undergraduate or graduate nonstatistics majors. This background should
include estimation and significance testing and exposure to regression modeling.

This book is designed for students taking an introductory course in categorical data
analysis, but I also have written it for applied statisticians and practicing scientists
involved in data analyses. I hope that the book will be helpful to analysts dealing with
categorical response data in the social, behavioral, and biomedical sciences, as well
as in public health, marketing, education, biological and agricultural sciences, and
industrial quality control.

The basics of categorical data analysis are covered in Chapters 1–8. Chapter 2
surveys standard descriptive and inferential methods for contingency tables, such as
odds ratios, tests of independence, and conditional vs marginal associations. I feel
that an understanding of methods is enhanced, however, by viewing them in the
context of statistical models. Thus, the rest of the text focuses on the modeling of
categorical responses. Chapter 3 introduces generalized linear models for binary data
and count data. Chapters 4 and 5 discuss the most important such model for binomial
(binary) data, logistic regression. Chapter 6 introduces logistic regression models

xv



“fpref” — 2007/1/29 — page xvi — #2
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for multinomial responses, both nominal and ordinal. Chapter 7 discusses loglinear
models for Poisson (count) data. Chapter 8 presents methods for matched-pairs data.

I believe that logistic regression is more important than loglinear models, since
most applications with categorical responses have a single binomial or multinomial
response variable. Thus, I have given main attention to this model in these chapters
and in later chapters that discuss extensions of this model. Compared with the first
edition, this edition places greater emphasis on logistic regression and less emphasis
on loglinear models.

I prefer to teach categorical data methods by unifying their models with ordinary
regression andANOVA models. Chapter 3 does this under the umbrella of generalized
linear models. Some instructors might prefer to cover this chapter rather lightly, using
it primarily to introduce logistic regression models for binomial data (Sections 3.1
and 3.2).

The main change from the first edition is the addition of two chapters dealing with
the analysis of clustered correlated categorical data, such as occur in longitudinal
studies with repeated measurement of subjects. Chapters 9 and 10 extend the matched-
pairs methods of Chapter 8 to apply to clustered data. Chapter 9 does this with
marginal models, emphasizing the generalized estimating equations (GEE) approach,
whereas Chapter 10 uses random effects to model more fully the dependence. The
text concludes with a chapter providing a historical perspective of the development
of the methods (Chapter 11) and an appendix showing the use of SAS for conducting
nearly all methods presented in this book.

The material in Chapters 1–8 forms the heart of an introductory course in categor-
ical data analysis. Sections that can be skipped if desired, to provide more time for
other topics, include Sections 2.5, 2.6, 3.3 and 3.5, 5.3–5.5, 6.3, 6.4, 7.4, 7.5, and
8.3–8.6. Instructors can choose sections from Chapters 9–11 to supplement the basic
topics in Chapters 1–8. Within sections, subsections labelled with an asterisk are less
important and can be skipped for those wanting a quick exposure to the main points.

This book is of a lower technical level than my book Categorical Data Analysis
(2nd edition, Wiley, 2002). I hope that it will appeal to readers who prefer a more
applied focus than that book provides. For instance, this book does not attempt to
derive likelihood equations, prove asymptotic distributions, discuss current research
work, or present a complete bibliography.

Most methods presented in this text require extensive computations. For the
most part, I have avoided details about complex calculations, feeling that comput-
ing software should relieve this drudgery. Software for categorical data analyses
is widely available in most large commercial packages. I recommend that read-
ers of this text use software wherever possible in answering homework problems
and checking text examples. The Appendix discusses the use of SAS (particu-
larly PROC GENMOD) for nearly all methods discussed in the text. The tables
in the Appendix and many of the data sets analyzed in the book are available at
the web site http://www.stat.ufl.edu/∼aa/intro-cda/appendix.html. The web site
http://www.stat.ufl.edu/∼aa/cda/software.html contains information about the use
of other software, such as S-Plus and R, Stata, and SPSS, including a link to an excel-
lent free manual prepared by Laura Thompson showing how to use R and S-Plus to
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conduct nearly all the examples in this book and its higher-level companion. Also
listed at the text website are known typos and errors in early printings of the text.

I owe very special thanks to Brian Marx for his many suggestions about the text over
the past 10 years. He has been incredibly generous with his time in providing feedback
based on using the book many times in courses. He and Bernhard Klingenberg also
very kindly reviewed the draft for this edition and made many helpful suggestions.
I also thank those individuals who commented on parts of the manuscript or who
made suggestions about examples or material to cover. These include Anna Gottard
for suggestions about Section 7.4, Judy Breiner, Brian Caffo, Allen Hammer, and
Carla Rampichini. I also owe thanks to those who helped with the first edition, espe-
cially Patricia Altham, James Booth, Jane Brockmann, Brent Coull, Al DeMaris,
Joan Hilton, Peter Imrey, Harry Khamis, Svend Kreiner, Stephen Stigler, and Larry
Winner. Thanks finally to those who helped with material for my more advanced text
(Categorical Data Analysis) that I extracted here, especially Bernhard Klingenberg,
Yongyi Min, and Brian Caffo. Many thanks to Stephen Quigley at Wiley for his
continuing interest, and to the Wiley staff for their usual high-quality support.

As always, most special thanks to my wife, Jacki Levine, for her advice and
encouragement. Finally, a truly nice byproduct of writing books is the opportunity to
teach short courses based on them and spend research visits at a variety of institutions.
In doing so, I have had the opportunity to visit about 30 countries and meet many
wonderful people. Some of them have become valued friends. It is to them that I
dedicate this book.

ALAN AGRESTI

London, United Kingdom
January 2007
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C H A P T E R 1

Introduction

From helping to assess the value of new medical treatments to evaluating the factors
that affect our opinions on various controversial issues, scientists today are finding
myriad uses for methods of analyzing categorical data. It’s primarily for these
scientists and their collaborating statisticians – as well as those training to perform
these roles – that this book was written. The book provides an introduction to methods
for analyzing categorical data. It emphasizes the ideas behind the methods and their
interpretations, rather than the theory behind them.

This first chapter reviews the probability distributions most often used for categor-
ical data, such as the binomial distribution. It also introduces maximum likelihood,
the most popular method for estimating parameters. We use this estimate and a
related likelihood function to conduct statistical inference about proportions. We
begin by discussing the major types of categorical data and summarizing the book’s
outline.

1.1 CATEGORICAL RESPONSE DATA

Let us first define categorical data. A categorical variable has a measurement scale
consisting of a set of categories. For example, political philosophy may be measured
as “liberal,” “moderate,” or “conservative”; choice of accommodation might use
categories “house,” “condominium,” “apartment”; a diagnostic test to detect e-mail
spam might classify an incoming e-mail message as “spam” or “legitimate e-mail.”

Categorical scales are pervasive in the social sciences for measuring attitudes and
opinions. Categorical scales also occur frequently in the health sciences, for measuring
responses such as whether a patient survives an operation (yes, no), severity of an
injury (none, mild, moderate, severe), and stage of a disease (initial, advanced).

Although categorical variables are common in the social and health sciences, they
are by no means restricted to those areas. They frequently occur in the behavioral

An Introduction to Categorical Data Analysis, Second Edition. By Alan Agresti
Copyright © 2007 John Wiley & Sons, Inc.
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sciences (e.g., categories “schizophrenia,” “depression,” “neurosis” for diagnosis of
type of mental illness), public health (e.g., categories “yes” and “no” for whether
awareness of AIDS has led to increased use of condoms), zoology (e.g., categories
“fish,” “invertebrate,” “reptile” for alligators’ primary food choice), education (e.g.,
categories “correct” and “incorrect” for students’ responses to an exam question),
and marketing (e.g., categories “Brand A,” “Brand B,” and “Brand C” for consumers’
preference among three leading brands of a product). They even occur in highly
quantitative fields such as engineering sciences and industrial quality control, when
items are classified according to whether or not they conform to certain standards.

1.1.1 Response/Explanatory Variable Distinction

Most statistical analyses distinguish between response variables and explanatory
variables. For instance, regression models describe how the distribution of a
continuous response variable, such as annual income, changes according to levels
of explanatory variables, such as number of years of education and number of years
of job experience. The response variable is sometimes called the dependent vari-
able or Y variable, and the explanatory variable is sometimes called the independent
variable or X variable.

The subject of this text is the analysis of categorical response variables. The
categorical variables listed in the previous subsection are response variables. In some
studies, they might also serve as explanatory variables. Statistical models for cate-
gorical response variables analyze how such responses are influenced by explanatory
variables. For example, a model for political philosophy could use predictors such as
annual income, attained education, religious affiliation, age, gender, and race. The
explanatory variables can be categorical or continuous.

1.1.2 Nominal/Ordinal Scale Distinction

Categorical variables have two main types of measurement scales. Many categorical
scales have a natural ordering. Examples are attitude toward legalization of abortion
(disapprove in all cases, approve only in certain cases, approve in all cases), appraisal
of a company’s inventory level (too low, about right, too high), response to a medical
treatment (excellent, good, fair, poor), and frequency of feeling symptoms of anxiety
(never, occasionally, often, always). Categorical variables having ordered scales are
called ordinal variables.

Categorical variables having unordered scales are called nominal variables. Exam-
ples are religious affiliation (categories Catholic, Jewish, Protestant, Muslim, other),
primary mode of transportation to work (automobile, bicycle, bus, subway, walk),
favorite type of music (classical, country, folk, jazz, rock), and favorite place to shop
(local mall, local downtown, Internet, other).

For nominal variables, the order of listing the categories is irrelevant. The statistical
analysis should not depend on that ordering. Methods designed for nominal variables
give the same results no matter how the categories are listed. Methods designed for
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ordinal variables utilize the category ordering. Whether we list the categories from
low to high or from high to low is irrelevant in terms of substantive conclusions,
but results of ordinal analyses would change if the categories were reordered in any
other way.

Methods designed for ordinal variables cannot be used with nominal variables,
since nominal variables do not have ordered categories. Methods designed for nominal
variables can be used with nominal or ordinal variables, since they only require a
categorical scale. When used with ordinal variables, however, they do not use the
information about that ordering. This can result in serious loss of power. It is usually
best to apply methods appropriate for the actual scale.

Categorical variables are often referred to as qualitative, to distinguish them from
numerical-valued or quantitative variables such as weight, age, income, and num-
ber of children in a family. However, we will see it is often advantageous to treat
ordinal data in a quantitative manner, for instance by assigning ordered scores to the
categories.

1.1.3 Organization of this Book

Chapters 1 and 2 describe some standard methods of categorical data analysis devel-
oped prior to about 1960. These include basic analyses of association between two
categorical variables.

Chapters 3–7 introduce models for categorical responses. These models resemble
regression models for continuous response variables. In fact, Chapter 3 shows they
are special cases of a generalized class of linear models that also contains the usual
normal-distribution-based regression models. The main emphasis in this book is on
logistic regression models. Applying to response variables that have two outcome
categories, they are the focus of Chapters 4 and 5. Chapter 6 presents extensions to
multicategory responses, both nominal and ordinal. Chapter 7 introduces loglinear
models, which analyze associations among multiple categorical response variables.

The methods in Chapters 1–7 assume that observations are independent.
Chapters 8–10 discuss logistic regression models that apply when some observa-
tions are correlated, such as with repeated measurement of subjects in longitudinal
studies. An important special case is matched pairs that result from observing a cat-
egorical response for the same subjects at two separate times. The book concludes
(Chapter 11) with a historical overview of categorical data methods.

Most methods for categorical data analysis require extensive computations. The
Appendix discusses the use of SAS statistical software. A companion website
for the book, http://www.stat.ufl.edu/∼aa/intro-cda/software.html, discusses other
software.

1.2 PROBABILITY DISTRIBUTIONS FOR CATEGORICAL DATA

Inferential statistical analyses require assumptions about the probability distribu-
tion of the response variable. For regression and analysis of variance (ANOVA)
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models for continuous data, the normal distribution plays a central role. This sec-
tion presents the key distributions for categorical data: the binomial and multinomial
distributions.

1.2.1 Binomial Distribution

Often, categorical data result from n independent and identical trials with two possible
outcomes for each, referred to as “success” and “failure.” These are generic labels,
and the “success” outcome need not be a preferred result. Identical trials means that
the probability of success is the same for each trial. Independent trials means the
response outcomes are independent random variables. In particular, the outcome of
one trial does not affect the outcome of another. These are often called Bernoulli
trials. Let π denote the probability of success for a given trial. Let Y denote the
number of successes out of the n trials.

Under the assumption of n independent, identical trials, Y has the binomial distri-
bution with index n and parameter π . You are probably familiar with this distribution,
but we review it briefly here. The probability of outcome y for Y equals

P(y) = n!
y!(n − y)!π

y(1 − π)n−y, y = 0, 1, 2, . . . , n (1.1)

To illustrate, suppose a quiz has 10 multiple-choice questions, with five possible
answers for each. A student who is completely unprepared randomly guesses the
answer for each question. Let Y denote the number of correct responses. The proba-
bility of a correct response is 0.20 for a given question, so n = 10 and π = 0.20. The
probability of y = 0 correct responses, and hence n − y = 10 incorrect ones, equals

P(0) = [10!/(0!10!)](0.20)0(0.80)10 = (0.80)10 = 0.107.

The probability of 1 correct response equals

P(1) = [10!/(1!9!)](0.20)1(0.80)9 = 10(0.20)(0.80)9 = 0.268.

Table 1.1 shows the entire distribution. For contrast, it also shows the distributions
when π = 0.50 and when π = 0.80.

The binomial distribution for n trials with parameter π has mean and standard
deviation

E(Y ) = μ = nπ, σ = √
nπ(1 − π)

The binomial distribution in Table 1.1 has μ = 10(0.20) = 2.0 and σ =√[10(0.20)(0.80)] = 1.26.
The binomial distribution is always symmetric when π = 0.50. For fixed n, it

becomes more skewed as π moves toward 0 or 1. For fixed π , it becomes more
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Table 1.1. Binomial Distribution with n = 10 and π = 0.20, 0.50, and 0.80. The
Distribution is Symmetric when π = 0.50

y P (y) when π = 0.20 P(y) when π = 0.50 P(y) when π = 0.80

0 0.107 0.001 0.000
1 0.268 0.010 0.000
2 0.302 0.044 0.000
3 0.201 0.117 0.001
4 0.088 0.205 0.005
5 0.027 0.246 0.027
6 0.005 0.205 0.088
7 0.001 0.117 0.201
8 0.000 0.044 0.302
9 0.000 0.010 0.268
10 0.000 0.001 0.107

bell-shaped as n increases. When n is large, it can be approximated by a normal
distribution with μ = nπ and σ = √[nπ(1 − π)]. A guideline is that the expected
number of outcomes of the two types, nπ and n(1 − π), should both be at least about
5. For π = 0.50 this requires only n ≥ 10, whereas π = 0.10 (or π = 0.90) requires
n ≥ 50. When π gets nearer to 0 or 1, larger samples are needed before a symmetric,
bell shape occurs.

1.2.2 Multinomial Distribution

Some trials have more than two possible outcomes. For example, the outcome for a
driver in an auto accident might be recorded using the categories “uninjured,” “injury
not requiring hospitalization,” “injury requiring hospitalization,” “fatality.” When
the trials are independent with the same category probabilities for each trial, the
distribution of counts in the various categories is the multinomial.

Let c denote the number of outcome categories. We denote their probabilities by
{π1, π2, . . . , πc}, where

∑
j πj = 1. Forn independent observations, the multinomial

probability that n1 fall in category 1, n2 fall in category 2, . . . , nc fall in category c,
where

∑
j nj = n, equals

P(n1, n2, . . . , nc) =
(

n!
n1!n2! · · · nc!

)
π

n1
1 π

n2
2 · · · πnc

c

The binomial distribution is the special case with c = 2 categories. We will not need
to use this formula, as we will focus instead on sampling distributions of useful statis-
tics computed from data assumed to have the multinomial distribution. We present
it here merely to show how the binomial formula generalizes to several outcome
categories.
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The multinomial is a multivariate distribution. The marginal distribution of the
count in any particular category is binomial. For category j , the count nj has mean
nπj and standard deviation

√[nπj (1 − πj )]. Most methods for categorical data
assume the binomial distribution for a count in a single category and the multinomial
distribution for a set of counts in several categories.

1.3 STATISTICAL INFERENCE FOR A PROPORTION

In practice, the parameter values for the binomial and multinomial distributions are
unknown. Using sample data, we estimate the parameters. This section introduces
the estimation method used in this text, called maximum likelihood. We illustrate this
method for the binomial parameter.

1.3.1 Likelihood Function and Maximum Likelihood Estimation

The parametric approach to statistical modeling assumes a family of probability dis-
tributions, such as the binomial, for the response variable. For a particular family, we
can substitute the observed data into the formula for the probability function and then
view how that probability depends on the unknown parameter value. For example,
in n = 10 trials, suppose a binomial count equals y = 0. From the binomial formula
(1.1) with parameter π , the probability of this outcome equals

P(0) = [10!/(0!)(10!)]π0(1 − π)10 = (1 − π)10

This probability is defined for all the potential values of π between 0 and 1.
The probability of the observed data, expressed as a function of the parameter,

is called the likelihood function. With y = 0 successes in n = 10 trials, the bino-
mial likelihood function is �(π) = (1 − π)10. It is defined for π between 0 and
1. From the likelihood function, if π = 0.40 for instance, the probability that
Y = 0 is �(0.40) = (1 − 0.40)10 = 0.006. Likewise, if π = 0.20 then �(0.20) =
(1 − 0.20)10 = 0.107, and if π = 0.0 then �(0.0) = (1 − 0.0)10 = 1.0. Figure 1.1
plots this likelihood function.

The maximum likelihood estimate of a parameter is the parameter value for which
the probability of the observed data takes its greatest value. It is the parameter value at
which the likelihood function takes its maximum. Figure 1.1 shows that the likelihood
function �(π) = (1 − π)10 has its maximum at π = 0.0. Thus, when n = 10 trials
have y = 0 successes, the maximum likelihood estimate of π equals 0.0. This means
that the result y = 0 in n = 10 trials is more likely to occur when π = 0.00 than when
π equals any other value.

In general, for the binomial outcome of y successes in n trials, the maximum like-
lihood estimate of π equals p = y/n. This is the sample proportion of successes
for the n trials. If we observe y = 6 successes in n = 10 trials, then the maxi-
mum likelihood estimate of π equals p = 6/10 = 0.60. Figure 1.1 also plots the



“c01” — 2007/1/29 — page 7 — #7

1.3 STATISTICAL INFERENCE FOR A PROPORTION 7

Figure 1.1. Binomial likelihood functions for y = 0 successes and for y = 6 successes in n = 10 trials.

likelihood function when n = 10 with y = 6, which from formula (1.1) equals �(π) =
[10!/(6!)(4!)]π6(1 − π)4. The maximum value occurs when π = 0.60. The result
y = 6 in n = 10 trials is more likely to occur when π = 0.60 than when π equals
any other value.

Denote each success by a 1 and each failure by a 0. Then the sample proportion
equals the sample mean of the results of the individual trials. For instance, for four
failures followed by six successes in 10 trials, the data are 0,0,0,0,1,1,1,1,1,1, and the
sample mean is

p = (0 + 0 + 0 + 0 + 1 + 1 + 1 + 1 + 1 + 1)/10 = 0.60.

Thus, results that apply to sample means with random sampling, such as the Central
Limit Theorem (large-sample normality of its sampling distribution) and the Law of
Large Numbers (convergence to the population mean as n increases) apply also to
sample proportions.

The abbreviation ML symbolizes the term maximum likelihood. The ML estimate
is often denoted by the parameter symbol with a ˆ(a “hat”) over it. The ML estimate
of the binomial parameter π , for instance, is often denoted by π̂ , called pi-hat.

Before we observe the data, the value of the ML estimate is unknown. The estimate
is then a variate having some sampling distribution. We refer to this variate as an
estimator and its value for observed data as an estimate. Estimators based on the
method of maximum likelihood are popular because they have good large-sample
behavior. Most importantly, it is not possible to find good estimators that are more
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precise, in terms of having smaller large-sample standard errors. Also, large-sample
distributions of ML estimators are usually approximately normal. The estimators
reported in this text use this method.

1.3.2 Significance Test About a Binomial Proportion

For the binomial distribution, we now use the ML estimator in statistical inference
for the parameter π . The ML estimator is the sample proportion, p. The sampling
distribution of the sample proportion p has mean and standard error

E(p) = π, σ(p) =
√

π(1 − π)

n

As the number of trials n increases, the standard error of p decreases toward zero; that
is, the sample proportion tends to be closer to the parameter value π . The sampling
distribution of p is approximately normal for large n. This suggests large-sample
inferential methods for π .

Consider the null hypothesis H0: π = π0 that the parameter equals some fixed
value, π0. The test statistic

z = p − π0√
π0(1 − π0)

n

(1.2)

divides the difference between the sample proportion p and the null hypothesis value
π0 by the null standard error of p. The null standard error is the one that holds under
the assumption that the null hypothesis is true. For large samples, the null sampling
distribution of the z test statistic is the standard normal – the normal distribution
having a mean of 0 and standard deviation of 1. The z test statistic measures the
number of standard errors that the sample proportion falls from the null hypothesized
proportion.

1.3.3 Example: Survey Results on Legalizing Abortion

Do a majority, or minority, of adults in the United States believe that a pregnant woman
should be able to obtain an abortion? Let π denote the proportion of the American
adult population that responds “yes” to the question, “Please tell me whether or not
you think it should be possible for a pregnant woman to obtain a legal abortion if she
is married and does not want any more children.” We test H0: π = 0.50 against the
two-sided alternative hypothesis, Ha : π �= 0.50.

This item was one of many included in the 2002 General Social Survey. This
survey, conducted every other year by the National Opinion Research Center (NORC)
at the University of Chicago, asks a sample of adult American subjects their opinions
about a wide variety of issues. (It is a multistage sample, but has characteristics
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similar to a simple random sample.) You can view responses to surveys since 1972
at http://sda.berkeley.edu/GSS. Of 893 respondents to this question in 2002, 400
replied “yes” and 493 replied “no”.

The sample proportion of “yes” responses was p = 400/893 = 0.448. For a sam-
ple of size n = 893, the null standard error of p equals

√[(0.50)(0.50)/893] =
0.0167. The test statistic is

z = (0.448 − 0.50)/0.0167 = −3.1

The two-sided P -value is the probability that the absolute value of a standard normal
variate exceeds 3.1, which is P = 0.002. There is strong evidence that, in 2002,
π < 0.50, that is, that fewer than half of Americans favored legal abortion in this
situation. In some other situations, such as when the mother’s health was endangered,
an overwhelming majority favored legalized abortion. Responses depended strongly
on the question wording.

1.3.4 Confidence Intervals for a Binomial Proportion

A significance test merely indicates whether a particular value for a parameter (such
as 0.50) is plausible. We learn more by constructing a confidence interval to determine
the range of plausible values. Let SE denote the estimated standard error of p. A large-
sample 100(1 − α)% confidence interval for π has the formula

p ± zα/2(SE), with SE = √
p(1 − p)/n (1.3)

where zα/2 denotes the standard normal percentile having right-tail probability
equal to α/2; for example, for 95% confidence, α = 0.05, zα/2 = z0.025 = 1.96.
This formula substitutes the sample proportion p for the unknown parameter π in
σ(p) = √[π(1 − π)/n].

For the attitudes about abortion example just discussed, p = 0.448 for n = 893
observations. The 95% confidence interval equals

0.448 ± 1.96
√

(0.448)(0.552)/893, which is 0.448 ± 0.033, or (0.415, 0.481)

We can be 95% confident that the population proportion of Americans in 2002 who
favored legalized abortion for married pregnant women who do not want more children
is between 0.415 and 0.481.

Formula (1.3) is simple. Unless π is close to 0.50, however, it does not work well
unless n is very large. Consider its actual coverage probability, that is, the probability
that the method produces an interval that captures the true parameter value. This may
be quite a bit less than the nominal value (such as 95%). It is especially poor when π

is near 0 or 1.
A better way to construct confidence intervals uses a duality with significance tests.

This confidence interval consists of all values π0 for the null hypothesis parameter
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that are judged plausible in the z test of the previous subsection. A 95% confidence
interval contains all values π0 for which the two-sided P -value exceeds 0.05. That is,
it contains all values that are “not rejected” at the 0.05 significance level. These are the
null values that have test statistic z less than 1.96 in absolute value. This alternative
method does not require estimation of π in the standard error, since the standard error
in the test statistic uses the null value π0.

To illustrate, suppose a clinical trial to evaluate a new treatment has nine successes
in the first 10 trials. For a sample proportion of p = 0.90 based on n = 10, the value
π0 = 0.596 for the null hypothesis parameter leads to the test statistic value

z = (0.90 − 0.596)/
√

(0.596)(0.404)/10 = 1.96

and a two-sided P -value of P = 0.05. The value π0 = 0.982 leads to

z = (0.90 − 0.982)/
√

(0.982)(0.018)/100 = −1.96

and also a two-sided P -value of P = 0.05. (We explain in the following paragraph
how to find 0.596 and 0.982.) All π0 values between 0.596 and 0.982 have |z| < 1.96
and P > 0.05. So, the 95% confidence interval for π equals (0.596, 0.982). By
contrast, the method (1.3) using the estimated standard error gives confidence interval
0.90 ± 1.96

√[(0.90)(0.10)/10], which is (0.714, 1.086). However, it works poorly
to use the sample proportion as the midpoint of the confidence interval when the
parameter may fall near the boundary values of 0 or 1.

For given p and n, the π0 values that have test statistic value z = ±1.96 are the
solutions to the equation

| p − π0 |√
π0(1 − π0)/n

= 1.96

for π0. To solve this for π0, squaring both sides gives an equation that is quadratic
in π0 (see Exercise 1.18). The results are available with some software, such as an R

function available at http://www.stat.ufl.edu/∼aa/cda/software.html.
Here is a simple alternative interval that approximates this one, having a similar

midpoint in the 95% case but being a bit wider: Add 2 to the number of successes
and 2 to the number of failures (and thus 4 to n) and then use the ordinary formula
(1.3) with the estimated standard error. For example, with nine successes in 10 trials,
you find p = (9 + 2)/(10 + 4) = 0.786, SE = √[0.786(0.214)/14] = 0.110, and
obtain confidence interval (0.57, 1.00). This simple method, sometimes called the
Agresti–Coull confidence interval, works well even for small samples.1

1A. Agresti and B. Coull, Am. Statist., 52: 119–126, 1998.
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1.4 MORE ON STATISTICAL INFERENCE FOR DISCRETE DATA

We have just seen how to construct a confidence interval for a proportion using an
estimated standard error or by inverting results of a significance test using the null
standard error. In fact, there are three ways of using the likelihood function to conduct
inference (confidence intervals and significance tests) about parameters. We finish the
chapter by summarizing these methods. They apply to any parameter in a statistical
model, but we will illustrate using the binomial parameter.

1.4.1 Wald, Likelihood-Ratio, and Score Inference

Let β denote an arbitrary parameter. Consider a significance test of H0: β = β0 (such
as H0: β = 0, for which β0 = 0).

The simplest test statistic uses the large-sample normality of the ML estimator β̂.
Let SE denote the standard error of β̂, evaluated by substituting the ML estimate for
the unknown parameter in the expression for the true standard error. (For example, for
the binomial parameter π , SE = √[p(1 − p)/n].) When H0 is true, the test statistic

z = (β̂ − β0)/SE

has approximately a standard normal distribution. Equivalently, z2 has approximately
a chi-squared distribution with df = 1. This type of statistic, which uses the standard
error evaluated at the ML estimate, is called a Wald statistic. The z or chi-squared test
using this test statistic is called a Wald test.

You can refer z to the standard normal table to get one-sided or two-sided P -
values. Equivalently, for the two-sided alternative H0: β �= β0 , z2 has a chi-squared
distribution with df = 1. The P -value is then the right-tail chi-squared probability
above the observed value. The two-tail probability beyond ±z for the standard normal
distribution equals the right-tail probability above z2 for the chi-squared distribution
with df = 1. For example, the two-tail standard normal probability of 0.05 that
falls below −1.96 and above 1.96 equals the right-tail chi-squared probability above
(1.96)2 = 3.84 when df = 1.

An alternative test uses the likelihood function through the ratio of two maximiza-
tions of it: (1) the maximum over the possible parameter values that assume the null
hypothesis, (2) the maximum over the larger set of possible parameter values, per-
mitting the null or the alternative hypothesis to be true. Let �0 denote the maximized
value of the likelihood function under the null hypothesis, and let �1 denote the max-
imized value more generally. For instance, when there is a single parameter β, �0 is
the likelihood function calculated at β0, and �1 is the likelihood function calculated
at the ML estimate β̂. Then �1 is always at least as large as �0, because �1 refers to
maximizing over a larger set of possible parameter values.

The likelihood-ratio test statistic equals

−2 log(�0/�1)



“c01” — 2007/1/29 — page 12 — #12

12 INTRODUCTION

In this text, we use the natural log, often abbreviated on calculators by LN. If the maxi-
mized likelihood is much larger when the parameters are not forced to satisfy H0, then
the ratio �0/�1 is far below 1. The test statistic −2 log(�0/�1) must be nonnegative,
and relatively small values of �0/�1 yield large values of −2 log(�0/�1) and strong evi-
dence against H0. The reason for taking the log transform and doubling is that it yields
an approximate chi-squared sampling distribution. Under H0: β = β0, the likelihood-
ratio test statistic has a large-sample chi-squared distribution with df = 1. Software
can find the maximized likelihood values and the likelihood-ratio test statistic.

A third possible test is called the score test. We will not discuss the details except
to say that it finds standard errors under the assumption that the null hypothesis holds.
For example, the z test (1.2) for a binomial parameter that uses the standard error√[π0(1 − π0)/n] is a score test.

The Wald, likelihood-ratio, and score tests are the three major ways of constructing
significance tests for parameters in statistical models. For ordinary regression models
assuming a normal distribution for Y , the three tests provide identical results. In other
cases, for large samples they have similar behavior when H0 is true.

When you use any of these tests, the P -value that you find or software reports is
an approximation for the true P -value. This is because the normal (or chi-squared)
sampling distribution used is a large-sample approximation for the true sampling
distribution. Thus, when you report a P -value, it is overly optimistic to use many
decimal places. If you are lucky, the P -value approximation is good to the second
decimal place. So, for a P -value that software reports as 0.028374, it makes more
sense to report it as 0.03 (or, at best, 0.028) rather than 0.028374. An exception is
when the P -value is zero to many decimal places, in which case it is sensible to
report it as P < 0.001 or P < 0.0001. In any case, a P -value merely summarizes the
strength of evidence against the null hypothesis, and accuracy to two or three decimal
places is sufficient for this purpose.

Each method has a corresponding confidence interval. This is based on inverting
results of the significance test: The 95% confidence interval for a parameter β is the set
of β0 values for the significance test of H0: β = β0 such that the P -value is larger than
0.05. For example, the 95% Wald confidence interval is the set of β0 values for which
z = (β̂ − β0)/SE has |z| < 1.96. It equals β̂ ± 1.96(SE). For a binomial proportion,
the score confidence interval is the one discussed in Section 1.3.4 that has endpoints
that are π0 values having P -value 0.05 in the z-test using the null standard error.

1.4.2 Wald, Score, and Likelihood-Ratio Inference for Binomial Parameter

We illustrate the Wald, likelihood-ratio, and score tests by testing H0: π = 0.50
against Ha : π �= 0.50 for the example mentioned near the end of Section 1.3.4 of a
clinical trial that has nine successes in the first 10 trials. The sample proportion is
p = 0.90 based on n = 10.

For the Wald test of H0: π = 0.50, the estimated standard error is SE =√[0.90(0.10)/10] = 0.095. The z test statistic is

z = (0.90 − 0.50)/0.095 = 4.22
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The corresponding chi-squared statistic is (4.22)2 = 17.8 (df = 1). The P -value
<0.001.

For the score test of H0: π = 0.50, the null standard error is
√[0.50(0.50)/10] =

0.158. The z test statistic is

z = (0.90 − 0.50)/0.158 = 2.53

The corresponding chi-squared statistic is (2.53)2 = 6.4 (df = 1). The P -value =
0.011.

Finally, consider the likelihood-ratio test. When H0: π = 0.50 is true, the
binomial probability of the observed result of nine successes is �0 = [10!/9!1!]
(0.50)9(0.50)1 = 0.00977. The likelihood-ratio test compares this to the value
of the likelihood function at the ML estimate of p = 0.90, which is �1 =
[10!/9!1!](0.90)9(0.10)1 = 0.3874. The likelihood-ratio test statistic equals

−2 log(�0/�1) = −2 log(0.00977/0.3874) = −2 log(0.0252) = 7.36

From the chi-squared distribution with df = 1, this statistic has P -value = 0.007.
When the sample size is small to moderate, the Wald test is the least reliable of

the three tests. We should not trust it for such a small n as in this example (n = 10).
Likelihood-ratio inference and score-test based inference are better in terms of actual
error probabilities coming close to matching nominal levels. A marked divergence
in the values of the three statistics indicates that the distribution of the ML estimator
may be far from normality. In that case, small-sample methods are more appropriate
than large-sample methods.

1.4.3 Small-Sample Binomial Inference

For inference about a proportion, the large-sample two-sided z score test and the
confidence interval based on that test (using the null hypothesis standard error) per-
form reasonably well when nπ ≥ 5 and n(1 − π) ≥ 5. When π0 is not near 0.50 the
normal P -value approximation is better for the test with a two-sided alternative than
for a one-sided alternative; a probability that is “too small” in one tail tends to be
approximately counter-balanced by a probability that is “too large” in the other tail.

For small sample sizes, it is safer to use the binomial distribution directly (rather
than a normal approximation) to calculate P -values. To illustrate, consider testing
H0: π = 0.50 against Ha : π > 0.50 for the example of a clinical trial to evaluate
a new treatment, when the number of successes y = 9 in n = 10 trials. The exact
P -value, based on the right tail of the null binomial distribution with π = 0.50, is

P(Y ≥ 9) = [10!/9!1!](0.50)9(0.50)1 + [10!/10!0!](0.50)10(0.50)0 = 0.011

For the two sided alternative Ha : π �= 0.50, the P -value is

P(Y ≥ 9 or Y ≤ 1) = 2 × P(Y ≥ 9) = 0.021
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1.4.4 Small-Sample Discrete Inference is Conservative∗

Unfortunately, with discrete probability distributions, small-sample inference using
the ordinary P -value is conservative. This means that when H0 is true, the P -value
is ≤0.05 (thus leading to rejection of H0 at the 0.05 significance level) not exactly
5% of the time, but typically less than 5% of the time. Because of the discreteness, it
is usually not possible for a P -value to achieve the desired significance level exactly.
Then, the actual probability of type I error is less than 0.05.

For example, consider testing H0: π = 0.50 against Ha : π > 0.50 for the clinical
trial example with y = 9 successes in n = 10 trials. Table 1.1 showed the binomial
distribution with n = 10 and π = 0.50. Table 1.2 shows it again with the correspond-
ing P -values (right-tail probabilities) for this one-sided alternative. The P -value is
≤0.05 when y = 9 or 10. This happens with probability 0.010 + 0.001 = 0.011.
Thus, the probability of getting a P -value ≤0.05 is only 0.011. For a desired sig-
nificance level of 0.05, the actual probability of type I error is 0.011. The actual
probability of type I error is much smaller than the intended one.

This illustrates an awkward aspect of significance testing when the test statistic
has a discrete distribution. For test statistics having a continuous distribution, the
P -value has a uniform null distribution over the interval [0, 1]. That is, when H0
is true, the P -value is equally likely to fall anywhere between 0 and 1. Then, the
probability that the P -value falls below 0.05 equals exactly 0.05, and the expected
value of the P -value is exactly 0.50. For a test statistic having a discrete distribution,
the null distribution of the P -value is discrete and has an expected value greater
than 0.50.

For example, for the one-sided test summarized above, the P -value equals 1.000
with probability P(0) = 0.001, it equals 0.999 with probability P(1) = 0.010, . . . ,

and it equals 0.001 with probability P(10) = 0.001. From the table, the null expected

Table 1.2. Null Binomial Distribution and One-Sided
P -values for Testing H0: π = 0.50 against Ha: π > 0.50
with n = 10

y P (y) P -value Mid P -value

0 0.001 1.000 0.9995
1 0.010 0.999 0.994
2 0.044 0.989 0.967
3 0.117 0.945 0.887
4 0.205 0.828 0.726
5 0.246 0.623 0.500
6 0.205 0.377 0.274
7 0.117 0.172 0.113
8 0.044 0.055 0.033
9 0.010 0.011 0.006
10 0.001 0.001 0.0005
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value of the P -value is

∑
P × Prob(P ) = 1.000(0.001) + 0.999(0.010) + · · · + 0.001(0.001) = 0.59

In this average sense, P -values for discrete distributions tend to be too large.

1.4.5 Inference Based on the Mid P -value∗

With small samples of discrete data, many statisticians prefer to use a different type
of P -value. Called the mid P -value, it adds only half the probability of the observed
result to the probability of the more extreme results. To illustrate, in the above example
with y = 9 successes in n = 10 trials, the ordinary P -value for Ha : π > 0.50 is
P(9) + P(10) = 0.010 + 0.001 = 0.011. The mid P -value is P(9)/2 + P(10) =
0.010/2 + 0.001 = 0.006. Table 1.2 also shows the mid P -values for the possible y

values when n = 10.
Tests using the mid P -value are, on the average, less conservative than tests using

the ordinary P -value. The mid P -value has a null expected value of 0.50, the same
as the regular P -value for continuous variates. Also, the two separate one-sided mid
P -values sum to 1.0. For example, for y = 9 when n = 10, for Ha : π > 0.50 the
ordinary P -value is

right-tail P -value = P(9) + P(10) = 0.011

and for Ha : π < 0.50 it is

left-tail P -value = P(0) + P(1) + · · · + P(9) = 0.999

That is, P(9) gets counted in each tail for each P -value. By contrast, for Ha :π > 0.50,
the mid P -value is

right-tail mid P -value = P(9)/2 + P(10) = 0.006

and for Ha : π < 0.50 it is

left-tail mid P -value = P(0) + P(1) + · · · + P(9)/2 = 0.994

and these one-sided mid P -values sum to 1.0.
The two-sided P -value for the large-sample z score test approximates the two-sided

mid P -value in the small-sample binomial test. For example, with y = 9 in n = 10
trials for H0: π = 0.50, z = (0.90 − 0.50)/

√[0.50(0.50)/10] = 2.53 has two-sided
P -value = 0.0114. The two-sided mid P -value is 2[P(9)/2 + P(10)] = 0.0117.
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For small samples, one can construct confidence intervals by inverting results of
significance tests that use the binomial distribution, rather than a normal approx-
imation. Such inferences are very conservative when the test uses the ordinary
P -value. We recommend inverting instead the binomial test using the mid P -
value. The mid-P confidence interval is the set of π0 values for a two-sided test
in which the mid P -value using the binomial distribution exceeds 0.05. This is
available in some software, such as an R function (written by A. Gottard) at
http://www.stat.ufl.edu/∼aa/cda/software.html.

1.4.6 Summary

This chapter has introduced the key distributions for categorical data analysis: the
binomial and the multinomial. It has also introduced maximum likelihood estimation
and illustrated its use for proportion data using Wald, likelihood-ratio, and score meth-
ods of inference. The rest of the text uses ML inference for binomial and multinomial
parameters in a wide variety of contexts.

PROBLEMS

1.1 In the following examples, identify the response variable and the explanatory
variables.

a. Attitude toward gun control (favor, oppose), Gender (female, male),
Mother’s education (high school, college).

b. Heart disease (yes, no), Blood pressure, Cholesterol level.

c. Race (white, nonwhite), Religion (Catholic, Jewish, Protestant), Vote for
president (Democrat, Republican, Other), Annual income.

d. Marital status (married, single, divorced, widowed), Quality of life
(excellent, good, fair, poor).

1.2 Which scale of measurement is most appropriate for the following variables –
nominal, or ordinal?

a. Political party affiliation (Democrat, Republican, unaffiliated).

b. Highest degree obtained (none, high school, bachelor’s, master’s, doctor-
ate).

c. Patient condition (good, fair, serious, critical).

d. Hospital location (London, Boston, Madison, Rochester, Toronto).

e. Favorite beverage (beer, juice, milk, soft drink, wine, other).

f. How often feel depressed (never, occasionally, often, always).

1.3 Each of 100 multiple-choice questions on an exam has four possible answers
but one correct response. For each question, a student randomly selects one
response as the answer.
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a. Specify the distribution of the student’s number of correct answers on
the exam.

b. Based on the mean and standard deviation of that distribution, would it be
surprising if the student made at least 50 correct responses? Explain your
reasoning.

1.4 A coin is flipped twice. Let Y = number of heads obtained, when the
probability of a head for a flip equals π .

a. Assuming π = 0.50, specify the probabilities for the possible values for Y ,
and find the distribution’s mean and standard deviation.

b. Find the binomial probabilities for Y when π equals (i) 0.60, (ii) 0.40.

c. Suppose you observe y = 1 and do not know π . Calculate and sketch the
likelihood function.

d. Using the plotted likelihood function from (c), show that the ML estimate
of π equals 0.50.

1.5 Refer to the previous exercise. Suppose y = 0 in 2 flips. Find the ML estimate
of π . Does this estimate seem “reasonable”? Why? [The Bayesian estimator
is an alternative one that combines the sample data with your prior beliefs
about the parameter value. It provides a nonzero estimate of π , equaling (y +
1)/(n + 2) when your prior belief is that π is equally likely to be anywhere
between 0 and 1.]

1.6 Genotypes AA, Aa, and aa occur with probabilities (π1, π2, π3). For n = 3
independent observations, the observed frequencies are (n1, n2, n3).

a. Explain how you can determine n3 from knowing n1 and n2. Thus, the
multinomial distribution of (n1, n2, n3) is actually two-dimensional.

b. Show the set of all possible observations, (n1, n2, n3) with n = 3.

c. Suppose (π1, π2, π3) = (0.25, 0.50, 0.25). Find the multinomial probabi-
lity that (n1, n2, n3) = (1, 2, 0).

d. Refer to (c). What probability distribution does n1 alone have? Specify the
values of the sample size index and parameter for that distribution.

1.7 In his autobiography A Sort of Life, British author Graham Greene described a
period of severe mental depression during which he played Russian Roulette.
This “game” consists of putting a bullet in one of the six chambers of a pistol,
spinning the chambers to select one at random, and then firing the pistol once
at one’s head.

a. Greene played this game six times, and was lucky that none of them resulted
in a bullet firing. Find the probability of this outcome.

b. Suppose one kept playing this game until the bullet fires. Let Y denote the
number of the game on which the bullet fires. Argue that the probability of
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the outcome y equals (5/6)y−1(1/6), for y = 1, 2, 3, . . . . (This is called
the geometric distribution.)

1.8 When the 2000 General Social Survey asked subjects whether they would be
willing to accept cuts in their standard of living to protect the environment,
344 of 1170 subjects said “yes.”

a. Estimate the population proportion who would say “yes.”

b. Conduct a significance test to determine whether a majority or minority of
the population would say “yes.” Report and interpret the P -value.

c. Construct and interpret a 99% confidence interval for the population
proportion who would say “yes.”

1.9 A sample of women suffering from excessive menstrual bleeding have been
taking an analgesic designed to diminish the effects. A new analgesic is claimed
to provide greater relief. After trying the new analgesic, 40 women reported
greater relief with the standard analgesic, and 60 reported greater relief with
the new one.

a. Test the hypothesis that the probability of greater relief with the standard
analgesic is the same as the probability of greater relief with the new anal-
gesic. Report and interpret the P -value for the two-sided alternative. (Hint:
Express the hypotheses in terms of a single parameter. A test to com-
pare matched-pairs responses in terms of which is better is called a sign
test.)

b. Construct and interpret a 95% confidence interval for the probability of
greater relief with the new analgesic.

1.10 Refer to the previous exercise. The researchers wanted a sufficiently large
sample to be able to estimate the probability of preferring the new analgesic
to within 0.08, with confidence 0.95. If the true probability is 0.75, how large
a sample is needed to achieve this accuracy? (Hint: For how large an n does a
95% confidence interval have margin of error equal to about 0.08?)

1.11 When a recent General Social Survey asked 1158 American adults, “Do you
believe in Heaven?”, the proportion who answered yes was 0.86. Treating this
as a random sample, conduct statistical inference about the true proportion of
American adults believing in heaven. Summarize your analysis and interpret
the results in a short report of about 200 words.

1.12 To collect data in an introductory statistics course, recently I gave the students
a questionnaire. One question asked whether the student was a vegetarian. Of
25 students, 0 answered “yes.” They were not a random sample, but let us use
these data to illustrate inference for a proportion. (You may wish to refer to
Section 1.4.1 on methods of inference.) Let π denote the population proportion
who would say “yes.” Consider H0: π = 0.50 and Ha : π �= 0.50.
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a. What happens when you try to conduct the “Wald test,” for which z =
(p − π0)/

√[p(1 − p)/n] uses the estimated standard error?

b. Find the 95% “Wald confidence interval” (1.3) for π . Is it believable?
(When the observation falls at the boundary of the sample space, often
Wald methods do not provide sensible answers.)

c. Conduct the “score test,” for which z = (p − π0)/
√[π0(1 − π0)/n] uses

the null standard error. Report the P -value.

d. Verify that the 95% score confidence interval (i.e., the set of π0 for which
|z| < 1.96 in the score test) equals (0.0, 0.133). (Hint: What do the z test
statistic and P -value equal when you test H0: π = 0.133 against Ha : π �=
0.133.)

1.13 Refer to the previous exercise, with y = 0 in n = 25 trials.

a. Show that �0, the maximized likelihood under H0, equals (1 − π0)
25, which

is (0.50)25 for H0: π = 0.50.

b. Show that �1, the maximum of the likelihood function over all possible π

values, equals 1.0. (Hint: This is the value at the ML estimate value of 0.0.)

c. For H0: π = 0.50, show that the likelihood-ratio test statistic,
−2 log(�0/�1), equals 34.7. Report the P -value.

d. The 95% likelihood-ratio confidence interval for π is (0.000, 0.074). Verify
that 0.074 is the correct upper bound by showing that the likelihood-ratio
test of H0: π = 0.074 against Ha : π �= 0.074 has chi-squared test statistic
equal to 3.84 and P -value = 0.05.

1.14 Sections 1.4.4 and 1.4.5 found binomial P -values for a clinical trial with y = 9
successes in 10 trials. Suppose instead y = 8. Using the binomial distribution
shown in Table 1.2:

a. Find the P -value for (i) Ha : π > 0.50, (ii) Ha : π < 0.50.

b. Find the mid P -value for (i) Ha : π > 0.50, (ii) Ha : π < 0.50.

c. Why is the sum of the one-sided P -values greater than 1.0 for the ordinary
P -value but equal to 1.0 for the mid P -value?

1.15 If Y is a variate and c is a positive constant, then the standard deviation of
the distribution of cY equals cσ (Y ). Suppose Y is a binomial variate, and let
p = Y/n.

a. Based on the binomial standard deviation for Y , show that σ(p) =√[π(1 − π)/n].
b. Explain why it is easier to estimate π precisely when it is near 0 or 1 than

when it is near 0.50.

1.16 Using calculus, it is easier to derive the maximum of the log of the likelihood
function, L = log �, than the likelihood function � itself. Both functions have
maximum at the same value, so it is sufficient to do either.
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a. Calculate the log likelihood function L(π) for the binomial distribution
(1.1).

b. One can usually determine the point at which the maximum of a log like-
lihood L occurs by solving the likelihood equation. This is the equation
resulting from differentiating L with respect to the parameter, and setting
the derivative equal to zero. Find the likelihood equation for the binomial
distribution, and solve it to show that the ML estimate equals p = y/n.

1.17 Suppose a researcher routinely conducts significance tests by rejecting H0 if
the P -value satisfies P ≤ 0.05. Suppose a test using a test statistic T and right-
tail probability for the P -value has null distribution P(T = 0) = 0.30, P (T =
3) = 0.62, and P(T = 9) = 0.08.

a. Show that with the usual P -value, the actual probability of type I error is 0
rather than 0.05.

b. Show that with the mid P -value, the actual probability of type I error equals
0.08.

c. Repeat (a) and (b) using P(T = 0) = 0.30, P(T = 3) = 0.66, and P(T =
9) = 0.04. Note that the test with mid P -value can be “conservative” [hav-
ing actual P (type I error) below the desired value] or “liberal” [having
actual P (type I error) above the desired value]. The test with the ordinary
P -value cannot be liberal.

1.18 For a given sample proportion p, show that a value π0 for which the test statistic
z = (p − π0)/

√[π0(1 − π0)/n] takes some fixed value z0 (such as 1.96) is a
solution to the equation (1 + z2

0/n)π2
0 + (−2p − z2

0/n)π0 + p2 = 0. Hence,
using the formulax = [−b ± √

(b2 − 4ac)]/2a for solving the quadratic equa-
tion ax2 + bx + c = 0, obtain the limits for the 95% confidence interval in
Section 1.3.4 for the probability of success when a clinical trial has nine
successes in 10 trials.
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Contingency Tables

Table 2.1 cross classifies a sample of Americans according to their gender and their
opinion about an afterlife. For the females in the sample, for example, 509 said
they believed in an afterlife and 116 said they did not or were undecided. Does an
association exist between gender and belief in an afterlife? Is one gender more likely
than the other to believe in an afterlife, or is belief in an afterlife independent of
gender?

Table 2.1. Cross Classification of Belief in Afterlife by
Gender

Belief in Afterlife

Gender Yes No or Undecided

Females 509 116
Males 398 104

Source: Data from 1998 General Social Survey.

Analyzing associations is at the heart of multivariate statistical analysis. This
chapter deals with associations between categorical variables. We introduce para-
meters that describe the association and we present inferential methods for those
parameters.

2.1 PROBABILITY STRUCTURE FOR CONTINGENCY TABLES

For a single categorical variable, we can summarize the data by counting the number
of observations in each category. The sample proportions in the categories estimate
the category probabilities.

An Introduction to Categorical Data Analysis, Second Edition. By Alan Agresti
Copyright © 2007 John Wiley & Sons, Inc.
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Suppose there are two categorical variables, denoted by X and Y . Let I denote the
number of categories of X and J the number of categories of Y . A rectangular table
having I rows for the categories of X and J columns for the categories of Y has cells
that display the IJ possible combinations of outcomes.

A table of this form that displays counts of outcomes in the cells is called a
contingency table. A table that cross classifies two variables is called a two-way
contingency table; one that cross classifies three variables is called a three-way con-
tingency table, and so forth. A two-way table with I rows and J columns is called an
I × J (read I–by–J ) table. Table 2.1 is a 2 × 2 table.

2.1.1 Joint, Marginal, and Conditional Probabilities

Probabilities for contingency tables can be of three types – joint, marginal, or condi-
tional. Suppose first that a randomly chosen subject from the population of interest
is classified on X and Y . Let πij = P(X = i, Y = j) denote the probability that
(X, Y ) falls in the cell in row i and column j . The probabilities {πij } form the joint
distribution of X and Y . They satisfy

∑
i,j πij = 1.

The marginal distributions are the row and column totals of the joint probabilities.
We denote these by {πi+} for the row variable and {π+j } for the column variable,
where the subscript “+” denotes the sum over the index it replaces. For 2 × 2 tables,

π1+ = π11 + π12 and π+1 = π11 + π21

Each marginal distribution refers to a single variable.
We use similar notation for samples, with Roman p in place of Greek π . For exam-

ple, {pij } are cell proportions in a sample joint distribution. We denote the cell counts
by {nij }. The marginal frequencies are the row totals {ni+} and the column totals
{n+j }, and n = ∑

i,j nij denotes the total sample size. The sample cell proportions
relate to the cell counts by

pij = nij /n

In many contingency tables, one variable (say, the column variable, Y ) is a response
variable and the other (the row variable, X) is an explanatory variable. Then, it is
informative to construct a separate probability distribution for Y at each level of X.
Such a distribution consists of conditional probabilities for Y , given the level of X.
It is called a conditional distribution.

2.1.2 Example: Belief in Afterlife

Table 2.1 cross classified n = 1127 respondents to a General Social Survey by their
gender and by their belief in an afterlife. Table 2.2 illustrates the cell count notation
for these data. For example, n11 = 509, and the related sample joint proportion is
p11 = 509/1127 = 0.45.
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Table 2.2. Notation for Cell Counts in Table 2.1

Belief in Afterlife

Gender Yes No or Undecided Total

Females n11 = 509 n12 = 116 n1+ = 625
Males n21 = 398 n22 = 104 n2+ = 502

Total n+1 = 907 n+2 = 220 n = 1127

In Table 2.1, belief in the afterlife is a response variable and gender is an
explanatory variable. We therefore study the conditional distributions of belief in
the afterlife, given gender. For females, the proportion of “yes” responses was
509/625 = 0.81 and the proportion of “no” responses was 116/625 = 0.19. The
proportions (0.81, 0.19) form the sample conditional distribution of belief in the
afterlife. For males, the sample conditional distribution is (0.79, 0.21).

2.1.3 Sensitivity and Specificity in Diagnostic Tests

Diagnostic testing is used to detect many medical conditions. For example, the mam-
mogram can detect breast cancer in women, and the prostate-specific antigen (PSA)
test can detect prostate cancer in men. The result of a diagnostic test is said to be
positive if it states that the disease is present and negative if it states that the disease
is absent.

The accuracy of diagnostic tests is often assessed with two conditional probabili-
ties: Given that a subject has the disease, the probability the diagnostic test is positive
is called the sensitivity. Given that the subject does not have the disease, the probabil-
ity the test is negative is called the specificity. Let X denote the true state of a person,
with categories 1 = diseased, 2 = not diseased, and let Y = outcome of diagnostic
test, with categories 1 = positive, 2 = negative. Then,

sensitivity = P(Y = 1|X = 1), specificity = P(Y = 2|X = 2)

The higher the sensitivity and specificity, the better the diagnostic test.
In practice, if you get a positive result, what is more relevant is P(X = 1|Y = 1).

Given that the diagnostic test says you have the disease, what is the probability you
truly have it? When relatively few people have the disease, this probability can be
low even when the sensitivity and specificity are high. For example, breast cancer is
the most common form of cancer in women. Of women who get mammograms at
any given time, it has been estimated that 1% truly have breast cancer. Typical values
reported for mammograms are sensitivity = 0.86 and specificity = 0.88. If these are
true, then given that a mammogram has a positive result, the probability that the
woman truly has breast cancer is only 0.07. This can be shown with Bayes theorem
(see Exercise 2.2).
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Figure 2.1. Tree diagram showing results of 100 mammograms, when sensitivity = 0.86 and
specificity = 0.88.

How can P(X = 1|Y = 1) be so low, given the relatively good sensitivity and
specificity? Figure 2.1 is a tree diagram that shows results for a typical sample of 100
women. The first set of branches shows whether a woman has breast cancer. Here,
one of the 100 women have it, 1% of the sample. The second set of branches shows
the mammogram result, given the disease status. For a woman with breast cancer,
there is a 0.86 probability of detecting it. So, we would expect the one woman with
breast cancer to have a positive result, as the figure shows. For a woman without
breast cancer, there is a 0.88 probability of a negative result. So, we would expect
about (0.88)99 = 87 of the 99 women without breast cancer to have a negative result,
and (0.12)99 = 12 to have a positive result. Figure 2.1 shows that of the 13 women
with a positive test result, the proportion 1/13 = 0.08 actually have breast cancer.
The small proportion of errors for the large majority of women who do not have
breast cancer swamps the large proportion of correct diagnoses for the few women
who have it.

2.1.4 Independence

Two variables are said to be statistically independent if the population conditional
distributions of Y are identical at each level of X. When two variables are independent,
the probability of any particular column outcome j is the same in each row. Belief in
an afterlife is independent of gender, for instance, if the actual probability of believing
in an afterlife equals 0.80 both for females and for males.

When both variables are response variables, we can describe their relationship
using their joint distribution, or the conditional distribution of Y given X, or the
conditional distribution of X given Y . Statistical independence is, equivalently, the
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property that all joint probabilities equal the product of their marginal probabilities,

πij = πi+π+j for i = 1, . . . , I and j = 1, . . . , J

That is, the probability that X falls in row i and Y falls in column j is the product of
the probability that X falls in row i with the probability that Y falls in column j .

2.1.5 Binomial and Multinomial Sampling

Section 1.2 introduced the binomial and multinomial distributions. With random
sampling or randomized experiments, it is often sensible to assume that cell counts
in contingency tables have one of these distributions.

When the rows of a contingency table refer to different groups, the sample sizes
for those groups are often fixed by the sampling design. An example is a randomized
experiment in which half the sample is randomly allocated to each of two treatments.
When the marginal totals for the levels of X are fixed rather than random, a joint
distribution for X and Y is not meaningful, but conditional distributions for Y at each
level of X are. When there are two outcome categories for Y , the binomial distribution
applies for each conditional distribution. We assume a binomial distribution for the
sample in each row, with number of trials equal to the fixed row total. When there
are more than two outcome categories for Y , such as (always, sometimes, never), the
multinomial distribution applies for each conditional distribution.

Likewise, when the columns are a response variable and the rows are an explanatory
variable, it is sensible to divide the cell counts by the row totals to form conditional
distributions on the response. In doing so, we inherently treat the row totals as fixed
and analyze the data the same way as if the two rows formed separate samples. For
example, Table 2.1 cross classifies a random sample of 1127 subjects according to
gender and belief in afterlife. Since belief in afterlife is the response variable, we
might treat the results for females as a binomial sample with outcome categories
“yes” and “no or undecided” for belief in an afterlife, and the results for males as
a separate binomial sample on that response. For a multicategory response variable,
we treat the samples as separate multinomial samples.

When the total sample size n is fixed and we cross classify the sample on two
categorical response variables, the multinomial distribution is the actual joint distri-
bution over the cells. The cells of the contingency table are the possible outcomes,
and the cell probabilities are the multinomial parameters. In Table 2.1, for example,
the four cell counts are sample values from a multinomial distribution having four
categories.

2.2 COMPARING PROPORTIONS IN TWO-BY-TWO TABLES

Response variables having two categories are called binary variables. For instance,
belief in afterlife is binary when measured with categories (yes, no). Many studies
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compare two groups on a binary response, Y . The data can be displayed in a 2 × 2
contingency table, in which the rows are the two groups and the columns are the
response levels of Y . This section presents measures for comparing groups on binary
responses.

2.2.1 Difference of Proportions

As in the discussion of the binomial distribution in Section 1.2, we use the generic
terms success and failure for the outcome categories. For subjects in row 1, let π1
denote the probability of a success, so 1 − π1 is the probability of a failure. For
subjects in row 2, let π2 denote the probability of success. These are conditional
probabilities.

The difference of proportions π1 − π2 compares the success probabilities in the
two rows. This difference falls between −1 and +1. It equals zero when π1 = π2,
that is, when the response is independent of the group classification. Let p1 and p2
denote the sample proportions of successes. The sample difference p1 − p2 estimates
π1 − π2.

For simplicity, we denote the sample sizes for the two groups (that is, the row
totals n1+ and n2+) by n1 and n2. When the counts in the two rows are independent
binomial samples, the estimated standard error of p1 − p2 is

SE =
√

p1(1 − p1)

n1
+ p2(1 − p2)

n2
(2.1)

The standard error decreases, and hence the estimate of π1 − π2 improves, as the
sample sizes increase.

A large-sample 100(1 − α)% (Wald) confidence interval for π1 − π2 is

(p1 − p2) ± zα/2(SE)

For small samples the actual coverage probability is closer to the nominal confidence
level if you add 1.0 to every cell of the 2 × 2 table before applying this formula.1 For
a significance test of H0: π1 = π2, a z test statistic divides (p1 − p2) by a pooled
SE that applies under H0. Because z2 is the Pearson chi-squared statistic presented
in Section 2.4.3, we will not discuss this test here.

2.2.2 Example: Aspirin and Heart Attacks

Table 2.3 is from a report on the relationship between aspirin use and myocardial
infarction (heart attacks) by the Physicians’ Health Study Research Group at Harvard

1A. Agresti and B. Caffo, Am. Statist., 54: 280–288, 2000.
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Table 2.3. Cross Classification of Aspirin Use and
Myocardial Infarction

Myocardial Infarction

Group Yes No Total

Placebo 189 10,845 11,034
Aspirin 104 10,933 11,037

Source: Preliminary Report: Findings from the Aspirin Component of the
Ongoing Physicians’ Health Study. New Engl. J. Med., 318: 262–264,
1988.

Medical School. The Physicians’Health Study was a five-year randomized study test-
ing whether regular intake of aspirin reduces mortality from cardiovascular disease.
Every other day, the male physicians participating in the study took either one aspirin
tablet or a placebo. The study was “blind” – the physicians in the study did not know
which type of pill they were taking.

We treat the two rows in Table 2.3 as independent binomial samples. Of the n1 =
11,034 physicians taking placebo, 189 suffered myocardial infarction (MI) during the
study, a proportion of p1 = 189/11,034 = 0.0171. Of the n2 = 11,037 physicians
taking aspirin, 104 suffered MI, a proportion of p2 = 0.0094. The sample difference
of proportions is 0.0171 − 0.0094 = 0.0077. From equation (2.1), this difference has
an estimated standard error of

SE =
√

(0.0171)(0.9829)

11, 034
+ (0.0094)(0.9906)

11, 037
= 0.0015

A 95% confidence interval for the true difference π1 − π2 is 0.0077 ± 1.96(0.0015),
which is 0.008 ± 0.003, or (0.005, 0.011). Since this interval contains only positive
values, we conclude that π1 − π2 > 0, that is, π1 > π2. For males, taking aspirin
appears to result in a diminished risk of heart attack.

2.2.3 Relative Risk

A difference between two proportions of a certain fixed size usually is more important
when both proportions are near 0 or 1 than when they are near the middle of the range.
Consider a comparison of two drugs on the proportion of subjects who had adverse
reactions when using the drug. The difference between 0.010 and 0.001 is the same
as the difference between 0.410 and 0.401, namely 0.009. The first difference is more
striking, since 10 times as many subjects had adverse reactions with one drug as the
other. In such cases, the ratio of proportions is a more relevant descriptive measure.

For 2 × 2 tables, the relative risk is the ratio

relative risk = π1

π2
(2.2)
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It can be any nonnegative real number. The proportions 0.010 and 0.001 have a relative
risk of 0.010/0.001 = 10.0, whereas the proportions 0.410 and 0.401 have a relative
risk of 0.410/0.401 = 1.02. A relative risk of 1.00 occurs when π1 = π2, that is,
when the response is independent of the group.

Two groups with sample proportions p1 and p2 have a sample relative risk of
p1/p2. For Table 2.3, the sample relative risk is p1/p2 = 0.0171/0.0094 = 1.82.
The sample proportion of MI cases was 82% higher for the group taking placebo. The
sample difference of proportions of 0.008 makes it seem as if the two groups differ
by a trivial amount. By contrast, the relative risk shows that the difference may have
important public health implications. Using the difference of proportions alone to
compare two groups can be misleading when the proportions are both close to zero.

The sampling distribution of the sample relative risk is highly skewed unless the
sample sizes are quite large. Because of this, its confidence interval formula is rather
complex (Exercise 2.15). For Table 2.3, software (e.g., SAS – PROC FREQ) reports
a 95% confidence interval for the true relative risk of (1.43, 2.30). We can be 95%
confident that, after 5 years, the proportion of MI cases for male physicians taking
placebo is between 1.43 and 2.30 times the proportion of MI cases for male physi-
cians taking aspirin. This indicates that the risk of MI is at least 43% higher for the
placebo group.

The ratio of failure probabilities, (1 − π1)/(1 − π2), takes a different value than the
ratio of the success probabilities. When one of the two outcomes has small probability,
normally one computes the ratio of the probabilities for that outcome.

2.3 THE ODDS RATIO

We will next study the odds ratio, another measure of association for 2 × 2 con-
tingency tables. It occurs as a parameter in the most important type of model for
categorical data.

For a probability of success π , the odds of success are defined to be

odds = π/(1 − π)

For instance, if π = 0.75, then the odds of success equal 0.75/0.25 = 3.
The odds are nonnegative, with value greater than 1.0 when a success is more

likely than a failure. When odds = 4.0, a success is four times as likely as a failure.
The probability of success is 0.8, the probability of failure is 0.2, and the odds equal
0.8/0.2 = 4.0. We then expect to observe four successes for every one failure. When
odds = 1/4, a failure is four times as likely as a success. We then expect to observe
one success for every four failures.

The success probability itself is the function of the odds,

π = odds/(odds + 1)

For instance, when odds = 4, then π = 4/(4 + 1) = 0.8.
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In 2 × 2 tables, within row 1 the odds of success are odds1 = π1/(1 − π1), and
within row 2 the odds of success equal odds2 = π2/(1 − π2). The ratio of the odds
from the two rows,

θ = odds1

odds2
= π1/(1 − π1)

π2/(1 − π2)
(2.3)

is the odds ratio. Whereas the relative risk is a ratio of two probabilities, the odds
ratio θ is a ratio of two odds.

2.3.1 Properties of the Odds Ratio

The odds ratio can equal any nonnegative number. When X and Y are independent,
π1 = π2, so odds1 = odds2 and θ = odds1/odds2 = 1. The independence value
θ = 1 is a baseline for comparison. Odds ratios on each side of 1 reflect certain
types of associations. When θ > 1, the odds of success are higher in row 1 than in
row 2. For instance, when θ = 4, the odds of success in row 1 are four times the odds
of success in row 2. Thus, subjects in row 1 are more likely to have successes than
are subjects in row 2; that is, π1 > π2. When θ < 1, a success is less likely in row 1
than in row 2; that is, π1 < π2.

Values of θ farther from 1.0 in a given direction represent stronger association. An
odds ratio of 4 is farther from independence than an odds ratio of 2, and an odds ratio
of 0.25 is farther from independence than an odds ratio of 0.50.

Two values for θ represent the same strength of association, but in opposite direc-
tions, when one value is the inverse of the other. When θ = 0.25, for example, the
odds of success in row 1 are 0.25 times the odds of success in row 2, or equivalently
1/0.25 = 4.0 times as high in row 2 as in row 1. When the order of the rows is reversed
or the order of the columns is reversed, the new value of θ is the inverse of the original
value. This ordering is usually arbitrary, so whether we get 4.0 or 0.25 for the odds
ratio is merely a matter of how we label the rows and columns.

The odds ratio does not change value when the table orientation reverses so that the
rows become the columns and the columns become the rows. The same value occurs
when we treat the columns as the response variable and the rows as the explanatory
variable, or the rows as the response variable and the columns as the explanatory
variable. Thus, it is unnecessary to identify one classification as a response variable
in order to estimate θ . By contrast, the relative risk requires this, and its value also
depends on whether it is applied to the first or to the second outcome category.

When both variables are response variables, the odds ratio can be defined using
joint probabilities as

θ = π11/π12

π21/π22
= π11π22

π12π21

The odds ratio is also called the cross-product ratio, because it equals the ratio of the
products π11π22 and π12π21 of cell probabilities from diagonally opposite cells.
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The sample odds ratio equals the ratio of the sample odds in the two rows,

θ̂ = p1/(1 − p1)

p2/(1 − p2)
= n11/n12

n21/n22
= n11n22

n12n21
(2.4)

For a multinomial distribution over the four cells or for independent binomial
distributions for the two rows, this is the ML estimator of θ .

2.3.2 Example: Odds Ratio for Aspirin Use and Heart Attacks

Let us revisit Table 2.3 from Section 2.2.2 on aspirin use and myocardial infarc-
tion. For the physicians taking placebo, the estimated odds of MI equal n11/n12 =
189/10,845 = 0.0174. Since 0.0174 = 1.74/100, the value 0.0174 means there
were 1.74 “yes” outcomes for every 100 “no” outcomes. The estimated odds equal
104/10,933 = 0.0095 for those taking aspirin, or 0.95 “yes” outcomes per every 100
“no” outcomes.

The sample odds ratio equals θ̂ = 0.0174/0.0095 = 1.832. This also equals the
cross-product ratio (189 × 10, 933)/(10,845 × 104). The estimated odds of MI
for male physicians taking placebo equal 1.83 times the estimated odds for male
physicians taking aspirin. The estimated odds were 83% higher for the placebo
group.

2.3.3 Inference for Odds Ratios and Log Odds Ratios

Unless the sample size is extremely large, the sampling distribution of the odds ratio
is highly skewed. When θ = 1, for example, θ̂ cannot be much smaller than θ (since
θ̂ ≥ 0), but it could be much larger with nonnegligible probability.

Because of this skewness, statistical inference for the odds ratio uses an alternative
but equivalent measure – its natural logarithm, log(θ). Independence corresponds to
log(θ) = 0. That is, an odds ratio of 1.0 is equivalent to a log odds ratio of 0.0.
An odds ratio of 2.0 has a log odds ratio of 0.7. The log odds ratio is symmetric
about zero, in the sense that reversing rows or reversing columns changes its sign.
Two values for log(θ) that are the same except for sign, such as log(2.0) = 0.7 and
log(0.5) = −0.7, represent the same strength of association. Doubling a log odds ratio
corresponds to squaring an odds ratio. For instance, log odds ratios of 2(0.7) = 1.4
and 2(−0.7) = −1.4 correspond to odds ratios of 22 = 4 and 0.52 = 0.25.

The sample log odds ratio, log θ̂ , has a less skewed sampling distribution that is
bell-shaped. Its approximating normal distribution has a mean of log θ and a standard
error of

SE =
√

1

n11
+ 1

n12
+ 1

n21
+ 1

n22
(2.5)

The SE decreases as the cell counts increase.
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Because the sampling distribution is closer to normality for log θ̂ than θ̂ , it is better
to construct confidence intervals for log θ . Transform back (that is, take antilogs,
using the exponential function, discussed below) to form a confidence interval for θ .
A large-sample confidence interval for log θ is

log θ̂ ± zα/2(SE)

Exponentiating endpoints of this confidence interval yields one for θ .
For Table 2.3, the natural log of θ̂ equals log(1.832) = 0.605. From (2.5), the SE

of log θ̂ equals

SE =
√

1

189
+ 1

10,933
+ 1

104
+ 1

10,845
= 0.123

For the population, a 95% confidence interval for log θ equals 0.605 ± 1.96(0.123),
or (0.365, 0.846). The corresponding confidence interval for θ is

[exp(0.365), exp(0.846)] = (e0.365, e0.846) = (1.44, 2.33)

[The symbol ex , also expressed as exp(x), denotes the exponential function evalu-
ated at x. The exponential function is the antilog for the logarithm using the natural
log scale.2 This means that ex = c is equivalent to log(c) = x. For instance, e0 =
exp(0) = 1 corresponds to log(1) = 0; similarly, e0.7 = exp(0.7) = 2.0 corresponds
to log(2) = 0.7.]

Since the confidence interval (1.44, 2.33) for θ does not contain 1.0, the true odds
of MI seem different for the two groups. We estimate that the odds of MI are at
least 44% higher for subjects taking placebo than for subjects taking aspirin. The
endpoints of the interval are not equally distant from θ̂ = 1.83, because the sampling
distribution of θ̂ is skewed to the right.

The sample odds ratio θ̂ equals 0 or ∞ if any nij = 0, and it is undefined if both
entries in a row or column are zero. The slightly amended estimator

θ̃ = (n11 + 0.5)(n22 + 0.5)

(n12 + 0.5)(n21 + 0.5)

corresponding to adding 1/2 to each cell count, is preferred when any cell counts
are very small. In that case, the SE formula (2.5) replaces {nij } by {nij + 0.5}.

2All logarithms in this text use this natural log scale, which has e = e1 = 2.718 . . . as the base. To find ex

on pocket calculators, enter the value for x and press the ex key.
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For Table 2.3, θ̃ = (189.5 × 10,933.5)/(10,845.5 × 104.5) = 1.828 is close to
θ̂ = 1.832, since no cell count is especially small.

2.3.4 Relationship Between Odds Ratio and Relative Risk

A sample odds ratio of 1.83 does not mean that p1 is 1.83 times p2. That’s the
interpretation of a relative risk of 1.83, since that measure is a ratio of proportions
rather than odds. Instead, θ̂ = 1.83 means that the odds value p1/(1 − p1) is 1.83
times the odds value p2/(1 − p2).

From equation (2.4) and from the sample analog of definition (2.2),

Odds ratio = p1/(1 − p1)

p2/(1 − p2)
= Relative risk ×

(
1 − p2

1 − p1

)
When p1 and p2 are both close to zero, the fraction in the last term of this expression
equals approximately 1.0. The odds ratio and relative risk then take similar values.
Table 2.3 illustrates this similarity. For each group, the sample proportion of MI cases
is close to zero. Thus, the sample odds ratio of 1.83 is similar to the sample relative
risk of 1.82 that Section 2.2.3 reported. In such a case, an odds ratio of 1.83 does
mean that p1 is approximately 1.83 times p2.

This relationship between the odds ratio and the relative risk is useful. For some
data sets direct estimation of the relative risk is not possible, yet one can estimate the
odds ratio and use it to approximate the relative risk, as the next example illustrates.

2.3.5 The Odds Ratio Applies in Case–Control Studies

Table 2.4 refers to a study that investigated the relationship between smoking and
myocardial infarction. The first column refers to 262 young and middle-aged women
(age < 69) admitted to 30 coronary care units in northern Italy with acute MI during a
5-year period. Each case was matched with two control patients admitted to the same
hospitals with other acute disorders. The controls fall in the second column of the
table. All subjects were classified according to whether they had ever been smokers.
The “yes” group consists of women who were current smokers or ex-smokers, whereas

Table 2.4. Cross Classification of Smoking Status
and Myocardial Infarction

Ever Smoker MI Cases Controls

Yes 172 173
No 90 346

Source: A. Gramenzi et al., J. Epidemiol. Community Health, 43:
214–217, 1989. Reprinted with permission by BMJ Publishing
Group.



“c02” — 2007/1/31 — page 33 — #13

2.3 THE ODDS RATIO 33

the “no” group consists of women who never were smokers. We refer to this variable
as smoking status.

We would normally regard MI as a response variable and smoking status as an
explanatory variable. In this study, however, the marginal distribution of MI is fixed by
the sampling design, there being two controls for each case. The outcome measured for
each subject is whether she ever was a smoker. The study, which uses a retrospective
design to look into the past, is called a case–control study. Such studies are common
in health-related applications, for instance to ensure a sufficiently large sample of
subjects having the disease studied.

We might wish to compare ever-smokers with nonsmokers in terms of the pro-
portion who suffered MI. These proportions refer to the conditional distribution of
MI, given smoking status. We cannot estimate such proportions for this data set. For
instance, about a third of the sample suffered MI. This is because the study matched
each MI case with two controls, and it does not make sense to use 1/3 as an estimate
of the probability of MI. We can estimate proportions in the reverse direction, for
the conditional distribution of smoking status, given myocardial infarction status. For
women suffering MI, the proportion who ever were smokers was 172/262 = 0.656,
while it was 173/519 = 0.333 for women who had not suffered MI.

When the sampling design is retrospective, we can construct conditional distri-
butions for the explanatory variable, within levels of the fixed response. It is not
possible to estimate the probability of the response outcome of interest, or to com-
pute the difference of proportions or relative risk for that outcome. Using Table 2.4,
for instance, we cannot estimate the difference between nonsmokers and ever smokers
in the probability of suffering MI. We can compute the odds ratio, however. This is
because the odds ratio takes the same value when it is defined using the conditional
distribution of X given Y as it does when defined [as in equation (2.3)] using the
distribution of Y given X; that is, it treats the variables symmetrically. The odds
ratio is determined by the conditional distributions in either direction. It can be cal-
culated even if we have a study design that measures a response on X within each
level of Y .

In Table 2.4, the sample odds ratio is [0.656/(1 − 0.656)]/[0.333/(1 − 0.333)] =
(172 × 346)/(173 × 90) = 3.8. The estimated odds of ever being a smoker were
about 2 for the MI cases (i.e., 0.656/0.344) and about 1/2 for the controls (i.e.,
0.333/0.667), yielding an odds ratio of about 2/(1/2) = 4.

We noted that, when P(Y = 1) is small for each value of X, the odds ratio and
relative risk take similar values. Even if we can estimate only conditional probabilities
of X given Y , if we expect P(Y = 1 | X) to be small, then the sample odds ratio is a
rough indication of the relative risk. For Table 2.4, we cannot estimate the relative risk
of MI or the difference of proportions suffering MI. Since the probability of young
or middle-aged women suffering MI is probably small regardless of smoking status,
however, the odds ratio value of 3.8 is also a rough estimate of the relative risk. We
estimate that women who had ever smoked were about four times as likely to suffer
MI as women who had never smoked.

In Table 2.4, it makes sense to treat each column, rather than each row, as a bino-
mial sample. Because of the matching that occurs in case–control studies, however,
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the binomial samples in the two columns are dependent rather than independent.
Each observation in column 1 is naturally paired with two of the observations in col-
umn 2. Chapters 8–10 present specialized methods for analyzing correlated binomial
responses.

2.3.6 Types of Observational Studies

By contrast to the study summarized by Table 2.4, imagine a study that follows a
sample of women for the next 20 years, observing the rates of MI for smokers and
nonsmokers. Such a sampling design is prospective.

There are two types of prospective studies. In cohort studies, the subjects make
their own choice about which group to join (e.g., whether to be a smoker), and
we simply observe in future time who suffers MI. In clinical trials, we randomly
allocate subjects to the two groups of interest, such as in the aspirin study described
in Section 2.2.2, again observing in future time who suffers MI.

Yet another approach, a cross-sectional design, samples women and classifies them
simultaneously on the group classification and their current response. As in a case–
control study, we can then gather the data at once, rather than waiting for future events.

Case–control, cohort, and cross-sectional studies are observational studies. We
observe who chooses each group and who has the outcome of interest. By contrast,
a clinical trial is an experimental study, the investigator having control over which
subjects enter each group, for instance, which subjects take aspirin and which take
placebo. Experimental studies have fewer potential pitfalls for comparing groups,
because the randomization tends to balance the groups on lurking variables that could
be associated both with the response and the group identification. However, observa-
tional studies are often more practical for biomedical and social science research.

2.4 CHI-SQUARED TESTS OF INDEPENDENCE

Consider the null hypothesis (H0) that cell probabilities equal certain fixed values
{πij }. For a sample of size n with cell counts {nij }, the values {μij = nπij } are
expected frequencies. They represent the values of the expectations {E(nij )} when
H0 is true.

This notation refers to two-way tables, but similar notions apply to a set of counts
for a single categorical variable or to multiway tables. To illustrate, for each of n

observations of a binary variable, let π denote the probability of success. For the null
hypothesis that π = 0.50, the expected frequency of successes equals μ = nπ = n/2,
which also equals the expected frequency of failures. If H0 is true, we expect about
half the sample to be of each type.

To judge whether the data contradict H0, we compare {nij } to {μij }. If H0 is true,
nij should be close to μij in each cell. The larger the differences {nij − μij }, the
stronger the evidence against H0. The test statistics used to make such comparisons
have large-sample chi-squared distributions.
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2.4.1 Pearson Statistic and the Chi-Squared Distribution

The Pearson chi-squared statistic for testing H0 is

X2 =
∑ (nij − μij )

2

μij

(2.6)

It was proposed in 1900 by Karl Pearson, the British statistician known also for
the Pearson product–moment correlation estimate, among many contributions. This
statistic takes its minimum value of zero when all nij = μij . For a fixed sample
size, greater differences {nij − μij } produce larger X2 values and stronger evidence
against H0.

Since larger X2 values are more contradictory to H0, the P -value is the null
probability that X2 is at least as large as the observed value. The X2 statistic has
approximately a chi-squared distribution, for large n. The P -value is the chi-squared
right-tail probability above the observed X2 value. The chi-squared approxima-
tion improves as {μij } increase, and {μij ≥ 5} is usually sufficient for a decent
approximation.

The chi-squared distribution is concentrated over nonnegative values. It has mean
equal to its degrees of freedom (df ), and its standard deviation equals

√
(2df ). As df

increases, the distribution concentrates around larger values and is more spread out.
The distribution is skewed to the right, but it becomes more bell-shaped (normal) as
df increases. Figure 2.2 displays chi-squared densities having df = 1, 5, 10, and 20.

Figure 2.2. Examples of chi-squared distributions.
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The df value equals the difference between the number of parameters in the alternative
hypothesis and in the null hypothesis, as explained later in this section.

2.4.2 Likelihood-Ratio Statistic

Of the types of statistics Section 1.4.1 summarized, the Pearson statistic X2 is a score
statistic. (This means that X2 is based on a covariance matrix for the counts that is
estimated under H0.) An alternative statistic presented in Section 1.4.1 results from
the likelihood-ratio method for significance tests.

Recall that the likelihood function is the probability of the data, viewed as a function
of the parameter once the data are observed. The likelihood-ratio test determines the
parameter values that maximize the likelihood function (a) under the assumption that
H0 is true, (b) under the more general condition that H0 may or may not be true. As
Section 1.4.1 explained, the test statistic uses the ratio of the maximized likelihoods,
through

−2 log

(
maximum likelihood when parameters satisfy H0

maximum likelihood when parameters are unrestricted

)
The test statistic value is nonnegative. When H0 is false, the ratio of maximized
likelihoods tends to be far below 1, for which the logarithm is negative; then, −2
times the log ratio tends to be a large positive number, more so as the sample size
increases.

For two-way contingency tables with likelihood function based on the multinomial
distribution, the likelihood-ratio statistic simplifies to

G2 = 2
∑

nij log

(
nij

μij

)
(2.7)

This statistic is called the likelihood-ratio chi-squared statistic. Like the Pearson
statistic, G2 takes its minimum value of 0 when all nij = μij , and larger values
provide stronger evidence against H0.

The Pearson X2 and likelihood-ratio G2 provide separate test statistics, but they
share many properties and usually provide the same conclusions. When H0 is true
and the expected frequencies are large, the two statistics have the same chi-squared
distribution, and their numerical values are similar.

2.4.3 Tests of Independence

In two-way contingency tables with joint probabilities {πij } for two response
variables, the null hypothesis of statistical independence is

H0: πij = πi+π+j for all i and j
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The marginal probabilities then determine the joint probabilities. To test H0, we
identify μij = nπij = nπi+π+j as the expected frequency. Here, μij is the expected
value of nij assuming independence. Usually, {πi+} and {π+j } are unknown, as is
this expected value.

To estimate the expected frequencies, substitute sample proportions for the
unknown marginal probabilities, giving

μ̂ij = npi+p+j = n
(ni+

n

) (n+j

n

)
= ni+n+j

n

This is the row total for the cell multiplied by the column total for the cell, divided
by the overall sample size. The {μ̂ij } are called estimated expected frequencies. They
have the same row and column totals as the observed counts, but they display the
pattern of independence.

For testing independence in I × J contingency tables, the Pearson and likelihood-
ratio statistics equal

X2 =
∑ (nij − μ̂ij )

2

μ̂ij

, G2 = 2
∑

nij log

(
nij

μ̂ij

)
(2.8)

Their large-sample chi-squared distributions have df = (I − 1)(J − 1).
The df value means the following: under H0, {πi+} and {π+j } determine the

cell probabilities. There are I − 1 nonredundant row probabilities. Because they sum
to 1, the first I − 1 determine the last one through πI+ = 1 − (π1+ + · · · + πI−1,+).
Similarly, there are J − 1 nonredundant column probabilities. So, under H0, there are
(I − 1) + (J − 1) parameters. The alternative hypothesis Ha merely states that there
is not independence. It does not specify a pattern for the IJ cell probabilities. The
probabilities are then solely constrained to sum to 1, so there are IJ − 1 nonredundant
parameters. The value for df is the difference between the number of parameters
under Ha and H0, or

df = (IJ − 1) − [(I − 1) + (J − 1)] = IJ − I − J + 1 = (I − 1)(J − 1)

2.4.4 Example: Gender Gap in Political Affiliation

Table 2.5, from the 2000 General Social Survey, cross classifies gender and political
party identification. Subjects indicated whether they identified more strongly with the
Democratic or Republican party or as Independents. Table 2.5 also contains estimated
expected frequencies for H0: independence. For instance, the first cell has μ̂11 =
n1+n+1/n = (1557 × 1246)/2757 = 703.7.

The chi-squared test statistics are X2 = 30.1 and G2 = 30.0, with df = (I − 1)

(J − 1) = (2 − 1)(3 − 1) = 2. This chi-squared distribution has a mean of df = 2
and a standard deviation of

√
(2df) = √

4 = 2. So, a value of 30 is far out in the
right-hand tail. Each statistic has a P -value < 0.0001. This evidence of association
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Table 2.5. Cross Classification of Party Identification by Gender

Party Identification

Gender Democrat Independent Republican Total

Females 762 327 468 1557
(703.7) (319.6) (533.7)

Males 484 239 477 1200
(542.3) (246.4) (411.3)

Total 1246 566 945 2757

Note: Estimated expected frequencies for hypothesis of independence in parentheses. Data
from 2000 General Social Survey.

would be rather unusual if the variables were truly independent. Both test statistics
suggest that political party identification and gender are associated.

2.4.5 Residuals for Cells in a Contingency Table

A test statistic and its P -value describe the evidence against the null hypothesis.
A cell-by-cell comparison of observed and estimated expected frequencies helps us
better understand the nature of the evidence. Larger differences between nij and μ̂ij

tend to occur for cells that have larger expected frequencies, so the raw difference
nij − μ̂ij is insufficient. For the test of independence, a useful cell residual is

nij − μ̂ij√
μ̂ij (1 − pi+)(1 − p+j )

(2.9)

The denominator is the estimated standard error of nij − μ̂ij , under H0. The ratio
(2.9) is called a standardized residual, because it divides nij − μ̂ij by its SE.

When H0 is true, each standardized residual has a large-sample standard normal
distribution. A standardized residual having absolute value that exceeds about 2 when
there are few cells or about 3 when there are many cells indicates lack of fit of H0 in
that cell. (Under H0, we expect about 5% of the standardized residuals to be farther
from 0 than ±2 by chance alone.)

Table 2.6 shows the standardized residuals for testing independence in Table 2.5.
For the first cell, for instance, n11 = 762 and μ̂11 = 703.7. The first row and
first column marginal proportions equal p1+ = 1557/2757 = 0.565 and p+1 =
1246/2757 = 0.452. Substituting into (2.9), the standardized residual for this cell
equals

(762 − 703.7)/
√

703.7(1 − 0.565)(1 − 0.452) = 4.50

This cell shows a greater discrepancy between n11 and μ̂11 than we would expect if
the variables were truly independent.
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Table 2.6. Standardized Residuals (in Parentheses) for
Testing Independence in Table 2.5

Party Identification

Gender Democrat Independent Republican

Females 762 327 468
(4.50) (0.70) (−5.32)

Males 484 239 477
(−4.50) (−0.70) (5.32)

Table 2.6 has large positive residuals for female Democrats and male Republicans.
Thus, there were more female Democrats and male Republicans than the hypothesis of
independence predicts. The table has large negative residuals for female Republicans
and male Democrats. Thus, there were fewer female Republicans and male Democrats
than the hypothesis of independence predicts. An odds ratio describes this evidence
of a gender gap. The 2 × 2 table of Democrat and Republican identifiers has a sample
odds ratio of (762 × 477)/(468 × 484) = 1.60. Of those subjects identifying with
one of the two parties, the estimated odds of identifying with the Democrats rather
than the Republicans were 60% higher for females than males.

For each political party, Table 2.6 shows that the residual for females is the negative
of the one for males. This is because the observed counts and the estimated expected
frequencies have the same row and column totals. Thus, in a given column, ifnij > μ̂ij

in one cell, the reverse must happen in the other cell. The differences n1j − μ̂1j and
n2j − μ̂2j have the same magnitude but different signs, implying the same pattern
for their standardized residuals.

2.4.6 Partitioning Chi-Squared

Chi-squared statistics sum and break up into other chi-squared statistics. If one chi-
squared statistic has df = df1 and a separate, independent, chi-squared statistic has
df = df2, then their sum has a chi-squared distribution with df = df1 + df2. For
example, suppose we cross classify gender and political party ID with a 2 × 3 table
for college-educated subjects and a separate 2 × 3 table for subjects not having a
college education. Then, the sum of the X2 values or the G2 values from the two
tables is a chi-squared statistic with df = 2 + 2 = 4.

Likewise, chi-squared statistics havingdf > 1 can be broken into components with
fewer degrees of freedom. Another supplement to a test of independence partitions
its chi-squared test statistic so that the components represent certain aspects of the
association. A partitioning may show that an association primarily reflects differences
between certain categories or groupings of categories.

For testing independence in 2 × J tables, df = (J − 1) and a chi-squared statis-
tic can partition into J − 1 components. For example, G2 equals the sum of a G2

statistic that compares the first two columns, plus a G2 statistic for the 2 × 2 table
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that combines the first two columns and compares them to the third column, and so
on, up to a G2 statistic for the 2 × 2 table that combines the first J − 1 columns and
compares them to the last column. Each component G2 statistic has df = 1.

Consider again Table 2.5. The first two columns of this table form a 2 × 2 table
with cell counts, by row, of (762, 327/484, 239). For this component table, G2 = 1.8,
with df = 1. Of those subjects who identify either as Democrats or Independents,
there is not much evidence (P -value = 0.17) of a difference between females and
males in the relative numbers in the two categories. The second 2 × 2 table com-
bines these columns and compares them to the Republican column, giving the table
with rows (762 + 327, 468/484 + 239, 477) = (1089, 468/723, 477). This table has
G2 = 28.2, based on df = 1. There is strong evidence of a difference between
females and males in the relative numbers identifying as Republican instead of
Democrat or Independent. Note that 1.8 + 28.2 = 30.0; that is, the sum of these G2

components equals G2 for the test of independence for the complete 2 × 3 table. This
overall statistic primarily reflects differences between genders in choosing between
Republican and the other two categories.

It might seem more natural to compute G2 for separate 2 × 2 tables that pair
each column with a particular one, say the last. This is a reasonable way to investigate
association in many data sets. However, these component statistics are not independent
and do not sum to G2 for the complete table. Certain rules determine ways of forming
tables so that chi-squared partitions, but they are beyond the scope of this text. A
necessary condition is that the G2 values for the component tables sum to G2 for the
original table.

The G2 statistic has exact partitionings. The Pearson X2 does not equal the sum
of X2 values for the separate tables in a partition. However, it is valid to use the X2

statistics for the separate tables in the partition. They simply do not provide an exact
algebraic partitioning of X2 for the overall table.

2.4.7 Comments About Chi-Squared Tests

Chi-squared tests of independence, like any significance test, have limitations. They
merely indicate the degree of evidence for an association. They are rarely adequate
for answering all questions we have about a data set. Rather than relying solely on
these tests, study the nature of the association. It is sensible to study residuals and
estimate parameters such as odds ratios that describe the strength of association.

The X2 and G2 chi-squared tests also have limitations in the types of data sets for
which they are applicable. For instance, they require large samples. The sampling
distributions of X2 and G2 get closer to chi-squared as the sample size n increases,
relative to the number of cells IJ. The convergence is quicker for X2 than G2. The
chi-squared approximation is often poor for G2 when some expected frequencies are
less than about 5. When I or J is large, it can be decent for X2 when some expected
frequencies are as small as 1. To play safe, you can instead use a small-sample pro-
cedure whenever at least one expected frequency is less than 5. Section 2.6 discusses
small-sample methods.

The {μ̂ij = ni+n+j /n} used in X2 and G2 depend on the row and column marginal
totals, but not on the order in which the rows and columns are listed. Thus, X2 and G2
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do not change value with reorderings of rows or of columns. This means that these
tests treat both classifications as nominal. When at least one variable is ordinal, more
powerful tests of independence usually exist. The next section presents such a test.

2.5 TESTING INDEPENDENCE FOR ORDINAL DATA

When the rows and/or the columns are ordinal, the chi-squared test of independence
using test statistic X2 or G2 ignores the ordering information. Test statistics that
use the ordinality by treating ordinal variables as quantitative rather than qualitative
(nominal scale) are usually more appropriate and provide greater power.

2.5.1 Linear Trend Alternative to Independence

When the variables are ordinal, a trend association is common. As the level of X

increases, responses on Y tend to increase toward higher levels, or responses on Y

tend to decrease toward lower levels.
To detect a trend association, a simple analysis assigns scores to categories and

measures the degree of linear trend. The test statistic, which is sensitive to positive or
negative linear trends, utilizes correlation information in the data. Let u1 ≤ u2 ≤ · · ·
≤ uI denote scores for the rows, and let v1 ≤ v2 ≤ · · · ≤ vJ denote scores for the
columns. The scores have the same ordering as the category levels.You should choose
the scores to reflect distances between categories, with greater distances between
categories regarded as farther apart.

Let ū = ∑
i uipi+ denote the sample mean of the row scores, and let v̄ =∑

j vjp+j denote the sample mean of the column scores. The sum
∑

i,j (ui − ū)(vj −
v̄)pij weights cross-products of deviation scores by their relative frequency. This is
the sample covariance of X and Y . The correlation r between X and Y equals the
covariance divided by the product of the sample standard deviations of X and Y .
That is,

r =
∑

i,j (ui − ū)(vj − v̄)pij√[∑
i (ui − ū)2pi+

] [∑
j (vj − v̄)2p+j

]
It is simple to compute r using software, entering for each subject their score on

each classification. The correlation falls between −1 and +1. Independence between
the variables implies that its population value ρ equals zero. The larger the correlation
is in absolute value, the farther the data fall from independence in the linear dimension.

For testing H0: independence against the two-sided Ha : ρ �= 0, a test statistic is

M2 = (n − 1)r2 (2.10)

This test statistic increases as r increases in magnitude and as the sample size n

grows. For large n, M2 has approximately a chi-squared distribution with df = 1.
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Large values contradict independence, so, as with X2 and G2, the P -value is the
right-tail probability above the observed value. The square root, M = √

(n − 1)r , has
approximately a standard normal null distribution. It applies to one-sided alternative
hypotheses, such as Ha : ρ > 0.

Like X2 and G2, M2 does not distinguish between response and explanatory
variables. We get the same value regardless of which is the row variable and which is
the column variable.

2.5.2 Example: Alcohol Use and Infant Malformation

Table 2.7 refers to a prospective study of maternal drinking and congenital malfor-
mations. After the first 3 months of pregnancy, the women in the sample completed
a questionnaire about alcohol consumption. Following childbirth, observations were
recorded on the presence or absence of congenital sex organ malformations. Alco-
hol consumption, measured as average number of drinks per day, is an explanatory
variable with ordered categories. Malformation, the response variable, is nominal.

When a variable is nominal but has only two categories, statistics (such as M2) that
treat the variable as ordinal are still valid. For instance, we could artificially regard
malformation as ordinal, treating “absent” as “low” and “present” as “high.” Any
choice of two scores, such as 0 for “absent” and 1 for “present,” yields the same value
of M2.

Table 2.7 has a mixture of very small, moderate, and extremely large counts.
Even though the sample size is large (n = 32,574), in such cases the actual sampling
distributions of X2 or G2 may not be close to chi-squared. For these data, having
df = 4, G2 = 6.2(P = 0.19) and X2 = 12.1(P = 0.02) provide mixed signals. In
any case, they ignore the ordinality of alcohol consumption.

From Table 2.7, the percentage of malformation cases has roughly an increasing
trend across the levels of alcohol consumption. The first two are similar and the next
two are also similar, however, and any of the last three percentages changes dramat-
ically if we do a sensitivity analysis by deleting one malformation case. Table 2.7
also reports standardized residuals for the “present” category. They are negative
at low levels of alcohol consumption and positive at high levels of consumption,
although most are small and they also change substantially with slight changes in the

Table 2.7. Infant Malformation and Mother’s Alcohol Consumption

Malformation
Alcohol Percentage Standardized
Consumption Absent Present Total Present Residual

0 17,066 48 17,114 0.28 −0.18
<1 14,464 38 14,502 0.26 −0.71
1–2 788 5 793 0.63 1.84
3–5 126 1 127 0.79 1.06
≥6 37 1 38 2.63 2.71

Source: B. I. Graubard and E. L. Korn, Biometrics, 43: 471–476, 1987. Reprinted with permission
from the Biometric Society.
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data. The sample percentages and the standardized residuals both suggest a possible
tendency for malformations to be more likely at higher levels of alcohol consumption.

To use the ordinal test statistic M2, we assign scores to alcohol consumption
that are midpoints of the categories; that is, v1 = 0, v2 = 0.5, v3 = 1.5, v4 = 4.0,
v5 = 7.0, the last score being somewhat arbitrary. From PROC FREQ in SAS, the
sample correlation between alcohol consumption and malformation is r = 0.0142.
The test statistic M2 = (32,573)(0.0142)2 = 6.6 has P -value = 0.01, suggesting
strong evidence of a nonzero correlation. The standard normal statistic M = 2.56 has
P = 0.005 for Ha : ρ > 0.

For the chosen scores, r = 0.014 seems weak. However, for tables such as this one
that are highly discrete and unbalanced, it is not possible to obtain a large value for r ,
and r is not very useful for describing association. Future chapters present tests such
as M2 as part of a model-based analysis. Model-based approaches yield estimates of
the effect size as well as smoothed estimates of cell probabilities. These estimates are
more informative than mere significance tests.

2.5.3 Extra Power with Ordinal Tests

For testing H0: independence, X2 and G2 refer to the most general Ha possible,
whereby cell probabilities exhibit any type of statistical dependence. Their df value
of (I − 1)(J − 1) reflects that Ha has (I − 1)(J − 1) more parameters than H0 (recall
the discussion at the end of Section 2.4.3). These statistics are designed to detect any
type of pattern for the additional parameters. In achieving this generality, they sacrifice
sensitivity for detecting particular patterns.

When the row and column variables are ordinal, one can attempt to describe the
association using a single extra parameter. For instance, the test statistic M2 is based
on a correlation measure of linear trend. When a chi-squared test statistic refers to a
single parameter, it has df = 1.

When the association truly has a positive or negative trend, the ordinal test using
M2 has a power advantage over the tests based on X2 or G2. Since df equals the
mean of the chi-squared distribution, a relatively large M2 value based on df = 1
falls farther out in its right-hand tail than a comparable value of X2 or G2 based
on df = (I − 1)(J − 1). Falling farther out in the tail produces a smaller P -value.
When there truly is a linear trend, M2 often has similar size to X2 or G2, so it tends
to provide smaller P -values.

Another advantage of chi-squared tests having small df values relates to the accu-
racy of chi-squared approximations. For small to moderate sample sizes, the true
sampling distributions tend to be closer to chi-squared when df is smaller. When
several cell counts are small, the chi-squared approximation is usually worse for X2

or G2 than it is for M2.

2.5.4 Choice of Scores

For most data sets, the choice of scores has little effect on the results. Different
choices of ordered scores usually give similar results. This may not happen, however,
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when the data are very unbalanced, such as when some categories have many more
observations than other categories. Table 2.7 illustrates this. For the equally spaced
row scores (1, 2, 3, 4, 5), M2 = 1.83, giving a much weaker conclusion (P = 0.18).
The magnitudes of r and M2 do not change with transformations of the scores that
maintain the same relative spacings between the categories. For example, scores (1, 2,
3, 4, 5) yield the same correlation as scores (0, 1, 2, 3, 4) or (2, 4, 6, 8, 10) or (10, 20,
30, 40, 50).

An alternative approach assigns ranks to the subjects and uses them as the category
scores. For all subjects in a category, one assigns the average of the ranks that would
apply for a complete ranking of the sample from 1 to n. These are called midranks.
For example, in Table 2.7 the 17,114 subjects at level 0 for alcohol consumption
share ranks 1 through 17,114. We assign to each of them the average of these ranks,
which is the midrank (1 + 17,114)/2 = 8557.5. The 14,502 subjects at level <1
for alcohol consumption share ranks 17,115 through 17,114 + 14,502 = 31,616, for
a midrank of (17,115 + 31,616)/2 = 24,365.5. Similarly the midranks for the last
three categories are 32,013, 32,473, and 32,555.5. These scores yield M2 = 0.35 and
a weaker conclusion yet (P = 0.55).

Why does this happen? Adjacent categories having relatively few observations
necessarily have similar midranks. The midranks (8557.5, 24,365.5, 32,013, 32,473,
32,555.5) for Table 2.7 are similar for the final three categories, since those categories
have considerably fewer observations than the first two categories. A consequence is
that this scoring scheme treats alcohol consumption level 1–2 (category 3) as much
closer to consumption level ≥6 (category 5) than to consumption level 0 (category 1).
This seems inappropriate. It is better to use your judgment by selecting scores that
reflect well the distances between categories. When uncertain, perform a sensitivity
analysis. Select two or three sensible choices, and check that the results are similar
for each. Equally spaced scores often are a reasonable compromise when the category
labels do not suggest any obvious choices, such as the categories (liberal, moderate,
conservative) for political philosophy.

The M2 statistic using midrank scores for each variable is sensitive to detecting
nonzero values of a rank correlation called Spearman’s rho. Alternative ordinal tests
for I × J tables utilize versions of other ordinal association measures. For instance,
gamma and Kendall’s tau-b are contingency-table generalizations of the ordinal mea-
sure Kendall’s tau. The sample value of any such measure divided by its standard
error has a large-sample standard normal distribution for testing independence. Like
the test based on M2, these tests share the potential power advantage that results from
using a single parameter to describe the association.

2.5.5 Trend Tests for I × 2 and 2 × J Tables

When X is binary, the table has size 2 × J . Such tables occur in comparisons of two
groups, such as when the rows represent two treatments. The M2 statistic then detects
differences between the two row means of the scores {vj } on Y . Small P -values
suggest that the true difference in row means is nonzero. With midrank scores for Y ,
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the test is sensitive to differences in mean ranks for the two rows. This test is called the
Wilcoxon or Mann–Whitney test. Most nonparametric statistics texts present this test
for fully ranked response data, whereas for a 2 × J table sets of subjects at the same
level of Y are tied and use midranks. The large-sample version of that nonparametric
test uses a standard normal z statistic. The square of the z statistic is equivalent
to M2.

Tables of size I × 2, such as Table 2.7, have a binary response variable Y . We
then focus on how the proportion of “successes” varies across the levels of X. For the
chosen row scores, M2 detects a linear trend in this proportion and relates to models
presented in Section 3.2.1. Small P -values suggest that the population slope for this
linear trend is nonzero. This version of the ordinal test is called the Cochran–Armitage
trend test.

2.5.6 Nominal–Ordinal Tables

The M2 test statistic treats both classifications as ordinal. When one variable (say X)
is nominal but has only two categories, we can still use it. When X is nominal with
more than two categories, it is inappropriate. One possible test statistic finds the mean
response on the ordinal variable (for the chosen scores) in each row and summarizes
the variation among the row means. The statistic, which has a large-sample chi-
squared distribution with df = (I − 1), is rather complex computationally. We defer
discussion of this case to Section 6.4.3. When I = 2, it is identical to M2.

2.6 EXACT INFERENCE FOR SMALL SAMPLES

The confidence intervals and tests presented so far in this chapter are large-sample
methods. As the sample size n grows, “chi-squared” statistics such as X2, G2, and
M2 have distributions that are more nearly chi-squared. When n is small, one can
perform inference using exact distributions rather than large-sample approximations.

2.6.1 Fisher’s Exact Test for 2 × 2 Tables

For 2 × 2 tables, independence corresponds to an odds ratio of θ = 1. Suppose the
cell counts {nij } result from two independent binomial samples or from a single
multinomial sample over the four cells. A small-sample null probability distribution
for the cell counts that does not depend on any unknown parameters results from
considering the set of tables having the same row and column totals as the observed
data. Once we condition on this restricted set of tables, the cell counts have the
hypergeometric distribution.

For given row and column marginal totals, n11 determines the other three cell
counts. Thus, the hypergeometric formula expresses probabilities for the four cell
counts in terms of n11 alone. When θ = 1, the probability of a particular value
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n11 equals

P(n11) =

(
n1+
n11

) (
n2+

n+1 − n11

)
(

n

n+1

) (2.11)

The binomial coefficients equal
(

a
b

) = a!/b!(a − b)!.
To test H0: independence, the P -value is the sum of hypergeometric probabilities

for outcomes at least as favorable to Ha as the observed outcome. We illustrate for
Ha : θ > 1. Given the marginal totals, tables having larger n11 values also have larger
sample odds ratios θ̂ = (n11n22)/(n12n21); hence, they provide stronger evidence in
favor of this alternative. The P -value equals the right-tail hypergeometric probability
that n11 is at least as large as the observed value. This test, proposed by the eminent
British statistician R. A. Fisher in 1934, is called Fisher’s exact test.

2.6.2 Example: Fisher’s Tea Taster

To illustrate this test in his 1935 book, The Design of Experiments, Fisher described
the following experiment: When drinking tea, a colleague of Fisher’s at Rothamsted
Experiment Station near London claimed she could distinguish whether milk or tea
was added to the cup first. To test her claim, Fisher designed an experiment in which
she tasted eight cups of tea. Four cups had milk added first, and the other four had tea
added first. She was told there were four cups of each type and she should try to select
the four that had milk added first. The cups were presented to her in random order.

Table 2.8 shows a potential result of the experiment. The null hypothesis H0: θ = 1
for Fisher’s exact test states that her guess was independent of the actual order of pour-
ing. The alternative hypothesis that reflects her claim, predicting a positive association
between true order of pouring and her guess, is Ha : θ > 1. For this experimental
design, the column margins are identical to the row margins (4, 4), because she knew
that four cups had milk added first. Both marginal distributions are naturally fixed.

Table 2.8. Fisher’s Tea Tasting Experiment

Guess Poured First

Poured First Milk Tea Total

Milk 3 1 4
Tea 1 3 4

Total 4 4

The null distribution of n11 is the hypergeometric distribution defined for all 2 × 2
tables having row and column margins (4, 4). The potential values for n11 are (0, 1,
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2, 3, 4). The observed table, three correct guesses of the four cups having milk added
first, has probability

P(3) =

(
4
3

) (
4
1

)
(

8
4

) = [4!/(3!)(1!)][4!/(1!)(3!)]
[8!/(4!)(4!)] = 16

70
= 0.229

For Ha : θ > 1, the only table that is more extreme consists of four correct guesses.
It has n11 = n22 = 4 and n12 = n21 = 0, and a probability of

P(4) =
(

4
4

) (
4
0

)/(
8
4

)
= 1/70 = 0.014

Table 2.9 summarizes the possible values of n11 and their probabilities.
The P -value for Ha : θ > 1 equals the right-tail probability that n11 is at least as

large as observed; that is, P = P(3) + P(4) = 0.243. This is not much evidence
against H0: independence. The experiment did not establish an association between
the actual order of pouring and the guess, but it is difficult to show effects with such
a small sample.

For the potential n11 values, Table 2.9 shows P -values for Ha : θ > 1. If the tea
taster had guessed all cups correctly (i.e., n11 = 4), the observed result would have
been the most extreme possible in the right tail of the hypergeometric distribution.
Then, P = P(4) = 0.014, giving more reason to believe her claim.

2.6.3 P -values and Conservatism for Actual P (Type I Error)

The two-sided alternative Ha : θ �= 1 is the general alternative of statistical depen-
dence, as in chi-squared tests. Its exact P -value is usually defined as the two-tailed
sum of the probabilities of tables no more likely than the observed table. For Table 2.8,
summing all probabilities that are no greater than the probability P(3) = 0.229 of

Table 2.9. Hypergeometric Distribution for Tables with
Margins of Table 2.8

n11 Probability P -value X2

0 0.014 1.000 8.0
1 0.229 0.986 2.0
2 0.514 0.757 0.0
3 0.229 0.243 2.0
4 0.014 0.014 8.0

Note: P -value refers to right-tail hypergeometric probability for one-sided
alternative.
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the observed table gives P = P(0) + P(1) + P(3) + P(4) = 0.486. When the row
or column marginal totals are equal, the hypergeometric distribution is unimodal and
symmetric, and the two-sided P -value doubles the one-sided one.

For small samples, the exact distribution (2.11) has relatively few possible values
for n11. The P -value also has relatively few possible values. For Table 2.8, it can
assume five values for the one-sided test and three values for the two-sided test. As
Section 1.4.4 explained, discreteness affects error rates. Suppose, like many method-
ologists, you will reject H0 if the P -value is less than or equal to 0.05. Because of the
test’s discreteness, the actual probability of type I error may be much less than 0.05.
For the one-sided alternative, the tea-tasting experiment yields a P -value below 0.05
only when n11 = 4, in which case P = 0.014. When H0 is true, the probability of
this outcome is 0.014. So, P (type I error) = 0.014, not 0.05. The test is conservative,
because the actual error rate is smaller than the intended one.

To diminish the conservativeness, we recommend using the mid P -value.
Section 1.4.5 defined this as half the probability of the observed result plus the proba-
bility of more extreme results. For the tea-tasting data, with n11 = 3, the one-sided mid
P -value equals P(3)/2 + P(4) = 0.229/2 + 0.014 = 0.129, compared with 0.243
for the ordinary P -value.

In Table 2.8, both margins are naturally fixed. It is more common that only one
set is fixed, such as when rows totals are fixed with independent binomial samples.
Then, alternative exact tests are unconditional, not conditioning on the other margin.
They are less conservative than Fisher’s exact test. Such tests are computationally
intensive and beyond the scope of this text, but are available in some software (e.g.,
StatXact).

Exact tests of independence for tables of size larger than 2 × 2 use a multivariate
version of the hypergeometric distribution. Such tests are not practical to compute
by hand or calculator but are feasible with software (e.g., StatXact, PROC FREQ
in SAS).

2.6.4 Small-Sample Confidence Interval for Odds Ratio∗

It is also possible to construct small-sample confidence intervals for the odds ratio.
They correspond to a generalization of Fisher’s exact test that tests an arbitrary value,
H0: θ = θ0. A 95% confidence interval contains all θ0 values for which the exact
test of H0: θ = θ0 has P > 0.05. This is available in some software (e.g., StatXact,
PROC FREQ in SAS).

As happens with exact tests, discreteness makes these confidence intervals con-
servative. The true confidence level may actually be considerably larger than the
selected one. Moreover, the true level is unknown. To reduce the conservativeness,
we recommend constructing the confidence interval that corresponds to the test using
a mid P -value. This interval is shorter.

For the tea-tasting data (Table 2.8), the exact 95% confidence interval for the true
odds ratio equals (0.21, 626.17). The confidence interval based on the test using the
mid-P value equals (0.31, 308.55). Both intervals are very wide, because the sample
size is so small.
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2.7 ASSOCIATION IN THREE-WAY TABLES

An important part of most research studies is the choice of control variables. In
studying the effect of an explanatory variable X on a response variable Y , we should
adjust for confounding variables that can influence that relationship because they
are associated both with X and with Y . Otherwise, an observed XY association
may merely reflect effects of those variables on X and Y . This is especially vital for
observational studies, where one cannot remove effects of such variables by randomly
assigning subjects to different treatments.

Consider a study of the effects of passive smoking; that is, the effects on a non-
smoker of living with a smoker. To analyze whether passive smoking is associated
with lung cancer, a cross-sectional study might compare lung cancer rates between
nonsmokers whose spouses smoke and nonsmokers whose spouses do not smoke.
In doing so, the study should attempt to control for age, socioeconomic status, or
other factors that might relate both to whether one’s spouse smokes and to whether
one has lung cancer. A statistical control would hold such variables constant while
studying the association. Without such controls, results will have limited usefulness.
Suppose that spouses of nonsmokers tend to be younger than spouses of smokers and
that younger people are less likely to have lung cancer. Then, a lower proportion of
lung cancer cases among nonsmoker spouses may merely reflect their lower average
age and not an effect of passive smoking.

Including control variables in an analysis requires a multivariate rather than a
bivariate analysis. We illustrate basic concepts for a single control variable Z, which
is categorical. A three-way contingency table displays counts for the three variables.

2.7.1 Partial Tables

Two-way cross-sectional slices of the three-way table cross classify X and Y at sep-
arate levels of Z. These cross sections are called partial tables. They display the XY
relationship at fixed levels of Z, hence showing the effect of X on Y while controlling
for Z. The partial tables remove the effect of Z by holding its value constant.

The two-way contingency table that results from combining the partial tables is
called the XY marginal table. Each cell count in it is a sum of counts from the same
cell location in the partial tables. The marginal table contains no information about
Z, so rather than controlling Z, it ignores Z. It is simply a two-way table relating X

and Y . Methods for two-way tables do not take into account effects of other variables.
The associations in partial tables are called conditional associations, because they

refer to the effect of X on Y conditional on fixing Z at some level. Conditional
associations in partial tables can be quite different from associations in marginal
tables, as the next example shows.

2.7.2 Conditional Versus Marginal Associations: Death Penalty Example

Table 2.10 is a 2 × 2 × 2 contingency table – two rows, two columns, and two layers
– from an article that studied effects of racial characteristics on whether subjects
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Table 2.10. Death Penalty Verdict by Defendant’s Race and
Victims’ Race

Death Penalty
Victims’ Defendant’s Percentage
Race Race Yes No Yes

White White 53 414 11.3
Black 11 37 22.9

Black White 0 16 0.0
Black 4 139 2.8

Total White 53 430 11.0
Black 15 176 7.9

Source: M. L. Radelet and G. L. Pierce, Florida Law Rev., 43: 1–34, 1991.
Reprinted with permission of the Florida Law Review.

convicted of homicide receive the death penalty. The 674 subjects were the defendants
in indictments involving cases with multiple murders, in Florida between 1976 and
1987. The variables are Y = death penalty verdict, having categories (yes, no), and
X = race of defendant and Z = race of victims, each having categories (white, black).
We study the effect of defendant’s race on the death penalty verdict, treating victims’
race as a control variable. Table 2.10 has a 2 × 2 partial table relating defendant’s
race and the death penalty verdict at each level of victims’ race.

For each combination of defendant’s race and victims’ race, Table 2.10 lists and
Figure 2.3 displays the percentage of defendants who received the death penalty.

Figure 2.3. Percentage receiving death penalty, by defendant’s race and victims’ race.
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We use these to describe the conditional associations between defendant’s race and the
death penalty verdict, controlling for victims’ race. When the victims were white, the
death penalty was imposed 22.9 − 11.3% = 11.6% more often for black defendants
than for white defendants. When the victim was black, the death penalty was imposed
2.8 − 0.0% = 2.8% more often for black defendants than for white defendants. Thus,
controlling for victims’ race by keeping it fixed, the percentage of “yes” death penalty
verdicts was higher for black defendants than for white defendants.

The bottom portion of Table 2.10 displays the marginal table for defendant’s race
and the death penalty verdict. We obtain it by summing the cell counts in Table 2.10
over the two levels of victims’ race, thus combining the two partial tables (e.g.,
11 + 4 = 15). We see that, overall, 11.0% of white defendants and 7.9% of black
defendants received the death penalty. Ignoring victims’ race, the percentage of “yes”
death penalty verdicts was lower for black defendants than for white defendants. The
association reverses direction compared with the partial tables.

2.7.3 Simpson’s Paradox

The result that a marginal association can have different direction from the conditional
associations is called Simpson’s paradox. This result applies to quantitative as well
as categorical variables.

In the death penalty example, why does the association between death penalty
verdict and defendant’s race differ so much when we ignore vs control victims’ race?
This relates to the nature of the association between the control variable, victims’race,
and the other variables. First, the association between victims’ race and defendant’s
race is extremely strong. The marginal table relating these variables has odds ratio
(467 × 143)/(48 × 16) = 87.0. The odds that a white defendant had white victims
are estimated to be 87.0 times the odds that a black defendant had white victims.
Second, Table 2.10 shows that, regardless of defendant’s race, the death penalty was
considerably more likely when the victims were white than when the victims were
black. So, whites are tending to kill whites, and killing whites is more likely to result
in the death penalty. This suggests that the marginal association should show a greater
tendency for white defendants to receive the death penalty than do the conditional
associations. In fact, Table 2.10 shows this pattern.

Figure 2.4 may clarify why Simpson’s paradox happens. For each defendant’s race,
the figure plots the proportion receiving the death penalty at each level of victims’
race. Each proportion is labeled by a letter symbol giving the level of victims’ race.
Surrounding each observation is a circle having area proportional to the number of
observations at that combination of defendant’s race and victims’ race. For instance,
the W in the largest circle represents a proportion of 0.113 receiving the death penalty
for cases with white defendants and white victims. That circle is largest, because the
number of cases at that combination (53 + 414 = 467) is larger than at the other three
combinations. The next largest circle relates to cases in which blacks kill blacks.

To control for victims’ race, we compare circles having the same victims’ race
letter at their centers. The line connecting the two W circles has a positive slope, as
does the line connecting the two B circles. Controlling for victims’ race, this reflects
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Figure 2.4. Proportion receiving death penalty by defendant’s race, controlling and ignoring victims’ race.

a higher chance of the death penalty for black defendants than white defendants.
When we add results across victims’ race to get a summary result for the marginal
effect of defendant’s race on the death penalty verdict, the larger circles having the
greater number of cases have greater influence. Thus, the summary proportions for
each defendant’s race, marked on the figure by periods, fall closer to the center of
the larger circles than the smaller circles. A line connecting the summary marginal
proportions has negative slope. This indicates that white defendants are more likely
than black defendants to receive the death penalty.

2.7.4 Conditional and Marginal Odds Ratios

Conditional associations, like marginal associations, can be described using odds
ratios. We refer to odds ratios for partial tables as conditional odds ratios. For binary
X and Y , within a fixed level k of Z, let θXY(k) denote the odds ratio between X and
Y computed for the true probabilities.

Consider the conditional association between defendant’s race and the death
penalty. From Table 2.10, the estimated odds ratio in the first partial table, for which
victims’ race is white, equals

θ̂XY (1) = 53 × 37

414 × 11
= 0.43
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The sample odds for white defendants receiving the death penalty were 43% of the
sample odds for black defendants. In the second partial table, for which victim’s race
is black, θ̂XY (2) = (0 × 139)/(16 × 4) = 0.0, because the death penalty was never
given to white defendants having black victims.

The conditional odds ratios can be quite different from the marginal odds ratio, for
which the third variable is ignored rather than controlled. The marginal odds ratio for
defendant’s race and the death penalty uses the 2 × 2 marginal table in Table 2.10,
collapsing over victims’ race. The estimate equals (53 × 176)/(430 × 15) = 1.45.
The sample odds of the death penalty were 45% higher for white defendants than
for black defendants. Yet, we just observed that those odds were smaller for a
white defendant than for a black defendant, within each level of victims’ race. This
reversal in the association when we control for victims’ race illustrates Simpson’s
paradox.

2.7.5 Conditional Independence Versus Marginal Independence

If X and Y are independent in each partial table, then X and Y are said to be con-
ditionally independent, given Z. All conditional odds ratios between X and Y then
equal 1. Conditional independence of X and Y , given Z, does not imply marginal
independence of X and Y . That is, when odds ratios between X and Y equal 1 at each
level of Z, the marginal odds ratio may differ from 1.

The expected frequencies in Table 2.11 show a hypothetical relationship among
three variables: Y = response (success, failure), X = drug treatment (A, B), and
Z = clinic(1, 2). The conditional odds ratios between X and Y at the two levels of
Z are

θXY(1) = 18 × 8

12 × 12
= 1.0, θXY(2) = 2 × 32

8 × 8
= 1.0

Given clinic, response and treatment are conditionally independent. The marginal
table adds together the tables for the two clinics. The odds ratio for that

Table 2.11. Conditional Independence Does Not Imply
Marginal Independence

Response

Clinic Treatment Success Failure

1 A 18 12
B 12 8

2 A 2 8
B 8 32

Total A 20 20
B 20 40
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marginal table equals (20 × 40)/(20 × 20) = 2.0, so the variables are not marginally
independent.

Why are the odds of a success twice as high for treatment A as treatment B, when
we ignore clinic? The conditional XZ and YZ odds ratios give a clue. The odds ratio
between Z and either X or Y , at each fixed level of the other variable, equals 6.0. For
instance, the XZ odds ratio at the first level of Y equals (18 × 8)/(12 × 2) = 6.0.
The conditional odds of receiving treatment A are six times higher at clinic 1 than
clinic 2, and the conditional odds of success are six times higher at clinic 1 than at
clinic 2. Clinic 1 tends to use treatment A more often, and clinic 1 also tends to have
more successes. For instance, if subjects who attend clinic 1 tend to be in better health
or tend to be younger than those who go to clinic 2, perhaps they have a better success
rate than subjects in clinic 2 regardless of the treatment received.

It is misleading to study only the marginal table, concluding that successes are
more likely with treatment A than with treatment B. Subjects within a particular
clinic are likely to be more homogeneous than the overall sample, and response is
independent of treatment in each clinic.

2.7.6 Homogeneous Association

Let K denote the number of categories for Z. When X and Y are binary, there is
homogeneous XY association when

θXY(1) = θXY(2) = · · · = θXY(K)

Conditional independence of X and Y is the special case in which each conditional
odds ratio equals 1.0.

In an I × J × K table, homogeneous XY association means that any conditional
odds ratio formed using two levels of X and two levels of Y is the same at each
level of Z. When there is homogeneous XY association, there is also homogeneous
XZ association and homogeneous YZ association. Homogeneous association is a
symmetric property, applying to any pair of the variables viewed across the levels of
the third. When it occurs, there is said to be no interaction between two variables in
their effects on the third variable.

When there is not homogeneous association, the conditional odds ratio for any pair
of variables changes across levels of the third variable. For X = smoking (yes, no),
Y = lung cancer (yes, no), and Z = age (<45, 45–65, >65), suppose θXY(1) = 1.2,
θXY(2) = 2.8, and θXY(3) = 6.2. Then, smoking has a weak effect on lung cancer for
young people, but the effect strengthens considerably with age.

Inference about associations in multi-way contingency tables is best handled in
the context of models. Section 4.3 introduces a model that has the property of homo-
geneous association. We will see there and in Section 5.2 how to judge whether
conditional independence or homogeneous association are plausible.
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2.1 An article in the New York Times (February 17, 1999) about the PSA blood test
for detecting prostate cancer stated that, of men who had this disease, the test
fails to detect prostate cancer in 1 in 4 (so called false-negative results), and of
men who did not have it, as many as two-thirds receive false-positive results.
Let C (C̄) denote the event of having (not having) prostate cancer and let +
(−) denote a positive (negative) test result.

a. Which is true: P(−|C) = 1/4 or P(C|−) = 1/4? P(C̄|+) = 2/3 or
P(+|C̄) = 2/3?

b. What is the sensitivity of this test?

c. Of men who take the PSA test, suppose P(C) = 0.01. Find the cell prob-
abilities in the 2 × 2 table for the joint distribution that cross classifies
Y = diagnosis (+, −) with X = true disease status (C, C̄).

d. Using (c), find the marginal distribution for the diagnosis.

e. Using (c) and (d), find P(C|+), and interpret.

2.2 For diagnostic testing, let X = true status (1 = disease, 2 = no disease)
and Y = diagnosis (1 = positive, 2 = negative). Let πi = P(Y = 1|X = i),
i = 1, 2.

a. Explain why sensitivity = π1 and specificity = 1 − π2.

b. Let γ denote the probability that a subject has the disease. Given that the
diagnosis is positive, use Bayes’s theorem to show that the probability a
subject truly has the disease is

π1γ /[π1γ + π2(1 − γ )]

c. For mammograms for detecting breast cancer, suppose γ = 0.01,
sensitivity = 0.86, and specificity = 0.88. Given a positive test result, find
the probability that the woman truly has breast cancer.

d. To better understand the answer in (c), find the joint probabilities for the
2 × 2 cross classification of X and Y . Discuss their relative sizes in the two
cells that refer to a positive test result.

2.3 According to recent UN figures, the annual gun homicide rate is 62.4 per one
million residents in the United States and 1.3 per one million residents in
the UK.

a. Compare the proportion of residents killed annually by guns using the
(i) difference of proportions, (ii) relative risk.

b. When both proportions are very close to 0, as here, which measure is more
useful for describing the strength of association? Why?
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2.4 A newspaper article preceding the 1994 World Cup semifinal match between
Italy and Bulgaria stated that “Italy is favored 10–11 to beat Bulgaria, which
is rated at 10–3 to reach the final.” Suppose this means that the odds that Italy
wins are 11/10 and the odds that Bulgaria wins are 3/10. Find the probability
that each team wins, and comment.

2.5 Consider the following two studies reported in the New York Times:

a. A British study reported (December 3, 1998) that, of smokers who get lung
cancer, “women were 1.7 times more vulnerable than men to get small-cell
lung cancer.” Is 1.7 an odds ratio, or a relative risk?

b. A National Cancer Institute study about tamoxifen and breast cancer
reported (April 7, 1998) that the women taking the drug were 45% less
likely to experience invasive breast cancer compared with the women taking
placebo. Find the relative risk for (i) those taking the drug compared to those
taking placebo, (ii) those taking placebo compared to those taking the drug.

2.6 In the United States, the estimated annual probability that a woman over the age
of 35 dies of lung cancer equals 0.001304 for current smokers and 0.000121 for
nonsmokers [M. Pagano and K. Gauvreau, Principles of Biostatistics, Belmont,
CA: Duxbury Press (1993), p. 134].

a. Calculate and interpret the difference of proportions and the relative risk.
Which is more informative for these data? Why?

b. Calculate and interpret the odds ratio. Explain why the relative risk and
odds ratio take similar values.

2.7 For adults who sailed on the Titanic on its fateful voyage, the odds ratio
between gender (female, male) and survival (yes, no) was 11.4. (For data,
see R. Dawson, J. Statist. Educ. 3, no. 3, 1995.)

a. What is wrong with the interpretation, “The probability of survival for
females was 11.4 times that for males”? Give the correct interpretation.

b. The odds of survival for females equaled 2.9. For each gender, find the
proportion who survived.

c. Find the value of R in the interpretation, “The probability of survival for
females was R times that for males.”

2.8 A research study estimated that under a certain condition, the probability a
subject would be referred for heart catheterization was 0.906 for whites and
0.847 for blacks.

a. A press release about the study stated that the odds of referral for cardiac
catheterization for blacks are 60% of the odds for whites. Explain how they
obtained 60% (more accurately, 57%).

b. AnAssociated Press story that described the study stated “Doctors were only
60% as likely to order cardiac catheterization for blacks as for whites.”
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What is wrong with this interpretation? Give the correct percentage for
this interpretation. (In stating results to the general public, it is better to
use the relative risk than the odds ratio. It is simpler to understand and
less likely to be misinterpreted. For details, see New Engl. J. Med., 341:
279–283, 1999.)

2.9 An estimated odds ratio for adult females between the presence of squamous
cell carcinoma (yes, no) and smoking behavior (smoker, nonsmoker) equals
11.7 when the smoker category consists of subjects whose smoking level s is
0 < s < 20 cigarettes per day; it is 26.1 for smokers with s ≥ 20 cigarettes per
day (R. Brownson et al., Epidemiology, 3: 61–64, 1992). Show that the esti-
mated odds ratio between carcinoma and smoking levels (s ≥ 20, 0 < s < 20)
equals 26.1/11.7 = 2.2.
Data posted at the FBI website (www.fbi.gov)

2.10 Data posted at the FBI website (www.fbi.gov) stated that of all blacks slain in
2005, 91% were slain by blacks, and of all whites slain in 2005, 83% were
slain by whites. Let Y denote race of victim and X denote race of murderer.

a. Which conditional distribution do these statistics refer to, Y given X, or X

given Y ?

b. Calculate and interpret the odds ratio between X and Y .

c. Given that a murderer was white, can you estimate the probability that the
victim was white? What additional information would you need to do this?
(Hint: How could you use Bayes’s Theorem?)

2.11 A 20-year study of British male physicians (R. Doll and R. Peto, British Med. J.,
2: 1525–1536, 1976) noted that the proportion who died from lung cancer was
0.00140 per year for cigarette smokers and 0.00010 per year for nonsmokers.
The proportion who died from heart disease was 0.00669 for smokers and
0.00413 for nonsmokers.

a. Describe the association of smoking with lung cancer and with heart disease,
using the difference of proportions, the relative risk, and the odds ratio.
Interpret.

b. Which response (lung cancer or heart disease) is more strongly related to
cigarette smoking, in terms of the reduction in deaths that could occur with
an absence of smoking?

2.12 A statistical analysis that combines information from several studies is
called a meta analysis. A meta analysis compared aspirin with placebo on
incidence of heart attack and of stroke, separately for men and for women
(J. Am. Med. Assoc., 295: 306–313, 2006). For the Women’s Health Study,
heart attacks were reported for 198 of 19,934 taking aspirin and for 193 of
19,942 taking placebo.
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a. Construct the 2 × 2 table that cross classifies the treatment (aspirin,
placebo) with whether a heart attack was reported (yes, no).

b. Estimate the odds ratio. Interpret.

c. Find a 95% confidence interval for the population odds ratio for women.
Interpret. (As of 2006, results suggested that for women, aspirin was helpful
for reducing risk of stroke but not necessarily risk of heart attack.)

2.13 Refer to Table 2.1 about belief in an afterlife.

a. Construct a 90% confidence interval for the difference of proportions, and
interpret.

b. Construct a 90% confidence interval for the odds ratio, and interpret.

c. Conduct a test of statistical independence. Report the P -value and interpret.

2.14 A poll by Louis Harris and Associates of 1249 adult Americans indicated that
36% believe in ghosts and 37% believe in astrology. Can you compare the
proportions using inferential methods for independent binomial samples? If
yes, do so. If not, explain why not.

2.15 A large-sample confidence interval for the log of the relative risk is

log(p1/p2) ± zα/2

√
1 − p1

n1p1
+ 1 − p2

n2p2

Antilogs of the endpoints yield an interval for the true relative risk. Verify
the 95% confidence interval of (1.43, 2.30) reported for the relative risk in
Section 2.2.3 for the aspirin and heart attack study.

2.16 Table 2.12 comes from one of the first studies of the link between lung cancer
and smoking, by Richard Doll and A. Bradford Hill. In 20 hospitals in London,
UK, patients admitted with lung cancer in the previous year were queried
about their smoking behavior. For each patient admitted, researchers studied
the smoking behavior of a noncancer control patient at the same hospital of the

Table 2.12. Data for Problem 2.16

Lung Cancer

Have Smoked Cases Controls

Yes 688 650
No 21 59

Total 709 709

Based on data reported in Table IV, R. Doll and A. B. Hill, Br. Med. J.,
739–748, September 30, 1950.
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same sex and within the same 5-year grouping on age. A smoker was defined
as a person who had smoked at least one cigarette a day for at least a year.

a. Identify the response variable and the explanatory variable.

b. Identify the type of study this was.

c. Can you use these data to compare smokers with nonsmokers in terms of
the proportion who suffered lung cancer? Why or why not?

d. Summarize the association, and explain how to interpret it.

2.17 Refer to Table 2.3. Find the P -value for testing that the incidence of heart
attacks is independent of aspirin intake using (a) X2, (b) G2. Interpret results.

2.18 Table 2.13 shows data from the 2002 General Social Survey cross classifying a
person’s perceived happiness with their family income. The table displays the
observed and expected cell counts and the standardized residuals for testing
independence.

a. Show how to obtain the estimated expected cell count of 35.8 for the
first cell.

b. For testing independence, X2 = 73.4. Report the df value and the P -value,
and interpret.

c. Interpret the standardized residuals in the corner cells having counts 21
and 83.

d. Interpret the standardized residuals in the corner cells having counts 110
and 94.

Table 2.13. Data for Problem 2.18, with Estimated Expected
Frequencies and Standardized Residuals

Happiness

Income Not Too Happy Pretty Happy Very Happy

Above 21 159 110
average 35.8 166.1 88.1

−2.973 −0.947 3.144

Average 53 372 221
79.7 370.0 196.4
−4.403 0.224 2.907

Below 94 249 83
average 52.5 244.0 129.5

7.368 0.595 −5.907

2.19 Table 2.14 was taken from the 2002 General Social Survey.

a. Test the null hypothesis of independence between party identification and
race. Interpret.
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Table 2.14. Data for Problem 2.19

Party Identification

Race Democrat Independent Republican

White 871 444 873
Black 302 80 43

b. Use standardized residuals to describe the evidence.

c. Partition the chi-squared into two components, and use the components to
describe the evidence.

2.20 In an investigation of the relationship between stage of breast cancer at diag-
nosis (local or advanced) and a woman’s living arrangement (D. J. Moritz
and W. A. Satariano, J. Clin. Epidemiol., 46: 443–454, 1993), of 144 women
living alone, 41.0% had an advanced case; of 209 living with spouse, 52.2%
were advanced; of 89 living with others, 59.6% were advanced. The authors
reported the P -value for the relationship as 0.02. Reconstruct the analysis they
performed to obtain this P -value.

2.21 Each subject in a sample of 100 men and 100 women is asked to indicate
which of the following factors (one or more) are responsible for increases in
teenage crime: A, the increasing gap in income between the rich and poor;
B, the increase in the percentage of single-parent families; C, insufficient time
spent by parents with their children. A cross classification of the responses by
gender is

Gender A B C

Men 60 81 75
Women 75 87 86

a. Is it valid to apply the chi-squared test of independence to this 2 × 3 table?
Explain.

b. Explain how this table actually provides information needed to cross-
classify gender with each of three variables. Construct the contingency
table relating gender to opinion about whether factor A is responsible for
increases in teenage crime.

2.22 Table 2.15 classifies a sample of psychiatric patients by their diagnosis and by
whether their treatment prescribed drugs.

a. Conduct a test of independence, and interpret the P -value.

b. Obtain standardized residuals, and interpret.
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Table 2.15. Data for Problem 2.22

Diagnosis Drugs No Drugs

Schizophrenia 105 8
Affective disorder 12 2
Neurosis 18 19
Personality disorder 47 52
Special symptoms 0 13

Source: E. Helmes and G. C. Fekken, J. Clin. Psychol., 42:
569–576, 1986. Copyright by Clinical Psychology Publishing Co.,
Inc., Brandon, VT. Reproduced by permission of the publisher.

c. Partition chi-squared into three components to describe differences and
similarities among the diagnoses, by comparing (i) the first two rows, (ii) the
third and fourth rows, (iii) the last row to the first and second rows combined
and the third and fourth rows combined.

2.23 Table 2.16, from a recent General Social Survey, cross-classifies the degree
of fundamentalism of subjects’ religious beliefs by their highest degree of
education. The table also shows standardized residuals. For these data, X2 =
69.2. Write a report of about 200 words, summarizing description and inference
for these data.

Table 2.16. Table for Problem 2.23, with Standardized Residuals

Religious Beliefs

Highest Degree Fundamentalist Moderate Liberal

Less than high school 178 138 108
(4.5) (−2.6) (−1.9)

High school or junior college 570 648 442
(2.6) (1.3) (−4.0)

Bachelor or graduate 138 252 252
(−6.8) (0.7) (6.3)

2.24 Formula (2.8) has alternative formula X2 = n
∑

(pij − pi+p+j )
2/pi+p+j .

Hence, for given {pij }, X2 is large when n is sufficiently large, regardless of
whether the association is practically important. Explain why chi-squared tests,
like other tests, merely indicate the degree of evidence against a hypothesis
and do not give information about the strength of association.

2.25 For tests of H0: independence, {μ̂ij = ni+n+j /n}.
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a. Show that {μ̂ij } have the same row and column totals as {nij }.
b. For 2 × 2 tables, show that μ̂11μ̂22/μ̂12μ̂21 = 1.0. Hence, {μ̂ij } satisfy

H0.

2.26 A chi-squared variate with degrees of freedom equal to df has representa-
tion Z2

1 + · · · + Z2
df , where Z1, . . . , Zdf are independent standard normal

variates.

a. If Z has a standard normal distribution, what distribution does Z2 have?

b. Show that, if Y1 and Y2 are independent chi-squared variates with degrees
of freedom df1 and df2, then Y1 + Y2 has a chi-squared distribution with
df = df1 + df2.

2.27 A study on educational aspirations of high school students (S. Crysdale, Int. J.
Comp. Sociol., 16: 19–36, 1975) measured aspirations using the scale (some
high school, high school graduate, some college, college graduate). For stu-
dents whose family income was low, the counts in these categories were (9,
44, 13, 10); when family income was middle, the counts were (11, 52, 23, 22);
when family income was high, the counts were (9, 41, 12, 27).

a. Test independence of aspirations and family income using X2 or G2.
Interpret, and explain the deficiency of this test for these data.

b. Find the standardized residuals. Do they suggest any association pattern?

c. Conduct a more powerful test. Interpret results.

2.28 By trial and error, find a 3 × 3 table of counts for which the P -value is greater
than 0.05 for the X2 test but less than 0.05 for the M2 ordinal test. Explain
why this happens.

2.29 A study (B. Kristensen et al., J. Intern. Med., 232: 237–245, 1992) considered
the effect of prednisolone on severe hypercalcaemia in women with metastatic
breast cancer. Of 30 patients, 15 were randomly selected to receive pred-
nisolone, and the other 15 formed a control group. Normalization in their level
of serum-ionized calcium was achieved by seven of the 15 prednisolone-treated
patients and by 0 of the 15 patients in the control group. Use Fisher’s exact
test to find a P -value for testing whether results were significantly better for
treatment than control. Interpret.

2.30 Table 2.17 contains results of a study comparing radiation therapy with surgery
in treating cancer of the larynx. Use Fisher’s exact test to test H0: θ = 1 against
Ha : θ > 1. Interpret results.

2.31 Refer to the previous exercise.

a. Obtain and interpret a two-sided exact P -value.

b. Obtain and interpret the one-sided mid P -value. Give advantages of this
type of P -value, compared with the ordinary one.
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Table 2.17. Data for Problem 2.30

Cancer Cancer Not
Controlled Controlled

Surgery 21 2
Radiation therapy 15 3

Source: W. Mendenhall et al., Int. J. Radiat. Oncol. Biol. Phys., 10:
357–363, 1984. Reprinted with permission from Elsevier Science Ltd.

2.32 Of the six candidates for three managerial positions, three are female and three
are male. Denote the females by F1, F2, F3 and the males by M1, M2, M3.
The result of choosing the managers is (F2, M1, M3).

a. Identify the 20 possible samples that could have been selected, and construct
the contingency table for the sample actually obtained.

b. Let p1 denote the sample proportion of males selected and p2 the sample
proportion of females. For the observed table, p1 − p2 = 1/3. Of the 20
possible samples, show that 10 have p1 − p2 ≥ 1/3. Thus, if the three
managers were randomly selected, the probability would equal 10/20 =
0.50 of obtaining p1 − p2 ≥ 1/3. This reasoning provides the P -value for
Fisher’s exact test with Ha : π1 > π2.

2.33 In murder trials in 20 Florida counties during 1976 and 1977, the death penalty
was given in 19 out of 151 cases in which a white killed a white, in 0 out of
9 cases in which a white killed a black, in 11 out of 63 cases in which a
black killed a white, and in 6 out of 103 cases in which a black killed a black
(M. Radelet, Am. Sociol. Rev., 46: 918–927, 1981).

a. Exhibit the data as a three-way contingency table.

b. Construct the partial tables needed to study the conditional association
between defendant’s race and the death penalty verdict. Find and interpret
the sample conditional odds ratios, adding 0.5 to each cell to reduce the
impact of the 0 cell count.

c. Compute and interpret the sample marginal odds ratio between defendant’s
race and the death penalty verdict. Do these data exhibit Simpson’s paradox?
Explain.

2.34 Smith and Jones are baseball players. Smith had a higher batting average than
Jones in 2005 and 2006. Is it possible that, for the combined data for these two
years, Jones had the higher batting average? Explain, and illustrate using data.

2.35 At each age level, the death rate is higher in South Carolina than in Maine, but
overall the death rate is higher in Maine. Explain how this could be possible.
(For data, see H. Wainer, Chance, 12: 44, 1999.)
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2.36 Give a “real world” example of three variables X, Y , and Z, for which you
expect X and Y to be marginally associated but conditionally independent,
controlling for Z.

2.37 Based on murder rates in the United States, the Associated Press reported
that the probability a newborn child has of eventually being a murder victim
is 0.0263 for nonwhite males, 0.0049 for white males, 0.0072 for nonwhite
females, and 0.0023 for white females.

a. Find the conditional odds ratios between race and whether a murder victim,
given gender. Interpret.

b. If half the newborns are of each gender, for each race, find the marginal
odds ratio between race and whether a murder victim.

2.38 For three-way contingency tables:

a. When any pair of variables is conditionally independent, explain why there
is homogeneous association.

b. When there is not homogeneous association, explain why no pair of
variables can be conditionally independent.

2.39 True, or false?

a. In 2 × 2 tables, statistical independence is equivalent to a population odds
ratio value of θ = 1.0.

b. We found that a 95% confidence interval for the odds ratio relating having
a heart attack (yes, no) to drug (placebo, aspirin) is (1.44, 2.33). If we had
formed the table with aspirin in the first row (instead of placebo), then the
95% confidence interval would have been (1/2.33, 1/1.44) = (0.43, 0.69).

c. Using a survey of college students, we study the association between opin-
ion about whether it should be legal to (1) use marijuana, (2) drink alcohol
if you are 18 years old. We may get a different value for the odds ratio if we
treat opinion about marijuana use as the response variable than if we treat
alcohol use as the response variable.

d. Interchanging two rows or interchanging two columns in a contingency
table has no effect on the value of the X2 or G2 chi-squared statistics. Thus,
these tests treat both the rows and the columns of the contingency table as
nominal scale, and if either or both variables are ordinal, the test ignores
that information.

e. Suppose that income (high, low) and gender are conditionally independent,
given type of job (secretarial, construction, service, professional, etc.).
Then, income and gender are also independent in the 2 × 2 marginal table
(i.e., ignoring, rather than controlling, type of job).
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Generalized Linear Models

Chapter 2 presented methods for analyzing contingency tables. Those methods help
us investigate effects of explanatory variables on categorical response variables. The
rest of this book uses models as the basis of such analyses. In fact, the methods of
Chapter 2 also result from analyzing effects in certain models, but models can handle
more complicated situations, such as analyzing simultaneously the effects of several
explanatory variables.

A good-fitting model has several benefits. The structural form of the model
describes the patterns of association and interaction. The sizes of the model parameters
determine the strength and importance of the effects. Inferences about the parameters
evaluate which explanatory variables affect the response variable Y , while controlling
effects of possible confounding variables. Finally, the model’s predicted values
smooth the data and provide improved estimates of the mean of Y at possible
explanatory variable values.

The models this book presents are generalized linear models. This broad class of
models includes ordinary regression and ANOVA models for continuous responses
as well as models for discrete responses. This chapter introduces generalized linear
models for categorical and other discrete response data. The acronym GLM is
shorthand for generalized linear model.

Section 3.1 defines GLMs. Section 3.2 introduces GLMs for binary responses. An
important special case is the logistic regression model, which Chapters 4–6 present in
detail. Section 3.3 introduces GLMs for responses for an outcome that is a count. An
important special case is the loglinear model, the subject of Chapter 7. Section 3.4
discusses inference and model checking for GLMs, and Section 3.5 discusses ML
fitting.

An Introduction to Categorical Data Analysis, Second Edition. By Alan Agresti
Copyright © 2007 John Wiley & Sons, Inc.
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3.1 COMPONENTS OF A GENERALIZED LINEAR MODEL

All generalized linear models have three components: The random component
identifies the response variable Y and assumes a probability distribution for it. The
systematic component specifies the explanatory variables for the model. The link
function specifies a function of the expected value (mean) of Y , which the GLM
relates to the explanatory variables through a prediction equation having linear form.

3.1.1 Random Component

The random component of a GLM identifies the response variable Y and selects a
probability distribution for it. Denote the observations on Y by (Y1, . . . , Yn). Standard
GLMs treat Y1, . . . , Yn as independent.

In many applications, the observations on Y are binary, such as “success” or
“failure.” More generally, each Yi might be the number of successes out of a certain
fixed number of trials. In either case, we assume a binomial distribution for Y . In
some applications, each observation is a count. We might then assume a distribution
for Y that applies to all the nonnegative integers, such as the Poisson or negative
binomial. If each observation is continuous, such as a subject’s weight in a dietary
study, we might assume a normal distribution for Y .

3.1.2 Systematic Component

The systematic component of a GLM specifies the explanatory variables. These enter
linearly as predictors on the right-hand side of the model equation. That is, the
systematic component specifies the variables that are the {xj } in the formula

α + β1x1 + · · · + βkxk

This linear combination of the explanatory variables is called the linear predictor.
Some {xj } can be based on others in the model. For example, perhaps x3 = x1x2,

to allow interaction between x1 and x2 in their effects on Y , or perhaps x3 = x2
1 , to

allow a curvilinear effect of x1. (GLMs use lower case for each x to emphasize that
x-values are treated as fixed rather than as a random variable.)

3.1.3 Link Function

Denote the expected value of Y , the mean of its probability distribution, by μ = E(Y ).
The third component of a GLM, the link function, specifies a function g(·) that relates
μ to the linear predictor as

g(μ) = α + β1x1 + · · · + βkxk

The function g(·), the link function, connects the random and systematic components.
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The simplest link function is g(μ) = μ. This models the mean directly and is
called the identity link. It specifies a linear model for the mean response,

μ = α + β1x1 + · · · + βkxk (3.1)

This is the form of ordinary regression models for continuous responses.
Other link functions permit μ to be nonlinearly related to the predictors. For

instance, the link functiong(μ) = log(μ)models the log of the mean. The log function
applies to positive numbers, so the log link function is appropriate when μ cannot be
negative, such as with count data. A GLM that uses the log link is called a loglinear
model. It has form

log(μ) = α + β1x1 + · · · + βkxk

The link function g(μ) = log[μ/(1 − μ)] models the log of an odds. It is appro-
priate when μ is between 0 and 1, such as a probability. This is called the logit link.
A GLM that uses the logit link is called a logistic regression model.

Each potential probability distribution for Y has one special function of the mean
that is called its natural parameter. For the normal distribution, it is the mean itself.
For the binomial, the natural parameter is the logit of the success probability. The link
function that uses the natural parameter as g(μ) in the GLM is called the canonical
link. Although other link functions are possible, in practice the canonical links are
most common.

3.1.4 Normal GLM

Ordinary regression models for continuous responses are special cases of GLMs.
They assume a normal distribution for Y and model its mean directly, using the
identity link function, g(μ) = μ. A GLM generalizes ordinary regression models in
two ways: First, it allows Y to have a distribution other than the normal. Second, it
allows modeling some function of the mean. Both generalizations are important for
categorical data.

Historically, early analyses of nonnormal responses often attempted to transform
Y so it is approximately normal, with constant variance. Then, ordinary regression
methods using least squares are applicable. In practice, this is difficult to do. With the
theory and methodology of GLMs, it is unnecessary to transform data so that methods
for normal responses apply. This is because the GLM fitting process uses ML methods
for our choice of random component, and we are not restricted to normality for that
choice. The GLM choice of link function is separate from the choice of random
component. It is not chosen to produce normality or stabilize the variance.

GLMs unify a wide variety of statistical methods. Regression,ANOVA, and models
for categorical data are special cases of one super model. In fact, the same algorithm
yields ML estimates of parameters for all GLMs. This algorithm is the basis of
software for fitting GLMs, such as PROC GENMOD in SAS, the glm function in R
and Splus, and the glm command in Stata.
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The next two sections illustrate the GLM components by introducing the two most
important GLMs for discrete responses – logistic regression models for binary data
and loglinear models for count data.

3.2 GENERALIZED LINEAR MODELS FOR BINARY DATA

Many categorical response variables have only two categories: for example, whether
you take public transportation today (yes, no), or whether you have had a physical
exam in the past year (yes, no). Denote a binary response variable by Y and its two
possible outcomes by 1 (“success”) and 0 (“failure”).

The distribution of Y is specified by probabilities P(Y = 1) = π of success and
P(Y = 0) = (1 − π ) of failure. Its mean is E(Y ) = π . For n independent observa-
tions, the number of successes has the binomial distribution specified by the index n

and parameter π . The formula was shown in equation (1.1). Each binary observation
is a binomial variate with n = 1.

This section introduces GLMs for binary responses. Although GLMs can have
multiple explanatory variables, for simplicity we introduce them using a single x.
The value of π can vary as the value of x changes, and we replace π by π(x) when
we want to describe its dependence on that value.

3.2.1 Linear Probability Model

In ordinary regression, μ = E(Y ) is a linear function of x. For a binary response, an
analogous model is

π(x) = α + βx

This is called a linear probability model, because the probability of success changes
linearly in x. The parameter β represents the change in the probability per unit
change in x. This model is a GLM with binomial random component and identity
link function.

This model is simple, but unfortunately it has a structural defect. Probabilities fall
between 0 and 1, whereas linear functions take values over the entire real line. This
model predicts π(x) < 0 and π(x) > 1 for sufficiently large or small x values. The
model can fit adequately over a restricted range of x values. For most applications,
however, especially with several predictors, we need a more complex model form.

The ML estimates for this model, like most GLMs, do not have closed form;
that is, the likelihood function is sufficiently complex that no formula exists for
its maximum. Software for GLMs finds the ML estimates using an algorithm for
successively getting better and better approximations for the likelihood function near
its maximum, as Section 3.5.1 describes. This fitting process fails when, at some
stage, an estimated probability π̂(x) = α̂ + β̂x falls outside the 0–1 range at some
observed x value. Software then usually displays an error message such as “lack of
convergence.”
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If we ignored the binary nature of Y and used ordinary regression, the estimates
of the parameters would be the least squares estimates. They are the ML estimates
under the assumption of a normal response. These estimates exist, because for a
normal response an estimated mean of Y can be any real number and is not restricted
to the 0–1 range. Of course, an assumption of normality for a binary response is not
sensible; when ML fitting with the binomial assumption fails, the least squares method
is also likely to give estimated probabilities outside the 0–1 range for some x values.

3.2.2 Example: Snoring and Heart Disease

Table 3.1 is based on an epidemiological survey of 2484 subjects to investigate snoring
as a possible risk factor for heart disease. The subjects were classified according to
their snoring level, as reported by their spouses. The linear probability model states
that the probability of heart disease π(x) is a linear function of the snoring level x.
We treat the rows of the table as independent binomial samples with probabilities
π(x). We use scores (0, 2, 4, 5) for x = snoring level, treating the last two snoring
categories as closer than the other adjacent pairs.

Software for GLMs reports the ML model fit, π̂ = 0.0172 + 0.0198x. For
example, for nonsnorers (x = 0), the estimated probability of heart disease is
π̂ = 0.0172 + 0.0198(0) = 0.0172. The estimated values of E(Y ) for a GLM are
called fitted values. Table 3.1 shows the sample proportions and the fitted values for
the linear probability model. Figure 3.1 graphs the sample proportions and fitted val-
ues. The table and graph suggest that the model fits these data well. (Section 5.2.2
discusses goodness-of-fit analyses for binary-response GLMs.)

The model interpretation is simple. The estimated probability of heart disease
is about 0.02 (namely, 0.0172) for nonsnorers; it increases 2(0.0198) = 0.04 for
occasional snorers, another 0.04 for those who snore nearly every night, and another
0.02 for those who always snore. This rather surprising effect is significant, as the
standard error of β̂ = 0.0198 equals 0.0028.

Suppose we had chosen snoring-level scores with different relative spacings than
the scores {0, 2, 4, 5}. Examples are {0, 2, 4, 4.5} or {0, 1, 2, 3}. Then the fitted values
would change somewhat. They would not change if the relative spacings between

Table 3.1. Relationship Between Snoring and Heart Disease

Heart Disease
Proportion Linear Logit Probit

Snoring Yes No Yes Fit Fit Fit

Never 24 1355 0.017 0.017 0.021 0.020
Occasional 35 603 0.055 0.057 0.044 0.046
Nearly every night 21 192 0.099 0.096 0.093 0.095
Every night 30 224 0.118 0.116 0.132 0.131

Note: Model fits refer to proportion of “yes” responses.

Source: P. G. Norton and E. V. Dunn, Br. Med. J., 291: 630–632, 1985, published by BMJ
Publishing Group.
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Figure 3.1. Fit of models for snoring and heart disease data.

scores were the same, such as {0, 4, 8, 10} or {1, 3, 5, 6}. For these data, all these
scores yield the conclusion that the probability of heart disease increases as snoring
level increases.

Incidentally, if we entered the data as 2484 binary observations of 0 or 1 and fitted
the model using ordinary least squares rather than ML, we would obtain π̂ = 0.0169 +
0.0200x. In practice, when the model fits well, least squares and ML estimates are
similar.

3.2.3 Logistic Regression Model

Relationships between π(x) and x are usually nonlinear rather than linear. A fixed
change in x may have less impact when π is near 0 or 1 than when π is near the
middle of its range. In the purchase of an automobile, for instance, consider the
choice between buying new or used. Let π(x) denote the probability of selecting a
new car, when annual family income = x. An increase of $10,000 in annual family
income would likely have less effect when x = $1,000,000 (for which π is near 1)
than when x = $50,000.

In practice, π(x) often either increases continuously or decreases continuously as
x increases. The S-shaped curves displayed in Figure 3.2 are often realistic shapes
for the relationship. The most important mathematical function with this shape has
formula

π(x) = exp(α + βx)

1 + exp(α + βx)
= eα+βx

1 + eα+βx
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Figure 3.2. Logistic regression functions.

using the exponential function. This is called the logistic regression function. We will
see in Chapter 4 that the corresponding logistic regression model form is

log

(
π(x)

1 − π(x)

)
= α + βx (3.2)

The logistic regression model (3.2) is a special case of a GLM. The random compo-
nent for the (success, failure) outcomes has a binomial distribution. The link function
is the logit function log[π/(1 − π)] of π , symbolized by “logit(π ).” Logistic regres-
sion models are often called logit models. Whereas π is restricted to the 0–1 range,
the logit can be any real number. The real numbers are also the potential range for
linear predictors (such as α + βx) that form the systematic component of a GLM, so
this model does not have the structural problem that the linear probability model has.

The parameter β in equation (3.2) determines the rate of increase or decrease of the
curve. When β > 0, π(x) increases as x increases, as in Figure 3.2(a). When β < 0,
π(x) decreases as x increases, as in Figure 3.2(b). The magnitude of β determines
how fast the curve increases or decreases. As |β| increases, the curve has a steeper
rate of change. When β = 0, the curve flattens to a horizontal straight line.

For the logistic regression model for the snoring and heart disease data in Table 3.1,
software reports the ML fit,

logit[π̂(x)] = −3.87 + 0.40x

Since β̂ = 0.40 > 0, the estimated probability of heart disease increases as snoring
level increases. Chapter 4 shows how to calculate estimated probabilities (the model
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fitted values) and presents ways of interpreting the model. Table 3.1 also reports these
fitted values, and Figure 3.1 displays the fit. The fit is close to linear over this rather
narrow range of estimated probabilities. Results are similar to those for the linear
probability model.

3.2.4 Probit Regression Model

Another model that has the S-shaped curves of Figure 3.2 is called the probit model.
The link function for the model, called the probit link, transforms probabilities to
z-scores from the standard normal distribution. The probit model has expression

probit[π(x)] = α + βx (3.3)

The probit link function applied to π(x) gives the standard normal z-score at which the
left-tail probability equals π(x). For instance, probit(0.05) = −1.645, because 5%
of the standard normal distribution falls below −1.645. Likewise, probit(0.50) = 0,
probit(0.95) = 1.645, and probit(0.975) = 1.96.

For the snoring and heart disease data with scores {0, 2, 4, 5} for snoring level,
software reports that the ML fit of the probit model is

probit[π̂(x)] = −2.061 + 0.188x

At snoring level x = 0, the probit equals −2.061 + 0.188(0) = −2.06. The fitted
probability π̂(0) is the left-tail probability for the standard normal distribution at
z = −2.06, which equals 0.020. At snoring level x = 5, the probit equals −2.061 +
0.188(5) = −1.12, which corresponds to a fitted probability of 0.131.

The fitted values, shown in Table 3.1 and Figure 3.1, are similar to those for
the linear probability and logistic regression models. In practice, probit and logistic
regression models provide similar fits. If a logistic regression model fits well, then so
does the probit model, and conversely.

3.2.5 Binary Regression and Cumulative Distribution Functions∗

For a random variable X, the cumulative distribution function (cdf ) F(x) for X is
defined as

F(x) = P(X ≤ x), −∞ < x < ∞

As x increases, P(X ≤ x) increases. Thus, as x increases over its range of values,
F(x) increases from 0 to 1. When X is a continuous random variable, the cdf , plotted
as a function of x, has S-shaped appearance, like that in Figure 3.1(a). This suggests
a class of models for binary responses whereby the dependence of π(x) on x has
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the form

π(x) = F(x) (3.4)

where F is a cdf for some continuous probability distribution.
When F is the cdf of a normal distribution, model type (3.4) is equivalent to the

probit model (3.3). The probit link function transforms π(x) so that the regression
curve for π(x) [or for 1 − π(x), when β < 0] has the appearance of the normal cdf .
The parameters of the normal distribution relate to the parameters in the probit model
by mean μ = −α/β and standard deviation σ = 1/|β|. Each choice of α and of β > 0
corresponds to a different normal distribution.

For the snoring and heart disease data, probit[π̂(x)] = −2.061 + 0.188x. This
probit fit corresponds to a normal cdf having mean −α̂/β̂ = 2.061/0.188 = 11.0
and standard deviation 1/|β̂| = 1/0.188 = 5.3. The estimated probability of heart
disease equals 1/2 at snoring level x = 11.0. That is, x = 11.0 has a fitted probit of
−2.061 + 0.188(11) = 0, which is the z-score corresponding to a left-tail probability
of 1/2. Since snoring level is restricted to the range 0–5 for these data, well below
11, the fitted probabilities over this range are quite small.

The logistic regression curve also has form (3.4). When β > 0 in model (3.2), the
curve for π(x) has the shape of the cdf F(x) of a two-parameter logistic distribution.
The logistic cdf corresponds to a probability distribution with a symmetric, bell shape.
It looks similar to a normal distribution but with slightly thicker tails.

When both models fit well, parameter estimates in probit models have smaller
magnitude than those in logistic regression models. This is because their link func-
tions transform probabilities to scores from standard versions of the normal and
logistic distribution, but those two distributions have different spread. The standard
normal distribution has a mean of 0 and standard deviation of 1. The standard logistic
distribution has a mean of 0 and standard deviation of 1.8. When both models fit well,
parameter estimates in logistic regression models are approximately 1.8 times those
in probit models.

The probit model and the cdf model form (3.4) were introduced in the mid1930s in
toxicology studies. A typical experiment exposes animals (typically insects or mice) to
various dosages of some potentially toxic substance. For each subject, the response is
whether it dies. It is natural to assume a tolerance distribution for subjects’ responses.
For example, each insect may have a certain tolerance to an insecticide, such that it
dies if the dosage level exceeds its tolerance and survives if the dosage level is less
than its tolerance. Tolerances would vary among insects. If a cdf F describes the
distribution of tolerances, then the model for the probability π(x) of death at dosage
level x has form (3.4). If the tolerances vary among insects according to a normal
distribution, then π(x) has the shape of a normal cdf . With sample data, model fitting
determines which normal cdf best applies.

Logistic regression was not developed until the mid 1940s and not used much until
the 1970s, but it is now more popular than the probit model. We will see in the next
chapter that the logistic model parameters relate to odds ratios. Thus, one can fit the
model to data from case–control studies, because one can estimate odds ratios for
such data (Section 2.3.5).
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3.3 GENERALIZED LINEAR MODELS FOR COUNT DATA

Many discrete response variables have counts as possible outcomes. Examples are
Y = number of parties attended in the past month, for a sample of students, or
Y = number of imperfections on each of a sample of silicon wafers used in man-
ufacturing computer chips. Counts also occur in summarizing categorical variables
with contingency tables. This section introduces GLMs for count data.

The simplest GLMs for count data assume a Poisson distribution for the random
component. Like counts, Poisson variates can take any nonnegative integer value. We
won’t need to use the formula for the Poisson distribution here1 but will merely state
a few properties.

The Poisson distribution is unimodal and skewed to the right over the possible
values 0, 1, 2, . . . . It has a single parameter μ > 0, which is both its mean and its
variance. That is,

E(Y ) = Var(Y ) = μ, σ(Y ) = √
μ

Therefore, when the counts are larger, on the average, they also tend to be more
variable. When the number of imperfections on a silicon wafer has the Poisson
distribution with μ = 20, we observe greater variability in y from wafer to wafer than
when μ = 2. As the mean increases the skew decreases and the distribution becomes
more bell-shaped. Figure 3.3 shows Poisson distributions with means 2 and 6.

Figure 3.3. Poisson distributions having means 2 and 6.

1It is P(y) = e−μμy/y!, for y = 0, 1, 2, . . . .
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Chapter 7 presents Poisson GLMs for counts in contingency tables that cross
classify categorical response variables. This section introduces Poisson GLMs for
modeling counts for a single discrete response variable.

3.3.1 Poisson Regression

The Poisson distribution has a positive mean. GLMs for the Poisson mean can use
the identity link, but it is more common to model the log of the mean. Like the linear
predictor α + βx, the log of the mean can take any real-number value. A Poisson
loglinear model is a GLM that assumes a Poisson distribution for Y and uses the log
link function.

For a single explanatory variable x, the Poisson loglinear model has form

log μ = α + βx (3.5)

The mean satisfies the exponential relationship

μ = exp(α + βx) = eα(eβ)x (3.6)

A one-unit increase in x has a multiplicative impact of eβ on μ: The mean of Y

at x + 1 equals the mean of Y at x multiplied by eβ . If β = 0, then eβ = e0 = 1 and
the multiplicative factor is 1. Then, the mean of Y does not change as x changes. If
β > 0, then eβ > 1, and the mean of Y increases as x increases. If β < 0, the mean
decreases as x increases.

3.3.2 Example: Female Horseshoe Crabs and their Satellites

Table 3.2 comes from a study of nesting horseshoe crabs (J. Brockmann, Ethology,
102: 1–21, 1996). Each female horseshoe crab in the study had a male crab attached
to her in her nest. The study investigated factors that affect whether the female crab
had any other males, called satellites, residing nearby her. The response outcome
for each female crab is her number of satellites. An explanatory variable thought
possibly to affect this was the female crab’s shell width, which is a summary of her
size. In the sample, this shell width had a mean of 26.3 cm and a standard deviation
of 2.1 cm.

Figure 3.4 plots the response counts against width (in centimeters), with numbered
symbols indicating the number of observations at each point. To obtain a clearer
picture of any trend, we grouped the female crabs into a set of width categories,
(≤23.25, 23.25–24.25, 24.25–25.25, 25.25–26.25, 26.25–27.25, 27.25–28.25,
28.25–29.25, >30.25), and calculated the sample mean number of satellites in each
category. Figure 3.5 plots these sample means against the sample mean width for the
female crabs in each category.
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Figure 3.4. Number of satellites by width of female crab.

Most software has more sophisticated ways of smoothing the data, revealing the
trend without grouping the width values. Smoothing methods based on generalized
additive models do this by providing even more general structural form than GLMs.
They find possibly complex functions of the explanatory variables that serve as the
best predictors of a certain type. Figure 3.5 also shows a curve based on smoothing the
data using this method. The sample means and the smoothed curve both show a strong
increasing trend. (The means tend to fall above the curve, since the response counts
in a category tend to be skewed to the right. The smoothed curve is less susceptible
to outlying observations.) The trend seems approximately linear, and we next discuss
models for which the mean or the log of the mean is linear in width.

Let μ denote the expected number of satellites for a female crab, and let x denote
her width. From GLM software, the ML fit of the Poisson loglinear model (3.5) is

log μ̂ = α̂ + β̂x = −3.305 + 0.164x

The effect β̂ = 0.164 of width has SE = 0.020. Since β̂ > 0, width has a positive
estimated effect on the number of satellites.

The model fit yields an estimated mean number of satellites μ̂, a fitted value, at
any width. For instance, from equation (3.6), the fitted value at the mean width of
x = 26.3 is

μ̂ = exp(α̂ + β̂x) = exp[−3.305 + 0.164(26.3)] = e1.01 = 2.7
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Figure 3.5. Smoothings of horseshoe crab counts.

For this model, exp(β̂) = exp(0.164) = 1.18 represents the multiplicative effect
on the fitted value for each 1-unit increase in x. For instance, the fitted value at
x = 27.3 = 26.3 + 1 is exp[−3.305 + 0.164(27.3)] = 3.2, which equals (1.18)(2.7).
A 1 cm increase in width has an 18% increase in the estimated mean number of
satellites.

Figure 3.5 suggests that the expected number of satellites may grow approxi-
mately linearly with width. The Poisson regression model with identity link function
has ML fit

μ̂ = −11.53 + 0.550x

where β̂ = 0.550 has SE = 0.059. The effect of x on μ in this model is addi-
tive, rather than multiplicative. A 1 cm increase in width has a predicted increase
of β̂ = 0.55 in the expected number of satellites. For instance, the fitted value at
the mean width of x = 26.3 is μ̂ = −11.53 + 0.550(26.3) = 2.93; at x = 27.3, it
is 2.93 + 0.55 = 3.48. The fitted values are positive at all observed sample widths,
and the model provides a simple description of the width effect: On average, a 2 cm
increase in width corresponds to about an extra satellite.

Figure 3.6 plots the fitted number of satellites against width, for the models with
log link and with identity link. Although they diverge somewhat for small and large
widths, they provide similar predictions over the range of width values in which most
observations occur.
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Figure 3.6. Estimated mean number of satellites for log and identity links.

3.3.3 Overdispersion: Greater Variability than Expected

Count data often vary more than we would expect if the response distribution truly
were Poisson. For instance, for the grouped horseshoe crab data, Table 3.3 shows the
sample mean and variance for the counts of the number of satellites for the female
crabs in each width category. The variances are much larger than the means, whereas
Poisson distributions have identical mean and variance. The phenomenon of the data
having greater variability than expected for a GLM is called overdispersion.

A common cause of overdispersion is heterogeneity among subjects. For instance,
suppose width, weight, color, and spine condition all affect a female crab’s number

Table 3.3. Sample Mean and Variance of Number of Satellites

Width No. Cases No. Satellites Sample Mean Sample Variance

<23.25 14 14 1.00 2.77
23.25–24.25 14 20 1.43 8.88
24.25–25.25 28 67 2.39 6.54
25.25–26.25 39 105 2.69 11.38
26.25–27.25 22 63 2.86 6.88
27.25–28.25 24 93 3.87 8.81
28.25–29.25 18 71 3.94 16.88
>29.25 14 72 5.14 8.29
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of satellites. Suppose the number of satellites has a Poisson distribution at each fixed
combination of those four variables, but suppose the model uses width alone as a
predictor. Crabs having a certain fixed width are a mixture of crabs of various weights,
colors, and spine conditions. Thus, the population of crabs having that fixed width is
a mixture of several Poisson populations, each having its own mean for the response.
This heterogeneity in the crabs of a given width yields an overall response distribution
at that width having greater variation than the Poisson predicts. If the variance equals
the mean when all relevant variables are controlled, it exceeds the mean when only a
subset of those variables is controlled.

Overdispersion is not an issue in ordinary regression models assuming normally
distributed Y , because the normal has a separate parameter from the mean (i.e., the
variance, σ 2) to describe variability. For Poisson distributions, however, the variance
equals the mean. Overdispersion is common in applying Poisson GLMs to counts.

3.3.4 Negative Binomial Regression∗

The negative binomial is another distribution that is concentrated on the nonnegative
integers. Unlike the Poisson, it has an additional parameter such that the variance can
exceed the mean. The negative binomial distribution has

E(Y ) = μ, Var(Y ) = μ + Dμ2

The index D, which is nonnegative, is called a dispersion parameter. The negative
binomial distribution arises as a type of mixture of Poisson distributions.2 Greater
heterogeneity in the Poisson means results in a larger value of D. As D → 0,
Var(Y ) → μ and the negative binomial distribution converges to the Poisson distri-
bution. The farther D falls above 0, the greater the overdispersion relative to Poisson
variability.

Negative binomial GLMs for counts express μ in terms of explanatory variables.
Most common is the log link, as in Poisson loglinear models, but sometimes the
identity link is adequate. It is common to assume that the dispersion parameter D

takes the same value at all predictor values, much as regression models for a normal
response take the variance parameter to be constant. The model can be fitted with
GLM software, such as PROC GENMOD in SAS (see Table A.4). The estimate of D

summarizes the extent of overdispersion relative to the Poisson GLM.
Consider the horseshoe crab dataset in Section 3.3.2 above on Y = number of

satellites, with x = shell width as predictor. The Poisson GLM with log link has

log(μ̂) = −3.30 + 0.164x

2When the Poisson means follow a gamma distribution, unconditionally the distribution is the negative
binomial.
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with SE = 0.020 for β̂. The negative binomial GLM has

log(μ̂) = −4.05 + 0.192x

with SE = 0.048 for β̂. Moreover, D̂ = 1.1, so at a predicted μ̂, the estimated
variance is roughly μ̂ + μ̂2, compared with μ̂ for the Poisson GLM. Fitted values
are similar, but the greater estimated variance in the negative binomial model and
the resulting greater SE for β̂ reflect the overdispersion uncaptured with the Poisson
GLM. Inspection of Figure 3.4 shows that some zero counts occur even when the
sample mean response is relatively large, reflecting this overdispersion.

For the Poisson model, the 95% Wald confidence interval for the effect of width (β)

is 0.164 ± 1.96(0.020), which is (0.125, 0.203). For the negative binomial model, it is
0.192 ± 1.96(0.048), which is (0.099, 0.285). The confidence interval for the Poisson
GLM is unrealistically narrow, because it does not allow for the overdispersion.

3.3.5 Count Regression for Rate Data∗

When events occur over time, space, or some other index of size, models can focus
on the rate at which the events occur. For example, in analyzing numbers of murders
in 2006 for a sample of cities, we could form a rate for each city by dividing the
number of murders by the city’s population size. A model might describe how the
rate depends on explanatory variables such as the city’s unemployment rate, median
income, and percentage of residents having completed high school.

When a response count Y has index (such as population size) equal to t , the sample
rate is Y/t . The expected value of the rate is μ/t , where μ = E(Y ). A loglinear model
for the expected rate has form

log(μ/t) = α + βx (3.7)

This model has equivalent representation

log μ − log t = α + βx

The adjustment term, − log t , to the log of the mean is called an offset. Standard GLM
software can fit a model having an offset term.

For loglinear model (3.7), the expected number of outcomes satisfies

μ = t exp(α + βx) (3.8)

The mean μ is proportional to the index t , with proportionality constant depending
on the value of the explanatory variable. For a fixed value of x, for example, doubling
the population size t also doubles the expected number of murders μ.
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3.3.6 Example: British Train Accidents over Time∗

Table 3.4 lists the number of two types of train-related accidents in the UK between
1975 and 2003: (1) accidents involving trains alone (collisions, derailments, and
overruns); and (2) collisions between trains and road vehicles. Here we consider only
the second count. The table also shows the annual number of train-kilometers, which
is a measure of railway activity indicating the millions of kilometers traveled by trains
during the year.

Let μ denote the expected value of Y = annual number of collisions between trains
and road vehicles, for t million kilometers of train travel. During the past decade, rail
travel has become increasingly privatized in the UK, and some people have expressed
fears that accidents have become more likely. To allow for a trend over time, we
consider model (3.7) with x = number of years since 1975.

Assuming a Poisson distribution for Y , we get the ML fit

log(μ̂) − log(t) = −4.21 − 0.0329x

where the estimated slope has SE = 0.011. From equation (3.8), the estimated rate
is exp(−4.21 − 0.0329x), which is e−4.21(e−0.0329)x = (0.0148)(0.968)x . The esti-
mated rate of train accidents decreases from 0.0148 in 1975 (take x = 0) to 0.0059
in 2003 (take x = 28). The estimated rate in 2003 of 0.0059 per million kilometers
is roughly 6 per billion kilometers.

Table 3.4. Collisions Involving Trains in Great Britain

Train Train-road Train Train-road
Year Train-km Collisions Collisions Year Train-km Collisions Collisions

2003 518 0 3 1988 443 2 4
2002 516 1 3 1987 397 1 6
2001 508 0 4 1986 414 2 13
2000 503 1 3 1985 418 0 5
1999 505 1 2 1984 389 5 3
1998 487 0 4 1983 401 2 7
1997 463 1 1 1982 372 2 3
1996 437 2 2 1981 417 2 2
1995 423 1 2 1980 430 2 2
1994 415 2 4 1979 426 3 3
1993 425 0 4 1978 430 2 4
1992 430 1 4 1977 425 1 8
1991 439 2 6 1976 426 2 12
1990 431 1 2 1975 436 5 2
1989 436 4 4

Source: British Department of Transport.
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Similar results occur with a negative binomial model. The ML fit is

log(μ̂) − log(t) = −4.20 − 0.0337x

where the estimated slope has SE = 0.013. There is some sample overdispersion
compared with the Poisson GLM, as the estimated dispersion parameter D̂ = 0.099
(SE = 0.078). Because of this, this model’s evidence of a time effect is somewhat
weaker (i.e., the SE of the time effect is larger). The estimated rate of train acci-
dents is e−4.20(e−0.0337)x = (0.0150)(0.967)x . This decreases from 0.0150 in 1975
to 0.0058 in 2003. For either sampling model, adding a quadratic time effect does not
significantly improve the fit.

3.4 STATISTICAL INFERENCE AND MODEL CHECKING

For most GLMs, calculation of ML parameter estimates is computationally com-
plex. Software uses an algorithm described in Section 3.5.1. The ML estimators are
approximately normally distributed for large samples. Statistical inference based on
the Wald statistic is simplest, but likelihood-ratio inference is more trustworthy.

3.4.1 Inference about Model Parameters

A Wald 95% confidence interval for a model parameter β equals β̂ ± 1.96(SE), where
SE is the standard error of β̂. To test H0: β = 0, the Wald test statistic

z = β̂/SE

has an approximate standard normal distribution when β = 0. Equivalently, z2 has
an approximate chi-squared distribution with df = 1.

For the likelihood-ratio approach, denote the maximized value of the likelihood
function by �0 under H0: β = 0 and by �1 when β need not equal 0. The likelihood-
ratio test statistic equals

−2 log(�0/�1) = −2[log(�0) − log(�1)] = −2(L0 − L1)

where L0 and L1 denote the maximized log-likelihood functions. Under H0: β = 0,
this test statistic has a large-sample chi-squared distribution with df = 1. Software
for GLMs can report the maximized log-likelihood values and the likelihood-ratio
statistic.

The likelihood-ratio method can also determine a confidence interval for β. The
95% confidence interval consists of all β0 values for which the P -value exceeds
0.05 in the likelihood-ratio test of H0: β = β0. For small n, this is preferable to the
Wald interval. Some software (such as PROC GENMOD in SAS) can provide it for
any GLM.
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3.4.2 Example: Snoring and Heart Disease Revisited

Section 3.2.2 used a linear probability model to describe the probability of heart
disease π(x) as a linear function of snoring level x for data in Table 3.1. The ML model
fit is π̂ = 0.0172 + 0.0198x, where the snoring effect β̂ = 0.0198 has SE = 0.0028.

The Wald test of H0: β = 0 against Ha : β �= 0 treats

z = β̂/SE = 0.0198/0.0028 = 7.1

as standard normal, or z2 = 50.0 as chi-squared with df = 1. This provides extremely
strong evidence of a positive snoring effect on the probability of heart disease (P <

0.0001). We obtain similar strong evidence from a likelihood-ratio test comparing this
model to the simpler one having β = 0. That chi-squared statistic equals −2(L0 −
L1) = 65.8 with df = 1 (P < 0.0001). The likelihood-ratio 95% confidence interval
for β is (0.0145, 0.0255).

3.4.3 The Deviance

Let LM denote the maximized log-likelihood value for a model M of interest. Let
LS denote the maximized log-likelihood value for the most complex model possible.
This model has a separate parameter for each observation, and it provides a perfect
fit to the data. The model is said to be saturated.

For example, suppose M is the linear probability model, π(x) = α + βx, applied
to the 4 × 2 Table 3.1 on snoring and heart disease. The model has two parameters
for describing how the probability of heart disease changes for the four levels of x =
snoring. The corresponding saturated model has a separate parameter for each of the
four binomial observations: π(x) = π1 for never snorers, π(x) = π2 for occasional
snorers, π(x) = π3 for snoring nearly every night, π(x) = π4 for snoring every night.
The ML estimate for πi is simply the sample proportion having heart disease at level
i of snoring.

Because the saturated model has additional parameters, its maximized log
likelihood LS is at least as large as the maximized log likelihood LM for a simpler
model M . The deviance of a GLM is defined as

Deviance = −2[LM − LS]

The deviance is the likelihood-ratio statistic for comparing model M to the saturated
model. It is a test statistic for the hypothesis that all parameters that are in the saturated
model but not in model M equal zero. GLM software provides the deviance, so it is
not necessary to calculate LM or LS .

For some GLMs, the deviance has approximately a chi-squared distribution. For
example, in Section 5.2.2 we will see this happens for binary GLMs with a fixed
number of explanatory levels in which each observation is a binomial variate hav-
ing relatively large counts of successes and failures. For such cases, the deviance
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provides a goodness-of-fit test of the model, because it tests the hypothesis that all
possible parameters not included in the model equal 0. The residual df equals the
number of observations minus the number of model parameters. The P -value is the
right-tail probability above the observed test statistic value, from the chi-squared dis-
tribution. Large test statistics and small P -values provide strong evidence of model
lack of fit.

For the snoring and heart disease data, the linear probability model describes
four binomial observations by two parameters. The deviance, which software reports
to equal 0.1, has df = 4 − 2 = 2. For testing the null hypothesis that the model
holds, the P -value is 0.97. The logistic regression model fitted in Section 3.2.3 has
deviance = 2.8, with df = 2 (P -value = 0.25). Either model fits adequately.

3.4.4 Model Comparison Using the Deviance

Now consider two models, denoted by M0 and M1, such that M0 is a special case of
M1. For normal-response models, the F -test comparison of the models decomposes
a sum of squares representing the variability in the data. This analysis of variance
for decomposing variability generalizes to an analysis of deviance for GLMs. Given
that the more complex model holds, the likelihood-ratio statistic for testing that the
simpler model holds is −2[L0 − L1]. Since

−2[L0 − L1] = −2[L0 − LS] − {−2[L1 − LS]} = Deviance0 − Deviance1

we can compare the models by comparing their deviances.
This test statistic is large when M0 fits poorly compared with M1. For large sam-

ples, the statistic has an approximate chi-squared distribution, with df equal to the
difference between the residual df values for the separate models. This df value
equals the number of additional parameters that are in M1 but not in M0. Large test
statistics and small P -values suggest that model M0 fits more poorly than M1.

For the snoring and heart disease data, the deviance for the linear probability model
is 0.1 with df = 2. The simpler model with no effect of snoring (i.e., taking β = 0)
has deviance equal to 65.9 with df = 3. The difference between the deviances equals
65.8 with df = 1, but this is precisely the likelihood-ratio statistic for testing that
β = 0 in the model. Hence, the model with β = 0 fits poorly.

3.4.5 Residuals Comparing Observations to the Model Fit

For any GLM, goodness-of-fit statistics only broadly summarize how well models fit
data. We obtain further insight by comparing observed and fitted values individually.

For observation i, the difference yi − μ̂i between an observed and fitted value
has limited usefulness. For Poisson sampling, for instance, the standard deviation of
a count is

√
μi , so more variability tends to occur when μi is larger. The Pearson
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residual is a standardized difference

Pearson residual = ei = yi − μ̂i√
V̂ar(yi)

(3.9)

For example, for Poisson GLMs the Pearson residual for count i equals

ei = yi − μ̂i√
μ̂i

(3.10)

It divides by the estimated Poisson standard deviation. The reason for calling ei a
Pearson residual is that

∑
e2
i = ∑

i (yi − μ̂i)
2/μ̂i . When the GLM is the model

corresponding to independence for cells in a two-way contingency table, this is the
Pearson chi-squared statistic X2 for testing independence [equation (2.8)]. Therefore,
X2 decomposes into terms describing the lack of fit for separate observations.
Components of the deviance, called deviance residuals, are alternative measures
of lack of fit.

Pearson residuals fluctuate around zero, following approximately a normal distri-
bution when μi is large. When the model holds, these residuals are less variable than
standard normal, however, because the numerator must use the fitted value μ̂i rather
than the true mean μi . Since the sample data determine the fitted value, (yi − μ̂i)

tends to be smaller than yi − μi .
The standardized residual takes (yi − μ̂i) and divides it by its estimated standard

error, that is

Standardized residual = yi − μ̂i

SE

It3 does have an approximate standard normal distribution when μi is large. With
standardized residuals it is easier to tell when a deviation (yi − μ̂i) is “large.” Stan-
dardized residuals larger than about 2 or 3 in absolute value are worthy of attention,
although some values of this size occur by chance alone when the number of obser-
vations is large. Section 2.4.5 introduced standardized residuals that follow up tests
of independence in two-way contingency tables. We will use standardized residuals
with logistic regression in Chapter 5.

Other diagnostic tools from regression modeling are also helpful in assessing fits
of GLMs. For instance, to assess the influence of an observation on the overall fit,
one can refit the model with that observation deleted (Section 5.2.6).

3SE = [V̂ar(yi )(1 − hi)]1/2, where hi is the leverage of observation i (Section 5.2.6). The greater the
value of hi , the more potential that observation has for influencing the model fit.
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3.5 FITTING GENERALIZED LINEAR MODELS

We finish this chapter by discussing model-fitting for GLMs. We first describe an
algorithm that finds the ML estimates of model parameters. We then provide further
details about how basic inference utilizes the likelihood function.

3.5.1 The Newton–Raphson Algorithm Fits GLMs

Software finds model parameter estimates using a numerical algorithm. The algo-
rithm starts at an initial guess for the parameter values that maximize the likelihood
function. Successive approximations produced by the algorithm tend to fall closer
to the ML estimates. The Fisher scoring algorithm for doing this was first proposed
by R. A. Fisher for ML fitting of probit models. For binomial logistic regression
and Poisson loglinear models, Fisher scoring simplifies to a general-purpose method
called the Newton–Raphson algorithm.

The Newton–Raphson algorithm approximates the log-likelihood function in a
neighborhood of the initial guess by a polynomial function that has the shape of a
concave (mound-shaped) parabola. It has the same slope and curvature at the initial
guess as does the log-likelihood function. It is simple to determine the location of
the maximum of this approximating polynomial. That location comprises the second
guess for the ML estimates. The algorithm then approximates the log-likelihood func-
tion in a neighborhood of the second guess by another concave parabolic function,
and the third guess is the location of its maximum. The process is called itera-
tive, because the algorithm repeatedly uses the same type of step over and over
until there is no further change (in practical terms) in the location of the maximum.
The successive approximations converge rapidly to the ML estimates, often within a
few cycles.

Each cycle in the Newton–Raphson method represents a type of weighted least
squares fitting. This is a generalization of ordinary least squares that accounts for
nonconstant variance of Y in GLMs. Observations that occur where the variability is
smaller receive greater weight in determining the parameter estimates. The weights
change somewhat from cycle to cycle, with revised approximations for the ML esti-
mates and thus for variance estimates. ML estimation for GLMs is sometimes called
iteratively reweighted least squares.

The Newton–Raphson method utilizes a matrix, called the information matrix, that
provides SE values for the parameter estimates. That matrix is based on the curvature
of the log likelihood function at the ML estimate. The greater the curvature, the greater
the information about the parameter values. The standard errors are the square roots
of the diagonal elements for the inverse of the information matrix. The greater the
curvature of the log likelihood, the smaller the standard errors. This is reasonable,
since large curvature implies that the log-likelihood drops quickly as β moves away
from β̂; hence, the data would have been much more likely to occur if β took value
β̂ than if it took some value not close to β̂. Software for GLMs routinely calculates
the information matrix and the associated standard errors.
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3.5.2 Wald, Likelihood-Ratio, and Score Inference Use
the Likelihood Function

Figure 3.7 shows a generic plot of a log-likelihood function L for a parameter β.
This plot illustrates the Wald, likelihood-ratio, and score tests of H0: β = 0. The
log-likelihood function for some GLMs, including binomial logistic regression
models and Poisson loglinear models, has concave (bowl) shape. The ML estimate β̂ is
the point at which the log-likelihood takes its highest value. The Wald test is based on
the behavior of the log-likelihood function at the ML estimate β̂, having chi-squared
form (β̂/SE)2. The SE of β̂ depends on the curvature of the log-likelihood function
at the point where it is maximized, with greater curvature giving smaller SE values.

The score test is based on the behavior of the log-likelihood function at the null
value for β of 0. It uses the size of the derivative (slope) of the log-likelihood function,
evaluated at the null hypothesis value of the parameter. The derivative at β = 0 tends
to be larger in absolute value when β̂ is further from that null value. The score statistic
also has an approximate chi-squared distribution with df = 1. We shall not present
the general formula for score statistics, but many test statistics in this text are this
type. An example is the Pearson statistic for testing independence. An advantage of
the score statistic is that it exists even when the ML estimate β̂ is infinite. In that case,
one cannot compute the Wald statistic.

The likelihood-ratio test combines information about the log-likelihood function
both at β̂ and at the null value for β of 0. It compares the log-likelihood values L1
at β̂ and L0 at β = 0 using the chi-squared statistic −2(L0 − L1). In Figure 3.7, this
statistic is twice the vertical distance between values of the log-likelihood function at
β̂ and at β = 0. In a sense, this statistic uses the most information of the three types
of test statistic. It is usually more reliable than the Wald statistic, especially when n

is small to moderate.

Figure 3.7. Information used in Wald, likelihood-ratio, and efficient score tests.
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Table 3.5. Types of Generalized Linear Models for Statistical Analysis

Random Systematic
Component Link Component Model Chapter

Normal Identity Continuous Regression
Normal Identity Categorical Analysis of variance
Normal Identity Mixed Analysis of covariance
Binomial Logit Mixed Logistic regression 4–5, 8–10
Multinomial Logits Mixed Multinomial response 6, 8–10
Poisson Log Mixed Loglinear 7

3.5.3 Advantages of GLMs

The development of GLM theory in the mid-1970s unified important models for
continuous and categorical response variables. Table 3.5 lists several popular GLMs
for practical application.

A nice feature of GLMs is that the model-fitting algorithm, Fisher scoring, is the
same for any GLM. This holds regardless of the choice of distribution for Y or link
function. Therefore, GLM software can fit a very wide variety of useful models.

PROBLEMS

3.1 Describe the purpose of the link function of a GLM. Define the identity link,
and explain why it is not often used with the binomial parameter.

3.2 In the 2000 US Presidential election, Palm Beach County in Florida was the
focus of unusual voting patterns apparently caused by a confusing “butterfly
ballot.” Many voters claimed they voted mistakenly for the Reform party
candidate, Pat Buchanan, when they intended to vote for Al Gore. Figure 3.8
shows the total number of votes for Buchanan plotted against the number of
votes for the Reform party candidate in 1996 (Ross Perot), by county in Florida.
(For details, see A. Agresti and B. Presnell, Statist. Sci., 17: 436–440, 2003.)

a. In county i, let πi denote the proportion of the vote for Buchanan and
let xi denote the proportion of the vote for Perot in 1996. For the lin-
ear probability model fitted to all counties except Palm Beach County,
π̂i = −0.0003 + 0.0304xi . Give the value of P in the interpretation: The
estimated proportion vote for Buchanan in 2000 was roughly P % of that
for Perot in 1996.

b. For Palm Beach County, πi = 0.0079 and xi = 0.0774. Does this result
appear to be an outlier? Investigate, by finding πi/π̂i and πi − π̂i . (Anal-
yses conducted by statisticians predicted that fewer than 900 votes were
truly intended for Buchanan, compared with the 3407 he received. George
W. Bush won the state by 537 votes and, with it, the Electoral College and
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Figure 3.8. Total vote, by county in Florida, for Reform Party candidates Buchanan in 2000 and Perot
in 1996.

the election. Other ballot design problems played a role in 110,000 dis-
qualified “overvote” ballots, in which people mistakenly voted for more
than one candidate, with Gore marked on 84,197 ballots and Bush on
37,731.)

3.3 Refer to Table 2.7 on x = mother’s alcohol consumption and Y = whether a
baby has sex organ malformation. WIth scores (0, 0.5, 1.5, 4.0, 7.0) for alcohol
consumption, ML fitting of the linear probability model has the output:

Standard Likelihood ratio
Parameter Estimate error 95% confidence limits

Intercept 0.00255 0.0003 0.0019 0.0032
Alcohol 0.00109 0.0007 −0.0001 0.0027

a. State the prediction equation, and interpret the intercept and slope.

b. Use the model fit to estimate the (i) probabilities of malformation for alcohol
levels 0 and 7.0, (ii) relative risk comparing those levels.

3.4 Refer to the previous exercise and the solution to (b).

a. The sample proportion of malformations is much higher in the highest alco-
hol category than the others because, although it has only one malformation,
its sample size is only 38. Is the result sensitive to this single malforma-
tion observation? Re-fit the model without it (using 0 malformations in
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37 observations at that level), and re-evaluate estimated probabilities of
malformation at alcohol levels 0 and 7 and the relative risk.

b. Is the result sensitive to the choice of scores? Re-fit the model using scores
(0, 1, 2, 3, 4), and re-evaluate estimated probabilities of malformation at
the lowest and highest alcohol levels and the relative risk.

c. Fit a logistic regression or probit model. Report the prediction equation.
Interpret the sign of the estimated effect.

3.5 For Table 3.1 on snoring and heart disease, re-fit the linear probability model
or the logistic regression model using the scores (i) (0, 2, 4, 6), (ii) (0, 1, 2, 3),
(iii) (1, 2, 3, 4). Compare the model parameter estimates under the three
choices. Compare the fitted values. What can you conclude about the effect of
transformations of scores (called linear) that preserve relative sizes of spacings
between scores?

3.6 In Section 3.2.2 on the snoring and heart disease data, refer to the linear
probability model. Would the least squares fit differ from the ML fit for the
2484 binary observations? (Hint: The least squares fit is the same as the ML
fit of the GLM assuming normal rather than binomial random component.)

3.7 Access the horseshoe crab data in Table 3.2 at www.stat.ufl.edu/∼aa/intro-
cda/appendix.html. Let Y = 1 if a crab has at least one satellite, and let Y = 0
otherwise. Using weight as the predictor, fit the linear probability model.

a. Use ordinary least squares. Interpret the parameter estimates. Find
the predicted probability at the highest observed weight of 5.20 kg.
Comment.

b. Attempt to fit the model using ML, treating Y as binomial. What does your
software report? [The failure is due to a fitted probability falling outside
the (0, 1) range.]

c. Fit the logistic regression model. Show that the estimated logit at a weight
of 5.20 kg equals 5.74. Show that π̂ = 0.9968 at that point by checking
that log[π̂/(1 − π̂)] = 5.74 when π̂ = 0.9968.

3.8 Refer to the previous exercise for the horseshoe crab data.

a. Report the fit for the probit model, with weight predictor.

b. Find π̂ at the highest observed weight, 5.20 kg.

c. Describe the weight effect by finding the difference between the π̂ values
at the upper and lower quartiles of weight, 2.85 and 2.00 kg.

d. Interpret the parameter estimates using characteristics of the normal cdf
that describes the response curve.

3.9 Table 3.6 refers to a sample of subjects randomly selected for an Italian study
on the relation between income and whether one possesses a travel credit card
(such as American Express or Diners Club). At each level of annual income
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in millions of lira, the table indicates the number of subjects sampled and the
number of them possessing at least one travel credit card. (Note: one million lira
at the time of the study is currently worth aout 500 euros.) Software provides the
following results of using logistic regression to relate the probability of having
a travel credit card to income, treating these as independent binomial samples.

Parameter Estimate Standard error

Intercept −3.5561 0.7169
Income 0.0532 0.0131

a. Report the prediction equation.

b. Interpret the sign of β̂.

c. When π̂ = 0.50, show that the estimated logit value is 0. Based on this, for
these data explain why the estimated probability of a travel credit card is
0.50 at income = 66.86 million lira.

Table 3.6. Data for Problem 3.9 on Italian Credit Cards

No. Credit No. Credit No. Credit No. Credit
Inc. Cases Cards Inc. Cases Cards Inc. Cases Cards Inc. Cases Cards

24 1 0 34 7 1 48 1 0 70 5 3
27 1 0 35 1 1 49 1 0 79 1 0
28 5 2 38 3 1 50 10 2 80 1 0
29 3 0 39 2 0 52 1 0 84 1 0
30 9 1 40 5 0 59 1 0 94 1 0
31 5 1 41 2 0 60 5 2 120 6 6
32 8 0 42 2 0 65 6 6 130 1 1
33 1 0 45 1 1 68 3 3

Source: Based on data in Categorical Data Analysis, Quaderni del Corso Estivo di Statistica e Calcolo
delle Probabilità, no. 4, Istituto di Metodi Quantitativi, Università Luigi Bocconi, by R. Piccarreta.

3.10 Refer to Problem 4.1 on cancer remission. Table 3.7 shows output for fitting a
probit model. Interpret the parameter estimates (a) finding the remission value
at which the estimated probability of remission equals 0.50, (b) finding the
difference between the estimated probabilities of remission at the upper and
lower quartiles of the labeling index, 14 and 28, and (c) using characteristics
of the normal cdf response curve.

3.11 An experiment analyzes imperfection rates for two processes used to fabricate
silicon wafers for computer chips. For treatment A applied to 10 wafers, the
numbers of imperfections are 8, 7, 6, 6, 3, 4, 7, 2, 3, 4. Treatment B applied to
10 other wafers has 9, 9, 8, 14, 8, 13, 11, 5, 7, 6 imperfections. Treat the counts
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Table 3.7. Table for Problem 3.10 on Cancer Remission

Standard Likelihood Ratio 95% Chi-
Parameter Estimate Error Confidence Limits Square Pr > ChiSq

Intercept −2.3178 0.7795 −4.0114 −0.9084 8.84 0.0029
LI 0.0878 0.0328 0.0275 0.1575 7.19 0.0073

as independent Poisson variates having means μA and μB . Consider the model
log μ = α + βx, where x = 1 for treatment B and x = 0 for treatment A.

a. Show that β = log μB − log μA = log(μB/μA) and eβ = μb/μA.

b. Fit the model. Report the prediction equation and interpret β̂.

c. Test H0: μA = μB by conducting the Wald or likelihood-ratio test of
H0: β = 0. Interpret.

d. Construct a 95% confidence interval for μB/μA. [Hint: Construct one for
β = log(μB/μA) and then exponentiate.]

3.12 Refer to Problem 3.11. The wafers are also classified by thickness of silicon
coating (z = 0, low; z = 1, high). The first five imperfection counts reported
for each treatment refer to z = 0 and the last five refer to z = 1. Analyze these
data, making inferences about the effects of treatment type and of thickness of
coating.

3.13 Access the horseshoe crab data of Table 3.2 at www.stat.ufl.edu/∼aa/intro-
cda/appendix.html.

a. Using x = weight and Y = number of satellites, fit a Poisson loglinear
model. Report the prediction equation.

b. Estimate the mean of Y for female crabs of average weight 2.44 kg.

c. Use β̂ to describe the weight effect. Construct a 95% confidence interval
for β and for the multiplicative effect of a 1 kg increase.

d. Conduct a Wald test of the hypothesis that the mean of Y is independent of
weight. Interpret.

e. Conduct a likelihood-ratio test about the weight effect. Interpret.

3.14 Refer to the previous exercise. Allow overdispersion by fitting the negative
binomial loglinear model.

a. Report the prediction equation and the estimate of the dispersion parameter
and its SE. Is there evidence that this model gives a better fit than the
Poisson model?

b. Construct a 95% confidence interval for β. Compare it with the one in (c)
in the previous exercise. Interpret, and explain why the interval is wider
with the negative binomial model.
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3.15 A recent General Social Survey asked subjects, “Within the past 12
months, how many people have you known personally that were victims of
homicide”? The sample mean for the 159 blacks was 0.522, with a variance
of 1.150. The sample mean for the 1149 whites was 0.092, with a variance of
0.155.

a. Let yij denote the response for subject j of race i, and let μij = E(Yij ).
The Poisson model log(μij ) = α + βxij with x1j = 1 (blacks) and x2j =
0 (whites) has fit log(μ̂ij ) = −2.38 + 1.733xij . Show that the estimated
population means are 0.522 for blacks and 0.092 for whites, which are the
sample means.

b. For the Poisson GLM, the standard error of β̂ is 0.147. Show that the Wald
95% confidence interval for the ratio of means for blacks and whites is
(4.2, 7.5). [Hint: Note that β is the log of the ratio of the means.]

c. The negative binomial loglinear model has the same estimates as in
(a), but the standard error of β̂ increases to 0.238 and the Wald 95%
confidence interval for the ratio of means is (3.5, 9.0). Based on the sam-
ple means and variances, which confidence interval is more believeable?
Why?

d. The negative binomial model has D̂ = 4.94 (SE = 1.00). Explain why this
shows strong evidence that the negative binomial GLM is more appropriate
than the Poisson GLM.

3.16 One question in a recent General Social Survey asked subjects how many times
they had had sexual intercourse in the previous month.

a. The sample means were 5.9 for males and 4.3 for females; the sam-
ple variances were 54.8 and 34.4. Does an ordinary Poisson GLM seem
appropriate? Explain.

b. The GLM with log link and a dummy variable for gender (1 = males,
0 = females) has gender estimate 0.308. The SE is 0.038 assuming a Pois-
son distribution and 0.127 assuming a negative binomial model. Why are
the SE values so different?

c. The Wald 95% confidence interval for the ratio of means is (1.26, 1.47) for
the Poisson model and (1.06, 1.75) for the negative binomial model. Which
interval do you think is more appropriate? Why?

3.17 A study dealing with motor vehicle accident rates for elderly drivers (W. Ray
et al., Am. J. Epidemiol., 132: 873–884, 1992) indicated that the entire cohort
of elderly drivers had 495 injurious accidents in 38.7 thousand years of driving.
Using a Poisson GLM, find a 95% confidence interval for the true rate. [Hint:
Find a confidence interval first for the log rate by obtaining the estimate and
standard error for the intercept term in a loglinear model that has no other
predictor and uses log(38.7) as an offset.]
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3.18 Table 3.8 lists total attendance (in thousands) and the total number of arrests in a
season for soccer teams in the Second Division of the British football league.

a. LetY denote the number of arrests for a team with total attendance t . Explain
why the model E(Y ) = μt might be plausible. Show that it has alternative
form log[E(Y )/t] = α, where α = log(μ), and express this model with an
offset term.

b. Assuming Poisson sampling, fit the model. Report and interpret μ̂.

c. Plot arrests against attendance, and overlay the prediction equation. Use
residuals to identify teams that had a much larger or smaller than expected
number of arrests.

d. Now fit the model log[E(Y )/t] = α by assuming a negative binomial
distribution. Compare α̂ and its SE to what you got in (a). Based on this
information and the estimate of the dispersion parameter and its SE, does
the Poisson assumption seem appropriate?

Table 3.8. Data for Problem 3.18 on Soccer Game Arrests

Team Attendance Arrests Team Attendance Arrests

Aston Villa 404 308 Shrewsbury 108 68
Bradford City 286 197 Swindon Town 210 67
Leeds United 443 184 Sheffield Utd 224 60
Bournemouth 169 149 Stoke City 211 57
West Brom 222 132 Barnsley 168 55
Hudderfield 150 126 Millwall 185 44
Middlesbro 321 110 Hull City 158 38
Birmingham 189 101 Manchester City 429 35
Ipswich Town 258 99 Plymouth 226 29
Leicester City 223 81 Reading 150 20
Blackburn 211 79 Oldham 148 19
Crystal Palace 215 78

Source: The Independent (London), Dec. 21, 1988. Thanks to Dr. P. M. E. Altham for showing me
these data.

3.19 Table 3.4 showed data on accidents involving trains.

a. Is it plausible that the collision counts are independent Poisson variates
with constant rate over the 29 years? Respond by comparing a Poisson
GLM for collision rates that contains only an intercept term to a Poisson
GLM that contains also a time trend. The deviances of the two models are
35.1 and 23.5.

b. Section 3.3.6 fitted a negative binomial model. The estimated collision
rate x years after 1975 was e−4.20(e−0.0337)x = (0.015)(0.967)x . The
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ML estimate β̂ = −0.0337 has SE = 0.0130. Conduct the Wald test of
H0: β = 0 against Ha : β �= 0.

c. The likelihood-ratio 95% confidence interval for β is (−0.060, −0.008).
Find the interval for the multiplicative annual effect on the accident rate,
and interpret.

3.20 Table 3.9, based on a study with British doctors conducted by R. Doll and
A. Bradford Hill, was analyzed by N. R. Breslow in A Celebration of Statistics,
Berlin: Springer, 1985.

a. For each age, compute the sample coronary death rates per 1000
person-years, for nonsmokers and smokers. To compare them, take their
ratio and describe its dependence on age.

b. Specify a main-effects Poisson model for the log rates having four para-
meters for age and one for smoking. Explain why this model assumes a
constant ratio of nonsmokers’ to smokers’ coronary death rates over levels
of age. Based on (a), would you expect this model to be appropriate?

c. Based on (a), explain why it is sensible to add a quantitative interaction of
age and smoking. Specify this model, and show that the log of the ratio of
coronary death rates changes linearly with age.

d. Fit the model in (b). Assign scores to the levels of age for a product inter-
action term between age and smoking, and fit the model in (c). Compare
the fits by comparing the deviances. Interpret.

Table 3.9. Data for Problem 3.20

Person-Years Coronary Deaths

Age Nonsmokers Smokers Nonsmokers Smokers

35–44 18,793 52,407 2 32
45–54 10,673 43,248 12 104
55–64 5710 28,612 28 206
65–74 2585 12,663 28 186
75–84 1462 5317 31 102

Source: R. Doll and A. B. Hill, Natl Cancer Inst. Monogr., 19: 205–268, 1966.

3.21 For rate data, a GLM with identity link is

μ/t = α + βx

Explain why you could fit this model using t and tx as explanatory variables
and with no intercept or offset terms.
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3.22 True, or false?

a. An ordinary regression (or ANOVA) model that treats the response Y as
normally distributed is a special case of a GLM, with normal random
component and identity link function.

b. With a GLM, Y does not need to have a normal distribution and one can
model a function of the mean of Y instead of just the mean itself, but in
order to get ML estimates the variance of Y must be constant at all values
of predictors.

c. The Pearson residual ei = (yi − μ̂i)/
√

μ̂i for a GLM has a large-sample
standard normal distribution.
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Logistic Regression

Let us now take a closer look at the statistical modeling of binary response variables,
for which the response outcome for each subject is a “success” or “failure.” Binary
data are the most common form of categorical data, and the methods of this chapter
are of fundamental importance. The most popular model for binary data is logistic
regression. Section 3.2.3 introduced this model as a generalized linear model (GLM)
with a binomial random component.

Section 4.1 interprets the logistic regression model. Section 4.2 presents statistical
inference for the model parameters. Section 4.3 shows how to handle categorical
predictors in the model, and Section 4.4 discusses the extension of the model for
multiple explanatory variables. Section 4.5 presents ways of summarizing effects.

4.1 INTERPRETING THE LOGISTIC REGRESSION MODEL

To begin, suppose there is a single explanatory variable X, which is quantitative. For
a binary response variable Y , recall that π(x) denotes the “success” probability at
value x. This probability is the parameter for the binomial distribution. The logistic
regression model has linear form for the logit of this probability,

logit[π(x)] = log

(
π(x)

1 − π(x)

)
= α + βx (4.1)

The formula implies that π(x) increases or decreases as an S-shaped function of x

(recall Figure 3.2).

An Introduction to Categorical Data Analysis, Second Edition. By Alan Agresti
Copyright © 2007 John Wiley & Sons, Inc.
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The logistic regression formula implies the following formula for the probability
π(x), using the exponential function (recall Section 2.3.3) exp(α + βx) = eα+βx ,

π(x) = exp(α + βx)

1 + exp(α + βx)
(4.2)

This section shows ways of interpreting these model formulas.

4.1.1 Linear Approximation Interpretations

The logistic regression formula (4.1) indicates that the logit increases by β for every
1 cm increase in x. Most of us do not think naturally on a logit (logarithm of the odds)
scale, so we need to consider alternative interpretations.

The parameter β in equations (4.1) and (4.2) determines the rate of increase or
decrease of the S-shaped curve for π(x). The sign of β indicates whether the curve
ascends (β > 0)or descends (β < 0), and the rate of change increases as |β| increases.
When β = 0, the right-hand side of equation (4.2) simplifies to a constant. Then, π(x)

is identical at all x, so the curve becomes a horizontal straight line. The binary response
Y is then independent of X.

Figure 4.1 shows the S-shaped appearance of the model for π(x), as fitted for the
example in the following subsection. Since it is curved rather than a straight line, the
rate of change in π(x) per 1-unit increase in x depends on the value of x. A straight
line drawn tangent to the curve at a particular x value, such as shown in Figure 4.1,

Figure 4.1. Linear approximation to logistic regression curve.
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describes the rate of change at that point. For logistic regression parameter β, that
line has slope equal to βπ(x)[1 − π(x)]. For instance, the line tangent to the curve
at x for which π(x) = 0.50 has slope β(0.50)(0.50) = 0.25β; by contrast, when
π(x) = 0.90 or 0.10, it has slope 0.09β. The slope approaches 0 as the probability
approaches 1.0 or 0.

The steepest slope occurs at x for which π(x) = 0.50. That x value relates to
the logistic regression parameters by1 x = −α/β. This x value is sometimes called
the median effective level and is denoted EL50. It represents the level at which each
outcome has a 50% chance.

4.1.2 Horseshoe Crabs: Viewing and Smoothing a Binary Outcome

To illustrate these interpretations, we re-analyze the horseshoe crab data introduced
in Section 3.3.2 (Table 3.2). Here, we let Y indicate whether a female crab has any
satellites (other males who could mate with her). That is, Y = 1 if a female crab has
at least one satellite, and Y = 0 if she has no satellite. We first use the female crab’s
width (in cm) as the sole predictor. Section 5.1.2 uses additional predictors.

Figure 4.2 plots the data. The plot consists of a set of points at the level y = 1 and
a second set of points at the level y = 0. The numbered symbols indicate the number

Figure 4.2. Whether satellites are present (Y = 1, yes; Y = 0, no), by width of female crab.

1One can check that π(x) = 0.50 at this point by substituting −α/β for x in equation (4.2), or by
substituting π(x) = 0.50 in equation (4.1) and solving for x.
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of observations at each point. It appears that y = 1 occurs relatively more often at
higher x values. Since y takes only values 0 and 1, however, it is difficult to determine
whether a logistic regression model is reasonable by plotting y against x.

Better information results from grouping the width values into categories and
calculating a sample proportion of crabs having satellites for each category. This
reveals whether the true proportions follow approximately the trend required by this
model. Consider the grouping shown inTable 4.1. In each of the eight width categories,
we computed the sample proportion of crabs having satellites and the mean width
for the crabs in that category. Figure 4.2 contains eight dots representing the sample
proportions of female crabs having satellites plotted against the mean widths for the
eight categories.

Section 3.3.2 that introduced the horseshoe crab data mentioned that software can
smooth the data without grouping observations. Figure 4.2 also shows a curve based
on smoothing the data using generalized additive models, which allow the effect of x

to be much more complex than linear. The eight plotted sample proportions and this
smoothing curve both show a roughly increasing trend, so we proceed with fitting
models that imply such trends.

4.1.3 Horseshoe Crabs: Interpreting the Logistic Regression Fit

For the ungrouped data in Table 3.2, let π(x) denote the probability that a female
horseshoe crab of width x has a satellite. The simplest model to interpret is the
linear probability model, π(x) = α + βx. During the ML fitting process, some pre-
dicted values for this GLM fall outside the legitimate 0–1 range for a binomial
parameter, so ML fitting fails. Ordinary least squares fitting (such as GLM software
reports when you assume a normal response and use the identity link function) yields
π̂(x) = −1.766 + 0.092x. The estimated probability of a satellite increases by 0.092

Table 4.1. Relation Between Width of Female Crab and Existence of Satellites, and
Predicted Values for Logistic Regression Model

Number Predicted
Number of Having Sample Estimated Number of Crabs

Width Cases Satellites Proportion Probability with Satellites

<23.25 14 5 0.36 0.26 3.6
23.25–24.25 14 4 0.29 0.38 5.3
24.25–25.25 28 17 0.61 0.49 13.8
25.25–26.25 39 21 0.54 0.62 24.2
26.25–27.25 22 15 0.68 0.72 15.9
27.25–28.25 24 20 0.83 0.81 19.4
28.25–29.25 18 15 0.83 0.87 15.6
>29.25 14 14 1.00 0.93 13.1

Note: The estimated probability is the predicted number (in the final column) divided by the number of
cases.
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for each 1 cm increase in width. This model provides a simple interpretation and
realistic predictions over most of the width range, but it is inadequate for extreme
values. For instance, at the maximum width in this sample of 33.5 cm, its estimated
probability equals −1.766 + 0.092(33.5) = 1.3.

Table 4.2 shows some software output for logistic regression. The estimated
probability of a satellite is the sample analog of formula (4.2),

π̂(x) = exp(−12.351 + 0.497x)

1 + exp(−12.351 + 0.497x)

Since β̂ > 0, the estimated probability π̂ is larger at larger width values. At the
minimum width in this sample of 21.0 cm, the estimated probability is

exp(−12.351 + 0.497(21.0))/[1 + exp(−12.351 + 0.497(21.0))] = 0.129

At the maximum width of 33.5 cm, the estimated probability equals

exp(−12.351 + 0.497(33.5))/[1 + exp(−12.351 + 0.497(33.5))] = 0.987

The median effective level is the width at which π̂(x) = 0.50. This is x = EL50 =
−α̂/β̂ = 12.351/0.497 = 24.8. Figure 4.1 plots the estimated probabilities as a
function of width.

At the sample mean width of 26.3 cm, π̂(x) = 0.674. From Section 4.1.1, the
incremental rate of change in the fitted probability at that point is β̂π̂ (x)[1 − π̂(x)] =
0.497(0.674)(0.326) = 0.11. For female crabs near the mean width, the estimated
probability of a satellite increases at the rate of 0.11 per 1 cm increase in width. The
estimated rate of change is greatest at the x value (24.8) at which π̂(x) = 0.50; there,
the estimated probability increases at the rate of (0.497)(0.50)(0.50) = 0.12 per 1 cm
increase in width. Unlike the linear probability model, the logistic regression model
permits the rate of change to vary as x varies.

To describe the fit further, for each category of width Table 4.1 reports the predicted
number of female crabs having satellites (i.e., the fitted values). Each of these sums the
π̂(x) values for all crabs in a category. For example, the estimated probabilities for the
14 crabs with widths below 23.25 cm sum to 3.6. The average estimated probability

Table 4.2. Computer Output for Logistic Regression Model with Horseshoe Crab Data

Log Likelihood −97.2263
Standard Likelihood Ratio Wald

Parameter Estimate Error 95% Conf. Limits Chi-Sq Pr > ChiSq

Intercept −12.3508 2.6287 −17.8097 −7.4573 22.07 <.0001
width 0.4972 0.1017 0.3084 0.7090 23.89 <.0001



“c04” — 2007/1/29 — page 104 — #6

104 LOGISTIC REGRESSION

for crabs in a given width category equals the fitted value divided by the number
of crabs in that category. For the first width category, 3.6/14 = 0.26 is the average
estimated probability.

Table 4.1 reports the fitted values and the average estimated probabilities of a
satellite, in grouped fashion. Figure 4.3 plots the sample proportions and the estimated
probabilities against width. These comparisons suggest that the model fits decently.
Section 5.2.2 presents objective criteria for making this comparison.

4.1.4 Odds Ratio Interpretation

An important interpretion of the logistic regression model uses the odds and the odds
ratio. For model (4.1), the odds of response 1 (i.e., the odds of a success) are

π(x)

1 − π(x)
= exp(α + βx) = eα(eβ)x (4.3)

This exponential relationship provides an interpretation for β: The odds multiply by
eβ for every 1-unit increase in x. That is, the odds at level x + 1 equal the odds at x

multiplied by eβ . When β = 0, eβ = 1, and the odds do not change as x changes.
For the horseshoe crabs, logit[π̂(x)] = −12.35 + 0.497x. So, the estimated odds

of a satellite multiply by exp(β̂) = exp(0.497) = 1.64 for each centimeter increase in

Figure 4.3. Observed and fitted proportions of satellites, by width of female crab.
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width; that is, there is a 64% increase. To illustrate, the mean width value of x = 26.3
has π̂(x) = 0.674, and odds = 0.674/0.326 = 2.07. At x = 27.3 = 26.3 + 1.0, you
can check that π̂(x) = 0.773 and odds = 0.773/0.227 = 3.40. However, this is a
64% increase; that is, 3.40 = 2.07(1.64).

4.1.5 Logistic Regression with Retrospective Studies

Another property of logistic regression relates to situations in which the explanatory
variable X rather than the response variable Y is random. This occurs with retrospec-
tive sampling designs. Sometimes such designs are used because one of the response
categories occurs rarely, and a prospective study might have too few cases to enable
one to estimate effects of predictors well. For a given sample size, effect estimates
have smaller SEs when the number of outcomes of the two types are similar than
when they are very different.

Most commonly, retrospective designs are used with biomedical case-control stud-
ies (Section 2.3.5). For samples of subjects having Y = 1 (cases) and having Y = 0
(controls), the value of X is observed. Evidence exists of an association between X

and Y if the distribution of X values differs between cases and controls. For case–
control studies, it was noted in Section 2.3.5 that it is possible to estimate odds ratios
but not other summary measures. Logistic regression parameters refer to odds and
odds ratios. One can fit logistic regression models with data from case–control studies
and estimate effects of explanatory variables. The intercept term α in the model is
not meaningful, because it relates to the relative numbers of outcomes of y = 1 and
y = 0. We do not estimate this, because the sample frequencies for y = 1 and y = 0
are fixed by the nature of the case–control study.

With case–control studies, it is not possible to estimate effects in binary models
with link functions other than the logit. Unlike the odds ratio, the effect for the
conditional distribution of X given Y does not then equal that for Y given X. This
provides an important advantage of the logit link over links such as the probit. It
is a major reason why logistic regression surpasses other models in popularity for
biomedical studies.

Many case–control studies employ matching. Each case is matched with one or
more control subjects. The controls are like the case on key characteristics such
as age. The model and subsequent analysis should take the matching into account.
Section 8.2.4 discusses logistic regression for matched case–control studies.

4.1.6 Normally Distributed X Implies Logistic Regression for Y

Regardless of the sampling mechanism, the logistic regression model may or may not
describe a relationship well. In one special case, it does necessarily hold. Suppose
the distribution of X for subjects having Y = 1 is normal N(μ1, σ ), and suppose the
distribution of X for subjects having Y = 0 is normal N(μ0, σ ); that is, with different
mean but the same standard deviation. Then, a Bayes theorem calculation converting
from the distribution of X given Y = y to the distribution of Y given X = x shows
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that P(Y = 1|x) satisfies the logistic regression curve. For that curve, the effect of x

is β = (μ1 − μ0)/σ
2. In particular, β has the same sign as μ1 − μ0. For example, if

those with y = 1 tend to have higher values of x, then β > 0.
For example, consider Y = heart disease (1 = yes, 0 = no) and X = cholesterol

level. Suppose cholesterol levels have approximately a N(μ0 = 160, σ = 50) distri-
bution for those without heart disease and a N(μ1 = 260, σ = 50) distribution for
those with heart disease. Then, the probability of having heart disease satisfies the
logistic regression function (4.2) with predictor x and β = (260 − 160)/502 = 0.04.

If the distributions of X are bell-shaped but with highly different spreads, then a
logistic model containing also a quadratic term (i.e., both x and x2) often fits well.
In that case, the relationship is not monotone. Instead, P(Y = 1) increases and then
decreases, or the reverse (see Exercise 4.7).

4.2 INFERENCE FOR LOGISTIC REGRESSION

We have studied how logistic regression helps describe the effects of a predictor
on a binary response variable. We next present statistical inference for the model
parameters, to help judge the significance and size of the effects.

4.2.1 Binary Data can be Grouped or Ungrouped

Widely available software reports the ML estimates of parameters and their standard
errors. Sometimes sets of observations have the same values of predictor variables,
such as when explanatory variables are discrete. Then, ML model fitting can treat the
observations as the binomial counts of successes out of certain sample sizes, at the
various combinations of values of the predictors. We will refer to this case as grouped
binary data and the case in which each observation is a single binary outcome as
ungrouped binary data.

In Table 3.1 on snoring and heart disease in the previous chapter, 254 subjects
reported snoring every night, of whom 30 had heart disease. If the data file has
grouped binary data, a line in the data file reports these data as 30 cases of heart
disease out of a sample size of 254. If the data file has ungrouped binary data, each
line in the data file refers to a separate subject, so 30 lines contain a 1 for heart disease
and 224 lines contain a 0 for heart disease. The ML estimates and SE values are the
same for either type of data file.

When at least one explanatory variable is continuous, binary data are naturally
ungrouped. An example is the data that Table 3.2 reports for the horseshoe crabs.

4.2.2 Confidence Intervals for Effects

A large-sample Wald confidence interval for the parameter β in the logistic regression
model, logit[π(x)] = α + βx, is

β̂ ± zα/2(SE)
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Exponentiating the endpoints yields an interval for eβ , the multiplicative effect on the
odds of a 1-unit increase in x.

When n is small or fitted probabilities are mainly near 0 or 1, it is preferable
to construct a confidence interval based on the likelihood-ratio test. This interval
contains all the β0 values for which the likelihood-ratio test of H0: β = β0 has
P -value >α. Some software can report this (such as PROC GENMOD in SAS with
its LRCI option).

For the logistic regression analysis of the horseshoe crab data, the estimated effect
of width on the probability of a satellite is β̂ = 0.497, with SE = 0.102. A 95% Wald
confidence interval for β is 0.497 ± 1.96(0.102), or (0.298, 0.697). The likelihood-
ratio-based confidence interval is (0.308, 0.709). The likelihood-ratio interval for the
effect on the odds per cm increase in width equals (e0.308, e0.709) = (1.36, 2.03). We
infer that a 1 cm increase in width has at least a 36 percent increase and at most a
doubling in the odds that a female crab has a satellite.

From Section 4.1.1, a simpler interpretation uses a straight-line approximation to
the logistic regression curve. The term βπ(x)[1 − π(x)] approximates the change
in the probability per 1-unit increase in x. For instance, at π(x) = 0.50, the esti-
mated rate of change is 0.25β̂ = 0.124. A 95% confidence interval for 0.25β equals
0.25 times the endpoints of the interval for β. For the likelihood-ratio interval, this
is [0.25(0.308), 0.25(0.709)] = (0.077, 0.177). So, if the logistic regression model
holds, then for values of x near the width value at which π(x) = 0.50, we infer that
the rate of increase in the probability of a satellite per centimeter increase in width
falls between about 0.08 and 0.18.

4.2.3 Significance Testing

For the logistic regression model, H0: β = 0 states that the probability of success is
independent of X. Wald test statistics (Section 1.4.1) are simple. For large samples,

z = β̂/SE

has a standard normal distribution when β = 0. Refer z to the standard normal table
to get a one-sided or two-sided P -value. Equivalently, for the two-sided Ha : β �= 0,
z2 = (β̂/SE)2 has a large-sample chi-squared null distribution with df = 1.

Although the Wald test is adequate for large samples, the likelihood-ratio test is
more powerful and more reliable for sample sizes often used in practice. The test
statistic compares the maximum L0 of the log-likelihood function when β = 0 to
the maximum L1 of the log-likelihood function for unrestricted β. The test statistic,
−2(L0 − L1), also has a large-sample chi-squared null distribution with df = 1.

For the horseshoe crab data, the Wald statistic z = β̂/SE = 0.497/0.102 =
4.9. This shows strong evidence of a positive effect of width on the presence of
satellites (P < 0.0001). The equivalent chi-squared statistic, z2 = 23.9, has df = 1.
Software reports that the maximized log likelihoods equal L0 = −112.88 under
H0: β = 0 and L1 = −97.23 for the full model. The likelihood-ratio statistic equals
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−2(L0 − L1) = 31.3, with df = 1. This also provides extremely strong evidence of
a width effect (P < 0.0001).

4.2.4 Confidence Intervals for Probabilities

Recall that the logistic regression estimate of P(Y = 1) at a fixed setting x is

π̂(x) = exp(α̂ + β̂x)/[1 + exp(α̂ + β̂x)] (4.4)

Most software for logistic regression can report this estimate as well as a confidence
interval for the true probability π(x).

We illustrate by estimating the probability of a satellite for female crabs of width
x = 26.5, which is near the mean width. The logistic regression fit yields

π̂ = exp(−12.351 + 0.497(26.5))/[1 + exp(−12.351 + 0.497(26.5))] = 0.695

From software, a 95% confidence interval for the true probability is (0.61, 0.77).

4.2.5 Why Use a Model to Estimate Probabilities?

Instead of finding π̂(x) using the model fit, as we just did at x = 26.5, we could
simply use the sample proportion to estimate the probability. Six crabs in the sample
had width 26.5, and four of them had satellites. The sample proportion estimate at
x = 26.5 is p = 4/6 = 0.67, similar to the model-based estimate. From inverting
small-sample tests using the binomial distribution, a 95% confidence interval based
on these six observations equals (0.22, 0.96).

When the logistic regression model holds, the model-based estimator of π(x) is
much better than the sample proportion. It uses all the data rather than only the data
at the fixed x value. The result is a more precise estimate. For instance, at x = 26.5,
software reports an SE = 0.04 for the model-based estimate 0.695. By contrast, the
SE for the sample proportion of 0.67 with only six observations is

√[p(1 − p)/n] =√[(0.67)(0.33)/6] = 0.19. The 95% confidence intervals are (0.61, 0.77) using the
model vs (0.22, 0.96) using only the sample proportion at x = 26.5.

Reality is more complicated. In practice, any model will not exactly represent the
true relationship between π(x) and x. If the model approximates the true probabilities
reasonably well, however, it performs well. The model-based estimator tends to be
much closer than the sample proportion to the true value, unless the sample size on
which that sample proportion is based is extremely large. The model smooths the
sample data, somewhat dampening the observed variability.

4.2.6 Confidence Intervals for Probabilities: Details∗

If your software does not report confidence intervals for probabilities, you can
construct them by using the covariance matrix of the model parameter estimates.
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The term α̂ + β̂x in the exponents of the prediction equation (4.4) is the estimated
linear predictor in the logit transform of π(x). This estimated logit has large-sample
SE given by the estimated square root of

Var(α̂ + β̂x) = Var(α̂) + x2Var(β̂) + 2x Cov(α̂, β̂)

A 95% confidence interval for the true logit is (α̂ + β̂x) ± 1.96(SE). Substituting the
endpoints of this interval for α + βx in the two exponents in equation (4.4) gives a
corresponding interval for the probability.

For example, at x = 26.5 for the horseshoe crab data, the estimated logit is
−12.351 + 0.497(26.5) = 0.825. Software reports estimated covariance matrix for
(α̂, β̂) of

Estimated Covariance Matrix

Parameter Intercept width

Intercept 6.9102 −0.2668
width −0.2668 0.0103

A covariance matrix has variances of estimates on the main diagonal and covariances

off that diagonal. Here, V̂ar(α̂) = 6.9102, V̂ar(β̂) = 0.0103, Ĉov(α̂, β̂) = −0.2668.
Therefore, the estimated variance of this estimated logit equals

V̂ar(α̂) + x2 V̂ar(β̂) + 2x Ĉov(α̂, β̂) = 6.9102 + (26.5)2(0.0103)

+ 2(26.5)(−0.2668)

or 0.038. The 95% confidence interval for the true logit equals 0.825 ± (1.96)
√

0.038,
or (0.44, 1.21). From equation (4.4), this translates to the confidence interval

{exp(0.44)/[1 + exp(0.44)], exp(1.21)/[1 + exp(1.21)]} = (0.61, 0.77)

for the probability of satellites at width 26.5 cm.

4.2.7 Standard Errors of Model Parameter Estimates∗

We have used only a single explanatory variable so far, but the rest of the chapter
allows additional predictors. The remarks of this subsection apply regardless of the
number of predictors.

Software fits models and provides the ML parameter estimates. The standard errors
of the estimates are the square roots of the variances from the main diagonal of the
covariance matrix. For example, from the estimated covariance matrix reported above
in Section 4.2.6, the estimated width effect of 0.497 in the logistic regression model
has SE = √

0.0103 = 0.102.
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The estimated covariance matrix for the ML parameter estimates is the inverse of
the information matrix (see Section 3.5.1). This measures the curvature of the log
likelihood function at the ML estimates. More highly curved log likelihood functions
yield greater information about the parameter values. This results in smaller elements
of the inverse of the information matrix and smaller standard errors. Software finds
the information matrix as a by-product of fitting the model.

Let ni denote the number of observations at setting i of the explanatory variables.
(Note ni = 1 when the binary data are ungrouped.) At setting i, let xij denote the
value of explanatory variable j , and let π̂i denote the estimated “success” probability
based on the model fit. The element in row a and column b of the information matrix is∑

i

xiaxibniπ̂i(1 − π̂i)

These elements increase, and thus the standard errors decrease, as the sample sizes
{ni} increase. The standard errors also decrease by taking additional observations at
other settings of the predictors (for ungrouped data).

For given {ni}, the elements in the information matrix decrease, and the SE values
increase, as the estimated probabilities {π̂i} get closer to 0 or to 1. For example, it
is harder to estimate effects of predictors well when nearly all the observations are
“successes” compared to when there is a similar number of “successes” and “failures.”

4.3 LOGISTIC REGRESSION WITH CATEGORICAL PREDICTORS

Logistic regression, like ordinary regression, can have multiple explanatory variables.
Some or all of those predictors can be categorical, rather than quantitative. This section
shows how to include categorical predictors, often called factors, and Section 4.4
presents the general form of multiple logistic regression models.

4.3.1 Indicator Variables Represent Categories of Predictors

Suppose a binary response Y has two binary predictors, X and Z. The data are then
displayed in a 2 × 2 × 2 contingency table, such as we’ll see in the example in the
next subsection.

Let x and z each take values 0 and 1 to represent the two categories of each
explanatory variable. The model for P(Y = 1),

logit[P(Y = 1)] = α + β1x + β2z (4.5)

has main effects for x and z. The variables x and z are called indicator variables.
They indicate categories for the predictors. Indicator variables are also called dummy
variables. For this coding, Table 4.3 shows the logit values at the four combinations
of values of the two predictors.
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Table 4.3. Logits Implied by Indicator Variables
in Model, logit[P(Y = 1)] = α + β1x + β2z

x z Logit

0 0 α

1 0 α + β1
0 1 α + β2
1 1 α + β1 + β2

This model assumes an absence of interaction. The effect of one factor is the same
at each category of the other factor. At a fixed category z of Z, the effect on the logit
of changing from x = 0 to x = 1 is

= [α + β1(1) + β2z] − [α + β1(0) + β2z] = β1

This difference between two logits equals the difference of log odds. Equivalently,
that difference equals the log of the odds ratio between X and Y , at that category
of Z. Thus, exp(β1) equals the conditional odds ratio between X and Y . Controlling
for Z, the odds of “success” at x = 1 equal exp(β1) times the odds of success at
x = 0. This conditional odds ratio is the same at each category of Z. The lack of an
interaction term implies a common value of the odds ratio for the partial tables at the
two categories of Z. The model satisfies homogeneous association (Section 2.7.6).

Conditional independence exists between X and Y , controlling for Z, if β1 = 0.
In that case the common odds ratio equals 1. The simpler model,

logit[P(Y = 1)] = α + β2z (4.6)

then applies to the three-way table.

4.3.2 Example: AZT Use and AIDS

We illustrate these models using Table 4.4, based on a study described in the New
York Times (February 15, 1991) on the effects of AZT in slowing the development of
AIDS symptoms. In the study, 338 veterans whose immune systems were beginning
to falter after infection with the AIDS virus were randomly assigned either to receive
AZT immediately or to wait until their T cells showed severe immune weakness.
Table 4.4 is a 2 × 2 × 2 cross classification of veteran’s race, whether AZT was
given immediately, and whether AIDS symptoms developed during the 3 year study.
Let X = AZT treatment, Z = race, and Y = whether AIDS symptoms developed
(1 = yes, 0 = no).

In model (4.5), let x = 1 for those who took AZT immediately and x = 0 other-
wise, and let z = 1 for whites and z = 0 for blacks. Table 4.5 shows SAS output for
the ML fit. The estimated effect of AZT is β̂1 = −0.720. The estimated conditional
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Table 4.4. Development of AIDS Symptoms by AZT
Use and Race

Symptoms

Race AZT Use Yes No

White Yes 14 93
No 32 81

Black Yes 11 52
No 12 43

odds ratio between immediate AZT use and development of AIDS symptoms equals
exp(−0.720) = 0.49. For each race, the estimated odds of developing symptoms are
half as high for those who took AZT immediately.

The hypothesis of conditional independence of AZT treatment and the develop-
ment of AIDS symptoms, controlling for race, is H0: β1 = 0. The likelihood-ratio
(LR) statistic −2(L0 − L1) comparing models (4.6) and (4.5) equals 6.87, with
df = 1, showing evidence of association (P = 0.009). The Wald statistic (β̂1/SE)2 =
(−0.720/0.279)2 = 6.65 provides similar results (P = 0.010). The effect of race is
not significant (Table 4.5 reports LR statistic = 0.04 and P -value = 0.85).

Table 4.5. Computer Output for Logit Model with AIDS Symptoms Data

Log Likelihood −167.5756
Analysis of Maximum Likelihood Estimates

Parameter Estimate Std Error Wald Chi-Square Pr > ChiSq

Intercept −1.0736 0.2629 16.6705 <.0001
azt −0.7195 0.2790 6.6507 0.0099
race 0.0555 0.2886 0.0370 0.8476

LR Statistics

Source DF Chi-Square Pr > ChiSq

azt 1 6.87 0.0088
race 1 0.04 0.8473

Obs race azt y n pi_hat lower upper

1 1 1 14 107 0.14962 0.09897 0.21987
2 1 0 32 113 0.26540 0.19668 0.34774
3 0 1 11 63 0.14270 0.08704 0.22519
4 0 0 12 55 0.25472 0.16953 0.36396
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How do we know the model fits the data adequately? We will address model
goodness of fit in the next chapter (Section 5.2.2).

4.3.3 ANOVA-Type Model Representation of Factors

A factor having two categories requires only a single indicator variable, taking value
1 or 0 to indicate whether an observation falls in the first or second category. A
factor having I categories requires I − 1 indicator variables, as shown below and in
Section 4.4.1.

An alternative representation of factors in logistic regression uses the way ANOVA
models often express factors. The model formula

logit[P(Y = 1)] = α + βX
i + βZ

k (4.7)

represents the effects of X through parameters {βX
i } and the effects of Z through

parameters {βZ
k }. (The X and Z superscripts are merely labels and do not represent

powers.) The term βX
i denotes the effect on the logit of classification in category i

of X. Conditional independence between X and Y , given Z, corresponds to βX
1 =

βX
2 = · · · = βX

I .
Model form (4.7) applies for any numbers of categories for X and Z. Each factor

has as many parameters as it has categories, but one is redundant. For instance, if
X has I levels, it has I − 1 nonredundant parameters. To account for redundancies,
most software sets the parameter for the last category equal to zero. The term βX

i in
this model then is a simple way of representing

βX
1 x1 + βX

2 x2 + · · · + βX
I−1xI−1

where {x1, . . . , xI−1} are indicator variables for the first I − 1 categories of X. That
is, x1 = 1 when an observation is in category 1 and x1 = 0 otherwise, and so forth.
Category I does not need an indicator, because we know an observation is in that
category when x1 = · · · = xI−1 = 0.

Consider model (4.7) when the predictor x is binary, as in Table 4.4. Although
most software sets βX

2 = 0, some software sets βX
1 = 0 or βX

1 + βX
2 = 0. The latter

corresponds to setting up the indicator variable so that x = 1 in category 1 and x = −1
in category 2. For any coding scheme, the difference βX

1 − βX
2 is the same and

represents the conditional log odds ratio between X and Y , given Z. For example,
the estimated common odds ratio between immediate AZT use and development of
symptoms, for each race, is exp(β̂X

1 − β̂X
2 ) = exp(−0.720) = 0.49.

By itself, the parameter estimate for a single category of a factor is irrelevant.
Different ways of handling parameter redundancies result in different values for that
estimate. An estimate makes sense only by comparison with one for another category.
Exponentiating a difference between estimates for two categories determines the odds
ratio relating to the effect of classification in one category rather than the other.
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4.3.4 The Cochran–Mantel–Haenszel Test for 2 × 2 × K

Contingency Tables∗

In many examples with two categorical predictors, X identifies two groups to compare
and Z is a control variable. For example, in a clinical trial X might refer to two
treatments and Z might refer to several centers that recruited patients for the study.
Problem 4.20 shows such an example. The data then can be presented in several 2 × 2
tables.

With K categories for Z, model (4.7) refers to a 2 × 2 × K contingency table.
That model can then be expressed as

logit[P(Y = 1)] = α + βx + βZ
k (4.8)

where x is an indicator variable for the two categories of X. Then, exp(β) is the
common XY odds ratio for each of the K partial tables for categories of Z. This
is the homogeneous association structure for multiple 2 × 2 tables, introduced in
Section 2.7.6.

In this model, conditional independence between X and Y , controlling for Z,
corresponds to β = 0. When β = 0, the XY odds ratio equals 1 for each partial table.
Given that model (4.8) holds, one can test conditional independence by the Wald test
or the likelihood-ratio test of H0: β = 0.

The Cochran–Mantel–Haenszel test is an alternative test of XY conditional inde-
pendence in 2 × 2 × K contingency tables. This test conditions on the row totals and
the column totals in each partial table. Then, as in Fisher’s exact test, the count in
the first row and first column in a partial table determines all the other counts in that
table. Under the usual sampling schemes (e.g., binomial for each row in each partial
table), the conditioning results in a hypergeometric distribution (Section 2.6.1) for
the count n11k in the cell in row 1 and column 1 of partial table k. The test statistic
utilizes this cell in each partial table.

In partial table k, the row totals are {n1+k, n2+k}, and the column totals are
{n+1k, n+2k}. Given these totals, under H0,

μ11k = E(n11k) = n1+kn+1k/n++k

Var(n11k) = n1+kn2+kn+1kn+2k/n2++k(n++k − 1)

The Cochran–Mantel–Haenszel (CMH) test statistic summarizes the information
from the K partial tables using

CMH =
[∑

k(n11k − μ11k)
]2∑

k Var(n11k)
(4.9)

This statistic has a large-sample chi-squared null distribution with df = 1. The approx-
imation improves as the total sample size increases, regardless of whether the number
of strata K is small or large.
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When the true odds ratio exceeds 1.0 in partial table k, we expect
(n11k − μ11k) > 0. The test statistic combines these differences across all K tables,
and we then expect the sum of such differences to be a relatively large positive num-
ber. When the odds ratio is less than 1.0 in each table, the sum of such differences
tends to be a relatively large negative number. The CMH statistic takes larger values
when (n11k − μ11k) is consistently positive or consistently negative for all tables,
rather than positive for some and negative for others. The test works best when the
XY association is similar in each partial table.

This test was proposed in 1959, well before logistic regression was popular. The
formula for the CMH test statistic seems to have nothing to do with modeling. In fact,
though, the CMH test is the score test (Section 1.4.1) of XY conditional independence
for model (4.8). Recall that model assumes a common odds ratio for the partial tables
(i.e., homogeneous association). Similarity of results for the likelihood-ratio, Wald,
and CMH (score) tests usually happens when the sample size is large.

For Table 4.4 from the AZT and AIDS study, consider H0: conditional indepen-
dence between immediate AZT use and AIDS symptom development. Section 4.3.2
noted that the likelihood-ratio test statistic is −2(L0 − L1) = 6.9 and the Wald test
statistic is (β̂1/SE)2 = 6.6, each with df = 1. The CMH statistic (4.9) equals 6.8,
also with df = 1, giving similar results (P = 0.01).

4.3.5 Testing the Homogeneity of Odds Ratios∗

Model (4.8) and its special case (4.5) when Z is also binary have the homogeneous
association property of a common XY odds ratio at each level of Z. Sometimes it
is of interest to test the hypothesis of homogeneous association (although it is not
necessary to do so to justify using the CMH test). A test of homogeneity of the odds
ratios is, equivalently, a test of the goodness of fit of model (4.8). Section 5.2.2 will
show how to do this.

Some software reports a test, called the Breslow–Day test, that is a chi-squared
test specifically designed to test homogeneity of odds ratios. It has the form of
a Pearson chi-squared statistic, comparing the observed cell counts to estimated
expected frequencies that have a common odds ratio. This test is an alternative to
the goodness-of-fit tests of Section 5.2.2.

4.4 MULTIPLE LOGISTIC REGRESSION

Next we will consider the general logistic regression model with multiple explanatory
variables. Denote the k predictors for a binary response Y by x1, x2, . . . , xk . The
model for the log odds is

logit[P(Y = 1)] = α + β1x1 + β2x2 + · · · + βkxk (4.10)

The parameter βi refers to the effect of xi on the log odds that Y = 1, controlling
the other xs. For example, exp(βi) is the multiplicative effect on the odds of a 1-unit
increase in xi , at fixed levels of the other xs.
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4.4.1 Example: Horseshoe Crabs with Color and Width Predictors

We continue the analysis of the horseshoe crab data (Sections 3.3.2 and 4.1.3) by using
both the female crab’s shell width and color as predictors. Color has five categories:
light, medium light, medium, medium dark, dark. Color is a surrogate for age, older
crabs tending to have darker shells. The sample contained no light crabs, so we use
only the other four categories.

To treat color as a nominal-scale predictor, we use three indicator variables for the
four categories. The model is

logit[P(Y = 1)] = α + β1c1 + β2c2 + β3c3 + β4x, (4.11)

where x denotes width and

c1 = 1 for color = medium light, 0 otherwise
c2 = 1 for color = medium, 0 otherwise
c3 = 1 for color = medium dark, 0 otherwise

The crab color is dark (category 4) when c1 = c2 = c3 = 0. Table 4.6 shows the
ML parameter estimates. For instance, for dark crabs, c1 = c2 = c3 = 0, and
the prediction equation is logit[P̂ (Y = 1)] = −12.715 + 0.468x. By contrast, for
medium-light crabs, c1 = 1, and

logit[P̂ (Y = 1)] = (−12.715 + 1.330) + 0.468x = −11.385 + 0.468x

The model assumes a lack of interaction between color and width. Width has the
same effect (coefficient 0.468) for all colors. This implies that the shapes of the four
curves relating width to P(Y = 1) (for the four colors) are identical. For each color,

Table 4.6. Computer Output for Model for Horseshoe Crabs with Width and
Color Predictors

Std. Like. Ratio 95% Chi
Parameter Estimate Error Confidence Limits Square Pr > ChiSq

intercept −12.7151 2.7618 −18.4564 −7.5788 21.20 <.0001
c1 1.3299 0.8525 −0.2738 3.1354 2.43 0.1188
c2 1.4023 0.5484 0.3527 2.5260 6.54 0.0106
c3 1.1061 0.5921 −0.0279 2.3138 3.49 0.0617
width 0.4680 0.1055 0.2713 0.6870 19.66 <.0001

LR Statistics

Source DF Chi-Square Pr > ChiSq

width 1 24.60 <.0001
color 3 7.00 0.0720
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a 1 cm increase in width has a multiplicative effect of exp(0.468) = 1.60 on the odds
that Y = 1. Figure 4.4 displays the fitted model. Any one curve is any other curve
shifted to the right or to the left.

The parallelism of curves in the horizontal dimension implies that two curves
never cross. At all width values, for example, color 4 (dark) has a lower estimated
probability of a satellite than the other colors. To illustrate, a dark crab of average
width (26.3 cm) has estimated probability

exp[−12.715 + 0.468(26.3)]/{1 + exp[−12.715 + 0.468(26.3)]} = 0.399.

By contrast, a medium-light crab of average width has estimated probability

exp[−11.385 + 0.468(26.3)]/{1 + exp[−11.385 + 0.468(26.3)]} = 0.715.

The exponentiated difference between two color parameter estimates is an odds
ratio comparing those colors. For example, the difference in color parameter estimates
between medium-light crabs and dark crabs equals 1.330. So, at any given width, the
estimated odds that a medium-light crab has a satellite are exp(1.330) = 3.8 times
the estimated odds for a dark crab. Using the probabilities just calculated at width
26.3, the odds equal 0.399/0.601 = 0.66 for a dark crab and 0.715/0.285 = 2.51 for
a medium-light crab, for which 2.51/0.66 = 3.8.

Figure 4.4. Logistic regression model using width and color predictors.
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4.4.2 Model Comparison to Check Whether a Term is Needed

Are certain terms needed in a model? To test this, we can compare the maximized
log-likelihood values for that model and the simpler model without those terms.

To test whether color contributes to model (4.11), we test H0: β1 = β2 = β3 = 0.
This hypothesis states that, controlling for width, the probability of a satellite is
independent of color. The likelihood-ratio test compares the maximized log-likelihood
L1 for the full model (4.11) to the maximized log-likelihood L0 for the simpler
model in which those parameters equal 0. Table 4.6 shows that the test statistic is
−2(L0 − L1) = 7.0. Under H0, this test statistic has an approximate chi-squared
distribution with df = 3, the difference between the numbers of parameters in the
two models. The P -value of 0.07 provides slight evidence of a color effect. Since the
analysis in the previous subsection noted that estimated probabilities are quite different
for dark-colored crabs, it seems safest to leave the color predictor in the model.

4.4.3 Quantitative Treatment of Ordinal Predictor

Color has a natural ordering of categories, from lightest to darkest. Model (4.11)
ignores this ordering, treating color as nominal scale. A simpler model treats color in
a quantitative manner. It supposes a linear effect, on the logit scale, for a set of scores
assigned to its categories.

To illustrate, we use scores c = {1, 2, 3, 4} for the color categories and fit the model

logit[P(Y = 1)] = α + β1c + β2x (4.12)

The prediction equation is

logit[P̂ (Y = 1)] = −10.071 − 0.509c + 0.458x

The color and width estimates have SE values of 0.224 and 0.104, showing strong
evidence of an effect for each. At a given width, for every one-category increase in
color darkness, the estimated odds of a satellite multiply by exp(−0.509) = 0.60. For
example, the estimated odds of a satellite for dark colored crabs are 60% of those for
medium-dark crabs.

A likelihood-ratio test compares the fit of this model to the more complex
model (4.11) that has a separate parameter for each color. The test statistic equals
−2(L0 − L1) = 1.7, based on df = 2. This statistic tests that the simpler model
(4.12) holds, given that model (4.11) is adequate. It tests that the color para-
meters in equation (4.11), when plotted against the color scores, follow a linear
trend. The simplification seems permissible (P = 0.44).

The estimates of the color parameters in the model (4.11) that treats color as
nominal scale are (1.33, 1.40, 1.11, 0). The 0 value for the dark category reflects the
lack of an indicator variable for that category. Though these values do not depart
significantly from a linear trend, the first three are similar compared to the last one.
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This suggests that another potential color scoring for model (4.12) is {1, 1, 1, 0}; that
is, c = 0 for dark-colored crabs, and c = 1 otherwise. The likelihood-ratio statistic
comparing model (4.12) with these binary scores to model (4.11) with color treated
as nominal scale equals 0.5, based on df = 2. So, this simpler model is also adequate
(P = 0.78). This model has a color estimate of 1.300 (SE = 0.525). At a given width,
the estimated odds that a lighter-colored crab has a satellite are exp(1.300) = 3.7 times
the estimated odds for a dark crab.

In summary, the nominal-scale model, the quantitative model with color scores
{1, 2, 3, 4}, and the model with binary color scores {1, 1, 1, 0} all suggest that dark
crabs are least likely to have satellites. When the sample size is not very large, it is
not unusual that several models fit adequately.

It is advantageous to treat ordinal predictors in a quantitative manner, when such
models fit well. The model is simpler and easier to interpret, and tests of the effect
of the ordinal predictor are generally more powerful when it has a single parameter
rather than several parameters.

4.4.4 Allowing Interaction

The models we have considered so far assume a lack of interaction between width and
color. Let us check now whether this is sensible. We can allow interaction by adding
cross products of terms for width and color. Each color then has a different-shaped
curve relating width to the probability of a satellite, so a comparison of two colors
varies according to the value of width.

For example, consider the model just discussed that has a dummy variable c = 0
for dark-colored crabs and c = 1 otherwise. The model with an interaction term has
the prediction equation

logit[P̂ (Y = 1)] = −5.854 − 6.958c + 0.200x + 0.322(c × x)

Let us see what this implies about the prediction equations for each color. For dark
crabs, c = 0 and

logit[P̂ (Y = 1)] = −5.854 + 0.200x

For lighter crabs, c = 1 and

logit[P̂ (Y = 1)] = −12.812 + 0.522x

The curve for lighter crabs has a faster rate of increase. The curves cross at x such that
−5.854 + 0.200x = −12.812 + 0.522x, that is, at x = 21.6 cm. The sample widths
range between 21.0 and 33.5 cm, so the lighter-colored crabs have a higher estimated
probability of a satellite over essentially the entire range.

We can compare this to the simpler model without interaction to analyze whether
the fit is significantly better. The likelihood-ratio statistic comparing the models equals
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1.2, based on df = 1. The evidence of interaction is not strong (P = 0.28). Although
the sample slopes for the width effect are quite different for the two colors, the sample
had only 24 crabs of dark color. So, effects involving it have relatively large standard
errors.

Fitting the interaction model is equivalent to fitting the logistic regression model
with width as the predictor separately for the crabs of each color. The reduced model
has the advantage of simpler interpretations.

4.5 SUMMARIZING EFFECTS IN LOGISTIC REGRESSION

We have interpreted effects in logistic regression using multiplicative effects on the
odds, which correspond to odds ratios. However, many find it difficult to understand
odds ratios.

4.5.1 Probability-Based Interpretations

For a relatively small change in a quantitative predictor, Section 4.1.1 used a straight
line to approximate the change in the probability. This simpler interpretation applies
also with multiple predictors.

Consider a setting of predictors at which P̂ (Y = 1) = π̂ . Then, controlling for the
other predictors, a 1-unit increase in xj corresponds approximately to a β̂j π̂(1 − π̂)

change in π̂ . For example, for the horseshoe crab data with predictors x = width
and an indicator c that is 0 for dark crabs and 1 otherwise, logit(π̂) = −12.98 +
1.300c + 0.478x. When π̂ = 0.50, the approximate effect on π̂ of a 1 cm increase in
x is (0.478)(0.50)(0.50) = 0.12. This is considerable, since a 1 cm change in width
is less than half its standard deviation (which is 2.1 cm).

This straight-line approximation deteriorates as the change in the predictor values
increases. More precise interpretations use the probability formula directly. One way
to describe the effect of a predictor xj sets the other predictors at their sample means
and finds π̂ at the smallest and largest xj values. The effect is summarized by reporting
those π̂ values or their difference. However, such summaries are sensitive to outliers
on xj . To obtain a more robust summary, it is more sensible to use the quartiles of the
xj values.

For the prediction equation logit(π̂) = −12.98 + 1.300c + 0.478x, the sample
means are 26.3 cm for x = width and 0.873 for c = color. The lower and upper quar-
tiles of x are LQ = 24.9 cm and UQ = 27.7 cm. At x = 24.9 and c = c̄, π̂ = 0.51.
At x = 27.7 and c = c̄, π̂ = 0.80. The change in π̂ from 0.51 to 0.80 over the middle
50% of the range of width values reflects a strong width effect. Since c takes only
values 0 and 1, one could instead report this effect separately for each value of c rather
than just at its mean.

To summarize the effect of an indicator explanatory variable, it makes sense to
report the estimated probabilities at its two values rather than at quartiles, which
could be identical. For example, consider the color effect in the prediction equation
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Table 4.7. Summary of Effects in Model with Crab Width and Whether Color
is Dark as Predictors of Presence of Satellites

Change in
Variable Estimate SE Comparison Probability

No interaction model
Intercept −12.980 2.727
Color (0 = dark, 1 = other) 1.300 0.526 (1, 0) at x̄ 0.31 = 0.71 − 0.40
Width (x) 0.478 0.104 (UQ, LQ) at c̄ 0.29 = 0.80 − 0.51

Interaction model
Intercept −5.854 6.694
Color (0 = dark, 1 = other) −6.958 7.318
Width (x) 0.200 0.262 (UQ, LQ) at c = 0 0.13 = 0.43 − 0.30
Width*color 0.322 0.286 (UQ, LQ) at c = 1 0.29 = 0.84 − 0.55

logit(π̂) = −12.98 + 1.300c + 0.478x. At x̄ = 26.3, π̂ = 0.40 when c = 0 and
π̂ = 0.71 when c = 1. This color effect, differentiating dark crabs from others, is
also substantial.

Table 4.7 summarizes effects using estimated probabilities. It also shows results
for the extension of the model permitting interaction. The estimated width effect
is then greater for the lighter colored crabs. However, the interaction is not
significant.

4.5.2 Standardized Interpretations

With multiple predictors, it is tempting to compare magnitudes of {β̂j } to compare
effects of predictors. For binary predictors, this gives a comparison of conditional log
odds ratios, given the other predictors in the model. For quantitative predictors, this
is relevant if the predictors have the same units, so a 1-unit change means the same
thing for each. Otherwise, it is not meaningful.

An alternative comparison of effects of quantitative predictors having different
units uses standardized coefficients. The model is fitted to standardized predictors,
replacing each xj by (xj − x̄j )/sxj

. A 1-unit change in the standardized predictor is a
standard deviation change in the original predictor. Then, each regression coefficient
represents the effect of a standard deviation change in a predictor, controlling for
the other variables. The standardized estimate for predictor xj is the unstandardized
estimate β̂j multiplied by sxj

. See Problem 4.27.

PROBLEMS

4.1 A study used logistic regression to determine characteristics associated with
Y = whether a cancer patient achieved remission (1 = yes). The most impor-
tant explanatory variable was a labeling index (LI) that measures proliferative
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activity of cells after a patient receives an injection of tritiated thymidine.
It represents the percentage of cells that are “labeled.” Table 4.8 shows the
grouped data. Software reports Table 4.9 for a logistic regression model using
LI to predict π = P(Y = 1).

a. Show how software obtained π̂ = 0.068 when LI = 8.

b. Show that π̂ = 0.50 when LI = 26.0.

c. Show that the rate of change in π̂ is 0.009 when LI = 8 and is 0.036 when
LI = 26.

d. The lower quartile and upper quartile for LI are 14 and 28. Show that π̂

increases by 0.42, from 0.15 to 0.57, between those values.

e. When LI increases by 1, show the estimated odds of remission multiply by
1.16.

Table 4.8. Data for Exercise 4.1 on Cancer Remission

Number of Number of Number of Number of Number of Number of
LI Cases Remissions LI Cases Remissions LI Cases Remissions

8 2 0 18 1 1 28 1 1
10 2 0 20 3 2 32 1 0
12 3 0 22 2 1 34 1 1
14 3 0 24 1 0 38 3 2
16 3 0 26 1 1

Source: Reprinted with permission from E. T. Lee, Computer Prog. Biomed., 4: 80–92, 1974.

Table 4.9. Computer Output for Problem 4.1

Standard Likelihood Ratio
Parameter Estimate Error 95% Conf. Limits Chi-Square

Intercept −3.7771 1.3786 −6.9946 −1.4097 7.51
li 0.1449 0.0593 0.0425 0.2846 5.96

LR Statistic
Source DF Chi-Square Pr > ChiSq

li 1 8.30 0.0040

Obs li remiss n pi_hat lower upper

1 8 0 2 0.06797 0.01121 0.31925
2 10 0 2 0.08879 0.01809 0.34010
....

4.2 Refer to the previous exercise. Using information from Table 4.9:

a. Conduct a Wald test for the LI effect. Interpret.
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b. Construct a Wald confidence interval for the odds ratio corresponding to a
1-unit increase in LI . Interpret.

c. Conduct a likelihood-ratio test for the LI effect. Interpret.

d. Construct the likelihood-ratio confidence interval for the odds ratio.
Interpret.

4.3 In the first nine decades of the twentieth century in baseball’s National League,
the percentage of times the starting pitcher pitched a complete game were:
72.7 (1900–1909), 63.4, 50.0, 44.3, 41.6, 32.8, 27.2, 22.5, 13.3 (1980–1989)
(Source: George Will, Newsweek, April 10, 1989).

a. Treating the number of games as the same in each decade, the linear
probability model has ML fit π̂ = 0.7578 − 0.0694x, where x = decade
(x = 1, 2, . . . , 9). Interpret −0.0694.

b. Substituting x = 12, predict the percentage of complete games for 2010–
2019. Is this prediction plausible? Why?

c. The logistic regression ML fit is π̂ = exp(1.148 − 0.315x)/[1 +
exp(1.148 − 0.315x)]. Obtain π̂ for x = 12. Is this more plausible than
the prediction in (b)?

4.4 Consider the snoring and heart disease data of Table 3.1 in Section 3.2.2.
With scores {0, 2, 4, 5} for snoring levels, the logistic regression ML fit is
logit(π̂) = −3.866 + 0.397x.

a. Interpret the sign of the estimated effect of x.

b. Estimate the probabilities of heart disease at snoring levels 0 and 5.

c. Describe the estimated effect of snoring on the odds of heart disease.

4.5 For the 23 space shuttle flights before the Challenger mission disaster in 1986,
Table 4.10 shows the temperature (◦F) at the time of the flight and whether at
least one primary O-ring suffered thermal distress.

a. Use logistic regression to model the effect of temperature on the probability
of thermal distress. Interpret the effect.

b. Estimate the probability of thermal distress at 31◦F, the temperature at the
time of the Challenger flight.

c. At what temperature does the estimated probability equal 0.50? At that
temperature, give a linear approximation for the change in the estimated
probability per degree increase in temperature.

d. Interpret the effect of temperature on the odds of thermal distress.

e. Test the hypothesis that temperature has no effect, using (i) the Wald test,
(ii) the likelihood-ratio test.

4.6 Refer to Exercise 3.9. Use the logistic regression output reported there to (a)
interpret the effect of income on the odds of possessing a travel credit card,
and conduct a (b) significance test and (c) confidence interval about that effect.
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Table 4.10. Data for Problem 4.5 on Space Shuttle

Ft Temperature TD Ft Temperature TD

1 66 0 13 67 0
2 70 1 14 53 1
3 69 0 15 67 0
4 68 0 16 75 0
5 67 0 17 70 0
6 72 0 18 81 0
7 73 0 19 76 0
8 70 0 20 79 0
9 57 1 21 75 1

10 63 1 22 76 0
11 70 1 23 58 1
12 78 0

Note: Ft = flight no., TD = thermal distress (1 = yes, 0 = no).

Source: Data based on Table 1 in S. R. Dalal, E. B. Fowlkes and B. Hoadley, J. Am.
Statist. Assoc., 84: 945–957, 1989. Reprinted with the permission of the American
Statistical Association.

4.7 Hastie and Tibshirani (1990, p. 282) described a study to determine risk factors
for kyphosis, which is severe forward flexion of the spine following corrective
spinal surgery. The age in months at the time of the operation for the 18 subjects
for whom kyphosis was present were 12, 15, 42, 52, 59, 73, 82, 91, 96, 105,
114, 120, 121, 128, 130, 139, 139, 157 and for the 22 subjects for whom
kyphosis was absent were 1, 1, 2, 8, 11, 18, 22, 31, 37, 61, 72, 81, 97, 112,
118, 127, 131, 140, 151, 159, 177, 206.

a. Fit a logistic regression model using age as a predictor of whether kyphosis
is present. Test whether age has a significant effect.

b. Plot the data. Note the difference in dispersion of age at the two levels of
kyphosis.

c. Fit the model logit[π(x)] = α + β1x + β2x
2. Test the significance of the

squared age term, plot the fit, and interpret. (The final paragraph of
Section 4.1.6 is relevant to these results.)

4.8 For the horseshoe crab data (Table 3.2, available at www.stat.ufl.edu/∼aa/
intro-cda/appendix.html), fit the logistic regression model for π = probability
of a satellite, using weight as the predictor.

a. Report the ML prediction equation.

b. Find π̂ at the weight values 1.20, 2.44, and 5.20 kg, which are the sample
minimum, mean, and maximum.

c. Find the weight at which π̂ = 0.50.

d. At the weight value found in (c), give a linear approximation for the esti-
mated effect of (i) a 1 kg increase in weight. This represents a relatively
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large increase, so convert this to the effect of (ii) a 0.10 kg increase, and
(iii) a standard deviation increase in weight (0.58 kg).

e. Construct a 95% confidence interval to describe the effect of weight on the
odds of a satellite. Interpret.

f. Conduct the Wald or likelihood-ratio test of the hypothesis that weight has
no effect. Report the P -value, and interpret.

4.9 For the horseshoe crab data, fit a logistic regression model for the probability
of a satellite, using color alone as the predictor.

a. Treat color as nominal scale (qualitative). Report the prediction equation,
and explain how to interpret the coefficient of the first indicator variable.

b. For the model in (a), conduct a likelihood-ratio test of the hypothesis that
color has no effect. Interpret.

c. Treating color in a quantitative manner, obtain a prediction equation.
Interpret the coefficient of color.

d. For the model in (c), test the hypothesis that color has no effect. Interpret.

e. When we treat color as quantitative instead of qualitative, state an advan-
tage relating to power and a potential disadvantage relating to model lack
of fit.

4.10 An international poll quoted in an Associated Press story (December 14, 2004)
reported low approval ratings for President George W. Bush among traditional
allies of the United States, such as 32% in Canada, 30% in Britain, 19% in
Spain, and 17% in Germany. Let Y indicate approval of Bush’s performance
(1 = yes, 0 = no), π = P(Y = 1), c1 = 1 for Canada and 0 otherwise, c2 = 1
for Britain and 0 otherwise, and c3 = 1 for Spain and 0 otherwise.

a. Explain why these results suggest that for the identity link function,
π̂ = 0.17 + 0.15c1 + 0.13c2 + 0.02c3.

b. Show that the prediction equation for the logit link function is logit(π̂) =
−1.59 + 0.83c1 + 0.74c2 + 0.14c3.

4.11 Moritz and Satariano (J. Clin. Epidemiol., 46: 443–454, 1993) used logis-
tic regression to predict whether the stage of breast cancer at diagnosis was
advanced or local for a sample of 444 middle-aged and elderly women. A table
referring to a particular set of demographic factors reported the estimated odds
ratio for the effect of living arrangement (three categories) as 2.02 for spouse
vs alone and 1.71 for others vs alone; it reported the effect of income (three
categories) as 0.72 for $10,000–24,999 vs <$10,000 and 0.41 for $25,000+
vs <$10,000. Estimate the odds ratios for the third pair of categories for each
factor.

4.12 Exercise 2.33 mentioned a study in Florida that stated that the death penalty
was given in 19 out of 151 cases in which a white killed a white, in 0 out
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Table 4.11. Computer Output for Problem 4.12 on Death Penalty

Standard Likelihood Ratio
Parameter Estimate Error 95% Conf. Limits Chi-Square

Intercept −3.5961 0.5069 −4.7754 −2.7349 50.33
def −0.8678 0.3671 −1.5633 −0.1140 5.59
vic 2.4044 0.6006 1.3068 3.7175 16.03

LR Statistics
Source DF Chi-Square Pr > ChiSq

def 1 5.01 0.0251
vic 1 20.35 <.0001

of 9 cases in which a white killed a black, in 11 out of 63 cases in which
a black killed a white, and in 6 out of 103 cases in which a black killed a
black. Table 4.11 shows results of fitting a logit model for death penalty as
the response (1 = yes), with defendant’s race (1 = white) and victims’ race
(1 = white) as indicator predictors.

a. Based on the parameter estimates, which group is most likely to have the
“yes” response? Estimate the probability in that case.

b. Interpret the parameter estimate for victim’s race.

c. Using information shown, construct and interpret a 95% likelihood-ratio
confidence interval for the conditional odds ratio between the death penalty
verdict and victim’s race.

d. Test the effect of victim’s race, controlling for defendant’s race, using a
Wald test or likelihood-ratio test. Interpret.

4.13 Refer to (d) in the previous exercise. The Cochran–Mantel–Haenszel test
statistic for this hypothesis equals 7.00.

a. Report the null sampling distribution of the statistic and the P -value.

b. Under H0, find the expected count for the cell in which white defendants
who had black victims received the death penalty. Based on comparing this
to the observed count, interpret the result of the test.

4.14 Refer to the results that Table 4.5 shows for model (4.5) fitted to the data from
the AZT and AIDS study in Table 4.4.

a. For black veterans without immediate AZT use, use the prediction equation
to estimate the probability of AIDS symptoms.

b. Construct a 95% confidence interval for the conditional odds ratio between
AZT use and the development of symptoms.

c. Describe and test for the effect of race in this model.
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4.15 Table 4.12 refers to ratings of agricultural extension agents in North Carolina.
In each of five districts, agents were classified by their race and by whether
they qualified for a merit pay increase.

a. Conduct the Cochran–Mantel–Haenszel test of the hypothesis that the merit
pay decision is independent of race, conditional on the district. Interpret.

b. Show how you could alternatively test the hypothesis in (a) using a test
about a parameter in a logistic regression model.

c. What information can you get from a model-based analysis that you do not
get from the CMH test?

Table 4.12. Data for Problem 4.15 on Merit Pay and Race

Blacks, Merit Pay Whites, Merit Pay

District Yes No Yes No

NC 24 9 47 12
NE 10 3 45 8
NW 5 4 57 9
SE 16 7 54 10
SW 7 4 59 12

Source: J. Gastwirth, Statistical Reasoning in Law and Public Policy, Vol. 1,
1988, p. 268.

4.16 Table 4.13 shows the result of cross classifying a sample of people
from the MBTI Step II National Sample (collected and compiled by
CPP, Inc.) on whether they report drinking alcohol frequently (1 = yes,

Table 4.13. Data for Problem 4.16 on Drinking Frequently and Four Scales of
Myers–Briggs Personality Test

Extroversion/Introversion E I

Sensing/iNtuitive S N S N
Alcohol Frequently

Thinking/Feeling Judging/Perceiving Yes No Yes No Yes No Yes No

T J 10 67 3 20 17 123 1 12
P 8 34 2 16 3 49 5 30

F J 5 101 4 27 6 132 1 30
P 7 72 15 65 4 102 6 73

Source: Reproduced with special permission of CPP Inc., Mountain View, CA 94043. Copyright 1996 by
CPP, Inc. All rights reserved. Further reproduction is prohibited without the Publisher’s written consent.
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0 = no) and on the four binary scales of the Myers–Briggs personality test:
Extroversion/Introversion (E/I), Sensing/iNtuitive (S/N), Thinking/Feeling
(T/F) and Judging/Perceiving (J/P). The 16 predictor combinations corre-
spond to the 16 personality types: ESTJ, ESTP, ESFJ, ESFP, ENTJ, ENTP,
ENFJ, ENFP, ISTJ, ISTP, ISFJ, ISFP, INTJ, INTP, INFJ, INFP.

a. Fit a model using the four scales as predictors of π = the probability of
drinking alcohol frequently. Report the prediction equation, specifying how
you set up the indicator variables.

b. Find π̂ for someone of personality type ESTJ.

c. Based on the model parameter estimates, explain why the personality type
with the highest π̂ is ENTP.

4.17 Refer to the previous exercise. Table 4.14 shows the fit of the model with only
E/I and T/F as predictors.

a. Find π̂ for someone of personality type introverted and feeling.

b. Report and interpret the estimated conditional odds ratio between E/I and
the response.

c. Use the limits reported to construct a 95% likelihood-ratio confidence
interval for the conditional odds ratio between E/I and the response.
Interpret.

d. The estimates shown use E for the first category of the E/I scale. Suppose
you instead use I for the first category. Then, report the estimated conditional
odds ratio and the 95% likelihood-ratio confidence interval. Interpret.

e. Show steps of a test of whether E/I has an effect on the response, controlling
for T/F. Indicate whether your test is a Wald or a likelihood-ratio test.

Table 4.14. Output for Problem 4.17 on Fitting Model to Table 4.13

Analysis Of Parameter Estimates

Standard Likelihood Ratio Wald
Parameter DF Estimate Error 95% Conf. Limits Chi-Square

Intercept 1 −2.8291 0.1955 −3.2291 −2.4614 209.37
EI e 1 0.5805 0.2160 0.1589 1.0080 7.22
TF t 1 0.5971 0.2152 0.1745 1.0205 7.69

LR Statistics

Source DF Chi-Square Pr > ChiSq
EI 1 7.28 0.0070
TF 1 7.64 0.0057

4.18 A study used the 1998 Behavioral Risk Factors Social Survey to consider fac-
tors associated with American women’s use of oral contraceptives. Table 4.15
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Table 4.15. Table for Problem 4.18 on Oral Contraceptive Use

Variable Coding = 1 if: Estimate SE

Age 35 or younger −1.320 0.087
Race White 0.622 0.098
Education ≥1 year college 0.501 0.077
Marital status Married −0.460 0.073

Source: Debbie Wilson, College of Pharmacy, University of Florida.

summarizes effects for a logistic regression model for the probability of using
oral contraceptives. Each predictor uses an indicator variable, and the table
lists the category having value 1.

a. Interpret effects.

b. Construct and interpret a confidence interval for the conditional odds ratio
between contraceptive use and education.

4.19 A sample of subjects were asked their opinion about current laws legaliz-
ing abortion (support, oppose). For the explanatory variables gender (female,
male), religious affiliation (Protestant, Catholic, Jewish), and political party
affiliation (Democrat, Republican, Independent), the model for the probability
π of supporting legalized abortion,

logit(π) = α + βG
h + βR

i + βP
j

has reported parameter estimates (setting the parameter for the last category
of a variable equal to 0.0) α̂ = −0.11, β̂G

1 = 0.16, β̂G
2 = 0.0, β̂R

1 = −0.57,
β̂R

2 = −0.66, β̂R
3 = 0.0, β̂P

1 = 0.84, β̂P
2 = −1.67, β̂P

3 = 0.0.

a. Interpret how the odds of supporting legalized abortion depend on gender.

b. Find the estimated probability of supporting legalized abortion for (i) male
Catholic Republicans and (ii) female Jewish Democrats.

c. If we defined parameters such that the first category of a variable has value
0, then what would β̂G

2 equal? Show then how to obtain the odds ratio that
describes the conditional effect of gender.

d. If we defined parameters such that they sum to 0 across the categories of a
variable, then what would β̂G

1 and β̂G
2 equal? Show then how to obtain the

odds ratio that describes the conditional effect of gender.

4.20 Table 4.16 shows results of an eight-center clinical trial to compare a drug
to placebo for curing an infection. At each center, subjects were randomly
assigned to groups.

a. Analyze these data, describing and making inference about the group effect,
using logistic regression.
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Table 4.16. Clinical Trial Data for Problem 4.20

Response
Sample

Center Treatment Success Failure Odds Ratio

1 Drug 11 25 1.19
Control 10 27

2 Drug 16 4 1.82
Control 22 10

3 Drug 14 5 4.80
Control 7 12

4 Drug 2 14 2.29
Control 1 16

5 Drug 6 11 ∞
Control 0 12

6 Drug 1 10 ∞
Control 0 10

7 Drug 1 4 2.0
Control 1 8

8 Drug 4 2 0.33
Control 6 1

Source: P. J. Beitler and J. R. Landis, Biometrics, 41: 991–1000, 1985.

b. Conduct the Cochran–Mantel–Haenszel test. Specify the hypotheses, report
the P -value, and interpret.

4.21 In a study designed to evaluate whether an educational program makes sexually
active adolescents more likely to obtain condoms, adolescents were randomly
assigned to two experimental groups. The educational program, involving a
lecture and videotape about transmission of the HIV virus, was provided to one
group but not the other. In logistic regression models, factors observed to influ-
ence a teenager to obtain condoms were gender, socioeconomic status, lifetime
number of partners, and the experimental group. Table 4.17 summarizes study
results.

a. Interpret the odds ratio and the related confidence interval for the effect of
group.

b. Find the parameter estimates for the fitted model, using (1, 0) indicator
variables for the first three predictors. Based on the corresponding confi-
dence interval for the log odds ratio, determine the standard error for the
group effect.

c. Explain why either the estimate of 1.38 for the odds ratio for gender or the
corresponding confidence interval is incorrect. Show that, if the reported
interval is correct, then 1.38 is actually the log odds ratio, and the estimated
odds ratio equals 3.98.
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Table 4.17. Table for Problem 4.21 on Condom Use

Variables Odds Ratio 95% Confidence Interval

Group (education vs none) 4.04 (1.17, 13.9)
Gender (males vs females) 1.38 (1.23, 12.88)
SES (high vs low) 5.82 (1.87, 18.28)
Lifetime no. of partners 3.22 (1.08, 11.31)

Source: V. I. Rickert et al., Clin. Pediat., 31: 205–210, 1992.

4.22 Refer to model (4.11) with width and color effects for the horseshoe crab data.
Using the data at www.stat.ufl.edu/∼aa/intro-cda/appendix.html:

a. Fit the model, treating color as nominal-scale but with weight instead of
width as x. Interpret the parameter estimates.

b. Controlling for weight, conduct a likelihood-ratio test of the hypothesis that
having a satellite is independent of color. Interpret.

c. Using models that treat color in a quantitative manner with scores
{1, 2, 3, 4}, repeat the analyses in (a) and (b).

4.23 Table 4.18 shows estimated effects for a fitted logistic regression model with
squamous cell esophageal cancer (1 = yes, 0 = no) as the response variable
Y . Smoking status (S) equals 1 for at least one pack per day and 0 other-
wise, alcohol consumption (A) equals the average number of alcoholic drinks
consumed per day, and race (R) equals 1 for blacks and 0 for whites.

a. To describe the race-by-smoking interaction, construct the prediction equa-
tion when R = 1 and again when R = 0. Find the fittedYS conditional odds
ratio for each case. Similarly, construct the prediction equation when S = 1
and again when S = 0. Find the fitted YR conditional odds ratio for each
case. Note that, for each association, the coefficient of the cross-product
term is the difference between the log odds ratios at the two fixed levels for
the other variable.

Table 4.18. Table for Problem 4.23 on Effects on
Esophageal Cancer

Variable Effect P -value

Intercept −7.00 <0.01
Alcohol use 0.10 0.03
Smoking 1.20 <0.01
Race 0.30 0.02
Race × smoking 0.20 0.04
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b. In Table 4.18, explain what the coefficients of R and S represent, for the
coding as given above. What hypotheses do the P -values refer to for these
variables?

c. Suppose the model also contained an A × R interaction term, with coef-
ficient 0.04. In the prediction equation, show that this represents the
difference between the effect of A for blacks and for whites.

4.24 Table 4.19 shows results of a study about Y = whether a patient having surgery
with general anesthesia experienced a sore throat on waking (1 = yes) as a
function of D = duration of the surgery (in minutes) and T = type of device
used to secure the airway (0 = laryngeal mask airway, 1 = tracheal tube).

a. Fit a main effects model using these predictors. Interpret parameter
estimates.

b. Conduct inference about the D effect in (a).

c. Fit a model permitting interaction. Report the prediction equation for the
effect of D when (i) T = 1, (ii) T = 0. Interpret.

d. Conduct inference about whether you need the interaction term in (c).

Table 4.19. Data for Problem 4.24 on Sore Throat after Surgery

Patient D T Y Patient D T Y Patient D T Y

1 45 0 0 13 50 1 0 25 20 1 0
2 15 0 0 14 75 1 1 26 45 0 1
3 40 0 1 15 30 0 0 27 15 1 0
4 83 1 1 16 25 0 1 28 25 0 1
5 90 1 1 17 20 1 0 29 15 1 0
6 25 1 1 18 60 1 1 30 30 0 1
7 35 0 1 19 70 1 1 31 40 0 1
8 65 0 1 20 30 0 1 32 15 1 0
9 95 0 1 21 60 0 1 33 135 1 1
10 35 0 1 22 61 0 0 34 20 1 0
11 75 0 1 23 65 0 1 35 40 1 0
12 45 1 1 24 15 1 0

Source: Data from D. Collett, in Encyclopedia of Biostatistics, Wiley, New York, 1998, pp. 350–358.
Predictors are D = duration of surgery, T = type of device.

4.25 For model (4.11) for the horseshoe crabs with color and width predictors, add
three terms to permit interaction between color and width.

a. Report the prediction equations relating width to the probability of a
satellite, for each color. Plot or sketch them, and interpret.

b. Test whether the interaction model gives a better fit than the simpler model
lacking the interaction terms. Interpret.
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4.26 Model (4.11) for the probability π of a satellite for horseshoe crabs with color
and width predictors has fit

logit(π̂) = −12.715 + 1.330c1 + 1.402c2 + 1.106c3 + 0.468x

Consider this fit for crabs of width x = 20 cm.

a. Estimate π for medium-dark crabs (c3 = 1) and for dark crabs (c1 = c2 =
c3 = 0). Then, estimate the ratio of probabilities.

b. Estimate the odds of a satellite for medium-dark crabs and the odds for
dark crabs. Show that the odds ratio equals exp(1.106) = 3.02. When each
probability is close to zero, the odds ratio is similar to the ratio of proba-
bilities, providing another interpretation for logistic regression parameters.
For widths at which π̂ is small, π̂ for medium-dark crabs is about three
times that for dark crabs.

4.27 The prediction equation for the horseshoe crab data using width and quantita-
tive color (scores 1, 2, 3, 4) is logit(π̂) = −10.071 − 0.509c + 0.458x. Color
has mean = 2.44 and standard deviation = 0.80, and width has mean = 26.30
and standard deviation = 2.11.

a. For standardized versions of the predictors, explain why the estimated coef-
ficients equal (0.80)(−.509) = −0.41 and (2.11)(.458) = 0.97. Interpret
these by comparing the partial effects on the odds of a one standard deviation
increase in each predictor.

b. Section 4.5.1 interpreted the width effect by finding the change in π̂

over the middle 50% of width values, between 24.9 cm and 27.7 cm.
Do this separately for each value of c, and interpret the width effect for
each color.

4.28 For recent General Social Survey data, a prediction equation relating Y =
whether attended college (1 = yes) to x = family income (thousands of dol-
lars, using scores for grouped categories), m = whether mother attended
college (1 = yes, 0 = no), f = whether father attended college (1 = yes,
0 = no), was logit[P̂ (Y = 1)] = −1.90 + 0.02x + 0.82m + 1.33f . To sum-
marize the cumulative effect of the predictors, report the range of π̂ values
between their lowest levels (x = 0.5, m = 0, f = 0) and their highest levels
(x = 130, m = 1, f = 1).

4.29 Table 4.20 appeared in a national study of 15- and 16-year-old adolescents.
The event of interest is ever having sexual intercourse. Analyze these data and
summarize in a one-page report, including description and inference about the
effects of both gender and race.

4.30 The US National Collegiate Athletic Association (NCAA) conducted a study
of graduation rates for student athletes who were freshmen during the
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Table 4.20. Data for Problem 4.29 on Teenagers
and Sex

Intercourse

Race Gender Yes No

White Male 43 134
Female 26 149

Black Male 29 23
Female 22 36

Source: S. P. Morgan and J. D. Teachman, J. Marriage Fam., 50:
929–936, 1988. Reprinted with permission of The National Council
on Family Relations.

1984–1985 academic year. Table 4.21 shows the data. Analyze and interpret
in a one-page report, including description and inference.

Table 4.21. Data for Problem 4.30 on Graduation
of NCAA Athletes

Athlete Group Sample Size Graduates

White females 796 498
White males 1625 878
Black females 143 54
Black males 660 197

Source: J. J. McArdle and F. Hamagami, J. Am. Statist. Assoc.,
89: 1107–1123, 1994. Reprinted with permission of the American
Statistical Association.

4.31 Refer to Table 7.3, treating marijuana use as the response variable. Ana-
lyze these data. Prepare a one-page report summarizing your descriptive and
inferential results.

4.32 See http://bmj.com/cgi/content/full/317/7153/235 for a meta analysis of
studies about whether administering albumin to critically ill patients increases
or decreases mortality. Analyze the data for the three studies with burn patients
using logistic regression methods. Summarize your analyses in a one-page
report.

4.33 Fowlkes et al. (J. Am. Statist. Assoc., 83: 611–622, 1988) reported results
of a survey of employees of a large national corporation to determine how
satisfaction depends on race, gender, age, and regional location. The data are
at www.stat.ufl.edu/∼aa/cda/cda.html. Fowlkes et al. reported “The least-
satisfied employees are less than 35 years of age, female, other (race), and
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work in the Northeast; . . . The most satisfied group is greater than 44 years of
age, male, other, and working in the Pacific or Mid-Atlantic regions; the odds
of such employees being satisfied are about 3.5 to 1.” Analyze the data, and
show how you would make this interpretation.

4.34 For the model, logit[π(x)] = α + βx, show that eα equals the odds of success
when x = 0. Construct the odds of success when x = 1, x = 2, and x = 3. Use
this to provide an interpretation of β. Generalize these results to the multiple
logistic regression model (4.10).

4.35 The slope of the line drawn tangent to the probit regression curve at a particular
x value equals (0.40)β exp[−(α + βx)2/2].
a. Show this is highest when x = −α/β, where it equals 0.40β. At this point,

π(x) = 0.50.

b. The fit of the probit model to the horseshoe crab data using x = width
is probit[π̂(x)] = −7.502 + 0.302x. At which x-value does the estimated
probability of a satellite equal 0.50?

c. Find the rate of change in π̂(x) per 1 cm increase in width at the x-
value found in (b). Compare the results with those obtained with logistic
regression in Section 4.1.3, for which π̂(x) = 1/2 at x = 24.8, where the
rate of change is 0.12. (Probit and logistic models give very similar fits to
data.)

4.36 When β > 0, the logistic regression curve (4.1) has the shape of the cdf
of a logistic distribution with mean μ = −α/β and standard deviation σ =
1.814/β. Section 4.1.3 showed that the horseshoe crab data with x = width
has fit, logit[π̂(x)] = −12.351 + 0.497x.

a. Show that the curve for π̂(x) has the shape of a logistic cdf with mean 24.8
and standard deviation 3.6.

b. Since about 95% of a bell-shaped distribution occurs within two standard
deviations of the mean, argue that the probability of a satellite increases
from near 0 to near 1 as width increases from about 17 to 32 cm.

4.37 For data from Florida on Y = whether someone convicted of multiple mur-
ders receives the death penalty (1 = yes, 0 = no), the prediction equation is
logit(π̂) = −2.06 + .87d − 2.40v, where d and v are defendant’s race and
victims’ race (1 = black, 0 = white). The following are true–false questions
based on the prediction equation.

a. The estimated probability of the death penalty is lowest when the defendant
is white and victims are black.

b. Controlling for victims’ race, the estimated odds of the death penalty for
white defendants equal 0.87 times the estimated odds for black defendants.
If we instead let d = 1 for white defendants and 0 for black defendants, the
estimated coefficient of d would be 1/0.87 = 1.15 instead of 0.87.
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c. The lack of an interaction term means that the estimated odds ratio between
the death penalty outcome and defendant’s race is the same for each category
of victims’ race.

d. The intercept term −2.06 is the estimated probability of the death penalty
when the defendant and victims were white (i.e., d = v = 0).

e. If there were 500 cases with white victims and defendants, then the model
fitted count (i.e., estimated expected frequency) for the number who receive
the death penalty equals 500e−2.06/(1 + e−2.06).
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Building and Applying Logistic
Regression Models

Having learned the basics of logistic regression, we now study issues relating to
building a model with multiple predictors and checking its fit. Section 5.1 discusses
strategies for model selection. After choosing a preliminary model, model checking
explores possible lack of fit. Section 5.2 presents goodness-of-fit tests and diagnostics,
such as residuals, for doing this. In practice, large-sample methods of inference are not
always appropriate. Section 5.3 discusses how parameter estimates can be infinite
with small or unbalanced samples, and Section 5.4 presents small-sample inference
methods. Section 5.5 addresses power and sample size determination for logistic
regression.

5.1 STRATEGIES IN MODEL SELECTION

For a given data set with a binary response, how do we select a logistic regression
model? The same issues arise as with ordinary regression. The selection process
becomes more challenging as the number of explanatory variables increases, because
of the rapid increase in possible effects and interactions. There are two competing
goals: The model should be complex enough to fit the data well, but simpler models
are easier to interpret.

Most studies are designed to answer certain questions, which motivates including
certain terms in the model. To answer those questions, confirmatory analyses use a
restricted set of models. A study’s theory about an effect may be tested by comparing
models with and without that effect. In the absence of underlying theory, some studies
are exploratory rather than confirmatory. Then, a search among many models may
provide clues about which predictors are associated with the response and suggest
questions for future research.

An Introduction to Categorical Data Analysis, Second Edition. By Alan Agresti
Copyright © 2007 John Wiley & Sons, Inc.
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5.1.1 How Many Predictors Can You Use?

Data are unbalanced on Y if y = 1 occurs relatively few times or if y = 0 occurs
relatively few times. This limits the number of predictors for which effects can be
estimated precisely. One guideline1 suggests there should ideally be at least 10 out-
comes of each type for every predictor. For example, if y = 1 only 30 times out of
n = 1000 observations, the model should have no more than about three predictors
even though the overall sample size is large.

This guideline is approximate. When not satisfied, software still fits the model. In
practice, often the number of variables is large, sometimes even of similar magnitude
as the number of observations. However, when the guideline is violated, ML estimates
may be quite biased and estimates of standard errors may be poor. From results to be
discussed in Section 5.3.1, as the number of model predictors increases, it becomes
more likely that some ML model parameter estimates are infinite.

Cautions that apply to building ordinary regression models hold for any GLM.
For example, models with several predictors often suffer from multicollinearity –
correlations among predictors making it seem that no one variable is important when
all the others are in the model. A variable may seem to have little effect because
it overlaps considerably with other predictors in the model, itself being predicted
well by the other predictors. Deleting such a redundant predictor can be helpful, for
instance to reduce standard errors of other estimated effects.

5.1.2 Example: Horseshoe Crabs Revisited

The horseshoe crab data set of Table 3.2 analyzed in Sections 3.3.2, 4.1.3, and 4.4.1
has four predictors: color (four categories), spine condition (three categories), weight,
and width of the carapace shell. We now fit logistic regression models using all these
to predict whether the female crab has satellites (males that could mate with her).
Again we let y = 1 if there is at least one satellite, and y = 0 otherwise.

Consider a model with all the main effects. Let {c1, c2, c3} be indicator variables
for the first three (of four) colors and let {s1, s2} be indicator variables for the first
two (of three) spine conditions. The model

logit[P(Y = 1)] = α + β1weight + β2width + β3c1 + β4c2 + β5c3 + β6s1 + β7s2

treats color and spine condition as nominal-scale factors. Table 5.1 shows the results.
A likelihood-ratio test that Y is jointly independent of these predictors simul-

taneously tests H0: β1 = · · · = β7 = 0. The test statistic is −2(L0 − L1) = 40.6
with df = 7 (P < 0.0001). This shows extremely strong evidence that at least one
predictor has an effect.

Although this overall test is highly significant, the Table 5.1 results are
discouraging. The estimates for weight and width are only slightly larger than their

1See P. Peduzzi et al., J. Clin. Epidemiol., 49: 1373–1379, 1996.



“c05” — 2007/1/29 — page 139 — #3

5.1 STRATEGIES IN MODEL SELECTION 139

Table 5.1. Parameter Estimates for Main Effects Model
with Horseshoe Crab Data

Parameter Estimate SE

Intercept −9.273 3.838
Color(1) 1.609 0.936
Color(2) 1.506 0.567
Color(3) 1.120 0.593
Spine(1) −0.400 0.503
Spine(2) −0.496 0.629
Weight 0.826 0.704
Width 0.263 0.195

SE values. The estimates for the factors compare each category to the final one as a
baseline. For color, the largest difference is less than two standard errors. For spine
condition, the largest difference is less than a standard error.

The small P -value for the overall test yet the lack of significance for individual
effects is a warning sign of multicollinearity. Section 4.2.3 showed strong evidence
of a width effect. Controlling for weight, color, and spine condition, little evidence
remains of a width effect. However, weight and width have a strong correlation
(0.887). For practical purposes they are equally good predictors, but it is nearly
redundant to use them both. Our further analysis uses width (W ) with color (C) and
spine condition (S) as predictors.

For simplicity below, we symbolize models by their highest-order terms, regarding
C and S as factors. For instance, (C + S + W ) denotes the model with main effects,
whereas (C + S ∗ W ) denotes the model with those main effects plus an S × W

interaction. It is not sensible to use a model with interaction but not the main effects that
make up that interaction. A reason for including lower-order terms is that, otherwise,
the statistical significance and practical interpretation of a higher-order term depends
on how the variables are coded. This is undesirable. By including all the lower-order
effects that make up an interaction, the same results occur no matter how variables
are coded.

5.1.3 Stepwise Variable Selection Algorithms

As in ordinary regression, algorithms can select or delete predictors from a model
in a stepwise manner. In exploratory studies, such model selection methods can be
informative if used cautiously. Forward selection adds terms sequentially until further
additions do not improve the fit. Backward elimination begins with a complex model
and sequentially removes terms. At a given stage, it eliminates the term in the model
that has the largest P -value in the test that its parameters equal zero. We test only the
highest-order terms for each variable. It is inappropriate, for instance, to remove a
main effect term if the model contains higher-order interactions involving that term.
The process stops when any further deletion leads to a significantly poorer fit.
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With either approach, for categorical predictors with more than two categories,
the process should consider the entire variable at any stage rather than just individual
indicator variables. Otherwise, the result depends on how you choose the baseline
category for the indicator variables. Add or drop the entire variable rather than just
one of its indicators.

Variable selection methods need not yield a meaningful model. Use them with
caution! When you evaluate many terms, one or two that are not truly important may
look impressive merely due to chance.

In any case, statistical significance should not be the sole criterion for whether to
include a term in a model. It is sensible to include a variable that is important for
the purposes of the study and report its estimated effect even if it is not statistically
significant. Keeping it in the model may help reduce bias in estimating effects of other
predictors and may make it possible to compare results with other studies where the
effect is significant (perhaps because of a larger sample size). Likewise, with a very
large sample size sometimes a term might be statistically significant but not practically
significant. You might then exclude it from the model because the simpler model is
easier to interpret – for example, when the term is a complex interaction.

5.1.4 Example: Backward Elimination for Horseshoe Crabs

When one model is a special case of another, we can test the null hypothesis that the
simpler model is adequate against the alternative hypothesis that the more complex
model fits better. According to the alternative, at least one of the extra parameters
in the more complex model is nonzero. Recall that the deviance of a GLM is the
likelihood-ratio statistic for comparing the model to the saturated model, which has
a separate parameter for each observation (Section 3.4.3). As Section 3.4.4 showed,
the likelihood-ratio test statistic −2(L0 − L1) for comparing the models is the dif-
ference between the deviances for the models. This test statistic has an approximate
chi-squared null distribution.

Table 5.2 summarizes results of fitting and comparing several logistic regression
models. To select a model, we use a modified backward elimination procedure. We
start with a complex model, check whether the interaction terms are needed, and then
successively take out terms.

We begin with model (1) in Table 5.2, symbolized by C ∗ S + C ∗ W + S ∗ W . It
contains all the two-factor interactions and main effects. We test all the interactions
simultaneously by comparing it to model (2) containing only the main effects. The
likelihood-ratio statistic equals the difference in deviances, which is 186.6 − 173.7 =
12.9, with df = 166 − 155 = 11. This does not suggest that the interactions terms
are needed (P = 0.30). If they were, we could check individual interactions to see
whether they could be eliminated (see Problem 5.3).

The next stage considers dropping a term from the main effects model. Table 5.2
shows little consequence from removing spine condition S (model 3c). Both remain-
ing variables (C and W ) then have nonnegligible effects. For instance, removing C

increases the deviance (comparing models 4b and 3c) by 7.0 on df = 3 (P = 0.07).
The analysis in Section 4.4.3 revealed a noticeable difference between dark crabs
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Table 5.2. Results of Fitting Several Logistic Regression Models to Horseshoe
Crab Data

Models Deviance
Model Predictors Deviance df AIC Compared Difference

1 C ∗ S + C ∗ W + S ∗ W 173.7 155 209.7 –
2 C + S + W 186.6 166 200.6 (2)–(1) 12.9 (df = 11)
3a C + S 208.8 167 220.8 (3a)–(2) 22.2 (df = 1)
3b S + W 194.4 169 202.4 (3b)–(2) 7.8 (df = 3)
3c C + W 187.5 168 197.5 (3c)–(2) 0.9 (df = 2)
4a C 212.1 169 220.1 (4a)–(3c) 24.6 (df = 1)
4b W 194.5 171 198.5 (4b)–(3c) 7.0 (df = 3)
5 C = dark + W 188.0 170 194.0 (5)–(3c) 0.5 (df = 2)
6 None 225.8 172 227.8 (6)–(5) 37.8 (df = 2)

Note: C = color, S = spine condition, W = width.

(category 4) and the others. The simpler model that has a single dummy variable
for color, equaling 0 for dark crabs and 1 otherwise, fits essentially as well [the
deviance difference between models (5) and (3c) equals 0.5, with df = 2]. Further
simplification results in large increases in the deviance and is unjustified.

5.1.5 AIC, Model Selection, and the “Correct” Model

In selecting a model, you should not think that you have found the “correct” one. Any
model is a simplification of reality. For example, you should not expect width to have
an exactly linear effect on the logit probability of satellites. However, a simple model
that fits adequately has the advantages of model parsimony. If a model has relatively
little bias, describing reality well, it provides good estimates of outcome probabilities
and of odds ratios that describe effects of the predictors.

Other criteria besides significance tests can help select a good model. The best
known is the Akaike information criterion (AIC). It judges a model by how close
its fitted values tend to be to the true expected values, as summarized by a certain
expected distance between the two. The optimal model is the one that tends to have its
fitted values closest to the true outcome probabilities. This is the model that minimizes

AIC = −2(log likelihood − number of parameters in model)

We illustrate this criterion using the models that Table 5.2 lists. For the model
C + W , having main effects of color and width, software (PROC LOGISTIC in
SAS) reports a −2 log likelihood value of 187.5. The model has five parameters –
an intercept and a width effect and three coefficients of dummy variables for color.
Thus, AIC = 187.5 + 2(5) = 197.5.

Of models in Table 5.2 using some or all of the three basic predictors, AIC is
smallest (AIC = 197.5) for C + W . The simpler model replacing C by an indicator
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variable for whether a crab is dark fares better yet (AIC = 194.0). Either model seems
reasonable. Although the simpler model has lower AIC, that model was suggested by
inspecting the parameter estimates for model C + W .

The AIC penalizes a model for having many parameters. Even though a simple
model is farther than a more complex model from the true relationship, for a sample the
simple model may provide better estimates of the true expected values. For example,
because the model logit[π(x)] = α + β1x + β2x

2 + · · · + β10x
10 contains the model

logit[π(x)] = α + β1x as a special case, it is closer to the true relationship. If the true
relationship is approximately linear, however, with sample data we would get better
estimates of π(x) by fitting the simpler model.

5.1.6 Summarizing Predictive Power: Classification Tables∗

Sometimes it is useful to summarize the predictive power of a binary regression
model. One way to do this is with a classification table. This cross classifies the
binary outcome y with a prediction of whether y = 0 or 1. The prediction is ŷ = 1
when π̂i > π0 and ŷ = 0 when π̂i ≤ π0, for some cutoff π0. One possibility is to
take π0 = 0.50. However, if a low (high) proportion of observations have y = 1,
the model fit may never (always) have π̂i > 0.50, in which case one never (always)
predicts ŷ = 1. Another possibility takes π0 as the sample proportion of 1 outcomes,
which is π̂i for the model containing only an intercept term.

We illustrate for the model using width and color as predictors of whether a horse-
shoe crab has a satellite. Of the 173 crabs, 111 had a satellite, for a sample proportion
of 0.642. Table 5.3 shows classification tables using π0 = 0.50 and π0 = 0.642.

Table 5.3. Classification Tables for Horseshoe Crab Data

Prediction, π0 = 0.64 Prediction, π0 = 0.50

Actual ŷ = 1 ŷ = 0 ŷ = 1 ŷ = 0 Total

y = 1 74 37 94 17 111
y = 0 20 42 37 25 62

Two useful summaries of predictive power are

sensitivity = P(ŷ = 1 | y = 1), specificity = P(ŷ = 0 | y = 0)

Section 2.1.3 introduced these measures for predictions with diagnostic medical tests.
When π0 = 0.642, from Table 5.3 the estimated sensitivity = 74/111 = 0.667 and
specificity = 42/62 = 0.677.

Another summary of predictor power from the classification table is the overall
proportion of correct classifications. This estimates

P(correct classification) = P(y = 1 and ŷ = 1) + P(y = 0 and ŷ = 0)

= P(ŷ = 1 | y = 1)P (y = 1) + P(ŷ = 0 | y = 0)P (y = 0)
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which is a weighted average of sensitivity and specificity. For Table 5.3 with
π0 = 0.64, the proportion of correct classifications is (74 + 42)/173 = 0.671.

A classification table has limitations: It collapses continuous predictive values π̂

into binary ones. The choice of π0 is arbitrary. Results are sensitive to the relative
numbers of times that y = 1 and y = 0.

5.1.7 Summarizing Predictive Power: ROC Curves∗

A receiver operating characteristic (ROC) curve is a plot of sensitivity as a function
of (1 – specificity) for the possible cutoffs π0. An ROC curve is more informative
than a classification table, because it summarizes predictive power for all possible
π0. When π0 gets near 0, almost all predictions are ŷ = 1; then, sensitivity is near 1,
specificity is near 0, and the point for (1 – specificity, sensitivity) has coordinates near
(1, 1). When π0 gets near 1, almost all predictions are ŷ = 0; then, sensitivity is near
0, specificity is near 1, and the point for (1 – specificity, sensitivity) has coordinates
near (0, 0). The ROC curve usually has a concave shape connecting the points (0, 0)
and (1, 1).

For a given specificity, better predictive power correspond to higher sensitivity.
So, the better the predictive power, the higher the ROC curve. Figure 5.1 shows how
SAS (PROC LOGISTIC) reports the ROC curve for the model for the horseshoe

Figure 5.1. ROC curve for logistic regression model with horseshoe crab data.
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crabs using width and color as predictors. When π0 = 0.642, specificity = 0.68,
sensitivity = 0.67, and the point plotted has coordinates (0.32, 0.67).

The area under the ROC curve is identical to the value of a measure of predictive
power called the concordance index. Consider all pairs of observations (i, j ) such
that yi = 1 and yj = 0. The concordance index c estimates the probability that the
predictions and the outcomes are concordant, which means that the observation with
the larger y also has the larger π̂ . A value c = 0.50 means predictions were no better
than random guessing. This corresponds to a model having only an intercept term. Its
ROC curve is a straight line connecting the points (0, 0) and (1, 1). For the horseshoe
crab data, c = 0.639 with color alone as a predictor, 0.742 with width alone, 0.771
with width and color, and 0.772 with width and an indicator for whether a crab has
dark color.

5.1.8 Summarizing Predictive Power: A Correlation∗

For a GLM, a way to summarize prediction power is by the correlation R between
the observed responses {yi} and the model’s fitted values {μ̂i}. For least squares
regression, R represents the multiple correlation between the response variable and
the predictors. Then, R2 describes the proportion of the variation in Y that is explained
by the predictors. An advantage of R compared with R2 is that it uses the original
scale and it has value approximately proportional to the effect size (for instance, with
a single predictor, the correlation is the slope multiplied by the ratio of standard
deviations of the two variables).

For a binary regression model, R is the correlation between the n binary {yi} obser-
vations (1 or 0 for each) and the estimated probabilities {π̂i}. The highly discrete nature
of Y can suppress the range of possible R values. Also, like any correlation measure,
its value depends on the range of values observed for the explanatory variables.
Nevertheless, R is useful for comparing fits of different models for the same data.

According to the correlation between observed responses and estimated probabil-
ities for the horseshoe crab data, using color alone does not do nearly as well as using
width alone (R = 0.285 vs R = 0.402). Using both predictors together increases R

to 0.452. The simpler model that uses color merely to indicate whether a crab is dark
does essentially as well, with R = 0.447.

5.2 MODEL CHECKING

For any particular logistic regression model, there is no guarantee that the model fits
the data well. We next consider ways of checking the model fit.

5.2.1 Likelihood-Ratio Model Comparison Tests

One way to detect lack of fit uses a likelihood-ratio test to compare the model with
more complex ones. A more complex model might contain a nonlinear effect, such
as a quadratic term to allow the effect of a predictor to change directions as its value
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increases. Models with multiple predictors would consider interaction terms. If more
complex models do not fit better, this provides some assurance that a chosen model
is adequate.

We illustrate for the model in Section 4.1.3 that used x = width alone to predict
the probability that a female crab has a satellite,

logit[π(x)] = α + βx

One check compares this model with the more complex model that contains a quadratic
term,

logit[π̂(x)] = α + β1x + β2x
2

For that model, β̂2 = 0.040 has SE = 0.046. There is not much evidence to support
adding that term. The likelihood-ratio statistic for testing H0: β2 = 0 equals 0.83
(df = 1, P -value = 0.36).

The model in Section 4.4.1 used width and color predictors, with three dummy
variables for color. Section 4.4.2 noted that an improved fit did not result from adding
three cross-product terms for the interaction between width and color in their effects.

5.2.2 Goodness of Fit and the Deviance

A more general way to detect lack of fit searches for any way the model fails.
A goodness-of-fit test compares the model fit with the data. This approach regards
the data as representing the fit of the most complex model possible – the saturated
model, which has a separate parameter for each observation.

Denote the working model by M . In testing the fit of M , we test whether all para-
meters that are in the saturated model but not in M equal zero. In GLM terminology,
the likelihood-ratio statistic for this test is the deviance of the model (Section 3.4.3).
In certain cases, this test statistic has a large-sample chi-squared null distribution.

When the predictors are solely categorical, the data are summarized by counts in
a contingency table. For the ni subjects at setting i of the predictors, multiplying the
estimated probabilities of the two outcomes by ni yields estimated expected frequen-
cies for y = 0 and y = 1. These are the fitted values for that setting. The deviance
statistic then has the G2 form introduced in equation (2.7), namely

G2(M) = 2
∑

observed [log(observed/fitted)]

for all the cells in that table. The corresponding Pearson statistic is

X2(M) =
∑

(observed − fitted)2/fitted

For a fixed number of settings, when the fitted counts are all at least about 5,
X2(M) and G2(M) have approximate chi-squared null distributions. The degrees of
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freedom, called the residual df for the model, subtract the number of parameters in
the model from the number of parameters in the saturated model. The number of
parameters in the saturated model equals the number of settings of the predictors,
which is the number of binomial observations for the data in the grouped form of the
contingency table. Large X2(M) or G2(M) values provide evidence of lack of fit.
The P -value is the right-tail probability.

We illustrate by checking the model Section 4.3.2 used for the data on AIDS
symptoms (y = 1, yes), AZT use, and race, shown again in Table 5.4. Let x = 1 for
those who took AZT immediately and x = 0 otherwise, and let z = 1 for whites and
z = 0 for blacks. The ML fit is

logit(π̂) = −1.074 − 0.720x + 0.056z

The model assumes homogeneous association (Section 2.7.6), with odds ratio between
each predictor and the response the same at each category of the other variable. Is
this assumption plausible?

Table 5.4. Development of AIDS Symptoms by AZT Use and Race

Symptoms

Race AZT Use Yes No Total

White Yes 14 93 107
No 32 81 113

Black Yes 11 52 63
No 12 43 55

For this model fit, white veterans with immediate AZT use had estimated probabi-
lity 0.150 of developing AIDS symptoms during the study. Since 107 white veterans
tookAZT, the fitted number developing symptoms is 107(0.150) = 16.0, and the fitted
number not developing symptoms is 107(0.850) = 91.0. Similarly, one can obtain
fitted values for all eight cells in Table 5.4. Substituting these and the cell counts
into the goodness-of-fit statistics, we obtain G2(M) = 1.38 and X2(M) = 1.39. The
model applies to four binomial observations, one at each of the four combinations of
AZT use and race. The model has three parameters, so the residual df = 4 − 3 = 1.
The small G2 and X2 values suggest that the model fits decently (P = 0.24).

5.2.3 Checking Fit: Grouped Data, Ungrouped Data, and
Continuous Predictors

The beginning of Section 4.2 noted that, with categorical predictors, the data file
can have the form of ungrouped data or grouped data. The ungrouped data are the
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raw 0 and 1 observations. The grouped data are the totals of successes and failures
at each combination of the predictor values. Although the ML estimates of para-
meters are the same for either form of data, the X2 and G2 statistics are not. These
goodness-of-fit tests only make sense for the grouped data. The large-sample theory
for X2 and G2 applies for contingency tables when the fitted counts mostly exceed
about 5.

When calculated for logistic regression models fitted with continuous or nearly
continuous predictors, the X2 and G2 statistics do not have approximate chi-squared
distributions. How can we check the adequacy of a model for such data? One way
creates categories for each predictor (e.g., four categories according to where a value
falls relative to the quartiles) and then applies X2 or G2 to observed and fitted counts
for the grouped data. As the number of explanatory variables increases, however,
simultaneous grouping of values for each variable produces a contingency table with
a very large number of cells. Most cells then have fitted values that are too small for
the chi-squared approximation to be good.

An alternative way of grouping the data forms observed and fitted values based on
a partitioning of the estimated probabilities. With 10 groups of equal size, the first pair
of observed counts and corresponding fitted counts refers to the n/10 observations
having the highest estimated probabilities, the next pair refers to the n/10 observations
having the second decile of estimated probabilities, and so forth. Each group has an
observed count of subjects with each outcome and a fitted value for each outcome. The
fitted value for an outcome is the sum of the estimated probabilities for that outcome
for all observations in that group.

The Hosmer–Lemeshow test uses a Pearson test statistic to compare the observed
and fitted counts for this partition. The test statistic does not have exactly a limiting
chi-squared distribution. However, Hosmer and Lemeshow (2000, pp. 147–156) noted
that, when the number of distinct patterns of covariate values (for the original data)
is close to the sample size, the null distribution is approximated by chi-squared with
df = number of groups −2.

For the fit to the horseshoe crab data of the logistic regression model with width
(which is continuous) as the sole predictor, SAS (PROC LOGISTIC) reports that
the Hosmer–Lemeshow statistic with 10 groups equals 6.6, with df = 10 − 2 = 8. It
indicates an adequate fit (P -value = 0.58). For the model having width and color as
predictors, the Hosmer–Lemeshow statistic equals 4.4 (df = 8), again indicating an
adequate fit.

5.2.4 Residuals for Logit Models

From a scientific perspective, the approach of comparing a working model to more
complex models is more useful than a global goodness-of-fit test. A large goodness-
of-fit statistic merely indicates some lack of fit, but provides no insight about its
nature. Comparing a model to a more complex model, on the other hand, indicates
whether lack of fit exists of a particular type. For either approach, when the fit is poor,
diagnostic measures describe the influence of individual observations on the model
fit and highlight reasons for the inadequacy.
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With categorical predictors, we can use residuals to compare observed and fitted
counts. This should be done with the grouped form of the data. Let yi denote the
number of “successes” for ni trials at setting i of the explanatory variables. Let π̂i

denote the estimated probability of success for the model fit. Then, the estimated
binomial mean niπ̂i is the fitted number of successes.

For a GLM with binomial random component, the Pearson residual (3.9)
comparing yi to its fit is

Pearson residual = ei = yi − niπ̂i√[niπ̂i(1 − π̂i)]

Each Pearson residual divides the difference between an observed count and its fitted
value by the estimated binomial standard deviation of the observed count. When ni

is large, ei has an approximate normal distribution. When the model holds, {ei} has
an approximate expected value of zero but a smaller variance than a standard normal
variate.

The standardized residual divides (yi − niπ̂i) by its SE,

standardized residual = yi − niπ̂i

SE
= yi − niπ̂i√[niπ̂i(1 − π̂i)(1 − hi)]

The term hi in this formula is the observation’s leverage, its element from the diag-
onal of the so-called hat matrix. (Roughly speaking, the hat matrix is a matrix
that, when applied to the sample logits, yields the predicted logit values for the
model.) The greater an observation’s leverage, the greater its potential influence on
the model fit.

The standardized residual equals ei/
√

(1 − hi), so it is larger in absolute value
than the Pearson residual ei . It is approximately standard normal when the model
holds. We prefer it. An absolute value larger than roughly 2 or 3 provides evidence of
lack of fit. This serves the same purpose as the standardized residual (2.9) defined in
Section 2.4.5 for detecting patterns of dependence in two-way contingency tables. It
is a special case of the standardized residual presented in Section 3.4.5 for describing
lack of fit in GLMs.

When fitted values are very small, we have noted that X2 and G2 do not have
approximate null chi-squared distributions. Similarly, residuals have limited meaning
in that case. For ungrouped binary data and often when explanatory variables are
continuous, each ni = 1. Then, yi can equal only 0 or 1, and a residual can assume only
two values and is usually uninformative. Plots of residuals also then have limited use,
consisting merely of two parallel lines of dots. The deviance itself is then completely
uninformative about model fit. When data can be grouped into sets of observations
having common predictor values, it is better to compute residuals for the grouped
data than for individual subjects.
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5.2.5 Example: Graduate Admissions at University of Florida

Table 5.5 refers to graduate school applications to the 23 departments in the College of
Liberal Arts and Sciences at the University of Florida, during the 1997–98 academic
year. It cross-classifies whether the applicant was admitted (Y ), the applicant’s gender
(G), and the applicant’s department (D). For the nik applications by gender i in
department k, let yik denote the number admitted and let πik denote the probability
of admission. We treat {Yik} as independent binomial variates for {nik} trials with
success probabilities {πik}.

Other things being equal, one would hope the admissions decision is independent
of gender. The model with no gender effect, given department, is

logit(πik) = α + βD
k

However, the model may be inadequate, perhaps because a gender effect exists in
some departments or because the binomial assumption of an identical probability
of admission for all applicants of a given gender to a department is unrealistic. Its
goodness-of-fit statistics are G2 = 44.7 and X2 = 40.9, both with df = 23. This
model fits rather poorly (P -values = 0.004 and 0.012).

Table 5.5 also reports standardized residuals for the number of females who
were admitted, for this model. For instance, the Astronomy department admitted
six females, which was 2.87 standard deviations higher than predicted by the model.
Each department has df = 1 (the df for independence in a 2 × 2 table) and only a
single nonredundant standardized residual. The standardized residuals are identical

Table 5.5. Table Relating Whether Admitted to Graduate School at Florida to
Gender and Department, Showing Standardized Residuals for Model with no
Gender Effect

Females Males Std. Res Females Males Std. Res
Dept Yes No Yes No (Fem,Yes) Dept Yes No Yes No (Fem,Yes)

anth 32 81 21 41 −0.76 ling 21 10 7 8 1.37
astr 6 0 3 8 2.87 math 25 18 31 37 1.29
chem 12 43 34 110 −0.27 phil 3 0 9 6 1.34
clas 3 1 4 0 −1.07 phys 10 11 25 53 1.32
comm 52 149 5 10 −0.63 poli 25 34 39 49 −0.23
comp 8 7 6 12 1.16 psyc 2 123 4 41 −2.27
engl 35 100 30 112 0.94 reli 3 3 0 2 1.26
geog 9 1 11 11 2.17 roma 29 13 6 3 0.14
geol 6 3 15 6 −0.26 soci 16 33 7 17 0.30
germ 17 0 4 1 1.89 stat 23 9 36 14 −0.01
hist 9 9 21 19 −0.18 zool 4 62 10 54 −1.76
lati 26 7 25 16 1.65

Note: Thanks to Dr. James Booth for showing me these data.
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in absolute value for males and females but of different sign. Astronomy admitted
three males, and their standardized residual was −2.87; the number admitted was
2.87 standard deviations lower than predicted.2

Departments with large standardized residuals are responsible for the lack of fit.
Significantly more females were admitted than the model predicts in the Astronomy
and Geography departments, and fewer were admitted in the Psychology depart-
ment. Without these three departments, the model fits adequately (G2 = 24.4, X2 =
22.8, df = 20).

For the complete data, next we consider the model that also has a gender effect.
It does not provide an improved fit (G2 = 42.4, X2 = 39.0, df = 22), because the
departments just described have associations in different directions and of greater
magnitude than other departments. This model has an ML estimate of 1.19 for the
GY conditional odds ratio: The estimated odds of admission were 19% higher for
females than males, given department. By contrast, the marginal table collapsed over
department has a GY sample odds ratio of 0.94, the overall odds of admission being
6% lower for females. This illustrates Simpson’s paradox (Section 2.7.3), because
the conditional association has a different direction than the marginal association.

5.2.6 Influence Diagnostics for Logistic Regression

As in ordinary regression, some observations may have too much influence in deter-
mining the parameter estimates. The fit could be quite different if they were deleted.
Whenever a residual indicates that a model fits an observation poorly, it can be infor-
mative to delete the observation and re-fit the model to the remaining ones. However,
a single observation can have a more exorbitant influence in ordinary regression than
in logistic regression, since ordinary regression has no bound on the distance of yi

from its expected value.
Several diagnostics describe various aspects of influence. Many of them relate to

the effect on certain characteristics of removing the observation from the data set. In
logistic regression, the observation could be a single binary response or a binomial
response for a set of subjects all having the same predictor values (i.e., grouped data).
These diagnostics are algebraically related to an observation’s leverage. Influence
diagnostics for each observation include:

1. For each model parameter, the change in the parameter estimate when the
observation is deleted. This change, divided by its standard error, is called
Df beta.

2. A measure of the change in a joint confidence interval for the parameters
produced by deleting the observation. This confidence interval displacement
diagnostic is denoted by c.

2This is an advantage of standardized residuals. Only one bit of information (df = 1) exists about how the
data depart from independence, yet the Pearson residuals for males and for females normally do not have
the same absolute value.
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3. The change in X2 or G2 goodness-of-fit statistics when the observation is
deleted.

For each diagnostic, the larger the value, the greater the influence. Some software
for logistic regression (such as PROC LOGISTIC in SAS) produces them.

5.2.7 Example: Heart Disease and Blood Pressure

Table 5.6 is from an early analysis of data from the Framingham study, a longitudinal
study of male subjects in Framingham, Massachusetts. In this analysis, men aged
40–59 were classified onx = blood pressure andy = whether developed heart disease
during a 6 year follow-up period. Let πi be the probability of heart disease for blood
pressure category i. The table shows the fit for the linear logit model,

logit(πi) = α + βxi

with scores {xi} for blood pressure level. We used scores (111.5, 121.5, 131.5, 141.5,
151.5, 161.5, 176.5, 191.5). The nonextreme scores are midpoints for the intervals of
blood pressure.

Table 5.6 also reports standardized residuals and approximations reported by SAS
(PROC LOGISTIC) for the Dfbeta measure for the coefficient of blood pressure, the
confidence interval diagnostic c, the change in X2 (This is the square of the stan-
dardized residual), and the change in G2 (LR difference). All their values show that
deleting the second observation has the greatest effect. One relatively large diagnostic
is not surprising, however. With many observations, a small percentage may be large
purely by chance.

For these data, the overall fit statistics (G2 = 5.9, X2 = 6.3 with df = 6) do not
indicate lack of fit. In analyzing diagnostics, we should be cautious about attributing

Table 5.6. Diagnostic Measures for Logistic Regression Models Fitted to
Heart Disease Data

Blood Sample Observed Fitted Standardized Pearson LR
Pressure Size Disease Disease Residual Dfbeta c Difference Difference

111.5 156 3 5.2 −1.11 0.49 0.34 1.22 1.39
121.5 252 17 10.6 2.37 −1.14 2.26 5.64 5.04
131.5 284 12 15.1 −0.95 0.33 0.31 0.89 0.94
141.5 271 16 18.1 −0.57 0.08 0.09 0.33 0.34
151.5 139 12 11.6 0.13 0.01 0.00 0.02 0.02
161.5 85 8 8.9 −0.33 −0.07 0.02 0.11 0.11
176.5 99 16 14.2 0.65 0.40 0.26 0.42 0.42
191.5 43 8 8.4 −0.18 −0.12 0.02 0.03 0.03

Source: J. Cornfield, Fed. Proc., 21(suppl. 11): 58–61, 1962.
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Figure 5.2. Observed proportion (x) and estimated probability of heart disease (curve) for linear logit
model.

patterns to what might be chance variation from a model. Also, these deletion diagnos-
tics all relate to removing an entire binomial sample at a blood pressure level instead
of removing a single subject’s binary observation. Such subject-level deletions have
little effect for this model.

Another useful graphical display for showing lack of fit compares observed and
fitted proportions by plotting them against each other, or by plotting both of them
against explanatory variables. For the linear logit model, Figure 5.2 plots both the
observed proportions and the estimated probabilities of heart disease against blood
pressure. The fit seems decent.

5.3 EFFECTS OF SPARSE DATA

The log likelihood function for logistic regression models has a concave (bowl) shape.
Because of this, the algorithm for finding the ML estimates (Section 3.5.1) usually
converges quickly to the correct values. However, certain data patterns present dif-
ficulties, with the ML estimates being infinite or not existing. For quantitative or
categorical predictors, this relates to observing only successes or only failures over
certain ranges of predictor values.

5.3.1 Infinite Effect Estimate: Quantitative Predictor

Consider first the case of a single quantitative predictor. The ML estimate for its effect
is infinite when the predictor values having y = 0 are completely below or completely
above those having y = 1, as Figure 5.3 illustrates. In it, y = 0 at x = 10, 20, 30,
40, and y = 1 at x = 60, 70, 80, 90. An ideal (perfect) fit has π̂ = 0 for x ≤ 40 and
π̂ = 1 for x ≥ 60. One can get a sequence of logistic curves that gets closer and closer
to this ideal by letting β̂ increase without limit, with α̂ = −50β̂. (This α̂ value yields
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Figure 5.3. Perfect discrimination resulting in infinite logistic regression parameter estimate.

π̂ = 0.50 at x = 50.) In fact, the likelihood function keeps increasing as β̂ increases,
and its ML estimate is ∞.

In practice, most software fails to recognize when β̂ = ∞. After a few cycles of
the iterative fitting process, the log likelihood looks flat at the working estimate, and
convergence criteria are satisfied. Because the log likelihood is so flat and because
standard errors of parameter estimates become greater when the curvature is less,
software then reports huge standard errors. A danger is that you might not realize
when reported estimated effects and results of statistical inferences are invalid. For
the data in Figure 5.3, for instance, SAS (PROC GENMOD) reports logit(π̂) =
−192.2 + 3.84x with standard errors of 0.80 × 107 and 1.56 × 107. Some software
(such as PROC LOGISTIC in SAS) does provide warnings when infinite estimates
occur.

With several predictors, consider the multidimensional space for displaying the
data. Suppose you could pass a plane through the space of predictor values such that
on one side of that plane y = 0 for all observations, whereas on the other side y = 1
always. There is then perfect discrimination: You can predict the sample outcomes
perfectly by knowing the predictor values (except possibly at boundary points between
the two regions). Again, at least one estimate will be infinite. When the spaces overlap
where y = 1 and where y = 0, the ML estimates are finite.

5.3.2 Infinite Effect Estimate: Categorical Predictors

Infinite estimates also can occur with categorical predictors. A simple case of this is
a single binary predictor, so the data are counts in a 2 × 2 contingency table. The
logistic regression model has an indicator variable for the binary predictor. Then, the
ML estimate of the effect is the sample log odds ratio. When one of the cell counts is
0, that estimate is plus or minus infinity.

With two or more categorical predictors, the data are counts in a multiway contin-
gency table. When the table has a large number of cells, most cell counts are usually
small and many may equal 0. Contingency tables having many cells with small counts
are said to be sparse. Sparseness is common in contingency tables with many variables
or with classifications having several categories.
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A cell with a count of 0 is said to be empty. Although empty, in the population the
cell’s true probability is almost always positive. That is, it is theoretically possible to
have observations in the cell, and a positive count would occur if the sample size were
sufficiently large. To emphasize this, such an empty cell is often called a sampling zero.

Depending on the model, sampling zeroes can cause ML estimates of model param-
eters to be infinite. When all cell counts are positive, all parameter estimates are
necessarily finite. When any marginal counts corresponding to terms in a model
equal zero, infinite estimates occur for that term. For instance, consider a three-way
table with binary predictors X1 and X2 for a binary response Y . When a marginal
total equals zero in the 2 × 2 table relating Y to X1, then the ML estimate of the effect
of X1 in the logistic regression model is infinite.

ML estimates are finite when all the marginal totals corresponding to terms in the
model are positive. For example suppose a logit model has main effects for X1, X2,
and X3, so the data are counts in a four-way table. The effect of X1 will be finite if the
X1Y two-way marginal table has positive counts. If there is also an X1X2 interaction
term, that effect will be finite if the X1X2Y three-way marginal table has positive
counts.

Empty cells and sparse tables can also cause bias in estimators of odds ratios.
As noted at the end of Section 2.3.3, one remedy is first to add 1/2 to cell counts.
However, doing this before fitting a model smooths the data too much, causing havoc
with sampling distributions of test statistics. Also, when a ML parameter estimate
is infinite, this is not fatal to data analysis. For example, when the ML estimate of
an odds ratio is +∞, a likelihood-ratio confidence interval has a finite lower bound.
Thus, one can determine how small the true effect may plausibly be.

When your software’s fitting processes fail to converge because of infinite esti-
mates, adding a very small constant (such as 10−8) is adequate for ensuring
convergence. One can then estimate parameters for which the true estimates are finite
and are not affected by the empty cells, as the following example shows. For each
possibly influential observation, delete it or move it to another cell to check how much
the results vary with small perturbations to the data. Often, some associations are not
affected by the empty cells and give stable results for the various analyses, whereas
others that are affected are highly unstable. Use caution in making conclusions about
an association if small changes in the data are influential. Sometimes it makes sense
to fit the model by excluding part of the data containing empty cells, or by combining
that part with other parts of the data, or by using fewer predictors so the data are less
sparse.

The Bayesian approach to statistical inference typically provides a finite estimate
in cases for which an ML estimate is infinite. However, that estimate may depend
strongly on the choice of prior distribution. See O’Hagan and Forster (2004) for
details.

5.3.3 Example: Clinical Trial with Sparse Data

Table 5.7 shows results of a randomized clinical trial conducted at five centers. The
purpose was to compare an active drug to placebo for treating fungal infections
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Table 5.7. Clinical Trial Relating Treatment (X) to Response
(Y ) for Five Centers (Z), with XY and YZ Marginal Tables

Response (Y ) YZ Marginal

Center (Z) Treatment (X) Success Failure Success Failure

1 Active drug 0 5
0 14

Placebo 0 9

2 Active drug 1 12
1 22

Placebo 0 10

3 Active drug 0 7
0 12

Placebo 0 5

4 Active drug 6 3
8 9

Placebo 2 6

5 Active drug 5 9
7 21

Placebo 2 12

XY Active drug 12 36
Marginal Placebo 4 42

Source: Diane Connell, Sandoz Pharmaceuticals Corp.

(1 = success, 0 = failure). For these data, let Y = Response, X = Treatment (Active
drug or Placebo), and Z = Center. Centers 1 and 3 had no successes. Thus, the 5 × 2
marginal table relating center to response, collapsed over treatment, contains zero
counts. This marginal table is shown in the last two columns of Table 5.7.

For these data, consider the model

logit[P(Y = 1) = α + βx + βZ
k

Because centers 1 and 3 had no successes, the ML estimates of the terms βZ
1 and βZ

3
pertaining to their effects equal −∞. The fitted logits for those centers equal −∞,
for which the fitted probability of success is 0.

In practice, software notices that the likelihood function continually increases as
βZ

1 and βZ
3 decrease toward −∞, but the fitting algorithm may “converge” at large

negative values. For example, SAS (PROC GENMOD) reports β̂Z
1 and β̂Z

3 to both
be about −26 with standard errors of about 200,000. Since the software uses default
coding that sets βZ

5 = 0, these estimates refer to contrasts of each center with the last
one. If we remove α from the model, then one of {βZ

k } is no longer redundant. Each
center parameter then refers to that center alone rather than a contrast with another
center. Most software permits fitting a model parameterized in this way by using a
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“no intercept” option. When SAS (PROC GENMOD) does this, β̂Z
1 and β̂Z

3 are both
about −28 with standard errors of about 200,000.

The counts in the 2 × 2 marginal table relating treatment to response, shown in
the bottom panel of Table 5.7, are all positive. The empty cells in Table 5.7 affect
the center estimates, but not the treatment estimates, for this model. The estimated
log odds ratio equals 1.55 for the treatment effect (SE = 0.70). The deviance (G2)
goodness-of-fit statistic equals 0.50 (df = 4, P = 0.97).

The treatment log odds ratio estimate of 1.55 also results from deleting centers
1 and 3 from the analysis. In fact, when a center has outcomes of only one type, it
provides no information about the odds ratio between treatment and response. Such
tables also make no contribution to the Cochran–Mantel–Haenszel test (Section 4.3.4)
or to a small-sample, exact test of conditional independence between treatment and
response (Section 5.4.2).

An alternative strategy in multi-center analyses combines centers of a similar type.
Then, if each resulting partial table has responses with both outcomes, the inferences
use all data. For estimating odds ratios, however, this usually has little impact. For
Table 5.7, perhaps centers 1 and 3 are similar to center 2, since the success rate is
very low for that center. Combining these three centers and re-fitting the model to
this table and the tables for the other two centers yields an estimated treatment effect
of 1.56 (SE = 0.70). Centers with no successes or with no failures can be useful for
estimating some parameters, such as the difference of proportions, but they do not
help us estimate odds ratios for logistic regression models or give us information
about whether a treatment effect exists in the population.

5.3.4 Effect of Small Samples on X2 and G2 Tests

When a model for a binary response has only categorical predictors, the true sampling
distributions of goodness-of-fit statistics are approximately chi-squared, for large
sample size n. The adequacy of the chi-squared approximation depends both on n

and on the number of cells. It tends to improve as the average number of observations
per cell increases.

The quality of the approximation has been studied carefully for the Pearson X2

test of independence for two-way tables (Section 2.4.3). Most guidelines refer to the
fitted values. When df > 1, a minimum fitted value of about 1 is permissible as long
as no more than about 20% of the cells have fitted values below 5. However, the
chi-squared approximation can be poor for sparse tables containing both very small
and very large fitted values. Unfortunately, a single rule cannot cover all cases. When
in doubt, it is safer to use a small-sample, exact test (Section 2.6.1).

The X2 statistic tends to be valid with smaller samples and sparser tables than
G2. The distribution of G2 is usually poorly approximated by chi-squared when
n/(number of cells) is less than 5. Depending on the sparseness, P -values based
on referring G2 to a chi-squared distribution can be too large or too small. When
most fitted values are smaller than 0.50, treating G2 as chi-squared gives a highly
conservative test; that is, when H0 is true, reported P -values tend to be much larger
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than true ones. When most fitted values are between about 0.50 and 5, G2 tends to be
too liberal; the reported P -value tends to be too small.

For fixed values of n and the number of cells, the chi-squared approximation is
better for tests with smaller values of df. For instance, it is better for a test comparing
two models M0 and M1 when M1 has at most a few more parameters than M0 than it
is for testing fit by comparing a model to the saturated model. In the latter case one is
testing that every parameter equals 0 that could be in the model but is not, and df can
be large when there are many cells. For models with only main effects, the adequacy
of model-comparison tests depends more on the two-way marginal totals relating Y

to each predictor than on cell counts. Cell counts can be small as long as most totals
in these marginal tables exceed about 5.

When cell counts are so small that chi-squared approximations may be inadequate,
one could combine categories of variables to obtain larger counts. This is usually not
advisable unless there is a natural way to combine them and little information loss
in defining the variable more crudely. In any case, poor sparse-data performance
of chi-squared tests is becoming less problematic because of the development of
small-sample methods. The following section discusses this for parameters in logistic
regression.

5.4 CONDITIONAL LOGISTIC REGRESSION AND
EXACT INFERENCE

For inference about logistic regression parameters, the ordinary sampling distributions
are approximately normal or chi-squared. The approximation improves as the sample
size increases. For small samples, it is better to use the exact sampling distributions.
Methods that find and use the exact distribution are now feasible due to recent advances
in computer power and software. For example, StatXact (Cytel Software) conducts
many exact inferences for two-way and three-way contingency tables. LogXact (Cytel
software) and PROC LOGISTIC (SAS) handle exact inference for logistic regression
parameters.

5.4.1 Conditional Maximum Likelihood Inference

The exact inference approach deals with the primary parameters of interest using a
conditional likelihood function that eliminates the other parameters. The technique
uses a conditional probability distribution defined for potential samples that provide
the same information about the other parameters that occurs in the observed sample.
The distribution and the related conditional likelihood function depend only on the
parameters of interest.

The conditional maximum likelihood estimate of a parameter is the value at which
the conditional likelihood function achieves it maximum. Ordinary ML estimators
of parameters work best when the sample size is large compared with the number of
model parameters. When the sample size is small, or when there are many parameters
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relative to the sample size, conditional ML estimates of parameters work better than
ordinary ML estimators.

Exact inference for a parameter uses the conditional likelihood function that elim-
inates all the other parameters. Since that conditional likelihood does not involve
unknown parameters, probabilities such as P -values use exact distributions rather
than approximations. When the sample size is small, conditional likelihood-based
exact inference in logistic regression is more reliable than the ordinary large-sample
inferences.

5.4.2 Small-Sample Tests for Contingency Tables

Consider first logistic regression with a single explanatory variable,

logit[π(x)] = α + βx

When x takes only two values, the model applies to 2 × 2 tables of counts {nij }
for which the two columns are the levels of Y . The usual sampling model treats the
responses on Y in the two rows as independent binomial variates. The row totals,
which are the numbers of trials for those binomial variates, are naturally fixed.

For this model, the hypothesis of independence is H0: β = 0. The unknown para-
meter α refers to the relative number of outcomes of y = 1 and y = 0, which are
the column totals. Software eliminates α from the likelihood by conditioning also
on the column totals, which are the information in the data about α. Fixing both
sets of marginal totals yields a hypergeometric distribution for n11, for which the
probabilities do not depend on unknown parameters. The resulting exact test of H0:
β = 0 is the same as Fisher’s exact test (Section 2.6.1).

Next, suppose the model also has a second explanatory factor, Z, with K levels.
If Z is nominal-scale, a relevant model is

logit(π) = α + βx + βZ
k

Section 4.3.4 presented this model for 2 × 2 × K contingency tables. The test of
H0: β = 0 refers to the effect of X on Y , controlling for Z. The exact test eliminates
the other parameters by conditioning on the marginal totals in each partial table. This
gives an exact test of conditional independence between X and Y , controlling for Z.

For 2 × 2 × K tables {nijk}, conditional on the marginal totals in each partial table,
the Cochran–Mantel–Haenszel test of conditional independence (Section 4.3.4) is a
large-sample approximate method that compares

∑
k n11k to its null expected value.

Exact tests use
∑

k n11k in the way they use n11 in Fisher’s exact test for 2 × 2
tables. Hypergeometric distributions in each partial table determine the probability
distribution of

∑
k n11k . The P -value for Ha : β > 0 equals the right-tail probability

that
∑

k n11k is at least as large as observed, for the fixed marginal totals. Two-sided
alternatives can use a two-tail probability of those outcomes that are no more likely
than the observed one.
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5.4.3 Example: Promotion Discrimination

Table 5.8 refers to US Government computer specialists of similar seniority consid-
ered for promotion from classification level GS-13 to level GS-14. The table cross-
classifies promotion decision, considered for three separate months, by employee’s
race. We test conditional independence of promotion decision and race. The table
contains several small counts. The overall sample size is not small (n = 74), but one
marginal count (collapsing over month of decision) equals zero, so we might be wary
of using the CMH test.

Table 5.8. Promotion Decisions by Race and by Month

July August September
Promotions Promotions Promotions

Race Yes No Yes No Yes No

Black 0 7 0 7 0 8
White 4 16 4 13 2 13

Source: J. Gastwirth, Statistical Reasoning in Law and Public Policy,
Academic Press, New York (1988), p. 266.

Let x = 1 for black and 0 for white. We first use Ha : β < 0. This corresponds
to potential discrimination against black employees, their probability of promotion
being lower than for white employees. Fixing the row and column marginal totals
in each partial table, the test uses n11k , the first cell count in each. For the mar-
gins of the partial tables in Table 5.8, n111 can range between 0 and 4, n112 can
range between 0 and 4, and n113 can range between 0 and 2. The total

∑
k n11k

can take values between 0 and 10. The sample data represent the smallest pos-
sible count for blacks being promoted in each of the three cases. The observed∑

k n11k = 0.
Because the sample result is the most extreme possible, the conditional ML estima-

tor of the effect of race in the logistic regression model is β̂ = −∞. Exact conditional
methods are still useful when ordinary ML or conditional ML methods report an infi-
nite parameter estimate. The P -value is the null probability of this most extreme
outcome, which software (StatXact) reveals to equal 0.026.

A two-sided P -value, based on summing the probabilities of all tables having
probabilities no greater than the observed table, equals 0.056. There is some evidence,
but not strong, that promotion is associated with race.

5.4.4 Small-Sample Confidence Intervals for Logistic
Parameters and Odds Ratios

Software can also construct confidence intervals using exact conditional distributions.
The 95% confidence interval for β consists of all values β0 for which the P -value for
H0: β = β0 is larger than 0.05 in the exact test.
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Consider again Table 5.8 on promotion decisions and race. When β̂ is infinite, a
confidence interval is still useful because it reports a finite bound in the other direction.
For these data, StatXact reports an exact 95% confidence interval for β of (−∞, 0.01).
This corresponds to the interval (e−∞, e0.01) = (0, 1.01) for the true conditional odds
ratio in each partial table.

5.4.5 Limitations of Small-Sample Exact Methods∗

Although the use of exact distributions is appealing, the conditioning on certain mar-
gins can make that distribution highly discrete. Because of this, as Sections 1.4.4
and 2.6.3 discussed, inferences are conservative. When a null hypothesis is true, for
instance, the P -value falls below 0.05 no more than 5% of the time, but possibly
much less than 5%. For a 95% confidence interval, the true confidence level is at least
0.95, but is unknown.

To alleviate conservativeness, we recommend inference based on the mid P -value.
Section 1.4.5 defined the mid P -value to be half the probability of the observed
result plus the probability of more extreme results. A 95% confidence interval con-
tains the null hypothesis parameter values having mid P -values exceeding 0.05 in
two-sided tests. With mid P -based inference, the actual error probabilities usu-
ally more closely match the nominal level than either the exact or large-sample
intervals.

Consider the promotion decisions and race example above in Section 5.4.3. For Ha :
β < 0, the ordinary exact P -value of 0.026 was the null probability of the observed
value of 0 for

∑
k n11k , as this was the most extreme value. The mid P -value is

half this, 0.013. Software reports that the mid P 95% confidence interval for the
conditional odds ratio is (0, 0.78). This does not contain 1.0, which differs from the
interval (0, 1.01) based on the ordinary exact P -value. In summary, we can be at least
95% confident that the conditional odds ratio falls in (0, 1.01) and approximately 95%
confident that it falls in (0, 0.78).

When any predictor is continuous, the discreteness can be so extreme that the exact
conditional distribution is degenerate – it is completely concentrated at the observed
result. Then, the P -value is 1.0 and the confidence interval contains all possible
parameter values. Such results are uninformative. The exact conditional approach
is not then useful. Generally, small-sample exact conditional inference works with
contingency tables but not with continuous predictors.

5.5 SAMPLE SIZE AND POWER FOR LOGISTIC REGRESSION

The major aim of many studies is to determine whether a particular variable has an
effect on a binary response. The study design should determine the sample size needed
to provide a good chance of detecting an effect of a given size.
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5.5.1 Sample Size for Comparing Two Proportions

Many studies are designed to compare two groups. Consider the hypothesis that the
group “success” probabilities π1 and π2 are identical. We could conduct a test for the
2 × 2 table that cross-classifies group by response, rejecting H0 if the P -value ≤ α

for some fixed α. To determine sample size, we must specify the probability β of
failing to detect a difference between π1 and π2 of some fixed size considered to be
practically important. For this size of effect, β is the probability of failing to reject
H0 at the α level. Then, α = P (type I error) and β = P (type II error). The power of
the test equals 1 − β.

A study using equal group sample sizes requires approximately

n1 = n2 = (zα/2 + zβ)2[π1(1 − π1) + π2(1 − π2)]/(π1 − π2)
2

This formula requires values for π1, π2, α, and β. For testing H0: π1 = π2 at the 0.05
level, suppose we would like P (type II error) = 0.10 if π1 and π2 are truly about 0.20
and 0.30. Then α = 0.05, β = 0.10, z0.025 = 1.96, z0.10 = 1.28, and we require

n1 = n2 = (1.96 + 1.28)2[(0.2)(0.8) + (0.3)(0.7)]/(0.2 − 0.3)2 = 389

This formula also provides the sample sizes needed for a comparable confidence
interval for π1 − π2. Then, α is the error probability for the interval and β equals
the probability that the confidence interval indicates a plausible lack of effect, in the
sense that it contains the value zero. Based on the above calculation with α = 0.05
and β = 0.10, we need about 400 subjects in each group for a 95% confidence interval
to have only a 0.10 chance of containing 0 when actually π1 = 0.20 and π2 = 0.30.

This sample-size formula is approximate and tends to underestimate slightly the
actual required values. It is adequate for most practical work, because normally
conjectures for π1 and π2 are only rough. Fleiss et al. (2003, Chapter 4) provided
more precise formulas.

The null hypothesis H0: π1 = π2 in a 2 × 2 table corresponds to one for a
parameter in a logistic regression model having the form

logit(π) = β0 + β1x (5.1)

where x = 1 for group 1 and x = 0 for group 2. (We use the β0 and β1 notation so as
not to confuse these with the error probabilities.) H0 corresponds to a log odds ratio
of 0, or β1 = 0. Thus, this example relates to sample size determination for a simple
logistic regression model.

5.5.2 Sample Size in Logistic Regression∗

For models of form (5.1) in which x is quantitative, the sample size needed for testing
H0: β1 = 0 depends on the distribution of the x values. One needs to guess the
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probability of success π̄ at the mean of x. The size of the effect is the odds ratio θ

comparing π̄ to the probability of success one standard deviation above the mean of
x. Let λ = log(θ). An approximate sample-size formula for a one-sided test (due to
F. Y. Hsieh, Statist. Med., 8: 795–802, 1989) is

n = [zα + zβ exp(−λ2/4)]2(1 + 2π̄δ)/(π̄λ2)

where

δ = [1 + (1 + λ2) exp(5λ2/4)]/[1 + exp(−λ2/4)]
We illustrate for modeling the dependence of the probability of severe heart disease

on x = cholesterol level for a middle-aged population. Consider the test of H0: β1 = 0
against Ha : β1 > 0. Suppose previous studies have suggested that π̄ is about 0.08,
and we want the test to be sensitive to a 50% increase (i.e., to 0.12), for a standard
deviation increase in cholesterol.

The odds of severe heart disease at the mean cholesterol level equal 0.08/0.92 =
0.087, and the odds one standard deviation above the mean equal 0.12/0.88 = 0.136.
The odds ratio equals θ = 0.136/0.087 = 1.57, and λ = log(1.57) = 0.450,
λ2 = 0.202. For β = P (type II error) = 0.10 in an α = 0.05-level test, zα = z0.05 =
1.645, zβ = z0.10 = 1.28. Thus,

δ = [1 + (1.202) exp(5 × 0.202/4)]/[1 + exp(−0.202/4)] = 2.548/1.951 = 1.306

and

n = [1.645 + 1.28 exp(−0.202/4)]2(1 + 2(.08)(1.306))/(.08)(0.202) = 612

The value n decreases as π̄ gets closer to 0.50 and as |λ| gets farther from the null
value of 0. Its derivation assumes that X has approximately a normal distribution.

5.5.3 Sample Size in Multiple Logistic Regression∗

A multiple logistic regression model requires larger sample sizes to detect partial
effects. Let R denote the multiple correlation between the predictor X of interest and
the others in the model. One divides the above formula for n by (1 − R2). In that
formula, π̄ denotes the probability at the mean value of all the explanatory variables,
and the odds ratio refers to the effect of the predictor of interest at the mean level of
the others.

We illustrate by continuing the previous example. Consider a test for the effect
of cholesterol on severe heart disease, while controlling for blood pressure level.
If the correlation between cholesterol and blood pressure levels is 0.40, we need
n ≈ 612/[1 − (0.40)2] = 729 for detecting the stated partial effect of cholesterol.

These formulas provide, at best, rough ballpark indications of sample size. In most
applications, one has only a crude guess for π̄ , θ , and R, and the explanatory variable
may be far from normally distributed.
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PROBLEMS

5.1 For the horseshoe crab data (available at www.stat.ufl.edu/∼aa/
intro-cda/appendix.html), fit a model using weight and width as predictors.

a. Report the prediction equation.

b. Conduct a likelihood-ratio test of H0: β1 = β2 = 0. Interpret.

c. Conduct separate likelihood-ratio tests for the partial effects of each vari-
able. Why does neither test show evidence of an effect when the test in (b)
shows very strong evidence?

5.2 For the horseshoe crab data, use a stepwise procedure to select a model for
the probability of a satellite when weight, spine condition, and color (nominal
scale) are the predictors. Explain each step of the process.

5.3 For the horseshoe crab data with width, color, and spine as predictors, suppose
you start a backward elimination process with the most complex model pos-
sible. Denoted by C ∗ S ∗ W , it uses main effects for each term as well as the
three two-factor interactions and the three-factor interaction. Table 5.9 shows
the fit for this model and various simpler models.

a. Conduct a likelihood-ratio test comparing this model to the simpler model
that removes the three-factor interaction term but has all the two-factor
interactions. Does this suggest that the three-factor term can be removed
from the model?

b. At the next stage, if we were to drop one term, explain why we would select
model C ∗ S + C ∗ W .

c. For the model at this stage, comparing to the model S + C ∗ W results in
an increased deviance of 8.0 on df = 6 (P = 0.24); comparing to the model
W + C ∗ S has an increased deviance of 3.9 on df = 3 (P = 0.27). Which
term would you take out?

Table 5.9. Logistic Regression Models for Horseshoe
Crab Data

Model Predictors Deviance df AIC

1 C ∗ S ∗ W 170.44 152 212.4
2 C ∗ S + C ∗ W + S ∗ W 173.68 155 209.7
3a C ∗ S + S ∗ W 177.34 158 207.3
3b C ∗ W + S ∗ W 181.56 161 205.6
3c C ∗ S + C ∗ W 173.69 157 205.7
4a S + C ∗ W 181.64 163 201.6
4b W + C ∗ S 177.61 160 203.6
5 C + S + W 186.61 166 200.6
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d. Finally, compare the working model at this stage to the main-effects model
C + S + W . Is it permissible to simplify to this model?

e. Of the models shown in the table, which is preferred according to the AIC?

5.4 Refer to Problem 4.16 on the four scales of the Myers–Briggs (MBTI) person-
ality test. Table 5.10 shows the result of fitting a model using the four scales
as predictors of whether a subject drinks alcohol frequently.

a. Conduct a model goodness-of-fit test, and interpret.

b. If you were to simplify the model by removing a predictor, which would
you remove? Why?

c. When six interaction terms are added, the deviance decreases to 3.74. Show
how to test the hypothesis that none of the interaction terms are needed,
and interpret.

Table 5.10. Output for Fitting Model to Myers–Briggs Personality Scales Data of
Table 4.13

Criteria For Assessing Goodness Of Fit

Criterion DF Value

Deviance 11 11.1491
Pearson Chi-Square 11 10.9756

Analysis of Parameter Estimates

Standard Like-ratio 95% Chi-
Parameter Estimate Error Conf. Limits Square
Intercept −2.4668 0.2429 −2.9617 −2.0078 103.10
EI e 0.5550 0.2170 0.1314 0.9843 6.54
SN s −0.4292 0.2340 −0.8843 0.0353 3.36
TF t 0.6873 0.2206 0.2549 1.1219 9.71
JP j −0.2022 0.2266 −0.6477 0.2426 0.80

5.5 Refer to the previous exercise. PROC LOGISTIC in SAS reports AIC values
of 642.1 for the model with the four main effects and the six interaction terms,
637.5 for the model with only the four binary main effect terms, 644.0 for the
model with only TF as a predictor, and 648.8 for the model with no predictors.
According to this criterion, which model is preferred? Why?

5.6 Refer to the previous two exercises about MBTI and drinking.

a. The sample proportion who reported drinking alcohol frequently was 0.092.
When this is the cutpoint for forming a classification table, sensitivity =
0.53 and specificity = 0.66. Explain what these mean.

b. Using (a), show that the sample proportion of correct classifications was
0.65.
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c. The concordance index c equals 0.658 for the model with the four main
effects and the six interaction terms, 0.640 for the model with only the four
main effect terms, and 0.568 for the model with only T/F as a predictor.
According to this criterion, which model would you choose (i) if you want
to maximize sample predictive power (ii) if you think model parsimony is
important?

5.7 From the same survey referred to in Problem 4.16, Table 5.11 cross-classifies
whether a person smokes frequently with the four scales of the MBTI person-
ality test. SAS reports model −2 log likelihood values of 1130.23 with only
an intercept term, 1124.86 with also the main effect predictors, 1119.87 with
also all the two-factor interactions, and 1116.47 with also all the three-factor
interactions.

a. Write the model for each case, and show that the numbers of parameters
are 1, 5, 11, and 15.

b. According to AIC, which of these four models is preferable?

c. When a classification table for the model containing the four main effect
terms uses the sample proportion of frequent smokers of 0.23 as the cutoff,
sensitivity = 0.48 and specificity = 0.55. The area under the ROC curve
is c = 0.55. Does knowledge of personality type help you predict well
whether someone is a frequent smoker? Explain.

Table 5.11. Data on Smoking Frequently and Four Scales of Myers–Briggs
Personality Test

Extroversion/Introversion E I

Sensing/iNtuitive S N S N

Smoking Frequently
Thinking/ Judging/

Feeling Perceiving Yes No Yes No Yes No Yes No

T J 13 64 6 17 32 108 4 9
P 11 31 4 14 9 43 9 26

F J 16 89 6 25 34 104 4 27
P 19 60 23 57 29 76 22 57

Source: Reproduced with special permission of CPP Inc., Mountain View, CA 94043. Copyright 1996 by
CPP Inc. All rights reserved. Further reproduction is prohibited without the Publisher’s written consent.

5.8 Refer to the classification table in Table 5.3 with π0 = 0.50.

a. Explain how this table was constructed.

b. Estimate the sensitivity and specificity, and interpret.

5.9 Problem 4.1 with Table 4.8 used a labeling index (LI) to predict π = the
probability of remission in cancer patients.
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a. When the data for the 27 subjects are 14 binomial observations (for the 14
distinct levels of LI), the deviance for this model is 15.7 with df = 12. Is it
appropriate to use this to check the fit of the model? Why or why not?

b. The model that also has a quadratic term for LI has deviance = 11.8.
Conduct a test comparing the two models.

c. The model in (b) has fit, logit(π̂) = −13.096 + 0.9625(LI ) − 0.0160(LI)2,
with SE = 0.0095 for β̂2 = −0.0160. If you know basic calculus, explain
why π̂ is increasing for LI between 0 and 30. Since LI varies between 8
and 38 in this sample, the estimated effect of LI is positive over most of its
observed values.

d. For the model with only the linear term, the Hosmer–Lemeshow test
statistic = 6.6 with df = 6. Interpret.

5.10 For the horseshoe crab data, fit the logistic regression model with x = weight
as the sole predictor of the presence of satellites.

a. For a classification table using the sample proportion of 0.642 as the cutoff,
report the sensitivity and specificity. Interpret.

b. Form a ROC curve, and report and interpret the area under it.

c. Investigate the model goodness-of-fit using the Hosmer–Lemeshow statistic
or some other model-checking approach. Interpret.

d. Inferentially compare the model to the model with x and x2 as predictors.
Interpret.

e. Compare the models in (d) using the AIC. Interpret.

5.11 Here is an alternative to the Hosmer–Lemeshow goodness-of-fit test when at
least one predictor is continuous: Partition values for the explanatory variables
into a set of regions. Add these regions as a predictor in the model by setting
up dummy variables for the regions. The test statistic compares the fit of
this model to the simpler one, testing that the extra parameters are not needed.
Doing this for model (4.11) by partitioning according to the eight width regions
in Table 4.11, the likelihood-ratio statistic for testing that the extra parameters
are unneeded equals 7.5, based on df = 7. Interpret.

5.12 Refer to Table 7.27 in Chapter 7 with opinion about premarital sex as the
response variable. Use a process (such as backward elimination) or criterion
(such as AIC) to select a model. Interpret the parameter estimates for that
model.

5.13 Logistic regression is often applied to large financial databases. For exam-
ple, credit scoring is a method of modeling the influence of predictors on the
probability that a consumer is credit worthy. The data archive found under the
index at www.stat.uni-muenchen.de for a textbook by L. Fahrmeir and G. Tutz
(Multivariate Statistical Modelling Based on Generalized Linear Models,
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2001) contains such a data set that includes 20 predictors for 1000 obser-
vations. Build a model for credit-worthiness, using the predictors running
account, duration of credit, payment of previous credits, intended use, gender,
and marital status, explaining how you chose a final model.

5.14 Refer to the following artificial data:

x Number of trials Number of successes

0 4 1
1 4 2
2 4 4

Denote by M0 the logistic model with only an intercept term and by M1 the
model that also has x as a linear predictor. Denote the maximized log likelihood
values by L0 for M0, L1 for M1, and Ls for the saturated model. Recall that
G2(Mi) = −2(Li − Ls), i = 0, 1. Create a data file in two ways, entering
the data as (i) ungrouped data: 12 individual binary observations, (ii) grouped
data: three summary binomial observations each with sample size = 4. The
saturated model has 12 parameters for data file (i) but three parameters for data
file (ii).

a. Fit M0 and M1 for each data file. Report L0 and L1 (or −2L0 and −2L1)
in each case. Note that they do not depend on the form of data entry.

b. Show that the deviances G2(M0) and G2(M1) depend on the form of data
entry. Why is this? (Hint: They depend on Ls . Would Ls depend on the form
of data entry? Why? Thus, you should group the data to use the deviance
to check the fit of a model.)

c. Show that the difference between the deviances, G2(M0 | M1), does not
depend on the form of data entry (because Ls cancels in the difference).
Thus, for testing the effect of a predictor, it does not matter how you enter
the data.

5.15 According to the Independent newspaper (London, March 8, 1994), the
Metropolitan Police in London reported 30,475 people as missing in the year
ending March 1993. For those of age 13 or less, 33 of 3271 missing males and
38 of 2486 missing females were still missing a year later. For ages 14–18,
the values were 63 of 7256 males and 108 of 8877 females; for ages 19 and
above, the values were 157 of 5065 males and 159 of 3520 females. Analyze
these data, including checking model fit and interpreting parameter estimates.
(Thanks to Dr. P. M. E. Altham for showing me these data.)

5.16 In Chapter 4, exercises 4.29, 4.30, 4.31, and 4.32 asked for a data analysis and
report. Select one of those analyses, and conduct a goodness-of-fit test for the
model you used. Interpret.



“c05” — 2007/1/29 — page 168 — #32

168 BUILDING AND APPLYING LOGISTIC REGRESSION MODELS

5.17 Refer to Table 2.10 on death penalty decisions. Fit a logistic model with the
two race predictors.

a. Test the model goodness of fit. Interpret.

b. Report the standardized residuals. Interpret.

c. Interpret the parameter estimates.

5.18 Table 5.12 summarizes eight studies in China about smoking and lung cancer.

a. Fit a logistic model with smoking and study as predictors. Interpret the
smoking effect.

b. Conduct a Pearson test of goodness of fit. Interpret.

c. Check residuals to analyze further the quality of fit. Interpret.

Table 5.12. Data for Problem 5.18 on Smoking and Lung Cancer

Lung Cancer Lung Cancer

City Smoking Yes No City Smoking Yes No

Beijing Yes 126 100 Harbin Yes 402 308
No 35 61 No 121 215

Shanghai Yes 908 688 Zhengzhou Yes 182 156
No 497 807 No 72 98

Shenyang Yes 913 747 Taiyuan Yes 60 99
No 336 598 No 11 43

Nanjing Yes 235 172 Nanchang Yes 104 89
No 58 121 No 21 36

Source: Based on data in Z. Liu, Int. J. Epidemiol., 21: 197–201, 1992. Reprinted by
permission of Oxford University Press.

5.19 Problem 7.9 shows a 2 × 2 × 6 table for Y = whether admitted to graduate
school at the University of California, Berkeley.

a. Set up indicator variables and specify the logit model that has department
as a predictor (with no gender effect) for Y = whether admitted (1 = yes,
0 = no).

b. For the model in (a), the deviance equals 21.7 with df = 6. What does this
suggest about the quality of the model fit?

c. For the model in (a), the standardized residuals for the number of females
who were admitted are (4.15, 0.50, −0.87, 0.55, −1.00, 0.62) for
Departments (1,2,3,4,5,6). Interpret.

d. Refer to (c). What would the standardized residual equal for the number of
males who were admitted into Department 1? Interpret.

e. When we add a gender effect, the estimated conditional odds ratio between
admissions and gender (1 = male, 0 = female) is 0.90. The marginal
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table, collapsed over department, has odds ratio 1.84. Explain how these
associations differ so much for these data.

5.20 Refer to Table 2.7 on mother’s drinking and infant malformations.

a. Fit the logistic regression model using scores {0, 0.5, 1.5, 4, 7} for alcohol
consumption. Check goodness of fit.

b. Test independence using the likelihood-ratio test for the model in (a). (The
trend test of Section 2.5.1 is the score test for this model.)

c. The sample proportion of malformations is much higher in the highest
alcohol category because, although it has only one malformation, its sample
size is only 38. Are the results sensitive to this single observation? Re-fit
the model without it, entering 0 malformations for 37 observations, and
compare the results of the likelihood-ratio test. (Because results are sensitive
to a single observation, it is hazardous to make conclusions, even though n

was extremely large.)

d. Fit the model and conduct the test of independence for all the data using
scores {1, 2, 3, 4, 5}. Compare the results with (b). (Results for highly
unbalanced data can be sensitive to the choice of scores.)

5.21 In the previous exercise, the table has some small counts, and exact meth-
ods have greater validity than large-sample ones. Conduct an exact test of
independence using the scores in (a).

5.22 For the example in Section 5.3.1, y = 0 at x = 10, 20, 30, 40, and y = 1 at
x = 60, 70, 80, 90.

a. Explain intuitively why β̂ = ∞ for the model, logit(π) = α + βx.

b. Report β̂ and its SE for the software you use.

c. Add two observations at x = 50, y = 1 for one and y = 0 for the other.
Report β̂ and its SE. Do you think these are correct? Why?

d. Replace the two observations in (c) by y = 1 at x = 49.9 and y = 0 at
x = 50.1. Report β̂ and its SE. Do you think these are correct? Why?

5.23 Table 5.13 refers to the effectiveness of immediately injected or 1 1
2 -hour-

delayed penicillin in protecting rabbits against lethal injection with
β-hemolytic streptococci.

a. Let X = delay, Y = whether cured, and Z = penicillin level. Fit the model,
logit[P(Y = 1)] = βx + βZ

k , deleting an intercept term so each level of Z

has its own parameter. Argue that the pattern of 0 cell counts suggests that
β̂Z

1 = −∞ and β̂Z
5 = ∞. What does your software report?

b. Using the logit model, conduct the likelihood-ratio test of XY conditional
independence. Interpret.

c. Estimate the XY conditional odds ratio. Interpret.
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Table 5.13. Data for Problem 5.23 on Penicillin in Rabbits

Response
Penicillin
Level Delay Cured Died

1/8 None 0 6
1 1

2 h 0 5

1/4 None 3 3
1 1

2 h 0 6

1/2 None 6 0
1 1

2 h 2 4

1 None 5 1
1 1

2 h 6 0

4 None 2 0
1 1

2 h 5 0

Source: Reprinted with permission from article by N. Mantel, J. Am. Statist.
Assoc., 58: 690–700, 1963.

5.24 In the previous exercise, the small cell counts make large-sample analyses
questionnable. Conduct small-sample inference, and interpret.

5.25 Table 5.14 is from a study of nonmetastatic osteosarcoma described in the
LogXact 7 manual (Cytel Software, 2005, p. 171). The response is whether the
subject achieved a three-year disease-free interval.

Table 5.14. Data for Problem 5.25

Disease-Free
Lymphocytic Osteoblastic
Infiltration Sex Pathology Yes No

High Female No 3 0
High Female Yes 2 0
High Male No 4 0
High Male Yes 1 0
Low Female No 5 0
Low Female Yes 3 2
Low Male No 5 4
Low Male Yes 6 11

a. Show that each predictor has a significant effect when it is used individually
without the other predictors.
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b. Try to fit a main-effects logistic regression model containing all three predic-
tors. Explain why the ML estimate for the effect of lymphocytic infiltration
is infinite.

c. Using conditional logistic regression, conduct an exact test of the hypothesis
of no effect of lymphocytic infiltration, controlling for the other variables.
Interpret.

d. Using conditional logistic regression, find a 95% confidence interval for
the effect in (c). Interpret.

5.26 Table 5.15 describes results from a study in which subjects received a drug and
the outcome measures whether the subject became incontinent (y = 1, yes;
y = 0, no). The three explanatory variables are lower urinary tract variables
that represent drug-induced physiological changes.

a. Report the prediction equations when each predictor is used separately in
logistic regressions.

b. Try to fit a main-effects logistic regression model containing all three
predictors. What does your software report for the effects and their stan-
dard errors? (The ML estimates are actually −∞ for x1 and x2 and ∞
for x3.)

c. Use conditional logistic regression to find an exact P -value for testing H0:
β3 = 0. [The exact distribution is degenerate, and neither ordinary ML or
exact conditional ML works with these data. For alternative approaches, see
articles by D. M. Potter (Statist. Med., 24: 693–708, 2005) and G. Heinze
and M. Schemper (Statist. Med., 22: 1409–1419, 2002).]

Table 5.15. Data from Incontinence Study of
Problem 5.26

y x1 x2 x3 y x1 x2 x3

0 −1.9 −5.3 −43 0 −1.5 3.9 −15
0 −0.1 −5.2 −32 0 0.5 27.5 8
0 0.8 −3.0 −12 0 0.8 −1.6 −2
0 0.9 3.4 1 0 2.3 23.4 14
1 −5.6 −13.1 −1 1 −5.3 −19.8 −33
1 −2.4 1.8 −9 1 −2.3 −7.4 4
1 −2.0 −5.7 −7 1 −1.7 −3.9 13
1 −0.6 −2.4 −7 1 −0.5 −14.5 −12
1 −0.1 −10.2 −5 1 −0.1 −9.9 −11
1 0.4 −17.2 −9 1 0.7 −10.7 −10
1 1.1 −4.5 −15

Source: D. M. Potter, Statist. Med., 24: 693–708, 2005.
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5.27 About how large a sample is needed to test the hypothesis of equal probabilities
so thatP (type II error)=0.05 whenπ1 = 0.40 andπ2 = 0.60, if the hypothesis
is rejected when the P -value is less than 0.01?

5.28 We expect two proportions to be about 0.20 and 0.30, and we want an
80% chance of detecting a difference between them using a 90% confidence
interval.

a. Assuming equal sample sizes, how large should they be?

b. Compare the results with the sample sizes required for (i) a 90% interval
with power 90%, (ii) a 95% interval with power 80%, and (iii) a 95%
interval with power 90%.

5.29 The horseshoe crab x = width values in Table 3.2 have a mean of 26.3 and
standard deviation of 2.1. If the true relationship were similar to the fitted equa-
tion reported in Section 4.1.3, namely, π̂ = exp(−12.351 + 0.497x)/[1 +
exp(−12.351 + 0.497x)], how large a sample yields P (type II error) = 0.10
in an α = 0.05-level test of independence? Use the alternative of a positive
effect of width on the probability of a satellite.

5.30 The following are true–false questions.

a. A model for a binary response has a continuous predictor. If the model
truly holds, the deviance statistic for the model has an asymptotic chi-
squared distribution as the sample size increases. It can be used to test
model goodness of fit.

b. For the horseshoe crab data, when width or weight is the sole predictor for
the probability of a satellite, the likelihood-ratio test of the predictor effect
has P -value <0.0001. When both weight and width are in the model, it is
possible that the likelihood-ratio tests for the partial effects of width and
weight could both have P -values larger than 0.05.

c. For the model, logit[π(x)] = α + βx, suppose y = 1 for all x ≤ 50 and
y = 0 for all x > 50. Then, the ML estimate β̂ = −∞.
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Multicategory Logit Models

Logistic regression is used to model binary response variables. Generalizations of it
model categorical responses with more than two categories. We will now study models
for nominal response variables in Section 6.1 and for ordinal response variables in
Sections 6.2 and 6.3. As in ordinary logistic regression, explanatory variables can be
categorical and/or quantitative.

At each setting of the explanatory variables, the multicategory models assume that
the counts in the categories of Y have a multinomial distribution. This generalization
of the binomial distribution applies when the number of categories exceeds two (see
Section 1.2.2).

6.1 LOGIT MODELS FOR NOMINAL RESPONSES

Let J denote the number of categories for Y . Let {π1, . . . , πJ } denote the response
probabilities, satisfying

∑
j πj = 1. With n independent observations, the probability

distribution for the number of outcomes of the J types is the multinomial. It specifies
the probability for each possible way the n observations can fall in the J categories.
Here, we will not need to calculate such probabilities.

Multicategory logit models simultaneously use all pairs of categories by specifying
the odds of outcome in one category instead of another. For models of this section,
the order of listing the categories is irrelevant, because the model treats the response
scale as nominal (unordered categories).

6.1.1 Baseline-Category Logits

Logit models for nominal response variables pair each category with a baseline
category. When the last category (J ) is the baseline, the baseline-category logits

An Introduction to Categorical Data Analysis, Second Edition. By Alan Agresti
Copyright © 2007 John Wiley & Sons, Inc.
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are

log

(
πj

πJ

)
, j = 1, . . . , J − 1

Given that the response falls in category j or category J , this is the log odds that the
response is j . For J = 3, for instance, the model uses log(π1/π3) and log(π2/π3).

The baseline-category logit model with a predictor x is

log

(
πj

πJ

)
= αj + βjx, j = 1, . . . , J − 1 (6.1)

The model has J − 1 equations, with separate parameters for each. The effects vary
according to the category paired with the baseline. When J = 2, this model simpli-
fies to a single equation for log(π1/π2) = logit(π1), resulting in ordinary logistic
regression for binary responses.

The equations (6.1) for these pairs of categories determine equations for all other
pairs of categories. For example, for an arbitrary pair of categories a and b,

log

(
πa

πb

)
= log

(
πa/πJ

πb/πJ

)
= log

(
πa

πJ

)
− log

(
πb

πJ

)
= (αa + βax) − (αb + βbx)

= (αa − αb) + (βa − βb)x (6.2)

So, the equation for categories a and b has the form α + βx with intercept parameter
α = (αa − αb) and with slope parameter β = (βa − βb).

Software for multicategory logit models fits all the equations (6.1) simultaneously.
Estimates of the model parameters have smaller standard errors than when binary
logistic regression software fits each component equation in (6.1) separately. For
simultaneous fitting, the same parameter estimates occur for a pair of categories
no matter which category is the baseline. The choice of the baseline category is
arbitrary.

6.1.2 Example: Alligator Food Choice

Table 6.1 comes from a study by the Florida Game and Fresh Water Fish Commission
of the foods that alligators in the wild choose to eat. For 59 alligators sampled in Lake
George, Florida, Table 6.1 shows the primary food type (in volume) found in the
alligator’s stomach. Primary food type has three categories: Fish, Invertebrate, and
Other. The invertebrates were primarily apple snails, aquatic insects, and crayfish.
The “other” category included amphibian, mammal, plant material, stones or other
debris, and reptiles (primarily turtles, although one stomach contained the tags of 23
baby alligators that had been released in the lake during the previous year!). The table
also shows the alligator length, which varied between 1.24 and 3.89 meters.
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Table 6.1. Alligator Size (Meters) and Primary Food Choice,a for 59 Florida Alligators

1.24 I 1.30 I 1.30 I 1.32 F 1.32 F 1.40 F 1.42 I 1.42 F
1.45 I 1.45 O 1.47 I 1.47 F 1.50 I 1.52 I 1.55 I 1.60 I
1.63 I 1.65 O 1.65 I 1.65 F 1.65 F 1.68 F 1.70 I 1.73 O
1.78 I 1.78 I 1.78 O 1.80 I 1.80 F 1.85 F 1.88 I 1.93 I
1.98 I 2.03 F 2.03 F 2.16 F 2.26 F 2.31 F 2.31 F 2.36 F
2.36 F 2.39 F 2.41 F 2.44 F 2.46 F 2.56 O 2.67 F 2.72 I
2.79 F 2.84 F 3.25 O 3.28 O 3.33 F 3.56 F 3.58 F 3.66 F
3.68 O 3.71 F 3.89 F

aF = Fish, I = Invertebrates, O = Other.

Source: Thanks to M. F. Delany and Clint T. Moore for these data.

Let Y = primary food choice and x = alligator length. For model (6.1) with J = 3,
Table 6.2 shows some output (from PROC LOGISTIC in SAS), with “other” as the
baseline category. The ML prediction equations are

log(π̂1/π̂3) = 1.618 − 0.110x

and

log(π̂2/π̂3) = 5.697 − 2.465x

Table 6.2. Computer Output for Baseline-Category Logit Model with Alligator Data

Testing Global Null Hypothesis: BETA = 0

Test Chi-Square DF Pf > ChiSq

Likelihood Ratio 16.8006 2 0.0002
Score 12.5702 2 0.0019
Wald 8.9360 2 0.0115

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter choice DF Estimate Error Chi-Square Pr > ChiSq

Intercept F 1 1.6177 1.3073 1.5314 0.2159
Intercept I 1 5.6974 1.7938 10.0881 0.0015
length F 1 -0.1101 0.5171 0.0453 0.8314
length I 1 -2.4654 0.8997 7.5101 0.0061

Odds Ratio Estimates

Point 95% Wald
Effect choice Estimate Confidence Limits

length F 0.896 0.325 2.468
length I 0.085 0.015 0.496
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By equation (6.2), the estimated log odds that the response is “fish” rather than
“invertebrate” equals

log(π̂1/π̂2) = (1.618 − 5.697) + [−0.110 − (−2.465)]x = −4.08 + 2.355x

Larger alligators seem relatively more likely to select fish rather than invertebrates.
The estimates for a particular equation are interpreted as in binary logistic regres-

sion, conditional on the event that the outcome was one of those two categories.
For instance, given that the primary food type is fish or invertebrate, the estimated
probability that it is fish increases in length x according to an S-shaped curve. For
alligators of length x + 1 meters, the estimated odds that primary food type is “fish”
rather than “invertebrate” equal exp(2.355) = 10.5 times the estimated odds at length
x meters.

The hypothesis that primary food choice is independent of alligator length is
H0: β1 = β2 = 0 for model (6.1). The likelihood-ratio test takes twice the differ-
ence in log likelihoods between this model and the simpler one without length as a
predictor. As Table 6.2 shows, the test statistic equals 16.8, with df = 2. The P -value
of 0.0002 provides strong evidence of a length effect.

6.1.3 Estimating Response Probabilities

The multicategory logit model has an alternative expression in terms of the response
probabilities. This is

πj = eαj +βj x∑
h eαh+βhx

, j = 1, . . . , J (6.3)

The denominator is the same for each probability, and the numerators for various j

sum to the denominator. So,
∑

j πj = 1. The parameters equal zero in equation (6.3)
for whichever category is the baseline in the logit expressions.

The estimates in Table 6.3 contrast “fish” and “invertebrate” to “other” as the base-
line category. The estimated probabilities (6.3) of the outcomes (Fish, Invertebrate,
Other) equal

π̂1 = e1.62−0.11x

1 + e1.62−0.11x + e5.70−2.47x

π̂2 = e5.70−2.47x

1 + e1.62−0.11x + e5.70−2.47x

π̂3 = 1

1 + e1.62−0.11x + e5.70−2.47x

The “1” term in each denominator and in the numerator of π̂3 represents eα̂3+β̂3x for
α̂3 = β̂3 = 0 with the baseline category.
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Table 6.3. Parameter Estimates and Standard Errors
(in parentheses) for Baseline-category Logit Model
Fitted to Table 6.1

Food Choice Categories for Logit

Parameter (Fish/Other) (Invertebrate/Other)

Intercept 1.618 5.697
Length −0.110 (0.517) −2.465 (0.900)

For example, for an alligator of the maximum observed length of x = 3.89 meters,
the estimated probability that primary food choice is “other” equals

π̂3 = 1/{1 + e1.62−0.11(3.89) + e5.70−2.47(3.89)} = 0.23.

Likewise, you can check that π̂1 = 0.76 and π̂2 = 0.005. Very large alligators appar-
ently prefer to eat fish. Figure 6.1 shows the three estimated response probabilities as
a function of alligator length.

Figure 6.1. Estimated probabilities for primary food choice.
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6.1.4 Example: Belief in Afterlife

When explanatory variables are entirely categorical, a contingency table can summa-
rize the data. If the data are not sparse, one can test model goodness of fit using the
X2 or G2 statistics of Section 5.2.2.

To illustrate, Table 6.4, from a General Social Survey, has Y = belief in life after
death, with categories (Yes, Undecided, No), and explanatory variables x1 = gender
and x2 = race. Let x1 = 1 for females and 0 for males, and x2 = 1 for whites and 0
for blacks. With “no” as the baseline category for Y , the model is

log

(
πj

π3

)
= αj + βG

j x1 + βR
j x2, j = 1, 2

where G and R superscripts identify the gender and race parameters.

Table 6.4. Belief in Afterlife by Gender and Race

Belief in Afterlife

Race Gender Yes Undecided No

White Female 371 49 74
Male 250 45 71

Black Female 64 9 15
Male 25 5 13

Source: General Social Survey.

For these data, the goodness-of-fit statistics are X2 = 0.9 and G2 = 0.8 (the
“deviance”). The sample has two logits at each of four gender–race combinations, for
a total of eight logits. The model, considered for j = 1 and 2, contains six parameters.
Thus, the residual df = 8 − 6 = 2. The model fits well.

The model assumes a lack of interaction between gender and race in their effects
on belief in life after death. Table 6.5 shows the parameter estimates. The effect
parameters represent log odds ratios with the baseline category. For instance, βG

1 is

Table 6.5. Parameter Estimates and Standard Errors
(in parentheses) for Baseline-category Logit Model
Fitted to Table 6.4

Belief Categories for logit

Parameter (Yes/No) (Undecided/No)

Intercept 0.883 (0.243) −0.758 (0.361)
Gender (F = 1) 0.419 (0.171) 0.105 (0.246)
Race (W = 1) 0.342 (0.237) 0.271 (0.354)
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Table 6.6. Estimated Probabilities for Belief in Afterlife

Belief in Afterlife

Race Gender Yes Undecided No

White Female 0.76 0.10 0.15
Male 0.68 0.12 0.20

Black Female 0.71 0.10 0.19
Male 0.62 0.12 0.26

the conditional log odds ratio between gender and response categories 1 and 3 (yes
and no), given race. Since β̂G

1 = 0.419, for females the estimated odds of response
“yes” rather than “no” on life after death are exp(0.419) = 1.5 times those for males,
controlling for race. For whites, the estimated odds of response “yes” rather than
“no” on life after death are exp(0.342) = 1.4 times those for blacks, controlling for
gender.

The test of the gender effect has H0: βG
1 = βG

2 = 0. The likelihood-ratio test
compares G2 = 0.8 (df = 2) to G2 = 8.0 (df = 4) obtained by dropping gender
from the model. The difference of deviances of 8.0 − 0.8 = 7.2 has df = 4 − 2 = 2.
The P -value of 0.03 shows evidence of a gender effect. By contrast, the effect of
race is not significant: The model deleting race has G2 = 2.8 (df = 4), which is an
increase in G2 of 2.0 on df = 2. This partly reflects the larger standard errors that
the effects of race have, due to a much greater imbalance between sample sizes in the
race categories than in the gender categories.

Table 6.6 displays estimated probabilities for the three response categories. To
illustrate, for white females (x1 = x2 = 1), the estimated probability of response 1
(“yes”) on life after death equals

e0.883+0.419(1)+0.342(1)

1 + e0.883+0.419(1)+0.342(1) + e−0.758+0.105(1)+0.271(1)
= 0.76

6.1.5 Discrete Choice Models

The multicategory logit model is an important tool in marketing research for analyzing
how subjects choose among a discrete set of options. For example, for subjects who
recently bought an automobile, we could model how their choice of brand depends
on the subject’s annual income, size of family, level of education, and whether he or
she lives in a rural or urban environment.

A generalization of model (6.1) allows the explanatory variables to take different
values for different Y categories. For example, the choice of brand of auto would likely
depend on price, which varies among the brand options. The generalized model is
called a discrete choice model.1

1See Agresti (2002, Section 7.6) and Hensher et al. (2005) for details.
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6.2 CUMULATIVE LOGIT MODELS FOR ORDINAL RESPONSES

When response categories are ordered, the logits can utilize the ordering. This
results in models that have simpler interpretations and potentially greater power than
baseline-category logit models.

A cumulative probability for Y is the probability that Y falls at or below a particular
point. For outcome category j , the cumulative probability is

P(Y ≤ j) = π1 + · · · + πj , j = 1, . . . , J

The cumulative probabilities reflect the ordering, with P(Y ≤ 1) ≤ P(Y ≤ 2) ≤
· · · ≤ P(Y ≤ J ) = 1. Models for cumulative probabilities do not use the final one,
P(Y ≤ J ), since it necessarily equals 1.

The logits of the cumulative probabilities are

logit[P(Y ≤ j)] = log

[
P(Y ≤ j)

1 − P(Y ≤ j)

]
= log

[
π1 + · · · + πj

πj+1 + · · · + πJ

]
,

j = 1, . . . , J − 1

These are called cumulative logits. For J = 3, for example, models use both
logit[P(Y ≤ 1)] = log[π1/(π2 + π3)] and logit[P(Y ≤ 2)] = log[(π1 + π2)/π3].
Each cumulative logit uses all the response categories.

6.2.1 Cumulative Logit Models with Proportional Odds Property

A model for cumulative logit j looks like a binary logistic regression model in which
categories 1–j combine to form a single category and categories j + 1 to J form a
second category. For an explanatory variable x, the model

logit[P(Y ≤ j)] = αj + βx, j = 1, . . . , J − 1 (6.4)

has parameter β describing the effect of x on the log odds of response in category
j or below. In this formula, β does not have a j subscript. Therefore, the model
assumes that the effect of x is identical for all J − 1 cumulative logits. When this
model fits well, it requires a single parameter rather than J − 1 parameters to describe
the effect of x.

Figure 6.2 depicts this model for a four category response and quantitative x. Each
cumulative probability has it own curve, describing its change as a function of x.
The curve for P(Y ≤ j) looks like a logistic regression curve for a binary response
with pair of outcomes (Y ≤ j ) and (Y > j ). The common effect β for each j implies
that the three curves have the same shape. Any one curve is identical to any of the
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Figure 6.2. Depiction of cumulative probabilities in proportional odds model.

others shifted to the right or shifted to the left. As in logistic regression, the size of
|β| determines how quickly the curves climb or drop. At any fixed x value, the curves
have the same ordering as the cumulative probabilities, the one for P(Y ≤ 1) being
lowest.

Figure 6.2 has β > 0. Figure 6.3 shows corresponding curves for the category
probabilities, P(Y = j) = P(Y ≤ j) − P(Y ≤ j − 1). As x increases, the response
on Y is more likely to fall at the low end of the ordinal scale. When β < 0, the curves
in Figure 6.2 descend rather than ascend, and the labels in Figure 6.3 reverse order.

Figure 6.3. Depiction of category probabilities in proportional odds model. At any particular x value, the
four probabilities sum to 1.
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Then, as x increases, Y is more likely to fall at the high end of the scale.2 When
the model holds with β = 0, the graph has a horizontal line for each cumulative
probability. Then, X and Y are statistically independent.

Model interpretations can use odds ratios for the cumulative probabilities and their
complements. For two values x1 and x2 of x, an odds ratio comparing the cumulative
probabilities is

P(Y ≤ j | X = x2)/P (Y > j | X = x2)

P (Y ≤ j | X = x1)/P (Y > j | X = x1)

The log of this odds ratio is the difference between the cumulative logits at those
two values of x. This equals β(x2 − x1), proportional to the distance between the x

values. In particular, for x2 − x1 = 1, the odds of response below any given category
multiply by eβ for each unit increase in x.

For this log odds ratio β(x2 − x1), the same proportionality constant (β) applies for
each cumulative probability. This property is called the proportional odds assumption
of model (6.4).

Explanatory variables in cumulative logit models can be quantitative, categorical
(with indicator variables), or of both types. The ML fitting process uses an iterative
algorithm simultaneously for all j . When the categories are reversed in order, the
same fit results but the sign of β̂ reverses.

6.2.2 Example: Political Ideology and Party Affiliation

Table 6.7, from a General Social Survey, relates political ideology to political party
affiliation. Political ideology has a five-point ordinal scale, ranging from very liberal
to very conservative. Let x be an indicator variable for political party, with x = 1 for
Democrats and x = 0 for Republicans.

Table 6.7. Political Ideology by Gender and Political Party

Political Ideology

Political Very Slightly Slightly Very
Gender Party Liberal Liberal Moderate Conservative Conservative

Female Democratic 44 47 118 23 32
Republican 18 28 86 39 48

Male Democratic 36 34 53 18 23
Republican 12 18 62 45 51

Source: General Social Survey.

Table 6.8 shows output (from PROC LOGISTIC in SAS) for the ML fit of model
(6.4). With J = 5 response categories, the model has four {αj } intercepts. Usually

2The model is sometimes written instead as logit[P(Y ≤ j)] = αj − βx, so that β > 0 corresponds to Y

being more likely to fall at the high end of the scale as x increases.
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Table 6.8. Computer Output (SAS) for Cumulative Logit Model with Political
Ideology Data

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 1 −2.4690 0.1318 350.8122 <.0001
Intercept 2 1 −1.4745 0.1091 182.7151 <.0001
Intercept 3 1 0.2371 0.0948 6.2497 .0124
Intercept 4 1 1.0695 0.1046 104.6082 <.0001
party 1 0.9745 0.1291 57.0182 <.0001

Odds Ratio Estimates

Effect Point Estimate 95% Wald Confidence Limits

party 2.650 2.058 3.412

Testing Global Null Hypothesis: BETA = 0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 58.6451 1 <.0001
Score 57.2448 1 <.0001
Wald 57.0182 1 <.0001

Deviance and Pearson Goodness-of-Fit Statistics

Criterion Value DF Value/DF Pr > ChiSq

Deviance 3.6877 3 1.2292 0.2972
Pearson 3.6629 3 1.2210 0.3002

these are not of interest except for estimating response probabilities. The estimated
effect of political party is β̂ = 0.975 (SE = 0.129). For any fixed j , the estimated
odds that a Democrat’s response is in the liberal direction rather than the conservative
direction (i.e., Y ≤ j rather than Y > j ) equal exp(0.975) = 2.65 times the estimated
odds for Republicans. A fairly substantial association exists, with Democrats tending
to be more liberal than Republicans.

The model expression for the cumulative probabilities themselves is

P(Y ≤ j) = exp(αj + βx)/[1 + exp(αj + βx)]

For example, α̂1 = −2.469, so the first estimated cumulative probability for
Democrats (x = 1) is

P̂ (Y ≤ 1) = exp[−2.469 + 0.975(1)]
1 + exp[−2.469 + 0.975(1)] = 0.18
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Likewise, substituting α̂2, α̂3, and α̂4 for Democrats yields P̂ (Y ≤ 2) = 0.38,
P̂ (Y ≤ 3) = 0.77, and P̂ (Y ≤ 4) = 0.89. Category probabilities are differences of
cumulative probabilities. For example, the estimated probability that a Democrat is
moderate (category 3) is

π̂3 = P̂ (Y = 3) = P̂ (Y ≤ 3) − P̂ (Y ≤ 2) = 0.39

6.2.3 Inference about Model Parameters

For testing independence (H0: β = 0), Table 6.8 reports that the likelihood-ratio
statistic is 58.6 with df = 1. This gives extremely strong evidence of an association
(P < 0.0001). The test statistic equals the difference between the deviance value for
the independence model (which is 62.3, with df = 4) and the model allowing a party
effect on ideology (which is 3.7, with df = 3).

Since it is based on an ordinal model, this test of independence uses the ordering
of the response categories. When the model fits well, it is more powerful than the tests
of independence presented in Section 2.4 based on df = (I − 1)(J − 1), because it
focuses on a restricted alternative and has only a single degree of freedom. The df

value is 1 because the hypothesis of independence (H0: β = 0) has a single para-
meter. Capturing an effect with a smaller df value yields a test with greater power
(Sections 2.5.3 and 4.4.3). Similar strong evidence results from the Wald test, using
z2 = (β̂/SE)2 = (0.975/0.129)2 = 57.1.

A 95% confidence interval for β is 0.975 ± 1.96 × 0.129, or (0.72, 1.23).
The confidence interval for the odds ratio of cumulative probabilities equals
[exp(0.72), exp(1.23)], or (2.1, 3.4). The odds of being at the liberal end of the
political ideology scale is at least twice as high for Democrats as for Republicans.
The effect is practically significant as well as statistically significant.

6.2.4 Checking Model Fit

As usual, one way to check a model compares it with models that contain additional
effects. For example, the likelihood-ratio test compares the working model to models
containing additional predictors or interaction terms.

For a global test of fit, the Pearson X2 and deviance G2 statistics compare ML
fitted cell counts that satisfy the model to the observed cell counts. When there are at
most a few explanatory variables that are all categorical and nearly all the cell counts
are at least about 5, these test statistics have approximate chi-squared distributions.
For the political ideology data, Table 6.8 shows that X2 = 3.7 and G2 = 3.7, based
on df = 3. The model fits adequately.

Some software also presents a score test of the proportional odds assumption that
the effects are the same for each cumulative probability. This compares model (6.4),
which has the same β for each j , to the more complex model having a separate βj

for each j . For these data, this statistic equals 3.9 with df = 3, again not showing
evidence of lack of fit.
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The model with proportional odds form implies that the distribution of Y at one
predictor value tends to be higher, or tends to be lower, or tends to be similar, than
the distribution of Y at another predictor value. Here, for example, Republicans tend to
be higher than Democrats in degree of conservative political ideology. Whenx refers to
two groups, as in Table 6.7, the model does not fit well when the response distributions
differ in their variability, so such a tendency does not occur. If Democrats tended to be
primarily moderate in ideology, while Republicans tended to be both very conservative
and very liberal, then the Republicans’ responses would show greater variability than
the Democrats’. The two ideology distributions would be quite different, but the
model would not detect this.

When the model does not fit well, one could use the more general model with
separate effects for the different cumulative probabilities. This model replaces β in
equation (6.4) with βj . It implies that curves for different cumulative probabilities
climb or fall at different rates, but then those curves cross at certain predictor values.
This is inappropriate, because this violates the order that cumulative probabilities
must have [such as P(Y ≤ 2) ≤ P(Y ≤ 3) for all x]. Therefore, such a model can fit
adequately only over a narrow range of predictor values. Using the proportional odds
form of model ensures that the cumulative probabilities have the proper order for all
predictor values.

When the model fit is inadequate, another alternative is to fit baseline-category
logit models [recall equation (6.1)] and use the ordinality in an informal way in
interpreting the associations. A disadvantage this approach shares with the one just
mentioned is the increase in the number of parameters. Even though the model itself
may have less bias, estimates of measures of interest such as odds ratios or category
probabilities may be poorer because of the lack of model parsimony. We do not
recommend this approach unless the lack of fit of the ordinal model is severe in a
practical sense.

Some researchers collapse ordinal responses to binary so they can use ordinary
logistic regression. However, a loss of efficiency occurs in collapsing ordinal scales,
in the sense that larger standard errors result. In practice, when observations are spread
fairly evenly among the categories, the efficiency loss is minor when you collapse a
large number of categories to about four categories. However, it can be severe when
you collapse to a binary response. It is usually inadvisable to do this.

6.2.5 Example: Modeling Mental Health

Table 6.9 comes from a study of mental health for a random sample of adult residents
of Alachua County, Florida. Mental impairment is ordinal, with categories (well,
mild symptom formation, moderate symptom formation, impaired). The study related
Y = mental impairment to two explanatory variables. The life events index x1 is a
composite measure of the number and severity of important life events such as birth
of child, new job, divorce, or death in family that occurred to the subject within
the past three years. In this sample it has a mean of 4.3 and standard deviation
of 2.7. Socioeconomic status (x2 = SES) is measured here as binary (1 = high,
0 = low).



“c06” — 2007/1/29 — page 186 — #14

186 MULTICATEGORY LOGIT MODELS

Table 6.9. Mental Impairment by SES and Life Events

Mental Life Mental Life
Subject Impairment SES Events Subject Impairment SES Events

1 Well 1 1 21 Mild 1 9
2 Well 1 9 22 Mild 0 3
3 Well 1 4 23 Mild 1 3
4 Well 1 3 24 Mild 1 1
5 Well 0 2 25 Moderate 0 0
6 Well 1 0 26 Moderate 1 4
7 Well 0 1 27 Moderate 0 3
8 Well 1 3 28 Moderate 0 9
9 Well 1 3 29 Moderate 1 6

10 Well 1 7 30 Moderate 0 4
11 Well 0 1 31 Moderate 0 3
12 Well 0 2 32 Impaired 1 8
13 Mild 1 5 33 Impaired 1 2
14 Mild 0 6 34 Impaired 1 7
15 Mild 1 3 35 Impaired 0 5
16 Mild 0 1 36 Impaired 0 4
17 Mild 1 8 37 Impaired 0 4
18 Mild 1 2 38 Impaired 1 8
19 Mild 0 5 39 Impaired 0 8
20 Mild 1 5 40 Impaired 0 9

The main effects model of proportional odds form is

logit[P(Y ≤ j)] = αj + β1x1 + β2x2

Table 6.10 shows SAS output. The estimates β̂1 = −0.319 and β̂2 = 1.111 suggest
that the cumulative probability starting at the “well” end of the scale decreases as life

Table 6.10. Output for Fitting Cumulative Logit Model to Table 6.9

Score Test for the Proportional Odds Assumption

Chi-Square DF Pr > ChiSq

2.3255 4 0.6761

Std Like Ratio 95% Chi- Pr >

Parameter Estimate Error Conf Limits Square ChiSq

Intercept1 −0.2819 0.6423 −1.5615 0.9839 0.19 0.6607
Intercept2 1.2128 0.6607 −0.0507 2.5656 3.37 0.0664
Intercept3 2.2094 0.7210 0.8590 3.7123 9.39 0.0022
life −0.3189 0.1210 −0.5718 −0.0920 6.95 0.0084
ses 1.1112 0.6109 −0.0641 2.3471 3.31 0.0689
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events increases and increases at the higher level of SES. Given the life events score,
at the high SES level the estimated odds of mental impairment below any fixed level
are e1.111 = 3.0 times the estimated odds at the low SES level.

For checking fit, the Pearson X2 and deviance G2 statistics are valid only for non-
sparse contingency tables. They are inappropriate here. Instead, we can check the
fit by comparing the model to more complex models. Permitting interaction yields a
model with ML fit

logit[P̂ (Y ≤ j)] = α̂j − 0.420x1 + 0.371x2 + 0.181x1x2

The coefficient 0.181 of x1x2 has SE = 0.238. The estimated effect of life events
is −0.420 for the low SES group (x2 = 0) and (−0.420 + 0.181) = −0.239 for the
high SES group (x2 = 1). The impact of life events seems more severe for the low
SES group, but the difference in effects is not significant.

An alternative test of fit, presented in Table 6.10, is the score test of the proportional
odds assumption. This tests the hypothesis that the effects are the same for each
cumulative logit. It compares the model with one parameter for x1 and one for x2 to
the more complex model with three parameters for each, allowing different effects
for logit[P(Y ≤ 1)], logit[P(Y ≤ 2)], and logit[P(Y ≤ 3)]. Here, the score statistic
equals 2.33. It has df = 4, because the more complex model has four additional
parameters. The more complex model does not fit significantly better (P = 0.68).

6.2.6 Interpretations Comparing Cumulative Probabilities

Section 6.2.1 presented an odds ratio interpretation for the model. An alternative way
of summarizing effects uses the cumulative probabilities for Y directly. To describe
effects of quantitative variables, we compare cumulative probabilities at their quar-
tiles. To describe effects of categorical variables, we compare cumulative probabilities
for different categories. We control for quantitative variables by setting them at their
mean. We control for qualitative variables by fixing the category, unless there are
several in which case we can set them at the means of their indicator variables. In the
binary case, Section 4.5.1 used these interpretations for ordinary logistic regression.

We illustrate with P(Y ≤ 1) = P(Y = 1), the well outcome, for the mental health
data. First, consider the SES effect. At the mean life events of 4.3, P̂ (Y = 1) = 0.37
at high SES (i.e., x2 = 1) and P̂ (Y = 1) = 0.16 at low SES (x2 = 0). Next, consider
the life events effect. The lower and upper quartiles for life events are 2.0 and 6.5.
For high SES, P̂ (Y = 1) changes from 0.55 to 0.22 between these quartiles; for low
SES, it changes from 0.28 to 0.09. (Comparing 0.55 with 0.28 at the lower quartile
and 0.22 with 0.09 at the upper quartile provides further information about the SES
effect.) The sample effect is substantial for each predictor.

6.2.7 Latent Variable Motivation∗

With the proportional odds form of cumulative logit model, a predictor’s effect is the
same in the equations for the different cumulative logits. Because each predictor has
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only a single parameter, it is simpler to summarize and interpret effects than in the
baseline-category logit model (6.1).

One motivation for the proportional odds structure relates to a model for an assumed
underlying continuous variable. With many ordinal variables, the category labels
relate to a subjective assessment. It is often realistic to conceive that the observed
response is a crude measurement of an underlying continuous variable. The example
in Section 6.2.2 measured political ideology with five categories (very liberal, slightly
liberal, moderate, slightly conservative, very conservative). In practice, there are
differences in political ideology among people who classify themselves in the same
category. With a precise enough way to measure political ideology, it is possible to
imagine a continuous measurement. For example, if the underlying political ideology
scale has a normal distribution, then a person whose score is 1.96 standard deviations
above the mean is more conservative than 97.5% of the population. In statistics, an
unobserved variable assumed to underlie what we actually observe is called a latent
variable.

Let Y ∗ denote a latent variable. Suppose −∞ = α0 < α1 < · · · < αJ = ∞ are
cutpoints of the continuous scale for Y ∗ such that the observed response Y satisfies

Y = j if αj−1 < Y ∗ ≤ αj

In other words, we observe Y in category j when the latent variable falls in the
j th interval of values. Figure 6.4 depicts this. Now, suppose the latent variable Y ∗
satisfies an ordinary regression model relating its mean to the predictor values. Then,

Figure 6.4. Ordinal measurement, and underlying regression model for a latent variable.
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one can show3 that the categorical variable we actually observe satisfies a model with
the same linear predictor. Also, the predictor effects are the same for each cumula-
tive probability. Moreover, the shape of the curve for each of the J − 1 cumulative
probabilities is the same as the shape of the cdf of the distribution of Y ∗.

At given values of the predictors, suppose Y ∗ has a normal distribution, with
constant variance. Then a probit model holds for the cumulative probabilities. If the
distribution of Y ∗ is the logistic distribution, which is bell-shaped and symmetric
and nearly identical to the normal, then the cumulative logit model holds with the
proportional odds form.

Here is the practical implication of this latent variable connection: If it is plausible
to imagine that an ordinary regression model with the chosen predictors describes well
the effects for an underlying latent variable, then it is sensible to fit the cumulative
logit model with the proportional odds form.

6.2.8 Invariance to Choice of Response Categories

In the connection just mentioned between the model for Y and a model for a latent
variable Y ∗, the same parameters occur for the effects regardless of how the cutpoints
{αj } discretize the real line to form the scale for Y . The effect parameters are invariant
to the choice of categories for Y .

For example, if a continuous variable measuring political ideology has a linear
regression with some predictor variables, then the same effect parameters apply to a
discrete version of political ideology with the categories (liberal, moderate, con-
servative) or (very liberal, slightly liberal, moderate, slightly conservative, very
conservative). An implication is this: Two researchers who use different response
categories in studying a predictor’s effect should reach similar conclusions. If one
models political ideology using (very liberal, slightly liberal, moderate, slightly con-
servative, very conservative) and the other uses (liberal, moderate, conservative), the
parameters for the effect of a predictor are roughly the same. Their estimates should
be similar, apart from sampling error. This nice feature of the model makes it possible
to compare estimates from studies using different response scales.

To illustrate, we collapse Table 6.7 to a three-category response, combining the two
liberal categories and combining the two conservative categories. Then, the estimated
party affiliation effect changes only from 0.975 (SE = 0.129) to 1.006 (SE = 0.132).
Interpretations are unchanged.

6.3 PAIRED-CATEGORY ORDINAL LOGITS

Cumulative logit models for ordinal responses use the entire response scale in forming
each logit. Alternative logits for ordered categories use pairs of categories.

3For details, see Agresti 2002, pp. 277–279.
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6.3.1 Adjacent-Categories Logits

One approach forms logits for all pairs of adjacent categories. The adjacent-categories
logits are

log

(
πj+1

πj

)
, j = 1, . . . , J − 1

For J = 3, these logits are log(π2/π1) and log(π3/π2).
With a predictor x, the adjacent-categories logit model has form

log

(
πj+1

πj

)
= αj + βjx, j = 1, . . . , J − 1 (6.5)

A simpler proportional odds version of the model is

log

(
πj+1

πj

)
= αj + βx, j = 1, . . . , J − 1 (6.6)

For it, the effects {βj = β} of x on the odds of making the higher instead of the
lower response are identical for each pair of adjacent response categories. Like the
cumulative logit model (6.4) of proportional odds form, this model has a single
parameter rather than J − 1 parameters for the effect of x. This makes it simpler to
summarize an effect.

The adjacent-categories logits, like the baseline-category logits, determine the
logits for all pairs of response categories. For the simpler model (6.6), the coefficient
of x for the logit, log(πa/πb), equals β(a − b). The effect depends on the distance
between categories, so this model recognizes the ordering of the response scale.

6.3.2 Example: Political Ideology Revisited

Let’s return to Table 6.7 and model political ideology using the adjacent-categories
logit model (6.6) of proportional odds form. Let x = 0 for Democrats and x = 1 for
Republicans.

Software reports that the party affiliation effect is β̂ = 0.435. The estimated odds
that a Republican’s ideology classification is in category j + 1 instead of j are
exp(β̂) = 1.54 times the estimated odds for Democrats. This is the estimated odds
ratio for each of the four 2 × 2 tables consisting of a pair of adjacent columns of
Table 6.7. For instance, the estimated odds of “slightly conservative” instead of “mod-
erate” ideology are 54% higher for Republicans than for Democrats. The estimated
odds ratio for an arbitrary pair of columns a and b equals exp[β̂(a − b)]. The esti-
mated odds that a Republican’s ideology is “very conservative” (category 5) instead
of “very liberal” (category 1) are exp[0.435(5 − 1)] = (1.54)4 = 5.7 times those for
Democrats.
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The model fit has deviance G2 = 5.5 with df = 3, a reasonably good fit. The
likelihood-ratio test statistic for the hypothesis that party affiliation has no effect on
ideology (H0: β = 0) equals the difference between the deviance values for the two
models, 62.3 − 5.5 = 56.8 with df = 4 − 3 = 1. There is very strong evidence of
an association (P < 0.0001). Results are similar to those for the cumulative-logit
analysis in Section 6.2.2.

6.3.3 Continuation-Ratio Logits

Another approach forms logits for ordered response categories in a sequential manner.
The models apply simultaneously to

log

(
π1

π2

)
, log

(
π1 + π2

π3

)
, . . . , log

(
π1 + · · · + πJ−1

πJ

)
These are called continuation-ratio logits. They refer to a binary response that con-
trasts each category with a grouping of categories from lower levels of the response
scale.

A second type of continuation-ratio logit contrasts each category with a grouping
of categories from higher levels of the response scale; that is,

log

(
π1

π2 + · · · + πJ

)
, log

(
π2

π3 + · · · + πJ

)
, . . . , log

(
πJ−1

πJ

)
Models using these logits have different parameter estimates and goodness-of-fit
statistics than models using the other continuation-ratio logits.

6.3.4 Example: A Developmental Toxicity Study

Table 6.11 comes from a developmental toxicity study. Rodent studies are commonly
used to test and regulate substances posing potential danger to developing fetuses.
This study administered diethylene glycol dimethyl ether, an industrial solvent used in
the manufacture of protective coatings, to pregnant mice. Each mouse was exposed to
one of five concentration levels for 10 days early in the pregnancy. Two days later, the
uterine contents of the pregnant mice were examined for defects. Each fetus had the
three possible outcomes (Dead, Malformation, Normal). The outcomes are ordered.

We apply continuation-ratio logits to model the probability of a dead fetus, using
log[π1/(π2 + π3)], and the conditional probability of a malformed fetus, given that
the fetus was live, using log(π2/π3). We used scores {0, 62.5, 125, 250, 500} for
concentration level. The two models are ordinary logistic regression models in which
the responses are column 1 and columns 2–3 combined for one fit and column 2 and
column 3 for the second fit. The estimated effect of concentration level is 0.0064
(SE = 0.0004) for the first logit and 0.0174 (SE = 0.0012) for the second logit. In
each case, the less desirable outcome is more likely as concentration level increases.
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Table 6.11. Outcomes for Pregnant Mice in Developmental
Toxicity Studya

Response
Concentration
(mg/kg per day) Non-live Malformation Normal

0 (controls) 15 1 281
62.5 17 0 225
125 22 7 283
250 38 59 202
500 144 132 9

aBased on results in C. J. Price et al., Fund. Appl. Toxicol., 8: 115–126,
1987. I thank Dr. Louise Ryan for showing me these data.

For instance, given that a fetus was live, for every 100-unit increase in concentration
level, the estimated odds that it was malformed rather than normal changes by a
multiplicative factor of exp(100 × 0.0174) = 5.7.

When models for different continuation-ratio logits have separate parameters, as
in this example, separate fitting of ordinary binary logistic regression models for
different logits gives the same results as simultaneous fitting. The sum of the separate
deviance statistics is an overall goodness-of-fit statistic pertaining to the simultaneous
fitting. For Table 6.11, the deviance G2 values are 5.8 for the first logit and 6.1 for
the second, each based on df = 3. We summarize the fit by their sum, G2 = 11.8,
based on df = 6 (P = 0.07).

6.3.5 Overdispersion in Clustered Data

The above analysis treats pregnancy outcomes for different fetuses as independent
observations. In fact, each pregnant mouse had a litter of fetuses, and statistical
dependence may exist among different fetuses from the same litter. The model
also treats fetuses from different litters at a given concentration level as having
the same response probabilities. Heterogeneity of various types among the litters
(for instance, due to different physical conditions of different pregnant mice) would
usually cause these probabilities to vary somewhat among litters. Either statistical
dependence or heterogeneous probabilities violates the binomial assumption. They
typically cause overdispersion – greater variation than the binomial model implies
(recall Section 3.3.3).

For example, consider mice having litters of size 10 at a fixed, low concentration
level. Suppose the average probability of fetus death is low, but some mice have
genetic defects that cause fetuses in their litter to have a high probability of death.
Then, the number of fetuses that die in a litter may vary among pregnant mice to
a greater degree than if the counts were based on identical probabilities. We might
observe death counts (out of 10 fetuses in a litter) such as 1, 0, 1, 10, 0, 2, 10, 1, 0,
10; this is more variability than we expect with binomial variates.
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The total G2 for testing the continuation-ratio model shows some evidence of lack
of fit. The structural form chosen for the model may be incorrect. The lack of fit
may mainly, however, reflects overdispersion caused by dependence within litters
or heterogeneity among litters. Both factors are common in developmental toxicity
studies. Chapters 9 and 10 present ways of handling correlated and/or heterogeneous
observations and the overdispersion that occurs because of these factors.

6.4 TESTS OF CONDITIONAL INDEPENDENCE

It is often useful to check whether one variable has an effect on another after we control
for a third variable. Sections 4.3.1 and 4.3.4 discussed this for a binary response, using
logit models and the Cochran–Mantel–Haenszel test. This section shows ways to test
the hypothesis of conditional independence in three-way tables when the response
variable is multicategory.

6.4.1 Example: Job Satisfaction and Income

Table 6.12, from the 1991 General Social Survey, refers to the relationship between
Y = job satisfaction and income, stratified by gender, for black Americans. Let us
test the hypothesis of conditional independence using a cumulative logit model. Let
x1 = gender and x2 = income. We will treat income as quantitative, by assigning
scores to its categories. The likelihood-ratio test compares the model

logit[P(Y ≤ j)] = αj + β1x1 + β2x2, j = 1, 2, 3

to the simpler model without an income effect,

logit[P(Y ≤ j)] = αj + β1x1, j = 1, 2, 3

Table 6.12. Job Satisfaction and Income, Controlling for Gender

Job Satisfaction

Very A Little Moderately Very
Gender Income Dissatisfied Satisfied Satisfied Satisfied

Female <5000 1 3 11 2
5000–15,000 2 3 17 3
15,000–25,000 0 1 8 5

>25,000 0 2 4 2

Male <5000 1 1 2 1
5000–15,000 0 3 5 1
15,000–25,000 0 0 7 3

>25,000 0 1 9 6

Source: General Social Survey, 1991.
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With grouped continuous variables, it is sensible to use scores that are midpoints of
the class intervals. For income, we use scores {3, 10, 20, 35}, which use midpoints of
the middle two categories, in thousands of dollars. The model with an income effect
has deviance 13.9 (df = 20), and the model with no income effect has deviance 19.6
(df = 19). The difference between the deviances is 5.7, based on df = 20 − 19 = 1.
This gives P = 0.017 and provides evidence of an association.

This test works well when the association is similar in each partial table, because
the model does not have an interaction term. In this sense, it is directed toward an
alternative of homogeneous association as that model characterizes the association
(i.e., with odds ratios that use the entire response scale, dichotomized by response
below vs above any particular point).

A baseline-category logit model treats the response variable as nominal rather than
ordinal. It would also treat income as nominal if we used indicator variables for its
categories rather than assumed a linear trend. For example let x2 = 1 if income is in
the first category, x3 = 1 if income is in the second category, and x4 = 1 if income is
in the third category, in each case 0 otherwise. The model is

log

(
πj

π4

)
= αj + βj1x1 + βj2x2 + βj3x3 + βj4x4

For this model, conditional independence of job satisfaction and income is

H0: βj2 = βj3 = βj4 = 0, j = 1, 2, 3

equating nine parameters equal to 0.
In this case, the difference of deviances equals 12.3, based on df = 9, for which

the P -value is 0.20. This test has the advantage of not assuming as much about
the model structure. A disadvantage is that it often has low power, because the null
hypothesis has so many (nine) parameters. If there truly is a trend in the relationship,
we are more likely to capture it with the ordinal analysis. In testing that the single
association parameter equals 0, that chi-squared test focuses the analysis on df = 1.

Alternatively, a model could treat one variable as ordinal and one as nominal.4 For
example, a cumulative logit model could treat a predictor as nominal by using indicator
variables for its categories. This would be appropriate if the response variable did not
tend to increase regularly or to decrease regularly as the predictor value changed. For
these data, since the parsimonious model that treats both variables as ordinal fits well
(deviance = 13.9 with df = 20), we prefer it to these other models.

6.4.2 Generalized Cochran–Mantel–Haenszel Tests∗

Alternative tests of conditional independence generalize the Cochran–Mantel–
Haenszel (CMH) statistic (4.9) to I × J × K tables. Like the CMH statistic and the

4See Section 7.5 of Agresti (2002) for details.
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model-based statistics without interaction terms, these statistics perform well when
the conditional association is similar in each partial table. There are three versions,
according to whether both, one, or neither of Y and the predictor are treated as
ordinal.

When both variables are ordinal, the test statistic generalizes the correlation statistic
(2.10) for two-way tables. It is designed to detect a linear trend in the association that
has the same direction in each partial table. The generalized correlation statistic
has approximately a chi-squared distribution with df = 1. Its formula is complex
and we omit computational details. It is available in standard software (e.g., PROC
FREQ in SAS).

For Table 6.12 with the scores {3, 10, 20, 35} for income and {1, 3, 4, 5} for satis-
faction, the sample correlation between income and job satisfaction equals 0.16 for
females and 0.37 for males. The generalized correlation statistic equals 6.2 with
df = 1 (P = 0.01). This gives the same conclusion as the ordinal-model-based
likelihood-ratio test of the previous subsection.

When in doubt about scoring, perform a sensitivity analysis by using a few different
choices that seem sensible. Unless the categories exhibit severe imbalance in their
totals, the choice of scores usually has little impact on the results. With the row
and column numbers as the scores, the sample correlation equals 0.17 for females
and 0.38 for males, and the generalized correlation statistic equals 6.6 with df = 1
(P = 0.01), giving the same conclusion.

6.4.3 Detecting Nominal–Ordinal Conditional Association∗

When the predictor is nominal and Y is ordinal, scores are relevant only for levels of
Y . We summarize the responses of subjects within a given row by the mean of their
scores on Y , and then average this row-wise mean information across the K strata.
The test of conditional independence compares the I rows using a statistic based on
the variation among the I averaged row mean responses. This statistic is designed to
detect differences among their true mean values. It has a large-sample chi-squared
distribution with df = (I − 1).

For Table 6.12, this test treats job satisfaction as ordinal and income as nominal.
The test searches for differences among the four income levels in their mean job
satisfaction. Using scores {1, 2, 3, 4}, the mean job satisfaction at the four levels
of income equal (2.82, 2.84, 3.29, 3.00) for females and (2.60, 2.78, 3.30, 3.31) for
males. For instance, the mean for the 17 females with income <5000 equals [1(1) +
2(3) + 3(11) + 4(2)]/17 = 2.82. The pattern of means is similar for each gender,
roughly increasing as income increases. The generalized CMH statistic for testing
whether the true row mean scores differ equals 9.2 with df = 3 (P = 0.03). The
evidence is not quite as strong as with the fully ordinal analyses above based on df = 1.

Unlike this statistic, the correlation statistic of the previous subsection also treats
the rows as ordinal. It detects a linear trend across rows in the row mean scores, and it
utilizes the approximate increase in mean satisfaction as income increases. One can
use the nominal–ordinal statistic when both variables are ordinal but such a linear
trend may not occur. For instance, one might expect responses on Y to tend to be
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higher in some rows than in others, without the mean of Y increasing consistently or
decreasing consistently as income increases.

6.4.4 Detecting Nominal–Nominal Conditional Association∗

Another CMH-type statistic, based on df = (I − 1)(J − 1), provides a “general
association” test. It is designed to detect any type of association that is similar in
each partial table. It treats the variables as nominal, so it does not require category
scores.

For Table 6.12, the general association statistic equals 10.2, with df = 9 (P =
0.34). We pay a price for ignoring the ordinality of job satisfaction and income. For
ordinal variables, the general association test is usually not as powerful as narrower
tests with smaller df values that use the ordinality.

Table 6.13 summarizes results of the three generalized CMH tests applied to
Table 6.12. The format is similar to that used by SAS with the CMH option in PROC
FREQ. Normally, we would prefer a model-based approach to a CHM-type test. A
model, besides providing significance tests, provides estimates of sizes of the effects.

Table 6.13. Summary of Generalized Cochran–Mantel–Haenszel
Tests of Conditional Independence for Table 6.12

Alternative Hypothesis Statistic df P -value

General association 10.2 9 0.34
Row mean scores differ 9.2 3 0.03
Nonzero correlation 6.6 1 0.01

PROBLEMS

6.1 A model fit predicting preference for President (Democrat, Republican, Inde-
pendent) using x = annual income (in $10,000 dollars) is log(π̂D/π̂I ) =
3.3 − 0.2x and log(π̂R/π̂I ) = 1.0 + 0.3x.

a. State the prediction equation for log(π̂R/π̂D). Interpret its slope.

b. Find the range of x for which π̂R > π̂D .

c. State the prediction equation for π̂I .

6.2 Refer to the alligator food choice example in Section 6.1.2.

a. Using the model fit, estimate an odds ratio that describes the effect of length
on primary food choice being either “invertebrate” or “other.”

b. Estimate the probability that food choice is invertebrate, for an alligator of
length 3.9 meters.

c. Estimate the length at which the outcomes “invertebrate” and “other” are
equally likely.
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6.3 Table 6.14 displays primary food choice for a sample of alligators, classified
by length (≤2.3 meters, >2.3 meters) and by the lake in Florida in which they
were caught.

a. Fit a model to describe effects of length and lake on primary food choice.
Report the prediction equations.

b. Using the fit of your model, estimate the probability that the primary food
choice is “fish,” for each length in Lake Oklawaha. Interpret the effect of
length.

Table 6.14. Data on Alligators for Exercise 6.3

Primary Food Choice

Lake Size Fish Invertebrate Reptile Bird Other

Hancock ≤2.3 23 4 2 2 8
>2.3 7 0 1 3 5

Oklawaha ≤2.3 5 11 1 0 3
>2.3 13 8 6 1 0

Trafford ≤2.3 5 11 2 1 5
>2.3 8 7 6 3 5

George ≤2.3 16 19 1 2 3
>2.3 17 1 0 1 3

Source: Wildlife Research Laboratory, Florida Game and Fresh Water Fish
Commission.

6.4 Refer to the belief in afterlife example in Section 6.1.4.

a. Estimate the probability of response “yes” for black females.

b. Describe the gender effect by reporting and interpreting the estimated condi-
tional odds ratio for the (i) “undecided” and “no” pair of response categories,
(ii) “yes” and “undecided” pair.

6.5 For a recent General Social Survey, a prediction equation relating Y = job
satisfaction (four ordered categories; 1 = the least satisfied) to the subject’s
report of x1 = earnings compared with others with similar positions (four
ordered categories; 1 = much less, 4 = much more), x2 = freedom to make
decisions about how to do job (four ordered categories; 1 = very true, 4 = not
at all true), and x3 = work environment allows productivity (four ordered cat-
egories; 1 = strongly agree, 4 = strongly disagree), was logit[P̂ (Y ≤ j)] =
α̂j − 0.54x1 + 0.60x2 + 1.19x3.

a. Summarize each partial effect by indicating whether subjects tend to be
more satisfied, or less satisfied, as (i) x1, (ii) x2, (iii) x3, increases.

b. Report the settings for x1, x2, x3 at which a subject is most likely to have
highest job satisfaction.
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6.6 Does marital happiness depend on family income? For the 2002 General Social
Survey, counts in the happiness categories (not, pretty, very) were (6, 43, 75)

for below average income, (6, 113, 178) for average income, and (6, 57, 117)

for above average income. Table 6.15 shows output for a baseline-category
logit model with very happy as the baseline category and scores {1, 2, 3} for
the income categories.

a. Report the prediction equations from this table.

b. Interpret the income effect in the first equation.

c. Report the Wald test statistic and P -value for testing that marital happiness
is independent of family income. Interpret.

d. Does the model fit adequately? Justify your answer.

e. Estimate the probability that a person with average family income reports
a very happy marriage.

Table 6.15. Output on Modeling Happiness for Problem 6.6

Deviance and Pearson Goodness-of-Fit Statistics

Criterion Value DF Value/DF Pr > ChiSq

Deviance 3.1909 2 1.5954 0.2028
Pearson 3.1510 2 1.5755 0.2069

Testing Global Null Hypothesis: BETA = 0
Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 0.9439 2 0.6238
Wald 0.9432 2 0.6240

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter happy DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 1 −2.5551 0.7256 12.4009 0.0004
Intercept 2 1 −0.3513 0.2684 1.7133 0.1906
income 1 1 −0.2275 0.3412 0.4446 0.5049
income 2 1 −0.0962 0.1220 0.6210 0.4307

6.7 Refer to the previous exercise. Table 6.16 shows output for a cumulative logit
model with scores {1, 2, 3} for the income categories.

a. Explain why the output reports two intercepts but one income effect.

b. Interpret the income effect.

c. Report a test statistic and P -value for testing that marital happiness is
independent of family income. Interpret.

d. Does the model fit adequately? Justify your answer.

e. Estimate the probability that a person with average family income reports
a very happy marriage.
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Table 6.16. Output on Modeling Happiness for Problem 6.7

Deviance and Pearson Goodness-of-Fit Statistics

Criterion Value DF Value/DF Pr > ChiSq

Deviance 3.2472 3 1.0824 0.3551
Pearson 3.2292 3 1.0764 0.3576

Testing Global Null Hypothesis: BETA = 0
Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 0.8876 1 0.3461
Wald 0.8976 1 0.3434

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 1 −3.2467 0.3404 90.9640 <.0001
Intercept 2 1 −0.2378 0.2592 0.8414 0.3590
income 1 −0.1117 0.1179 0.8976 0.3434

6.8 Table 6.17 results from a clinical trial for the treatment of small-cell lung cancer.
Patients were randomly assigned to two treatment groups. The sequential ther-
apy administered the same combination of chemotherapeutic agents in each
treatment cycle. The alternating therapy used three different combinations,
alternating from cycle to cycle.

a. Fit a cumulative logit model with main effects for treatment and gender.
Interpret the estimated treatment effect.

b. Fit the model that also contains an interaction term between treatment
and gender. Interpret the interaction term by showing how the estimated
treatment effect varies by gender.

c. Does the interaction model give a significantly better fit?

Table 6.17. Data for Problem 6.8 on Lung Cancer Treatment

Response to Chemotherapy

Progressive No Partial Complete
Therapy Gender Disease Change Remission Remission

Sequential Male 28 45 29 26
Female 4 12 5 2

Alternating Male 41 44 20 20
Female 12 7 3 1

Source: Holtbrugge, W. and Schumacher, M., Appl. Statist., 40: 249–259, 1991.
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6.9 A cumulative logit model is fitted to data from the 2004 General Social
Survey, with Y = political ideology (extremely liberal or liberal, slightly
liberal, moderate, slightly conservative, extremely conservative or conserva-
tive) and predictor religious preference (Protestant, Catholic, Jewish, None).
With indicator variables for the first three religion categories, the ML fit has
α̂1 = −1.03, α̂2 = −0.13, α̂3 = 1.57, α̂4 = 2.41, β̂1 = −1.27, β̂2 = −1.22,
β̂3 = −0.44.

a. Why are there four {α̂j }? Why is α̂1 < α̂2 < α̂3 < α̂4?

b. Which group is estimated to be the (i) most liberal, (ii) most conservative?
Why?

c. Estimate the probability of the most liberal response for the Protestant and
None groups.

d. Use an estimated odds ratio to compare political ideology for the (i) Protes-
tant and None groups, (ii) Protestant and Catholic groups.

6.10 Refer to the interpretations in Section 6.2.6 for the mental health data. Sum-
marize the SES effect by finding P(Y ≤ 2) for high SES and for low SES, at
the mean life events of 4.3.

6.11 Refer to Table 6.12. Treating job satisfaction as the response, analyze the data
using a cumulative logit model.

a. Describe the effect of income, using scores {3, 10, 20, 35}.
b. Compare the estimated income effect to the estimate obtained after com-

bining categories “Very dissatisfied” and “A little satisfied.” What property
of the model does this reflect?

c. Can you drop gender from the model in (a)?

6.12 Table 6.18 shows results from the 2000 General Social Survey relating hap-
piness and religious attendance (1 = at most several times a year, 2 = once a
month to several times a year, 3 = every week to several times a week).

a. Fit a multinomial model. Conduct descriptive and inferential analyses about
the association.

b. Analyze the model goodness of fit.

Table 6.18. GSS Data for Exercise 6.12 on Happiness

Happiness

Religion Not Too Happy Pretty Happy Very Happy

1 189 908 382
2 53 311 180
3 46 335 294
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6.13 Fit an adjacent-categories logit model with main effects to the job satisfaction
data in Table 6.12, using scores {1, 2, 3, 4} for income.

a. Use proportional odds structure. Interpret the estimated effect of income.

b. Fit the model allowing different effects for each logit, which is equivalent
to a baseline-category logit model. Interpret the income effect.

c. What is the difference between the two models in terms of how they treat
job satisfaction?

6.14 Consider Table 6.4 on belief in an afterlife. Fit a model using (a) adjacent-
categories logits, (b) alternative ordinal logits. In each case, prepare a one-page
report, summarizing your analyses and interpreting results.

6.15 Analyze the job satisfaction data of Table 6.12 using continuation-ratio logits.
Prepare a one-page summary.

6.16 Table 6.19 refers to a study that randomly assigned subjects to a control group
or a treatment group. Daily during the study, treatment subjects ate cereal
containing psyllium. The purpose of the study was to analyze whether this
resulted in lowering LDL cholesterol.

a. Model the ending cholesterol level as a function of treatment, using the
beginning level as a covariate. Analyze the treatment effect, and interpret.

b. Repeat the analysis in (a), treating the beginning level as a categorical
control variable. Compare results.

c. An alternative approach to (b) uses a generalized Cochran–Mantel–
Haenszel test with 2 × 4 tables relating treatment to the ending response for
four partial tables based on beginning cholesterol level. Apply such a test,
taking into account the ordering of the response. Interpret, and compare
results with (b).

Table 6.19. Data for Problem 6.16 on Cholesterol Study

Ending LDL Cholesterol Level

Control Treatment

Beginning ≤3.4 3.4–4.1 4.1–4.9 >4.9 ≤3.4 3.4–4.1 4.1–4.9 >4.9

≤3.4 18 8 0 0 21 4 2 0
3.4–4.1 16 30 13 2 17 25 6 0
4.1–4.9 0 14 28 7 11 35 36 6
>4.9 0 2 15 22 1 5 14 12

Source: Dr. Sallee Anderson, Kellogg Co.

6.17 Table 6.20 is an expanded version of a data set Section 7.2.6 presents about
a sample of auto accidents, with predictors gender, location of accident, and
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Table 6.20. Data for Problem 6.17 on Auto Accidents

Severity of Injury

Gender Location Seat-belt 1 2 3 4 5

Female Urban No 7,287 175 720 91 10
Yes 11,587 126 577 48 8

Rural No 3,246 73 710 159 31
Yes 6,134 94 564 82 17

Male Urban No 10,381 136 566 96 14
Yes 10,969 83 259 37 1

Rural No 6,123 141 710 188 45
Yes 6,693 74 353 74 12

Source: Dr. Cristanna Cook, Medical Care Development, Augusta, ME.

whether the subject used a seat belt. The response categories are (1) not injured,
(2) injured but not transported by emergency medical services, (3) injured and
transported by emergency medical services but not hospitalized, (4) injured and
hospitalized but did not die, (5) injured and died. Analyze these data. Prepare
a two-page report, summarizing your descriptive and inferential analyses.

6.18 A response scale has the categories (strongly agree, mildly agree, mildly dis-
agree, strongly disagree, do not know). How might you model this response?
(Hint: One approach handles the ordered categories in one model and combines
them and models the “do not know” response in another model.)

6.19 The sample in Table 6.12 consists of 104 black Americans. A similar table
relating income and job satisfaction for white subjects in the same General
Social Survey had counts (by row) of (3, 10, 30, 27/7, 8, 45, 39/8, 7, 46, 51/4,
2, 28, 47) for females and (1, 4, 9, 9/1, 2, 37, 29/0, 10, 35, 39/7, 14, 69, 109)
for males. Test the hypothesis of conditional independence between income
and job satisfaction, (a) using a model that treats income and job satisfaction as
nominal, (b) using a model that incorporates the category orderings, (c) with a
generalized CMH test for the alternative that the mean job satisfaction varies
by level of income, controlling for gender, (d) with a generalized CMH test not
designed to detect any particular pattern of association. Interpret, and compare
results, indicating the extent to which conclusions suffer when you do not use
the ordinality.

6.20 For K = 1, the generalized CMH correlation statistic equals formula (2.10).
When there truly is a trend, Section 2.5.3 noted that this test is more powerful
than the X2 and G2 tests of Section 2.4.3. To illustrate, for Table 6.12 on job
satisfaction and income, construct the marginal 4 × 4 table.
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a. Show that the Pearson X2 = 11.5 with df = 9 (P = 0.24). Show that
the correlation statistic with equally-spaced scores is M2 = 7.6 based on
df = 1 (P = 0.006). Interpret.

b. Conduct an analysis with a model for which you would expect the test of
the income effect also to be powerful.

6.21 For the 2000 GSS, counts in the happiness categories (not too, pretty,
very) were (67, 650, 555) for those who were married and (65, 276, 93) for
those who were divorced. Analyze these data, preparing a one-page report
summarizing your descriptive and inferential analyses.

6.22 True, or false?

a. One reason it is usually wise to treat an ordinal variable with methods that
use the ordering is that in tests about effects, chi-squared statistics have
smaller df values, so it is easier for them to be farther out in the tail and
give small P -values; that is, the ordinal tests tend to be more powerful.

b. The cumulative logit model assumes that the response variable Y is ordinal;
it should not be used with nominal variables. By contrast, the baseline-
category logit model treats Y as nominal. It can be used with ordinal Y , but
it then ignores the ordering information.

c. If political ideology tends to be mainly in the moderate category in New
Zealand and mainly in the liberal and conservative categories in Australia,
then the cumulative logit model with proportional odds assumption should
fit well for comparing these countries.

d. Logistic regression for binary Y is a special case of the baseline-category
logit and cumulative logit model with J = 2.
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Loglinear Models for Contingency
Tables

Section 3.3.1 introduced loglinear models as generalized linear models (GLMs) for
count data. One use of them is modeling cell counts in contingency tables. The models
specify how the size of a cell count depends on the levels of the categorical variables
for that cell. They help to describe association patterns among a set of categorical
response variables.

Section 7.1 introduces loglinear models. Section 7.2 discusses statistical inference
for model parameters and model checking. When one variable is a binary response
variable, logistic models for that response are equivalent to certain loglinear models.
Section 7.3 presents the connection. We shall see that loglinear models are mainly
of use when at least two variables in a contingency table are response variables.
Section 7.4 introduces graphical representations that portray a model’s association
patterns and indicate when conditional odds ratios are identical to marginal odds ratios.
The loglinear models of Sections 7.1–7.4 treat all variables as nominal. Section 7.5
presents a loglinear model that describes association between ordinal variables.

7.1 LOGLINEAR MODELS FOR TWO-WAY AND
THREE-WAY TABLES

Consider an I × J contingency table that cross-classifies n subjects. When the
responses are statistically independent, the joint cell probabilities {πij } are determined
by the row and column marginal totals,

πij = πi+π+j , i = 1, . . . , I, j = 1, . . . , J

An Introduction to Categorical Data Analysis, Second Edition. By Alan Agresti
Copyright © 2007 John Wiley & Sons, Inc.
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The cell probabilities {πij } are parameters for a multinomial distribution. Loglinear
model formulas use expected frequencies {μij = nπij } rather than {πij }. Then they
apply also to the Poisson distribution for cell counts with expected values {μij }. Under
independence, μij = nπi+π+j for all i and j .

7.1.1 Loglinear Model of Independence for Two-Way Table

Denote the row variable by X and the column variable by Y . The condition of indepen-
dence, μij = nπi+π+j , is multiplicative. Taking the log of both sides of the equation
yields an additive relation. Namely, log μij depends on a term based on the sample
size, a term based on the probability in row i, and a term based on the probability in
column j . Thus, independence has the form

log μij = λ + λX
i + λY

j (7.1)

for a row effect λX
i and a column effect λY

j . (The X and Y superscripts are labels, not
“power” exponents.) This model is called the loglinear model of independence. The
parameter λX

i represents the effect of classification in row i. The larger the value of
λX

i , the larger each expected frequency is in row i. Similarly, λY
j represents the effect

of classification in column j .
The null hypothesis of independence is equivalently the hypothesis that this log-

linear model holds. The fitted values that satisfy the model are {μ̂ij = ni+n+j /n}.
These are the estimated expected frequencies for the X2 and G2 tests of independence
(Section 2.4). Those tests are also goodness-of-fit tests of this loglinear model.

7.1.2 Interpretation of Parameters in Independence Model

As formula (7.1) illustrates, loglinear models for contingency tables do not distinguish
between response and explanatory classification variables. Model (7.1) treats both
X and Y as responses, modeling the cell counts. Loglinear models are examples of
generalized linear models. The GLM treats the cell counts as independent observations
from some distribution, typically the Poisson. The model regards the observations to
be the cell counts rather than the individual classifications of the subjects.

Parameter interpretation is simplest when we view one response as a function of
the others. For instance, consider the independence model (7.1) for I × 2 tables. In
row i, the logit for the probability that Y = 1 equals

log[P(Y = 1)/(1 − P(Y = 1))] = log(μi1/μi2) = log μi1 − log μi2

= (λ + λX
i + λY

1 ) − (λ + λX
i + λY

2 ) = λY
1 − λY

2

This logit does not depend on i. That is, the logit for Y does not depend on the level
of X. The loglinear model corresponds to the simple model of form, logit[P(Y =
1)] = α, whereby the logit takes the same value in every row i. In each row, the odds
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of response in column 1 equal exp(α) = exp(λY
1 − λY

2 ). In model (7.1), differences
between two parameters for a given variable relate to the log odds of making one
response, relative to another, on that variable.

For the independence model, one of {λX
i } is redundant, and one of {λY

j } is redun-
dant. This is analogous toANOVA and multiple regression models with factors, which
require one fewer indicator variable than the number of factor levels. Most software
sets the parameter for the last category equal to 0. Another approach lets the para-
meters for each factor sum to 0. The choice of constraints is arbitrary. What is unique
is the difference between two main effect parameters of a particular type. As just
noted, that is what determines odds and odds ratios.

For example, in the 2000 General Social Survey, subjects were asked whether
they believed in life after death. The number who answered “yes” was 1339 of the
1639 whites, 260 of the 315 blacks and 88 of the 110 classified as “other” on race.
Table 7.1 shows results of fitting the independence loglinear model to the 3 × 2 table.
The model fits well. For the constraints used, λY

1 = 1.50 and λY
2 = 0. Therefore, the

estimated odds of belief in life after death was exp(1.50) = 4.5 for each race.

Table 7.1. Results of Fitting Independence Loglinear Model to
Cross-Classification of Race by Belief in Life after Death

Criteria For Assessing Goodness Of Fit

Criterion DF Value
Deviance 2 0.3565
Pearson Chi-Square 2 0.3601

Standard
Parameter DF Estimate Error

Intercept 1 3.0003 0.1061
race white 1 2.7014 0.0985
race black 1 1.0521 0.1107
race other 0 0.0000 0.0000
belief yes 1 1.4985 0.0570
belief no 0 0.0000 0.0000

7.1.3 Saturated Model for Two-Way Tables

Variables that are statistically dependent rather than independent satisfy the more
complex loglinear model,

log μij = λ + λX
i + λY

j + λXY
ij (7.2)

The {λXY
ij } parameters are association terms that reflect deviations from independence.

The parameters represent interactions between X and Y , whereby the effect of one
variable on the expected cell count depends on the level of the other variable. The
independence model (7.1) is the special case in which all λXY

ij = 0.
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Direct relationships exist between log odds ratios and the {λXY
ij } association

parameters. For example, the model for 2 × 2 tables has log odds ratio

log θ = log

(
μ11μ22

μ12μ21

)
= log μ11 + log μ22 − log μ12 − log μ21

= (λ + λX
1 + λY

1 + λXY
11 ) + (λ + λX

2 + λY
2 + λXY

22 )

− (λ + λX
1 + λY

2 + λXY
12 ) − (λ + λX

2 + λY
1 + λXY

21 )

= λXY
11 + λXY

22 − λXY
12 − λXY

21 (7.3)

Thus, {λXY
ij } determine the log odds ratio. When these parameters equal zero, the log

odds ratio is zero, and X and Y are independent.
In I × J tables, only (I − 1)(J − 1) association parameters are nonredundant.

One can specify the parameters so that the ones in the last row and in the last column
are zero. These parameters are coefficients of cross-products of (I − 1) indicator
variables for X with (J − 1) indicator variables for Y . Tests of independence analyze
whether these (I − 1)(J − 1) parameters equal zero, so the tests have residual df =
(I − 1)(J − 1).

Table 7.2 shows estimates for fitting model (7.2) to the 3 × 2 table mentioned above
on X = gender and Y = belief in afterlife. The estimated odds ratios between belief
and race are exp(0.1096) = 1.12 for white and other, exp(0.1671) = 1.18 for black
and other, and exp(0.1096 − 0.1671) = 0.94 for white and black. For example, the
estimated odds of belief in an life after death for whites are 0.94 times the estimated
odds for blacks. Since the independence model fitted well, none of these estimated
odds ratios differ significantly from 1.0.

Table 7.2. Estimates for Fitting Saturated Loglinear Model to
Cross-Classification of Race by Belief in Life after Death

Standard
Parameter DF Estimate error

Intercept 1 3.0910 0.2132
race white 1 2.6127 0.2209
race black 1 0.9163 0.2523
race other 0 0.0000 0.0000
belief yes 1 1.3863 0.2384
belief no 0 0.0000 0.0000
race*belief white yes 1 0.1096 0.2468
race*belief white no 0 0.0000 0.0000
race*belief black yes 1 0.1671 0.2808
race*belief black no 0 0.0000 0.0000
race*belief other yes 0 0.0000 0.0000
race*belief other no 0 0.0000 0.0000
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Model (7.2) has a single constant parameter (λ), (I − 1) nonredundant λX
i para-

meters, (J − 1) nonredundant λY
j parameters, and (I − 1)(J − 1) nonredundant λXY

ij

parameters. The total number of parameters equals 1 + (I − 1) + (J − 1) + (I − 1)

(J − 1) = IJ . The model has as many parameters as observed cell counts. It is
the saturated loglinear model, having the maximum possible number of parameters.
Because of this, it is the most general model for two-way tables. It describes perfectly
any set of expected frequencies. It gives a perfect fit to the data. The estimated odds
ratios just reported are the same as the sample odds ratios. In practice, unsaturated
models are preferred, because their fit smooths the sample data and has simpler
interpretations.

When a model has two-factor terms, be cautious in interpreting the single-factor
terms. By analogy with two-way ANOVA, when there is two-factor interaction, it can
be misleading to report main effects. The estimates of the main effect terms depend
on the coding scheme used for the higher-order effects, and the interpretation also
depends on that scheme. Normally, we restrict our attention to the highest-order terms
for a variable.

7.1.4 Loglinear Models for Three-Way Tables

With three-way contingency tables, loglinear models can represent various indepen-
dence and association patterns. Two-factor association terms describe the conditional
odds ratios between variables.

For cell expected frequencies {μijk}, consider loglinear model

log μijk = λ + λX
i + λY

j + λZ
k + λXZ

ik + λYZ
jk (7.4)

Since it contains an XZ term (λXZ
ik ), it permits association between X and Z, controlling

for Y . This model also permits a YZ association, controlling for X. It does not contain
an XY association term. This loglinear model specifies conditional independence
between X and Y , controlling for Z.

We symbolize this model by (XZ, YZ). The symbol lists the highest-order terms
in the model for each variable. This model is an important one. It holds, for instance,
if an association between two variables (X and Y ) disappears when we control for a
third variable (Z).

Models that delete additional association terms are too simple to fit most data
sets well. For instance, the model that contains only single-factor terms, denoted by
(X, Y, Z), is called the mutual independence model. It treats each pair of variables as
independent, both conditionally and marginally. When variables are chosen wisely
for a study, this model is rarely appropriate.

A model that permits all three pairs of variables to have conditional associations is

log μijk = λ + λX
i + λY

j + λZ
k + λXY

ij + λXZ
ik + λYZ

jk (7.5)
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For it, the next subsection shows that conditional odds ratios between any two
variables are the same at each level of the third variable. This is the property of homo-
geneous association (Section 2.7.6). This loglinear model is called the homogeneous
association model and symbolized by (XY , XZ, YZ).

The most general loglinear model for three-way tables is

log μijk = λ + λX
i + λY

j + λZ
k + λXY

ij + λXZ
ik + λYZ

jk + λXYZ
ijk

Denoted by (XYZ), it is the saturated model. It provides a perfect fit.

7.1.5 Two-Factor Parameters Describe Conditional Associations

Model interpretations refer to the highest-order parameters. For instance, consider the
homogeneous association model (7.5). Its parameters relate directly to conditional
odds ratios. We illustrate this for 2 × 2 × K tables. The XY conditional odds ratio
θXY(k) describes association between X and Y in partial table k (recall Section 2.7.4).
From an argument similar to that in Section 7.1.3,

log θXY(k) = log

(
μ11kμ22k

μ12kμ21k

)
= λXY

11 + λXY
22 − λXY

12 − λXY
21 (7.6)

The right-hand side of this expression does not depend on k, so the odds ratio is
the same at every level of Z. Similarly, model (XY , XZ, YZ) also has equal XZ odds
ratios at different levels of Y , and it has equal YZ odds ratios at different levels of X.
Any model not having the three-factor term λXYZ

ijk satisfies homogeneous association.

7.1.6 Example: Alcohol, Cigarette, and Marijuana Use

Table 7.3 is from a survey conducted by the Wright State University School of
Medicine and the United Health Services in Dayton, Ohio. The survey asked stu-
dents in their final year of a high school near Dayton, Ohio whether they had ever

Table 7.3. Alcohol (A), Cigarette (C), and Marijuana
(M) Use for High School Seniors

Marijuana Use
Alcohol Cigarette
Use Use Yes No

Yes Yes 911 538
No 44 456

No Yes 3 43
No 2 279

Source: I am grateful to Professor Harry Khamis, Wright State
University, for supplying these data.
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used alcohol, cigarettes, or marijuana. Denote the variables in this 2 × 2 × 2 table by
A for alcohol use, C for cigarette use, and M for marijuana use.

Loglinear models are simple to fit with software. Table 7.4 shows fitted values for
several models. The fit for model (AC, AM, CM) is close to the observed data, which
are the fitted values for the saturated model (ACM). The other models fit poorly.

Table 7.4. Fitted Values for Loglinear Models Applied to Table 7.3

Loglinear Model
Alcohol Cigarette Marijuana
Use Use Use (A, C, M) (AC, M) (AM, CM) (AC, AM, CM) (ACM)

Yes Yes Yes 540.0 611.2 909.24 910.4 911
No 740.2 837.8 438.84 538.6 538

No Yes 282.1 210.9 45.76 44.6 44
No 386.7 289.1 555.16 455.4 456

No Yes Yes 90.6 19.4 4.76 3.6 3
No 124.2 26.6 142.16 42.4 43

No Yes 47.3 118.5 0.24 1.4 2
No 64.9 162.5 179.84 279.6 279

Table 7.5 illustrates association patterns for these models by presenting estimated
marginal and conditional odds ratios. For example, the entry 1.0 for the AC conditional
odds ratio for model (AM, CM) is the common value of the AC fitted odds ratios at
the two levels of M ,

1.0 = 909.24 × 0.24

45.76 × 4.76
= 438.84 × 179.84

555.16 × 142.16

This model implies conditional independence between alcohol use and cigarette use,
controlling for marijuana use. The entry 2.7 for the AC marginal association for this
model is the odds ratio for the marginal AC fitted table,

2.7 = (909.24 + 438.84)(0.24 + 179.84)

(45.76 + 555.16)(4.76 + 142.16)

Table 7.5. Estimated Odds Ratios for Loglinear Models in Table 7.4

Conditional Association Marginal Association

Model AC AM CM AC AM CM

(A, C, M) 1.0 1.0 1.0 1.0 1.0 1.0
(AC, M) 17.7 1.0 1.0 17.7 1.0 1.0
(AM, CM) 1.0 61.9 25.1 2.7 61.9 25.1
(AC, AM, CM) 7.8 19.8 17.3 17.7 61.9 25.1
(ACM) level 1 13.8 24.3 17.5 17.7 61.9 25.1
(ACM) level 2 7.7 13.5 9.7
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The odds ratios for the observed data are those reported for the saturated model
(ACM).

From Table 7.5, conditional odds ratios equal 1.0 for each pairwise term not appear-
ing in a model. An example is the AC association in model (AM, CM). For that
model, the estimated marginal AC odds ratio differs from 1.0. Section 2.7.5 noted
that conditional independence does not imply marginal independence. Some models
have conditional odds ratios that equal the corresponding marginal odds ratios. Sec-
tion 7.4.2 presents a condition that guarantees this. This equality does not normally
happen for loglinear models containing all pairwise associations.

Model (AC, AM, CM) permits all pairwise associations but has homogeneous odds
ratios. The AC fitted conditional odds ratios for this model equal 7.8. For each level of
M , students who have smoked cigarettes have estimated odds of having drunk alcohol
that are 7.8 times the estimated odds for students who have not smoked cigarettes. The
AC marginal odds ratio of 17.7 ignores the third factor (M), whereas the conditional
odds ratio of 7.8 controls for it.

For model (AC, AM, CM) (or simpler models), one can calculate an estimated
conditional odds ratio using the model’s fitted values at either level of the third vari-
able. Or, one can calculate it from equation (7.6) using the parameter estimates. For
example, the estimated conditional AC odds ratio is

exp(λ̂AC
11 + λ̂AC

22 − λ̂AC
12 − λ̂AC

21 )

Table 7.6. Output for Fitting Loglinear Model to Table 7.3

Criteria For Assessing Goodness Of Fit

Criterion DF Value
Deviance 1 0.3740
Pearson Chi-Square 1 0.4011

Standard Wald
Parameter Estimate Error Chi-Square Pr > ChiSq

Intercept 5.6334 0.0597 8903.96 <.0001
a 1 0.4877 0.0758 41.44 <.0001
c 1 −1.8867 0.1627 134.47 <.0001
m 1 −5.3090 0.4752 124.82 <.0001
a*m 1 1 2.9860 0.4647 41.29 <.0001
a*c 1 1 2.0545 0.1741 139.32 <.0001
c*m 1 1 2.8479 0.1638 302.14 <.0001

LR Statistics

Source DF Chi-Square Pr > ChiSq
a*m 1 91.64 <.0001
a*c 1 187.38 <.0001
c*m 1 497.00 <.0001
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Table 7.6 shows software output, using constraints for which parameters at the second
level of any variable equal 0. Thus, λ̂AC

22 = λ̂AC
12 = λ̂AC

21 = 0, and the estimated
conditional AC odds ratio is exp(λ̂AC

11 ) = exp(2.05) = 7.8.

7.2 INFERENCE FOR LOGLINEAR MODELS

Table 7.5 shows that estimates of conditional and marginal odds ratios are highly
dependent on the model. This highlights the importance of good model selection.
An estimate from this table is informative only if its model fits well. This section
shows how to check goodness of fit, conduct inference, and extend loglinear models
to higher dimensions.

7.2.1 Chi-Squared Goodness-of-Fit Tests

Consider the null hypothesis that a given loglinear model holds.As usual, large-sample
chi-squared statistics assess goodness of fit by comparing the cell fitted values to the
observed counts. In the three-way case, the likelihood-ratio and Pearson statistics are

G2 = 2
∑

nijk log

(
nijk

μ̂ijk

)
, X2 =

∑ (nijk − μ̂ijk)
2

μ̂ijk

The G2 statistic is the deviance for the model (recall Section 3.4.3). The degrees of
freedom equal the number of cell counts minus the number of model parameters. The
df value decreases as the model becomes more complex. The saturated model has
df = 0.

For the student drug survey (Table 7.3), Table 7.7 presents goodness-of-fit tests
for several models. For a given df , larger G2 or X2 values have smaller P -values

Table 7.7. Goodness-of-Fit Tests for Loglinear Models Relating Alcohol (A),
Cigarette (C), and Marijuana (M) Use

Model G2 X2 df P -value∗

(A, C, M) 1286.0 1411.4 4 <0.001

(A, CM) 534.2 505.6 3 <0.001
(C, AM) 939.6 824.2 3 <0.001
(M, AC) 843.8 704.9 3 <0.001

(AC, AM) 497.4 443.8 2 <0.001
(AC, CM) 92.0 80.8 2 <0.001
(AM, CM) 187.8 177.6 2 <0.001

(AC, AM, CM) 0.4 0.4 1 0.54

(ACM) 0.0 0.0 0 —

∗P -value for G2 statistic.
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and indicate poorer fits. The models that lack any association term fit poorly, having
P -values below 0.001. The model (AC, AM, CM) that permits all pairwise associa-
tions but assumes homogeneous association fits well (P = 0.54). Table 7.6 shows the
way PROC GENMOD in SAS reports the goodness-of-fit statistics for this model.

7.2.2 Loglinear Cell Residuals

Cell residuals show the quality of fit cell-by-cell. They show where a model fits
poorly. Sometimes they indicate that certain cells display lack of fit in an otherwise
good-fitting model. When a table has many cells, some residuals may be large purely
by chance.

Section 2.4.5 introduced standardized residuals for the independence model, and
Section 3.4.5 discussed them generally for GLMs. They divide differences between
observed and fitted counts by their standard errors. When the model holds, stan-
dardized residuals have approximately a standard normal distribution. Lack of fit is
indicated by absolute values larger than about 2 when there are few cells or about 3
when there are many cells.

Table 7.8 shows standardized residuals for the model (AM, CM) of AC condi-
tional independence with Table 7.3. This model has df = 2 for testing fit. The two
nonredundant residuals refer to checking AC independence at each level of M . The
large residuals reflect the overall poor fit. [In fact, X2 relates to the two nonredundant
residuals by X2 = (3.70)2 + (12.80)2 = 177.6.]. Extremely large residuals occur for
students who have not smoked marijuana. For them, the positive residuals occur when
A and C are both “yes” or both “no.” More of these students have used both or nei-
ther of alcohol and cigarettes than one would expect if their usage were conditionally
independent. The same pattern persists for students who have smoked marijuana, but
the differences between observed and fitted counts are then not as striking.

Table 7.8 also shows standardized residuals for model (AC, AM, CM). Since df =
1 for this model, only one residual is nonredundant. Both G2 and X2 are small, so

Table 7.8. Standardized Residuals for Two Loglinear Models

Model (AM, CM) Model (AC, AM, CM)
Drug Use

Observed Fitted Standardized Fitted Standardized
A C M Count Count Residual Count Residual

Yes Yes Yes 911 909.2 3.70 910.4 0.63
No 538 438.8 12.80 538.6 −0.63

No Yes 44 45.8 −3.70 44.6 −0.63
No 456 555.2 −12.80 455.4 0.63

No Yes Yes 3 4.8 −3.70 3.6 −0.63
No 43 142.2 −12.80 42.4 0.63

No Yes 2 0.2 3.70 1.4 0.63
No 279 179.8 12.80 279.6 −0.63
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these residuals indicate a good fit. (In fact, when df = 1, X2 equals the square of
each standardized residual.)

7.2.3 Tests about Conditional Associations

To test a conditional association in a model, we compare the model to the simpler
model not containing that association. For example, for model (AC, AM, CM) for the
drug use survey, the null hypothesis of conditional independence between alcohol use
and cigarette smoking states that the λAC term equals zero. The test analyzes whether
the simpler model (AM, CM) of AC conditional independence holds, against the
alternative that model (AC, AM, CM) holds.

As Section 3.4.4 discussed, the likelihood-ratio statistic for testing that a model
term equals zero is identical to the difference between the deviances for the model
without that term and the model with the term. The deviance for a model is also
its G2 goodness-of-fit statistic. The df for the test equal the difference between the
corresponding residual df values.

Denote the test statistic for testing that λAC = 0 in model (AC, AM, CM) by
G2[(AM, CM) | (AC, AM, CM)]. It equals

G2[(AM, CM) | (AC, AM, CM)] = G2(AM, CM) − G2(AC, AM, CM)

From Table 7.7, this test statistic equals 187.8 − 0.4 = 187.4. It has df = 2 − 1 = 1
(P < 0.0001). This is strong evidence of an AC conditional association. Also, the
statistics comparing models (AC, CM) and (AC, AM) with model (AC, AM, CM)
provide strong evidence of AM and CM conditional associations, as the bottom of
Table 7.6 shows. Further analyses of the data should use model (AC, AM, CM) rather
than any simpler model.

7.2.4 Confidence Intervals for Conditional Odds Ratios

ML estimators of loglinear model parameters have large-sample normal distributions.
For models in which the highest-order terms are two-factor associations, the estimates
refer to conditional log odds ratios. One can use the estimates and their standard errors
to construct confidence intervals for true log odds ratios and then exponentiate them
to form intervals for odds ratios.

Consider the association between alcohol and cigarettes for the student drug-use
data, using model (AC, AM, CM). Software that sets redundant association para-
meters in the last row and the last column equal to zero (such as PROC GENMOD in
SAS) reports λ̂AC

11 = 2.054, with SE = 0.174. For that approach, the lone nonzero
term equals the estimated conditional log odds ratio. A 95% confidence interval for
the true conditional log odds ratio is 2.054 ± 1.96(0.174) or (1.71, 2.39), yielding
(e1.71, e2.39) = (5.5, 11.0) for the odds ratio. There is a strong positive association
between cigarette use and alcohol use, both for users and nonusers of marijuana.
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For model (AC, AM, CM), the 95% confidence intervals are (8.0, 49.2) for the AM
conditional odds ratio and (12.5, 23.8) for the CM conditional odds ratio. The intervals
are wide, but these associations also are strong. In summary, this model reveals strong
conditional associations for each pair of drugs. There is a strong tendency for users of
one drug to be users of a second drug, and this is true both for users and for nonusers of
the third drug. Table 7.5 shows that estimated marginal associations are even stronger.
Controlling for outcome on one drug moderates the association somewhat between
the other two drugs.

The analyses in this section pertain to association structure. A different analysis
pertains to comparing marginal distributions, for instance to determine if one drug
has more usage than the others. Section 8.1 presents this type of analysis.

7.2.5 Loglinear Models for Higher Dimensions

Loglinear models are more complex for three-way tables than for two-way tables,
because of the variety of potential association patterns. Basic concepts for models
with three-way tables extend readily, however, to multiway tables.

We illustrate this for four-way tables, with variables W , X, Y , and Z. Interpreta-
tions are simplest when the model has no three-factor terms. Such models are special
cases of (WX, WY , WZ, XY , XZ, YZ), which has homogenous associations. Each pair
of variables is conditionally associated, with the same odds ratios at each combina-
tion of levels of the other two variables. An absence of a two-factor term implies
conditional independence for those variables. Model (WX, WY , WZ, XZ, YZ) does
not contain an XY term, so it treats X and Y as conditionally independent at each
combination of levels of W and Z.

A variety of models have three-factor terms. A model could contain WXY , WXZ ,
WYZ , or XYZ terms. The XYZ term permits the association between any pair of those
three variables to vary across levels of the third variable, at each fixed level of W .
The saturated model contains all these terms plus a four-factor term.

7.2.6 Example: Automobile Accidents and Seat Belts

Table 7.9 shows results of accidents in the state of Maine for 68,694 passengers in
autos and light trucks. The table classifies passengers by gender (G), location of
accident (L), seat-belt use (S), and injury (I ). The table reports the sample proportion
of passengers who were injured. For each GL combination, the proportion of injuries
was about halved for passengers wearing seat belts.

Table 7.10 displays tests of fit for several loglinear models. To investigate the
complexity of model needed, we consider model (G, I, L, S) containing only single-
factor terms, model (GI, GL, GS, IL, IS, LS) containing also all the two-factor terms,
and model (GIL, GIS, GLS, ILS) containing also all the three-factor terms. Model
(G, I, L, S) implies mutual independence of the four variables. It fits very poorly
(G2 = 2792.8, df = 11). Model (GI, GL, GS, IL, IS, LS) fits much better (G2 =
23.4, df = 5) but still has lack of fit (P < 0.001). Model (GIL, GIS, GLS, ILS)
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Table 7.10. Goodness-of-fit Tests for Loglinear Models
Relating Injury (I ), Gender (G), Location (L), and Seat-Belt
Use (S)

Model G2 df P -value

(G, I, L, S) 2792.8 11 <0.0001
(GI, GL, GS, IL, IS, LS) 23.4 5 <0.001
(GIL, GIS, GLS, ILS) 1.3 1 0.25
(GIL, GS, IS, LS) 18.6 4 0.001
(GIS, GL, IL, LS) 22.8 4 <0.001
(GLS, GI, IL, IS) 7.5 4 0.11
(ILS, GI, GL, GS) 20.6 4 <0.001

fits well (G2 = 1.3, df = 1) but is difficult to interpret. This suggests study-
ing models that are more complex than (GI, GL, GS, IL, IS, LS) but simpler than
(GIL, GIS, GLS, ILS). We do this in the next subsection, but first we analyze model
(GI, GL, GS, IL, IS, LS).

Table 7.9 shows the fitted values for (GI, GL, GS, IL, IS, LS), which assumes
homogeneous conditional odds ratios for each pair of variables. Table 7.11 reports
the model-based estimated odds ratios. One can obtain them directly using the fitted
values for partial tables relating two variables at any combination of levels of the other
two. The log odds ratios also follow directly from loglinear parameter estimates. For
instance, log(0.44) = −0.814 = λ̂IS

11 when parameters at the second level of either
factor are equated to 0.

Table 7.11. Estimated Conditional Odds Ratios for Two
Loglinear Models

Loglinear Model

Odds Ratio (GI, GL, GS, IL, IS, LS) (GLS, GI, IL, IS)

GI 0.58 0.58
IL 2.13 2.13
IS 0.44 0.44
GL (S = no) 1.23 1.33
GL (S = yes) 1.23 1.17
GS (L = urban) 0.63 0.66
GS (L = rural) 0.63 0.58
LS (G = female) 1.09 1.17
LS (G = male) 1.09 1.03

Since the sample size is large, the estimates of odds ratios are precise. For example,
the SE of the estimated IS conditional log odds ratio is 0.028. A 95% confidence
interval for the true log odds ratio is −0.814 ± 1.96(0.028), or (−0.868, −0.760),
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which translates to (0.42, 0.47) for the odds ratio. The odds of injury for passengers
wearing seat belts were less than half the odds for passengers not wearing them, for
each gender–location combination. The fitted odds ratios in Table 7.11 also suggest
that, other factors being fixed, injury was more likely in rural than urban accidents
and more likely for females than males. Also, the estimated odds that males used seat
belts are only 0.63 times the estimated odds for females.

7.2.7 Three-Factor Interaction

Interpretations are more complicated when a model contains three-factor terms. Such
terms refer to interactions, the association between two variables varying across levels
of the third variable. Table 7.10 shows results of adding a single three-factor term to
model (GI, GL, GS, IL, IS, LS). Of the four possible models, (GLS, GI, IL, IS) fits
best. Table 7.9 also displays its fit.

For model (GLS, GI, IL, IS), each pair of variables is conditionally dependent,
and at each level of I the association between G and L or between G and S or
between L and S varies across the levels of the remaining variable. For this model, it
is inappropriate to interpret the GL, GS, and LS two-factor terms on their own. For
example, the presence of the GLS term implies that the GS odds ratio varies across
the levels of L. Because I does not occur in a three-factor term, the conditional odds
ratio between I and each variable is the same at each combination of levels of the
other two variables. The first three lines of Table 7.11 report the fitted odds ratios for
the GI , IL, and IS associations.

When a model has a three-factor term, to study the interaction, calculate fitted
odds ratios between two variables at each level of the third. Do this at any levels of
remaining variables not involved in the interaction. The bottom six lines of Table 7.11
illustrates this for model (GLS, GI, IL, IS). For example, the fitted GS odds ratio of
0.66 for (L = urban) refers to four fitted values for urban accidents, both the four
with (injury = no) and the four with (injury = yes); that is,

0.66 = (7273.2)(10, 959.2)/(11, 632.6)(10, 358.9)

= (1009.8)(389.8)/(713.4)(834.1)

7.2.8 Large Samples and Statistical Versus Practical Significance

The sample size can strongly influence results of any inferential procedure. We are
more likely to detect an effect as the sample size increases. This suggests a cautionary
remark. For small sample sizes, reality may be more complex than indicated by the
simplest model that passes a goodness-of-fit test. By contrast, for large sample sizes,
statistically significant effects can be weak and unimportant.

We saw above that model (GLS, GI, IL, IS) seems to fit much better than
(GI, GL, GS, IL, IS, LS): The difference in G2 values is 23.4 − 7.5 = 15.9, based
on df = 5 − 4 = 1 (P = 0.0001). The fitted odds ratios in Table 7.11, however,
show that the three-factor interaction is weak. The fitted odds ratio between any two
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of G, L, and S is similar at both levels of the third variable. The significantly better fit
of model (GLS, GI, IL, IS) mainly reflects the enormous sample size. Although the
three-factor interaction is weak, it is significant because the large sample provides
small standard errors. A comparison of fitted odds ratios for the two models suggests
that the simpler model (GI, GL, GS, IL, IS, LS) is adequate for practical purposes.
Simpler models are easier to summarize. A goodness-of-fit test should not be the sole
criterion for selecting a model.

For large samples, it is helpful to summarize the closeness of a model fit to the
sample data in a way that, unlike a test statistic, is not affected by the sample size. For a
table of arbitrary dimension with cell counts {ni = npi} and fitted values {μ̂i = nπ̂i},
one such measure is the dissimilarity index,

D =
∑

|ni − μ̂i |/2n =
∑

|pi − π̂i |/2

This index takes values between 0 and 1. Smaller values represent a better fit. It
represents the proportion of sample cases that must move to different cells for the
model to achieve a perfect fit.

The dissimilarity index helps indicate whether the lack of fit is important in a
practical sense. A very small D value suggests that the sample data follow the model
pattern closely, even though the model is not perfect.

For Table 7.9, model (GI, GL, GS, IL, IS, LS) has D = 0.008, and model
(GLS, GI, IL, IS) has D = 0.003. These values are very small. For either model,
moving less than 1% of the data yields a perfect fit. The relatively large value of G2

for model (GI, GL, GS, IL, IS, LS) indicated that the model does not truly hold. Nev-
ertheless, the small value for D suggests that, in practical terms, the model provides
a decent fit.

7.3 THE LOGLINEAR–LOGISTIC CONNECTION

Loglinear models for contingency tables focus on associations between categorical
response variables. Logistic regression models, on the other hand, describe how a
categorical response depends on a set of explanatory variables. Though the model
types seem distinct, connections exist between them. For a loglinear model, one
can construct logits for one response to help interpret the model. Moreover, logistic
models with categorical explanatory variables have equivalent loglinear models.

7.3.1 Using Logistic Models to Interpret Loglinear Models

To understand implications of a loglinear model formula, it can help to form a logit
for one of the variables. We illustrate with the homogeneous association model for
three-way tables,

log μijk = λ + λX
i + λY

j + λZ
k + λXY

ij + λXZ
ik + λYZ

jk
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Suppose Y is binary. We treat it as a response and X and Z as explanatory. When X

is at level i and Z is at level k,

logit[P(Y = 1)] = log

[
P(Y = 1)

1 − P(Y = 1)

]
= log

[
P(Y = 1 | X = i, Z = k)

P (Y = 2 | X = i, Z = k)

]
= log

(
μi1k

μi2k

)
= log(μi1k) − log(μi2k)

= (λ + λX
i + λY

1 + λZ
k + λXY

i1 + λXZ
ik + λYZ

1k )

− (λ + λX
i + λY

2 + λZ
k + λXY

i2 + λXZ
ik + λYZ

2k )

= (λY
1 − λY

2 ) + (λXY
i1 − λXY

i2 ) + (λYZ
1k − λYZ

2k )

The first parenthetical term does not depend on i or k. The second parenthetical term
depends on the level i of X. The third parenthetical term depends on the level k of Z.
The logit has the additive form

logit[P(Y = 1)] = α + βX
i + βZ

k (7.7)

Section 4.3.3 discussed this model, in which the logit depends on X and Z in an
additive manner. Additivity on the logit scale is the standard definition of “no interac-
tion” for categorical variables. When Y is binary, the loglinear model of homogeneous
association is equivalent to this logistic regression model. When X is also binary,
model (7.7) and loglinear model (XY , XZ, YZ) are characterized by equal odds ratios
between X and Y at each of the K levels of Z.

7.3.2 Example: Auto Accident Data Revisited

For the data on Maine auto accidents (Table 7.9), Section 7.2.6 showed that loglinear
model (GLS, GI, LI, IS) fits well. That model is

log μgi�s = λ + λG
g + λI

i + λL
� + λS

s + λGI
gi + λGL

g� + λGS
gs + λIL

i� + λIS
is

+ λLS
�s + λGLS

g�s (7.8)

We could treat injury (I ) as a response variable, and gender (G), location (L), and
seat-belt use (S) as explanatory variables. You can check that this loglinear model
implies a logistic model of the form

logit[P(I = 1)] = α + βG
g + βL

� + βS
s (7.9)

Here, G, L, and S all affect I , but without interacting. The parameters in the two
models are related by

βG
g = λGI

g1 − λGI
g2 , βL

� = λIL
1� − λIL

2� , βS
s = λIS

1s − λIS
2s
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In the logit calculation, all terms in the loglinear model not having the injury index i

in the subscript cancel.
Odds ratios relate to two-factor loglinear parameters and main-effect logistic

parameters. For instance, in model (7.9), the log odds ratio for the effect of S on
I equals βS

1 − βS
2 . This equals λIS

11 + λIS
22 − λIS

12 − λIS
21 in the loglinear model. These

values are the same no matter how software sets up constraints for the parameters.
For example, β̂S

1 − β̂S
2 = −0.817 for model (7.9), and λ̂IS

11 + λ̂IS
22 − λ̂IS

12 − λ̂IS
21 =

−0.817 for model (GLS, GI, LI, IS). We obtain the same results whether we use
software for logistic regression or software for the equivalent loglinear model.
Fitted values, goodness-of-fit statistics, residual df , and standardized residuals for
logistic model (7.9) are identical to those in Tables 7.9–7.11 for loglinear model
(GLS, GI, IL, IS).

Loglinear models are GLMs that treat the 16 cell counts in Table 7.9 as outcomes
of 16 Poisson variates. Logistic models are GLMs that treat the table as outcomes of
eight binomial variates giving injury counts at the eight possible settings of (g, �, s).
Although the sampling models differ, the results from fits of corresponding models
are identical.

7.3.3 Correspondence Between Loglinear and Logistic Models

Refer back to the derivation of logistic model (7.7) from loglinear model
(XY , XZ, YZ). The λXZ

ik term in model (XY , XZ, YZ) cancels when we form the logit.
It might seem as if the model (XY , YZ) omitting this term is also equivalent to that
logit model. Indeed, forming the logit on Y for loglinear model (XY , YZ) results in a
logistic model of the same form. The loglinear model that has the same fit, however, is
the one that contains a general interaction term for relationships among the explana-
tory variables. The logistic model does not describe relationships among explanatory
variables, so it assumes nothing about their association structure.

Table 7.12 summarizes equivalent logistic and loglinear models for three-way
tables when Y is a binary response variable. The loglinear model (Y, XZ) states that Y
is jointly independent of both X and Z. It is equivalent to the special case of logistic
model (7.7) with {βX

i } and {βZ
k } terms equal to zero. In each pairing of models in

Table 7.12, the loglinear model contains the XZ association term relating the variables
that are explanatory in the logistic models.

Logistic model (7.9) for a four-way table contains main effect terms for the explana-
tory variables, but no interaction terms. This model corresponds to the loglinear
model that contains the fullest interaction term among the explanatory variables, and
associations between each explanatory variable and the response I , namely model
(GLS, GI, LI, IS).

7.3.4 Strategies in Model Selection

When there is a single response variable and it is binary, relevant loglinear models
correspond to logistic models for that response. When the response has more than two



“c07” — 2007/1/29 — page 222 — #19

222 LOGLINEAR MODELS FOR CONTINGENCY TABLES

Table 7.12. Equivalent Loglinear and Logistic Models for
a Three-Way Table With Binary Response Variable Y

Loglinear Symbol Logistic Model Logistic Symbol

(Y, XZ) α (—)
(XY , XZ) α + βX

i
(X)

(YZ, XZ) α + βZ
k

(Z)

(XY , YZ, XZ) α + βX
i

+ βZ
k

(X + Z)

(XYZ) α + βX
i

+ βZ
k

+ βXZ
ik

(X*Z)

categories, relevant loglinear models correspond to baseline-category logit models
(Section 6.1). In such cases it is more sensible to fit logistic models directly, rather
than loglinear models. Indeed, one can see by comparing equations (7.8) and (7.9)
how much simpler the logistic structure is. The loglinear approach is better suited
for cases with more than one response variable, as in studying association patterns
for the drug use example in Section 7.1.6. In summary, loglinear models are most
natural when at least two variables are response variables and we want to study their
association structure. Otherwise, logistic models are more relevant.

Selecting a loglinear model becomes more difficult as the number of variables
increases, because of the increase in possible associations and interactions. One
exploratory approach first fits the model having only single-factor terms, the model
having only two-factor and single-factor terms, the model having only three-factor
and lower terms, and so forth, as Section 7.2.6 showed. Fitting such models often
reveals a restricted range of good-fitting models.

When certain marginal totals are fixed by the sampling design or by the response–
explanatory distinction, the model should contain the term for that margin. This
is because the ML fit forces the corresponding fitted totals to be identical to those
marginal totals. To illustrate, suppose one treats the counts {ng+�+} in Table 7.9 as
fixed at each combination of levels of G = gender and L = location. Then a loglinear
model should contain the GL two-factor term, because this ensures that {μ̂g+�+ =
ng+�+}. That is, the model should be at least as complex as model (GL, S, I ). If
20,629 women had accidents in urban locations, then the fitted counts have 20,629
women in urban locations.

Related to this point, the modeling process should concentrate on terms linking
response variables and terms linking explanatory variables to response variables.
Allowing a general interaction term among the explanatory variables has the effect
of fixing totals at combinations of their levels. If G and L are both explanatory
variables, models assuming conditional independence between G and L are not of
interest.

For Table 7.9, I is a response variable, and S might be treated either as a response
or explanatory variable. If it is explanatory, we treat the {ng+�s} totals as fixed and fit
logistic models for the I response. If S is also a response, we consider the {ng+�+}
totals as fixed and consider loglinear models that are at least as complex as (GL, S, I ).
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Such models focus on the effects of G and L on S and on I as well as the association
between S and I .

7.4 INDEPENDENCE GRAPHS AND COLLAPSIBILITY

We next present a graphical representation for conditional independences in loglinear
models. The graph indicates which pairs of variables are conditionally independent,
given the others. This representation is helpful for revealing implications of models,
such as determining when marginal and conditional odds ratios are identical.

7.4.1 Independence Graphs

An independence graph for a loglinear model has a set of vertices, each vertex repre-
senting a variable. There are as many vertices as dimensions of the contingency table.
Any two vertices either are or are not connected by an edge. A missing edge between
two vertices represents a conditional independence between the corresponding two
variables.

For example, for a four-way table, the loglinear model (WX, WY , WZ, YZ) lacks
XY and XZ association terms. It assumes that X and Y are independent and that X and
Z are independent, conditional on the other two variables. The independence graph
portrays this model.

Edges connect W with X, W with Y , W with Z, and Y with Z. These represent
pairwise conditional associations. Edges do not connect X with Y or X with Z,
because those pairs are conditionally independent.

Two loglinear models that have the same conditional independences have the same
independence graph. For instance, the independence graph just portrayed for model
(WX, WY , WZ, YZ) is also the one for model (WX, WYZ) that also contains a three-
factor WYZ term.

A path in an independence graph is a sequence of edges leading from one variable
to another. Two variables X and Y are said to be separated by a subset of variables if
all paths connecting X and Y intersect that subset. In the above graph, W separates X

and Y , since any path connecting X with Y goes through W . The subset {W, Z} also
separates X and Y . A fundamental result states that two variables are conditionally
independent given any subset of variables that separates them. Thus, not only are X

and Y conditionally independent given W and Z, but also given W alone. Similarly,
X and Z are conditionally independent given W alone.
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The loglinear model (WX, XY , YZ) has independence graph

W ——– X ——– Y ——– Z

Here, W and Z are separated by X, by Y , and by X and Y . So, W and Z are
independent given X alone or given Y alone or given both X and Y . Also, W and
Y are independent, given X alone or given X and Z, and X and Z are independent,
given Y alone or given Y and W .

7.4.2 Collapsibility Conditions for Three-Way Tables

Sometimes researchers collapse multiway contingency tables to make them simpler
to describe and analyze. However, Section 2.7.5 showed that marginal associations
may differ from conditional associations. For example, if X and Y are conditionally
independent, given Z, they are not necessarily marginally independent. Under the
following collapsibility conditions, a model’s odds ratios are identical in partial tables
as in the marginal table:

For three-way tables, XY marginal and conditional odds ratios are identical if either Z and
X are conditionally independent or if Z and Y are conditionally independent.

The conditions state that the variable treated as the control (Z) is conditionally
independent of X or Y , or both. These conditions correspond to loglinear models
(XY , YZ) and (XY , XZ). That is, the XY association is identical in the partial tables
and the marginal table for models with independence graphs

X ——– Y ——– Z and Y ——– X ——– Z

or even simpler models.
For Table 7.3 from Section 7.1.6 with A = alcohol use, C = cigarette use, and

M = marijuana use, the model (AM, CM) of AC conditional independence has
independence graph

A ——– M ——– C

Consider the AM association, identifying C with Z in the collapsibility conditions. In
this model, since C is conditionally independent of A, the AM conditional odds ratios
are the same as the AM marginal odds ratio collapsed over C. In fact, from Table 7.5,
both the fitted marginal and conditional AM odds ratios equal 61.9. Similarly, the
CM association is collapsible. The AC association is not, however. The collapsibility
conditions are not satisfied, because M is conditionally dependent with both A and
C in model (AM, CM). Thus, A and C may be marginally dependent, even though
they are conditionally independent in this model. In fact, from Table 7.5, the model’s
fitted AC marginal odds ratio equals 2.7, not 1.0.
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For the model (AC, AM, CM) of homogeneous association, no pair is condition-
ally independent. No collapsibility conditions are fulfilled. In fact, from Table 7.5,
for this model each pair of variables has quite different fitted marginal and condi-
tional associations. When a model contains all two-factor effects, collapsing over any
variable may cause effects to change.

7.4.3 Collapsibility and Logistic Models

The collapsibility conditions apply also to logistic models. For example, consider
a clinical trial to study the association between a binary response Y and a binary
treatment variable X, using data from several centers (Z). The model

logit[P(Y = 1)] = α + βx + βZ
k (7.10)

assumes that the treatment effect β is the same for each center. Since this model
corresponds to loglinear model (XY , XZ, YZ), the estimated treatment effect may
differ if we collapse the table over the center factor. The estimated XY conditional
odds ratio, exp(β̂), differs from the sample XY odds ratio in the marginal 2 × 2 table.

The simpler model that lacks the center effects is

logit[P(Y = 1)] = α + βx

For each treatment, this model states that the success probability is identical for each
center. For it, the conditional and marginal treatment effects are identical, because
the model states that Z is conditionally independent of Y . This model corresponds to
loglinear model (XY , XZ) with independence graph Y —— X —— Z, for which the
XY association is collapsible. In practice, this suggests that, when center effects are
negligible, the estimated treatment effect is similar to the marginal XY odds ratio.

7.4.4 Collapsibility and Independence Graphs for Multiway Tables

The collapsibility conditions extend to multiway tables:

Suppose that variables in a model for a multiway table partition into three mutually exclusive
subsets, A, B, C, such that B separates A and C; that is, the model does not contain
parameters linking variables from A with variables from C. When we collapse the table
over the variables in C, model parameters relating variables in A and model parameters
relating variables in A with variables in B are unchanged.

That is, when the subsets of variables have the form

A ——– B ——– C
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collapsing over the variables in C, the same parameter values relate the variables in
A, and the same parameter values relate variables in A to variables in B. It follows
that the corresponding associations are unchanged, as described by odds ratios based
on those parameters.

7.4.5 Example: Model Building for Student Drug Use

Sections 7.1.6 and 7.2 analyzed data on usage of alcohol (A), cigarettes (C), and
marijuana (M) by high school students. When we classify the students also by gender
(G) and race (R), the five-dimensional contingency table shown in Table 7.13 results.
In selecting a model, we treat A, C, and M as response variables and G and R as
explanatory variables. Since G and R are explanatory, it does not make sense to
estimate association or assume conditional independence for that pair. From remarks
in Section 7.3.4, a model should contain the GR term. Including this term forces the
GR fitted marginal totals to be the same as the corresponding sample marginal totals.

Table 7.13. Alcohol, Cigarette, and Marijuana Use for High School Seniors,
by Gender and Race

Marijuana Use

White Other

Female Male Female Male
Alcohol Cigarette
Use Use Yes No Yes No Yes No Yes No

Yes Yes 405 268 453 228 23 23 30 19
No 13 218 28 201 2 19 1 18

No Yes 1 17 1 17 0 1 1 8
No 1 117 1 133 0 12 0 17

Source: Professor Harry Khamis, Wright State University.

Table 7.14 summarizes goodness-of-fit tests for several models. Because many
cell counts are small, the chi-squared approximation for G2 may be poor. It is best
not to take the G2 values too seriously, but this index is useful for comparing models.

The first model listed in Table 7.14 contains only the GR association and assumes
conditional independence for the other nine pairs of associations. It fits horribly.
The homogeneous association model, on the other hand, seems to fit well. The only
large standardized residual results from a fitted value of 3.1 in the cell having a
count of 8. The model containing all the three-factor terms also fits well, but the
improvement in fit is not great (difference in G2 of 15.3 − 5.3 = 10.0 based on
df = 16 − 6 = 10). Thus, we consider models without three-factor terms. Beginning
with the homogeneous association model, we eliminate two-factor terms that do not
make significant contributions. We use a backward elimination process, sequentially
taking out terms for which the resulting increase in G2 is smallest, when refitting the
model. However, we do not delete the GR term relating the explanatory variables.
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Table 7.14. Goodness-of-Fit Tests for Models Relating
Alcohol (A), Cigarette (C), and Marijuana (M) Use, by
Gender (G) and Race (R)

Model G2 df

1. Mutual independence + GR 1325.1 25
2. Homogeneous association 15.3 16
3. All three-factor terms 5.3 6
4a. (2)–AC 201.2 17
4b. (2)–AM 107.0 17
4c. (2)–CM 513.5 17
4d. (2)–AG 18.7 17
4e. (2)–AR 20.3 17
4f. (2)–CG 16.3 17
4g. (2)–CR 15.8 17
4h. (2)–GM 25.2 17
4i. (2)–MR 18.9 17
5. (AC, AM, CM, AG, AR, GM, GR, MR) 16.7 18
6. (AC, AM, CM, AG, AR, GM, GR) 19.9 19
7. (AC, AM, CM, AG, AR, GR) 28.8 20

Table 7.14 shows the start of this process. Nine pairwise associations are candidates
for removal from model (2), shown in models numbered (4a)–(4i). The smallest
increase in G2, compared with model (2), occurs in removing the CR term. The
increase is 15.8 − 15.3 = 0.5, based on df = 17 − 16 = 1, so this elimination seems
reasonable. After removing the CR term (model 4g), the smallest additional increase
results from removing theCG term (model 5). This results inG2 = 16.7 with df = 18,
an increase in G2 of 0.9 based on df = 1. Removing next the MR term (model 6)
yields G2 = 19.9 with df = 19, a change in G2 of 3.2 based on df = 1.

At this stage, the only large standardized residual occurs for a fitted value of 2.9
in the cell having a count of 8. Additional removals have a more severe effect. For
instance, removing next the AG term increases G2 by 5.3, based on df = 1, for a
P -value of 0.02. We cannot take such P -values too literally, because these tests are
suggested by the data. However, it seems safest not to drop additional terms. Model
(6), denoted by (AC, AM, CM, AG, AR, GM, GR), has independence graph
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Consider the sets {C}, {A, M}, and {G, R}. For this model, every path between
C and {G, R} involves a variable in {A, M}. Given the outcome on alcohol use and
marijuana use, the model states that cigarette use is independent of both gender
and race. Collapsing over the explanatory variables race and gender, the conditional
associations between C and A and between C and M are the same as with the model
(AC, AM, CM) fitted in Section 7.1.6.

7.4.6 Graphical Models

The first independence graph shown in Section 7.4.1 lacked edges between X and Y

and between X and Z. As noted there, that graph results both from loglinear model
(WX, WY , WZ, YZ) and from loglinear model (WX, WYZ). A subclass of loglinear
models, called graphical models, have a unique correspondence between the models
and the independence graph representations. For any group of variables in an indepen-
dence graph having no missing edges, the graphical model contains the highest-order
term for those variables.

For example, the first independence graph shown in Section 7.4.1 has no miss-
ing edges for the group of variables {W, Y, Z}. Thus, the corresponding graphical
model must contain the three-factor λWYZ term (as well as all its lower-order terms).
Likewise, the group of variables {X, W } has no missing edge. Therefore, the cor-
responding graphical model must contain the two-factor λWX term. The graphical
model for this independence graph is the loglinear model (WX, WYZ).

The loglinear model (WX, WY , WZ, YZ) is not a graphical model. This is because
the group of variables {W, Y, Z} has no missing edges, yet the loglinear model does
not contain the three-factor term for those variables.

A substantial theory has been developed for the subclass of loglinear models that are
graphical models. This is beyond our scope here, but for a nontechnical introduction
see Whittaker (1990).

7.5 MODELING ORDINAL ASSOCIATIONS

The loglinear models presented so far have a serious limitation: they treat all classifi-
cations as nominal. If we change the order of a variable’s categories in any way, we
get the same fit. For ordinal variables, these models ignore important information.

Table 7.15, from a General Social Survey, illustrates the inadequacy of ordinary
loglinear models for analyzing ordinal data. Subjects were asked their opinion about
a man and woman having sexual relations before marriage. They were also asked
whether methods of birth control should be made available to teenagers between the
ages of 14 and 16. Both classifications have ordered categories. The loglinear model
of independence, denoted by (X, Y ), has goodness-of-fit statistics G2(X, Y ) = 127.6
and X2(X, Y ) = 128.7, based on df = 9. These tests of fit are equivalently the tests
of independence of Section 2.4. The model fits poorly, providing strong evidence of
dependence.Yet, adding the ordinary association term makes the model saturated [see
model (7.2)] and of little use.
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Table 7.15. Opinions about Premarital Sex and Availability of Teenage Birth
Control, Showing Independence Model Fit, Standardized Residuals for that Fit, and
Linear-by-Linear Association Model Fit

Teenage Birth Control

Strongly Strongly
Premarital Sex Disagree Disagree Agree Agree

Always wrong 81 68 60 38
(42.4) (51.2) (86.4) (67.0)
7.6 3.1 −4.1 −4.8
(80.9) (67.6) (69.4) (29.1)

Almost always wrong 24 26 29 14
(16.0) (19.3) (32.5) (25.2)
2.3 1.8 −0.8 −2.8
(20.8) (23.1) (31.5) (17.6)

Wrong only sometimes 18 41 74 42
(30.1) (36.3) (61.2) (47.4)
−2.7 1.0 2.2 −1.0
(24.4) (36.1) (65.7) (48.8)

Not wrong at all 36 57 161 157
(70.6) (85.2) (143.8) (111.4)
−6.1 −4.6 2.4 6.8
(33.0) (65.1) (157.4) (155.5)

Source: General Social Survey, 1991.

Table 7.15 also contains fitted values and standardized residuals (Section 2.4.5).
The residuals in the corners of the table are large. Observed counts are much larger than
the independence model predicts in the corners where both responses are the most
negative possible (“always wrong” with “strongly disagree”) or the most positive
possible (“not wrong at all” with “strongly agree”). By contrast, observed counts
are much smaller than fitted counts in the other two corners. Cross-classifications
of ordinal variables often exhibit their greatest deviations from independence in the
corner cells. This pattern suggests a positive trend. Subjects who feel more favorable
to making birth control available to teenagers also tend to feel more tolerant about
premarital sex.

The independence model is too simple to fit most data well. Models for ordinal
variables use association terms that permit negative or positive trends. The models
are more complex than the independence model yet simpler than the saturated model.

7.5.1 Linear-by-Linear Association Model

An ordinal loglinear model assigns scores {ui} to the I rows and {vj } to the J

columns. To reflect category orderings, u1 ≤ u2 ≤ · · · ≤ uI and v1 ≤ v2 ≤ · · · ≤ vJ .



“c07” — 2007/1/29 — page 230 — #27

230 LOGLINEAR MODELS FOR CONTINGENCY TABLES

In practice, the most common choice is {ui = i} and {vj = j}, the row and column
numbers. The model is

log μij = λ + λX
i + λY

j + βuivj (7.11)

The independence model is the special case β = 0. Since the model has one more
parameter (β) than the independence model, its residual df are 1 less, df = (I −
1)(J − 1) − 1 = IJ − I − J .

The final term in model (7.11) represents the deviation of log μij from indepen-
dence. The deviation is linear in the Y scores at a fixed level of X and linear in the X

scores at a fixed level of Y . In column j , for instance, the deviation is a linear function
of X, having form (slope) × (score for X), with slope βvj . Because of this property,
equation (7.11) is called the linear-by-linear association model (abbreviated, L × L).
This linear-by-linear deviation implies that the model has its greatest departures from
independence in the corners of the table.

The parameter β in model (7.11) specifies the direction and strength of associa-
tion. When β > 0, there is a tendency for Y to increase as X increases. Expected
frequencies are larger than expected, under independence, in cells of the table where
X and Y are both high or both low. When β < 0, there is a tendency for Y to decrease
as X increases. When we fit the model to data, the correlation between the row scores
for X and the column scores for Y is the same for the observed counts as it is for the
joint distribution given by the fitted counts. Thus, the fitted counts display the same
positive or negative trend as the observed data.

For the 2 × 2 table created with the four cells intersecting rows a and c with
columns b and d , the L × L model has the odds ratio

μabμcd

μadμcb

= exp[β(uc − ua)(vd − vb)] (7.12)

The association is stronger as |β| increases. For given β, pairs of categories that are
farther apart have odds ratios farther from 1.

The odds ratios formed using adjacent rows and adjacent columns are called local
odds ratios. Figure 7.1 portrays some local odds ratios. For unit-spaced scores such
as {ui = i} and {vj = j}, equation (7.12) simplifies so that the local odds ratios have
the common value

μabμa+1,b+1

μa,b+1μa+1,b

= exp(β)

Any set of equally spaced row and column scores has the property of uniform local
odds ratios. This special case of the model is called uniform association.

7.5.2 Example: Sex Opinions

Table 7.15 also reports fitted values for the linear-by-linear association model applied
to the opinions about premarital sex and availability of teen birth control, using row
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Figure 7.1. Constant local odds ratio implied by uniform association model.

scores {1, 2, 3, 4} and column scores {1, 2, 3, 4}. The goodness-of-fit statistics for
this uniform association version of the model are G2(L × L) = 11.5 and X2(L ×
L) = 11.5, with df = 8. Compared with the independence model, the L × L model
provides a dramatic improvement in fit, especially in the corners of the table.

The ML estimate of the association parameter is β̂ = 0.286, with SE = 0.028.
The positive estimate suggests that subjects having more favorable attitudes about
the availability of teen birth control also tend to have more tolerant attitudes about
premarital sex. The estimated local odds ratio is exp(β̂) = exp(0.286) = 1.33. The
strength of association seems weak. From equation (7.12), however, nonlocal odds
ratios are stronger. For example, the estimated odds ratio for the four corner cells
equals

exp[β̂(u4 − u1)(v4 − v1)] = exp[0.286(4 − 1)(4 − 1)] = exp(2.57) = 13.1

Or, using the fitted values from Table 7.15, (80.9)(155.5)/(29.1)(33.0) = 13.1.
Two sets of scores having the same spacings yield the same β̂ and the same fit.

For instance, {u1 = 1, u2 = 2, u3 = 3, u4 = 4} yields the same results as {u1 =
−1.5, u2 = −0.5, u3 = 0.5, u4 = 1.5}. Other sets of equally spaced scores yield
the same fit but an appropriately rescaled β̂. For instance, the row scores {2, 4, 6, 8}
with {vj = j} also yield G2 = 11.5, but then β̂ = 0.143 with SE = 0.014 (both half
as large).

To treat categories 2 and 3 as farther apart than categories 1 and 2 or categories 3
and 4, we could instead use scores such as {1, 2, 4, 5} for the rows and columns. The
L × L model then has G2 = 8.8. One need not, however, regard the model scores
as approximate distances between categories. They simply imply a certain structure
for the odds ratios. From equation (7.12), fitted odds ratios are stronger for pairs of
categories having greater distances between scores.
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7.5.3 Ordinal Tests of Independence

For the linear-by-linear association model, the hypothesis of independence is
H0: β = 0. The likelihood-ratio test statistic equals the reduction in G2 goodness-of-
fit statistics between the independence (X, Y ) and L × L models,

G2[(X, Y ) | L × L] = G2(X, Y ) − G2(L × L) (7.13)

This statistic refers to a single parameter (β), and has df = 1. For Table 7.15,
G2(X, Y ) − G2(L × L) = 127.6 − 11.5 = 116.1 has P < 0.0001, extremely strong
evidence of an association.

The Wald statistic z2 = (β̂/SE)2 provides an alternative chi-squared test statistic
having df = 1. For these data, z2 = (0.286/0.0282)2 = 102.4 also shows strong
evidence of a positive trend. The correlation statistic (2.10) of Section 2.5.1 for test-
ing independence is usually similar to the likelihood-ratio and Wald statistics for
H0: β = 0 in this model. (In fact, it is the score statistic.) For Table 7.15, it equals
112.6, also with df = 1.

Generalizations of the linear-by-linear association model exist for multiway tables.
See Problem 7.25. Recall that Sections 6.2 and 6.3 presented other ways of using ordi-
nality, based on models that create ordinal logits. To distinguish between an ordinal
response variable and explanatory variables, it is more sensible to apply an ordinal
logit model than a loglinear model. Many loglinear models for ordinal variables have
simple representations as adjacent-category logit models. See Problem 7.26.

PROBLEMS

7.1 For Table 2.1 on X = gender and Y = belief in an afterlife, Table 7.16 shows
the results of fitting the independence loglinear model.

a. Report and interpret results of a goodness-of-fit test.

b. Report {λ̂Y
j }. Interpret λ̂Y

1 − λ̂Y
2 .

Table 7.16. Computer Output for Problem 7.1 on Belief in Afterlife

Criteria For Assessing Goodness Of Fit

Criterion DF Value
Deviance 1 0.8224
Pearson Chi-Square 1 0.8246

Parameter DF Estimate Std. Error

Intercept 1 4.5849 0.0752
gender females 1 0.2192 0.0599
gender males 0 0.0000 0.0000
belief yes 1 1.4165 0.0752
belief no 0 0.0000 0.0000
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7.2 For the saturated model with Table 2.1, software reports the {λ̂XY
ij } estimates:

Parameter DF Estimate Std Error

gender*belief females yes 1 0.1368 0.1507
gender*belief females no 0 0.0000 0.0000
gender*belief males yes 0 0.0000 0.0000
gender*belief males no 0 0.0000 0.0000

Show how to use these to estimate the odds ratio.

7.3 Table 7.17 is from a General Social Survey. White subjects in the sample were
asked: (B) Do you favor busing (Negro/Black) and white school children from
one school district to another?, (P ) If your party nominated a (Negro/Black)
for President, would you vote for him if he were qualified for the job?, (D)
During the last few years, has anyone in your family brought a friend who
was a (Negro/Black) home for dinner? The response scale for each item was
(1 = Yes, 2 = No or Do not know). Table 7.18 shows output from fitting model
(BD, BP, DP). Estimates equal 0 at the second category for any variable.

Table 7.17. Data for Problem 7.3

Home

President Busing 1 2

1 1 41 65
2 72 175

2 1 2 9
2 4 55

Source: 1991 General Social Survey, with categories 1 = yes, 2 =
no or do not know.

a. Analyze the model goodness of fit. Interpret.

b. Estimate the conditional odds ratios for each pair of variables. Interpret.

c. Show all steps of the likelihood-ratio test for the BP association, including
explaining which loglinear model holds under the null hypothesis. Interpret.

d. Construct a 95% confidence interval for the BP conditional odds ratio.
Interpret.

7.4 In a General Social Survey respondents were asked “Do you support or oppose
the following measures to deal with AIDS? (1) Have the government pay all of
the health care costs of AIDS patients; (2) develop a government information
program to promote safe sex practices, such as the use of condoms.” Table 7.19
shows responses on these two items, classified also by the respondent’s gender.
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Table 7.18. Output for Fitting Model to Table 7.17

Criteria For Assessing Goodness Of Fit

Criterion DF Value

Deviance 1 0.4794
Pearson Chi-Square 1 0.5196

Analysis Of Parameter Estimates

Parameter DF Estimate Std Error

Intercept 1 3.9950 0.1346
president 1 1.1736 0.1536
busing 1 −1.7257 0.3300
home 1 −2.4533 0.4306
president*busing 1 0.7211 0.3539
president*home 1 1.5520 0.4436
busing*home 1 0.4672 0.2371

LR Statistics

Source DF Chi-Square Pr > ChiSq

president*busing 1 4.64 0.0313
president*home 1 17.18 <.0001
busing*home 1 3.83 0.0503

Denote the variables by G for gender, H for opinion on health care costs, and
I for opinion on an information program.

a. Fit the model (GH, GI, HI) and test its goodness of fit.

b. For this model, estimate the GI conditional odds ratio, construct a 95%
confidence interval, and interpret.

c. Given the model, test whether G and I are conditionally independent. Do
you think the GI term needs to be in the model?

Table 7.19. Data for Problem 7.4 on Measures
to Deal with AIDS

Health Opinion

Gender Information Opinion Support Oppose

Male Support 76 160
Oppose 6 25

Female Support 114 181
Oppose 11 48

Source: 1988 General Social Survey.
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7.5 Refer to Table 2.10 on death penalty verdicts. Let D = defendant’s race, V =
victim’s race, and P = death penalty verdict. Table 7.20 shows output for
fitting model (DV, DP, PV ). Estimates equal 0 at the second category for
any variable.

a. Report the estimated conditional odds ratio between D and P at each level
of V . Interpret.

b. The marginal odds ratio between D and P is 1.45. Contrast this odds ratio
with that in (a), and remark on how Simpson’s paradox occurs for these
data.

c. Test the goodness of fit of this model. Interpret.

d. Specify the corresponding logistic model with P as the response.

Table 7.20. Computer Output for Problem 7.5 on Death Penalty

Criteria For Assessing Goodness Of Fit

Criterion DF Value

Deviance 1 0.3798
Pearson Chi-Square 1 0.1978

Standard LR 95% Confidence
Parameter DF Estimate Error Limits

Intercept 1 3.9668 0.1374 3.6850 4.2245
v black 1 −5.6696 0.6459 −7.0608 −4.4854
d black 1 −1.5525 0.3262 −2.2399 −0.9504
p no 1 2.0595 0.1458 1.7836 2.3565
v*d black black 1 4.5950 0.3135 4.0080 5.2421
v*p black no 1 2.4044 0.6006 1.3068 3.7175
d*p black no 1 −0.8678 0.3671 −1.5633 −0.1140

LR Statistics

Source DF Chi-Square Pr > ChiSq

v*d 1 384.05 <.0001
v*p 1 20.35 <.0001
d*p 1 5.01 0.0251

7.6 Table 7.21 shows the result of cross classifying a sample of people from the
MBTI Step II National Sample, collected and compiled by CPP Inc., on the four
scales of the Myers–Briggs personality test: Extroversion/Introversion (E/I),
Sensing/iNtuitive (S/N), Thinking/Feeling (T/F) and Judging/Perceiving
(J/P). The 16 cells in this table correspond to the 16 personality types: ESTJ,
ESTP, ESFJ, ESFP, ENTJ, ENTP, ENFJ, ENFP, ISTJ, ISTP, ISFJ, ISFP, INTJ,
INTP, INFJ, INFP.

a. Fit the loglinear model by which the variables are mutually independent.
Report the results of the goodness-of-fit test.



“c07” — 2007/1/29 — page 236 — #33

236 LOGLINEAR MODELS FOR CONTINGENCY TABLES

Table 7.21. Data on Four Scales of the Myers–Briggs Personality Test

Extroversion/Introversion E I

Sensing/iNtuitive S N S N

Thinking/Feeling

Judging/Perceiving T F T F T F T F

J 77 106 23 31 140 138 13 31
P 42 79 18 80 52 106 35 79

Source: Reproduced with special permission of CPP, Inc., Mountain View, CA 94043. Copyright 1996 by
CPP, Inc. All rights reserved. Further reproduction is prohibited without the Publisher’s written consent.

b. Fit the loglinear model of homogeneous association. Based on the fit, show
that the estimated conditional association is strongest between the S/N and
J/P scales.

c. Using the model in (b), show that there is not strong evidence of conditional
association between the E/I and T/F scale or between the E/I and J/P
scales.

7.7 Refer to the previous exercise. Table 7.22 shows the fit of the model that
assumes conditional independence between E/I and T/F and between E/I and
J/P but has the other pairwise associations.

a. Compare this to the fit of the model containing all the pairwise associations,
which has deviance 10.16 with df = 5. What do you conclude?

b. Show how to use the limits reported to construct a 95% likelihood-ratio
confidence interval for the conditional odds ratio between the S/N and J/P
scales. Interpret.

Table 7.22. Partial Output for Fitting Loglinear Model to Table 7.21

Criteria For Assessing Goodness Of Fit

Criterion DF Value

Deviance 7 12.3687
Pearson Chi-Square 7 12.1996

Analysis Of Parameter Estimates

Standard LR 95% confidence Wald Chi-
Parameter DF Estimate Error limits Square

EI*SN e n 1 0.3219 0.1360 0.0553 0.5886 5.60
SN*TF n f 1 0.4237 0.1520 0.1278 0.7242 7.77
SN*JP n j 1 −1.2202 0.1451 −1.5075 −0.9382 70.69
TF*JP f j 1 −0.5585 0.1350 −0.8242 −0.2948 17.12
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c. The estimates shown use N for the first category of the S/N scale and J for
the first category of the J/P scale. Suppose you instead use S for the first
category of the S/N scale. Then, report the estimated conditional odds ratio
and the 95% likelihood-ratio confidence interval, and interpret.

7.8 Refer to the previous two exercises. PROC GENMOD in SAS reports the
maximized log likelihood as 3475.19 for the model of mutual independence
(df = 11), 3538.05 for the model of homogeneous association (df = 5), and
3539.58 for the model containing all the three-factor interaction terms.

a. Write the loglinear model for each case, and show that the numbers of
parameters are 5, 11, and 15.

b. According to AIC (see Section 5.1.5), which of these models seems best?
Why?

7.9 Table 7.23 refers to applicants to graduate school at the University of California,
Berkeley for the fall 1973 session. Admissions decisions are presented by
gender of applicant, for the six largest graduate departments. Denote the three
variables by A = whether admitted, G = gender, and D = department. Fit
loglinear model (AD, AG, DG).

a. Report the estimated AG conditional odds ratio, and compare it with the
AG marginal odds ratio. Why are they so different?

b. Report G2 and df values, and comment on the quality of fit. Conduct a
residual analysis. Describe the lack of fit.

c. Deleting the data for Department 1, re-fit the model. Interpret.

d. Deleting the data for Department 1 and treating A as the response variable,
fit an equivalent logistic model for model (AD, AG, DG) in (c). Show how
to use each model to obtain an odds ratio estimate of the effect of G on A,
controlling for D.

Table 7.23. Data for Problem 7.9 on Admissions to Berkeley

Whether Admitted

Male Female

Department Yes No Yes No

1 512 313 89 19
2 353 207 17 8
3 120 205 202 391
4 138 279 131 244
5 53 138 94 299
6 22 351 24 317

Total 1198 1493 557 1278

Note: For further details, see Bickel et al., Science, 187: 398–403, 1975.
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Table 7.24. Data for Problem 7.10

Injury
Safety Equipment Whether
in Use Ejected Nonfatal Fatal

Seat belt Yes 1,105 14
No 411,111 483

None Yes 4,624 497
No 157,342 1008

Source: Florida Department of Highway Safety and Motor Vehicles.

7.10 Table 7.24 is based on automobile accident records in 1988, supplied by the
state of Florida Department of Highway Safety and Motor Vehicles. Subjects
were classified by whether they were wearing a seat belt, whether ejected, and
whether killed.

a. Find a loglinear model that describes the data well. Interpret the associa-
tions.

b. Treating whether killed as the response variable, fit an equivalent logistic
model. Interpret the effects on the response.

c. Since the sample size is large, goodness-of-fit statistics are large unless the
model fits very well. Calculate the dissimilarity index, and interpret.

7.11 Refer to the loglinear models in Section 7.2.6 for the auto accident injury data
shown in Table 7.9. Explain why the fitted odds ratios in Table 7.11 for model
(GI , GL, GS, IL, IS, LS) suggest that the most likely case for injury is accidents
for females not wearing seat belts in rural locations.

7.12 Consider the following two-stage model for Table 7.9. The first stage is a
logistic model with S as the response, for the three-way G × L × S table. The
second stage is a logistic model with these three variables as predictors for I

in the four-way table. Explain why this composite model is sensible, fit the
models, and interpret results.

7.13 Table 7.25 is from a General Social Survey. Subjects were asked about gov-
ernment spending on the environment (E), health (H ), assistance to big cities
(C), and law enforcement (L). The common response scale was (1 = too little,
2 = about right, 3 = too much).

a. Table 7.26 shows some results, including the two-factor estimates, for
the homogeneous association model. All estimates at category 3 of each
variable equal 0. Test the model goodness of fit, and interpret.

b. Explain why the estimated conditional log odds ratio for the “too much”
and “too little” categories of E and H equals

λ̂EH
11 + λ̂EH

33 − λ̂EH
13 − λ̂EH

31
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Table 7.25. Opinions about Government Spending

Cities 1 2 3
Law Enforcement 1 2 3 1 2 3 1 2 3

Environment Health

1 1 62 17 5 90 42 3 74 31 11
2 11 7 0 22 18 1 19 14 3
3 2 3 1 2 0 1 1 3 1

2 1 11 3 0 21 13 2 20 8 3
2 1 4 0 6 9 0 6 5 2
3 1 0 1 2 1 1 4 3 1

3 1 3 0 0 2 1 0 9 2 1
2 1 0 0 2 1 0 4 2 0
3 1 0 0 0 0 0 1 2 3

Source: 1989 General Social Survey; 1 = too little, 2 = about right, 3 = too much.

which has estimated SE = 0.523. Show that a 95% confidence interval for
the true odds ratio equals (3.1, 24.4). Interpret.

c. Estimate the conditional odds ratios using the “too much” and “too lit-
tle” categories for each of the other pairs of variables. Summarize the
associations. Based on these results, which term(s) might you consider
dropping from the model? Why?

Table 7.26. Output for Fitting Model to Table 7.25

Criteria For Assessing Goodness Of Fit

Criterion DF Value

Deviance 48 31.6695
Pearson Chi-Square 48 26.5224

Standard Standard
Parameter DF Estimate Error Parameter DF Estimate Error

e*h 1 1 1 2.1425 0.5566 h*c 1 1 1 −0.1865 0.4547
e*h 1 2 1 1.4221 0.6034 h*c 1 2 1 0.7464 0.4808
e*h 2 1 1 0.7294 0.5667 h*c 2 1 1 −0.4675 0.4978
e*h 2 2 1 0.3183 0.6211 h*c 2 2 1 0.7293 0.5023
e*l 1 1 1 −0.1328 0.6378 h*l 1 1 1 1.8741 0.5079
e*l 1 2 1 0.3739 0.6975 h*l 1 2 1 1.0366 0.5262
e*l 2 1 1 −0.2630 0.6796 h*l 2 1 1 1.9371 0.6226
e*l 2 2 1 0.4250 0.7361 h*l 2 2 1 1.8230 0.6355
e*c 1 1 1 1.2000 0.5177 c*l 1 1 1 0.8735 0.4604
e*c 1 2 1 1.3896 0.4774 c*l 1 2 1 0.5707 0.4863
e*c 2 1 1 0.6917 0.5605 c*l 2 1 1 1.0793 0.4326
e*c 2 2 1 1.3767 0.5024 c*l 2 2 1 1.2058 0.4462
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7.14 Table 7.27, from a General Social Survey, relates responses on R = religious
service attendance (1 = at most a few times a year, 2 = at least several times
a year), P = political views (1 = Liberal, 2 = Moderate, 3 = Conservative),
B = birth control availability to teenagers between ages of 14 and 16 (1 =
agree, 2 = disagree), S = sexual relations before marriage (1 = wrong only
sometimes or not wrong at all, 2 = always or almost always wrong).

a. Find a loglinear model that fits these data well.

b. Interpret this model by estimating conditional odds ratios for each pair of
variables.

c. Consider the logistic model predicting (S) using the other variables as main-
effect predictors, without any interaction. Fit the corresponding loglinear
model. Does it fit adequately? Interpret the effects of the predictors on the
response, and compare to results from (b).

d. Draw the independence graph of the loglinear model selected in (a). Remark
on conditional independence patterns. For each pair of variables, indicate
whether the fitted marginal and conditional associations are identical.

Table 7.27. Data for Problem 7.14

Premarital Sex
1 2

Religious Attendence 1 2 1 2
Birth Control 1 2 1 2 1 2 1 2

1 99 15 73 25 8 4 24 22
Political views 2 73 20 87 37 20 13 50 60

3 51 19 51 36 6 12 33 88

Source: 1991 General Social Survey.

7.15 Refer to Table 7.13 in Section 7.4.5 on the substance use survey, which also
classified students by gender (G) and race (R).

a. Analyze these data using logistic models, treating marijuana use as the
response variable. Select a model.

b. Which loglinear model is equivalent to your choice of logistic model?

7.16 For the Maine accident data modeled in Section 7.3.2:

a. Verify that logistic model (7.9) follows from loglinear model (GLS, GI , LI ,
IS).

b. Show that the conditional log odds ratio for the effect of S on I equals
βS

1 − βS
2 in the logistic model and λIS

11 + λIS
22 − λIS

12 − λIS
21 in the loglinear

model.
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7.17 For a multiway contingency table, when is a logistic model more appropriate
than a loglinear model, and when is a loglinear model more appropriate?

7.18 For a three-way table, consider the independence graph,

X ——– Z Y

a. Write the corresponding loglinear model.

b. Which, if any, pairs of variables are conditionally independent?

c. If Y is a binary response, what is the corresponding logistic model?

d. Which pairs of variables have the same marginal association as their
conditional association?

7.19 Consider loglinear model (WXZ, WYZ).

a. Draw its independence graph, and identify variables that are conditionally
independent.

b. Explain why this is the most general loglinear model for a four-way table
for which X and Y are conditionally independent.

7.20 For a four-way table, are X and Y independent, given Z alone, for model
(a) (WX, XZ, YZ, WZ), (b) (WX, XZ, YZ, WY )?

7.21 Refer to Problem 7.13 with Table 7.25.

a. Show that model (CE, CH, CL, EH, EL, HL) fits well. Show that model
(CEH, CEL, CHL, EHL) also fits well but does not provide a significant
improvement. Beginning with (CE, CH, CL, EH, EL, HL), show that
backward elimination yields (CE, CL, EH, HL). Interpret its fit.

b. Based on the independence graph for (CE, CL, EH, HL), show that:
(i) every path between C and H involves a variable in {E, L}; (ii) col-
lapsing over H , one obtains the same associations between C and E and
between C and L, and collapsing over C, one obtains the same associations
between H and E and between H and L; (iii) the conditional independence
patterns between C and H and between E and L are not collapsible.

7.22 Consider model (AC, AM, CM, AG, AR, GM, GR) for the drug use data in
Section 7.4.5.

a. Explain why the AM conditional odds ratio is unchanged by collapsing
over race, but it is not unchanged by collapsing over gender.

b. Suppose we remove the GM term. Construct the independence graph, and
show that {G, R} are separated from {C, M} by A.

c. For the model in (b), explain why all conditional associations among A,
C, and M are identical to those in model (AC, AM, CM), collapsing over
G and R.
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7.23 Consider logit models for a four-way table in which X1, X2, and X3 are predic-
tors of Y . When the table is collapsed over X3, indicate whether the association
between X1 and Y remains unchanged, for the model (a) that has main effects
of all predictors, (b) that has main effects of X1 and X2 but assumes no effect
for X3.

7.24 Table 7.28 is from a General Social Survey. Subjects were asked whether
methods of birth control should be available to teenagers between the ages of
14 and 16, and how often they attend religious services.

a. Fit the independence model, and use residuals to describe lack of fit.

b. Using equally spaced scores, fit the linear-by-linear association model.
Describe the association.

c. Test goodness of fit of the model in (b); test independence in a way that
uses the ordinality, and interpret.

d. Fit the L × L model using column scores {1, 2, 4, 5}. Repeat (b), and
indicate whether results are substantively different with these scores.

e. Using formula (7.12) with the model in (d), explain why a fitted local log
odds ratio using columns 2 and 3 is double a fitted local log odds ratio using
columns 1 and 2 or columns 3 and 4. What is the relationship between the
odds ratios?

Table 7.28. Data for Problem 7.24

Teenage Birth Control

Religious Strongly Strongly
Attendance Agree Agree Disagree Disagree

Never 49 49 19 9
Less than once a year 31 27 11 11
Once or twice a year 46 55 25 8
Several times a year 34 37 19 7
About once a month 21 22 14 16
2–3 times a month 26 36 16 16
Nearly every week 8 16 15 11
Every week 32 65 57 61
Several times a week 4 17 16 20

Source: General Social Survey.

7.25 Generalizations of the linear-by-linear model (7.11) analyze association
between ordinal variables X and Y while controlling for a categorical variable
that may be nominal or ordinal. The model

log μijk = λ + λX
i + λY

j + λZ
k + βuivj + λXZ

ik + λYZ
jk
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with ordered scores {ui} and {vj } is a special case of model (XY , XZ, YZ) that
replaces λXY

ij by a linear-by-linear term.

a. Show that the XY conditional independence model (XZ, YZ) is a special
case of this model.

b. Assuming the ordinal model, explain how one could construct a test with
df = 1 for testing XY conditional independence.

c. For this model, equation (7.12) applies for the cells at each fixed level of Z.
With unit-spaced scores, explain why the model implies that every local
odds ratio in each partial table equals exp(β).

d. If we replace β in this model by βk , is there homogeneous association?
Why or why not? (The fit of this model is equivalent to fitting the L × L

association model separately for each partial table.)

7.26 For the linear-by-linear association model applied with column scores
{vj = j}, show that the adjacent-category logits within row i have form (6.6),
identifying αj with (λY

j+1 − λY
j ) and the row scores {ui} with the levels of x.

In fact, the two models are equivalent. The logit representation (6.6) provides
an interpretion for model (7.11).

7.27 True, or false?

a. When there is a single categorical response variable, logistic models are
more appropriate than loglinear models.

b. When you want to model the association and interaction structure among
several categorical response variables, logistic models are more appropriate
than loglinear models.

c. A difference between logistic and loglinear models is that the logistic model
is a GLM assuming a binomial random component whereas the loglinear
model is a GLM assuming a Poisson random component. Hence, when both
are fitted to a contingency table having 50 cells with a binary response, the
logistic model treats the cell counts as 25 binomial observations whereas
the loglinear model treats the cell counts as 50 Poisson observations.
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Models for Matched Pairs

This chapter introduces methods for comparing categorical responses for two samples
that have a natural pairing between each subject in one sample and a subject in the
other sample. Because each observation in one sample pairs with an observation in
the other sample, the responses in the two samples are matched pairs. Because of the
matching, the samples are statistically dependent. Methods that treat the two sets of
observations as independent samples are inappropriate.

The most common way dependent samples occur is when each sample has the
same subjects. Table 8.1 illustrates this for data from the 2000 General Social Survey.
Subjects were asked whether, to help the environment, they would be willing to
(1) pay higher taxes or (2) accept a cut in living standards. The rows of the table
are the categories for opinion about paying higher taxes. The columns are the same
categories for opinion about accepting a cut in living standards.

For matched-pairs observations, one way to summarize the data is with a two-way
table that has the same categories for both classifications. The table is square, having
the same number of rows and columns. The marginal counts display the frequencies
for the outcomes for the two samples. In Table 8.1, the row marginal counts (359, 785)

are the (yes, no) totals for paying higher taxes. The column marginal counts (334, 810)

are the (yes, no) totals for accepting a cut in living standards.
Section 8.1 presents ways of comparing proportions from dependent samples.

Section 8.2 introduces logistic regression models for matched-pairs binary data.
Section 8.3 extends the methods to multicategory responses. Section 8.4 uses loglinear
models to describe the structure of the table and to compare marginal distributions. The
final two sections discuss two applications that yield matched-pairs data: measuring
agreement between two observers who each evaluate the same subjects (Section 8.5),
and evaluating preferences between pairs of outcome categories (Section 8.6).

An Introduction to Categorical Data Analysis, Second Edition. By Alan Agresti
Copyright © 2007 John Wiley & Sons, Inc.
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Table 8.1. Opinions Relating to Environment

Cut Living Standards
Pay Higher
Taxes Yes No Total

Yes 227 132 359
No 107 678 785

Total 334 810 1144

8.1 COMPARING DEPENDENT PROPORTIONS

For Table 8.1, how can we compare the probabilities of a “yes” outcome for the two
environmental questions? Let nij denote the number of subjects who respond in cate-
gory i for the first question and j for the second. In Table 8.1, n1+ = n11 + n12 = 359
subjects said “yes” for raising taxes, and n+1 = n11 + n21 = 334 subjects said “yes”
for accepting cuts in living standards. The sample proportions were 359/1144 = 0.31
and 334/1144 = 0.29.

These marginal proportions are correlated. We see that 227 + 678 subjects had
the same opinion on both questions. They compose most of the sample, since fewer
people answered “yes” on one and “no” on the other. A strong association exists
between the opinions on the two questions, the sample odds ratio being (227 ×
678)/(132 × 107) = 10.9.

Let πij denote the probability of outcome i for question 1 and j for question 2.
The probabilities of a “yes” outcome are π1+ for question 1 and π+1 for question 2.
When these are identical, the probabilities of a “no” outcome are also identical. There
is then said to be marginal homogeneity. Since

π1+ − π+1 = (π11 + π12) − (π11 + π21) = π12 − π21

marginal homogeneity in 2 × 2 tables is equivalent to π12 = π21.

8.1.1 McNemar Test Comparing Marginal Proportions

For matched-pairs data with a binary response, a test of marginal homogeneity has
null hypothesis

H0: π1+ = π+1, or equivalently H0: π12 = π21

When H0 is true, we expect similar values for n12 and n21. Let n∗ = n12 + n21
denote the total count in these two cells. Their allocations to those cells are outcomes
of a binomial variate. Under H0, each of these n∗ observations has a 1/2 chance of
contributing to n12 and a 1/2 chance of contributing to n21. Therefore, n12 and n21
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are numbers of “successes” and “failures” for a binomial distribution having n∗ trials
and success probability 1

2 .
When n∗ > 10, the binomial distribution has a similar shape to the normal distribu-

tion with the same mean, which is 1
2n∗, and standard deviation, which is

√[n∗( 1
2 )( 1

2 )].
The standardized normal test statistic equals

z = n12 − ( 1
2 )n∗√

n∗( 1
2 )( 1

2 )

= n12 − n21√
n12 + n21

(8.1)

The square of this statistic has an approximate chi-squared distribution with df = 1.
The chi-squared test for a comparison of two dependent proportions is called the
McNemar test.

For Table 8.1, the z test statistic equals z = (132 − 107)/
√

(132 + 107) = 1.62.
The one-sided P -value is 0.053 and the two-sided P -value is 0.106. There is slight
evidence that the probability of approval was greater for higher taxes than for a lower
standard of living.

If the samples of subjects for the two questions were separate rather than the
same, the samples would be independent rather than dependent. A different 2 × 2
contingency table would then summarize the data: The two rows would represent the
two questions and the two columns would represent the (yes, no) response categories.
We would then compare the rows of the table rather than the marginal distributions.
For example, the tests of independence from Section 2.4 would analyze whether the
probability of a “yes” outcome was the same for each question. Those chi-squared tests
are not relevant for dependent-samples data of form Table 8.1. We naturally expect an
association between the row and column classifications, because of the matched-pairs
connection. The more relevant question concerns whether the marginal distributions
differ.

8.1.2 Estimating Differences of Proportions

A confidence interval for the true difference of proportions is more informative than a
significance test. Let {pij = nij /n} denote the sample cell proportions. The difference
p1+ − p+1 between the sample marginal proportions estimates the true difference
π1+ − π+1. The estimated variance of the sample difference equals

[p1+(1 − p1+) + p+1(1 − p+1) − 2(p11p22 − p12p21)]/n (8.2)

Its square root is the SE for a confidence interval. In terms of the cell counts
McNemar’s test uses, this standard error is

SE =
√

(n12 + n21) − (n12 − n21)2/n/n
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For Table 8.1, the difference of sample proportions equals 0.314 − 0.292 = 0.022.
For n = 1144 observations with n12 = 132 and n21 = 107,

SE =
√

(132 + 107) − (132 − 107)2/1144/1144 = 0.0135

A 95% confidence interval equals 0.022 ± 1.96(0.0135), or (−0.004, 0.048). We
infer that the probability of a “yes” response was between 0.004 less and 0.048 higher
for paying higher taxes than for accepting a cut in living standards. If the probabilities
differ, the difference is apparently small.

This is a Wald confidence interval. For small samples the actual coverage proba-
bility is closer to the nominal confidence level if you add 0.50 to every cell before
finding the standard error.

The parenthetical part of the last term in the estimated variance (8.2) represents
the effect of the dependence of the marginal proportions through their covariance.
Matched-pairs data usually exhibit a strong positive association. Responses for most
subjects are the same for the column and the row classification. A sample odds ratio
exceeding 1.0 corresponds to p11p22 > p12p21 and hence a negative contribution
from the third term in this variance expression. Thus, an advantage of using dependent
samples, rather than independent samples, is a smaller variance for the estimated
difference in proportions.

8.2 LOGISTIC REGRESSION FOR MATCHED PAIRS

Logistic regression extends to handle matched-pairs responses. This section presents
such models for binary data.

8.2.1 Marginal Models for Marginal Proportions

Let us first see how the analyses of the previous section relate to models. Let
(Y1, Y2) denote the two responses, where a “1” denotes category 1 (success) and
“0” denotes category 2. In Table 8.1, suppose Y1 is opinion about raising taxes
and Y2 is opinion about accepting cuts in living standards. Then, P(Y1 = 1) = π1+
and P(Y2 = 1) = π+1 are marginal probabilities estimated by 359/1144 = 0.31 and
334/1144 = 0.29.

The difference between the marginal probabilities occurs as a parameter in a model
using identity link function. For the model

P(Y1 = 1) = α + δ, P (Y2 = 1) = α

δ = P(Y1 = 1) − P(Y2 = 1). The ML estimate of δ is the difference between the
sample marginal proportions. For Table 8.1, δ̂ = 0.31 − 0.29 = 0.02. The hypothesis
of equal marginal probabilities for the McNemar test is, in terms of this model,
H0: δ = 0.
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An alternative model applies the logit link,

logit[P(Y1 = 1)] = α + β, logit[P(Y2 = 1)] = α (8.3)

This is equivalent to

logit[P(Yt = 1)] = α + βxt

where xt is an indicator variable that equals 1 when t = 1 and 0 when t = 2. The
parameter eβ is the odds ratio comparing the marginal distributions. Its ML estimate
is the odds ratio for the sample marginal distributions. For Table 8.1, exp(β̂) =
[(359/785)/(334/810)] = 1.11. The population odds of willingness to pay higher
taxes are estimated to be 11% higher than the population odds of willingness to
accept cuts in living standards.

These models are called marginal models. They focus on the marginal distributions
of responses for the two observations.

8.2.2 Subject-Specific and Population-Averaged Tables

Next, we show a three-way representation of binary matched-pairs data that motivates
a different type of model. This display presents the data as n separate 2 × 2 partial
tables, one for each matched pair. The kth partial table shows the responses (Y1, Y2)
for the kth matched pair. It has columns that are the two possible outcomes (e.g.,
“yes” and “no”) for each observation. It shows the outcome of Y1 (e.g., response to
question 1) in row 1 and the outcome of Y2 (e.g., response to question 2) in row 2.

Table 8.1 cross-classified results on two environmental questions for 1144 subjects.
Table 8.2 shows a partial table for a subject who answers “yes” on both questions.
The full three-way table corresponding to Table 8.1 has 1144 partial tables. Of them,
227 look like Table 8.2, 132 have first row (1, 0) and second row (0, 1), representing
“yes” on question 1 and “no” on question 2, 107 have first row (0, 1) and second row
(1, 0), and 678 have (0, 1) in each row.

Each subject has a partial table, displaying the two matched observations. The 1144
subjects provide 2288 observations in a 2 × 2 × 1144 contingency table. Collapsing
this table over the 1144 partial tables yields a 2 × 2 table with first row equal to

Table 8.2. Representation of Matched Pair
Contributing to Count n11 in Table 8.1

Response

Issue Yes No

Pay higher taxes 1 0
Cut living standards 1 0
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(359, 785) and second row equal to (334, 810). These are the total number of “yes”
and “no” outcomes for the two questions. They were the marginal counts in Table 8.1.

We refer to the 2 × 2 × n table with a separate partial table for each of n matched
pairs as the subject-specific table. Models that refer to it, such as the one in the next
subsection, are called conditional models; because the data are stratified by subject,
the effect comparing the responses is conditional on the subject. By contrast, the 2 × 2
table that cross-classifies in a single table the two responses for all subjects is called
a population-averaged table. Table 8.1 is an example. Its margins provide estimates
of population marginal probabilities. Models for the margins of such a table, such
as model (8.3), are marginal models. Chapter 9 discusses marginal models in detail,
and Chapter 10 presents conditional models, in each case also permitting explanatory
variables.

8.2.3 Conditional Logistic Regression for Matched-Pairs

A conditional model for matched-pairs data refers to the subject-specific partial tables
of form Table 8.2. It differs from other models studied so far by permitting each
subject to have their own probability distribution. Refer to the matched observations
as observation 1 and observation 2. Let Yit denote observation t for subject i, where
yit = 1 denotes a success. The model has the form

logit[P(Yi1 = 1)] = αi + β, logit[P(Yi2 = 1)] = αi (8.4)

Equivalently, logit[P(Yit = 1)] = αi + βxit with xi1 = 1 and xi2 = 0.
The probabilities of success for subject i for the two observations equal

P(Yi1 = 1) = exp(αi + β)

1 + exp(αi + β)
, P (Yi2 = 1) = exp(αi)

1 + exp(αi)

The {αi} parameters permit the probabilities to vary among subjects. A subject with
a relatively large positive αi (compared to the magnitude of β) has a high probability
of success for each observation. Such a subject is likely to have a success for each
observation. A subject with a relatively large negative αi has a low probability of
success for each observation and is likely to have a failure for each observation. The
greater the variability in these parameters, the greater the overall positive association
between the two observations, successes (failures) for observation 1 tending to occur
with successes (failures) for observation 2.

Model (8.4) assumes that, for each subject, the odds of success for observation 1
are exp(β) times the odds of success for observation 2. Since each partial table refers
to a single subject, this conditional association is a subject-specific effect. The value
β = 0 implies marginal homogeneity. In that case, for each subject, the probability
of success is the same for both observations.

Inference for this model focuses on β for comparing the distributions for t = 1
and t = 2. However, the model has as many subject parameters {αi} as subjects.
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This causes difficulties with the fitting process and with the properties of ordinary
ML estimators. One remedy, conditional maximum likelihood, maximizes the like-
lihood function and finds β̂ for a conditional distribution that eliminates the subject
parameters. (Section 5.4 discussed this method for conducting small-sample infer-
ence for logistic regression.) Consider tables with counts {nij } summarizing the
cross-classification of the two observations, such as Table 8.1, which was

Cut Living Standards
Pay Higher
Taxes Yes No

Yes 227 132
No 107 678

The conditional ML estimate of the odds ratio exp(β) for model (8.4) equals n12/n21.
For Table 8.1, exp(β̂) = 132/107 = 1.23. Assuming the model holds, a subject’s
estimated odds of a “yes” response are 23% higher for raising taxes (question 1) than
for accepting a lower standard of living.

By contrast, the odds ratio of 1.11 found above in Section 8.2.1 refers to the
margins of this table, which equivalently are the rows of the marginal table obtained
by collapsing the 2 × 2 × 1144 contingency table with subject-specific strata. That
these odds ratios take different values merely reflects how conditional odds ratios can
differ from marginal odds ratios. Sections 10.1.2–10.1.4 discuss further the distinction
between conditional and marginal models and their odds ratios.

As in the McNemar test, n12 and n21 provide all the information needed for infer-
ence about β for logit model (8.4). An alternative way of fitting model (8.4), which
Chapter 10 presents, treats {αi} as random effects. This approach treats {αi} as an
unobserved sample having a particular probability distribution. In most cases the
estimate of β is the same as with the conditional ML approach.

When the matched-pairs responses have k predictors, model (8.4) generalizes to

logit[P(Yit = 1)] = αi + β1x1it + β2x2it + · · · + βkxkit , t = 1, 2 (8.5)

Typically, one explanatory variable is of special interest, such as observation time
or treatment. The others are covariates being controlled. Software exists for finding
conditional ML estimates of {βj } (e.g., LogXact and PROC LOGISTIC in SAS). For
matched pairs, Problem 8.28 mentions a simple way to obtain conditional ML {β̂j }
using software for ordinary logistic regression.

8.2.4 Logistic Regression for Matched Case–Control Studies∗

Case–control studies that match a single control with each case are an important
application having matched-pairs data. For a binary response Y , each case (Y = 1)
is matched with a control (Y = 0) according to certain criteria that could affect the
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response. The study observes cases and controls on the predictor variable X and
analyzes the XY association.

Table 8.3 illustrates results of a matched case–control study. A study of acute
myocardial infarction (MI) among Navajo Indians matched 144 victims of MI accord-
ing to age and gender with 144 individuals free of heart disease. Subjects were then
asked whether they had ever been diagnosed as having diabetes (x = 0, no; x = 1,
yes). Table 8.3 has the same form as Table 8.1 (shown also in the previous subsection),
except that the levels of X rather than the levels of Y form the two rows and the two
columns.

Table 8.3. Previous Diagnoses of Diabetes for Myocardial
Infarction Case–Control Pairs

MI Cases

MI Controls Diabetes No diabetes Total

Diabetes 9 16 25
No diabetes 37 82 119

Total 46 98 144

Source: Coulehan et al., Am. J. Public Health, 76: 412–414, 1986. Reprinted
with permission by the American Public Health Association.

A display of the data using a partial table (similar to Table 8.2) for each matched
case–control pair reverses the roles of X and Y . In each matched pair, one subject has
Y = 1 (the case) and one subject has Y = 0 (the control). Table 8.4 shows the four
possible patterns of X values. There are nine partial tables of type 8.4a, since for nine
pairs both the case and the control had diabetes, 16 partial tables of type 8.4b, 37 of
type 8.4c, and 82 of type 8.4d.

Now, for a subject i, consider the model

logit[P(Yi = 1)] = αi + βx

The odds that a subject with diabetes (x = 1) is an MI case equal exp(β) times the odds
that a subject without diabetes (x = 0) is an MI case. The probabilities {P(Yi = 1)}
refer to the distribution of Y given X, but these retrospective data provide information

Table 8.4. Possible Case–Control Pairs for Table 8.3

a b c d

Diabetes Case Control Case Control Case Control Case Control

Yes 1 1 0 1 1 0 0 0
No 0 0 1 0 0 1 1 1
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only about the distribution of X given Y . One can estimate exp(β), however, since
it refers to the XY odds ratio, which relates to both types of conditional distribution
(Section 2.3.5). Even though a case–control study reverses the roles of X and Y in
terms of which is fixed and which is random, the conditional ML estimate of the odds
ratio exp(β) for Table 8.3 is n12/n21 = 37/16 = 2.3.

For details about conditional logistic regression for case–control studies, see
Breslow and Day (1980), Fleiss, Levin, and Paik (2003, Chapter 14), and Hosmer
and Lemeshow (2000, Chapter 7).

8.2.5 Connection between McNemar and Cochran–Mantel–Haenszel Tests∗

We have seen that the Cochran–Mantel–Haenszel (CMH ) chi-squared statistic (4.9)
tests conditional independence in three-way tables. Suppose we apply this statistic to
the 2 × 2 × n subject-specific table that relates the response outcome and the obser-
vation, for each matched pair. In fact, that CMH statistic is algebraically identical
to the McNemar statistic, namely (n12 − n21)

2/(n12 + n21) for tables of the form of
Table 8.1. That is, the McNemar test is a special case of the CMH test applied to the
binary responses of n matched pairs displayed in n partial tables.

This connection is not needed for computations, because the McNemar statistic is
so simple, but it does suggest ways of constructing statistics to handle more complex
types of matched data. For a matched set of T observations, a generalized CMH test
of conditional independence (Section 6.4.2) can be applied to a T × 2 × n table. The
test statistic for that case is sometimes called Cochran’s Q.

The CMH representation also suggests ways to test marginal homogeneity for
tables having possibly several response categories as well as several observations.
Consider a matched set of T observations and a response scale having I categories.
One can display the data in a T × I × n table. A partial table displays the T obser-
vations for a given matched set, one observation in each row. A generalized CMH

test of conditional independence provides a test of marginal homogeneity of the T

marginal distributions.
The CMH representation is also helpful for more complex forms of case–control

studies. For instance, suppose a study matches each case with several controls. With
n matched sets, one displays each matched set as a stratum of a 2 × 2 × n table.
Each stratum has one observation in column 1 (the case) and several observations in
column 2 (the controls). The McNemar test no longer applies, but the ordinary CMH

test can perform the analysis.
Methods for binary matched pairs extend to multiple outcome categories. The next

section shows some ways to do this.

8.3 COMPARING MARGINS OF SQUARE CONTINGENCY TABLES

Matched pairs analyses generalize to I > 2 outcome categories. Let (Y1, Y2) denote
the observations for a randomly selected subject. A square I × I table {nij } shows
counts of possible outcomes (i, j) for (Y1, Y2).
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Let πij = P(Y1 = i, Y2 = j). Marginal homogeneity is

P(Y1 = i) = P(Y2 = i) for i = 1, . . . , I

that is, each row marginal probability equals the corresponding column marginal
probability.

8.3.1 Marginal Homogeneity and Nominal Classifications

One way to test H0: marginal homogeneity compares ML fitted values {μ̂ij } that
satisfy marginal homogeneity to {nij } using G2 or X2 statistics. The df = I − 1.
The ML fit of marginal homogeneity is obtained iteratively.

Another way generalizes the McNemar test. It tests H0: marginal homogeneity by
exploiting the large-sample normality of marginal proportions. Let di = pi+ − p+i

compare the marginal proportions in column i and row i. Let d be a vector of the first
I − 1 differences. It is redundant to include dI , since

∑
di = 0. Under H0, E(d) = 0

and the estimated covariance matrix of d is V̂0/n, where V̂0 has elements

v̂ij0 = −(pij + pji) for i �= j

v̂ii0 = pi+ + p+i − 2pii

Now, d has a large-sample multivariate normal distribution. The quadratic form

W0 = nd′V̂−1
0 d (8.6)

is a score test statistic. It is asymptotically chi-squared with df = I − 1. For I = 2,
W0 simplifies to the McNemar statistic, the square of equation (8.1).

8.3.2 Example: Coffee Brand Market Share

A survey recorded the brand choice for a sample of buyers of instant coffee. At a later
coffee purchase by these subjects, the brand choice was again recorded. Table 8.5
shows results for five brands of decaffinated coffee. The cell counts on the “main
diagonal” (the cells for which the row variable outcome is the same as the column
variable outcome) are relatively large. This indicates that most buyers did not change
their brand choice.

The table also shows the ML fitted values that satisfy marginal homogeneity.
Comparing these to the observed cell counts gives G2 = 12.6 and X2 = 12.4 (df = 4).
The P -values are less than 0.015 for testing H0: marginal homogeneity. (Table A.11
in the Appendix shows how software can obtain the ML fit and test statistics.) The
statistic (8.6) using differences in sample marginal proportions gives similar results,
equaling 12.3 with df = 4.
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Table 8.5. Choice of Decaffeinated Coffee at Two Purchase Dates, with ML Fit
Satisfying Marginal Homogeneity in Parentheses

Second Purchase
First
Purchase High Point Taster’s Sanka Nescafe Brim

High Point 93 (93) 17 (13.2) 44 (32.5) 7 (6.1) 10 (7.8)
Taster’s choice 9 (12.7) 46 (46) 11 (10.5) 0 (0.0) 9 (9.1)
Sanka 17 (26.0) 11 (11.6) 155 (155) 9 (11.3) 12 (12.8)
Nescafe 6 (7.0) 4 (3.5) 9 (7.5) 15 (15) 2 (1.8)
Brim 10 (14.0) 4 (4.0) 12 (11.3) 2 (2.3) 27 (27)

Source: Based on data from R. Grover and V. Srinivasan, J. Marketing Res., 24: 139–153, 1987. Reprinted
with permission by the American Marketing Association.

The sample marginal proportions for brands (High Point, Taster’s Choice, Sanka,
Nescafe, Brim) were (0.32, 0.14, 0.38, 0.07, 0.10) for the first purchase and
(0.25, 0.15. 0.43, 0.06, 0.11) for the second purchase. To estimate the change
for a given brand, we can combine the other categories and use the methods of
Section 8.1.

We illustrate by comparing the proportions selecting High Point at the two times.
We construct the table with row and column categories (High Point, Others). This
table has counts, by row, of (93, 78/42, 328). The McNemar z statistic (8.1)
equals (78 − 42)/

√
(78 + 42) = 3.3. There is strong evidence of a change in the

population proportion choosing this brand (P = 0.001). The estimated difference
is 0.32 − 0.25 = 0.07, and the 95% confidence interval is 0.07 ± 0.04. The small
P -value for the overall test of marginal homogeneity mainly reflects a decrease in the
proportion choosing High Point and an increase in the proportion choosing Sanka,
with no evidence of change for the other coffees.

8.3.3 Marginal Homogeneity and Ordered Categories

The tests of H0: marginal homogeneity above, having df = I − 1, are designed to
detect any difference between the margins. They treat the categories as unordered,
using all I − 1 degrees of freedom available for comparisons of I pairs of marginal
proportions. Test statistics designed to detect a particular difference can be more
powerful. For example, when response categories are ordered, tests can analyze
whether responses tend to be higher on the ordinal scale in one margin than the
other. Ordinal tests, which have df = 1, are usually much more powerful. This
is especially true when I is large and the association between classifications is
strong.

An ordinal model comparison of the margins can use ordinal logits, such as logits
of cumulative probabilities (Section 6.2). The model

logit[P(Yi1 ≤ j)] = αij + β, logit[P(Yi2 ≤ j)] = αij
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is a generalization of binary model (8.4) that expresses each cumulative logit in terms
of subject effects and a margin effect. Like the cumulative logit models of Section 6.2,
it makes the proportional odds assumption by which the effect β is assumed to be the
same for each cumulative probability. The model states that, for each matched pair,
the odds that observation 1 falls in category j or below (instead of above category j )
are exp(β) times the odds for observation 2.

An estimate of β in this model is

β̂ = log

(∑ ∑
i<j (j − i)nij∑ ∑
i>j (i − j)nij

)
(8.7)

The numerator sum weights each cell count above the main diagonal by its distance
(j − i) from that diagonal. The denominator sum refers to cells below the main
diagonal. An ordinal test of marginal homogeneity (β = 0) uses this effect. Estimator
(8.7) of β has

SE =
√√√√√

∑ ∑
i<j (j − i)2nij[∑ ∑
i<j (j − i)nij

]2 +
∑ ∑

i>j (i − j)2nij[∑ ∑
i>j (i − j)nij

]2

The ratio β̂/SE is an approximate standard normal test statistic.
A simple alternative test compares the sample means for the two margins, for

ordered category scores {ui}. Denote the sample means for the rows (X) and columns
(Y ) by x̄ = ∑

i uipi+ and ȳ = ∑
i uip+i . The difference (x̄ − ȳ) divided by its

estimated standard error under marginal homogeneity, which is the square root of

(1/n)

[ ∑
i

∑
j

(ui − uj )
2pij

]

has an approximate null standard normal distribution. This test is designed to detect
differences between true marginal means.

8.3.4 Example: Recycle or Drive Less to Help Environment?

Table 8.6 is from a General Social Survey. Subjects were asked “How often do you
cut back on driving a car for environmental reasons?” and “How often do you make
a special effort to sort glass or cans or plastic or papers and so on for recycling?”

For Table 8.6, the numerator of (8.7) equals

1(43 + 99 + 230) + 2(163 + 185) + 3(233) = 1767
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Table 8.6. Behaviors on Recycling and Driving Less to Help Environment, with Fit
of Ordinal Quasi-Symmetry Model

Drive Less

Recycle Always Often Sometimes Never

Always 12 (12) 43 (43.1) 163 (165.6) 233 (232.8)
Often 4 (3.9) 21 (21) 99 (98.0) 185 (184.5)
Sometimes 4 (1.4) 8 (9.0) 77 (77) 230 (227.3)
Never 0 (0.2) 1 (1.5) 18 (20.7) 132 (132)

and the denominator equals

1(4 + 8 + 18) + 2(4 + 1) + 3(0) = 40

Thus, β̂ = log(1767/40) = 3.79. The estimated odds ratio is exp(β̂) = 1767/40 =
44.2. For each subject the estimated odds of response “always” (instead of the other
three categories) on recycling are 44.2 times the estimated odds of that response for
driving less. This very large estimated odds ratio indicates a substantial effect.

For Table 8.6, β̂ = 3.79 has SE = 0.180. For H0: β = 0, z = 3.79/0.180 = 21.0
provides extremely strong evidence against the null hypothesis of marginal homogene-
ity. Strong evidence also results from the comparison of mean scores. For the scores
{1, 2, 3, 4}, the mean for driving less is [20 + 2(73) + 3(357) + 4(780)]/1230 =
3.54, and the mean for recycling is [451 + 2(309) + 3(319) + 4(151)]/1230 = 2.14.
The test statistic is z = (x̄ − ȳ)/SE = (2.14 − 3.54)/0.0508 = −27.6. The sample
marginal means also indicate that responses tended to be considerably more toward
the low end of the response scale (i.e., more frequent) on recycling than on driving
less.

8.4 SYMMETRY AND QUASI-SYMMETRY MODELS FOR
SQUARE TABLES∗

The probabilities in a square table satisfy symmetry if

πij = πji (8.8)

for all pairs of cells. Cell probabilities on one side of the main diagonal are a mirror
image of those on the other side. When symmetry holds, necessarily marginal homo-
geneity also holds. When I > 2, though, marginal homogeneity can occur without
symmetry. This section shows how to compare marginal distributions using logistic
models for pairs of cells in square tables.
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8.4.1 Symmetry as a Logistic Model

The symmetry condition has the simple logistic form

log(πij /πji) = 0 for all i and j

The ML fit of the symmetry model has expected frequency estimates

μ̂ij = (nij + nji)/2

The fit satisfies μ̂ij = μ̂ji . It has μ̂ii = nii , a perfect fit on the main diagonal. The
residual df for chi-squared goodness-of-fit tests equal I (I − 1)/2.

The standardized residuals for the symmetry model equal

rij = (nij − nji)/
√

nij + nji (8.9)

The two residuals for each pair of categories are redundant, since rij = −rji . The
sum of squared standardized residuals, one for each pair of categories, equals X2 for
testing the model fit.

8.4.2 Quasi-Symmetry

The symmetry model is so simple that it rarely fits well. For instance, when
the marginal distributions differ substantially, the model fits poorly. One can
accommodate marginal heterogeneity by the quasi-symmetry model,

log(πij /πji) = βi − βj for all i and j (8.10)

One parameter is redundant, and we set βI = 0. The symmetry model is the special
case of equation (8.10) in which all βi = 0. Roughly speaking, the higher the value
of β̂i , relatively more observations fall in row i compared to column i.

Fitting the quasi-symmetry model requires iterative methods. To use software, treat
each separate pair of cell counts (nij , nji) as an independent binomial variate, ignoring
the main-diagonal counts. Set up I artificial explanatory variables, corresponding to
the coefficients of the {βi} parameters. For the logit log(πij /πji) for a given pair of
categories, the variable for βi is 1, the variable for βj is −1, and the variables for the
other parameters equal 0. (Table A.13 in the Appendix illustrates this with SAS code.)
One explanatory variable is redundant, corresponding to the redundant parameter. The
fitted marginal totals equal the observed totals. Its residual df = (I − 1)(I − 2)/2.

8.4.3 Example: Coffee Brand Market Share Revisited

Table 8.5 in Section 8.3.2 summarized coffee purchases at two times. The symmetry
model has G2 = 22.5 and X2 = 20.4, with df = 10. The lack of fit results primarily
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from the discrepancy between n13 and n31. For that pair, the standardized residual
equals (44 − 17)/

√
(44 + 17) = 3.5. Consumers of High Point changed to Sanka

more often than the reverse. Otherwise, the symmetry model fits most of the table
fairly well.

The quasi-symmetry model has G2 = 10.0 and X2 = 8.5, with df = 6. Permit-
ting the marginal distributions to differ yields a better fit than the symmetry model
provides. We will next see how to use this information to construct a test of marginal
homogeneity.

8.4.4 Testing Marginal Homogeneity Using Symmetry and Quasi-Symmetry

For the quasi-symmetry model, log(πij /πji) = βi − βj for all i and j , marginal
homogeneity is the special case in which all βi = 0. This special case is the symmetry
model. In other words, for the quasi-symmetry model, marginal homogeneity is
equivalent to symmetry.

To test marginal homogeneity, we can test the null hypothesis that the symmetry
(S) model holds against the alternative hypothesis of quasi symmetry (QS). The
likelihood-ratio test compares the G2 goodness-of-fit statistics,

G2(S | QS) = G2(S) − G2(QS)

For I × I tables, the test has df = I − 1.
For Table 8.5, the 5 × 5 table on choice of coffee brand at two purchases,

G2(S) = 22.5 and G2(QS) = 10.0. The difference G2(S | QS) = 12.5, based on
df = 4, provides evidence of differing marginal distributions (P = 0.014).

Section 8.3.1 described other tests of H0: marginal homogeneity, based on the
ML fit under H0 and using pi+ − p+i , i = 1, . . . , I . For the coffee data, these gave
similar results as using G2(S | QS). Those other tests do not assume that the quasi-
symmetry model holds. In practice, however, for nominal classifications the statistic
G2(S | QS) usually captures most of the information about marginal heterogeneity
even if the quasi-symmetry model shows lack of fit.

8.4.5 An Ordinal Quasi-Symmetry Model

The symmetry and quasi-symmetry models treat the classifications as nominal. A
special case of quasi-symmetry often is useful when the categories are ordinal. Let
u1 ≤ u2 ≤ · · · ≤ uI denote ordered scores for both the row and column categories.
The ordinal quasi-symmetry model is

log(πij /πji) = β(uj − ui) (8.11)

This is a special case of the quasi-symmetry model (8.10) in which {βi} have a linear
trend. The symmetry model is the special case β = 0.
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Model (8.11) has the form of the usual logistic model, logit(π) = α + βx, with
α = 0, x = uj − ui and π equal to the conditional probability for cell (i, j ), given
response in cell (i, j ) or cell (j, i). The greater the value of |β|, the greater the
difference between πij and πji and between the marginal distributions. With scores
{ui = i}, the probability that the second observation is x categories higher than the
first observation equals exp(xβ) times the probability that the first observation is x

categories higher than the second observation.
For this model, the fitted marginal counts have the same means as the observed

marginal counts. For the chosen category scores {ui}, the sample mean for the row
variable is

∑
i uipi+. This equals the row mean

∑
i ui π̂i+ for the fitted values. A

similar equality holds for the column means. When responses in one margin tend to
be higher on the ordinal scale than those in the other margin, the fit of model (8.11)
exhibits this same ordering. When β̂ > 0, the mean response is lower for the row
variable. When β̂ < 0, the mean response is higher for the row variable.

To estimate β in the ordinal quasi-symmetry model, fit model (8.11) using logit
model software. Identify (nij , nji) as binomial numbers of successes and failures in
nij + nji trials, and fit a logit model with intercept forced to equal 0 (which most
software can do with a “no intercept” option) and with value of the predictor x equal
to uj − ui . (Table A.12 in the Appendix illustrates this with SAS code.)

8.4.6 Example: Recycle or Drive Less?

We illustrate with Table 8.6 from Section 8.3.4 about behaviors on recycling or driving
less to help the environment. A cursory glance at the data reveals that the symmetry
model is doomed. Indeed, G2 = 1106.1 and X2 = 857.4 for testing its fit, with df = 6.
By comparison, the quasi-symmetry model fits well, having G2 = 2.7 and X2 = 2.7
with df = 3. The simpler ordinal quasi-symmetry model also fits well. For the scores
{1, 2, 3, 4}, G2 = 4.4 and X2 = 5.9, with df = 5. Table 8.6 displays its fitted values.

For the ordinal quasi-symmetry model, β̂ = 2.39. From equation (8.11), the esti-
mated probability that response on driving less is x categories higher than the response
on recycling equals exp(2.39x) times the reverse probability. Responses on recycling
tend to be lower on the ordinal scale (i.e., more frequent) than those on driving less.
The mean for recycling is 2.1, close to the “often” score, whereas the mean for driving
less is 3.5, midway between the “sometimes” and “never” scores.

8.4.7 Testing Marginal Homogeneity Using Symmetry and Ordinal
Quasi-Symmetry

For the ordinal quasi-symmetry model (8.11), symmetry and thus marginal homo-
geneity is the special case β = 0. A likelihood-ratio test of marginal homogeneity uses
the difference between the G2 values for the symmetry and ordinal quasi-symmetry
models, with df = 1.

For Table 8.6 on recycling and driving less, the symmetry model has G2 = 1106.1
(df = 6), and the ordinal quasi-symmetry model has G2 = 4.4 (df = 5). The
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likelihood-ratio statistic for testing marginal homogeneity is 1106.1 − 4.4 = 1101.7,
with df = 1. There is extremely strong evidence of heterogeneity (P < 0.0001).

Alternatively, a Wald statistic for an ordinal test of marginal homogene-
ity treats (β̂/SE)2 as chi-squared with df = 1. For these data, (β̂/SE)2 =
(2.39/0.151)2 = 252.0, also giving extremely strong evidence. A third ordinal chi-
squared test does not require fitting this model, but is related to it, being its score test
of marginal homogeneity. The test statistic is the square of the statistic described in
Section 8.3.3 that compares sample means for the margins, for category scores {ui}.
For these data, z = (x̄ − ȳ)/SE = (2.14 − 3.54)/0.0508 = −27.6, and z2 = 762.6
with df = 1.

8.5 ANALYZING RATER AGREEMENT∗

Table 8.7 shows ratings by two pathologists, labeled X and Y , who separately clas-
sified 118 slides on the presence and extent of carcinoma of the uterine cervix. The
rating scale has the ordered categories (1) negative, (2) atypical squamous hyperplasia,
(3) carcinoma in situ and (4) squamous or invasive carcinoma. This table illustrates
another type of matched-pairs data, referring to separate ratings of a sample by two
observers using the same categorical scale. Each matched pair consists of the ratings
by the two observers for a particular slide.

Let πij = P(X = i, Y = j) denote the probability that observer X classifies a slide
in category i and observer Y classifies it in category j . Their ratings of a particular
subject agree if their classifications are in the same category. In the square table, the
main diagonal {i = j} represents observer agreement. The term πii is the probability

Table 8.7. Diagnoses of Carcinoma, with Standardized Residuals
for Independence Model

Pathologist Y

Pathologist X 1 2 3 4 Total

1 22 2 2 0 26
(8.5) (−0.5) (−5.9) (−1.8)

2 5 7 14 0 26
(−0.5) (3.2) (−0.5) (−1.8)

3 0 2 36 0 38
(−4.1) (−1.2) (5.5) (−2.3)

4 0 1 17 10 28
(−3.3) (−1.3) (0.3) (5.9)

Total 27 12 69 10 118

Source: N. S. Holmquist, C. A. McMahon, and O. D. Williams, Arch. Pathol., 84: 334–345, 1967.
Reprinted with permission by the American Medical Association.
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that they both classify a subject in category i. The sum
∑

i πii is the total probability
of agreement. Perfect agreement occurs when

∑
i πii = 1.

Many categorical scales are quite subjective, and perfect agreement is rare. This
section presents ways to measure strength of agreement and detect patterns of
disagreement. Agreement is distinct from association. Strong agreement requires
strong association, but strong association can exist without strong agreement. If
observer X consistently classifies subjects one level higher than observer Y , the
strength of agreement is poor even though the association is strong.

8.5.1 Cell Residuals for Independence Model

One way of evaluating agreement compares the cell counts {nij } to the values
{ni+n+j /n} predicted by the loglinear model of independence (7.1). That model pro-
vides a baseline, showing the degree of agreement expected if no association existed
between the ratings. Normally it would fit poorly if there is even only mild agreement,
but its cell standardized residuals (Section 2.4.5) provide information about patterns
of agreement and disagreement.

Cells with positive standardized residuals have higher frequencies than expected
under independence. Ideally, large positive standardized residuals occur on the main
diagonal and large negative standardized residuals occur off that diagonal. The sizes
are influenced, however, by the sample size n, larger values tending to occur as n

increases.
In fact, the independence model fits Table 8.7 poorly (G2 = 118.0, df = 9).

Table 8.7 reports the standardized residuals in parentheses. The large positive stan-
dardized residuals on the main diagonal indicate that agreement for each category
is greater than expected by chance, especially for the first category. The off-main-
diagonal residuals are primarily negative. Disagreements occurred less than expected
under independence, although the evidence of this is weaker for categories closer
together. Inspection of cell counts reveals that the most common disagreements refer
to observer Y choosing category 3 and observer X instead choosing category 2 or 4.

8.5.2 Quasi-Independence Model

A more useful loglinear model adds a term that describes agreement beyond that
expected under independence. This quasi-independence model is

log μij = λ + λX
i + λY

j + δiI (i = j) (8.12)

where the indicator I (i = j) equals 1 when i = j and equals 0 when i �= j . This
model adds to the independence model a parameter δ1 for cell (1, 1) (in row 1 and
column 1), a parameter δ2 for cell (2, 2), and so forth. When δi > 0, more agreements
regarding outcome i occur than would be expected under independence. Because of
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the addition of this term, the quasi-independence model treats the main diagonal differ-
ently from the rest of the table. The ML fit in those cells is perfect, with μ̂ii = nii for all
i. For the remaining cells, the independence model still applies. In other words, con-
ditional on observer disagreement, the rating by X is independent of the rating by Y .

The quasi-independence model has I more parameters than the independence
model, so its residual df = (I − 1)2 − I . One can fit it using iterative methods in
GLM software. Besides the row and column explanatory factors, you set up I indicator
variables for the main-diagonal cells. The indicator variable i is 1 for cell (i, i) and 0
otherwise. The estimate of its coefficient is δ̂i . (Table A.12 in the Appendix illustrates
this representation in SAS code.)

For Table 8.7, the quasi-independence model has G2 = 13.2 and X2 = 11.5, with
df = 5. It fits much better than the independence model, but some lack of fit remains.
Table 8.8 displays the fit. The fitted counts have the same main-diagonal values and
the same row and column totals as the observed data, but satisfy independence for
cells not on the main diagonal.

Table 8.8. Fitted Values for Quasi-Independence and
Quasi-Symmetry Models with Table 8.7

Pathologist Y

Pathologist X 1 2 3 4

1 22 2 2 0
(22)a (0.7) (3.3) (0.0)
(22)b (2.4) (1.6) (0.0)

2 5 7 14 0
(2.4) (7) (16.6) (0.0)
(4.6) (7) (14.4) (0.0)

3 0 2 36 0
(0.8) (1.2) (36) (0.0)
(0.4) (1.6) (36) (0.0)

4 0 1 17 10
(1.9) (3.0) (13.1) (10)
(0.0) (1.0) (17.0) (10)

aQuasi-independence model.
bQuasi-symmetry model.

For Table 8.5 in Section 8.3.2 on choice of coffee brand at two occasions, the quasi-
independence model has G2 = 13.8 with df = 11. This is a dramatic improvement
over independence, which has G2 = 346.4 with df = 16. Given a change in brands,
the new choice of coffee brand is plausibly independent of the original choice.

8.5.3 Odds Ratios Summarizing Agreement

For a pair of subjects, consider the event that each observer classifies one subject in
category a and one subject in category b. The odds that the two observers agree rather
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than disagree on which subject is in category a and which is in category b equal

τab = πaaπbb

πabπba

= μaaμbb

μabμba

(8.13)

As τab increases, the observers are more likely to agree on which subject receives
each designation.

For the quasi-independence model, the odds (8.13) summarizing agreement for
categories a and b equal

τab = exp(δa + δb)

These increase as the diagonal parameters increase, so larger {δi} represent stronger
agreement. For instance, categories 2 and 3 in Table 8.7 have δ̂2 = 0.6 and δ̂3 = 1.9.
The estimated odds that one observer’s rating is category 2 rather than 3 are τ̂23 =
exp(0.6 + 1.9) = 12.3 times as high when the other observer’s rating is 2 than when
it is 3. The degree of agreement seems fairly strong, which also happens for the other
pairs of categories.

8.5.4 Quasi-Symmetry and Agreement Modeling

For Table 8.7, the quasi-independence model shows some lack of fit. This model is
often inadequate for ordinal scales, which almost always exhibit a positive association
between ratings. Conditional on observer disagreement, a tendency usually remains
for high (low) ratings by one observer to occur with relatively high (low) ratings by
the other observer.

The quasi-symmetry model (8.10) is more complex than the quasi-independence
model. It also fits the main diagonal perfectly, but it permits association off the main
diagonal. It often fits much better. For Table 8.7, it has G2 = 1.0 and X2 = 0.6,
based on df = 2. Table 8.8 displays the fit. To estimate the agreement odds (8.13),
we substitute the fitted values {μ̂ij } into equation (8.13). For categories 2 and 3 of
Table 8.7, for example, τ̂23 = 10.7. It is not unusual for observer agreement tables to
have many empty cells. When nij + nji = 0 for any pair (such as categories 1 and 4
in Table 8.7), the ML fitted values in those cells must also be zero.

The symmetry model fits Table 8.7 poorly, with G2 = 39.2 and X2 = 30.3 having
df = 5. The statistic G2(S|QS) = 39.2 − 1.0 = 38.2, with df = 3, provides strong
evidence of marginal heterogeneity. The lack of perfect agreement reflects differences
in marginal distributions. Table 8.7 reveals these to be substantial in each category
but the first.

The ordinal quasi-symmetry model uses the category orderings. This model fits
Table 8.7 poorly, partly because ratings do not tend to be consistently higher by one
observer than the other.
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8.5.5 Kappa Measure of Agreement

An alternative approach describes strength of agreement using a single summary
index, rather than a model. The most popular index is Cohen’s kappa. It compares
the agreement with that expected if the ratings were independent. The probabil-
ity of agreement equals

∑
i πii . If the observers’ ratings were independent, then

πii = πi+π+i and the probability of agreement equals
∑

i πi+π+i .
Cohen’s kappa is defined by

κ =
∑

πii − ∑
πi+π+i

1 − ∑
πi+π+i

The numerator compares the probability of agreement with that expected under
independence. The denominator replaces

∑
πii with its maximum possible value of

1, corresponding to perfect agreement. Kappa equals 0 when the agreement merely
equals that expected under independence, and it equals 1.0 when perfect agreement
occurs. The stronger the agreement is, for a given pair of marginal distributions, the
higher the value of kappa.

For Table 8.7,
∑

π̂ii = (22 + 7 + 36 + 10)/118 = 0.636, whereas
∑

π̂i+π̂+i =
[(26)(27) + (26)(12) + (38)(69) + (28)(10)]/(118)2 = 0.281. Sample kappa equals

κ̂ = (0.636 − 0.281)/(1 − 0.281) = 0.49

The difference between the observed agreement and that expected under independence
is about 50% of the maximum possible difference.

Kappa treats the variables as nominal, in the sense that, when categories are
ordered, it treats a disagreement for categories that are close the same as for cat-
egories that are far apart. For ordinal scales, a weighted kappa extension gives more
weight to disagreements for categories that are farther apart.

Controversy surrounds the usefulness of kappa, primarily because its value
depends strongly on the marginal distributions. The same diagnostic rating process
can yield quite different values of kappa, depending on the proportions of cases of the
various types. We prefer to construct models describing the structure of agreement
and disagreement, rather than to depend solely on this summary index.

8.6 BRADLEY–TERRY MODEL FOR PAIRED PREFERENCES∗

Table 8.9 summarizes results of matches among five professional tennis players during
2004 and 2005. For instance, Roger Federer won three of the four matches that he
and Tim Henman played. This section presents a model that applies to data of this
sort, in which observations consist of pairwise comparisons that result in a preference
for one category over another. The fitted model provides a ranking of the players. It
also estimates the probabilities of win and of loss for matches between each pair of
players.
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Table 8.9. Results of 2004–2005 Tennis Matches for Men Players

Loser

Winner Agassi Federer Henman Hewitt Roddick

Agassi – 0 0 1 1
Federer 6 – 3 9 5
Henman 0 1 – 0 1
Hewitt 0 0 2 – 3
Roddick 0 0 1 2 –

Source: www.atptennis.com.

The model is often applied in product comparisons. For instance, a wine-tasting
session comparing several brands of Brunello di Montalcino wine from Tuscany, Italy
might consist of a series of pairwise competitions. For each pair of wines, raters taste
each wine and indicate a preference for one of them. Based on results of several
pairwise evaluations, the model fit establishes a ranking of the wines.

8.6.1 The Bradley–Terry Model

The Bradley–Terry model is a logistic model for paired preference data. For Table 8.9,
let �ij denote the probability that player i is the victor when i and j play. The
probability that player j wins is �ji = 1 − �ij (ties cannot occur). For instance,
when Agassi (player 1) and Federer (player 2) played, �12 is the probability that
Agassi won and �21 = 1 − �12 is the probability that Federer won.

The Bradley–Terry model has player parameters {βi} such that

logit(�ij ) = log(�ij /�ji) = βi − βj (8.14)

The probability that player i wins equals 1/2 when βi = βj and exceeds 1/2 when
βi > βj . One parameter is redundant, and software imposes constraints such as setting
the last one equal to 0 and deleting the usual intercept term.

Logit model (8.14) is equivalent to the quasi-symmetry model (8.10). To fit it, we
treat each separate pair of cell counts (nij , nji) as an independent binomial variate,
as Section 8.4.3 described. For instance, from Federer’s perspective, the (Federer,
Henman) results correspond to three successes and one failure in four trials. From the
model fit, the estimate of �̂ij is

�̂ij = exp(β̂i − β̂j )/[1 + exp(β̂i − β̂j )]

8.6.2 Example: Ranking Men Tennis Players

For Table 8.9, if software sets β5 = 0 (for Roddick), the estimates of the other
parameters are β̂1 = 1.45 (Agassi), β̂2 = 3.88 (Federer), β̂3 = 0.19 (Henman), and
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β̂4 = 0.57 (Hewitt). Federer is ranked highest of the players, by far, and Roddick the
lowest.

As well as providing a player ranking, the model fit yields estimated probabilities
of victory. To illustrate, when Federer played Agassi in 2004–2005, model (8.14)
estimates the probability of a Federer win to be

�̂21 = exp(β̂2 − β̂1)

1 + exp(β̂2 − β̂1)
= exp(3.88 − 1.45)

1 + exp(3.88 − 1.45)
= 0.92

For such small data sets, the model smoothing provides estimates that are more
pleasing and realistic than the sample proportions. For instance, Federer beat Agassi
in all six of their matches, but the model estimates the probability of a Federer victory
to be 0.92 rather than 1.00. Also, the model can provide estimates for pairs of players
who did not play. Agassi did not play Henman in 2004–2005, but for such a match
the estimated probability of a Agassi victory was 0.78.

To check whether the difference between two players is statistically significant,
we compare (β̂i − β̂j ) to its SE. From the covariance matrix of parameter estimates,
the SE equals the square root of [Var(β̂i) + Var(β̂j ) −2 Cov(β̂i , β̂j )]. For instance,
for comparing Agassi and Roddick, β̂1 − β̂5 = 1.449 has SE = 1.390, indicating
an insignificant difference. Estimates are imprecise for this small data set. The only
comparisons showing strong evidence of a true difference are those between Federer
and the other players.

A confidence interval for βi − βj translates directly to one for �ij . For Fed-
erer and Roddick, a 95% confidence interval for β2 − β5 is 3.88 ± 1.96(1.317), or
(1.30, 6.46). This translates to (0.79, 0.998) for the probability �25 of a Federer win
{e.g., exp(1.30)/[1 + exp(1.30)] = 0.79}.

The assumption of independent, identical trials that leads to the binomial distri-
bution and the usual fit of the logistic model is overly simplistic for this application.
For instance, the probability �ij that player i beats player j may vary according to
whether the court is clay, grass, or hard, and it would vary somewhat over time. In
fact, the model does show some lack of fit. The goodness-of-fit statistics are G2 = 8.2
and X2 = 11.6, with df = 5.

PROBLEMS

8.1 Apply the McNemar test to Table 8.3. Interpret.

8.2 A recent General Social Survey asked subjects whether they believed in heaven
and whether they believed in hell. Table 8.10 shows the results.

a. Test the hypothesis that the population proportions answering “yes” were
identical for heaven and hell. Use a two-sided alternative.

b. Find a 90% confidence interval for the difference between the population
proportions. Interpret.
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Table 8.10. Data from General Social Survey for Problem 8.2

Believe in Hell
Believe in
Heaven Yes No

Yes 833 125
No 2 160

8.3 Refer to the previous exercise. Estimate and interpret the odds ratio for a
logistic model for the probability of a “yes” response as a function of the item
(heaven or hell), using (a) the marginal model (8.3) and (b) the conditional
model (8.4).

8.4 Explain the following analogy: The McNemar test is to binary data as the
paired difference t test is to normally distributed data.

8.5 Section 8.1.1 gave the large-sample z or chi-squared McNemar test for com-
paring dependent proportions. The exact P -value, needed for small samples,
uses the binomial distribution. For Table 8.1, consider Ha : π1+ > π+1, or
equivalently, Ha : π12 > π21.

a. The exact P -value is the binomial probability of at least 132 successes out
of 239 trials, when the parameter is 0.50. Explain why. (Software reports
P -value = 0.060.)

b. For these data, how is the mid P -value (Section 1.4.5) defined in terms of
binomial probabilities? (This P -value = 0.053.)

c. Explain why Ha : π1+ �= π+1 has ordinary P -value = 0.120 and mid
P -value = 0.106. (The large-sample McNemar test has P -value that is
an approximation for the binomial mid P -value. It is also 0.106 for
these data.)

8.6 For Table 7.19 on opinions about measures to deal with AIDS, treat the data
as matched pairs on opinion, stratified by gender.

a. For females, test the equality of the true proportions supporting government
action for the two items.

b. Refer to (a). Construct a 90% confidence interval for the difference between
the true proportions of support. Interpret.

c. For females, estimate the odds ratio exp(β) for (i) marginal model (8.3),
(ii) conditional model (8.4). Interpret.

d. Explain how you could construct a 90% confidence interval for the dif-
ference between males and females in their differences of proportions of
support for a particular item. (Hint: The gender samples are independent.)
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8.7 Refer to Table 8.1 on ways to help the environment. Suppose sample propor-
tions of approval of 0.314 and 0.292 were based on independent samples of
size 1144 each. Construct a 95% confidence interval for the true difference of
proportions. Compare with the result in Section 8.1.2, and comment on how
the use of dependent samples can improve precision.

8.8 A crossover experiment with 100 subjects compares two treatments for
migraine headaches. The response scale is success (+) or failure (−). Half
the study subjects, randomly selected, used drug A the first time they got a
migraine headache and drug B the next time. For them, six had responses
(A+, B+), 25 had responses (A+, B−), 10 had responses (A−, B+), and
nine had responses (A−, B−). The other 50 subjects took the drugs in the
reverse order. For them, 10 were (A+, B+), 20 were (A+, B−), 12 were
(A−, B+), and eight were (A−, B−).

a. Ignoring treatment order, use the McNemar test to compare the success
probabilities for the two treatments. Interpret.

b. The McNemar test uses only the pairs of responses that differ. For this
study, Table 8.11 shows such data from both treatment orders. Explain why
a test of independence for this table tests the hypothesis that success rates
are identical for the two treatments. Analyze these data, and interpret.

Table 8.11. Data for Problem 8.8

Treatment That is Better
Treatment
Order First Second

A then B 25 10
B then A 12 20

8.9 Estimate β in model (8.4) applied to Table 8.1 on helping the environment.
Interpret.

8.10 A case–control study has eight pairs of subjects. The cases have colon cancer,
and the controls are matched with the cases on gender and age. A possible
explanatory variable is the extent of red meat in a subject’s diet, measured as
“low” or “high.” For three pairs, both the case and the control were high; for
one pair, both the case and the control were low; for three pairs, the case was
high and the control was low; for one pair, the case was low and the control
was high.

a. Display the data in a 2 × 2 cross-classification of diet for the case against
diet for the control. Display the 2 × 2 × 8 table with partial tables relating
diet to response (case, control) for the matched pairs. Successive parts refer
to these as Table A and Table B.
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b. Find the McNemar z2 statistic for Table A and the CMH statistic (4.9) for
Table B. Compare.

c. For Table B, show that the CMH statistic does not change if you delete pairs
from the data set in which both the case and the control had the same diet.

d. This sample size is too small for these large-sample tests. Find the exact P -
value for testing marginal homogeneity against the alternative hypothesis
of a higher incidence of colon cancer for the “high” red meat diet. (See
Problem 8.5.)

8.11 For the subject-specific model (8.4) for matched pairs,

logit[P(Yi1 = 1)] = αi + β, logit[P(Yi2 = 1)] = αi

the estimated variance for the conditional ML estimate β̂ = log(n12/n21) of β

is (1/n12 + 1/n21). Find a 95% confidence interval for the odds ratio exp(β)

for Table 8.1 on helping the environment. Interpret.

8.12 For Table 7.3 on the student survey, viewing the table as matched triplets, you
can compare the proportion of “yes” responses among alcohol, cigarettes, and
marijuana.

a. Construct the marginal distribution for each substance, and find the three
sample proportions of “yes” responses.

b. Explain how you could represent the data with a three-way contingency
table in order to use a generalized CMH procedure (see Section 6.4.2) to
test marginal homogeneity.

8.13 Table 8.12, from the 2004 General Social Survey, reports subjects’ religious
affiliation in 2004 and at age 16, for categories (1) Protestant, (2) Catholic,
(3) Jewish, (4) None or Other.

Table 8.12. Data for Problem 8.13

Religious Affiliation Now
Affiliation
at Age 16 1 2 3 4

1 1228 39 2 158
2 100 649 1 107
3 1 0 54 9
4 73 12 4 137

Source: 2004 General Social Survey.

a. The symmetry model has deviance G2 = 150.6 with df = 6. Use residuals
for the model [see equation (8.9)] to analyze transition patterns between
pairs of religions.
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b. The quasi-symmetry model has deviance G2 = 2.3 with df = 3. Interpret.

c. Test marginal homogeneity by comparing fits in (a) and (b). (The small
P -value mainly reflects the large sample size and is due to a small decrease
in the proportion classified Catholic and increase in the proportion classified
None or Other, with little evidence of change for other categories.)

8.14 Table 8.13, from the 2004 General Social Survey, reports respondents’ region
of residence in 2004 and at age 16.

a. Fit the symmetry and quasi-symmetry models. Interpret results.

b. Test marginal homogeneity by comparing the fits of these models.

Table 8.13. Data for Problem 8.14

Residence in 2004
Residence
at Age 16 Northeast Midwest South West

Northeast 425 17 80 36
Midwest 10 555 74 47
South 7 34 771 33
West 5 14 29 452

Source: 2004 General Social Survey.

8.15 Table 8.14 is from a General Social Survey. Subjects were asked their opinion
about a man and a woman having sexual relations before marriage and a married
person having sexual relations with someone other than the marriage partner.
The response categories are 1 = always wrong, 2 = almost always wrong,
3 = wrong only sometimes, 4 = not wrong at all.

a. The estimate (8.7) for the subject-specific cumulative logit model is
β̂ = −4.91. Interpret.

b. The estimate β̂ = −4.91 for the model in (a) has SE = 0.45. Conduct a
Wald test for H0: β = 0. Interpret.

Table 8.14. Data for Problem 8.15

Extramarital Sex
Premarital
Sex 1 2 3 4

1 144 2 0 0
2 33 4 2 0
3 84 14 6 1
4 126 29 25 5

Source: General Social Survey.
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c. For the symmetry model, G2 = 402.2, with df = 6. For the quasi-
symmetry model, G2 = 1.4, with df = 3. Interpret, and compare the fits
to test marginal homogeneity.

d. The ordinal quasi-symmetry model with scores {1, 2, 3, 4} has G2 = 2.1,
with df = 5. Interpret, and show how to compare to the symmetry model
to test marginal homogeneity.

e. Based on β̂ = −2.86 for the model in (d), explain why responses on extra-
marital sex tend to be lower on the ordinal scale (i.e., more negative) than
those on premarital sex. (The mean scores are 1.28 for extramarital sex and
2.69 for premarital sex.)

8.16 Table 8.15 is from a General Social Survey. Subjects were asked “How often
do you make a special effort to buy fruits and vegetables grown without pes-
ticides or chemicals?” and “How often do you make a special effort to sort
glass or cans or plastic or papers and so on for recycling?” The categories
are 1 = always, 2 = often or sometimes, 3 = never. Analyze these data using
the (a) symmetry, (b) quasi-symmetry, (c) ordinal quasi-symmetry models.
Prepare a two-page report summarizing your analyses.

Table 8.15. Data for Problem 8.16

Recycle
Chemical
Free 1 2 3

1 66 39 3
2 227 359 48
3 150 216 108

8.17 Table 8.16 is from the 2000 General Social Survey. Subjects were asked
whether danger to the environment was caused by car pollution and/or by a rise
in the world’s temperature caused by the “greenhouse effect.” The response
categories are 1 = extremely dangerous, 2 = very dangerous, 3 = somewhat
dangerous, 4 = not or not very dangerous. Analyze these data by fitting a
model, interpreting parameter estimates, and conducting inference. Prepare a
one-page report summarizing your analyses.

8.18 Refer to Problem 6.16 with Table 6.19 on a study about whether cereal con-
taining psyllium had a desirable effect in lowering LDL cholesterol. For both
the control and treatment groups, use methods of this chapter to compare the
beginning and ending cholesterol levels. Compare the changes in cholesterol
levels for the two groups. Interpret.
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Table 8.16. Data for Problem 8.17

Greenhouse Effect
Car
Pollution 1 2 3 4

1 95 72 32 8
2 66 129 116 13
3 31 101 233 82
4 5 4 24 26

Source: 2000 General Social Survey.

8.19 Refer to Table 8.13 on regional mobility. Fit the independence model and the
quasi-independence (QI) model. Explain why there is a dramatic improvement
in fit with the QI model. (Hint: For the independence model, the standardized
residuals are about 40 for the cells on the main diagonal; what happens with
these cells for the QI model?)

8.20 Table 8.17 displays diagnoses of multiple sclerosis for two neurologists. The
categories are (1) Certain multiple sclerosis, (2) Probable multiple sclerosis,
(3) Possible multiple sclerosis, and (4) Doubtful, unlikely, or definitely not
multiple sclerosis.

a. Use the independence model and residuals to study the pattern of agreement.
Interpret.

b. Use a more complex model to study the pattern and strength of agreement
between the neurologists. Interpret results.

c. Use kappa to describe agreement. Interpret.

Table 8.17. Data for Problem 8.20

Neurologist B

Neurologist A 1 2 3 4

1 38 5 0 1
2 33 11 3 0
3 10 14 5 6
4 3 7 3 10

Source: based on data in J. R. Landis and G. Koch, Biometrics,
33: 159–174, 1977. Reprinted with permission from the Biometric
Society.

8.21 Refer to Table 8.5. Fit the quasi-independence model. Calculate the fitted odds
ratio for the four cells in the first two rows and the last two columns. Interpret.
Analyze the data from the perspective of describing agreement between choice
of coffee at the two times.
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8.22 In 1990, a sample of psychology graduate students at the University of Florida
made blind, pairwise preference tests of three cola drinks. For 49 comparisons
of Coke and Pepsi, Coke was preferred 29 times. For 47 comparisons of Classic
Coke and Pepsi, Classic Coke was preferred 19 times. For 50 comparisons of
Coke and Classic Coke, Coke was preferred 31 times. Comparisons resulting
in ties are not reported.

a. Fit the Bradley–Terry model and establish a ranking of the drinks.

b. Estimate the probability that Coke is preferred to Pepsi, using the model
fit, and compare with the sample proportion.

8.23 Table 8.18 refers to journal citations among four statistical theory and methods
journals (Biometrika, Communications in Statistics, Journal of the American
Statistical Association, Journal of the Royal Statistical Society Series B) during
1987–1989. The more often that articles in a particular journal are cited, the
more prestige that journal accrues. For citations involving a pair of journals
X and Y , view it as a victory for X if it is cited by Y and a defeat for X if it
cites Y .

a. Fit the Bradley–Terry model. Interpret the fit, and give a prestige ranking
of the journals.

b. For citations involving Commun. Statist. and JRSS-B, estimate the proba-
bility that the Commun. Statist. article cites the JRSS-B article.

Table 8.18. Data for Problem 8.23

Cited Journal

Citing Journal Biometrika Commun. Statist. JASA JRSS-B

Biometrika 714 33 320 284
Commun. Statist. 730 425 813 276
JASA 498 68 1072 325
JRSS-B 221 17 142 188

Source: S. M. Stigler, Statist. Sci., 9: 94–108, 1994. Reprinted with permission
from the Institute of Mathematical Statistics.

8.24 Table 8.19 summarizes results of tennis matches for several women profes-
sional players between 2003 and 2005.

a. Fit the Bradley–Terry model. Report the parameter estimates, and rank the
players.

b. Estimate the probability that Serena Williams beats Venus Williams.
Compare the model estimate to the sample proportion.

c. Construct a 90% confidence interval for the probability that SerenaWilliams
beats Venus Williams. Interpret.
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Table 8.19. Women’s Tennis Data for Problem 8.24

Loser

Winner Clijsters Davenport Pierce S. Williams V. Williams

Clijsters — 6 3 0 2
Davenport 2 — 0 2 4
Pierce 1 2 — 0 1
S. Williams 2 2 2 — 2
V. Williams 3 2 2 2 —

Source: www.wtatour.com.

d. Show that the likelihood-ratio test for testing that all βi = 0 has test statistic
2.6, based on df = 4. Hence, it is plausible, based on this small sample,
that no differences exist among the players in the chance of victory.

8.25 Refer to the fit of the Bradley–Terry model to Table 8.9.

a. Agassi did not play Henman in 2004–2005, but if they did play, show that
the estimated probability of a Agassi victory is 0.78.

b. The likelihood-ratio statistic for testing H0: β1 = · · · = β5 equals 26.3 with
df = 4. Interpret.

8.26 When the Bradley–Terry model holds, explain why it is not possible that A

could be preferred to B (i.e., �AB > 1
2 ) and B could be preferred to C, yet C

could be preferred to A.

8.27 In loglinear model form, the quasi-symmetry (QS) model is

log μij = λ + λX
i + λY

j + λij

where λij = λji for all i and j .

a. For this model, by finding log(μij /μji) show that the model implies a logit
model of form (8.10), which is

log(πij /πji) = βi − βj for all i and j

b. Show that the special case of QS with λX
i = λY

i for all i is the symmetry
model in loglinear form.

c. Show that the quasi-independence model is the special case in which λij =
0 for i �= j .
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8.28 For matched pairs, to obtain conditional ML {β̂j } for model (8.5) using
software for ordinary logistic regression, let

y∗
i = 1 when (yi1 = 1, yi2 = 0), y∗

i = 0 when (yi1 = 0, yi2 = 1)

Let x∗
1i = x∗

1i1 − x∗
1i2, . . . , x

∗
ki = x∗

ki1 − x∗
ki2. Fit the ordinary logistic model to

y∗ with predictors {x∗
1 , . . . , x∗

k }, forcing the intercept parameterα to equal zero.
This works because the likelihood is the same as the conditional likelihood for
model (8.5) after eliminating {αi}.
a. Apply this approach to model (8.4) with Table 8.1 and report β̂ and its SE.

b. The pairs (yi1 = 1, yi2 = 1) and (yi1 = 0, yi2 = 0) do not contribute to
the likelihood or to estimating {βj }. Identify the counts for such pairs in
Table 8.1. Do these counts contribute to McNemar’s test?
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Modeling Correlated, Clustered
Responses

Many studies observe the response variable for each subject repeatedly, at several
times (such as in longitudinal studies) or under various conditions. Repeated
measurement occurs commonly in health-related applications. For example, a
physician might evaluate patients at weekly intervals regarding whether a new drug
treatment is successful. Repeated observations on a subject are typically correlated.

Correlated observations can also occur when the response variable is observed for
matched sets of subjects. For example, a study of factors that affect childhood obesity
might sample families and then observe the children in each family. A matched set
consists of children within a particular family. Children from the same family may
tend to respond more similarly than children from different families. Another example
is a (survival, nonsurvival) response for each fetus in a litter of a pregnant mouse, for
a sample of pregnant mice exposed to various dosages of a toxin. Fetuses from the
same litter are likely to be more similar than fetuses from different litters.

We will refer to a matched set of observations as a cluster. For repeated
measurement on subjects, the set of observations for a given subject forms a cluster.
Observations within a cluster are usually positively correlated. Analyses should take
the correlation into account. Analyses that ignore the correlation can estimate model
parameters well, but the standard error estimators can be badly biased.

The next two chapters generalize methods of the previous chapter for matched pairs
to matched sets and to include explanatory variables. Section 9.1 describes a class of
marginal models and contrasts them with conditional models, which Chapter 10
presents. To fit marginal models, Section 9.2 discusses a method using genera-
lized estimating equations (GEE). This is a multivariate method that, for discrete
data, is computationally simpler than ML. Section 9.2 models a data set with a
binary response, and Section 9.3 considers multinomial responses. The final section

An Introduction to Categorical Data Analysis, Second Edition. By Alan Agresti
Copyright © 2007 John Wiley & Sons, Inc.
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introduces a transitional approach that models observations in a longitudinal study
using explanatory variables that include previous response outcomes.

9.1 MARGINAL MODELS VERSUS CONDITIONAL MODELS

As with independent observations, with clustered observations models focus on how
the probability of a particular outcome (e.g., “success”) depends on explanatory
variables. For longitudinal studies, one explanatory variable is the time of each
observation. For instance, in treating a chronic condition (such as a phobia) with
one of two treatments, the model might describe how the probability of success
depends on the treatment and on the length of time for which that treatment has
been used.

9.1.1 Marginal Models for a Clustered Binary Response

Let T denote the number of observations in each cluster. (In practice, the number of
observations often varies by cluster, but it is simpler to use notation that ignores that.)
Denote the T observations by (Y1, Y2, . . . , YT ).

For binary responses, the T success probabilities {P(Y1 = 1), P (Y2 =
1), . . . , P (YT = 1)} are marginal probabilities of a T -dimensional contingency table
that cross classifies the T observations. Marginal models describe how the logits
of the marginal probabilities, {logit[P(Yt = 1)]}, depend on explanatory variables.
To illustrate the models and questions of interest, let us consider an example to be
analyzed in Section 9.2.

9.1.2 Example: Longitudinal Study of Treatments for Depression

Table 9.1 refers to a longitudinal study comparing a new drug with a standard drug
for treating subjects suffering mental depression. Subjects were classified into two
groups according to whether the initial severity of depression was mild or severe.

Table 9.1. Cross-classification of Responses on Depression at Three Times
(N = Normal, A = Abnormal) by Treatment and Diagnosis Severity

Response at Three Times
Diagnosis
Severity Treatment NNN NNA NAN NAA ANN ANA AAN AAA

Mild Standard 16 13 9 3 14 4 15 6
Mild New drug 31 0 6 0 22 2 9 0
Severe Standard 2 2 8 9 9 15 27 28
Severe New drug 7 2 5 2 31 5 32 6

Source: Reprinted with permission from the Biometric Society (G. G. Koch et al., Biometrics, 33:
133–158, 1977).
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In each group, subjects were randomly assigned to one of the two drugs. Following
1 week, 2 weeks, and 4 weeks of treatment, each subject’s extent of suffering from
mental depression was classified as normal or abnormal.

Table 9.1 shows four groups, the combinations of categories of two explanatory
variables – treatment type and severity of depression. Since the study observed the
binary response (depression assessment) at T = 3 occasions, Table 9.1 shows a 2 ×
2 × 2 table for each group. The three depression assessments form a multivariate
response with three components, with Yt = 1 for normal and 0 for abnormal at time
t . The 12 marginal distributions result from three repeated observations for each of
the four groups.

Table 9.2 shows sample proportions of normal responses for the 12 marginal dis-
tributions. For instance, from Table 9.1, the sample proportion of normal responses
after week 1 for subjects with mild depression using the standard drug was

(16 + 13 + 9 + 3)/(16 + 13 + 9 + 3 + 14 + 4 + 15 + 6) = 0.51

We see that the sample proportion of normal responses (1) increased over time for
each group, (2) increased at a faster rate for the new drug than the standard, for each
initial severity of depression, and (3) was higher for the mild than the severe cases
of depression, for each treatment at each occasion. In such a study, the company that
developed the new drug would hope to show that patients have a significantly higher
rate of improvement with it.

Let s denote the initial severity of depression, with s = 1 for severe and s = 0
for mild. Let d denote the drug, with d = 1 for new and d = 0 for standard. Let
t denote the time of measurement. When the time metric reflects cumulative drug
dosage, a logit scale often has an approximate linear effect for the logarithm of time.
We use scores (0, 1, 2), the logs to base 2 of the week numbers (1, 2, and 4). Similar
substantive results occur using the week numbers themselves.

Let P(Yt = 1) denote the probability of a normal response at time t for a randomly
selected subject. One possible model for how Yt depends on the severity s, drug d,
and the time t is the main effects model,

logit[P(Yt = 1)] = α + β1s + β2d + β3t

Table 9.2. Sample Marginal Proportions of Normal Response for
Depression Data of Table 9.1

Sample Proportion
Diagnosis
Severity Treatment Week 1 Week 2 Week 4

Mild Standard 0.51 0.59 0.68
New drug 0.53 0.79 0.97

Severe Standard 0.21 0.28 0.46
New drug 0.18 0.50 0.83
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This model assumes that the linear time effect β3 is the same for each group. The
sample proportions in Table 9.2, however, show a higher rate of improvement for the
new drug. A more realistic model permits the time effect to differ by drug. We do this
by including a drug-by-time interaction term,

logit[P(Yt = 1)] = α + β1s + β2d + β3t + β4(d × t)

Here, β3 describes the time effect for the standard drug (d = 0) and β3 + β4 describes
the time effect for the new drug (d = 1).

We will fit this model, interpret the estimates, and make inferences in Section 9.2.
We will see that an estimated slope (on the logit scale) for the standard drug is
β̂3 = 0.48. For the new drug the estimated slope increases by β̂4 = 1.02, yielding an
estimated slope of β̂3 + β̂4 = 1.50.

9.1.3 Conditional Models for a Repeated Response

The models just considered describe how P(Yt = 1), the probability of a normal
response at time t , depends on severity, drug, and time, for a randomly selected sub-
ject. By contrast, for matched pairs Section 8.2.3 presented a different type of model
that describes probabilities at the subject level. That model permits heterogeneity
among subjects, even at fixed levels of the explanatory variables.

Let Yit denote the response for subject i at time t . For the depression data, a
subject-specific analog of the model just considered is

logit[P(Yit = 1)] = αi + β1s + β2d + β3t + β4(d × t)

Each subject has their own intercept (αi), reflecting variability in the probability
among subjects at a particular setting (s, d, t) for the explanatory variables.

This is called a conditional model, because the effects are defined conditional on
the subject. For example, the model identifies β3 as the time effect for a given subject
using the standard drug. The effect is subject-specific, because it is defined at the
subject level. By contrast, the effects in the marginal models specified in the previous
subsection are population-averaged, because they refer to averaging over the entire
population rather than to individual subjects.

The remainder of this chapter focuses only on marginal models. The following
chapter presents conditional models and also discusses issues relating to the choice
of model.

9.2 MARGINAL MODELING: THE GENERALIZED
ESTIMATING EQUATIONS (GEE) APPROACH

ML fitting of marginal logit models is difficult. We will not explore the technical
reasons here, but basically, it is because the models refer to marginal probabili-
ties whereas the likelihood function refers to the joint distribution of the clustered
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responses. With a few explanatory variables (such as in Table 9.1), ML model
fitting is available with some specialized software (see www.stat.ufl.edu/∼aa/cda/
software.html).

9.2.1 Quasi-Likelihood Methods

A GLM specifies a probability distribution for Y and provides a formula for how its
mean E(Y ) = μ depends on the explanatory variables by using a link function to
connect the mean to a linear predictor. The choice of distribution for Y determines
the relationship between μ and Var(Y ). For binary data with success probability
π , for example, an observation Y has E(Y ) = π and Var(Y ) = π(1 − π), which is
μ(1 − μ). For count data with the Poisson distribution, Var(Y ) = μ.

For a given formula for how μ depends on the explanatory variables, the ML
method must assume a particular type of probability distribution for Y , in order to
determine the likelihood function. By contrast, the quasi-likelihood approach assumes
only a relationship between μ andVar(Y ) rather than a specific probability distribution
for Y . It allows for departures from the usual assumptions, such as overdispersion
caused by correlated observations or unobserved explanatory variables. To do this,
the quasi-likelihood approach takes the usual variance formula but multiplies it by a
constant that is itself estimated using the data.

Consider clustered binary data, with n observations in a cluster. The observations
within a cluster are likely to be correlated. So, the variance of the number of successes
in a cluster may differ from the variance nπ(1 − π) for a binomial distribution,
which assumes independent trials. The quasi-likelihood approach permits the variance
of the number of successes to be some multiple φ of the usual variance, that is,
φnπ(1 − π), where φ is estimated based on the variability observed in the sample
data. Overdispersion occurs when φ > 1. The quasi-likelihood estimates are not
maximum likelihood (ML), however, because the method does not completely specify
a distribution for Y , and thus, there is not a likelihood function.

9.2.2 Generalized Estimating Equation Methodology: Basic Ideas

A computationally simple alternative to ML for clustered categorical data is a multi-
variate generalization of quasi likelihood. Rather than assuming a particular type of
distribution for (Y1, . . . , YT ), this method only links each marginal mean to a linear
predictor and provides a guess for the variance–covariance structure of (Y1, . . . , YT ).
The method uses the observed variability to help generate appropriate standard errors.
The method is called the GEE method because the estimates are solutions of gener-
alized estimating equations. These equations are multivariate generalizations of the
equations solved to find ML estimates for GLMs.

Once we have specified a marginal model for each Yt , for the GEE method we
must:

• Assume a particular distribution (e.g., binomial) for each Yt . This determines
how Var(Yt ) depends on E(Yt ).
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• Make an educated guess for the correlation structure among {Yt }. This is called
the working correlation matrix.

One possible working correlation has exchangeable structure. This treats ρ =
Corr(Ys, Yt ) as identical (but unknown) for all pairs s and t . Another possi-
bility, often used for time series data, has autoregressive structure. This has
the form Corr(Ys, Yt ) = ρt−s . For example, Corr(Y1, Y2) = ρ, Corr(Y1, Y3) = ρ2,
Corr(Y1, Y4) = ρ3, . . . , with observations farther apart in time being more weakly
correlated. The independence working correlation structure assumes Corr(Ys, Yt ) = 0
for each pair. This treats the observations in a cluster as uncorrelated, that is, the same
as if they were from separate clusters. At the other extreme, the unstructured working
correlation matrix permits Corr(Ys, Yt ) to differ for each pair.

For the assumed working correlation structure, the GEE method uses the data to
estimate the correlations. Those correlation estimates also impact the estimates of
model parameters and their standard errors. In practice, usually little if any a priori
information is available about the correlation structure. The lack of assumption needed
for the unstructured case seems desirable, but this has the disadvantage of several extra
parameters to estimate, especially when T is large. When the correlations are small,
all working correlation structures yield similar GEE estimates and standard errors.
Unless one expects dramatic differences among the correlations, we recommend using
the exchangeable working correlation structure.

Even if your guess about the correlation structure is poor, valid standard errors
result from an adjustment the GEE method makes using the empirical dependence
the actual data exhibit. That is, the naive standard errors based on the assumed cor-
relation structure are updated using the information the sample data provide about
the dependence. The result is robust standard errors that are usually more appropriate
than ones based solely on the assumed correlation structure. For example, the GEE
method provides reasonable estimates and standard errors even if we use the indepen-
dence working correlation structure, which is usually implausible. A sensible choice
of working correlation, however, can result in slightly more efficient estimates.

The GEE method assumes a probability distribution for each marginal distribution,
but it makes no assumption about the joint distribution of (Y1, . . . , YT ) other than to
select a working correlation structure. This is helpful. For continuous multivariate
responses it is common to assume a multivariate normal distribution. However, for
discrete data, such as a categorical response or a count response, there is no multi-
variate generalization of standard univariate distributions such as the binomial and
Poisson that provides simple specification of correlation structure.

9.2.3 GEE for Binary Data: Depression Study

Let us again considerTable 9.1, from a study with 340 patients that compared two treat-
ments for mental depression. With exchangeable correlation structure, the estimated
common correlation between pairs of the three responses is −0.003. The successive
observations apparently have pairwise appearance like independent observations. This
is unusual for repeated measurement data.
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Table 9.3 reports the GEE estimates based on the independence working
correlations. For that case, the GEE estimates equal those obtained from ordinary
logistic regression, that is, using ML with 3 × 340 = 1020 independent observa-
tions rather than treating the data as three dependent observations for each of 340
subjects. The empirical standard errors incorporate the sample dependence to adjust
the independence-based standard errors.

Table 9.3. Output from Using GEE to Fit Logistic Model to Table 9.1

Initial Parameter Estimates GEE Parameter Estimates
Empirical Std Error Estimates

Std Std
Parameter Estimate error Parameter Estimate Error

Intercept −0.0280 0.1639 Intercept -0.0280 0.1742
severity −1.3139 0.1464 severity -1.3139 0.1460
drug −0.0596 0.2222 drug -0.0596 0.2285
time 0.4824 0.1148 time 0.4824 0.1199
drug*time 1.0174 0.1888 drug*time 1.0174 0.1877

Working Correlation Matrix

Col1 Col2 Col3

Row1 1.0000 0.0000 0.0000
Row2 0.0000 1.0000 0.0000
Row3 0.0000 0.0000 1.0000

The estimated time effect is β̂3 = 0.482 for the standard drug (d = 0) and β̂3 +
β̂4 = 1.500 for the new one (d = 1). For the new drug, the slope is β̂4 = 1.017
(SE = 0.188) higher than for the standard drug. The Wald test of no interaction,
H0: β4 = 0, tests a common time effect for each drug. It has z test statistic equal to
1.017/0.188 = 5.4 (P -value < 0.0001). Therefore, there is strong evidence of faster
improvement for the new drug. It would be inadequate to use the simpler model
lacking the drug-by-time interaction term.

The severity of depression estimate is β̂1 = −1.314 (SE = 0.146). For each drug–
time combination, the estimated odds of a normal response when the initial diagnosis
was severe equal exp(−1.314) = 0.27 times the estimated odds when the initial
diagnosis was mild. The estimate β̂2 = −0.060 (SE = 0.228) for the drug effect
applies only when t = 0 (i.e., after one week), for which the interaction term does
not contribute to the drug effect. It indicates an insignificant difference between the
drugs after 1 week. At time t , the estimated odds of normal response with the new
drug are exp(−0.060 + 1.017t) times the estimated odds for the standard drug, for
each initial diagnosis level. By the final week (t = 2), this estimated odds ratio has
increased to 7.2.

In summary, severity, drug treatment, and time all have substantial effects on the
probability of a normal response. The chance of a normal response is similar for the
two drugs initially and increases with time, but it increases more quickly for those
taking the new drug than the standard drug.
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9.2.4 Example: Teratology Overdispersion

Table 9.4 shows results of a teratology experiment. Female rats on iron-deficient diets
were assigned to four groups. Group 1 received only placebo injections. The other
groups received injections of an iron supplement according to various schedules. The
rats were made pregnant and then sacrificed after 3 weeks. For each fetus in each rat’s
litter, the response was whether the fetus was dead.

We treat the fetuses in a given litter as a cluster. Let yi denote the number of dead
fetuses for the Ti fetuses in litter i. Let πit denote the probability of death for fetus t

in litter i. Let zig = 1 if litter i is in group g and 0 otherwise.
First, we ignore the clustering and suppose that yi is a bin(Ti, πit ) variate. The

model

logit(πit ) = α + β2zi2 + β3zi3 + β4zi4

treats all litters in a group g as having the same probability of death, exp(α + βg)/[1 +
exp(α + βg)], where β1 = 0. Here, βi is a log odds ratio comparing group i with the
placebo group (group number 1). Table 9.5 shows ML estimates and standard errors.
There is strong evidence that the probability of death is substantially lower for each
treatment group than the placebo group.

Because of unmeasured covariates that affect the response, it is natural to expect
that the actual probability of death varies from litter to litter within a particular treat-
ment group. In fact, the data show evidence of overdispersion, with goodness-of-fit
statistics X2 = 154.7 and G2 = 173.5 (df = 54). For comparison, Table 9.5 also
shows results with the GEE approach to fitting the logit model, assuming an
exchangeable working correlation structure for observations within a litter. The
estimated within-litter correlation between the binary responses is 0.19.

Table 9.4. Response Counts of (Litter Size, Number Dead) for 58 Litters of
Rats in a Low-Iron Teratology Study

Group 1: untreated (low iron)
(10, 1) (11, 4) (12, 9) (4, 4) (10, 10) (11, 9) (9, 9) (11, 11) (10, 10) (10, 7) (12, 12)
(10, 9) (8, 8) (11, 9) (6, 4) (9, 7) (14, 14) (12, 7) (11, 9) (13, 8) (14, 5) (10, 10)
(12, 10) (13, 8) (10, 10) (14, 3) (13, 13) (4, 3) (8, 8) (13, 5) (12, 12)

Group 2: injections days 7 and 10
(10, 1) (3, 1) (13, 1) (12, 0) (14, 4) (9, 2) (13, 2) (16, 1) (11, 0) (4, 0) (1, 0) (12, 0)

Group 3: injections days 0 and 7
(8, 0) (11, 1) (14, 0) (14, 1) (11, 0)

Group 4: injections weekly
(3, 0) (13, 0) (9, 2) (17, 2) (15, 0) (2, 0) (14, 1) (8, 0) (6, 0) (17, 0)

Source: D. F. Moore and A. Tsiatis, Biometrics, 47: 383–401, 1991.
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Table 9.5. Estimates and Standard Errors (in
Parentheses) for Logistic Models Fitted to Teratology
Data of Table 9.4

Type of Logistic Model Fitting

Parameter Binomial ML GEE

Intercept 1.14 (0.13) 1.21 (0.27)
Group 2 −3.32 (0.33) −3.37 (0.43)
Group 3 −4.48 (0.73) −4.58 (0.62)
Group 4 −4.13 (0.48) −4.25 (0.60)
Overdispersion None ρ̂ = 0.19

Note: Binomial ML assumes no overdispersion; GEE has exchange-
able working correlation. The intercept term gives result for group 1
(placebo) alone.

Suppose an application has positive within-cluster correlation, as often happens
in practice and as seems to be the case here. Then, standard errors for between-
cluster effects (such as comparisons of separate treatment groups) and standard errors
of estimated means within clusters tend to be larger than when the observations
are independent. We see this in Table 9.5 except for group 3 and its comparison
with the placebo group. With positive within-cluster correlation, standard errors for
within-cluster effects, such as a slope for a trend in the repeated measurements on a
subject, tend to be smaller than when the observations are independent.

9.2.5 Limitations of GEE Compared with ML

Because the GEE method specifies the marginal distributions and the correlation
structure but not the complete multivariate distribution, there is no likelihood function.
In this sense, the GEE method is a multivariate type of quasi-likelihood method. So,
its estimates are not ML estimates.

For clustered data, the GEE method is much simpler computationally than ML
and much more readily available in software. However, it has limitations. Because
it does not have a likelihood function, likelihood-ratio methods are not available for
checking fit, comparing models, and conducting inference about parameters. Instead
inference uses statistics, such as Wald statistics, based on the approximate normality
of the estimators together with their estimated covariance matrix. Such inference is
reliable mainly for very large samples. Otherwise, the empirically based standard
errors tend to underestimate the true ones.

Some software attempts to improve on Wald-type inference by making tests avail-
able that mimic the way score tests are constructed, if one had a likelihood function.
These generalized score tests also incorporate empirical information in forming
standard error estimates, and they are preferable to Wald tests.
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9.3 EXTENDING GEE: MULTINOMIAL RESPONSES

Since its introduction about 20 years ago, the GEE method has been extended in vari-
ous ways. Extensions include model-fitting for clustered multinomial data, modelling
association as well as marginal distributions, and accounting for missing data. This
section discusses these extensions.

9.3.1 Marginal Modeling of a Clustered Multinomial Response

Models for marginal distributions of a clustered binary response generalize to multi-
category responses. With nominal responses, baseline-category logit models describe
the odds of each outcome relative to a baseline. For ordinal responses, cumulative
logit models describe odds for the cumulative probabilities.

The GEE methodology was originally specified for modeling univariate marginal
distributions, such as the binomial and Poisson. It has since been extended to marginal
modeling of multinomial responses. With this approach, for each pair of outcome cat-
egories one selects a working correlation matrix for the pairs of repeated observations.
Currently, for multinomial data, most software supports only the independence work-
ing correlation structure. As in the univariate case, the GEE method uses the empirical
dependence to find standard errors that are appropriate even if this working correlation
guess is poor. Standard errors based on assuming independent observations would
usually be invalid.

9.3.2 Example: Insomnia Study

For a sample of patients with insomnia problems, Table 9.6 shows results of a random-
ized, double-blind clinical trial comparing an active hypnotic drug with a placebo.

Table 9.6. Time to Falling Asleep, by Treatment and Occasion

Time to Falling Asleep

Follow-up

Treatment Initial <20 20–30 30–60 >60

Active <20 7 4 1 0
20–30 11 5 2 2
30–60 13 23 3 1
>60 9 17 13 8

Placebo <20 7 4 2 1
20–30 14 5 1 0
30–60 6 9 18 2
>60 4 11 14 22

Source: From S. F. Francom, C. Chuang-Stein, and J. R. Landis, Statist. Med., 8:
571–582, 1989. Reprinted with permission from John Wiley & Sons, Ltd.
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The response is the patient’s reported time (in minutes) to fall asleep after going to
bed. Patients responded before and following a 2 week treatment period. The two
treatments, active drug and placebo, form a binary explanatory variable. The subjects
were randomly allocated to the treatment groups. Here, each subject forms a cluster,
with the observations in a cluster being the ordinal response at the two occasions of
observation.

Table 9.7 displays sample marginal distributions for the four treatment – occasion
combinations. From the initial to follow-up occasion, time to falling asleep seems
to shift downwards for both treatments. The degree of shift seems greater for the
active drug, indicating possible interaction. Let t denote the occasion (0 = initial,
1 = follow-up) and let x denote the treatment (0 = placebo, 1 = active drug). The
cumulative logit model

logit[P(Yt ≤ j)] = αj + β1t + β2x + β3(t × x) (9.1)

permits interaction between occasion and treatment. Like the cumulative logit models
of Section 6.2, it makes the proportional odds assumption of the same effects for each
response cutpoint.

Table 9.7. Sample Marginal Distributions of Table 9.6

Response

Treatment Occasion <20 20–30 30–60 >60

Active Initial 0.101 0.168 0.336 0.395
Follow-up 0.336 0.412 0.160 0.092

Placebo Initial 0.117 0.167 0.292 0.425
Follow-up 0.258 0.242 0.292 0.208

For independence working correlation, the GEE estimates (with SE values in
parentheses) are:

β̂1 = 1.038(0.168), β̂2 = 0.034(0.238), β̂3 = 0.708(0.244)

The SE values are not the naive ones assuming independence, but the ones adjusted
for the actual empirical dependence. At the initial observation, the estimated odds
that time to falling asleep for the active treatment is below any fixed level equal
exp(0.034) = 1.03 times the estimated odds for the placebo treatment. In other words,
initially the two groups had similar distributions, as expected by the randomization
of subjects to treatments. At the follow-up observation, the effect is exp(0.034 +
0.708) = 2.1. Those taking the active drug tended to fall asleep more quickly.

The β̂3 and SE values indicate considerable evidence of interaction. The test
statistic z = 0.708/0.244 = 2.9 provides strong evidence that the distribution of time
to fall asleep decreased more for the treatment group than for the placebo group
(two-sided P -value = 0.004).
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For simpler interpretation, it can be helpful to assign scores to the ordered
categories and report the sample marginal means and their differences. With response
scores {10, 25, 45, 75} for time to fall asleep, the initial means were 50.0 for the
active group and 50.3 for the placebo. The difference in means between the initial
and follow-up responses was 22.2 for the active group and 13.0 for the placebo.

If we had naively treated repeated responses as independent for the entire analysis,
we would have obtained the same estimates as in the GEE analysis but the SE values
for within-subject time effects would have been misleadingly large. For example, the
interaction effect estimate of 0.708 would have had a SE of 0.334 rather than 0.244.
With positive within-cluster correlation, standard errors for within-cluster effects tend
to be smaller than when the observations are independent.

9.3.3 Another Way of Modeling Association with GEE

For categorical data, one aspect of GEE that some statisticians find unsatisfactory
is specifying a correlation matrix for the clustered responses. For binary responses,
unlike continuous responses, correlations cannot take value over the entire [−1, +1]
range. The actual range depends on the marginal probabilities. The odds ratio is a
more suitable measure of the association.

An alternative version of GEE specifies a working association matrix using the
odds ratio. For example, the exchangeable structure states that the odds ratio is the
same for each pair of observations. Some software gives the option of an iterative
alternating logistic regression algorithm. It alternates between a GEE step for finding
the regression parameter estimates and a step for an association model for the log odds
ratio. This is particularly useful in those cases in which the study of the association
is also a major focus.

9.3.4 Dealing with Missing Data

Studies with repeated measurement often have cases for which at least one observation
in a cluster is missing. In a longitudinal study, for instance, some subjects may drop
out before the study’s end. With the GEE method, the clusters can have different
numbers of observations. The data input file has a separate line for each observation,
and for longitudinal studies computations use those times for which a subject has an
observation.

When data are missing, analyzing the observed data alone as if no data are missing
can result in biased estimates. Bias does not occur in the rather stringent case in which
the data are missing completely at random. This means that whether an observation
is missing is statistically independent of the value of that observation.

Often, missingness depends on the missing values. For instance, in a longitudinal
study measuring pain, perhaps a subject dropped out when the pain exceeded some
threshhold. Then, more complex analyses are needed that model the joint distribution
of the responses and the binary outcome for each potential observation on whether
the observation was actually made or it is missing. Ways to do this are beyond the
scope of this book. For details, see Molenberghs and Verbeke (2005).
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Analyses when many data are missing should be made with caution. At a minimum,
one should compare results of the analysis using all available cases for all clusters
to the analysis using only clusters having no missing observations. If results differ
substantially, conclusions should be tentative until the reasons for missingness can
be studied.

9.4 TRANSITIONAL MODELING, GIVEN THE PAST

LetYt denote the response at time t , t = 1, 2, . . . , in a longitudinal study. Some studies
focus on the dependence of Yt on the previously observed responses {y1, y2, . . . , yt−1}
as well as any explanatory variables. Models that include past observations as
predictors are called transitional models.

A Markov chain is a transitional model for which, for all t , the conditional distribu-
tion of Yt , given Y1, . . . , Yt−1, is assumed identical to the conditional distribution of Yt

given Yt−1 alone. That is, given Yt−1, Yt is conditionally independent of Y1, . . . , Yt−2.
Knowing the most recent observation, information about previous observations before
that one does not help with predicting the next observation. A Markov chain model
is adequate for modeling Yt if the model with yt−1 as the only past observation used
as a predictor fits as well, for practical purposes, as a model with {y1, y2, . . . , yt−1}
as predictors.

9.4.1 Transitional Models with Explanatory Variables

Transitional models usually also include explanatory variables other than past obser-
vations. With binary y and k such explanatory variables, one might specify a logistic
regression model for each t ,

logit[P(Yt = 1)] = α + βyt−1 + β1x1 + · · · + βkxk

This Markov chain model is called a regressive logistic model. Given the predictor
values, the model treats repeated observations by a subject as independent. Thus, one
can fit the model with ordinary GLM software, treating each observation separately.

This model generalizes so a predictor xj can take a different value for each t .
For example, in a longitudinal medical study, a subject’s values for predictors such
as blood pressure could change over time. A higher-order Markov model could also
include in the predictor set yt−2 and possibly other previous observations.

9.4.2 Example: Respiratory Illness and Maternal Smoking

Table 9.8 is from the Harvard study of air pollution and health. At ages 7–10 children
were evaluated annually on whether they had a respiratory illness. Explanatory vari-
ables are the age of the child t (t = 7, 8, 9, 10) and maternal smoking at the start of
the study (s = 1 for smoking regularly, s = 0 otherwise).
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Table 9.8. Child’s Respiratory Illness by Age and Maternal
Smoking

No Maternal Maternal
Smoking Smoking

Child’s Respiratory Illness Age 10 Age 10

Age 7 Age 8 Age 9 No Yes No Yes

No No No 237 10 118 6
Yes 15 4 8 2

Yes No 16 2 11 1
Yes 7 3 6 4

Yes No No 24 3 7 3
Yes 3 2 3 1

Yes No 6 2 4 2
Yes 5 11 4 7

Source: Thanks to Dr. James Ware for these data.

Let yt denote the response on respiratory illness at age t . For the regressive logistic
model

logit[P(Yt = 1)] = α + βyt−1 + β1s + β2t, t = 8, 9, 10

each subject contributes three observations to the model fitting. The data set consists
of 12 binomials, for the 2 × 3 × 2 combinations of (s, t, yt−1). For instance, for the
combination (0, 8, 0), from Table 9.8 we see that y8 = 0 for 237 + 10 + 15 + 4 = 266
subjects and y8 = 1 for 16 + 2 + 7 + 3 = 28 subjects.

The ML fit of this regressive logistic model is

logit[P̂ (Yt = 1)] = −0.293 + 2.210yt−1 + 0.296s − 0.243t

The SE values are 0.158 for the yt−1 effect, 0.156 for the s effect, and 0.095 for
the t effect. Not surprisingly, yt−1 has a strong effect – a multiplicative impact of
e2.21 = 9.1 on the odds. Given that and the child’s age, there is slight evidence of a
positive effect of maternal smoking: The likelihood-ratio statistic for H0: β1 = 0 is
3.55 (df = 1, P = 0.06). The maternal smoking effect weakens further if we add
yt−2 to the model (Problem 9.13).

9.4.3 Comparisons that Control for Initial Response

The transitional type of model can be especially useful for matched-pairs data. The
marginal models that are the main focus of this chapter would evaluate how the margi-
nal distributions of Y1 and Y2 depend on explanatory variables. It is often more relevant
to treat Y2 as a univariate response, evaluating effects of explanatory variables while
controlling for the initial response y1. That is the focus of a transitional model.
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Consider the insomnia study of Problem 9.3.2 from the previous section. Let
y1 be the initial time to fall asleep, let Y2 be the follow-up time, with explanatory
variable x defining the two treatment groups (1 = active drug, 0 = placebo). We will
now treat Y2 as an ordinal response and y1 as an explanatory variable, using scores
{10, 25, 45, 75}. In the model

logit[P(Y2 ≤ j)] = αj + β1x + β2y1 (9.2)

β1 compares the follow-up distributions for the treatments, controlling for the initial
observation. This models the follow-up response (Y2), conditional on y1, rather than
marginal distributions of (Y1, Y2). It’s the type of model for an ordinal response that
Section 6.2 discussed. Here, the initial response y1 plays the role of an explanatory
variable.

From software for ordinary cumulative logit models, the ML treatment effect
estimate is β̂1 = 0.885 (SE = 0.246). This provides strong evidence that follow-up
time to fall asleep is lower for the active drug group. For any given value for the
initial response, the estimated odds of falling asleep by a particular time for the active
treatment are exp(0.885) = 2.4 times those for the placebo group. Exercise 9.12
considers alternative analyses for these data.

9.4.4 Transitional Models Relate to Loglinear Models

Effects in transitional models differ from effects in marginal models, both in mag-
nitude and in their interpretation. The effect of a predictor xj on Yt is conditional
on yt−1 in a transitional model, but it ignores yt−1 in a marginal model. Effects in
transitional models are often considerably weaker than effects in marginal models,
because conditioning on a previous response attenuates the effect of a predictor.

Transitional models have connections with the loglinear models of Chapter 7,
which described joint distributions. Associations in loglinear models are conditional
on the other response variables. In addition, a joint distribution of (Y1, Y2, . . . , YT ) can
be factored into the distribution of Y1, the distribution of Y2 given Y1, the distribution
of Y3 given Y1 and Y2, and so forth.

PROBLEMS

9.1 Refer to Table 7.3 on high school students’ use of alcohol, cigarettes, and
marijuana. View the table as matched triplets.

a. Construct the marginal distribution for each substance. Find the sample
proportions of students who used (i) alcohol, (ii) cigarettes, (iii) marijuana.

b. Specify a marginal model that could be fitted as a way of comparing the
margins. Explain how to interpret the parameters in the model. State the
hypothesis, in terms of the model parameters, that corresponds to marginal
homogeneity.
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9.2 Refer to Table 7.13. Fit a marginal model to describe main effects of race, gen-
der, and substance type (alcohol, cigarettes, marijuana) on whether a subject
had used that substance. Summarize effects.

9.3 Refer to the previous exercise. Further study shows evidence of an interaction
between gender and substance type. Using GEE with exchangeable working
correlation, the estimated probability π̂ of using a particular substance satisfies

logit(π̂) = −0.57 + 1.93S1 + 0.86S2 + 0.38R − 0.20G + 0.37G × S1

+ 0.22G × S2

where R, G, S1, S2 are dummy variables for race (1 = white, 0 = nonwhite),
gender (1 = female, 0 = male), and substance type (S1 = 1, S2 = 0 for alco-
hol; S1 = 0, S2 = 1 for cigarettes; S1 = S2 = 0 for marijuana). Show that:

a. The group with highest estimated probability of use of marijuana is white
males. What group is it for alcohol?

b. Given gender, the estimated odds a white subject used a given substance
are 1.46 times the estimated odds for a nonwhite subject.

c. Given race, the estimated odds a female has used alcohol are 1.19 times the
estimated odds for males; for cigarettes and for marijuana, the odds ratios
are 1.02 and 0.82.

d. Given race, the estimated odds a female has used alcohol (cigarettes) are
9.97 (2.94) times the estimated odds she has used marijuana.

e. Given race, the estimated odds a male has used alcohol (cigarettes) are
6.89 (2.36) times the estimated odds he has used marijuana. Interpret the
interaction.

9.4 Refer to Table 9.1. Analyze the depression data (available at the text web
site) using GEE assuming exchangeable correlation and with the time scores
(1, 2, 4). Interpret model parameter estimates and compare substantive results
to those in the text with scores (0, 1, 2).

9.5 Analyze Table 9.8 using a marginal logit model with age and maternal smoking
as predictors. Report the prediction equation, and compare interpretations to
the regressive logistic Markov model of Section 9.4.2.

9.6 Table 9.9 refers to a three-period crossover trial to compare placebo (treat-
ment A) with a low-dose analgesic (treatment B) and high-dose analgesic
(treatment C) for relief of primary dysmenorrhea. Subjects in the study were
divided randomly into six groups, the possible sequences for administering the
treatments. At the end of each period, each subject rated the treatment as giving
no relief (0) or some relief (1). Let yi(k)t = 1 denote relief for subject i using
treatment t (t = A, B, C), where subject i is nested in treatment sequence k

(k = 1, . . . , 6).
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Table 9.9. Crossover Data for Problem 9.6

Response Pattern for Treatments (A, B, C)
Treatment
Sequence 000 001 010 011 100 101 110 111

A B C 0 2 2 9 0 0 1 1
A C B 2 0 0 9 1 0 0 4
B A C 0 1 1 8 1 3 0 1
B C A 0 1 1 8 1 0 0 1
C A B 3 0 0 7 0 1 2 1
C B A 1 5 0 4 0 3 1 0

Source: B. Jones and M. G. Kenward, Statist. Med., 6: 171–181, 1987.

a. Assuming common treatment effects for each sequence and setting βA = 0,
use GEE to obtain and interpret {β̂t } for the model

logit[P(Yi(k)t = 1)] = αk + βt

b. How would you order the drugs, taking significance into account?

9.7 Table 9.10 is from a Kansas State University survey of 262 pig farmers. For
the question “What are your primary sources of veterinary information”?, the
categories were (A) Professional Consultant, (B) Veterinarian, (C) State or
Local Extension Service, (D) Magazines, and (E) Feed Companies and Reps.
Farmers sampled were asked to select all relevant categories. The 25 × 2 × 4
table shows the (yes, no) counts for each of these five sources cross-classified
with the farmers’ education (whether they had at least some college education)
and size of farm (number of pigs marketed annually, in thousands).

a. Explain why it is not proper to analyze the data by fitting a multinomial
model to the counts in the 2 × 4 × 5 contingency table cross-classifying
education by size of farm by the source of veterinary information, treating
source as the response variable. (This table contains 453 positive responses
of sources from the 262 farmers.)

b. For a farmer with education i and size of farm s, let yist = 1 for response
“yes” on source t and 0 for response “no.” Table 9.11 shows output for
using GEE with exchangeable working correlation to estimate parameters
in the model lacking an education effect,

logit[P(Yist = 1)] = αt + βt s, s = 1, 2, 3, 4

Explain why the results suggest a strong positive size of farm effect for
source A and perhaps a weak negative size effect of similar magnitude for
sources C, D, and E.
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Table 9.11. Computer Output for Problem 9.7

Working Correlation Matrix

Col1 Col2 Col3 Col4 Col5

Row1 1.0000 0.0997 0.0997 0.0997 0.0997
Row2 0.0997 1.0000 0.0997 0.0997 0.0997
Row3 0.0997 0.0997 1.0000 0.0997 0.0997
Row4 0.0997 0.0997 0.0997 1.0000 0.0997
Row5 0.0997 0.0997 0.0997 0.0997 1.0000

Analysis Of GEE Parameter Estimates
Empirical Standard Error Estimates

Parameter Estimate Std Error Z Pr > |Z|

source 1 −4.4994 0.6457 −6.97 <0.0001
source 2 −0.8279 0.2809 −2.95 0.0032
source 3 −0.1526 0.2744 −0.56 0.5780
source 4 0.4875 0.2698 1.81 0.0708
source 5 −0.0808 0.2738 −0.30 0.7680
size*source 1 1.0812 0.1979 5.46 <0.0001
size*source 2 0.0792 0.1105 0.72 0.4738
size*source 3 −0.1894 0.1121 −1.69 0.0912
size*source 4 −0.2206 0.1081 −2.04 0.0412
size*source 5 −0.2387 0.1126 −2.12 0.0341

9.8 Table 10.4 in Chapter 10 shows General Social Survey responses on attitudes
toward legalized abortion. For the response Yt about legalization (1 = support,
0 = oppose) for question t (t = 1, 2, 3) and for gender g (1 = female, 0 =
male), consider the model logit[P(Yt = 1)] = α + γg + βt with β3 = 0.

a. A GEE analysis using unstructured working correlation gives correlation
estimates 0.826 for questions 1 and 2, 0.797 for 1 and 3, and 0.832 for 2 and
3. What does this suggest about a reasonable working correlation structure?

b. Table 9.12 shows a GEE analysis with exchangeable working correlation.
Interpret effects.

9.9 Refer to the clinical trials data in Table 10.8 available at the text web site, which
are analyzed with random effects models in Section 10.3.2. Use GEE methods
to analyze the data from the 41 centers, treating each center as a cluster.

a. Specify a working correlation and fit a model.

b. Explain how to compare the two surgeries with a confidence interval.
Interpret.

c. Show how results compare to those from using ML with a model that
treats all observations as independent and has additive center and treatment
effects.
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Table 9.12. Computer Output for Abortion Survey Data of Problem 9.8

Working Correlation Matrix

Col1 Col2 Col3

Row1 1.0000 0.8173 0.8173
Row2 0.8173 1.0000 0.8173
Row3 0.8173 0.8173 1.0000

Analysis Of GEE Parameter Estimates
Empirical Standard Error Estimates

Parameter Estimate Std Error Z Pr > |Z|

Intercept −0.1253 0.0676 −1.85 0.0637
question 1 0.1493 0.0297 5.02 <0.0001
question 2 0.0520 0.0270 1.92 0.0544
question 3 0.0000 0.0000 · ·
female 0.0034 0.0878 0.04 0.9688

9.10 Refer to the GSS data on sex inTable 8.14 in Exercise 8.15. Using GEE methods
with cumulative logits, compare the two marginal distributions. Compare the
results with those in Problem 8.15.

9.11 Analyze the data in the 3 × 3 × 3 × 3 table on government spending in
Table 7.25 with a marginal cumulative logit model. Interpret the effects.

9.12 For the insomnia study summarized in Table 9.6, model (9.2) compared
treatments while controlling for initial response of time to fall asleep.

a. Add an interaction term to model (9.2). Summarize how the estimated
treatment effect varies according to the initial responses by showing that
the estimated treatment log odds ratio changes from 0.00 to 1.41 as the
initial response score goes from 10 to 75.

b. Now fit the model without interaction by treating initial response as quali-
tative, using dummy variables. Show that the estimated treatment log odds
ratio is 0.911 (SE = 0.249), and interpret.

c. Now fit the model with interaction terms by treating initial response as
qualitative. Explain why the results suggest that the active treatment seems
relatively more successful at the two highest initial response levels.

9.13 Analyze Table 9.8 from Section 9.4.2 using a transitional model with two
previous responses.

a. Given that yt−1 is in the model, does yt−2 provide additional predictive
power?

b. How does the maternal smoking effect compare with the model using only
yt−1 of the past responses?
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9.14 Analyze the depression data in Table 9.1 using a Markov transitional model.
Compare results and interpretations to those in this chapter using marginal
models.

9.15 Table 9.13 is from a longitudinal study of coronary risk factors in school
children. A sample of children aged 10–13 in 1977 were classified by gender
and by relative weight (obese, not obese) in 1977, 1979, and 1981. Analyze
these data, summarizing results in a one-page report.

Table 9.13. Children Classified by Gender and Relative Weight

Responsesa

Gender NNN NNO NON NOO ONN ONO OON OOO

Male 119 7 8 3 13 4 11 16
Female 129 8 7 9 6 2 7 14

Source: From R. F. Woolson and W. R. Clarke, J. R. Statist. Soc., A147: 87–99,
1984. Reproduced with permission from the Royal Statistical Society, London.
aNNN indicates not obese in 1977, 1979, and 1981, NNO indicates not obese in
1977 and 1979, but obese in 1981, and so forth.

9.16 Refer to the cereal diet and cholesterol study of Problem 6.16 (Table 6.19).
Analyze these data with marginal models, summarizing results in a one-page
report.

9.17 What is wrong with this statement: “For a first-order Markov chain, Yt is
independent of Yt−2”?

9.18 True, or false? With repeated measures data having multiple observations
per subject, one can treat the observations as independent and still get valid
estimates, but the standard errors based on the independence assumption may
be badly biased.
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C H A P T E R 10

Random Effects: Generalized
Linear Mixed Models

Chapter 9 focused on modeling the marginal distributions of clustered responses. This
chapter presents an alternative model type that has a term in the model for each cluster.
The cluster-specific term takes the same value for each observation in a cluster. This
term is treated as varying randomly among clusters. It is called a random effect.

Section 8.2.3 introduced cluster-specific terms in a model for matched pairs. Such
models have conditional interpretations, the effects being conditional on the clus-
ter. The effects are called cluster-specific, or subject-specific when each cluster is
a subject. This contrasts with marginal models, which have population-averaged
interpretations in which effects are averaged over the clusters.

The generalized linear mixed model, introduced in Section 10.1, extends general-
ized linear models to include random effects. Section 10.2 shows examples of logistic
regression models with random effects and discusses connections and comparisons
with marginal models. Section 10.3 shows examples of multinomial models and
models with multiple random effect terms. Section 10.4 introduces multilevel models
having random effects at different levels of a hierarchy. For example, an educational
study could include a random effect for each student as well as for each school that
the students attend. Section 10.5 summarizes model fitting methods. The appendix
shows how to use software to do the analyses in this chapter.

10.1 RANDOM EFFECTS MODELING OF CLUSTERED
CATEGORICAL DATA

Parameters that describe a factor’s effects in ordinary linear models are called fixed
effects. They apply to all categories of interest, such as genders, age groupings, or

An Introduction to Categorical Data Analysis, Second Edition. By Alan Agresti
Copyright © 2007 John Wiley & Sons, Inc.
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treatments. By contrast, random effects apply to a sample. For a study with repeated
measurement of subjects, for example, a cluster is a set of observations for a particular
subject, and the model contains a random effect term for each subject. The random
effects refer to a sample of clusters from all the possible clusters.

10.1.1 The Generalized Linear Mixed Model

Generalized linear models (GLMs) extend ordinary regression by allowing nonnormal
responses and a link function of the mean (recall Chapter 3). The generalized linear
mixed model, denoted by GLMM, is a further extension that permits random effects
as well as fixed effects in the linear predictor. Denote the random effect for cluster i

by ui . We begin with the most common case, in which ui is an intercept term in the
model.

Let yit denote observation t in cluster i. Let xit be the value of the explanatory
variable for that observation. (The model extends in an obvious way for multiple
predictors.) Conditional on ui , a GLMM resembles an ordinary GLM. Let μit =
E(Yit |ui), the mean of the response variable for a given value of the random effect.
With the link function g(·), the GLMM has the form

g(μit ) = ui + βxit , i = 1, . . . , n, t = 1, . . . , T

A GLMM with random effect as an intercept term is called a random intercept model.
In practice, the random effect ui is unknown, like the usual intercept parameter. It is
treated as a random variable and is assumed to have a normal N(α, σ ) distribution,
with unknown parameters. The variance σ 2 is referred to as a variance component.

When xit = 0 in this model, the expected value of the linear predictor is α, the
mean of the probability distribution of ui . An equivalent model enters α explicitly in
the linear predictor,

g(μit ) = ui + α + βxit (10.1)

compensating by taking ui to have an expected value of 0. The ML estimate of α

is identical either way. However, it would be redundant to have both the α term in
the model and permit an unspecified mean for the distribution of ui . We will specify
models this second way, taking ui to have a N(0, σ ) distribution. The separate α

parameter in the model then is the value of the linear predictor when xit = 0 and ui

takes value at its mean of 0.
Why not treat the cluster-specific {ui} terms as fixed effects (parameters)? Usu-

ally a study has a large number of clusters, and so the model would then contain a
large number of parameters. Treating {ui} as random effects, we have only a single
additional parameter (σ ) in the model, describing their dispersion.

Section 10.5 outlines the model-fitting process for GLMMs. As in ordinary models
for a univariate response, for given predictor values ML fitting treats the observations
as independent. For the GLMM, this independence is assumed conditional on the



“c10” — 2007/1/29 — page 299 — #3

10.1 RANDOM EFFECTS MODELING OF CLUSTERED CATEGORICAL DATA 299

{ui} as well as the ordinary predictor values. In practice, {ui} are unknown. Averaged
with respect to the distribution of the {ui}, the model implies nonnegative correlation
among observations within a cluster, as discussed in the next subsection.

The model-fitting process estimates the fixed effects, the parameter σ of the normal
distribution for the random effects, and provides predictions {ûi}of the random effects.
We can substitute the fixed effect estimates and {ûi} in the linear predictor to estimate
the means for particular clusters. The estimate σ̂ describes the variability among
clusters. In some studies, this variability might represent heterogeneity caused by
not including certain explanatory variables that are associated with the response. The
random effect then reflects terms that would be in the fixed effects part of the model
if those explanatory variables had been included.

10.1.2 A Logistic GLMM for Binary Matched Pairs

We illustrate the GLMM expression (10.1) using a simple case – binary matched
pairs, which Sections 8.1 and 8.2 considered. Cluster i consists of the observations
(yi1, yi2) for matched pair i. Observation t in cluster i has yit = 1 (a success) or 0 (a
failure), for t = 1, 2.

Section 8.2.3 introduced a logistic model that permits heterogeneity among the
clusters,

logit[P(Yi1 = 1)] = αi + β, logit[P(Yi2 = 1)] = αi (10.2)

The fixed effect β represents a log odds ratio, given the cluster. That is, eβ is the
odds ratio comparing the response distribution at t = 1 with the response distribution
at t = 2. Section 8.2.3 treated αi as a fixed effect. With n clusters, there are n + 1
parameters. The conditional ML method estimated β after eliminating {αi} from the
likelihood function.

The random effects approach instead replaces αi in model (10.2) by ui + α, where
ui is a random variable with mean 0. The model then is

logit[P(Yi1 = 1)] = ui + α + β, logit[P(Yi2 = 1)] = ui + α (10.3)

The {ui} are treated as independent from a N(0, σ ) distribution, with unknown σ .
This is the special case of the GLMM (10.1) with logit link function g, T = 2, and xit

an indicator variable that is 1 for t = 1 and 0 for t = 2. Logistic regression models
that contain a random effect assumed to have a normal distribution are an important
class of models for binary data called logistic-normal models.

This model implies a nonnegative correlation between observations within a clus-
ter. This reflects that observations from the same cluster usually tend to be more alike
than observations from different clusters. Clusters with a relatively large positive ui

have a relatively large P(Yit = 1) for each t , whereas clusters with a relatively large
negative ui have a relatively small P(Yit = 1) for each t . For example, suppose α + β

and α were close to 0. Then, with a large positive ui it is common to see outcomes
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(yi1 = 1, yi2 = 1), whereas with a large negative ui it is common to see outcomes
(yi1 = 0, yi2 = 0). When a high proportion of cases have these outcomes, the asso-
ciation between the repeated responses is positive. Greater association results from
greater heterogeneity (i.e., larger σ ).

10.1.3 Example: Sacrifices for the Environment Revisited

Table 10.1 shows a 2 × 2 table from the General Social Survey, analyzed originally in
Chapter 8. Subjects were asked whether, to help the environment, they were willing
to (1) raise taxes, (2) accept a cut in living standards. The ML fit of model (10.3),
treating {ui} as normal, yields β̂ = 0.210 (SE = 0.130), with σ̂ = 2.85. For a given
subject, the estimated odds of a “yes” response on accepting higher taxes equal
exp(0.210) = 1.23 times the odds of a “yes” response on accepting a lower standard
of living.

Table 10.1. Opinions Relating to Environment

Cut Living Standards

Pay Higher Taxes Yes No Total

Yes 227 132 359
No 107 678 785
Total 334 810 1144

The relatively large σ̂ value of 2.85 reflects a strong association between the two
responses. In fact, Table 10.1 has a sample odds ratio of 10.9. Whenever the sample
log odds ratio in such a table is nonnegative, as it usually is, the ML estimate of β with
this random effects approach is identical to the conditional ML estimate from treating
{αi} in model (10.2) as fixed effects. Section 8.2.3 presented this conditional ML
approach. For these data the conditional ML estimate is β̂ = log(132/107) = 0.210,
with SE = [(1/107) + (1/132)]1/2 = 0.130.

10.1.4 Differing Effects in Conditional Models and Marginal Models

As Sections 9.1.3 and 8.2.2 discussed, parameters in GLMMs and marginal models
have different interpretations. The parameters in GLMMs have conditional (cluster-
specific) intepretations, given the random effect. By contrast, effects in marginal
models are averaged over all clusters (i.e., population-averaged), and so those effects
do not refer to a comparison at a fixed value of a random effect.

Section 8.2.2 noted that the cluster-specific model (10.2) applies naturally to the
data as displayed in a separate partial table for each cluster, displaying the two matched
responses. For the survey data on the environmental issues, each subject is a cluster
and has their own table. The first row shows the response on taxes (a 1 in the first
column for “yes” or in the second column for “no”), and the second row shows the



“c10” — 2007/1/29 — page 301 — #5

10.1 RANDOM EFFECTS MODELING OF CLUSTERED CATEGORICAL DATA 301

response on lowering living standards. (Recall the form of Table 8.2.) The 1144
subjects provide 2288 observations in a 2 × 2 × 1144 contingency table. Collapsing
this table over the 1144 partial tables yields a 2 × 2 table with first row equal to (359,
785) and second row equal to (334, 810). These are the total number of “yes” and
“no” responses for the two items. They are the marginal counts in Table 10.1.

Marginal models apply to the collapsed table, summarized over the subjects. The
marginal model that corresponds to the subject-specific model (10.2) is

logit[P(Y1 = 1)] = α + β, logit[P(Y2 = 1)] = α

where Y1 is the response about higher taxes for a randomly selected subject and Y2
is the response about lower standard of living for a different randomly selected sub-
ject. From Table 10.1, the estimated log odds of a “yes” response was α̂ + β̂ =
log(359/785) = −0.782 for higher taxes and α̂ = log(334/810) = −0.886 for a
lower standard of living. The estimate of β is the difference between these log odds.
This is the log odds ratio, β̂ = log[(359 × 810)/(785 × 334)] = 0.104, using the
marginal counts of Table 10.1.

This estimated effect β̂ = 0.104 for the marginal model has the same sign but
is weaker in magnitude than the estimated effect β̂ = 0.210 for the conditional
model (10.3). The estimated effect for the conditional model says that for any given
subject, the estimated odds of a “yes” response on higher taxes are exp(0.210) = 1.23
times the estimated odds of a “yes” response on lower standard of living. The esti-
mated effect for the marginal model says that the estimated odds of a “yes” response
on higher taxes for a randomly selected subject are exp(0.104) = 1.11 times the esti-
mated odds of a “yes” response on lower standard of living for a different randomly
selected subject.

When the link function is nonlinear, such as the logit, the population-averaged
effects of marginal models are typically smaller in magnitude than the cluster-specific
effects of GLMMs. Figure 10.1 illustrates why this happens. For a single quantitative

Figure 10.1. Logistic random-intercept model, showing the conditional (subject-specific) curves and the
marginal (population-averaged) curve averaging over these.
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explanatory variable x, the figure shows cluster-specific logistic regression curves
for P(Yit = 1 | ui) for several clusters when considerable heterogeneity exists. This
corresponds to a relatively large σ for the random effects. At any fixed value of
x, variability occurs in the conditional means, E(Yit | ui) = P(Yit = 1 | ui). The
average of these is the marginal mean, E(Yit ). These averages for various x values
yield the superimposed dashed curve. That curve shows a weaker effect than each
separate curve has. The difference between the two effects is greater as the cluster-
specific curves are more spread out, that is, as the spread σ of the random effects is
greater.

10.2 EXAMPLES OF RANDOM EFFECTS MODELS FOR
BINARY DATA

This section presents examples of random effects models for binary responses. These
are special cases of the logistic-normal model.

10.2.1 Small-Area Estimation of Binomial Probabilities

Small-area estimation refers to estimation of parameters for many geographical areas
when each may have relatively few observations. For example, a study might find
county-specific estimates of characteristics such as the unemployment rate or the
proportion of families having health insurance coverage. With a national or statewide
survey, counties with small populations may have few observations.

Let πi denote the true probability of “success” in area i, i = 1, . . . , n. These areas
may be all the ones of interest, or only a sample. The fixed effects model

logit(πi) = βi, i = 1, . . . , n,

treats the areas as levels of a single factor. The model is saturated, having n parameters
for the n binomial observations. Let Ti denote the number of observations from area
i, of which yi are successes. When we treat {yi} as independent binomial variates,
the sample proportions {pi = yi/Ti} are ML estimates of {πi}.

When some areas have few observations, sample proportions in those areas may
poorly estimate {πi}. For small {Ti}, the sample proportions have large standard
errors. They may display much more variability than {πi}, especially when {πi} are
similar (see Problem 10.5).

Random effects models that treat each area as a cluster can provide improved
estimates. With random effects for the areas, the model is

logit(πi) = ui + α (10.4)

where {ui} are independent N(0, σ ) variates. The model now has two parameters
(α and σ ) instead of n parameters. When σ = 0, all πi are identical. In assuming that
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the logits of the probabilities vary according to a normal distribution, the fitting process
“borrows from the whole,” using data from all the areas to estimate the probability in
any given one. The estimate for a given area is then a weighted average of the sample
proportion for that area alone and the overall proportion for all the areas.

Software provides ML estimates α̂ and σ̂ and predicted values {ûi} for the random
effects. The predicted value ûi depends on all the data, not only the data for area i.
The estimate of the probability πi in area i is then

π̂i = exp(ûi + α̂)/[1 + exp(ûi + α̂)]

A benefit of using data from all the areas instead of only area i to estimate πi is that
the estimator π̂i tends to be closer than the sample proportion pi to πi . The {π̂i}
result from shrinking the sample proportions toward the overall sample proportion.
The amount of shrinkage increases as σ̂ decreases. If σ̂ = 0, then {π̂i} are identical.
In fact, they then equal the overall sample proportion after pooling all n samples.
When truly all πi are equal, π̂i is a much better estimator of that common value than
the sample proportion from sample i alone.

For a given σ̂ > 0, the {π̂i} give more weight to the sample proportions as {Ti}
grows. As each sample has more data, we put more trust in the separate sample
proportions.

The simple random effects model (10.4), which is natural for small-area estimation,
can be useful for any application that estimates a large number of binomial parameters
when the sample sizes are small. The following example illustrates this.

10.2.2 Example: Estimating Basketball Free Throw Success

In basketball, the person who plays center is usually the tallest player on the team.
Often, centers shoot well from near the basket but not so well from greater distances.
Table 10.2 shows results of free throws (a standardized shot taken from a distance
of 15 feet from the basket) for the 15 top-scoring centers in the National Basketball
Association after one week of the 2005–2006 season.

Let πi denote the probability that player i makes a free throw (i = 1, . . . , 15). For
Ti observations of player i, we treat the number of successes yi as binomial with
index Ti and parameter πi . Table 10.2 shows {Ti} and {pi = yi/Ti}.

For the ML fit of model (10.4), α̂ = 0.908 and σ̂ = 0.422. For a player
with random effect ui = 0, the estimated probability of making a free throw is
exp(0.908)/[1 + exp(0.908)] = 0.71. We predict that 95% of the logits fall within
0.908 ± 1.96(0.422), which is (0.08, 1.73). This interval corresponds to probabilities
in the range (0.52, 0.85).

The predicted random effect values (obtained using PROC NLMIXED in SAS)
yield probability estimates {π̂i}, also shown in Table 10.2. Since {Ti} are small and
since σ̂ is relatively small, these estimates shrink the sample proportions substantially
toward the overall sample proportion of free throws made, which was 101/143 =
0.706. The {π̂i} vary only between 0.61 and 0.76, whereas the sample proportions
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Table 10.2. Estimates of Probability of Centers Making
a Free Throw, Based on Data from First Week of 2005–2006
NBA Season

Player ni pi π̂i Player ni pi π̂i

Yao 13 0.769 0.730 Curry 11 0.545 0.663
Frye 10 0.900 0.761 Miller 10 0.900 0.761
Camby 15 0.667 0.696 Haywood 8 0.500 0.663
Okur 14 0.643 0.689 Olowokandi 9 0.889 0.754
Blount 6 0.667 0.704 Mourning 9 0.778 0.728
Mihm 10 0.900 0.761 Wallace 8 0.625 0.692
Ilgauskas 10 0.600 0.682 Ostertag 6 0.167 0.608
Brown 4 1.000 0.748

Note: pi = sample, π̂i = estimate using random effects model.
Source: nba.com.

vary between 0.17 and 1.0. Relatively extreme sample proportions based on few
observations, such as the sample proportion of 0.17 for Ostertag, shrink more. If you
are a basketball fan, which estimate would you think is more sensible for Ostertag’s
free throw shooting prowess, 0.17 or 0.61?

Are the data consistent with the simpler model, logit(πi) = α, in which πi is
identical for each player? To answer this, we could test H0: σ = 0 for model (10.4).
The usual tests do not apply to this hypothesis, however, because σ̂ cannot be negative
and so is not approximately normally distributed about σ under H0. We will learn
how to conduct the analysis in Section 10.5.2.

10.2.3 Example: Teratology Overdispersion Revisited

Section 9.2.4 showed results of a teratology experiment in which female rats on iron-
deficient diets were assigned to four groups. Group 1 received only placebo injections.
The other groups received injections of an iron supplement at various schedules. The
rats were made pregnant and then sacrificed after 3 weeks. For each fetus in each rat’s
litter, the response was whether the fetus was dead. Because of unmeasured covariates
that vary among rats in a given treatment, it is natural to permit the probability of
death to vary from litter to litter within each treatment group.

Let yi denote the number dead out of the Ti fetuses in litter i. Let πit denote the
probability of death for fetus t in litter i. Section 9.2.4 used the model

logit(πit ) = α + β2zi2 + β3zi3 + β4zi4

where zig = 1 if litter i is in group g and 0 otherwise. The estimates and standard
errors treated the {yi} as binomial. This approach regards the outcomes for fetuses in a
litter as independent and identical, with the same probability of death for each fetus in
each litter within a given treatment group. This is probably unrealistic. Section 9.2.4
used the GEE approach to allow observations within a litter to be correlated.
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Table 10.3. Estimates and Standard Errors (in Parentheses) for Logit Models
Fitted to Table 9.4 from the Teratology Study

Type of Logit Model

Parameter Binomial ML GEE GLMM

Intercept 1.144 (0.129) 1.144 (0.276) 1.802 (0.362)
Group 2 −3.322 (0.331) −3.322 (0.440) −4.515 (0.736)
Group 3 −4.476 (0.731) −4.476 (0.610) −5.855 (1.190)
Group 4 −4.130 (0.476) −4.130 (0.576) −5.594 (0.919)
Overdispersion None ρ̂ = 0.185 σ̂ = 1.53

Note: Binomial ML assumes no overdispersion; GEE (independence working equations) estimates
are the same as binomial ML estimates.

Table 10.3 summarizes results for these approaches and for the GLMM that adds
a normal random intercept ui for litter i in the binomial logit model. This allows
heterogeneity in the probability of death for different litters in a given treatment group.
The estimated standard deviation of the random effect is σ̂ = 1.53. Results are similar
in terms of significance of the treatment groups relative to placebo. Estimated effects
are larger for this logistic-normal model than for the marginal model (estimated by
GEE), because they are cluster-specific (i.e., litter-specific) rather than population-
averaged. (Recall the discussion in Section 10.1.4, illustrated by Figure 10.1.)

10.2.4 Example: Repeated Responses on Similar Survey Items

An extension of the matched-pairs model (10.3) allows T > 2 observations in each
cluster. We illustrate using Table 10.4, for which a cluster is a set of three observations
for a subject. In a General Social Survey, the subjects indicated whether they supported
legalizing abortion in each of three situations. The table cross classifies subjects by
responses on the three abortion items and by their gender.

Let yit denote the response for subject i on item t , with yit = 1 representing
support for legalized abortion. A random intercept model with main effects for the

Table 10.4. Support (1 = Yes, 2 = No) for Legalizing Abortion in Three
Situations, by Gender

Sequence of Responses on the Three Items

Gender (1,1,1) (1,1,2) (2,1,1) (2,1,2) (1,2,1) (1,2,2) (2,2,1) (2,2,2)

Male 342 26 6 21 11 32 19 356
Female 440 25 14 18 14 47 22 457

Source: Data from 1994 General Social Survey. Items are (1) if the family has a very low
income and cannot afford any more children, (2) when the woman is not married and does not
want to marry the man, and (3) when the woman wants it for any reason.
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abortion items and gender is

logit[P(Yit = 1)] = ui + βt + γ xi (10.5)

where xi = 1 for females and 0 for males, and where {ui} are independent N(0, σ ).
The gender effect γ is assumed the same for each item, and the parameters {βt } for
comparing the abortion items are assumed the same for each gender. Here, there is
no constraint on {βt }. If the model also contained a term α, it would need a constraint
such as β3 = 0.

Table 10.5 summarizes ML fitting results. The contrasts of {β̂t } compare support
for legalized abortion under different conditions. These indicate greater support with
item 1 (when the family has a low income and cannot afford any more children)
than the other two. There is slight evidence of greater support with item 2 (when the
woman is not married and does not want to marry the man) than with item 3 (when
the woman wants it for any reason).

The fixed effects estimates have subject-specific log odds ratio interpretations.
For a given subject of either gender, for instance, the estimated odds of supporting
legalized abortion for item 1 equal exp(0.83) = 2.3 times the estimated odds for
item 3. This odds ratio also applies for sets of subjects who have the same random
effect value. Since γ̂ = 0.01, for each item the estimated probability of support-
ing legalized abortion is similar for females and males with similar random effect
values.

For these data, the random effects have estimated standard deviation σ̂ = 8.6.
This is extremely high. It indicates that subjects are highly heterogeneous in their
response probabilities for a given item. It also corresponds to strong associations
among responses on the three items. This is reflected by 1595 of the 1850 subjects
making the same response on all three items – that is, response patterns (0, 0, 0) and
(1, 1, 1). In the United States, people tend to be either uniformly opposed to legalized
abortion, regardless of the circumstances, or uniformly in favor of it.

Table 10.5. Summary of ML Estimates for Random Effects Model (10.5)
and GEE Estimates for Corresponding Marginal Model with Exchangeable
Working Correlation Matrix

GLMM ML Marginal Model GEE

Effect Parameter Estimate SE Estimate SE

Abortion β1 − β3 0.83 0.16 0.149 0.030
β1 − β2 0.54 0.16 0.097 0.028
β2 − β3 0.29 0.16 0.052 0.027

Gender γ 0.01 0.48 0.003 0.088√
Var(ui) σ 8.6 0.54
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To allow interaction between gender and item, a model uses different {βt } for men
and women. This corresponds to having extra parameters that are the coefficients of
cross products of the gender and the item indicator variables. Such a model does not
fit better. The likelihood-ratio statistic comparing the two models (that is, double the
difference in maximized log-likelihoods) equals 1.0 (df = 2) for testing that the extra
parameters equal 0.

A marginal model analog of (10.5) is

logit[P(Yt = 1)] = βt + γ x

where Yt is the response on item t for a randomly selected subject. Table 10.5 shows
GEE estimates for the exchangeable working correlation structure. These population-
averaged {β̂t } are much smaller than the subject-specific {β̂t } from the GLMM. This
reflects the very large GLMM heterogeneity (σ̂ = 8.6) and the corresponding strong
correlations among the three responses. For instance, the GEE analysis estimates a
common correlation of 0.82 between pairs of responses. Although the GLMM {β̂t }
are about 5–6 times the marginal model {β̂t }, so are the standard errors. The two
approaches provide similar substantive interpretations and conclusions.

10.2.5 Item Response Models: The Rasch Model

In the example just considered comparing three opinion items, we have seen that a
GLMM without a gender effect,

logit[P(Yit = 1)] = ui + βt (10.6)

is adequate. Early applications of this form of GLMM were in psychometrics to
describe responses to a battery of T questions on an exam. The probability P(Yit =
1 | ui) that subject i makes the correct response on question t depends on the overall
ability of subject i, characterized by ui , and the easiness of question t , characterized
by βt . Such models are called item-response models.

The logit form (10.6) is often called the Rasch model, named after a Danish
statistician who introduced it for such applications in 1961. Rasch treated the subject
terms as fixed effects and used conditional ML methods. These days it is more common
to treat subject terms as random effects.

10.2.6 Example: Depression Study Revisited

Table 9.1 showed data from a longitudinal study to compare a new drug with a stan-
dard drug for treating subjects suffering mental depression. Section 9.1.2 analyzed the
data using marginal models. The response yt for observation t on mental depression
equals 1 for normal and 0 for abnormal, where t = 1, 2, 3 for three times of mea-
surement. For severity of initial diagnosis s (1 = severe, 0 = mild), drug treatment d
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(1 = new, 0 = standard), and time of observation t , we used the model

logit[P(Yt = 1)] = α + β1s + β2d + β3t + β4(d × t)

to evaluate effects on the marginal distributions.
Now let yit denote observation t for subject i. The model

logit[P(Yit = 1)] = ui + α + β1s + β2d + β3t + β4(d × t)

has subject-specific rather than population-averaged effects. Table 10.6 shows the
ML estimates. The time trend estimates are β̂3 = 0.48 for the standard drug and
β̂3 + β̂4 = 1.50 for the new one. These are nearly identical to the GEE estimates
for the corresponding marginal model, which Table 10.6 also shows. (Sections 9.1.2
and 9.2.3 discussed these.) The reason is that the repeated observations are only
weakly correlated, as the GEE analysis observed. Here, this is reflected by
σ̂ = 0.07, which suggests little heterogeneity among subjects in their response
probabilities.

Table 10.6. Model Parameter Estimates for Marginal and Conditional
Models Fitted to Table 9.1 on Depression Longitudinal Study

GEE Marginal Random Effects
Parameter Estimate SE ML Estimate SE

Diagnosis −1.31 0.15 −1.32 0.15
Treatment −0.06 0.23 −0.06 0.22
Time 0.48 0.12 0.48 0.12
Treat × time 1.02 0.19 1.02 0.19

When we assume σ = 0 in this model, the log-likelihood decreases by less than
0.001. For this special case of the model, the ML estimates and SE values are the
same as if we used ordinary logistic regression without the random effect and ignored
the clustering (e.g., acting as if each observation comes from a different subject).

10.2.7 Choosing Marginal or Conditional Models

Some statisticians prefer conditional models (usually with random effects) over
marginal models, because they more fully describe the structure of the data. How-
ever, many statisticians believe that both model types are useful, depending on the
application. We finish the section by considering issues in choosing one type over the
other.

With the marginal model approach, ML is sometimes possible but the GEE
approach is computationally simpler and more readily available with standard soft-
ware. A drawback of the GEE approach is that likelihood-based inferences are not
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possible because the joint distribution of the responses is not specified. In addition,
this approach does not explicitly include random effects and therefore does not allow
these effects to be estimated.

The conditional modeling approach is preferable if one wants to fully model the
joint distribution. The marginal modeling approach focuses only on the marginal
distribution. The conditional modeling approach is also preferable if one wants to
estimate cluster-specific effects or estimate their variability, or if one wants to specify
a mechanism that could generate positive association among clustered observations.
For example, some methodologists use conditional models whenever the main focus
is on within-cluster effects. In the depression study (Section 10.2.6), the conditional
model is appropriate if we want the estimate of the time effect to be “within-subject,”
describing the time trend at the subject level.

By contrast, if the main focus is on comparing groups that are independent samples,
effects of interest are “between-cluster” rather than “within-cluster.” It may then be
adequate to estimate effects with a marginal model. For example, if after a period of
time we mainly want to compare the rates of depression for those taking the new drug
and for those taking the standard drug, a marginal model is adequate. In many surveys
or epidemiological studies, a goal is to compare the relative frequency of occurrence
of some outcome for different groups in a population. Then, quantities of primary
interest include between-group odds ratios comparing marginal probabilities for the
different groups.

When marginal effects are the main focus, it is simpler to model the margins
directly. One can then parameterize the model so regression parameters have a direct
marginal interpretation. Developing a more detailed model of the joint distribution
that generates those margins, as a random effects model does, provides greater oppor-
tunity for misspecification. For instance, with longitudinal data the assumption that
observations are independent, given the random effect, need not be realistic.

Latent variable constructions used to motivate model forms (such as the probit and
cumulative logit) usually apply more naturally at the cluster level than the marginal
level. Given a conditional model, one can in principle recover information about
marginal distributions, although this may require extra work not readily done by
standard software. That is, a conditional model implies a marginal model, but a
marginal model does not itself imply a conditional model. In this sense, a conditional
model has more information.

We have seen that parameters describing effects are usually larger in conditional
models than marginal models, moreso as variance components increase. Usually,
though, the significance of an effect (e.g., as determined by the ratio of estimate
to SE) is similar for the two model types. If one effect seems more important than
another in a conditional model, the same is usually true with a marginal model. The
choice of the model is usually not crucial to inferential conclusions.

10.2.8 Conditional Models: Random Effects Versus Conditional ML

For the fixed effects approach with cluster-specific terms, a difficulty is that the
model has a large number of parameters. To estimate the other effects in the model,
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the conditional ML approach removes the cluster-specific terms from the model.
Section 8.2.3 introduced the conditional ML approach for binary matched pairs.
Compared with the random effects approach, it has the advantage that it does not
assume a parametric distribution for the cluster-specific terms.

However, the conditional ML approach has limitations and disadvantages. It is
restricted to inference about within-cluster fixed effects. The conditioning removes
the source of variability needed for estimating between-cluster effects. This approach
does not provide information about cluster-specific terms, such as predictions of their
values and estimates of their variability or of probabilities they determine. When
the number of observations per cluster is large, it is computationally difficult to
implement. Finally, conditional ML can be less efficient than the random effects
approach for estimating the other fixed effects.

One application in which conditional ML with cluster-specific terms in logistic
regression models has been popular is case–control studies. A case and the matching
control or controls form a cluster. Section 8.2.4 discussed this for the matched-
pairs case. For further details, see Breslow and Day (1980), Fleiss et al. (2003,
Chapter 14), and Hosmer and Lemeshow (2000, Chapter 7).

10.3 EXTENSIONS TO MULTINOMIAL RESPONSES OR
MULTIPLE RANDOM EFFECT TERMS

GLMMs extend directly from binary outcomes to multiple-category outcomes. Mod-
eling is simpler with ordinal responses, because it is often adequate to use the same
random effect term for each logit. With cumulative logits, this is the proportional
odds structure that Section 6.2.1 used for fixed effects. However, GLMMs can have
more than one random effect term in a model. Most commonly this is done to allow
random slopes as well as random intercepts. We next show examples of these two
cases.

10.3.1 Example: Insomnia Study Revisited

Table 9.6 in Section 9.3.2 showed results of a clinical trial at two occasions comparing
a drug with placebo in treating insomnia patients. The response, time to fall asleep,
fell in one of four ordered categories. We analyzed the data with marginal models in
Section 9.3.2 and with transitional models in Section 9.4.3.

Let yt = time to fall asleep at occasion t (0 = initial, 1 = follow-up), and let
x = treatment (1 = active, 0 = placebo). The marginal model

logit[P(Yt ≤ j)] = αj + β1t + β2x + β3(t × x)

permits interaction. Table 10.7 shows GEE estimates.
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Table 10.7. Results of Fitting Cumulative Logit Models
(with Standard Errors in Parentheses) to Table 9.6

Marginal Random Effects
Effect GEE (GLMM) ML

Treatment 0.034 (0.238) 0.058 (0.366)
Occasion 1.038 (0.168) 1.602 (0.283)
Treatment × occasion 0.708 (0.244) 1.081 (0.380)

Now, let yit denote the response for subject i at occasion t . The random-intercept
model

logit[P(Yit ≤ j)] = ui + αj + β1t + β2x + β3(t × x)

takes the linear predictor from the marginal model and adds a random effect ui .
The random effect is assumed to be the same for each cumulative probability. A
subject with a relatively high ui , for example, would have relatively high cumulative
probabilities, and hence a relatively high chance of falling at the low end of the ordinal
scale.

Table 10.7 also shows results of fitting this model. Results are substantively similar
to the marginal model. The response distributions are similar initially for the two
treatment groups, but the interaction suggests that at the follow-up response the active
treatment group tends to fall asleep more quickly. We conclude that the time to fall
asleep decreases more for the active treatment group than for the placebo group.

From Table 10.7, estimates and standard errors are about 50% larger for the GLMM
than for the marginal model. This reflects the relatively large heterogeneity. The
random effects have estimated standard deviation σ̂ = 1.90. This corresponds to a
strong association between the responses at the two occasions.

10.3.2 Bivariate Random Effects and Association Heterogeneity

The examples so far have used univariate random effects, taking the form of random
intercepts. Sometimes it is sensible to have a multivariate random effect, for example
to allow a slope as well as an intercept to be random.

We illustrate using Table 10.8, from three of 41 studies that compared a new
surgery with an older surgery for treating ulcers. The analyses below use data from
all 41 studies, which you can see at the text web site. The response was whether the
surgery resulted in the adverse event of recurrent bleeding (1 = yes, 0 = no).

As usual, to compare two groups on a binary response with data stratified on a third
variable, we can analyze the strength of association in the 2 × 2 tables and investigate
how that association varies (if at all) among the strata. When the strata are themselves
a sample, such as different studies for a meta analysis, or schools, or medical clinics,
a random effects approach is natural. We then use a separate random effect for each
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Table 10.8. Tables Relating Treatment (New Surgery or Older Surgery) to
Outcome on an Adverse Event, for Three Studies

Adverse Event Sample Fitted
Study Treatment Yes No Odds Ratio Odds Ratio

1 New surgery 7 8 0.159 0.147
Old surgery 11 2

5 New surgery 3 9 ∞ 2.59
Old surgery 0 12

6 New surgery 4 3 0.0 0.126
Old surgery 4 0

Note: From article by B. Efron, J. Am. Statist. Assoc., 91: 539, 1996. Complete data for
41 studies available at www.stat.ufl.edu/∼aa/intro-cda/appendix.html.

stratum rather than for each subject. With a random sampling of strata, we can extend
inferences to the population of strata.

Let yit denote the response for a subject in study i using treatment t (1 = new;
2 = old). One possible model is the logistic-normal random intercept model,

logit[P(Yi1 = 1)] = ui + α + β

logit[P(Yi2 = 1)] = ui + α
(10.7)

where {ui} are N(0, σ ). This model assumes that the log odds ratio β between
treatment and response is the same in each study. The parameter σ summarizes
study-to-study heterogeneity in the logit-probabilities of adverse event. Note that
the model treats each study as a cluster and gives it a random effect. The estimated
treatment effect is β̂ = −1.173 (SE = 0.118). This is similar to the estimated treat-
ment effect from treating the study terms as fixed rather than random (β̂ = −1.220,
SE = 0.119).

It is more realistic to allow the treatment effect to vary across the 41 studies. A
logistic-normal model permitting treatment-by-study interaction is

logit[P(Yi1 = 1)] = ui + α + (β + vi)

logit[P(Yi2 = 1)] = ui + α (10.8)

Here, ui is a random intercept, and vi is a random slope in the sense that it is the
coefficient of a treatment indicator variable (1 = new treatment, 0 = old treatment).
We assume that {(ui, vi)} have a bivariate normal distribution. That distribution has
means 0 and standard deviation σu for {ui} and σv for {vi}, with a correlation ρ

between ui and vi , i = 1, . . . , 41.
For model (10.8), the log odds ratio between treatment and response equals β + vi

in study i. So, β is the mean study-specific log odds ratio and σv describes variability
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in the log odds ratios. The fit of the model provides a simple summary of an estimated
mean β̂ and an estimated standard deviation σ̂v of the log odds ratios for the population
of strata.

In Table 10.8 the sample odds ratios vary considerably among studies, as is true
also for all 41 studies. Some sample odds ratios even take the boundary values of 0 or
∞. For model (10.8), the summary treatment estimate is β̂ = −1.299 (SE = 0.277).
This estimated mean log odds ratio corresponds to a summary odds ratio estimate
of 0.27. There seems to be considerable heterogeneity in the true log odds ratios,
suggested by σ̂v = 1.52 (SE = 0.26).

The hypothesis H0: β = 0 states that there is a lack of association between treat-
ment and response, in the sense of a mean log odds ratio of 0. The evidence against
it is strong. For example, the Wald statistic is z = β̂/SE = −1.299/0.277 = −4.7.
However, the evidence is weaker than for model (10.7) without treatment-by-study
interaction, for which z = β̂/SE = −1.173/0.118 = −10.0. The extra variance
component in the interaction model pertains to variability in the log odds ratios.
As its estimate σ̂v increases, so does the standard error of the estimated treatment
effect β̂ tend to increase. The more that the treatment effect varies among studies, the
more difficult it is to estimate precisely the mean of that effect. When σ̂v = 0, the β̂

and SE values are the same as for the simpler model (10.7).
The model fitting also provides predicted random effects. For stratum i with pre-

dicted random effect v̂i , the predicted log odds ratio is β̂ + v̂i . This shrinks the sample
log odds ratio toward the mean of the sample log odds ratio for all the strata. This
is especially useful when the sample size in a stratum is small, because the ordinary
sample log odds ratio then has large standard error. Table 10.8 shows the sample
odds ratios and the model predicted odds ratios for three studies. For all 41 studies,
the sample odds ratios vary from 0.0 to ∞. Their random effects model counterparts
(computed with PROC NLMIXED in SAS) vary only between 0.004 (for a study that
reported 0 out of 34 adverse events for the new surgery and 34 out of 34 adverse
events for the old surgery!) and 2.6 (for study 5). The smoothed estimates are much
less variable and do not have the same ordering as the sample values, because the
shrinkage tends to be greater for studies having smaller sample sizes.

10.4 MULTILEVEL (HIERARCHICAL) MODELS

Hierarchical models describe observations that have a nested nature: Units at one
level are contained within units of another level. Hierarchical data are common in
certain application areas, such as in educational studies.

A study of factors that affect student performance might measure, for each student
and each exam in a battery of exams, whether the student passed. Students are nested
within schools, and the model could study variability among students as well as
variability among schools. The model could analyze the effect of the student’s ability
or past performance and of characteristics of the school the student attends. Just as
two observations for the same student (on different exams) might tend to be more alike
than observations for different students, so might two students in the same school tend
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to have more-alike observations than students from different schools. This could be
because students within a school tend to be similar on various socioeconomic indices.

Hierarchical models contain terms for the different levels of units. For the example
just mentioned, the model would contain terms for the student and for the school.
Level 1 refers to measurements at the student level, and level 2 refers to measurements
at the school level. GLMMs having a hierarchical structure of this sort are called
multilevel models.

Multilevel models usually have a large number of terms. To limit the number of
parameters, the model treats terms for the units as random effects rather than fixed
effects. The random effects can enter the model at each level of the hierarchy. For
example, random effects for students and random effects for schools refer to different
levels of the model. Level 1 random effects can account for variability among students
in student-specific characteristics not measured by the explanatory variables. These
might include student ability and parents’ socioeconomic status. The level 2 random
effects account for variability among schools due to school-specific characteristics
not measured by the explanatory variables. These might include the quality of the
teaching staff, the teachers’ average salary, the degree of drug-related problems in the
school, and characteristics of the district for which the school enrolls students.

10.4.1 Example: Two-Level Model for Student Advancement

An educational study analyzes factors that affect student advancement in school from
one grade to the next. For student t in school i, the response variable yit measures
whether the student passes to the next grade (yit = 1) or fails. We will consider a
model having two levels, one for students and one for schools. When there are many
schools and we can regard them as approximately a random sample of schools that
such a study could consider, we use random effects for the schools.

Let {xit1, . . . , xitk} denote the values of k explanatory variables that have values
that vary at the student level. For example, for student t in school i, perhaps xit1
measures the student’s performance on an achievement test, xit2 is gender, xit3 is race,
and xit4 is whether he or she previously failed any grades. The level-one model is

logit[P(yit = 1)] = αi + β1xit1 + β2xit2 + · · · + βkxitk

The level-two model provides a linear predictor for the level-two (i.e., school-level)
term in the level-one (i.e., student-level) model. That level-two term is the intercept,
αi . The level-two model has the form

αi = ui + α + γ1wi1 + γ2wi2 + · · · + γtwi�

Here, {wi1, . . . , wi�} are � explanatory variables that have values that vary only at the
school level, so they do not have a t subscript. For example, perhaps wi1 is per-student
expenditure of school i. The term ui is the random effect for school i.
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Substituting the level-two model into the level-one model, we obtain

logit[P(yit = 1)] = ui + α + γ1wi1 + · · · + γtwi� + β1xit1 + · · · + βkxitk

This is a logistic-normal model with a random intercept (ui). Here, a random effect
enters only at level 2. More generally, the β parameters in the level-one model can
depend on the school and themselves be modeled as part of the level-two model. This
would be the case if we wanted to include random slopes in the model, for example,
to allow the effect of race to vary by the school. More generally yet, the model can
have more than two levels, or random effects can enter into two or more levels. When
there are several observations per student, for example, the model can include random
effects for students as well as for schools.

10.4.2 Example: Grade Retention

Raudenbush and Bryk (2002, pp. 296–304) analyzed data from a survey of 7516
sixth graders in 356 schools in Thailand. The response variable yit measured whether
student t in school i had to repeat at least one grade during the primary school years
(1 = yes, 0 = no).

The level-one (student-level) variables were SES = socioeconomic status and
whether the student was male (MALE = 1 if yes, 0 if female), spoke Central Thai
dialect (DI = 1 if yes, 0 if no), had breakfast daily (BR = 1 if yes, 0 if no), and had
some preprimary experience (PRE = 1, 0 if no). The level-one model was

logit[P(yit = 1)] = αi + β1SESit + β2MALEit + β3DIit + β4BRit + β5PREit

The level-two (school-level) variables were MEANSES = the school mean SES,
SIZE = size of school enrollment, and TEXTS = a measure of availability of text-
books in the school. The level-two model takes the school-specific term αi from the
level-one model and expresses it as

αi = ui + α + γ1MEANSESi + γ2 SIZEi + γ3 TEXTSi

The random effect ui reflects heterogeneity among the schools.
Raudenbush and Bryk first summarized results of a model that ignores the

explanatory variables and analyzes only the variability in results among schools,

logit[P(yit = 1)] = ui + α

They reported estimates α̂ = −2.22 and σ̂ = 1.30 for a normal random effects distri-
bution. For a student in a school having random effect at the mean (ui = 0), the esti-
mated probability of at least one retention is exp(−2.22)/[1 + exp(−2.22)] = 0.10.
We predict that 95% of the logits fall within −2.22 ± 1.96(1.30), or (−4.8, 0.34),
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which corresponds to probabilities between 0.01 and 0.58. This reflects substantial
variability among schools.

For the multilevel model that includes both sets of explanatory variables,
Raudenbush and Bryk reported the model fit,

logit[P̂ (yit = 1)] = ûi − 2.18 − 0.69MEANSESi − 0.23SIZEi + 0.02TEXTSi

− 0.36SESit + 0.56MALEit + 0.31DIit − 0.35BRit − 0.49PREit

For example, for given values of the other explanatory variables and for a given value
of the random effect, the estimated odds of retention for males were exp(0.56) = 1.75
times those for females.

For between-groups comparisons with a GLMM, such as interpreting a gender
effect, odds ratios relate to a fixed value for the random effect. For further discussion
and several examples of multilevel models, both for discrete and continuous responses,
see Snijders and Bosker (1999) and Raudenbush and Bryk (2002).

10.5 MODEL FITTING AND INFERENCE FOR GLMMS∗

Now that we have seen several examples, we discuss a few issues involved in fitting
GLMMs. Although technical details are beyond the scope of this text, it is not always
simple to fit GLMMs and you should be aware of factors that affect the fit.

10.5.1 Fitting GLMMs

Conditional on {ui}, model-fitting treats {yit } as independent over i and t . In practice,
we do not know {ui}. The model treats them as unobserved random variables. As
Section 10.1.2 discussed, the variability among {ui} induces a positive correlation
among the responses within a cluster.

The likelihood function for a GLMM refers to the fixed effects parameters
{α, β1, . . . , βk} and the parameter σ of the N(0, σ ) random effects distribution. To
obtain the likelihood function, software eliminates {ui} by (1) forming the likelihood
function as if the {ui} values were known, and then (2) averaging that function with
respect to the N(0, σ ) distribution of {ui}. Inference focuses primarily on the fixed
effects, but the random effects or their distribution are often themselves of interest.
Software predicts ûi by the estimated mean of the conditional distribution of ui , given
the data. This prediction depends on all the data, not just the data for cluster i.

The main difficulty in fitting GLMMs is step (2), the need to eliminate the random
effects in order to obtain the likelihood function. The calculus-based integral used
to average with respect to the normal distribution of the random effects does not
have a closed form. Numerical methods for approximating it can be computationally
intensive.

Gauss–Hermite quadrature is a method that uses a finite sum to do this. In essence,
this method approximates the area under a curve by the area under a histogram with
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a particular number of bars. The approximation depends on the choice of the number
of terms, which is the number q of quadrature points at which the function to be
integrated is evaluated. As q increases, the approximation improves: The estimates
and standard errors get closer to the actual ML estimates and their standard errors. Be
careful not to use too few quadrature points. Most software will pick a default value
for q, often small such as q = 5. As a check you can then increase q above that value
to make sure the estimates and standard errors have stabilized to the desired degree
of precision (e.g., that they do not change in the first few significant digits).

Gauss–Hermite quadrature is feasible when there is only a random intercept in
the model or only a random intercept and a random slope. With complex random
effect structure, other approaches are needed. Monte Carlo methods simulate in order
to approximate the relevant integral. The Gauss–Hermite and Monte Carlo methods
approximate the ML parameter estimates but converge to the ML estimates as they are
applied more finely – for example, as the number of quadrature points increases for
numerical integration. This is preferable to other approximate methods that are simpler
but need not yield estimates near the ML estimates. Two such methods are penalized
quasi-likelihood (PQL) and Laplace approximation. When true variance components
are large, PQL can produce variance component estimates with substantial negative
bias. Bias also occurs when the response distribution is far from normal (e.g., binary).
The Laplace approximation replaces the function to be integrated by an approximation
for which the integral has closed form.

Another approach to fitting of GLMMs is Bayesian. With it, the distinction between
fixed and random effects no longer occurs. A probability distribution (the prior distri-
bution) is assumed for each effect of either type. Prior distributions are usually chosen
to be very spread out. Then, the data have the primary influence in determining the
estimates.

10.5.2 Inference for Model Parameters

For GLMMs, inference about fixed effects proceeds in the usual way. For instance,
likelihood-ratio tests can compare models when one model is the special case of the
other in which one or more fixed effects equal 0.

Inference about random effects, such as whether a variance component equals
zero, is more complex. For example, the basketball free-throw shooting example in
Section 10.2.2 used a model

logit(πi) = ui + α

that let the probability of success vary among players. The model

logit(πi) = α

in which the probability of success is the same for each player is the special case in
which σ = 0 for the N(0, σ ) distribution of {ui}. Since σ cannot be negative, the
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simpler model falls on the boundary of the parameter space for the more complex
model. When this happens, the usual likelihood-ratio chi-squared test for comparing
models is not valid. Likewise, a Wald statistic such as σ̂ /SE does not have an approx-
imate standard normal null distribution. (When σ = 0, because σ̂ < 0 is impossible,
σ̂ is not even approximately normally distributed around σ .)

The large-sample distribution of the likelihood-ratio statistic is known for the test of
H0: σ = 0 against Ha : σ > 0 for a model containing a single random effect term. The
null distribution has probability 1/2 at 0 and 1/2 following the shape of a chi-squared
distribution with df = 1. The test statistic value of 0 occurs when σ̂ = 0, in which
case the maximum of the likelihood function is identical under H0 and Ha . When
σ̂ > 0 and the observed test statistic equals t , the P -value for this test is half the
right-tail probability above t for a chi-squared distribution with df = 1.

For the basketball free-throw shooting example, the random effect has σ̂ = 0.42,
with SE = 0.39. The likelihood-ratio test statistic comparing this model to the simpler
model that assumes the same probability of success for each player equals 0.42. As
usual, this equals double the difference between the maximized log likelihood values.
The P -value is half the right-tail probability above 0.42 for a chi-squared distribution
with df = 1, which is 0.26. It is plausible that all players have the same chance of
success. However, the sample size was small, which is why an implausibly simplistic
model seems adequate.

PROBLEMS

10.1 Refer back to Table 8.10 from a recent General Social Survey that asked
subjects whether they believe in heaven and whether they believe in hell.

a. Fit model (10.3). If your software uses numerical integration, report β̂, σ̂ ,
and their standard errors for 2, 10, 100, 400, and 1000 quadrature points.
Comment on convergence.

b. Interpret β̂.

c. Compare β̂ and its SE for this approach to their values for the conditional
ML approach of Section 8.2.3.

10.2 You plan to apply the matched-pairs model (10.3) to a data set for which yi1 is
whether the subject agrees that abortion should be legal if the woman cannot
afford the child (1 = yes, 0 = no), and yi2 is whether the subject opposes
abortion if a woman wants it because she is unmarried (1 = yes, 0 = no).

a. Indicate a way in which this model would probably be inappropriate. (Hint:
Do you think these variables would have a positive, or negative, log odds
ratio?)

b. How could you reword the second question so the model would be more
appropriate?

10.3 A dataset on pregnancy rates among girls in 13 north central Florida counties
has information on the total in 2005 for each county i on Ti = number of births



“c10” — 2007/1/29 — page 319 — #23

PROBLEMS 319

and yi = number of those for which mother’s age was under 18. Let πi be the
probability that a pregnancy in county i is to a mother of age under 18. The
logistic-normal model, logit(πi) = ui + α, has α̂ = −3.24 and σ̂ = 0.33.

a. Find π̂i for a county estimated to be (i) at the mean, (ii) two standard
deviations below the mean, (iii) two standard deviations above the mean
on the random effects distribution.

b. For estimating {πi}, what advantage does this model have over the fixed
effects model, logit(πi) = βi?

10.4 Table 10.9 shows the free-throw shooting, by game, of Shaq O’Neal of the
Los Angeles Lakers during the 2000 NBA (basketball) playoffs. In game i,
let yi = number made out of Ti attempts.

a. Fit the model, logit(πi) = ui + α, where {ui} are independent N(0, σ ),
and given {ui}, {yi} are independent binomial variates for {Ti} trials with
success probabilities {πi}. Report α̂ and σ̂ .

b. Use α̂ to summarize O’Neal’s free-throw shooting in an average game
(for which ui = 0).

c. Use α̂ and σ̂ to estimate how O’Neal’s free-throw shooting varies among
games.

Table 10.9. Shaq O’Neal Basketball Data for Problem 10.4

No. No. No. No. No. No.
Game Made Attempts Game Made Attempts Game Made Attempts

1 4 5 9 4 12 17 8 12
2 5 11 10 1 4 18 1 6
3 5 14 11 13 27 19 18 39
4 5 12 12 5 17 20 3 13
5 2 7 13 6 12 21 10 17
6 7 10 14 9 9 22 1 6
7 6 14 15 7 12 23 3 12
8 9 15 16 3 10

Source: www.nba.com.

10.5 For 10 coins, let πi denote the probability of a head for coin i. You
flip each coin five times. The sample numbers of heads are {2, 4, 1, 3, 3,
5, 4, 2, 3, 1}.

a. Report the sample proportion estimates of πi . Formulate a model for which
these are the ML estimates.

b. Formulate a random effects model for the data. Using software, find the
ML estimates of the parameters. Interpret.

c. Using software, for the model in (b) obtain predicted values {π̂i}.
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d. Which estimates would you prefer for {πi}, those in (a) or those in (c)?
Why?

e. Suppose all πi = 0.50. Compare the estimates in (a) and in (c) by finding
the average absolute distance of the estimates from 0.50 in each case. What
does this suggest?

10.6 For Table 7.3 from the survey of high school students, let yit = 1 when sub-
ject i used substance t (t = 1, cigarettes; t = 2, alcohol; t = 3, marijuana).
Table 10.10 shows output for the logistic-normal model, logit[P(Yit = 1)] =
ui + βt .

a. Interpret {β̂t }. Illustrate odds ratio interpretations by comparing use of
cigarettes and marijuana.

b. In practical terms, what does the large value for σ̂ imply?

c. In practical terms, what does a large positive value for ui for a particular
student represent?

Table 10.10. Computer Output for GLMM for Student Survey in Problem 10.6

Description Value Std
Subjects 2276 Parameter Estimate Error t Value
Max Obs Per Subject 3 beta1 4.2227 0.1824 23.15
Parameters 4 beta2 1.6209 0.1207 13.43
Quadrature Points 200 beta3 −0.7751 0.1061 −7.31
Log Likelihood −3311 sigma 3.5496 0.1627 21.82

10.7 Refer to the previous exercise.

a. Compare {β̂t } to the estimates for the marginal model in Problem 9.1.
Why are they so different?

b. How is the focus different for the model in the previous exercise than for
the loglinear model (AC, AM, CM) that Section 7.1.6 used?

c. If σ̂ = 0 in the GLMM in the previous exercise, the loglinear model
(A, C, M) of mutual independence has the same fit as the GLMM. Why
do you think this is so?

10.8 For the student survey summarized by Table 7.13, (a) analyze using GLMMs,
(b) compare results and interpretations to those with marginal models in
Problem 9.2.

10.9 For the crossover study summarized by Table 9.9 (Problem 9.6), fit the
model

logit[P(Yi(k)t = 1)] = ui(k) + αk + βt

where {ui(k)} are independent N(0, σ ). Interpret {β̂t } and σ̂ .
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10.10 For the previous exercise, compare estimates of βB − βA and βC − βA

and their SE values to those using the corresponding marginal model of
Problem 9.6.

10.11 Refer to Table 5.5 on admissions decisions for Florida graduate school appli-
cants. For a subject in department i of gender g (1 = females, 0 = males),
let yig = 1 denote being admitted.

a. For the fixed effects model, logit[P(Yig = 1)] = α + βg + βD
i , the

estimated gender effect is β̂ = 0.173 (SE = 0.112). Interpret.

b. The corresponding model (10.7) that treats departments as a normal
random effect has β̂ = 0.163 (SE = 0.111). Interpret.

c. The model of form (10.8) that allows the gender effect to vary randomly
by department has β̂ = 0.176 (SE = 0.132), with σ̂v = 0.20. Interpret.
Explain why the standard error of β̂ is slightly larger than with the other
analyses.

d. The marginal sample log odds ratio between gender and whether admitted
equals −0.07. How could this take different sign from β̂ in these models?

10.12 Consider Table 8.14 on premarital and extramarital sex. Table 10.11 shows
the results of fitting a cumulative logit model with a random intercept.

a. Interpret β̂.

b. What does the relatively large σ̂ value suggest?

Table 10.11. Computer Output for Problem 10.12

Std
Subjects 475 Parameter Estimate Error t Value

Max Obs Per Subject 2 inter1 −1.5422 0.1826 −8.45
Parameters 5 inter2 −0.6682 0.1578 −4.24
Quadrature Points 100 inter3 0.9273 0.1673 5.54
Log Likelihood −890.1 beta 4.1342 0.3296 12.54

sigma 2.0757 0.2487 8.35

10.13 Refer to the previous exercise. Analyze these data with a corresponding
cumulative logit marginal model.

a. Interpret β̂.

b. Compare β̂ to its value in the GLMM. Why are they so different?

10.14 Refer to Problem 9.11 for Table 7.25 on government spending.

a. Analyze these data using a cumulative logit model with random effects.
Interpret.

b. Compare the results with those with a marginal model (Problem 9.11).
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10.15 Refer to Table 4.16 and Problem 4.20, about an eight-center clinical trial
comparing a drug with placebo for curing an infection. Model the data in a
way that allows the odds ratio to vary by center. Summarize your analyses
and interpretations in a one-page report.

10.16 See http://bmj.com/cgi/content/full/317/7153/235 for a meta analysis of
studies about whether administering albumin to critically ill patients increases
or decreases mortality. Analyze the data for the 13 studies with hypovolemia
patients using logistic models with (i) fixed effects, (ii) random effects.
Summarize your analyses in a two-page report.

10.17 Refer to the insomnia example in Section 10.3.1.

a. From results in Table 10.7 for the GLMM, explain how to get the inter-
pretation quoted in the text that “The response distributions are similar
initially for the two treatment groups, but the interaction suggests that at
the follow-up response the active treatment group tends to fall asleep more
quickly.”

b. According to SAS, the maximized log likelihood equals −593.0, com-
pared with −621.0 for the simpler model forcing σ = 0. Compare models,
using a likelihood-ratio test. What do you conclude?

10.18 Analyze Table 9.8 with age and maternal smoking as predictors using a (a)
logistic-normal model, (b) marginal model, (c) transitional model. Summa-
rize your analyses in a two-page report, explaining how the interpretation of
the maternal smoking effect differs for the three approaches.

10.19 Refer to the toxicity study with data summarized in Table 10.12. Collapsing
the ordinal response to binary in terms of whether with data summarized in
the outcome is normal, consider logistic models as a linear function of the
dose level.

a. Does the ordinary binomial GLM show evidence of overdispersion?

b. Fit the logistic model using a GEE approach with exchangeable working
correlation among fetuses in the same litter. Interpret and compare with
results in (a).

c. Fit the logistic GLMM after adding a litter-specific normal random effect.
Interpret and compare with previous results.

10.20 Refer to the previous exercise. Analyze the data with a marginal model and
with a GLMM, both of cumulative logit form, for the ordinal response.
Summarize analyses in a two-page report.

10.21 Table 10.13 reports results of a study of fish hatching under three environ-
ments. Eggs from seven clutches were randomly assigned to three treatments,
and the response was whether an egg hatched by day 10. The three treat-
ments were (1) carbon dioxide and oxygen removed, (2) carbon dioxide only
removed, and (3) neither removed.



“c10” — 2007/1/29 — page 323 — #27

PROBLEMS 323

Table 10.12. Response Counts for 94 Litters of Mice on (Number Dead,
Number Malformed, Number Normal), for Problem 10.19

Dose = 0.00 g/kg Dose = 0.75 g/kg Dose = 1.50 g/kg Dose = 3.00 g/kg

(1, 0, 7), (0, 0, 14) (0, 3, 7), (1, 3, 11) (0, 8, 2), (0, 6, 5) (0, 4, 3), (1, 9, 1)
(0, 0, 13), (0, 0, 10) (0, 2, 9), (0, 0, 12) (0, 5, 7), (0, 11, 2) (0, 4, 8), (1, 11, 0)
(0, 1, 15), (1, 0, 14) (0, 1, 11), (0, 3, 10) (1, 6, 3), (0, 7, 6) (0, 7, 3), (0, 9, 1)
(1, 0, 10), (0, 0, 12) (0, 0, 15), (0, 0, 11) (0, 0, 1), (0, 3, 8) (0, 3, 1), (0, 7, 0)
(0, 0, 11), (0, 0, 8) (2, 0, 8), (0, 1, 10) (0, 8, 3), (0, 2, 12) (0, 1, 3), (0, 12, 0)
(1, 0, 6), (0, 0, 15) (0, 0, 10), (0, 1, 13) (0, 1, 12), (0, 10, 5) (2, 12, 0), (0, 11, 3)
(0, 0, 12), (0, 0, 12) (0, 1, 9), (0, 0, 14) (0, 5, 6), (0, 1, 11) (0, 5, 6), (0, 4, 8)
(0, 0, 13), (0, 0, 10) (1, 1, 11), (0, 1, 9) (0, 3, 10), (0, 0, 13) (0, 5, 7), (2, 3, 9)
(0, 0, 10), (1, 0, 11) (0, 1, 10), (0, 0, 15) (0, 6, 1), (0, 2, 6) (0, 9, 1), (0, 0, 9)
(0, 0, 12), (0, 0, 13) (0, 0, 15), (0, 3, 10) (0, 1, 2), (0, 0, 7) (0, 5, 4), (0, 2, 5)
(1, 0, 14), (0, 0, 13) (0, 2, 5), (0, 1, 11) (0, 4, 6), (0, 0, 12) (1, 3, 9), (0, 2, 5)
(0, 0, 13), (1, 0, 14) (0, 1, 6), (1, 1, 8) (0, 1, 11)

(0, 0, 14)

Source: Study described in article by C. J. Price, C. A Kimmel, R. W. Tyl, and M. C. Marr, Toxicol.
Appl. Pharmac., 81: 113–127, 1985.

a. Let πit denote the probability of hatching for an egg from clutch i in
treatment t . Assuming independent binomial observations, fit the model

logit(πit ) = α + β1z1 + β2z2

where zt = 1 for treatment t and 0 otherwise. What does your software
report for β̂1. (It should be −∞, since treatment 1 has no successes.)

b. Model these data using random effects for the clutches. Compare the
results with (a).

Table 10.13. Data on Fish Hatching for Problem 10.21

Treatment 1 Treatment 2 Treatment 3

Clutch No. Hatched Total No. Hatched Total No. Hatched Total

1 0 6 3 6 0 6
2 0 13 0 13 0 13
3 0 10 8 10 6 9
4 0 16 10 16 9 16
5 0 32 25 28 23 30
6 0 7 7 7 5 7
7 0 21 10 20 4 20

Source: Thanks to Becca Hale, Zoology Department, University of Florida for these data.

10.22 Problem 3.15 analyzed data from a General Social Survey on responses of
1308 subjects to the question, “Within the past 12 months, how many people
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have you known personally that were victims of homicide?” It used Poisson
and negative binomial GLMs for count data. Here is a possible GLMM: For
response yi for subject i of race xi (1 = black, 0 = white),

log[E(Yi)] = ui + α + βxi

where conditional onui , yi has a Poisson distribution, and where {ui} are inde-
pendent N(0, σ ). Like the negative binomial GLM, unconditionally (when
σ > 0) this model can allow more variability than the Poisson GLM.

a. The Poisson GLMM has α̂ = −3.69 and β̂ = 1.90, with σ̂ = 1.6. Show
that, for subjects at the mean of the random effects distribution, the
estimated expected responses are 0.167 for blacks and 0.025 for whites.

b. Interpret β̂.

10.23 A crossover study compares two drugs on a binary response variable. The
study classifies subjects by age as under 60 or over 60. In a GLMM, these
two age groups have the same conditional effect comparing the drugs, but
the older group has a much larger variance component for its random effects.
For the corresponding marginal model, explain why the drug effect for the
older group will be smaller than that for the younger group.

10.24 True, or false? In a logistic regression model containing a random effect as
a way of modeling within-subject correlation in repeated measures studies,
the greater the estimate σ̂ for the random effects distribution, the greater the
heterogeneity of the subjects, and the larger in absolute value the estimated
effects tend to be compared with the marginal model approach (with effects
averaged over subjects, rather than conditional on subjects).
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A Historical Tour of Categorical
Data Analysis∗

We conclude by providing a historical overview of the evolution of methods for
categorical data analysis (CDA). The beginnings of CDA were often shrouded in
controversy. Key figures in the development of statistical science made groundbreak-
ing contributions, but these statisticians were often in heated disagreement with one
another.

11.1 THE PEARSON–YULE ASSOCIATION CONTROVERSY

Much of the early development of methods for CDA took place in the UK. It is fitting
that we begin our historical tour in London in 1900, because in that year Karl Pearson
introduced his chi-squared statistic (X2). Pearson’s motivation for developing the chi-
squared test included testing whether outcomes on a roulette wheel in Monte Carlo
varied randomly and testing statistical independence in two-way contingency tables.

Much of the literature on CDA in the early 1900s consisted of vocal debates
about appropriate ways to summarize association. Pearson’s approach assumed that
continuous bivariate distributions underlie cross-classification tables. He argued that
one should describe association by approximating a measure, such as the correlation,
for the underlying continuum. In 1904, Pearson introduced the term contingency as
a “measure of the total deviation of the classification from independent probability,”
and he introduced measures to describe its extent and to estimate the correlation.

George Udny Yule (1871–1951), an English contemporary of Pearson’s, took an
alternative approach in his study of association between 1900 and 1912. He believed
that many categorical variables are inherently discrete. Yule defined measures, such
as the odds ratio, directly using cell counts without assuming an underlying con-
tinuum. Discussing one of Pearson’s measures that assumes underlying normality,

An Introduction to Categorical Data Analysis, Second Edition. By Alan Agresti
Copyright © 2007 John Wiley & Sons, Inc.
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Yule stated “at best the normal coefficient can only be said to give us in cases like
these a hypothetical correlation between supposititious variables. The introduction of
needless and unverifiable hypotheses does not appear to me a desirable proceeding in
scientific work.” Yule also showed the potential discrepancy between marginal and
conditional associations in contingency tables, later noted by E. H. Simpson in 1951
and now called Simpson’s paradox.

Karl Pearson did not take kindly to criticism, and he reacted negatively to Yule’s
ideas. For example, Pearson claimed that the values ofYule’s measures were unstable,
since different collapsings of I × J tables to 2 × 2 tables could produce quite different
values. In 1913, Pearson and D. Heron filled more than 150 pages of Biometrika, a
journal he co-founded and edited, with a scathing reply toYule’s criticism. In a passage
critical also of Yule’s well-received book An Introduction to the Theory of Statistics,
they stated

If Mr. Yule’s views are accepted, irreparable damage will be done to the growth of modern
statistical theory. . . . [His measure] has never been and never will be used in any work done
under his [Pearson’s] supervision. . . . We regret having to draw attention to the manner in
which Mr. Yule has gone astray at every stage in his treatment of association, but criticism
of his methods has been thrust on us not only by Mr Yule’s recent attack, but also by the
unthinking praise which has been bestowed on a text-book which at many points can only
lead statistical students hopelessly astray.

Pearson and Heron attacked Yule’s “half-baked notions” and “specious reasoning”
and concluded that Yule would have to withdraw his ideas “if he wishes to maintain
any reputation as a statistician.”

Half a century after the Pearson–Yule controversy, Leo Goodman and William
Kruskal of the University of Chicago surveyed the development of measures of asso-
ciation for contingency tables and made many contributions of their own. Their 1979
book, Measures of Association for Cross Classifications, reprinted their four influ-
ential articles on this topic. Initial development of many measures occurred in the
1800s, such as the use of the relative risk by the Belgian social statistician Adolphe
Quetelet in 1849. The following quote from an article by M. H. Doolittle in 1887
illustrates the lack of precision in early attempts to quantify association even in 2 × 2
tables.

Having given the number of instances respectively in which things are both thus and so,
in which they are thus but not so, in which they are so but not thus, and in which they are
neither thus nor so, it is required to eliminate the general quantitative relativity inhering
in the mere thingness of the things, and to determine the special quantitative relativity
subsisting between the thusness and the soness of the things.

11.2 R. A. FISHER’S CONTRIBUTIONS

Karl Pearson’s disagreements with Yule were minor compared with his later ones
with Ronald A. Fisher (1890–1962). Using a geometric representation, in 1922 Fisher
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introduced degrees of freedom to characterize the family of chi-squared distributions.
Fisher claimed that, for tests of independence in I × J tables, X2 had df = (I − 1)

(J − 1). By contrast, in 1900 Pearson had argued that, for any application of his
statistic, df equalled the number of cells minus 1, or IJ − 1 for two-way tables.
Fisher pointed out, however, that estimating hypothesized cell probabilities using
estimated row and column probabilities resulted in an additional (I − 1) + (J − 1)

constraints on the fitted values, thus affecting the distribution of X2.
Not surprisingly, Pearson reacted critically to Fisher’s suggestion that his formula

for df was incorrect. He stated

I hold that such a view [Fisher’s] is entirely erroneous, and that the writer has done no
service to the science of statistics by giving it broad-cast circulation in the pages of the
Journal of the Royal Statistical Society. . . . I trust my critic will pardon me for comparing
him with Don Quixote tilting at the windmill; he must either destroy himself, or the whole
theory of probable errors, for they are invariably based on using sample values for those of
the sampled population unknown to us.

Pearson claimed that using row and column sample proportions to estimate unknown
probabilities had negligible effect on large-sample distributions. Fisher was unable to
get his rebuttal published by the Royal Statistical Society, and he ultimately resigned
his membership.

Statisticians soon realized that Fisher was correct. For example, in an article in
1926, Fisher provided empirical evidence to support his claim. Using 11,688 2×2
tables randomly generated by Karl Pearson’s son, E. S. Pearson, he found a sample
mean of X2 for these tables of 1.00001; this is much closer to the 1.0 predicted by
his formula for E(X2) of df = (I − 1)(J − 1) = 1 than Pearson’s IJ − 1 = 3. Fisher
maintained much bitterness over Pearson’s reaction to his work. In a later volume of
his collected works, writing about Pearson, he stated “If peevish intolerance of free
opinion in others is a sign of senility, it is one which he had developed at an early age.”

Fisher also made good use of CDA methods in his applied work. For example, he
was also a famed geneticist. In one article, Fisher used Pearson’s goodness-of-fit test
to test Mendel’s theories of natural inheritance. Calculating a summary P -value from
the results of several of Mendel’s experiments, he obtained an unusually large value
(P = 0.99996) for the right-tail probability of the reference chi-squared distribution.
In other words X2 was so small that the fit seemed too good, leading Fisher in 1936
to comment “the general level of agreement between Mendel’s expectations and his
reported results shows that it is closer than would be expected in the best of several
thousand repetitions. . . . I have no doubt that Mendel was deceived by a gardening
assistant, who knew only too well what his principal expected from each trial made.”
In a letter written at the time, he stated “Now, when data have been faked, I know very
well how generally people underestimate the frequency of wide chance deviations,
so that the tendency is always to make them agree too well with expectations.”

In 1934 the fifth edition of Fisher’s classic text Statistical Methods for Research
Workers introduced “Fisher’s exact test” for 2 × 2 contingency tables. In his 1935
book The Design of Experiments, Fisher described the tea-tasting experiment
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(Section 2.6.2) based on his experience at an afternoon tea break while employed
at Rothamsted Experiment Station. Other CDA-related work of his included showing
how to (i) find ML estimates of parameters in the probit model (an iterative weighted
least squares method today commonly called Fisher scoring), (ii) find ML estimates
of cell probabilities satisfying the homogeneous association property of equality of
odds ratios between two variables at each level of the third, and (iii) assign scores to
rows and columns of a contingency table to maximize the correlation.

11.3 LOGISTIC REGRESSION

The mid-1930s finally saw some model building for categorical responses. For
instance, Chester Bliss popularized the probit model for applications in toxicology
dealing with a binary response. See Chapter 9 of Cramer (2003) for a survey of the
early origins of binary regression models.

In a book of statistical tables published in 1938, R. A. Fisher and Frank Yates
suggested log[π/(1 − π)] as a possible transformation of a binomial parameter for
analyzing binary data. In 1944, the physician and statistician Joseph Berkson intro-
duced the term “logit” for this transformation. Berkson showed that the logistic
regression model fitted similarly to the probit model, and his subsequent work did
much to popularize logistic regression. In 1951, Jerome Cornfield, another statisti-
cian with a medical background, showed the use of the odds ratio for approximating
relative risks in case–control studies with this model.

In the early 1970s, work by the Danish statistician and mathematician Georg Rasch
sparked an enormous literature on item response models. The most important of these
is the logit model with subject and item parameters, now called the Rasch model
(Section 10.2.5). This work was highly influential in the psychometric community of
northern Europe (especially in Denmark, the Netherlands, and Germany) and spurred
many generalizations in the educational testing community in the United States.

The extension of logistic regression to multicategory responses received occasional
attention before 1970, but substantial work after that date. For nominal responses,
early work was mainly in the econometrics literature. In 2000, Daniel McFadden
won the Nobel Prize in economics for his work in the 1970s and 1980s on the
discrete-choice model (Section 6.1.5). Cumulative logit models received some atten-
tion starting in the 1960s and 1970s, but did not become popular until an article by
Peter McCullagh in 1980 provided a Fisher scoring algorithm for ML fitting of a more
general model for cumulative probabilities allowing a variety of link functions.

Other major advances with logistic regression dealt with its application to case–
control studies in the 1970s and the conditional ML approach to model fitting for
those studies and others with numerous nuisance parameters. Biostatisticians Norman
Breslow and Ross Prentice at the University of Washington had a strong influence on
this. The conditional approach was later exploited in small-sample exact inference in
a series of papers by Cyrus Mehta, Nitin Patel, and colleagues at Harvard.

Perhaps the most far-reaching contribution was the introduction by British statis-
ticians John Nelder and R. W. M. Wedderburn in 1972 of the concept of generalized
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linear models. This unifies the logistic and probit regression models for binomial
responses with loglinear models for Poisson or negative binomial responses and with
long-established regression and ANOVA models for normal responses.

More recently, attention has focused on fitting logistic regression models to cor-
related responses for clustered data. One strand of this is marginal modeling of
longitudinal data, proposed by Kung-Yee Liang and Scott Zeger at Johns Hopkins
in 1986 using generalized estimating equations (GEE). Another strand is generalized
linear mixed models, including multi-level models.

11.4 MULTIWAY CONTINGENCY TABLES AND LOGLINEAR
MODELS

In the early 1950s, William Cochran published work dealing with a variety of impor-
tant topics in CDA. He introduced a generalization (Cochran’s Q) of McNemar’s
test for comparing proportions in several matched samples. He showed how to par-
tition chi-squared statistics and developed sample size guidelines for chi-squared
approximations to work well for the X2 statistic. He proposed a test of condi-
tional independence for 2 × 2 × K tables, similar to the one proposed by Mantel
and Haenszel in 1959. Although best known for the Cochran–Mantel–Haenszel test,
Nathan Mantel himself made a variety of contributions to CDA, including a trend test
for ordinal data and work on multinomial logit modeling and on logistic regression
for case–control data.

The 1950s and early 1960s saw an abundance of work on association and interaction
structure in multiway tables. These articles were the genesis of research work on
loglinear models between about 1965 and 1975.

At the University of Chicago, Leo Goodman wrote a series of groundbreaking arti-
cles, dealing with such topics as partitionings of chi-squared, models for square tables
(e.g., quasi-independence), latent class models, and specialized models for ordinal
data. Goodman also wrote a stream of articles for social science journals that had a
substantial impact on popularizing loglinear and logit methods for applications. Over
the past 50 years, Goodman has been the most prolific contributor to the advance-
ment of CDA methodology. In addition, some of Goodman’s students, such as Shelby
Haberman and Clifford Clogg, also made fundamental contributions.

Simultaneously, related research on ML methods for loglinear-logit models
occurred at Harvard University by students of Frederick Mosteller (such as Stephen
Fienberg) and William Cochran. Much of this research was inspired by problems
arising in analyzing large, multivariate data sets in the National Halothane Study.
That study investigated whether halothane was more likely than other anesthetics to
cause death due to liver damage. A presidential address by Mosteller to the American
Statistical Association (Mosteller, J. Amer, Statist. Assoc., 63: 1–28, 1968) describes
early uses of loglinear models for smoothing multidimensional discrete data sets.
A landmark book in 1975 by Yvonne Bishop, Stephen Fienberg, and Paul Holland,
Discrete Multivariate Analysis, helped to introduce loglinear models to the general
statistical community.
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Figure 11.1. Four leading figures in the development of categorical data analysis.
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Research at the University of North Carolina by Gary Koch and several colleagues
was highly influential in the biomedical sciences. Their research developed weighted
least squares (WLS) methods for categorical data models. An article in 1969 by Koch
with J. Grizzle and F. Starmer popularized this approach. In later articles, Koch and
colleagues appliedWLS to problems for which ML methods are difficult to implement,
such as the analysis of repeated categorical measurement data. For large samples with
fully categorical data, WLS estimators have similar properties as ML.

Certain loglinear models with conditional independence structure provide graph-
ical models for contingency tables. These relate to the conditional independence
graphs that Section 7.4.1 used. An article by John Darroch, Steffen Lauritzen, and
Terry Speed in 1980 was the genesis of much of this work.

11.5 FINAL COMMENTS

Methods for CDA continue to be developed. In the past decade, an active area of
new research has been the modeling of clustered data, such as using GLMMs. In
particular, multilevel (hierarchical) models have become increasingly popular.

The development of Bayesian approaches to CDA is an increasingly active area.
Dennis Lindley and I. J. Good were early proponents of the Bayesian approach for
categorical data, in the mid 1960s. Recently, the Bayesian approach has seen renewed
interest because of the development of methods for numerically evaluating posterior
distributions for increasingly complex models. See O’Hagan and Forster (2004).

Another active area of research, largely outside the realm of traditional modeling,
is the development of algorithmic methods for huge data sets with large numbers of
variables. Such methods, often referred to as data mining, deal with the handling
of complex data structures, with a premium on predictive power at the sacrifice of
simplicity and interpretability of structure. Important areas of application include
genetics, such as the analysis of discrete DNA sequences in the form of very high-
dimensional contingency tables, and business applications such as credit scoring and
tree-structured methods for predicting behavior of customers.

The above discussion provides only a sketchy overview of the development of
CDA. Further details and references for technical articles and books appear in Agresti
(2002).
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Appendix A: Software for
Categorical Data Analysis

All major statistical software has procedures for categorical data analyses. This
appendix has emphasis on SAS. For information about other packages (such as
S-plus, R, SPSS, and Stata) as well as updated information about SAS, see the web
site www.stat.ufl.edu/∼aa/cda/software.html.

For certain analyses, specialized software is better than the major packages. A
good example is StatXact (Cytel Software, Cambridge, MA, USA), which provides
exact analysis for categorical data methods and some nonparametric methods. Among
its procedures are small-sample confidence intervals for differences and ratios of
proportions and for odds ratios, and Fisher’s exact test and its generalizations for I × J

and three-way tables. Its companion program LogXact performs exact conditional
logistic regression.

SAS FOR CATEGORICAL DATA ANALYSIS

In SAS, the main procedures (PROCs) for categorical data analyses are FREQ, GEN-
MOD, LOGISTIC, and NLMIXED. PROC FREQ computes chi-squared tests of
independence, measures of association and their estimated standard errors. It also
performs generalized CMH tests of conditional independence, and exact tests of
independence in I × J tables. PROC GENMOD fits generalized linear models,
cumulative logit models for ordinal responses, and it can perform GEE analyses for
marginal models. PROC LOGISTIC provides ML fitting of binary response models,
cumulative logit models for ordinal responses, and baseline-category logit models for
nominal responses. It incorporates model selection procedures, regression diagnostic

An Introduction to Categorical Data Analysis, Second Edition. By Alan Agresti
Copyright © 2007 John Wiley & Sons, Inc.
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options, and exact conditional inference. PROC NLMIXED fits generalized linear
mixed models (models with random effects).

The examples below show SAS code (version 9), organized by chapter of pre-
sentation. For convenience, some of the examples enter data in the form of the
contingency table displayed in the text. In practice, one would usually enter data
at the subject level. Most of these tables and the full data sets are available at
www.stat.ufl.edu/∼aa/cda/software.html. For more detailed discussion of the use
of SAS for categorical data analyses, see specialized SAS publications such as
Allison (1999) and Stokes et al. (2000). For application of SAS to clustered data,
see Molenberghs and Verbeke (2005).

CHAPTER 2: CONTINGENCY TABLES

Table A.1 uses SAS to analyze Table 2.5. The @@ symbol indicates that each line of
data contains more than one observation. Input of a variable as characters rather than
numbers requires an accompanying $ label in the INPUT statement.

Table A.1. SAS Code for Chi-Squared, Measures of Association, and Residuals
with Party ID Data in Table 2.5

data table;
input gender $ party $ count ©©;

datalines;
female dem 762 female indep 327 female repub 468
male dem 484 male inidep 239 male repub 477
;

proc freq order=data; weight count;
tables gender∗party / chisq expected measures cmh1;

proc genmod order=data; class gender party;
model count = gender party / dist=poi link=log residuals;

PROC FREQ forms the table with the TABLES statement, ordering row and col-
umn categories alphanumerically. To use instead the order in which the categories
appear in the data set (e.g., to treat the variable properly in an ordinal analysis), use the
ORDER=DATA option in the PROC statement. The WEIGHT statement is needed
when one enters the contingency table instead of subject-level data. PROC FREQ
can conduct chi-squared tests of independence (CHISQ option), show its estimated
expected frequencies (EXPECTED), provide a wide assortment of measures of asso-
ciation and their standard errors (MEASURES), and provide ordinal statistic (2.10)
with a “nonzero correlation” test (CMH1). One can also perform chi-squared tests
using PROC GENMOD (using loglinear models discussed in the Chapter 7 section of
this Appendix), as shown. Its RESIDUALS option provides cell residuals. The output
labeled “StReschi” is the standardized residual (2.9).

Table A.2 analyzes Table 2.8 on tasting tea. With PROC FREQ, for 2 × 2 tables the
MEASURES option in the TABLES statement provides confidence intervals for the
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Table A.2. SAS Code for Fisher’s Exact Test and Confidence Intervals for Odds
Ratio for Tea-Tasting Data in Table 2.8

data fisher;
input poured guess count ©©;
datalines;
1 1 3 1 2 1 2 1 1 2 2 3
;
proc freq; weight count;

tables poured*guess / measures riskdiff;
exact fisher or / alpha=.05;

odds ratio (labeled “case-control” on output) and the relative risk, and the RISKDIFF
option provides intervals for the proportions and their difference. For tables having
small cell counts, the EXACT statement can provide various exact analyses. These
include Fisher’s exact test and its generalization for I × J tables, treating variables as
nominal, with keyword FISHER. The OR keyword gives the odds ratio and its large-
sample and small-sample confidence intervals. Other EXACT statement keywords
include binomial tests for 1 × 2 tables (keyword BINOMIAL), exact trend tests for
I × 2 tables (TREND), and exact chi-squared tests (CHISQ) and exact correlation
tests for I × J tables (MHCHI).

CHAPTER 3: GENERALIZED LINEAR MODELS

PROC GENMOD fits GLMs. It specifies the response distribution in the DIST option
(“poi” for Poisson, “bin” for binomial, “mult” for multinomial, “negbin” for negative
binomial) and specifies the link in the LINK option. Table A.3 illustrates for binary
regression models for the snoring and heart attack data of Table 3.1. For binomial
grouped data, the response in the model statements takes the form of the number
of “successes” divided by the number of cases. Table A.4 fits Poisson and negative
binomial loglinear models for the horseshoe crab data of Table 3.2.

Table A.3. SAS Code for Binary GLMs for Snoring Data in Table 3.1

data glm;
input snoring disease total ©©;
datalines;
0 24 1379 2 35 638 4 21 213 5 30 254
;
proc genmod; model disease/total = snoring / dist=bin link=identity;
proc genmod; model disease/total = snoring / dist=bin link=logit;

PROC GAM fits generalized additive models. These can smooth data, as illustrated
by Figure 3.5.
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Table A.4. SAS Code for Poisson Regression, Negative Binomial Regression, and
Logistic Regression Models with Horseshoe Crab Data of Table 3.2

data crab;
input color spine width satell weight;
if satell>0 then y=1; if satell=0 then y=0;
datalines;
2 3 28.3 8 3.05
...
2 2 24.5 0 2.00
;
proc genmod;
model satell = width / dist=poi link=log;

proc genmod;
model satell = width / dist=negbin link=log;

proc genmod descending; class color;
model y = width color / dist=bin link=logit lrci type3 obstats;
contrast ’a-d’ color 1 0 0 -1;

proc logistic descending;
model y = width;
output out = predict p = pi_hat lower = LCL upper = UCL;

proc print data = predict;
proc logistic descending; class color spine / param=ref;
model y = width weight color spine / selection=backward lackfit outroc=classif1;

proc plot data=classif1; plot _sensit_ ∗ _1mspec_ ;

CHAPTERS 4 AND 5: LOGISTIC REGRESSION

PROC GENMOD and PROC LOGISTIC can fit logistic regression. In GENMOD,
the LRCI option provides confidence intervals based on the likelihood-ratio test. The
ALPHA = option can specify an error probability other than the default of 0.05.
The TYPE3 option provides likelihood-ratio tests for each parameter. In GENMOD
or LOGISTIC, a CLASS statement for a predictor requests that it be treated as a
qualitative factor by setting up indicator variables for it. By default, in GENMOD the
parameter estimate for the last category of a factor equals 0. In LOGISTIC, estimates
sum to zero. That is, indicator variables take the coding (1, −1) of 1 when in the
category and −1 when not, for which parameters sum to 0. The option PARAM=REF
in the CLASS statement in LOGISTIC requests (1, 0) dummy variables with the last
category as the reference level.

Table A.4 shows logistic regression analyses for Table 3.2. The models refer
to a constructed binary variable Y that equals 1 when a horseshoe crab has satel-
lites and 0 otherwise. With binary data entry, GENMOD and LOGISTIC order
the levels alphanumerically, forming the logit with (1, 0) responses as log[P(Y =
0)/P (Y = 1)]. Invoking the procedure with DESCENDING following the PROC
name reverses the order. The CONTRAST statement provides tests involving con-
trasts of parameters, such as whether parameters for two levels of a factor are identical.
The statement shown contrasts the first and fourth color levels. For PROC LOGISTIC,
the INFLUENCE option provides residuals and diagnostic measures. Following the
first LOGISTIC model statement, it requests predicted probabilities and lower and
upper 95% confidence limits for the probabilities. LOGISTIC has options for step-
wise selection of variables, as the final model statement shows. The LACKFIT option
yields the Hosmer–Lemeshow statistic. The CTABLE option gives a classification
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table, with cutoff point specified by PPROB. Using the OUTROC option, LOGISTIC
can output a data set for plotting a ROC curve.

Table A.5 uses GENMOD and LOGISTIC to fit a logit model with qualita-
tive predictors to Table 4.4. In GENMOD, the OBSTATS option provides various
“observation statistics,” including predicted values and their confidence limits. The
RESIDUALS option requests residuals such as the standardized residuals (labeled
“StReschi”). In LOGISTIC, the CLPARM=BOTH and CLODDS=BOTH options
provide Wald and likelihood-based confidence intervals for parameters and odds ratio
effects of explanatory variables. With AGGREGATE SCALE=NONE in the model
statement, LOGISTIC reports Pearson and deviance tests of fit; it forms groups by
aggregating data into the possible combinations of explanatory variable values.

Table A.5. SAS Code for Logit Modeling of HIV Data in Table 4.4

data aids;
input race $ azt $ y n ©©;
datalines;
White Yes 14 107 White No 32 113 Black Yes 11 63 Black No 12 55
;
proc genmod; class race azt;

model y/n = azt race / dist=bin type3 lrci residuals obstats;
proc logistic; class race azt / param=ref;

model y/n = azt race / aggregate scale=none clparm=both clodds=both;

Exact conditional logistic regression is available in PROC LOGISTIC with
the EXACT statement. It provides ordinary and mid P -values as well as confi-
dence limits for each model parameter and the corresponding odds ratio with the
ESTIMATE=BOTH option.

CHAPTER 6: MULTICATEGORY LOGIT MODELS

PROC LOGISTIC fits baseline-category logit models using the LINK=GLOGIT
option. The final response category is the default baseline for the logits. Table A.6
fits a model to Table 6.1.

Table A.6. SAS Code for Baseline-category Logit Models with Alligator Data
in Table 6.1

data gator;
input length choice $ ©©;
datalines;
1.24 I 1.30 I 1.30 I 1.32 F 1.32 F 1.40 F 1.42 I 1.42 F
...
3.68 0 3.71 F 3.89 F
;
proc logistic;

model choice = length / link=glogit aggregate scale=none;
run;
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PROC GENMOD can fit the proportional odds version of cumulative logit mod-
els using the DIST=MULTINOMIAL and LINK=CLOGIT options. Table A.7 fits
it to Table 6.9. When the number of response categories exceeds two, by default
PROC LOGISTIC fits this model. It also gives a score test of the proportional odds
assumption of identical effect parameters for each cutpoint.

Table A.7. SAS Code for Cumulative Logit Model with Mental Impairment Data
of Table 6.9

data impair;
input mental ses life;
datalines;
1 1 1
....
4 0 9
;
proc genmod ;

model mental = life ses / dist=multinomial link=clogit lrci type3;
proc logistic;

model mental = life ses;

One can fit adjacent-categories logit models in SAS by fitting equivalent baseline-
category logit models (e.g., see Table A.12 in the Appendix in Agresti, 2002). With
the CMH option, PROC FREQ provides the generalized CMH tests of conditional
independence. The statistic for the “general association” alternative treats X and Y as
nominal, the statistic for the “row mean scores differ” alternative treats X as nominal
and Y as ordinal, and the statistic for the “nonzero correlation” alternative treats X

and Y as ordinal.

CHAPTER 7: LOGLINEAR MODELS FOR CONTINGENCY TABLES

Table A.8 uses GENMOD to fit model (AC, AM, CM) to Table 7.3. Table A.9 uses
GENMOD to fit the linear-by-linear association model (7.11) to Table 7.15 (with
column scores 1,2,4,5). The defined variable “assoc” represents the cross-product of
row and column scores, which has β parameter as coefficient in model (7.11).

Table A.8. SAS Code for Fitting Loglinear Models to Drug Survey Data of Table 7.3

data drugs;
input a c m count ©©;
datalines;
1 1 1 911 1 1 2 538 1 2 1 44 1 2 2 456
2 1 1 3 2 1 2 43 2 2 1 2 2 2 2 279
;
proc genmod; class a c m;
model count = a c m a∗m a∗c c∗m / dist=poi link=log lrci type3 obstats;
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Table A.9. SAS Code for Fitting Association Models to GSS Data of Table 7.15

data sex;
input premar birth u v count ©©; assoc = u∗v ;
datalines;
1 1 1 1 38 1 2 1 2 60 1 3 1 4 68 1 4 1 5 81
...
;
proc genmod; class premar birth;
model count = premar birth assoc / dist=poi link=log;

CHAPTER 8: MODELS FOR MATCHED PAIRS

Table A.10 analyzes Table 8.1. The AGREE option in PROC FREQ provides the
McNemar chi-squared statistic for binary matched pairs, the X2 test of fit of the
symmetry model (also called Bowker’s test), and Cohen’s kappa and weighted
kappa with SE values. The MCNEM keyword in the EXACT statement provides
a small-sample binomial version of McNemar’s test. PROC CATMOD can pro-
vide the confidence interval for the difference of proportions. The code forms a
model for the marginal proportions in the first row and the first column, specifying a
matrix in the model statement that has an intercept parameter (the first column) that
applies to both proportions and a slope parameter that applies only to the second;
hence the second parameter is the difference between the second and first marginal
proportions. (It is also possible to get the interval with the GEE methods of Chap-
ter 9, using PROC GENMOD with the REPEATED statement and identity link
function.)

Table A.10. SAS Code for McNemar’s Test and Comparing Proportions for Matched
Samples in Table 8.1

data matched;
input taxes living count ©©;
datalines;
1 1 227 1 2 132 2 1 107 2 2 678
;
proc freq; weight count;

tables taxes∗living / agree; exact mcnem;
proc catmod; weight count;

response marginals;
model taxes∗living = (1 0 ,

1 1 ) ;

Table A.11 shows a way to test marginal homogeneity for Table 8.5 on coffee
purchases. The GENMOD code expresses the I 2 expected frequencies in terms of
parameters for the (I − 1)2 cells in the first I − 1 rows and I − 1 columns, the cell in
the last row and last column, and I − 1 marginal totals (which are the same for rows
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Table A.11. SAS Code for Testing Marginal Homogeneity with Coffee Data of Table 8.5

data migrate;
input first $ second $ count m11 m12 m13 m14 m21 m22 m23 m24

m31 m32 m33 m34 m41 m42 m43 m44 m55 m1 m2 m3 m4;
datalines;
high high 93 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
high tast 17 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
high sank 44 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
high nesc 7 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
high brim 10 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
...
nesc nesc 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
nesc brim 2 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 -1 -1 0 0 0 0 1
brim high 10 -1 0 0 0 -1 0 0 0 -1 0 0 0 -1 0 0 0 0 1 0 0 0
brim tast 4 0 -1 0 0 0 -1 0 0 0 -1 0 0 0 -1 0 0 0 0 1 0 0
brim sank 12 0 0 -1 0 0 0 -1 0 0 0 -1 0 0 0 -1 0 0 0 0 1 0
brim nesc 2 0 0 0 -1 0 0 0 -1 0 0 0 -1 0 0 0 -1 0 0 0 0 1
brim brim 27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

;
proc genmod;

model count = m11 m12 m13 m14 m21 m22 m23 m24 m31 m32 m33 m34 m41
m42 m43 m44 m55 m1 m2 m3 m4
/ dist=poi link=identity obstats residuals;

and columns). Here, m11 denotes expected frequency μ11, m1 denotes μ1+ = μ+1,
and so forth. This parameterization uses formulas such as μ15 = μ1+ − μ11 − μ12 −
μ13 − μ14 for terms in the last column or last row. The likelihood-ratio test statistic
for testing marginal homogeneity is the deviance statistic for this model.

Table A.12 shows analyses of Table 8.6. First the data are entered as a 4 × 4
table, and the loglinear model fitted is quasi independence. The “qi” factor invokes

Table A.12. SAS Code Showing Square-table Analyses of Tables 8.6

data square;
input recycle drive qi count ©©;
datalines;
1 1 1 12 1 2 5 43 1 3 5 163 1 4 5 233
2 1 5 4 2 2 2 21 2 3 5 99 2 4 5 185
3 1 5 4 3 2 5 8 3 3 3 77 3 4 5 230
4 1 5 0 4 2 5 1 4 3 5 18 4 4 4 132
;
proc genmod; class drive recycle qi;

model count = drive recycle qi / dist=poi link=log; ∗ quasi indep;
data square2;
input score below above ©©; trials = below + above;
datalines;
1 4 43 1 8 99 1 18 230 2 4 163 2 1 185 3 0 233
;
proc genmod data=square2;

model above/trials = / dist=bin link=logit noint;
proc genmod data=square2;

model above/trials = score / dist=bin link=logit noint;
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the δi parameters in equation (8.12). It takes a separate level for each cell on the
main diagonal, and a common value for all other cells. The bottom of Table A.12
fits logit models for the data entered in the form of pairs of cell counts (nij , nji).
These six sets of binomial count are labeled as “above” and “below” with ref-
erence to the main diagonal. The variable defined as “score” is the distance
(uj − ui) = j − i. The first model is symmetry and the second is ordinal quasi
symmetry. Neither model contains an intercept (NOINT). The quasi-symmetry
model can be fitted using the approach shown next for the equivalent Bradley–Terry
model.

TableA.13 uses GENMOD for logit fitting of the Bradley–Terry model to Table 8.9
by forming an artificial explanatory variable for each player. For a given obser-
vation, the variable for player i is 1 if he wins, −1 if he loses, and 0 if he is
not one of the players for that match. Each observation lists the number of wins
(“wins”) for the player with variate-level equal to 1 out of the number of matches
(“n”) against the player with variate-level equal to −1. The model has these artifi-
cial variates, one of which is redundant, as explanatory variables with no intercept
term. The COVB option provides the estimated covariance matrix of parameter
estimators.

Table A.13. SAS Code for Fitting Bradley–Terry Model to Tennis Data in Table 8.9

data tennnis;
input win n agassi federer henman hewitt roddick ;
datalines;
0 6 1 -1 0 0 0
0 0 1 0 -1 0 0
...
3 5 0 0 0 1 -1
;
proc genmod;
model win/n = agassi federer henman hewitt roddick / dist=bin link=logit noint covb;

CHAPTER 9: MODELING CORRELATED, CLUSTERED RESPONSES

TableA.14 uses GENMOD to analyze the depression data in Table 9.1 using GEE. The
REPEATED statement specifies the variable name (here, “case”) that identifies the
subjects for each cluster. Possible working correlation structures are TYPE=EXCH
for exchangeable, TYPE=AR for autoregressive, TYPE=INDEP for independence,
and TYPE=UNSTR for unstructured. Output shows estimates and standard errors
under the naive working correlation and incorporating the empirical dependence.
Alternatively, the working association structure in the binary case can use the log
odds ratio (e.g., using LOGOR=EXCH for exchangeability). The type3 option with
the GEE approach provides score-type tests about effects. See Stokes et al. (2000,
Section 15.11) for the use of GEE with missing data. See Table A.22 in Agresti (2002)
for using GENMOD to implement GEE for a cumulative logit model for the insomnia
data in Table 9.6.
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Table A.14. SAS Code for Marginal and Random Effects Modeling of Depression
Data in Table 9.1

data depress;
input case diagnose drug time outcome ©©; ∗ outcome=1 is normal;
datalines;
1 0 0 0 1 1 0 0 1 1 1 0 0 2 1
...
340 1 1 0 0 340 1 1 1 0 340 1 1 2 0
;
proc genmod descending; class case;
model outcome = diagnose drug time drug∗time / dist=bin link=logit type3;
repeated subject=case / type=exch corrw;

proc nlmixed;
eta = u + alpha + beta1∗diagnose + beta2∗drug + beta3∗time + beta4∗drug∗time;
p = exp(eta)/(1 + exp(eta));
model outcome ˜ binary(p);
random u ˜ normal(0, sigma∗sigma) subject = case;

CHAPTER 10: RANDOM EFFECTS: GENERALIZED LINEAR
MIXED MODELS

PROC NLMIXED extends GLMs to GLMMs by including random effects. TableA.23
inAgresti (2002) shows how to fit the matched pairs model (10.3). TableA.15 analyzes
the basketball data in Table 10.2. TableA.16 fits model (10.5) to Table 10.4 on abortion
questions. This shows how to set the number of quadrature points for Gauss–Hermite
quadrature (e.g., QPOINTS = ) and specify initial parameter values (perhaps based
on an initial run with the default number of quadrature points). Table A.14 uses
NLMIXED for the depression study of Table 9.1. Table A.22 in Agresti (2002) uses
NLMIXED for ordinal modeling of the insomnia data in Table 9.6.

Table A.15. SAS Code for GLMM Analyses of Basketball Data in Table 10.2

data basket;
input player $ y n ©©;
datalines;
yao 10 13 frye 9 10 camby 10 15 okur 9 14
....
;
proc nlmixed;

eta = alpha + u; p = exp(eta) / (1 + exp(eta));
model y ˜ binomial(n,p);
random u ˜ normal(0,sigma∗sigma) subject=player;
predict p out=new;

proc print data=new;
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Table A.16. SAS Code for GLMM Modelling of Opinion in Table 10.4

data new;
input sex poor single any count;
datalines;
1 1 1 1 342
...
2 0 0 0 457
;
data new; set new;

sex = sex-1; case = _n_;
q1=1; q2=0; resp = poor; output;
q1=0; q2=1; resp = single; output;
q1=0; q2=0; resp = any; output;

drop poor single any;
proc nlmixed qpoints = 50;

parms alpha=0 beta1=.8 beta2=.3 gamma=0 sigma=8.6;
eta = u + alpha + beta1∗q1 + beta2∗q2 + gamma∗sex;
p = exp(eta)/(1 + exp(eta));
model resp ˜ binary(p);
ramdom u ˜ normal(0,sigma∗sigma) subject = case;
replicate count;
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Distribution Values

Right-Tail Probability

df 0.250 0.100 0.050 0.025 0.010 0.005 0.001

1 1.32 2.71 3.84 5.02 6.63 7.88 10.83
2 2.77 4.61 5.99 7.38 9.21 10.60 13.82
3 4.11 6.25 7.81 9.35 11.34 12.84 16.27
4 5.39 7.78 9.49 11.14 13.28 14.86 18.47
5 6.63 9.24 11.07 12.83 15.09 16.75 20.52
6 7.84 10.64 12.59 14.45 16.81 18.55 22.46
7 9.04 12.02 14.07 16.01 18.48 20.28 24.32
8 10.22 13.36 15.51 17.53 20.09 21.96 26.12
9 11.39 14.68 16.92 19.02 21.67 23.59 27.88
10 12.55 15.99 18.31 20.48 23.21 25.19 29.59
11 13.70 17.28 19.68 21.92 24.72 26.76 31.26
12 14.85 18.55 21.03 23.34 26.22 28.30 32.91
13 15.98 19.81 22.36 24.74 27.69 29.82 34.53
14 17.12 21.06 23.68 26.12 29.14 31.32 36.12
15 18.25 22.31 25.00 27.49 30.58 32.80 37.70
16 19.37 23.54 26.30 28.85 32.00 34.27 39.25
17 20.49 24.77 27.59 30.19 33.41 35.72 40.79
18 21.60 25.99 28.87 31.53 34.81 37.16 42.31
19 22.72 27.20 30.14 32.85 36.19 38.58 43.82
20 23.83 28.41 31.41 34.17 37.57 40.00 45.32
25 29.34 34.38 37.65 40.65 44.31 46.93 52.62
30 34.80 40.26 43.77 46.98 50.89 53.67 59.70
40 45.62 51.80 55.76 59.34 63.69 66.77 73.40
50 56.33 63.17 67.50 71.42 76.15 79.49 86.66
60 66.98 74.40 79.08 83.30 88.38 91.95 99.61
70 77.58 85.53 90.53 95.02 100.4 104.2 112.3
80 88.13 96.58 101.8 106.6 112.3 116.3 124.8
90 98.65 107.6 113.1 118.1 124.1 128.3 137.2
100 109.1 118.5 124.3 129.6 135.8 140.2 149.5

Source: Calculated using StaTable, Cytel Software, Cambridge, MA, USA.
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abortion, opinion on legalization, 8–9, 129,
294–295, 305–307, 341

accident rates, 83–84, 95, 96
admissions into graduate school, Berkeley,

168, 237
admissions into graduate school, Florida,

149–150, 321
adverse events, 311–313
afterlife, belief in, 21, 22–23, 25, 178–179,

206–207, 232–233
AIDS, opinion items, 233–234, 267
albumin in critically ill patients, 134, 322
alcohol, cigarette, and marijuana use,

209–215, 224, 226–228, 269,
320, 337

alcohol and infant malformation, 42–44,
91–92, 169

alligator food choice, 174–177,
197, 336

arrests and soccer attendance, 96
aspirin and heart disease, 26–28, 30–32,

57–58, 64
astrology, belief in, 58
automobile accidents in Florida, 238
automobile accidents in Maine, 202,

215–221, 240
automobile accident rates for elderly

men and women, 95
AZT and AIDS, 111–112, 146, 336

baseball and complete games, 123
basketball free throws, 303–304, 318,

319, 341
birth control opinion and political, religious,

sex items, 240
birth control and premarital sex, 228–232,

337–338
birth control and religious attendance, 242
breast cancer, 56, 60, 62, 125
breast cancer and mammograms, 23–24
British train accidents, 83–84, 96–97
Bush, George W., approval ratings, 125
Bush–Gore Presidential election, 90–91
busing, opinion, and other racial items,

233–234
butterfly ballot, 90–91

cancer of larynx and radiation therapy, 62–63
cancer remission and labelling index,

121–122, 165–166
carcinoma, diagnoses, 260–264
cereal and cholesterol, 201, 271
Challenger space shuttle and O-rings,

123–124
chemotherapy and lung cancer, 199
cholesterol and cereal, 201, 271
cholesterol and heart disease, 106, 162
cholesterol and psyllium, 201, 271
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cigarettes, marijuana, and alcohol, 209–215,
224, 226–228, 269, 320, 337

clinical trial (generic), 10
clinical trial for curing infection, 129–130,

322
clinical trial for fungal infections, 154–156
clinical trial for insomnia, 285–287, 295,

310–311
clinical trial for lung cancer, 199
clinical trial for ulcers, 294, 311–313
coffee market share, 253–254, 257–258,

262, 338–339
cola taste testing, 273
college (whether attend) and predictors, 133
colon cancer and diet, 268–269
computer chip defects, 93–94
condoms and education, 130–131
coronary risk and obese children, 296
credit cards and income, 92–93, 123
credit scoring, 166–167
cross-over study, 268, 291–292, 320, 324

death penalty, and racial items, 49–53, 63,
125–126, 135–136, 235

death rates in Maine and South Carolina, 63
depression, 277–279, 281–282, 291, 296,

307–309, 340–341
developmental toxicity, 191–193
diabetes and MI for Navajo Indians, 251
diagnoses of carcinoma, 260–264
diagnostic tests, 23–24, 55
diet and colon cancer, 268–269
drug use (Dayton), 209–215, 224, 226–228,

269, 320

educational aspirations and income, 62
elderly drivers and accidents, 95
environmental opinions, 18, 238, 244–250,

255–256, 259–260, 271, 300–301
esophageal cancer, 131–132
extramarital sex and premarital sex,

270–271, 321

fish hatching, 322–323

gender gap and political party identification,
37–40, 333

ghosts, belief in, 58

Government spending, 238–239
grade retention of students, 315–316
graduate admissions at Berkeley, 168, 237
graduate admissions at Florida, 149–150,

321
graduation rates for athletes, 133–134
greenhouse effect and car pollution, 271–272
grouped and ungrouped data, 167
gun homicide rate, 55

happiness and income, 59, 198
happiness and marital status, 203
happiness and religion, 200
health government spending, 238–239
heart attacks and aspirin, 26–28, 30–32,

57–58, 64
heart attacks and smoking, 32–33, 57, 97
heart catheterization, 56–57
heart disease and blood pressure, 151–152
heart disease and snoring, 69–73, 85–86, 92,

106, 123, 334
heaven and hell, 18, 266–267, 318
HIV and early AZT, 111–112, 146, 336
homicide rates, 55, 95, 324
horseshoe crabs and satellites, 75–82,

101–109, 116–121, 124, 133, 138–147,
163, 172, 334–335

incontinence, 171
infant malformation and alcohol, 42–44,

91–92, 169
infection, clinical trials, 129–130, 154–156,

322
insomnia, clinical trial, 285, 295, 310–311

job discrimination, 159
job satisfaction and income, 193–196, 197,

200, 202
job satisfaction and several predictors,

134–135
journal prestige rankings, 273

kyphosis and age, 124

law enforcement spending, 238
lung cancer and chemotherapies, 199
lung cancer meta analysis, 168
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lung cancer and smoking, 54, 56, 57, 58–59,
168

lymphocytic infiltration, 121–122, 165–166

mammogram sensitivity/specificity,
23–24, 55

marijuana, cigarette, and alcohol use,
209–215, 224, 226–228, 269, 320, 337

marital happiness and income, 198–199
MBTI personality test, 165
mental impairment, life events, and SES,

186–187, 337
merit pay and race, 127
meta analysis of albumin, 134, 322
meta analysis of heart disease and aspirin, 57
meta analysis of lung cancer and smoking,

168
mice and developmental toxicity, 191–193
migraine headaches, 268
missing people, 167
mobility, residential, 270, 272
motor vehicle accident rates, 95
multiple sclerosis diagnoses, 272
murder and race, 57, 95
murder rates and race and gender, 64
Myers–Briggs personality test (MBTI),

127–128, 164–165, 235–236
myocardial infarction and aspirin, 26–28,

30–32, 57–58, 64
myocardial infarction and diabetes, 251
myocardial infarction and smoking, 32–34

NCAA athlete graduation rates, 133–134

obese children, 296
oral contraceptive use, 128–129
osteosarcoma, 170–171

passive smoking and lung cancer, 49
pathologist diagnoses, 260–264
penicillin protecting rabbits, 169–170
personality tests and smoking, 165
pig farmers, 292–294
political ideology by party affiliation and

gender, 182–185, 188–191
political ideology and religious preference,

200
political party and gender, 37–40

political party and race, 59–60
political views, religious attendance, sex,

and birth control, 240
pregnancy of girls in Florida counties,

318–319
premarital sex and birth control, 228–232,

337–338
premarital sex and extramarital sex,

270–271, 321
Presidential approval rating, 125
Presidential election, 90–91
Presidential voting and income, 196
Presidential voting, busing, and race,

233–234
primary dysmenorrhea, 291–292
promotion discrimination, 159
prostate cancer, 55
psychiatric diagnosis and drugs, 60–61
psyllium and cholesterol, 201, 271

radiation therapy and cancer, 62–63
recycle or drive less, 255–256, 339–340
recycle and pesticide use, 271
religious attendance and happiness, 200
religious attendance and birth control,

240, 242
religious fundamentalism and education, 61
religious mobility, 269–270
residential mobility, 270, 272
respiratory illness and maternal smoking,

288–289
Russian roulette (Graham Greene), 17–18

sacrifices for environment, 244–250,
300, 338

seat belt and injury or death, 201–202,
215–223, 238

sex opinions, 228–232, 240, 270–271, 321
sexual intercourse, frequency, 95
sexual intercourse and gender and race,

133–134
Shaq O’Neal free throw shooting, 319
silicon wafer defects, 93–94
smoking and lung cancer, 54, 56, 57, 58–59,

168
smoking and myocardial infarction, 32–34
snoring and heart disease, 32–33, 57, 97
soccer attendance and arrests, 96
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soccer odds (World Cup), 56
sore throat and surgery, 132
space shuttle and O-ring failure, 123–124
strokes and aspirin, 57–58
student advancement, 314–316

taxes higher or cut living standards,
244–250, 337–338

tea tasting, 46–48, 334
teenage birth control and religious

attendance, 242
teenage crime, 60
tennis players, male, 264–266, 340

tennis players, female, 273–274
teratology, 283–284, 304–305
Titanic, 56
toxicity study, 191–193
trains and collisions, 83–84, 96–97

ulcers, clinical trial, 294, 311–313

vegetarianism, 18–19
veterinary information, sources of, 292–294

World Cup, 56
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Adjacent categories logit, 190–191, 337
Agreement, 260–264
Agresti–Coull confidence interval, 10
AIC (Akaike information criterion), 141–142
Alternating logistic regression, 287
Autoregressive correlation structure, 281

Backward elimination, 139–141, 226, 335
Baseline-category logits, 173–179, 194, 336
Bayesian methods, 17, 317, 331
Bernoulli variable, 4
Binary data, 25–26

dependent proportions, 244–252
grouped vs. ungrouped, 106, 110,

146–147, 148, 167
independent proportions, 26–27
matched pairs, 244–266
models, 68–73, 99–121, 137–162,

334–336
Binomial distribution, 4–5, 13–16, 25

comparing proportions, 26–27, 161,
244–252

confidence interval, 9–10, 20
and GLMs, 68–73
independent binomial sampling, 26
likelihood function, 6–7, 107, 152–153,

155, 157, 280, 316, 318
and logistic regression, 70–71, 99
mean and standard deviation, 4

overdispersion, 192–193, 280, 283–284,
304–305

proportion, inference for, 8–16, 17
residuals, 148
significance tests, 8
small-sample inference, 13–16

Bradley–Terry model, 264–266, 340
Breslow–Day test, 115

Canonical link, 67
Case-control study, 32–24, 105, 250–252,

328
Categorical data analysis, 1–342
Category choice, 189
Chi-squared distribution:

df, 35–36, 62, 327
mean and standard deviation, 35
reproductive property, 62
table of percentage points, 343

Chi-squared statistics:
independence, 34–38, 61, 333
invariance to category ordering, 40–41
likelihood-ratio, 36. See also

Likelihood-ratio statistic
linear trend, 41–45, 195
normal components, 62
partitioning, 39–40, 62, 329
Pearson, 35. See also Pearson chi-squared

statistic
and sparse data, 40, 156–157
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Classification table, 142–144
Clinical trial, 34, 154–155
Clustered data, 192–193, 276–277, 283–284,

297–301, 309
Cochran–Armitage trend test, 45
Cochran–Mantel–Haenszel (CMH) test,

114–115, 329
and logistic models, 115
and marginal homogeneity, 252
and McNemar test, 252
nominal variables, 194–196, 337
ordinal variables, 194–196, 337
software, 337

Cochran’s Q, 252, 329
Coding factor levels, 110, 113, 155, 335
Cohen’s kappa, 264, 338
Cohort study, 34
Collapsibility, 224–226
Comparings models, 86, 118, 144–145,

157, 214, 226
Concordance index, 144
Conditional association, 49, 193–196,

209, 214, 224
Conditional distribution, 22
Conditional independence, 53, 111,

114–115, 193–196, 208, 214
Cochran–Mantel–Haenszel test,

114–115, 329
exact test, 158–159
generalized CMH tests, 194–196
graphs, 223–228
logistic models, 111, 113, 193–194
loglinear models, 208, 214
marginal independence, does not imply

53–54
model-based tests, 112, 193–194

Conditional independence graphs, 223–228
Conditional likelihood function, 157
Conditional logistic regression, 157–160,

249–252, 269, 275, 309–310, 328
Conditional ML estimate, 157, 269, 275,

309–310, 328
Conditional model, 249–252, 279, 298–318

compared to marginal model, 249, 279,
300–302, 307–309

Confounding, 49, 65
Conservative inference (discrete data), 14,

47–48, 160
Contingency table, 22

Continuation-ratio logit, 191–192
Contrast, 155, 176, 306, 335
Controlling for a variable, 49–52, 65
Correlation, 41, 144, 281, 287
Correlation test (ordinal data), 41–44
Credit scoring, 166
Cross-product ratio, 29. See also odds ratio
Cross-sectional study, 34
Cumulative probabilities, 180
Cumulative distribution function, 72–73
Cumulative logit models, 180–189,

193–194, 254–255, 286, 290, 310, 328
proportional odds property, 182, 187, 255,

286, 310
conditional model, 254–255, 310–311
invariance to category choice, 189
marginal model, 286
random effects, 310–311
software, 337

Data mining, 331
Degrees of freedom:

chi-squared, 35–36, 62, 327
comparing models, 86
independence, 37, 327
logistic regression, 146
loglinear models, 212

Deviance, 85–87
comparing models, 86
deviance residual, 87
goodness of fit, 145–147, 184, 212
grouped vs. ungrouped binary data,

146–147, 167
likelihood-ratio tests, 86

Dfbeta, 150–151
Diagnostics, 87, 147–151, 213, 335
Discrete choice model, 179, 328
Discrete responses. See also Poisson

distribution, Negative binomial GLM:
conservative inference, 14, 47–48, 160
count data, 74–84, 323–324

Dissimilarity index, 219
Dummy variables, 110

EL50, 101
Empty cells, 154–156
Exact inference
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Exact inference (Continued)
conditional independence, 158–159
conservativeness, 14, 47–48, 160
Fisher’s exact test, 45–48, 63
logistic regression, 157–160
LogXact, 157, 170, 250, 332
odds ratios, 48, 334
software, 332, 334, 336
StatXact, 157, 332
trend in proportions, 41–45

Exchangeable correlations, 281
Expected frequency, 34, 37
Explanatory variable, 2
Exponential function (exp), 31, 75

Factor, 110, 113–114, 335–336
Fisher, R. A., 46, 88, 326–328
Fisher’s exact test, 45–48, 63, 327
Fisher scoring, 88, 328
Fitted values, 69, 72, 78–79, 87, 145–148,

156, 205, 219
Fixed effect, 297

G2 statistic, 36, 39–40, 42, 43, 145, 184,
212. See also Likelihood-ratio statistic

Gauss–Hermite quadrature, 316–317
GEE, see Generalized estimating equations
Generalized additive model, 78, 334
Generalized CMH tests, 194–196, 337
Generalized estimating equations (GEE),

280–288, 307, 308, 329, 340
Generalized linear mixed model (GLMM),

298–299, 316–318, 341–342
Generalized linear model, 65–67, 328–329

binomial (binary) data, 68–73, 99
count data, 74–84
link functions, 66–67
normal data, 67, 105–106
software, 334–335

General Social Survey, 8
Geometric distribution, 18
GLM. See Generalized linear model
GLMM. See Generalized linear mixed model
Goodman, Leo, 326, 329–330
Goodness-of-fit statistics

contingency tables, 145–146, 212
continuous predictors, 143, 146–147, 160
deviance, 145–147, 184, 212

likelihood-ratio chi-squared, 86, 145,
184, 212

logistic regression, 145–147, 184
loglinear models, 212–213
Pearson chi-squared, 86, 145–147, 184,

212
Graphical model, 228
Grouped vs. ungrouped binary data, 106,

110, 146–147, 148, 167

Hat matrix, 148
Hierarchical models, 313–316
History, 325–331
Homogeneity of odds ratios, 54, 115, 209
Homogeneous association, 54, 115

logistic models, 115, 146, 194
loglinear models, 209, 217, 219, 220, 225,

227, 243
Homogeneous linear-by-linear association,

242–243
Hosmer–Lemeshow test, 147, 166, 335
Hypergeometric distribution, 45–48

Identity link function, 67
binary data, 68–70
count data, 79, 97

Independence, 24–25
chi-squared test, 36–42, 61, 333
conditional independence, 53, 111,

114–115, 193–196, 208, 214
exact tests, 45–48, 63, 332
logistic model, 107
loglinear model, 205–206, 261
nominal test, 43, 195–196
ordinal tests, 41, 43–45, 193, 195, 232

Independence graphs, 223–228
Indicator variables, 110, 113
Infinite parameter estimate, 89, 152–156,

160
Influence, 87, 147–148, 150–151, 154, 335
Information matrix, 88, 110
Interaction, 54, 119–120, 131–132, 187,

206, 218, 221–222, 279, 286, 291, 307,
310–311, 312

Item response model, 307–308, 328
Iterative model fitting, 88
Iteratively reweighted least squares, 88
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Joint distribution, 22

Kappa, 264, 338

Laplace approximation, 317
Latent variable, 187–188, 309
Leverage, 87, 148
Likelihood equations, 20
Likelihood function, 6, 107, 152–153, 155,

157, 280, 316, 318
Likelihood-ratio confidence interval, 12, 84,

335
Likelihood-ratio statistic, 11–12, 13, 36, 37,

84, 89
chi-squared distribution, 36, 39–40, 42,

43, 156–157
comparing models, 86, 118, 144–145,

187, 213, 258
confidence interval, 12, 84, 335
degrees of freedom, 36
deviance, 85–86
generalized linear model, 84, 89
goodness of fit, 145–147, 184, 212
logistic regression, 107
loglinear models, 212
partitioning, 39–40
and sample size, 40, 156–157

Linear-by-linear association, 229–232,
242–243

Linear predictor, 66
Linear probability model, 68–70, 334
Linear trend in proportions, 41–45
Link function, 66–67

canonical, 67
identity, 67, 68–70, 79, 97
log, 67, 75, 81, 205
logit, 67, 71, 99, 173–174, 180, 190, 328
probit, 72–73, 135, 328

L × L. See Linear-by-linear association
Local odds ratio, 230
Log function, 30, 31
Logistic distribution, 73, 189
Logistic–normal model, 299
Logistic regression, 70–72, 99–121,

137–162, 328–329
adjacent-categories, 190–191
baseline-category, 173–179, 194, 336

and case-control studies, 105, 250–252,
328

categorical predictors, 110–115
comparing models, 118, 144–145, 157
conditional, 157–160, 249–252, 269, 275,

309–311
continuation-ratio, 191–192
cumulative logit, 180–189, 193–194,

254–255, 286, 290, 310
degrees of freedom, 146
diagnostics, 147–151
effect summaries, 100–105, 120–121
exact, 157–160
GLM with binomial data, 70–71
goodness of fit, 145–147, 184
inference, 106–110, 144–152
infinite ML estimates, 89, 152–156, 160
interaction, 119–121, 131–132, 187, 279,

286, 291, 307, 310–311, 312
interpretation, 100–105, 120–121
linear approximation, 100–101, 120
linear trend, 100
loglinear models, equivalence, 219–221
marginal models, 248, 277–288, 300–302,

307–309
matched pairs, 247–252, 299–300
median effective level, 101
model selection, 137–144
and normal distributions, 105–106
number of predictors, 138
odds ratio interpretation, 104
probability estimates, 100, 108–109
quadratic term, 106, 124
random effects, 298–318
regressive logistic, 288–289
residuals, 148, 257
sample size and power, 160–162
software, 334–336

Logit, 67, 71, 99, 173–174, 180, 190, 328
Logit models. See logistic regression
Loglinear models, 67, 75, 204–232, 290,

329–331
comparing models, 214, 226
conditional independence graphs,

223–228
degrees of freedom, 212
four-way tables, 215–219
as GLM with Poisson data, 74–84, 205
goodness of fit, 212–213
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Loglinear models (Continued)
homogeneous association, 209, 217, 219,

220, 225, 227, 243
independence, 205, 261
inference, 212–219
logistic models, equivalence, 219–221
model selection, 221–223
odds ratios, 207, 209, 214–215, 217, 218,

221, 225, 230
residuals, 213–214
saturated, 206–208
software, 337–338
three-way tables, 208–212

Log link, 67, 75, 81, 205
LogXact, 157, 170, 250, 332
Longitudinal studies, 151, 276, 277, 287,

288, 309

McNemar test, 245–246, 250, 252, 253, 338
Mann–Whitney test, 45
Mantel–Haenszel test. See

Cochran–Mantel–Haenszel test
Marginal association, 49–54, 210, 224
Marginal distribution, 22
Marginal homogeneity, 245, 252–255,

258–260, 338–339
Marginal model, 248, 277–288, 300–302,

308–309
Compared to conditional model, 249,

277–279
Population-averaged effect, 249, 279

Marginal table, 49–54, 210, 224
same association as conditional
association, 224

Markov chain, 288, 296
Matched pairs, 244–266

CMH approach, 252
dependent proportions, 244–252
logistic models, 247–252, 299–300
McNemar test, 245–246, 250, 252
odds ratio estimate, 252, 255
ordinal data, 254–256, 258–260
Rasch model, 307, 328

Maximum likelihood, 6
Measures of association, 325–326
Meta analysis, 57
Mid P-value, 15, 20, 48, 160
Midranks, 44–45

Missing data, 287–288
Mixed model, 298
ML. See Maximum likelihood
Model selection, 137–144, 221–223
Monte Carlo, 317
Multicollinearity, 138
Multilevel models, 313–316
Multinomial distribution, 5–6, 25, 173,

285–287, 310–313
Multinomial logit model, 173–179
Multinomial sampling, 25
Multiple correlation, 144, 162
Mutual independence, 208

Natural parameter, 67
Negative binomial GLM, 81–84, 334
Newton–Raphson algorithm, 88
Nominal response variable, 2–3, 45,

173–179, 195–196, 228, 253, 264
Normal distribution, 67, 105–106
No three-factor interaction, 215 See also

Homogeneous association

Observational study, 34, 49
Odds, 28
Odds ratio, 28–33

with case-control data, 32–34, 105, 252
conditional, 52, 111, 209, 214, 252
confidence intervals, 31, 48, 107, 159–160
exact inference, 48, 157–160
homogeneity, in 2 × 2 × K tables, 54,

115, 146
invariance properties, 29, 33
local, 230
and logistic regression models, 104, 115,

159–160, 287
and loglinear models, 207, 209, 214–215,

217, 218, 221, 225, 230
matched pairs, 252, 262–263, 269
and relative risk, 32, 33
with retrospective data, 33–34, 252
SE, 30
and zero counts, 31, 159

Offset, 82
Ordinal data, 2–3

logistic models, 118, 180–193, 254–255
loglinear models, 228–232
marginal homogeneity, 254–255, 259–260
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ordinal versus nominal treatment
of data, 41–45, 118–119

quasi symmetry, 258–260
scores, choice of, 43–44, 119, 195
testing independence, 41–45, 232
trend in proportions, 41–45

Ordinal quasi symmetry, 258–260
Overdispersion, 80–84, 192–193, 280,

283–284, 304–305

Paired comparisons, 264–266
Parameter constraints, 113, 206, 221
Partial association, 49

partial table, 49
same as marginal association, 224

Partitioning chi-squared, 39–40, 62, 329
Pearson chi-squared statistic, 35, 37, 61

chi-squared distribution, 35–36
comparing proportions, 26
degrees of freedom, 35, 37, 62, 327
goodness of fit, 86, 145–147, 184, 212
independence, 35–38, 41–43, 61, 333
loglinear model, 212
and residuals, 86–87, 148
sample size for chi-squared

approximation, 40, 156–157, 329
sample size, influence on statistic, 61
two-by-two tables, 26, 40

Pearson, Karl, 325–327
Pearson residual, 86–87, 148

Binomial GLM, 148
GLM, 86–87
independence, 38–39
Poisson GLM, 87

Penalized quasi likelihood (PQL), 317
Perfect discrimination, 153
Poisson distribution, 74

mean and standard deviation, 74
negative binomial, connection with, 81
overdispersion, 80–84
generalized linear mixed model, 324
Poisson loglinear model, 75, 205, 324
Poisson regression, 75–84
residuals, 87

Poisson GLM, 74–84, 205, 334–335
Population-averaged effect, 249, 279
Power, 160–162

Practical vs. statistical significance, 61, 140,
218–219

Prior distribution, 317
Probability estimates, 6, 68, 100, 108–109,

176, 245
Probit model, 72–73, 135, 328
Proportional odds model, 182 See also

Cumulative logit model
Proportions

Bayesian estimate, 17
confidence intervals, 9–10, 20, 26
dependent, 34, 244–252
difference of, 26–27, 246–247
estimating using models, 68, 100, 108,

176
independent, 26
inference, 6–16, 26–31
ratio of (relative risk), 27–28, 32
as sample mean, 7
significance tests, 8, 13–16, 19
standard error, 8, 19, 26

P -value and Type I error probability,
14, 20, 47–48

Quasi independence, 261–263, 274, 329
Quasi likelihood, 280
Quasi symmetry, 257–259, 263, 265, 274,

340

R (software). See
www.stat.ufl.edu/∼aa/cda/
software.html

Random component (GLM), 66
Random effects, 298–318, 341–342

bivariate, 311–313
predicting, 299, 303, 313, 316

Random intercept, 298
Ranks, 44–45
Rasch model, 307, 328
Rater agreement, 260–264
Rates, 82–84, 97
Receiver operating characteristic (ROC)

curve, 143–144
Regressive-logistic model, 288–289
Relative risk, 27–28, 32, 328

confidence interval, 28, 58
and odds ratio, 32, 33

Repeated response data, 276
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Residuals
binomial GLM, 148
deviance, 87
GLM, 86–87
independence, 38–39, 261
Pearson, 86–87, 148
standardized, 38–39, 148, 213–214,

257, 261
Response variable, 2
Retrospective study, 33, 105
ROC curve, 143–144

Sample size determination, 160–162
Sampling zero, 154
SAS, 332–342

CATMOD, 338
FREQ, 333–334, 338
GENMOD, 334–341
LOGISTIC, 335–337
NLMIXED, 341–342

Saturated model
generalized linear model, 85
logistic regression, 145–146, 157, 167
loglinear model, 206–208

Scores, choice of, 43–45, 119, 195
Score confidence interval, 10, 12, 19, 20
Score test, 12, 19, 36, 89, 115, 284
Sensitivity, 23–24, 55, 142
Significance, statistical versus practical,

61, 140, 218–219
Simpson’s paradox, 51–53, 63, 150, 235, 326
Small-area estimation, 302–304
Small samples:

binomial inference, 13–16
conservative inference, 14, 47–48, 160
exact inference, 45–48, 63, 157–160
infinite parameter estimates, 89,

152–156, 160
X2 and G2, 40, 156–157
zero counts, 154, 159

Smoothing, 78–79, 101–102
Sparse tables, 152–160
Spearman’s rho, 44
Specificity, 23–24, 55, 142
SPlus (software), see

www.stat.ufl.edu/∼aa/cda/
software.html

SPSS, see
http://www.stat.ufl.edu/∼aa/cda/
software.html

Square tables, 252–264
Standardized coefficients, 121
Standardized residuals, 38, 87, 148,

213–214, 336
binomial GLMs, 148
GLMs, 87
for independence, 38–39, 261
and Pearson statistic, 214
for Poisson GLMs, 213–214
for symmetry, 257

Stata (software), see
http://www.stat.ufl.edu/∼aa/cda/
software.html

StatXact, 48, 157, 159, 160, 328, 332
Stepwise model-building, 139–142, 226
Subject-specific effect, 249, 279
Symmetry, 256–258, 274
Systematic component (GLM), 66

Three-factor interaction, 215, 218
Three-way tables, 49–54, 110–115, 208–215
Tolerance distribution, 73
Transitional model, 288–290
Trend test, 41–45, 195

Uniform association model, 230

Variance component, 298, 309, 313, 317–318

Wald confidence interval, 12, 19, 26
Wald test, 11–13, 19, 84, 89, 107, 284
Weighted least squares, 88
Wilcoxon test, 45
Working correlation, 281

X2 statistic, 35, 145. See also Pearson
chi-squared statistic

Yule, G. Udny, 325–326

Zero cell count, 31, 152–156, 159
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Brief Solutions to Some
Odd-Numbered Problems

CHAPTER 1

1. Response variables:

a. Attitude toward gun control,

b. Heart disease,

c. Vote for President,

d. Quality of life.

3. a. Binomial, n = 100, π = 0.25.

b. μ = nπ = 25 and σ = √[nπ(1 − π)] = 4.33. 50 correct responses is
surprising, since 50 is z = (50 − 25)/4.33 = 5.8 standard deviations
above mean.

7. a. (5/6)6.

b. Note Y = y when y − 1 successes and then a failure.

9. a. Let π = population proportion obtaining greater relief with new analgesic.
For H0: π = 0.50, z = 2.00, P -value = 0.046.

b. Wald CI is (0.504, 0.696), score CI is (0.502, 0.691).

11. 0.86 ± 1.96(0.0102), or (0.84, 0.88).

13. a. (1 − π0)
25 is binomial probability of y = 0 in n = 25 trials.

b. The maximum of (1 − π)25 occurs at π = 0.0.

c. −2 log(�0/�1) = −2 log[(0.50)25/1.0] = 34.7, P -value < 0.0001.

An Introduction to Categorical Data Analysis, Second Edition. By Alan Agresti
Copyright © 2007 John Wiley & Sons, Inc.
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358 BRIEF SOLUTIONS TO SOME ODD-NUMBERED PROBLEMS

d. −2 log(�0/�1) = −2 log[(0.926)25/1.0] = 3.84. With df = 1, chi-squared
P -value = 0.05.

15. a. σ(p) equals binomial standard deviation
√

nπ(1 − π) divided by sample
size n.

b. σ(p) takes maximum at π = 0.50 and minimum at π = 0 and 1.

17. a. Smallest possible P -value is 0.08, so never reject H0 and therefore never
commit a type I error.

b. If T = 9, mid-P value = 0.08/2 = 0.04, so reject H0. Probability of this
happening is P(T = 9) = 0.08 = P (type I error).

c. (a) P(type I error) = 0.04, (b) P(type I error) = 0.04. Mid-P test can have
P (type I error) either below 0.05 (conservative) or above 0.05 (liberal).

CHAPTER 2

1. a. P(−|C) = 1/4, P(C̄|+) = 2/3.

b. Sensitivity = P(+|C) = 1 − P(−|C) = 3/4.

c. P(C, +) = 0.0075, P(C, −) = 0.0025, P(C̄, +) = 0.0150, P(C̄, −) =
0.9750.

d. P(+) = 0.0225, P (−) = 0.9775.

e. 1/3.

3. a. (i) 0.000061, (ii) 62.4/1.3 = 48. (b) Relative risk.

5. a. Relative risk.

b. (i) π1 = 0.55π2, so π1/π2 = 0.55. (ii) 1/0.55 = 1.82.

7. a. Quoted interpretation is that of relative risk.

b. Proportion = 0.744 for females, 0.203 for males.

c. R = 0.744/0.203 = 3.7.

9. (Odds for high smokers)/(Odds for low smokers) = 26.1/11.7.

11. a. Relative risk: Lung cancer, 14.00; Heart disease, 1.62.
Difference of proportions: Lung cancer, 0.00130; Heart disease, 0.00256.
Odds ratio: Lung cancer, 14.02; Heart disease, 1.62.

b. Difference of proportions describes excess deaths due to smoking. If N =
number of smokers in population, predict 0.00130N fewer deaths per year
from lung cancer if they had never smoked, and 0.00256N fewer deaths per
year from heart disease.

13. a. π̂1 = 0.814, π̂2 = 0.793. CI is 0.0216 ± 1.645(0.024), or (−0.018, 0.061).



“bansw” — 2007/1/29 — 15:39 — page 359 — #3
�

�

�

�

�

�

�

�

CHAPTER 2 359

b. CI for log odds ratio 0.137 ± 1.645(0.1507), so CI for odds ratio is
(0.89, 1.47).

c. X2 = 0.8, df = 1, P -value = 0.36.

15. log(0.0171/0.0094) ± 1.96
√

(0.0052 + 0.0095) is (0.360, 0.835), which trans-
lates to (1.43, 2.30) for relative risk.

17. a. X2 = 25.0, df = 1, P < 0.0001.

b. G2 = 25.4, df = 1.

19. a. G2 = 187.6, X2 = 167.8, df = 2 (P < 0.0001).

b. Standardized residuals of −11.85 for white Democrats and −11.77 for black
Republicans show extremely strong evidence of fewer people in these cells
than if party ID were independent of race. Standardized residuals of 11.85
for black Democrats and 11.77 for white Republicans show extremely strong
evidence of more people in these cells than expected.

c. G2 = 24.1 for comparing races on (Democrat, Independent) choice, and
G2 = 163.5 for comparing races on (Dem. + Indep., Republican) choice.

21. a. No, samples in different columns are dependent, because subjects can select
as many columns as they wish.

b.

A
Gender Yes No

Men 60 40
Women 75 25

23. Extremely strong evidence of association. Strong evidence of tendency for those
with less than high school education to be fundamentalist, and those with bachelor
degree or higher to be liberal in religious beliefs.

25. a. Total of estimated expected frequencies in row i equals∑
j (ni+n+j /n) = (ni+/n)

∑
j n+j = ni+

b. Odds ratio = (n1+n+1/n)(n2+n+2/n)/(n1+n+2/n)(n2+n+1/n) = 1.

27. a. X2 = 8.9, df = 6, P = 0.18; nominal test with ordinal data.

b. Aspirations tend to be higher when family income is higher.

c. Ordinal test gives M2 = 4.75, df = 1, P = 0.03.

29. Table has entries (7, 8) in row 1 and (0, 15) in row 2. P = 0.003.
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360 BRIEF SOLUTIONS TO SOME ODD-NUMBERED PROBLEMS

31. a. P -value = 0.638.

b. 0.243.

33. b. 0.67 for white victims and 0.79 for black victims.

c. 1.18; yes.

35. Age distribution is relatively higher in Maine.

37. a. 0.18 for males and 0.32 for females.

b. 0.21.

39. (a) T, (b) T, (c) F, (d) T, (e) F.

CHAPTER 3

3. a. π̂ = 0.00255 + 0.00109(alcohol).

b. Estimated probability of malformation increases from 0.00255 at x = 0 to
0.01018 at x = 7. Relative risk = 0.01018/0.00255 = 4.0.

5. Fit of linear probability model is (i) 0.018 + 0.018(snoring), (ii) 0.018 +
0.036(snoring), (iii) −0.019 + 0.036(snoring). Slope depends on distance
between scores; doubling distance halves slope estimate. Fitted values are
identical for any linear transformation.

7. a. π̂ = −0.145 + 0.323(weight); at weight = 5.2, π̂ = 1.53, much higher than
upper bound of 1.0 for a probability.

c. logit(π̂) = −3.695 + 1.815(weight); at 5.2 kg, predicted logit = 5.74, and
log(0.9968/0.0032) = 5.74.

9. a. logit(π̂) = −3.556 + 0.0532x.

11. b. log(μ̂) = 1.609 + 0.588x. exp(β̂) = μ̂B/μ̂A = 1.80.

c. Wald z = 3.33, z2 = 11.1 (df = 1), P < 0.001. LR statistic = 11.6 with
df = 1, P < 0.001; higher defect rate for B.

d. Exponentiate 95% CI for β of 0.588 ± 1.96(0.176) to get (1.27, 2.54).

13. a. log(μ̂) = −0.428 + 0.589(weight).

b. 2.74.

c. 0.589 ± 1.96(0.065) = (0.462, 0.717); CI for multiplicative effect on mean
is (1.59, 2.05).

d. z2 = (0.589/0.065)2 = 82.2.

e. LR statistic = 71.9, df = 1.
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15. a. exp(−2.38 + 1.733) = 0.522 for blacks and exp(−2.38) = 0.092 for whites.

b. Exponentiate endpoints of 1.733 ± 1.96(0.147), which gives (e1.44, e2.02).

c. CI based on negative binomial model, because overdispersion for Poisson
model.

d. Poisson is a special case of negative binomial with dispersion parameter = 0.
Here, there is strong evidence that dispersion parameter > 0, because the
estimated dispersion parameter is almost 5 standard errors above 0.

17. CI for log rate is 2.549 ± 1.96(0.04495), so CI for rate is (11.7, 14.0).

19. a. Difference between deviances = 11.6, with df = 1, gives strong evidence
Poisson model with constant rate inadequate.

b. z = β̂/SE = −0.0337/0.0130 = −2.6 (or z2 = 6.7 with df = 1).

c. [exp(−0.060), exp(−0.008)], or (0.94, 0.99), quite narrow around point
estimate of e−0.0337 = 0.967.

21. μ = αt + β(tx), form of GLM with identity link, predictors t and tx, no intercept
term.

CHAPTER 4

1. a. π̂ = 0.068.

b. π̂ = 0.50 at −α̂/β̂ = 3.7771/0.1449 = 26.

c. At LI = 8, π̂ = 0.068, rate of change = 0.1449(0.068)(0.932) = 0.009.

d. eβ̂ = e0.1449 = 1.16.

3. a. Proportion of complete games estimated to decrease by 0.07 per decade.

b. At x = 12, π̂ = −0.075, an impossible value.

c. At x = 12, logit(π̂) = −2.636, and π̂ = 0.067.

5. a. logit(π̂) = 15.043 − 0.232x.

b. At temperature = 31, π̂ = 0.9996.

c. π̂ = 0.50 at x = 64.8 and π̂ > 0.50 at x < 64.8. At x = 64.8, π̂ decreases
at rate 0.058.

d. Estimated odds of thermal distress multiply by exp(−0.232) = 0.79 for each
1◦ increase in temperature.

e. Wald statistic z2 = 4.6 (P = 0.03) and LR statistic = 7.95 (df = 1, P =
0.005).

7. a. logit(π̂) = −0.573 + 0.0043(age). LR statistic = 0.55, Wald statistic =
0.54, df = 1; no evidence of age effect.
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b. Age values more disperse when kyphosis absent.

c. logit(π̂) = −3.035 + 0.0558(age) − 0.0003(age)2. LR statistic for (age)2

term equals 6.3 (df = 1), showing strong evidence of effect.

9. a. logit(π̂) = −0.76 + 1.86c1 + 1.74c2 + 1.13c3. The estimated odds a
medium-light crab has a satellite are e1.86 = 6.4 times estimated odds a dark
crab has a satellite.

b. LR statistic = 13.7, df = 3, P -value = 0.003.

c. For color scores 1,2,3,4, logit(π̂) = 2.36 − 0.71c.

d. LR statistic = 12.5, df = 1, P -value = 0.0004.

e. Power advantage of focusing test on df = 1. But, may not be linear trend for
color effect.

11. Odds ratio for spouse vs others = 2.02/1.71 = 1.18; odds ratio for $10,000 −
24,999 vs $25,000 + equal 0.72/0.41 = 1.76.

13. a. Chi-squared with df = 1, so P -value = 0.008.

b. Observed count = 0, expected count = 1.1.

15. a. CMH statistic = 7.815, P -value = 0.005.

b. Test β = 0 in model, logit(π) = α + βx + βD
i , where x = race. ML fit

(when x = 1 for white and 0 for black) has β̂ = 0.791, with SE = 0.285.
Wald statistic = 7.69, P -value = 0.006.

c. Model gives information about size of effect. Estimated odds ratio between
promotion and race, controlling for district, is exp(0.791) = 2.2.

17. a. e−2.83/(1 + e−2.83) = 0.056.

b. e0.5805 = 1.79.

c. (e0.159, e1.008) = (1.17, 2.74).

d. 1/1.79 = 0.56, CI is (1/2.74, 1/1.17) = (0.36, 0.85).

e. H0: β1 = 0, Ha : β1 �= 0, LR statistic = 7.28, df = 1, P -value = 0.007.

19. a. exp(β̂G
1 − β̂G

2 ) = 1.17.

b. (i) 0.27, (ii) 0.88.

c. β̂G
1 = 0.16, estimated odds ratio = exp(0.16) = 1.17.

d. β̂G
1 = 0.08, β̂G

2 = −0.08.

21. a. Odds of obtaining condoms for educated group estimated to be 4.04 times
odds for noneducated group.

b. logit(π̂) = α̂ + 1.40x1 + 0.32x2 + 1.76x3 + 1.17x4, where x1 = 1 for edu-
cated and 0 for noneducated, x2 = 1 for males and 0 for females, x3 = 1 for
high SES and 0 for low SES, and x4 = lifetime number of partners. Log odds
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ratio = 1.40 has CI (0.16, 2.63). CI is 1.40 ± 1.96(SE), so CI has width
3.92(SE), and SE = 0.63.

c. CI corresponds to one for log odds ratio of (0.207, 2.556); 1.38 is the mid-
point of CI, suggesting it may be estimated log odds ratio, in which case
exp(1.38) = 3.98 = estimated odds ratio.

23. a. R = 1: logit(π̂) = −6.7 + 0.1A + 1.4S. R = 0: logit(π̂) = −7.0 + 0.1A+
1.2S. YS conditional odds ratio = exp(1.4) = 4.1 for blacks and exp(1.2) =
3.3 for whites. Coefficient of cross-product term, 0.22, is difference between
log odds ratios 1.4 and 1.2.

b. The coefficient of S of 1.2 is log odds ratio between Y and S when R = 0
(whites), in which case RS interaction does not enter equation. P -value of
P < 0.01 for smoking represents result of test that log odds ratio between Y

and S for whites = 0.

25. a. Derive the four equations from overall equation

logit(π̂) = −5.854 + 4.101c1 − 4.186c2 − 15.66c3 + 0.200x

− 0.094(c1 × x) + 0.218(c2 × x) + 0.658(c3 × x)

b. LR statistic = 4.4 (df = 3), P = 0.22.

27. a. −0.41 and 0.97 are coefficients for standardized versions of predictors for
which standard deviation is 1.0.

b. For c = 4 (dark crabs), logit(π̂) = −12.11 + 0.458x. Estimated probability
changes from 0.33 to 0.64 when x changes from 24.9 to 27.7.

29. For main effects model, estimated conditional odds ratios = 3.7 for race and 1.9
for gender.

31. Model with main effects has estimated conditional odds ratios 17.3 between
marijuana use and cigarette use and 19.8 between marijuana use and alcohol use.

35. a. Exponential term maximized when exponent equals 0, which is when
x = −α/β.

b. 24.8.

c. 0.40(0.302) = 0.12.

37. (a) T, (b) F, (c) T, (d) F, (e) T.

CHAPTER 5

1. a. logit(π̂) = −9.35 + 0.834(weight) + 0.307(width).
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b. LR statistic = 32.9 (df = 2), P < 0.0001.

c. Wald statistics = 1.55 and 2.85 (df = 1), for P -values 0.21 and 0.09.
Predictors are highly correlated (Pearson correlation = 0.887), so problem
of multicollinearity.

3. a. Test statistic = 3.2 (df = 3). Yes, can remove it.

b. Change in deviance is smallest, 0.0 on df = 2, when remove S∗W term.

c. Take out C∗W term, as model W + C∗S has larger P -value.

d. Yes, change in deviance = 9.0 (df = 6), which has P -value = 0.17.

e. Model C + S + W has smallest AIC.

5. Model with only four main effect terms has smallest AIC.

7. a. One intercept term, four main effect terms, six two-factor interaction terms,
and four three-factor interaction terms, so numbers of parameters in models
are 1, 1 + 4 = 5, 1 + 4 + 6 = 11, 1 + 4 + 6 + 4 = 15.

b. AIC values are 1130.23 + 2(1) = 1132.23, 1124.86 + 2(5) = 1134.86,
1119.87 + 2(11) = 1141.87, 1116.47 + 2(15) = 1146.47. Best model has
intercept only.

c. No; for example, expect c around 0.50 just by chance.

9. a. No, deviance can check fit only for categorical predictors.

b. LR statistic for testing that parameter for quadratic term is zero equals 3.9,
with df = 1. P -value is about 0.05.

c. Derivative of linear predictor with respect to LI is 0.9625 − 2(0.016)LI,
which is >0 when LI < 0.9625/0.032 = 30.1. So, π̂ increases as LI increases
up to about 30.

d. Simpler model with linear effect on logit seems adequate.

11. Model seems adequate. A reference for this type of approach is the article by
A. Tsiatis (Biometrika, 67: 250–251, 1980).

15. Logit model with additive factor effects has G2 = 0.1 and X2 = 0.1, df = 2.
Estimated odds of females still being missing are exp(0.38) = 1.46 times those
for males, given age. Estimated odds considerably higher for those aged at least
19 than for other age groups, given gender.

17. a. For death penalty response with main effect for predictors, G2 = 0.38, df = 1,
P = 0.54. Model fits adequately.

b. Each standardized residual is 0.44 in absolute value, showing no lack of fit.

c. Estimated conditional odds ratio = exp(−0.868) = 0.42 for defendant’s race
and exp(2.404) = 11.1 for victims’ race.
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19. a. logit(π) = α + β1d1 + · · · + β6d6, where di = 1 for department i and di = 0
otherwise.

b. Model fits poorly.

c. Only lack of fit in Department 1, where more females were admitted than
expected if the model lacking gender effect truly holds.

d. −4.15, so fewer males admitted than expected if model lacking gender effect
truly holds.

e. Males apply in relatively greater numbers to departments that have relatively
higher proportions of acceptances.

27. zα/2 = 2.576, zβ = 1.645, and n1 = n2 = 214.

29. logit(π̂) = −12.351 + 0.497x. Probability at x = 26.3 is 0.674; probability at
x = 28.4 (i.e., one standard deviation above mean) is 0.854. Odds ratio is 2.83,
so λ = 1.04, δ = 5.1. Then n = 75.

CHAPTER 6

1. a. log(π̂R/π̂D) = −2.3 + 0.5x. Estimated odds of preferring Republicans over
Democrats increase by 65% for every $10,000 increase.

b. π̂R > π̂D when annual income >$46,000.

c. π̂I = 1/[1 + exp(3.3 − 0.2x) + exp(1 + 0.3x)].

3. a. SE values in parentheses

Logit Intercept Size ≤ 2.3 Hancock Oklawaha Trafford

log(πI /πF ) −1.55 1.46(0.40) −1.66(0.61) 0.94(0.47) 1.12(0.49)
log(πR/πF ) −3.31 −0.35(0.58) 1.24(1.19) 2.46(1.12) 2.94(1.12)
log(πB/πF ) −2.09 −0.63(0.64) 0.70(0.78) −0.65(1.20) 1.09(0.84)
log(πO/πF ) −1.90 0.33(0.45) 0.83(0.56) 0.01(0.78) 1.52(0.62)

5. a. Job satisfaction tends to increase at higher x1 and lower x2 and x3.

b. x1 = 4 and x2 = x3 = 1.

7. a. Two cumulative probabilities to model and hence 2 intercept parameters. Pro-
portional odds have same predictor effects for each cumulative probability,
so only one effect reported for income.

b. Estimated odds of being at low end of scale (less happy) decrease as income
increases.

c. LR statistic = 0.89 with df = 1, and P -value = 0.35. It is plausible that
income has no effect on marital happiness.
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d. Deviance = 3.25, df = 3, P -value = 0.36, so model fits adequately.

e. 1 − cumulative probability for category 2, which is 0.61.

9. a. There are four nondegenerate cumulative probabilities. When all predictor
values equal 0, cumulative probabilities increase across categories, so logits
increase, as do parameters that specify logits.

b. (i) Religion = none, (ii) Religion = Protestant.

c. For Protestant, 0.09. For None, 0.26.

d. (i) e−1.27 = 0.28; that is, estimated odds that Protestant falls in relatively
more liberal categories (rather than more conservative categories) is 0.28 times
estimated odds for someone with no religious preference. (ii) Estimated odds
ratio comparing Protestants to Catholics is 0.95.

11. a. β̂ = −0.0444 (SE = 0.0190) suggests probability of having relatively less
satisfaction decreases as income increases.

b. β̂ = −0.0435, very little change. If model holds for underlying logistic latent
variable, model holds with same effect value for every way of defining
outcome categories.

c. Gender estimate of −0.0256 has SE = 0.4344 and Wald statistic = 0.003
(df = 1), so can be dropped.

13. a. Income effect of 0.389 (SE = 0.155) indicates estimated odds of higher of
any two adjacent job satisfaction categories increases as income increases.

b. Estimated income effects are −1.56 for outcome categories 1 and 4, −0.64
for outcome categories 2 and 4, and −0.40 for categories 3 and 4.

c. (a) Treats job satisfaction as ordinal whereas (b) treats job satisfaction as
nominal. Ordinal model is more parsimonious and simpler to interpret,
because it has one income effect rather than three.

17. Cumulative logit model with main effects of gender, location, and seat-belt
has estimates 0.545, −0.773, and 0.824; for example, for those wearing a seat
belt, estimated odds that the response is below any particular level of injury are
e0.824 = 2.3 times the estimated odds for those not wearing seat belts.

21. For cumulative logit model of proportional odds form with Y = happiness and
x = marital status (1 = married, 0 = divorced), β̂ = −1.076 (SE = 0.116). The
model fits well (e.g., deviance = 0.29 with df = 1).

CHAPTER 7

1. a. G2 = 0.82, X2 = 0.82, df = 1.

b. λ̂Y
1 = 1.416, λ̂Y

2 = 0. Given gender, estimated odds of belief in afterlife equal
e1.416 = 4.1.
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3. a. G2 = 0.48, df = 1, fit is adequate.

b. 2.06 for PB association, 4.72 for PH association, 1.60 for BH association.

c. H0 model is (PH, BH). Test statistic = 4.64, df = 1, P -value = 0.03.

d. exp[0.721 ± 1.96(0.354)] = (1.03, 4.1).

5. a. 0.42.

b. 1.45.

c. G2 = 0.38, df = 1, P = 0.54, model fits adequately.

d. Logit model with main effects of defendant race and victim race, using
indicator variable for each.

7. a. Difference in deviances = 2.21, df = 2; simpler model adequate.

b. exp(−1.507, −0.938) = (0.22, 0.39).

c. e1.220 = 3.39, exp(0.938, 1.507) is (1/0.39, 1/0.22), which is (2.55, 4.51).

9. a. Estimated odds ratios are 0.9 for conditional and 1.8 for marginal. Men apply
in greater numbers to departments (1, 2) having relatively high admissions
rates and women apply in greater numbers to departments (3, 4, 5, 6) having
relatively low admissions rates.

b. Deviance G2 = 20.2 (df = 5), poor fit. Standardized residuals show lack of
fit only for Department 1.

c. G2 = 2.56, df = 4, good fit.

d. Logit model with main effects for department and gender has estimated con-
ditional odds ratio = 1.03 between gender and admissions. Model deleting
gender term fits essentially as well, with G2 = 2.68 (df = 5); plausible that
admissions and gender are conditionally independent for these departments.

11. a. Injury has estimated conditional odds ratios 0.58 with gender, 2.13 with loca-
tion, and 0.44 with seat-belt use. Since no interaction, overall most likely case
for injury is females not wearing seat belts in rural locations.

13. a. G2 = 31.7, df = 48.

b. log(μ11clμ33cl/μ13clμ31cl)

= log(μ11cl) + log(μ33cl) − log(μ13cl) − log(μ31cl)

Substitute model formula, and simplify. Estimated odds ratio = exp(2.142) =
8.5. The 95% CI is exp[2.142 ± 1.96(0.523)], or (3.1, 24.4).

c. 2.4 for C and L, 6.5 for H and L, 0.8 for C and H , 0.9 for E and L, 3.3 for C

and E. Associations seem strongest between E and H and between H and L.

17. Logistic model more appropriate when one variable a response and others
are explanatory. Loglinear model may be more appropriate when at least two
variables are response variables.
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19. b. The λXY term is not in the model, so X and Y are conditionally independent.
All terms in the saturated model that are not in model (WXZ, WYZ) involve
X and Y , and so permit XY conditional association.

21. a. G2 = 31.7, df = 48. The model with three-factor terms has G2 = 8.5, df =
16; the change is 23.1, df = 32, not a significant improvement.

b. (ii) For the result at the beginning of Section 7.4.4, identify set B = {E, L}
and sets A and C each to be one of other variables.

23. (a) No.

(b) Yes; in the result in Section 7.4.4, take A = {Y }, B = {X1, X2}, C = {X3}.

25. a. Take β = 0.

b. LR statistic comparing this to model (XZ, YZ).

d. No, this is a heterogeneous linear-by-linear association model. The XY
odds ratios vary according to the level of Z, and there is no longer homoge-
neous association. For scores {ui = i} and {vj = j}, local odds ratio equals
exp(βk).

27. (a) T, (b) F, (c) T.

CHAPTER 8

1. z = 2.88, two-sided P -value = 0.004; there is strong evidence that MI cases are
more likely than MI controls to have diabetes.

3. a. Population odds of belief in heaven estimated to be 2.02 times population
odds of belief in hell.

b. For each subject, odds of belief in heaven estimated to equal 62.5 times odds
of belief in hell.

5. a. This is probability, under H0, of observed or more extreme result, with more
extreme defined in direction specified by Ha .

b. Mid P -value includes only half observed probability, added to probability of
more extreme results.

c. When binomial parameter = 0.50, binomial is symmetric, so two-sided
P -value = 2(one-sided P -value) in (a) and (b).

7. 0.022 ± 0.038, or (−0.016, 0.060), wider than for dependent samples.

9. β̂ = log(132/107) = 0.21.
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11. 95% CI for β is log(132/107) ± 1.96
√

1/132 + 1/107, which is (−0.045,
0.465). The corresponding CI for odds ratio is (0.96, 1.59).

13. a. More moves from (2) to (1), (1) to (4), (2) to (4) than if symmetry truly held.

b. Quasi-symmetry model fits well.

c. Difference between deviances = 148.3, with df = 3. P -value < 0.0001 for
H0: marginal homogeneity.

15. a. Subjects tend to respond more in always wrong direction for extramarital sex.

b. z = −4.91/0.45 = −10.9, extremely strong evidence against H0.

c. Symmetry fits very poorly but quasi symmetry fits well. The difference
of deviances = 400.8, df = 3, gives extremely strong evidence against
H0: marginal homogeneity (P -value < 0.0001).

d. Also fits well, not significantly worse than ordinary quasi symmetry. The
difference of deviances = 400.1, df = 1, gives extremely strong evidence
against marginal homogeneity.

e. From model formula in Section 8.4.5, for each pair of categories, a
more favorable response is much more likely for premarital sex than
extramarital sex.

19. G2 = 4167.6 for independence model (df = 9), G2 = 9.7 for quasi-
independence (df = 5). QI model fits cells on main diagonal perfectly.

21. G2 = 13.8, df = 11; fitted odds ratio = 1.0. Conditional on change in brand,
new brand plausibly independent of old brand.

23. a. G2 = 4.3, df = 3; prestige ranking: 1. JRSS-B, 2. Biometrika, 3. JASA, 4.
Commun. Statist.

25. a. e1.45 − 0.19/(1 + e1.45 − 0.19) = 0.78.

b. Extremely strong evidence (P -value < 0.0001) of at least one difference
among {βi}. Players do not all have same probability of winning.

27. a. log(πij /πji) = log(μij /μji) = (λX
i − λY

i ) − (λX
j − λY

j ). Take βi = (λX
i −

λY
i ).

b. Under this constraint, μij = μji .

c. Under this constraint, model adds to independence model a term for each cell
on main diagonal.
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CHAPTER 9

1. a. Sample proportion yes = 0.86 for A, 0.66 for C, and 0.42 for M.

b. logit[P(Yt = 1)] = β1z1 + β2z2 + β3z3, where t = 1, 2, 3 refers to A, C,
M, and z1 = 1 if t = 1, z2 = 1 if t = 2, z3 = 1 if t = 3 (0 otherwise);
for example, eβ1 is the odds of using alcohol. Marginal homogeneity is
β1 = β2 = β3.

3. a. Marijuana: For S1 = S2 = 0, the linear predictor takes greatest value when
R = 1 and G = 0 (white males). For alcohol, S1 = 1, S2 = 0, the linear
predictor takes greatest value when R = 1 and G = 1 (white females).

b. Estimated odds for white subjects exp(0.38) = 1.46 times estimated odds for
black subjects.

c. For alcohol, estimated odds ratio = exp(−0.20 + 0.37) = 1.19; for
cigarettes, exp(−0.20 + 0.22) = 1.02; for marijuana, exp(−0.20) = 0.82.

d. Estimated odds ratio = exp(1.93 + 0.37) = 9.97.

e. Estimated odds ratio = exp(1.93) = 6.89.

7. a. Subjects can select any number of sources, so a given subject could have
anywhere from zero to five observations in the table. Multinomial distribution
does not apply to these 40 cells.

b. Estimated correlation is weak, so results not much different from treating
five responses by a subject as if from five independent subjects. For source A
the estimated size effect is 1.08 and highly significant (Wald statistic = 6.46,
df = 1, P < 0.0001). For sources C, D, and E size effect estimates are all
roughly −0.2.

11. With constraint β4 = 0, ML estimates of item parameters {βj } are (−0.551,
−0.603, −0.486, 0). The first three estimates have absolute values greater than
five standard errors, providing strong evidence of greater support for increased
government spending on education than other items.

13. logit[P̂ (Yt = 1)] = 1.37 + 1.148yt−1 + 1.945yt−2 + 0.174s − 0.437t . So, yt−2
does have predictive power.

b. Given previous responses and child’s age, estimated effect of maternal smok-
ing weaker than when use only previous response as predictor, but still
positive. LR statistic for testing maternal smoking effect is 0.72 (df = 1,
P = 0.40).

17. Independent conditional on Yt−1, but not independent marginally.
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CHAPTER 10

1. a. Using PROC NLMIXED in SAS, (β̂, SE, σ̂ , SE) = (4.135, 0.713, 10.199,

1.792) for 1000 quadrature points.

b. For given subject, estimated odds of belief in heaven are exp(4.135) = 62.5
times estimated odds of belief in hell.

c. β̂ = log(125/2) = 4.135 with SE = √
(1/125) + (1/2) = 0.713.

3. a. (i) 0.038, (ii) 0.020, (iii) 0.070.

b. Sample size may be small in each county, and GLMM analysis borrows from
whole.

5. a. 0.4, 0.8, 0.2, 0.6, 0.6, 1.0, 0.8, 0.4, 0.6, 0.2.

b. logit(πi) = ui + α. ML estimates α̂ = 0.259 and σ̂ = 0.557. For average
coin, estimated probability of head = 0.56.

c. Using PROC NLMIXED in SAS, predicted values are 0.52, 0.63, 0.46, 0.57,
0.57, 0.68, 0.63, 0.52, 0.57, 0.46.

7. a. Strong associations between responses inflates GLMM estimates relative to
marginal model estimates.

b. Loglinear model focuses on strength of association between use of one sub-
stance and use of another, given whether or not one used remaining substance.
The focus is not on the odds of having used one substance compared with the
odds of using another.

c. If σ̂ = 0, GLMM has the same fit as loglinear model (A, C, M), since condi-
tional independence of responses given random effect translates to conditional
independence marginally also.

9. For β̂A = 0, β̂B = 1.99 (SE = 0.35), β̂C = 2.51 (SE = 0.37), with σ̂ = 0.

11. a. For given department, estimated odds of admission for female are exp(0.173)

= 1.19 times estimated odds of admission for male.

b. For given department, estimated odds of admission for female are exp(0.163)

= 1.18 times estimated odds of admission for male.

c. The estimated mean log odds ratio between gender and admissions, given
department, is 0.176, corresponding to odds ratio = 1.19. Because of extra
variance component, estimate of β is not as precise.

d. Marginal odds ratio of exp(−0.07) = 0.93 in different direction, correspond-
ing to odds of being admitted lower for females than males.

13. a. e2.51 = 12.3, so estimated odds of response in category ≤ j (i.e., toward
“always wrong” end of scale) on extramarital sex for a randomly selected
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subject are 12.3 times estimated odds of response in those categories for
premarital sex for another randomly selected subject.

b. Estimate of β much larger for GLMM, since a subject-specific estimate and
variance component is large (recall Section 10.1.4).

17. a. At initial time, treatment effect = 0.058 (odds ratio = 1.06), so two groups
have similar response distributions. At follow-up time, the treatment effect =
0.058 + 1.081 = 1.139 (odds ratio = 3.1).

b. LR statistic = −2[−593.0 − (−621.0)] = 56. Null distribution is equal
mixture of degenerate at 0 and X2

1, and P -value is half that of X2
1 variate,

and is 0 to many decimal places.

23. From Section 10.1.4, the effects in marginal models are smaller in absolute value
than effects in GLMMs, with greater difference when σ̂ is larger. Here, the effect
for GLMM is the same for each age group, but diminishes more for the older
age group in the marginal model because the older age group has much larger
σ̂ in GLMM.
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