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12.3 - Poisson Regression

The Poisson distribution for a random variable ¥ has the following probability mass function for a given value ¥ = y:

e~

P(Y = ylA) = ——,

fory =0,1,2,.... Notice that the Poisson distribution is characterized by the single parameter 2, which is the mean rate of occurrence for the event being
measured. For the Poisson distribution, it is assumed that large counts (with respect to the value of 2) are rare.

In Poisson regression the dependent variable (Y) is an observed count that follows the Poisson distribution. The rate 4 is determined by a set of k
predictors X = (X, ..., Xy). The expression relating these quantities is

4 = exp{Xp}.
Thus, the fundamental Poisson regression model for observation i is given by

e~ xpiXf) exp{ X}

P(Y; = yiIX,, ) = =

That is, for a given set of predictors, the categorical outcome follows a Poisson distribution with rate exp{X/}. For a sample of size n, the likelihood for a
Poisson regression is given by:

E e ORI exp (XY
Ly % =] pIXAY

il
i=1 ye:

This yields the log likelihood:
£) = ), yXip- Y exp{X,p} — ) log(y)).
i=l i=1 i=1

Maximizing the likelihood (or log likelihood) has no closed-form solution, so a technique like iteratively reweighted least squares is used to find an
estimate of the regression coefficients, ﬁ Once this value of ﬁ has been obtained, we may proceed to define various goodness-of-fit measures and
calculated residuals. For the residuals we present, they serve the same purpose as in linear regression. When plotted versus the response, they will help
identify suspect data points.

Goodness-of-Fit

Overall performance of the fitted model can be measured by two different chi-square tests. There is the Pearson
statistic

x2 = ¥ Ui = exp(Xi)y
i=l exp{Xif}

and the deviance statistic
pD=2) ’y. log();a) — (i — exp{XB))|.
i=1 exp{x‘ﬂ }

Both of these statistics are approximately chi-sguare distributed with n — &k — 1 degrees of freedom. When a test is
rejected, there is a statistically significant lack of fit. Otherwise, there is no evidence of lack-of-fit.

To illustrate, the relevant software output from the simulated example is:



Pseudo R?

The value of R used in linear regression also does not extend to Poisson regression. One commonly used measure is
the pseudo Rz, defined as

P - @) _ | _ 2B

R = A Al
f(ﬂo) —zf(ﬂﬂ)

where f(é:)) is the log likelihood of the model when only the intercept is included. The pseudo R? goes from 0 to 1
with 1 being a perfect fit.

Raw Residual

The raw residual is the difference between the actual response and the estimated value from the model. Remember that the variance is equal to the mean
for a Poisson random variable. Therefore, we expect that the variances of the residuals are unequal. This can lead to difficulties in the interpretation of the
raw residuals, yet it is still used. The formula for the raw residual is

ri = yi — exp{X;f}.

Pearson Residual
The Pearson residual corrects for the unequal variance in the raw residuals by dividing by the standard deviation. The formula for the Pearson residuals is

T

\/dexp{X,8) ’

pi=

where

1§ = explXiB)

¢= -
P exp{Xif)

™M

=

av is a dispersion parameter to help control overdispersion.

Deviance Residuals

Deviance residuals are also popular because the sum of squares of these residuals is the deviance statistic. The formula for the deviance residual is

di = sgn(yi — exp[xiﬁ]) 2{}’1 log(};;\) -i- CXP{XnIg})}-
exp{Xf}

The plots below show the Pearson residuals and deviance residuals versus the fitted values for the simulated example.

Hat Values

The hat matrix serves the same purpose as in the case of linear regression - to measure the influence of each observation on the overall fit of the model.
The hat values, h;;, are the diagonal entries of the Hat matrix

H=W"ZX(XWX)" ' XW'2,

where W is an n X n diagonal matrix with the values of exp{X.fi} on the diagonal. As before, a hat value (leverage) is large if by > 2p/n.

Studentized Residuals
Finally, we can also report Studentized versions of some of the carlier residuals. The Studentized Pearson residuals are given by
P.
Spi =
1- hl.l'
and the Studentized deviance residuals are given by
dl
Sd,' =
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i b4 y
1 2 0
2 15 6
3 19 4
4 14 1
5 16 5
6 15 2
7 9 2
8 17 10
9 10 3
10 23 10
11 14 2
12 14 6
13 9 5
14 5 2
15 17 2
16 16 7
17 13 6
18 6 2
19 16 5
20 19 5
21 24 6
22 9 2
23 12 5
24 7 1
25 9 3
26 7 3
27 15 3
28 21 4
29 20 6
30 20 9

Y Jla

Example of Fit Poisson ModelA quality engineer is concerned about two types of defects in

molded resin parts: discoloration and clumping. Discolored streaks in the final product can
result from contamination in hoses and from abrasions to resin pellets. Clumping can occur
when the process is run at higher temperatures and faster rates of transfer. The engineer
identifies three possible predictor variables for the responses (defects). The engineer records
the number of each type of defect in hour long sessions, while varying the predictor levels.The
engineer wants to study how several predictors affect discoloration defects in resin parts.
Because the response variable describes the number of times that an event occurs in a finite

observation space, the engineer fits a Poisson model.



Y: Discoloration
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X1: '"Hours Since Cleanse'
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X2: Temperature
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X3: 'Size of Screw'
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Enter the sample data, ResinDefects.MTW.

Choose Stat > Regression > Poisson Regression > Fit Poisson Model.
In Response, enter 'Discoloration Defects'.

In Continuous predictors, enter 'Hours Since Cleanse' Temperature.

In Categorical predictors, enter 'Size of Screw'.

Click Graphs.

In Residuals for plots, select Standardized.

Under Residuals plots, select Four in one.

© © N o o »~ 0 D

Click OK in each dialog box.

Interpret the results

The plot of the standardized deviance residuals versus the fitted values shows a distinct
curve. In the plot of the residuals versus order, the residuals in the middle tend to be higher
than the residuals at the beginning and end of the data set. For these data, both patterns
are because of a missing interaction term between the size of the screw and the
temperature. The pattern is visible on the residuals versus order plot because the engineer
did not collect the data in random order. The engineer refits the model with the interaction
between temperature and the size of the screw to model the defects more accurately.

Poisson Regression Analysis: Discoloratio versus Hours Since , Temperature, ...

Method



Link function Natural log
Categorical predictor coding (1, 9)
Rows used 36

Deviance Table

Source DF Adj Dev Adj Mean Chi-Square P-Value

Regression 3 56.670  18.8900 56.67 0.000
Hours Since Cleanse 1 4.744 4.7444 4.74 0.029
Temperature 1 38.800 38.8000 38.80 0.000
Size of Screw 1 13.126 13.1256 13.13 0.000

Error 32 31.607 0.9877

Total 35 88.277

Model Summary

Deviance Deviance

R-Sq R-Sq(adj) AIC

64.20% 60.80% 253.29
Coefficients
Term Coef SE Coef VIF
Constant 4.3982 0.0628
Hours Since Cleanse 0.01798 0.00826 1.00
Temperature -0.001974 0.000318 1.00
Size of Screw

small -0.1546 0.0427 1.00

Regression Equation

Discoloration Defects = exp(Y')

Size of

Screw

large Y' = 4.398 + 0.01798 Hours Since Cleanse - 0.001974 Temperature

small Y!

4.244 + 0.01798 Hours Since Cleanse - 0.001974 Temperature

Goodness-of-Fit Tests

Test DF Estimate Mean Chi-Square P-Value



Deviance 32 31.60722 ©0.98773 31.61 0.486
Pearson 32 31.26713 ©.97710 31.27 0.503

Fits and Diagnostics for Unusual Observations

Discoloration
Obs Defects Fit Resid Std Resid
33 43.00 58.18 -2.09 -2.18 R

R Large residual

Deviance Residual Plots for Discoloration Defects
Normal Probability Plot Versus Log of Fits

=
“ ';2
B *
w0 L .
: o I + "' +
o *
2 5 |3 s it S Auk i
] - + e et
a T 4 N
w T o * +
T 2 +
1 =
-2 -1 0 1 2 3
Standardized Residual
Histogram -
=
B 2z
T 3.,
=
g4 30
g, i
0 2 <
-2 4 o 1 2 & 1 3 0 13 0 2 20 33

Standardzed Residual Obsarvation Order

For the model with the interaction, the AIC is approximately 236, which is lower than the
model without the interaction. The AIC criterion indicates that the model with the interaction
is better than the model without the interaction. The curvature in the residuals versus fits
plot is gone. The engineer decides to interpret this model rather than the model without the
interaction.

Poisson Regression Analysis: Discoloratio versus Hours Since , Temperature, ...

Method
Link function Natural log
Categorical predictor coding (1, 9)

Rows used 36

Deviance Table

Source DF Adj Dev Adj Mean Chi-Square P-Value
Regression 4 75.911  18.9778 7501911 0.000
Hours Since Cleanse 1 4.744 4.7444 4.74 0.029
Temperature 1 56.970 56.9703 56.97 0.000
Size of Screw 1 30.518 30.5182 30.52 0.000



Temperature*Size of Screw 1 19.241 19.2412 19.24 0.000
Error 31 12.366 0.3989
Total 35 88.277

Model Summary

Deviance Deviance

R-Sq R-Sq(adj) AIC

85.99% 81.46% 236.05
Coefficients
Term Coef SE Coef VIF
Constant 4.5760 0.0736
Hours Since Cleanse 0.01798 0.00826 1.00
Temperature -0.003285 0.000441 1.92
Size of Screw

small -0.5444 0.0990 5.37
Temperature*Size of Screw

small 0.002804 0.000640 6.64

Regression Equation

Discoloration Defects = exp(Y')

Size of

Screw

large Y' = 4.576 + 0.01798 Hours Since Cleanse - 0.003285 Temperature

small Y!

4.032 + 0.01798 Hours Since Cleanse - 0.000481 Temperature
Goodness-of-Fit Tests
Test DF Estimate Mean Chi-Square P-Value

Deviance 31 12.36598 ©0.39890 12.37 0.999
Pearson 31 12.31611 ©.39729 12.32 0.999



Deviance Residual Plots for Discoloration Defects

Normal Probability Plot - Versus Log of Fits
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Example of Predict with a Poisson regression
modelAchoose Stat > Regression > Poisson Regression > Predict.

1. From Response, select Discoloration Defects.

2. In the table, enter 6 for Hours Since Cleanse, 115 for Temperature, and large for Size of

Screw.

3. Click OK.

Interpret the results

Minitab uses the stored model to calculate that the predicted number of discoloration
defects is 72.1682. The prediction interval indicates that the engineer can be 95% confident
that the mean number of discoloration defects will fall within the range of 67.5477 to
77.1047.

Prediction for Discoloration Defects

Regression Equation

Discoloration Defects = exp(Y')

Y' = 4.3982 + 0.01798 Hours Since Cleanse - 0.001974 Temperature
+ 0.000000 Size of Screw_large - 0.1546 Size of Screw_small

Settings
Variable Setting
Hours Since Cleanse 6

Temperature 115



Size of Screw large

Prediction

Fit SE Fit 95% CI
72.1682 2.43628 (67.5477, 77.1047)

| x1 X2 x3 v

1 0 small 80 53
2 1 small 80 56
3 2 small 80 54
4 3 small 80 58
5 4 small 80 61
6 5 small 80 64
7 6 small 80 64
8 7 small 80 58
9 8 small 80 57
10 0 small 215 51
11 1 small 215 54
12 2 small 215 59
13 3 small 215 52
14 4 small 215 49
15 5 small 215 48
16 6 small 215 64
17 7 small 215 57
18 8 small 215 58
19 0 large 80 69
20 1 large 80 76
21 2 large 80 79
22 3 large 80 82
23 4 large 80 80
24 5 large 80 79
25 6 large 80 83
26 7 large 80 84
27 8 large 80 91
28 0 large 215 48
29 1 large 215 41
30 2 large 215 55
31 3 large 215 61
32 4 large 215 53
33 5 large 215 43
34 6 large 215 49
35 7 large 215 55
36 8 large 215 59



