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Preface

Preface to the Fourth Edition

“Critical assessment of data is the the essential task of the educated mind.”
Professor Garrett G. Fagan, Pennsylvania State University.

The last words in his audio course The Emperors of Rome, The Teaching Company.

As with the prefaces to the second and third editions, this focuses on changes to
the previous edition. The preface to the first edition discusses the core of the book.

Two substantial changes have occurred in Chapter 3. Subsection 3.3.2 uses a sim-
plified method of finding the reduced model and includes some additional discus-
sion of applications. In testing the generalized least squares models of Section 3.8,
even though the data may not be independent or homoscedastic, there are conditions
under which the standard F statistic (based on those assumptions) still has the stan-
dard F distribution under the reduced model. Section 3.8 contains a new subsection
examining such conditions.

The major change in the fourth edition has been a more extensive discussion of
best prediction and associated ideas of R2 in Sections 6.3 and 6.4. It also includes a
nice result that justifies traditional uses of residual plots. One portion of the new ma-
terial is viewing best predictors (best linear predictors) as perpendicular projections
of the dependent random variable y into the space of random variables that are (lin-
ear) functions of the predictor variables x. A new subsection on inner products and
perpendicular projections for more general spaces facilitates the discussion. While
these ideas were not new to me, their inclusion here was inspired by deLaubenfels
(2006).

Section 9.1 has an improved discussion of least squares estimation in ACOVA
models. A new Section 9.5 examines Milliken and Graybill’s generalization of
Tukey’s one degree of freedom for nonadditivity test.

A new Section 10.5 considers estimable parameters that can be known with cer-
tainty when C(X) �⊂ C(V ) in a general Gauss–Markov model. It also contains a
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relatively simple way to estimate estimable parameters that are not known with cer-
tainty. The nastier parts in Sections 10.1–10.4 are those that provide sufficient gen-
erality to allow C(X) �⊂C(V ). The approach of Section 10.5 seems more appealing.

In Sections 12.4 and 12.6 the point is now made that ML and REML methods
can also be viewed as method of moments or estimating equations procedures.

The biggest change in Chapter 13 is a new title. The plots have been improved
and extended. At the end of Section 13.6 some additional references are given on
case deletions for correlated data as well as an efficient way of computing case
deletion diagnostics for correlated data.

The old Chapter 14 has been divided into two chapters, the first on variable se-
lection and the second on collinearity and alternatives to least squares estimation.
Chapter 15 includes a new section on penalized estimation that discusses both ridge
and lasso estimation and their relation to Bayesian inference. There is also a new
section on orthogonal distance regression that finds a regression line by minimizing
orthogonal distances, as opposed to least squares, which minimizes vertical dis-
tances.

Appendix D now contains a short proof of the claim: If the random vectors x and
y are independent, then any vector-valued functions of them, say g(x) and h(y), are
also independent.

Another significant change is that I wanted to focus on Fisherian inference, rather
than the previous blend of Fisherian and Neyman–Pearson inference. In the interests
of continuity and conformity, the differences are soft-pedaled in most of the book.
They arise notably in new comments made after presenting the traditional (one-
sided) F test in Section 3.2 and in a new Subsection 5.6.1 on multiple comparisons.
The Fisherian viewpoint is expanded in Appendix F, which is where it primarily
occurred in the previous edition. But the change is most obvious in Appendix E. In
all previous editions, Appendix E existed just in case readers did not already know
the material. While I still expect most readers to know the “how to” of Appendix E,
I no longer expect most to be familiar with the “why” presented there.

Other minor changes are too numerous to mention and, of course, I have cor-
rected all of the typographic errors that have come to my attention. Comments by
Jarrett Barber led me to clean up Definition 2.1.1 on identifiability.

My thanks to Fletcher Christensen for general advice and for constructing Fig-
ures 10.1 and 10.2. (Little enough to do for putting a roof over his head all those
years. :-)

Ronald Christensen
Albuquerque, New Mexico, 2010
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Preface to the Third Edition

The third edition of Plane Answers includes fundamental changes in how some as-
pects of the theory are handled. Chapter 1 includes a new section that introduces
generalized linear models. Primarily, this provides a definition so as to allow com-
ments on how aspects of linear model theory extend to generalized linear models.

For years I have been unhappy with the concept of estimability. Just because
you cannot get a linear unbiased estimate of something does not mean you cannot
estimate it. For example, it is obvious how to estimate the ratio of two contrasts in
an ANOVA, just estimate each one and take their ratio. The real issue is that if the
model matrix X is not of full rank, the parameters are not identifiable. Section 2.1
now introduces the concept of identifiability and treats estimability as a special case
of identifiability. This change also resulted in some minor changes in Section 2.2.

In the second edition, Appendix F presented an alternative approach to dealing
with linear parametric constraints. In this edition I have used the new approach in
Section 3.3. I think that both the new approach and the old approach have virtues,
so I have left a fair amount of the old approach intact.

Chapter 8 contains a new section with a theoretical discussion of models for
factorial treatment structures and the introduction of special models for homologous
factors. This is closely related to the changes in Section 3.3.

In Chapter 9, reliance on the normal equations has been eliminated from the
discussion of estimation in ACOVA models — something I should have done years
ago! In the previous editions, Exercise 9.3 has indicated that Section 9.1 should
be done with projection operators, not normal equations. I have finally changed it.
(Now Exercise 9.3 is to redo Section 9.1 with normal equations.)

Appendix F now discusses the meaning of small F statistics. These can occur
because of model lack of fit that exists in an unsuspected location. They can also
occur when the mean structure of the model is fine but the covariance structure has
been misspecified.

In addition there are various smaller changes including the correction of typo-
graphical errors. Among these are very brief introductions to nonparametric re-
gression and generalized additive models; as well as Bayesian justifications for the
mixed model equations and classical ridge regression. I will let you discover the
other changes for yourself.

Ronald Christensen
Albuquerque, New Mexico, 2001
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Preface to the Second Edition

The second edition of Plane Answers has many additions and a couple of dele-
tions. New material includes additional illustrative examples in Appendices A and
B and Chapters 2 and 3, as well as discussions of Bayesian estimation, near replicate
lack of fit tests, testing the independence assumption, testing variance components,
the interblock analysis for balanced incomplete block designs, nonestimable con-
straints, analysis of unreplicated experiments using normal plots, tensors, and prop-
erties of Kronecker products and Vec operators. The book contains an improved
discussion of the relation between ANOVA and regression, and an improved pre-
sentation of general Gauss–Markov models. The primary material that has been
deleted are the discussions of weighted means and of log-linear models. The mate-
rial on log-linear models was included in Christensen (1997), so it became redun-
dant here. Generally, I have tried to clean up the presentation of ideas wherever it
seemed obscure to me.

Much of the work on the second edition was done while on sabbatical at the
University of Canterbury in Christchurch, New Zealand. I would particularly like to
thank John Deely for arranging my sabbatical. Through their comments and criti-
cisms, four people were particularly helpful in constructing this new edition. I would
like to thank Wes Johnson, Snehalata Huzurbazar, Ron Butler, and Vance Berger.

Ronald Christensen
Albuquerque, New Mexico, 1996
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Preface to the First Edition

This book was written to rigorously illustrate the practical application of the pro-
jective approach to linear models. To some, this may seem contradictory. I contend
that it is possible to be both rigorous and illustrative, and that it is possible to use the
projective approach in practical applications. Therefore, unlike many other books
on linear models, the use of projections and subspaces does not stop after the gen-
eral theory. They are used wherever I could figure out how to do it. Solving normal
equations and using calculus (outside of maximum likelihood theory) are anathema
to me. This is because I do not believe that they contribute to the understanding of
linear models. I have similar feelings about the use of side conditions. Such topics
are mentioned when appropriate and thenceforward avoided like the plague.

On the other side of the coin, I just as strenuously reject teaching linear models
with a coordinate free approach. Although Joe Eaton assures me that the issues in
complicated problems frequently become clearer when considered free of coordi-
nate systems, my experience is that too many people never make the jump from
coordinate free theory back to practical applications. I think that coordinate free
theory is better tackled after mastering linear models from some other approach. In
particular, I think it would be very easy to pick up the coordinate free approach after
learning the material in this book. See Eaton (1983) for an excellent exposition of
the coordinate free approach.

By now it should be obvious to the reader that I am not very opinionated on
the subject of linear models. In spite of that fact, I have made an effort to identify
sections of the book where I express my personal opinions.

Although in recent revisions I have made an effort to cite more of the literature,
the book contains comparatively few references. The references are adequate to the
needs of the book, but no attempt has been made to survey the literature. This was
done for two reasons. First, the book was begun about 10 years ago, right after I
finished my Masters degree at the University of Minnesota. At that time I was not
aware of much of the literature. The second reason is that this book emphasizes
a particular point of view. A survey of the literature would best be done on the
literature’s own terms. In writing this, I ended up reinventing a lot of wheels. My
apologies to anyone whose work I have overlooked.

Using the Book

This book has been extensively revised, and the last five chapters were written at
Montana State University. At Montana State we require a year of Linear Models
for all of our statistics graduate students. In our three-quarter course, I usually end
the first quarter with Chapter 4 or in the middle of Chapter 5. At the end of winter
quarter, I have finished Chapter 9. I consider the first nine chapters to be the core
material of the book. I go quite slowly because all of our Masters students are re-
quired to take the course. For Ph.D. students, I think a one-semester course might be
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the first nine chapters, and a two-quarter course might have time to add some topics
from the remainder of the book.

I view the chapters after 9 as a series of important special topics from which
instructors can choose material but which students should have access to even if their
course omits them. In our third quarter, I typically cover (at some level) Chapters 11
to 14. The idea behind the special topics is not to provide an exhaustive discussion
but rather to give a basic introduction that will also enable readers to move on to
more detailed works such as Cook and Weisberg (1982) and Haberman (1974).

Appendices A–E provide required background material. My experience is that
the student’s greatest stumbling block is linear algebra. I would not dream of teach-
ing out of this book without a thorough review of Appendices A and B.

The main prerequisite for reading this book is a good background in linear al-
gebra. The book also assumes knowledge of mathematical statistics at the level of,
say, Lindgren or Hogg and Craig. Although I think a mathematically sophisticated
reader could handle this book without having had a course in statistical methods, I
think that readers who have had a methods course will get much more out of it.

The exercises in this book are presented in two ways. In the original manuscript,
the exercises were incorporated into the text. The original exercises have not been
relocated. It has been my practice to assign virtually all of these exercises. At a later
date, the editors from Springer-Verlag and I agreed that other instructors might like
more options in choosing problems. As a result, a section of additional exercises
was added to the end of the first nine chapters and some additional exercises were
added to other chapters and appendices. I continue to recommend requiring nearly
all of the exercises incorporated in the text. In addition, I think there is much to be
learned about linear models by doing, or at least reading, the additional exercises.

Many of the exercises are provided with hints. These are primarily designed so
that I can quickly remember how to do them. If they help anyone other than me, so
much the better.

Acknowledgments

I am a great believer in books. The vast majority of my knowledge about statistics
has been obtained by starting at the beginning of a book and reading until I covered
what I had set out to learn. I feel both obligated and privileged to thank the authors of
the books from which I first learned about linear models: Daniel and Wood, Draper
and Smith, Scheffé, and Searle.

In addition, there are a number of people who have substantially influenced par-
ticular parts of this book. Their contributions are too diverse to specify, but I should
mention that, in several cases, their influence has been entirely by means of their
written work. (Moreover, I suspect that in at least one case, the person in question
will be loathe to find that his writings have come to such an end as this.) I would
like to acknowledge Kit Bingham, Carol Bittinger, Larry Blackwood, Dennis Cook,
Somesh Das Gupta, Seymour Geisser, Susan Groshen, Shelby Haberman, David
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Harville, Cindy Hertzler, Steve Kachman, Kinley Larntz, Dick Lund, Ingram Olkin,
S. R. Searle, Anne Torbeyns, Sandy Weisberg, George Zyskind, and all of my stu-
dents. Three people deserve special recognition for their pains in advising me on the
manuscript: Robert Boik, Steve Fienberg, and Wes Johnson.

The typing of the first draft of the manuscript was done by Laura Cranmer and
Donna Stickney.

I would like to thank my family: Sharon, Fletch, George, Doris, Gene, and Jim,
for their love and support. I would also like to thank my friends from graduate school
who helped make those some of the best years of my life.

Finally, there are two people without whom this book would not exist: Frank
Martin and Don Berry. Frank because I learned how to think about linear models in
a course he taught. This entire book is just an extension of the point of view that I
developed in Frank’s class. And Don because he was always there ready to help —
from teaching my first statistics course to being my thesis adviser and everywhere
in between.

Since I have never even met some of these people, it would be most unfair to
blame anyone but me for what is contained in the book. (Of course, I will be more
than happy to accept any and all praise.) Now that I think about it, there may be
one exception to the caveat on blame. If you don’t like the diatribe on prediction in
Chapter 6, you might save just a smidgen of blame for Seymour (even though he did
not see it before publication).

Ronald Christensen
Bozeman, Montana, 1987





Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Random Vectors and Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Multivariate Normal Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Distributions of Quadratic Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Generalized Linear Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.5 Additional Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1 Identifiability and Estimability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 Estimation: Least Squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3 Estimation: Best Linear Unbiased . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4 Estimation: Maximum Likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.5 Estimation: Minimum Variance Unbiased . . . . . . . . . . . . . . . . . . . . . . 30
2.6 Sampling Distributions of Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.7 Generalized Least Squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.8 Normal Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.9 Bayesian Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.9.1 Distribution Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.10 Additional Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.1 More About Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2 Testing Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2.1 A Generalized Test Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.3 Testing Linear Parametric Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3.1 A Generalized Test Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.3.2 Testing an Unusual Class of Hypotheses . . . . . . . . . . . . . . . . . 72

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.5 Testing Single Degrees of Freedom in a Given Subspace . . . . . . . . . . 76
3.6 Breaking a Sum of Squares into Independent Components . . . . . . . . 77

3.6.1 General Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

xvii



xviii Contents

3.6.2 Two-Way ANOVA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.7 Confidence Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.8 Tests for Generalized Least Squares Models . . . . . . . . . . . . . . . . . . . . 84

3.8.1 Conditions for Simpler Procedures . . . . . . . . . . . . . . . . . . . . . . 86
3.9 Additional Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4 One-Way ANOVA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.1 Analysis of Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.2 Estimating and Testing Contrasts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.3 Additional Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5 Multiple Comparison Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
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Chapter 1

Introduction

This book is about linear models. Linear models are models that are linear in their
parameters. A typical model considered is

Y = Xβ + e,

where Y is an n× 1 vector of random observations, X is an n× p matrix of known
constants called the model (or design) matrix, β is a p× 1 vector of unobservable
fixed parameters, and e is an n× 1 vector of unobservable random errors. Both Y
and e are random vectors. We assume that the errors have mean zero, a common
variance, and are uncorrelated. In particular, E(e) = 0 and Cov(e) = σ 2I, where
σ 2 is some unknown parameter. (The operations E(·) and Cov(·) will be defined
formally a bit later.) Our object is to explore models that can be used to predict
future observable events. Much of our effort will be devoted to drawing inferences,
in the form of point estimates, tests, and confidence regions, about the parameters
β and σ 2. In order to get tests and confidence regions, we will assume that e has
an n-dimensional normal distribution with mean vector (0,0, . . . ,0)′ and covariance
matrix σ 2I, i.e., e ∼ N(0,σ 2I).

Applications often fall into two special cases: Regression Analysis and Analy-
sis of Variance. Regression Analysis refers to models in which the matrix X ′X is
nonsingular. Analysis of Variance (ANOVA) models are models in which the model
matrix consists entirely of zeros and ones. ANOVA models are sometimes called
classification models.

EXAMPLE 1.0.1. Simple Linear Regression.
Consider the model

yi = β0 +β1xi + ei,

i = 1, . . . ,6, (x1,x2,x3,x4,x5,x6) = (1,2,3,4,5,6), where the eis are independent
N(0,σ 2). In matrix notation we can write this as
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y1
y2
y3
y4
y5
y6

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
1 1
1 2
1 3
1 4
1 5
1 6

⎤⎥⎥⎥⎥⎥⎦
[

β0
β1

]
+

⎡⎢⎢⎢⎢⎢⎣
e1
e2
e3
e4
e5
e6

⎤⎥⎥⎥⎥⎥⎦
Y = X β + e.

EXAMPLE 1.0.2 One-Way Analysis of Variance.
The model

yi j = μ +αi + ei j,

i = 1, . . . ,3, j = 1, . . . ,Ni, (N1,N2,N3) = (3,1,2), where the ei js are independent
N
(
0,σ 2), can be written as⎡⎢⎢⎢⎢⎢⎣

y11
y12
y13
y21
y31
y32

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
1 1 0 0
1 1 0 0
1 1 0 0
1 0 1 0
1 0 0 1
1 0 0 1

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎣

μ
α1
α2
α3

⎤⎥⎦ +

⎡⎢⎢⎢⎢⎢⎣
e11
e12
e13
e21
e31
e32

⎤⎥⎥⎥⎥⎥⎦
Y = X β + e.

Examples 1.0.1 and 1.0.2 will be used to illustrate concepts in Chapters 2 and 3.
With any good statistical procedure, it is necessary to investigate whether the

assumptions that have been made are reasonable. Methods for evaluating the validity
of the assumptions will be considered. These consist of both formal statistical tests
and the informal examination of residuals. We will also consider the issue of how to
select a model when several alternative models seem plausible.

The approach taken here emphasizes the use of vector spaces, subspaces, orthog-
onality, and projections. These and other topics in linear algebra are reviewed in
Appendices A and B. It is absolutely vital that the reader be familiar with the ma-
terial presented in the first two appendices. Appendix C contains the definitions of
some commonly used distributions. Much of the notation used in the book is set in
Appendices A, B, and C. To develop the distribution theory necessary for tests and
confidence regions, it is necessary to study properties of the multivariate normal dis-
tribution and properties of quadratic forms. We begin with a discussion of random
vectors and matrices.

Exercise 1.1 Write the following models in matrix notation:
(a) Multiple regression

yi = β0 +β1xi1 +β2xi2 +β3xi3 + ei,
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i = 1, . . . ,6.
(b) Two-way ANOVA with interaction

yi jk = μ +αi +β j + γi j + ei jk,

i = 1,2,3, j = 1,2, k = 1,2.
(c) Two-way analysis of covariance (ACOVA) with no interaction

yi jk = μ +αi +β j + γxi jk + ei jk,

i = 1,2,3, j = 1,2, k = 1,2.
(d) Multiple polynomial regression

yi = β00 +β10xi1 +β01xi2 +β20x2
i1 +β02x2

i2 +β11xi1xi2 + ei,

i = 1, . . . ,6.

1.1 Random Vectors and Matrices

Let y1, . . . ,yn be random variables with E(yi) = μi, Var(yi) = σii, and Cov(yi,y j) =
σi j ≡ σ ji.

Writing the random variables as an n-dimensional vector Y , we can define the
expected value of Y elementwise as

E(Y ) = E

⎡⎢⎢⎣
y1
y2
...

yn

⎤⎥⎥⎦=

⎡⎢⎢⎣
Ey1
Ey2

...
Eyn

⎤⎥⎥⎦=

⎡⎢⎢⎣
μ1
μ2
...

μn

⎤⎥⎥⎦= μ .

In general, we can define a random matrix W = [wi j], where each wi j, i = 1, . . . ,r,
j = 1, . . . ,s, is a random variable. The expected value of W is taken elementwise,
i.e., E(W ) = [E(wi j)]. This leads to the definition of the covariance matrix of Y as

Cov(Y ) = E
[
(Y −μ)(Y −μ)′

]
=

⎡⎢⎢⎣
σ11 σ12 · · · σ1n
σ21 σ22 · · · σ2n

...
...

. . .
...

σn1 σn2 · · · σnn

⎤⎥⎥⎦ .

A random vector is referred to as singular or nonsingular depending on whether its
covariance matrix is singular or nonsingular. Sometimes the covariance matrix is
called the variance-covariance matrix or the dispersion matrix.

It is easy to see that if Y is an n-dimensional random vector, A is a fixed r× n
matrix, and b is a fixed vector in Rr, then
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E(AY +b) = AE(Y )+b

and
Cov(AY +b) = ACov(Y )A′.

This last equality can be used to show that for any random vector Y , Cov(Y ) is
nonnegative definite. It follows that Y is nonsingular if and only if Cov(Y ) is positive
definite.

Exercise 1.2 Let W be an r × s random matrix, and let A and C be n× r and
n× s matrices of constants, respectively. Show that E(AW +C) = AE(W )+C. If B
is an s× t matrix of constants, show that E(AWB) = AE(W )B. If s = 1, show that
Cov(AW +C) = ACov(W )A′.

Exercise 1.3 Show that Cov(Y ) is nonnegative definite for any random vector
Y .

The covariance of two random vectors with possibly different dimensions can be
defined. If Wr×1 and Ys×1 are random vectors with EW = γ and EY = μ , then the
covariance of W and Y is the r× s matrix

Cov(W,Y ) = E[(W − γ)(Y −μ)′].

In particular, Cov(Y,Y ) = Cov(Y ). If A and B are fixed matrices, the results of Ex-
ercise 1.2 quickly yield

Cov(AW,BY ) = ACov(W,Y )B′.

Another simple consequence of the definition is:

Theorem 1.1.1. If A and B are fixed matrices and W and Y are random vectors,
and if AW and BY are both vectors in Rn, then, assuming that the expectations exist,

Cov(AW +BY ) = ACov(W )A′ +BCov(Y )B′ +ACov(W,Y )B′ +BCov(Y,W )A′.

PROOF. Without loss of generality we can assume that E(W ) = 0 and E(Y ) = 0:

Cov(AW +BY ) = E[(AW +BY )(AW +BY )′]
= AE[WW ′]A′ +BE[YY ′]B′ +AE[WY ′]B′ +BE[YW ′]A′

= ACov(W )A′ +BCov(Y )B′ +ACov(W,Y )B′ +BCov(Y,W )A′.

�
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1.2 Multivariate Normal Distributions

It is assumed that the reader is familiar with the basic ideas of multivariate distribu-
tions. A summary of these ideas is contained in Appendix D.

Let Z = [z1, . . . ,zn]′ be a random vector with z1, . . . ,zn independent identically
distributed (i.i.d.) N(0,1) random variables. Note that E(Z) = 0 and Cov(Z) = I.

Definition 1.2.1. Y has an r-dimensional multivariate normal distribution if Y
has the same distribution as AZ +b, i.e., Y ∼ AZ +b, for some n, some fixed r×n
matrix A, and some fixed r vector b. We indicate the multivariate normal distribution
of Y by writing Y ∼ N(b,AA′).

Since A and b are fixed, and since E(Z) = 0, Cov(Z) = I, we have E(Y ) = b and
Cov(Y ) = AA′.

It is not clear that the notation Y ∼ N(b,AA′) is well defined, i.e., that a multi-
variate normal distribution depends only on its mean vector and covariance matrix.
Clearly, if we have Y ∼ AZ +b, then the notation Y ∼ N(b,AA′) makes sense. How-
ever, if we write, say, Y ∼ N(μ ,V ), we may be able to write both V = AA′ and
V = BB′, where A �= B. In that case, we do not know whether to take Y ∼ AZ + μ or
Y ∼ BZ + μ . In fact, the number of columns in A and B need not even be the same,
so the length of the vector Z could change between Y ∼ AZ + μ and Y ∼ BZ + μ .
We need to show that it does not matter which characterization is used. We now
give such an argument based on characteristic functions. The argument is based on
the fact that any two random vectors with the same characteristic function have the
same distribution. Appendix D contains the definition of the characteristic function
of a random vector.

Theorem 1.2.2. If Y ∼ N(μ ,V ) and W ∼ N(μ ,V ), then Y and W have the same
distribution.

PROOF. Observe that

ϕZ(t) = E[exp(it ′Z)] =
n

∏
j=1

E[exp(it jz j)] =
n

∏
j=1

exp(−t2
j /2) = exp(−t ′t/2).

Define Y ∼ AZ + μ , where AA′ = V . The characteristic function of Y is

ϕY (t) = E[exp(it ′Y )] = E[exp(it ′[AZ + μ ])]
= exp(it′μ)ϕZ(A′t)
= exp(it ′μ)exp(−t ′AA′t/2)
= exp(it ′μ − t ′Vt/2).

Similarly,
ϕW (t) = exp(it ′μ − t ′Vt/2).
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Since the characteristic functions are the same, Y ∼W . �

Suppose that Y is nonsingular and that Y ∼ N(μ ,V ); then Y has a density. By
definition, Y nonsingular means precisely that V is positive definite. By Corollary
B.23, we can write V = AA′, with A nonsingular. Since Y ∼ AZ + μ involves a
nonsingular transformation of the random vector Z, which has a known density, it is
quite easy to find the density of Y . The density is

f (y) = (2π)−n/2[det(V )]−1/2 exp[−(y−μ)′V−1(y−μ)/2],

where det(V ) is the determinant of V .

Exercise 1.4 Show that the function f (y) given above is the density of Y when
Y ∼ N(μ ,V ) and V is nonsingular.

Hint: If Z has density fZ(z) and Y = G(Z), the density of Y is

fY (y) = fZ(G−1(y))|det(dG−1)|,

where dG−1 is the derivative (matrix of partial derivatives) of G−1 evaluated at y.

An important and useful result is that for random vectors having a joint multi-
variate normal distribution, the condition of having zero covariance is equivalent to
the condition of independence.

Theorem 1.2.3. If Y ∼ N(μ,V ) and Y =
[

Y1
Y2

]
, then Cov(Y1,Y2) = 0 if and only

if Y1 and Y2 are independent.

PROOF. Partition V and μ to conform with Y , giving V =
[

V11 V12
V21 V22

]
and μ =[

μ1
μ2

]
. Note that V12 = V ′

21 = Cov(Y1,Y2).

⇐ If Y1 and Y2 are independent,

V12 = E[(Y1 −μ1)(Y2 −μ2)′] = E(Y1 −μ1)E(Y2 −μ2)′ = 0.

⇒ Suppose Cov(Y1,Y2) = 0, so that V12 = V ′
21 = 0. Using the definition of mul-

tivariate normality, we will generate a version of Y in which it is clear that Y1 and
Y2 are independent. Given the uniqueness established in Theorem 1.2.2, this is suf-
ficient to establish independence of Y1 and Y2.

Since Y is multivariate normal, by definition we can write Y ∼ AZ + μ , where A

is an r×n matrix. Partition A in conformance with
[

Y1
Y2

]
as A =

[
A1
A2

]
so that

V =
[

V11 V12
V21 V22

]
=
[

A1A′
1 A1A′

2
A2A′

1 A2A′
2

]
.
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Because V12 = 0, we have A1A′
2 = 0 and

V =
[

A1A′
1 0

0 A2A′
2

]
.

Now let z1,z2, . . . ,z2n be i.i.d. N(0,1). Define the random vectors Z1 = [z1, . . . ,zn]′,
Z2 = [zn+1, . . . ,z2n]′, and

Z0 =
[

Z1
Z2

]
.

Note that Z1 and Z2 are independent. Now consider the random vector

W =
[

A1 0
0 A2

]
Z0 + μ.

By definition, W is multivariate normal with E(W ) = μ and

Cov(W ) =
[

A1 0
0 A2

][
A1 0
0 A2

]′
=
[

A1A′
1 0

0 A2A′
2

]
= V.

We have shown that W ∼ N(μ,V ) and by assumption Y ∼ N(μ ,V ). By Theorem
1.2.2, W and Y have exactly the same distribution; thus

Y ∼
[

A1 0
0 A2

]
Z0 + μ .

It follows that Y1 ∼ [A1,0]Z0 +μ1 = A1Z1 +μ1 and Y2 ∼ [0,A2]Z0 +μ2 = A2Z2 +μ2.
The joint distribution of (Y1,Y2) is the same as the joint distribution of (A1Z1 +
μ1,A2Z2 + μ2). However, Z1 and Z2 are independent; thus A1Z1 +μ1 and A2Z2 +μ2
are independent, and it follows that Y1 and Y2 are independent. �

Exercise 1.5 Show that if Y is an r-dimensional random vector with Y ∼N(μ ,V )
and if B is a fixed n× r matrix, then BY ∼ N(Bμ ,BV B′).

In linear model theory, Theorem 1.2.3 is often applied to establish independence
of two linear transformations of the data vector Y .

Corollary 1.2.4. If Y ∼ N(μ ,σ 2I) and if AB′ = 0, then AY and BY are indepen-
dent.
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PROOF. Consider the distribution of
[

A
B

]
Y . By Exercise 1.5, the joint distribution

of AY and BY is multivariate normal. Since Cov(AY,BY ) = σ 2AIB′ = σ 2AB′ = 0,
Theorem 1.2.3 implies that AY and BY are independent. �

1.3 Distributions of Quadratic Forms

In this section, quadratic forms are defined, the expectation of a quadratic form is
found, and a series of results on independence and chi-squared distributions are
given.

Definition 1.3.1. Let Y be an n-dimensional random vector and let A be an n×n
matrix. A quadratic form is a random variable defined by Y ′AY for some Y and A.

Note that since Y ′AY is a scalar, Y ′AY =Y ′A′Y =Y ′(A+A′)Y/2. Since (A+A′)/2
is always a symmetric matrix, we can, without loss of generality, restrict ourselves
to quadratic forms where A is symmetric.

Theorem 1.3.2. If E(Y ) = μ and Cov(Y ) = V , then E(Y ′AY ) = tr(AV )+ μ ′Aμ .

PROOF.

(Y −μ)′A(Y −μ) = Y ′AY −μ ′AY −Y ′Aμ + μ ′Aμ ,

E[(Y −μ)′A(Y −μ)] = E[Y ′AY ]−μ ′Aμ −μ ′Aμ + μ ′Aμ ,

so E[Y ′AY ] = E[(Y −μ)′A(Y −μ)]+ μ ′Aμ .
It is easily seen that for any random square matrix W , E(tr(W )) = tr(E(W )). Thus

E[(Y −μ)′A(Y −μ)] = E(tr[(Y −μ)′A(Y −μ)])
= E(tr[A(Y −μ)(Y −μ)′])
= tr(E[A(Y −μ)(Y −μ)′])
= tr(AE[(Y −μ)(Y −μ)′])
= tr(AV ).

Substitution gives
E(Y ′AY ) = tr(AV )+ μ ′Aμ. �

We now proceed to give results on chi-squared distributions and independence
of quadratic forms. Note that by Definition C.1 and Theorem 1.2.3, if Z is an n-
dimensional random vector and Z ∼ N(μ , I), then Z′Z ∼ χ2(n,μ ′μ/2).
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Theorem 1.3.3. If Y is a random vector with Y ∼ N(μ , I) and if M is any per-
pendicular projection matrix, then Y ′MY ∼ χ2(r(M),μ ′Mμ/2).

PROOF. Let r(M) = r and let o1, . . . ,or be an orthonormal basis for C(M). Let
O = [o1, . . . ,or] so that M = OO′. We now have Y ′MY = Y ′OO′Y = (O′Y )′(O′Y ),
where O′Y ∼ N(O′μ ,O′IO). The columns of O are orthonormal, so O′O is an r× r
identity matrix, and by definition (O′Y )′(O′Y )∼ χ2(r,μ ′OO′μ/2) where μ ′OO′μ =
μ ′Mμ . �

Observe that if Y ∼ N
(
μ,σ 2I

)
, then [1/σ ]Y ∼ N ([1/σ ]μ, I) and Y ′MY/σ 2 ∼

χ2
(
r(M),μ ′Mμ/2σ 2

)
.

Theorem 1.3.6 provides a generalization of Theorem 1.3.3 that is valid for an
arbitrary covariance matrix. The next two lemmas are used in the proof of Theorem
1.3.6.

Lemma 1.3.4. If Y ∼ N(μ ,M), where μ ∈ C(M) and if M is a perpendicular
projection matrix, then Y ′Y ∼ χ2(r(M),μ ′μ/2).

PROOF. Let O have r orthonormal columns with M = OO′. Since μ ∈ C(M),
μ = Ob. Let W ∼ N(b, I), then Y ∼ OW . Since O′O = Ir is also a perpendicular
projection matrix, the previous theorem gives Y ′Y ∼ W ′O′OW ∼ χ2(r,b′O′Ob/2).
The proof is completed by observing that r = r(M) and b′O′Ob = μ ′μ . �

The following lemma establishes that, if Y is a singular random variable, then
there exists a proper subset of Rn that contains Y with probability 1.

Lemma 1.3.5. If E(Y ) = μ and Cov(Y ) = V , then Pr[(Y −μ) ∈C(V )] = 1.

PROOF. Without loss of generality, assume μ = 0. Let MV be the perpendicular
projection operator onto C(V ); then Y = MVY +(I−MV )Y . Clearly, E[(I−MV )Y ] =
0 and Cov[(I−MV )Y ] = (I−MV )V (I−MV ) = 0. Thus, Pr[(I−MV )Y = 0] = 1 and
Pr[Y = MVY ] = 1. Since MVY ∈C(V ), we are done. �

Exercise 1.6 Show that if Y is a random vector and if E(Y ) = 0 and Cov(Y ) = 0,
then Pr[Y = 0] = 1.

Hint: For a random variable w with Pr[w ≥ 0] = 1 and k > 0, show that Pr[w ≥
k] ≤ E(w)/k. Apply this result to Y ′Y .

Theorem 1.3.6. If Y ∼ N(μ,V ), then Y ′AY ∼ χ2(tr(AV ),μ ′Aμ/2) provided that
(1) VAVAV = VAV , (2) μ ′AVAμ = μ ′Aμ , and (3) VAVAμ = VAμ .
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PROOF. By Lemma 1.3.5, for the purpose of finding the distribution of Y ′AY , we
can assume that Y = μ +e, where e ∈C(V ). Using conditions (1), (2), and (3) of the
theorem and the fact that e = V b for some b,

Y ′AY = μ ′Aμ + μ ′Ae+ e′Aμ + e′Ae

= μ ′AVAμ + μ ′AVAe+ e′AVAμ + e′AVAe

= Y ′(AVA)Y.

Write V = QQ′ so that Y ′AY =(Q′AY )′(Q′AY ), where Q′AY ∼N(Q′Aμ ,Q′AVAQ).
If we can show that Q′AVAQ is a perpendicular projection matrix and that Q′Aμ ∈
C(Q′AVAQ), then Y ′AY will have a chi-squared distribution by Lemma 1.3.4.

Since V is nonnegative definite, we can write Q = Q1Q2, where Q1 has orthonor-
mal columns and Q2 is nonsingular. It follows that

Q−1
2 Q′

1V = Q−1
2 Q′

1[Q1Q2Q′] = Q′.

Applying this result, VAVAV = VAV implies that Q′AVAQ = Q′AQ. Now Q′AVAQ =
(Q′AQ)(Q′AQ), so Q′AQ is idempotent and symmetric and Q′AQ = Q′AVAQ so
Q′AVAQ is a perpendicular projection operator.

From the preceding paragraph, to see that Q′Aμ ∈C(Q′AVAQ) it suffices to show
that Q′AQQ′Aμ = Q′Aμ . Note that VAVAμ = VAμ implies that Q′AVAμ = Q′Aμ .
However, since Q′AVAμ = Q′AQQ′Aμ , we are done.

The noncentrality parameter is one-half of

(Q′Aμ)′(Q′Aμ) = μ ′AVAμ = μ ′Aμ.

The degrees of freedom are

r(Q′AVAQ) = r(Q′AQ) = tr(Q′AQ) = tr(AQQ′) = tr(AV ). �

Exercise 1.7 (a) Show that if V is nonsingular, then the three conditions in The-
orem 1.3.6 reduce to AVA = A. (b) Show that Y ′V−Y has a chi-squared distribution
with r(V ) degrees of freedom when μ ∈C(V ).

The next three theorems establish conditions under which quadratic forms are
independent. Theorem 1.3.7 examines the important special case in which the co-
variance matrix is a multiple of the identity matrix. In addition to considering in-
dependence of quadratic forms, the theorem also examines independence between
quadratic forms and linear transformations of the random vector.

Theorem 1.3.7. If Y ∼ N(μ,σ 2I) and BA = 0, then

(1) Y ′AY and BY are independent,
(2) Y ′AY and Y ′BY are independent,

where A is symmetric and in (2) B is symmetric.
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PROOF. By Corollary 1.2.4, if BA = 0, BY and AY are independent. In addition,
as discussed near the end of Appendix D, any function of AY is independent of any
function of BY . Since Y ′AY = Y ′AA−AY and Y ′BY = Y ′BB−BY are functions of AY
and BY , the theorem holds. �

The final two theorems provide conditions for independence of quadratic forms
under general covariance matrices.

Theorem 1.3.8. If Y ∼N(μ ,V ), A and B are nonnegative definite, and VAV BV =
0, then Y ′AY and Y ′BY are independent.

PROOF. Since A and B are nonnegative definite, we can write A = RR′ and B = SS′.
We can also write V = QQ′.

Y ′AY = (R′Y )′(R′Y ) and Y ′BY = (S′Y )′(S′Y ) are independent

if R′Y and S′Y are independent
iff Cov(R′Y,S′Y ) = 0
iff R′V S = 0
iff R′QQ′S = 0
iff C(Q′S) ⊥C(Q′R).

Since C(AA′) = C(A) for any A, we have

C(Q′S) ⊥C(Q′R) iff C(Q′SS′Q) ⊥C(Q′RR′Q)
iff [Q′SS′Q][Q′RR′Q] = 0
iff Q′BVAQ = 0
iff C(Q) ⊥C(BVAQ)
iff C(QQ′) ⊥C(BVAQ)
iff QQ′BVAQ = 0
iff V BVAQ = 0.

Repeating similar arguments for the right side gives V BVAQ = 0 iff V BVAV = 0. �

Theorem 1.3.9. If Y ∼ N(μ ,V ) and (1) VAV BV = 0, (2) VAV Bμ = 0, (3)
V BVAμ = 0, (4) μ ′AV Bμ = 0, and conditions (1), (2), and (3) from Theorem 1.3.6
hold for both Y ′AY and Y ′BY , then Y ′AY and Y ′BY are independent.

Exercise 1.8 Prove Theorem 1.3.9.
Hints: Let V = QQ′ and write Y = μ + QZ, where Z ∼ N(0, I). Using |= to

indicate independence, show that[
Q′AQZ
μ ′AQZ

]

|=

[
Q′BQZ
μ ′BQZ

]
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and that, say, Y ′AY is a function Q′AQZ and μ ′AQZ.

Note that Theorem 1.3.8 applies immediately if AY and BY are independent,
i.e., if AV B = 0. In something of a converse, if V is nonsingular, the condition
VAV BV = 0 is equivalent to AV B = 0; so the theorem applies only when AY and
BY are independent. However, if V is singular, the conditions of Theorems 1.3.8
and 1.3.9 can be satisfied even when AY and BY are not independent.

Exercise 1.9 Let M be the perpendicular projection operator onto C(X). Show
that (I −M) is the perpendicular projection operator onto C(X)⊥. Find tr(I −M) in
terms of r(X).

Exercise 1.10 For a linear model Y = Xβ + e, E(e) = 0, Cov(e) = σ 2I, show
that E(Y ) = Xβ and Cov(Y ) = σ 2I.

Exercise 1.11 For a linear model Y = Xβ + e, E(e) = 0, Cov(e) = σ 2I, the
residuals are

ê = Y −X β̂ = (I −M)Y,

where M is the perpendicular projection operator onto C(X). Find
(a) E(ê).
(b) Cov(ê).
(c) Cov(ê,MY ).
(d) E(ê′ê).
(e) Show that ê′ê = Y ′Y − (Y ′M)Y .

[Note: In Chapter 2 we will show that for a least squares estimate of β , say β̂ , we
have MY = X β̂ .]

(f) Rewrite (c) and (e) in terms of β̂ .

1.4 Generalized Linear Models

We now give a brief introduction to generalized linear models. On occasion through
the rest of the book, reference will be made to various properties of linear models
that extend easily to generalized linear models. See McCullagh and Nelder (1989)
or Christensen (1997) for more extensive discussions of generalized linear models
and their applications. First it must be noted that a general linear model is a linear
model but a generalized linear model is a generalization of the concept of a linear
model. Generalized linear models include linear models as a special case but also
include logistic regression, exponential regression, and gamma regression as special
cases. Additionally, log-linear models for multinomial data are closely related to
generalized linear models.
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Consider a random vector Y with E(Y ) = μ . Let h be an arbitrary function on the
real numbers and, for a vector v = (v1, . . . ,vn)′, define the vector function

h(v) ≡

⎡⎢⎣h(v1)
...

h(vn)

⎤⎥⎦ .

The primary idea of a generalized linear model is specifying that

μ = h(Xβ ),

where h is a known invertible function and X and β are defined as for linear
models. The inverse of h is called the link function. In particular, linear models
use the identity function h(v) = v, logistic regression uses the logistic transform
h(v) = ev/(1 + ev), and both exponential regression and log-linear models use the
exponential transform h(v) = ev. Their link functions are, respectively, the identity,
logit, and log transforms. Because the linear structure Xβ is used in generalized
linear models, many of the analysis techniques used for linear models can be easily
extended to generalized linear models.

Typically, in a generalized linear model it is assumed that the yis are independent
and each follows a distribution having density or mass function of the form

f (yi|θi,φ ;wi) = exp
{

wi

φ
[θiyi − r(θi)]

}
g(yi,φ ,wi), (1)

where r(·) and g(·, ·, ·) are known functions and θi, φ , and wi are scalars. By as-
sumption, wi is a fixed known number. Typically, it is a known weight that indicates
knowledge about a pattern in the variabilities of the yis. φ is either known or is an
unknown parameter, but for some purposes is always treated like it is known. It is
related to the variance of yi. The parameter θi is related to the mean of yi. For linear
models, the standard assumption is that the yis are independent N(θi,φ/wi), with
φ ≡ σ2 and wi ≡ 1. The standard assumption of logistic regression is that the Niyis
are distributed as independent binomials with Ni trials, success probability

E(yi) ≡ μi ≡ pi = eθi/[1+ eθi ],

wi = Ni, and φ = 1. Log-linear models fit into this framework when one assumes
that the yis are independent Poisson with mean μi = eθi , wi = 1, and φ = 1. Note
that in these cases the mean is some function of θi and that φ is merely related to the
variance. Note also that in the three examples, the h function has already appeared,
even though these distributions have not yet incorporated the linear structure of the
generalized linear model.

To investigate the relationship between the θi parameters and the linear structure
x′iβ , where x′i is the ith row of X , let ṙ(θi) be the derivative dr(θi)/dθi. It can be
shown that

E(yi) ≡ μi = ṙ(θi).
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Thus, another way to think about the modeling process is that

μi = h(x′iβ ) = ṙ(θi),

where both h and ṙ are invertible. In matrix form, write θ = (θ1, . . . ,θn)′ so that

Xβ = h−1(μ) = h−1 [ṙ(θ)] and ṙ−1 [h(Xβ )] = ṙ−1 (μ) = θ .

The special case of h(·) = ṙ(·) gives Xβ = θ . This is known as a canonical gener-
alized linear model, or as using a canonical link function. The three examples given
earlier are all examples of canonical generalized linear models. Linear models with
normally distributed data are canonical generalized linear models. Logistic regres-
sion is the canonical model having Niyi distributed Binomial(Ni,μi) for known Ni
with h−1(μi) ≡ log(μi/[1−μi]). Another canonical generalized linear model has yi
distributed Poisson(μi) with h−1(μi) ≡ log(μi).

1.5 Additional Exercises

Exercise 1.5.1 Let Y = (y1,y2,y3)′ be a random vector. Suppose that E(Y )∈M ,
where M is defined by

M = {(a,a−b,2b)′|a,b ∈ R}.

(a) Show that M is a vector space.
(b) Find a basis for M .
(c) Write a linear model for this problem (i.e., find X such that Y = Xβ + e,

E(e) = 0).
(d) If β = (β1,β2)′ in part (c), find two vectors r = (r1,r2,r3)′ and s =

(s1,s2,s3)′ such that E(r′Y ) = r′Xβ = β1 and E(s′Y ) = β2. Find another vector
t = (t1,t2,t3)′ with r �= t but E(t ′Y ) = β1.

Exercise 1.5.2 Let Y = (y1,y2,y3)′ with Y ∼ N(μ ,V ), where

μ = (5,6,7)′

and

V =

⎡⎣2 0 1
0 3 2
1 2 4

⎤⎦ .

Find
(a) the marginal distribution of y1,
(b) the joint distribution of y1 and y2,
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(c) the conditional distribution of y3 given y1 = u1 and y2 = u2,
(d) the conditional distribution of y3 given y1 = u1,
(e) the conditional distribution of y1 and y2 given y3 = u3,
(f) the correlations ρ12, ρ13, ρ23,
(g) the distribution of

Z =
[

2 1 0
1 1 1

]
Y +
[−15
−18

]
,

(h) the characteristic functions of Y and Z.

Exercise 1.5.3 The density of Y = (y1,y2,y3)′ is

(2π)−3/2|V |−1/2e−Q/2,

where
Q = 2y2

1 + y2
2 + y2

3 +2y1y2 −8y1 −4y2 +8.

Find V−1 and μ .

Exercise 1.5.4 Let Y ∼ N(Jμ,σ 2I) and let O =
[
n−1/2J,O1

]
be an orthogonal

matrix.
(a) Find the distribution of O′Y .
(b) Show that ȳ· = (1/n)J′Y and that s2 = Y ′O1O′

1Y/(n−1).
(c) Show that ȳ· and s2 are independent.
Hint: Show that Y ′Y = Y ′OO′Y = Y ′(1/n)JJ′Y +Y ′O1O′

1Y .

Exercise 1.5.5 Let Y = (y1,y2)′ have a N(0, I) distribution. Show that if

A =
[

1 a
a 1

]
B =
[

1 b
b 1

]
,

then the conditions of Theorem 1.3.7 implying independence of Y ′AY and Y ′BY are
satisfied only if |a| = 1/|b| and a = −b. What are the possible choices for a and b?

Exercise 1.5.6 Let Y = (y1,y2,y3)′ have a N(μ,σ 2I) distribution. Consider the
quadratic forms defined by the matrices M1, M2, and M3 given below.

(a) Find the distribution of each Y ′MiY .
(b) Show that the quadratic forms are pairwise independent.
(c) Show that the quadratic forms are mutually independent.

M1 =
1
3

J3
3 , M2 =

1
14

⎡⎣ 9 −3 −6
−3 1 2
−6 2 4

⎤⎦ ,
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M3 =
1

42

⎡⎣ 1 −5 4
−5 25 −20

4 −20 16

⎤⎦ .

Exercise 1.5.7 Let A be symmetric, Y ∼ N(0,V ), and w1, . . . ,ws be indepen-
dent χ2(1) random variables. Show that for some value of s and some numbers λi,
Y ′AY ∼ ∑s

i=1 λiwi.
Hint: Y ∼ QZ so Y ′AY ∼ Z′Q′AQZ. Write Q′AQ = PD(λi)P′.

Exercise 1.5.8. Show that
(a) for Example 1.0.1 the perpendicular projection operator onto C(X) is

M =
1
6

J6
6 +

1
70

⎡⎢⎢⎢⎢⎢⎣
25 15 5 −5 −15 −25
15 9 3 −3 −9 −15
5 3 1 −1 −3 −5

−5 −3 −1 1 3 5
−15 −9 −3 3 9 15
−25 −15 −5 5 15 25

⎤⎥⎥⎥⎥⎥⎦ ;

(b) for Example 1.0.2 the perpendicular projection operator onto C(X) is

M =

⎡⎢⎢⎢⎢⎢⎣
1/3 1/3 1/3 0 0 0
1/3 1/3 1/3 0 0 0
1/3 1/3 1/3 0 0 0

0 0 0 1 0
0 0 0 0 1/2 1/2
0 0 0 0 1/2 1/2

⎤⎥⎥⎥⎥⎥⎦ .



Chapter 2

Estimation

In this chapter, properties of least squares estimates are examined for the model

Y = Xβ + e, E(e) = 0, Cov(e) = σ 2I.

The chapter begins with a discussion of the concepts of identifiability and estima-
bility in linear models. Section 2 characterizes least squares estimates. Sections 3,
4, and 5 establish that least squares estimates are best linear unbiased estimates,
maximum likelihood estimates, and minimum variance unbiased estimates. The last
two of these properties require the additional assumption e ∼ N(0,σ 2I). Section 6
also assumes that the errors are normally distributed and presents the distributions
of various estimates. From these distributions various tests and confidence intervals
are easily obtained. Section 7 examines the model

Y = Xβ + e, E(e) = 0, Cov(e) = σ 2V,

where V is a known positive definite matrix. Section 7 introduces generalized least
squares estimates and presents properties of those estimates. Section 8 presents the
normal equations and establishes their relationship to least squares and generalized
least squares estimation. Section 9 discusses Bayesian estimation.

The history of least squares estimation goes back at least to 1805, when Legendre
first published the idea. Gauss made important early contributions (and claimed to
have invented the method prior to 1805).

There is a huge body of literature available on estimation and testing in linear
models. A few books dealing with the subject are Arnold (1981), Eaton (1983),
Graybill (1976), Rao (1973), Ravishanker and Dey (2002), Rencher (2008), Scheffé
(1959), Searle (1971), Seber (1966, 1977), and Wichura (2006).
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2.1 Identifiability and Estimability

A key issue in linear model theory is figuring out which parameters can be estimated
and which cannot. We will see that what can be estimated are functions of the pa-
rameters that are identifiable. Linear functions of the parameters that are identifiable
are called estimable and have linear unbiased estimators. These concepts also have
natural applications to generalized linear models. The definitions used here are tai-
lored to (generalized) linear models but the definition of an identifiable parameteri-
zation coincides with more common definitions of identifiability; cf. Christensen et
al. (2010, Section 4.14). For other definitions, the key idea is that the distribution of
Y should be either completely determined by E(Y ) alone or completely determined
by E(Y ) along with some parameters (like σ 2) that are functionally unrelated to the
parameters in E(Y ).

Consider the general linear model

Y = Xβ + e, E(e) = 0,

where again Y is an n× 1 vector of observations, X is an n× p matrix of known
constants, β is a p×1 vector of unobservable parameters, and e is an n×1 vector of
unobservable random errors whose distribution does not depend on β . We can only
learn about β through Xβ . If x′i is the ith row of X , x′iβ is the ith row of Xβ and we
can only learn about β through the x′iβ s. Xβ can be thought of as a vector of inner
products between β and a spanning set for C(X ′). Thus, we can learn about inner
products between β and C(X ′). In particular, when λ is a p× 1 vector of known
constants, we can learn about functions λ ′β where λ ∈C(X ′), i.e., where λ = X ′ρ
for some vector ρ . These are precisely the estimable functions of β . We now give
more formal arguments leading us to focus on functions λ ′β where λ ′ = ρ ′X or,
more generally, vectors Λ ′β where Λ ′ = P′X .

In general, a parameterization for the n×1 mean vector E(Y ) consists of writing
E(Y ) as a function of some parameters β , say,

E(Y ) = f (β ).

A general linear model is a parameterization

E(Y ) = Xβ

because E(Y ) = E(Xβ + e) = Xβ +E(e) = Xβ . A parameterization is identifiable
if knowing E(Y ) tells you the parameter vector β .

Definition 2.1.1 The parameter β is identifiable if for any β1 and β2, f (β1) =
f (β2) implies β1 = β2. If β is identifiable, we say that the parameterization f (β ) is
identifiable. Moreover, a vector-valued function g(β ) is identifiable if f (β1) = f (β2)
implies g(β1) = g(β2). If the parameterization is not identifiable but nontrivial iden-
tifiable functions exist, then the parameterization is said to be partially identifiable.
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The key point is that if β or a function g(β ) is not identifiable, it is simply im-
possible for one to know what it is based on knowing E(Y ). From a statistical per-
spective, we are considering models for the mean vector with the idea of collecting
data that will allow us to estimate E(Y ). If actually knowing E(Y ) is not sufficient
to tell us the value of β or g(β ), no amount of data is ever going to let us estimate
them.

In regression models, i.e., models for which r(X) = p, the parameters are identi-
fiable. In this case, X ′X is nonsingular, so if Xβ1 = Xβ2, then

β1 = (X ′X)−1X ′Xβ1 = (X ′X)−1X ′Xβ2 = β2

and identifiability holds.
For models in which r(X) = r < p, there exist β1 �= β2 but Xβ1 = Xβ2, so the

parameters are not identifiable.
For general linear models, the only functions of the parameters that are identifi-

able are functions of Xβ . This follows from the next result.

Theorem 2.1.2 A function g(β ) is identifiable if and only if g(β ) is a function
of f (β ).

PROOF. g(β ) being a function of f (β ) means that for some function g∗, g(β ) =
g∗[ f (β )] for all β ; or, equivalently, it means that for any β1 �= β2 such that f (β1) =
f (β2), g(β1) = g(β2).

Clearly, if g(β ) = g∗[ f (β )] and f (β1) = f (β2), then g(β1) = g∗[ f (β1)] =
g∗[ f (β2)] = g(β2), so g(β ) is identifiable.

Conversely, if g(β ) is not a function of f (β ), there exists β1 �= β2 such that
f (β1) = f (β2) but g(β1) �= g(β2). Hence, g(β ) is not identifiable. �

It is reasonable to estimate any identifiable function. Thus, in a linear model
it is reasonable to estimate any function of Xβ . It is not reasonable to estimate
nonidentifiable functions, because you simply do not know what you are estimating.

The traditional idea of estimability in linear models can now be presented. Es-
timable functions are linear functions of β that are identifiable.

Definition 2.1.3 A vector-valued linear function of β , say, Λ ′β , is estimable if
Λ ′β = P′Xβ for some matrix P.

Actually, an identifiable linear function of β is a function g∗(Xβ ), but since the
composite function is linear and Xβ is linear, the function g∗ must be linear, and we
can write it as a matrix P′.

Clearly, if Λ ′β is estimable, it is identifiable and therefore it is a reasonable
thing to estimate. However, estimable functions are not the only functions of β
that are reasonable to estimate. For example, the ratio of two estimable functions is
not estimable, but it is identifiable, so the ratio is reasonable to estimate. You can
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estimate many functions that are not “estimable.” What you cannot do is estimate
nonidentifiable functions.

Unfortunately, the term “nonestimable” is often used to mean something other
than “not being estimable.” You can be “not estimable” by being either not linear
or not identifiable. In particular, a linear function that is “not estimable” is auto-
matically nonidentifiable. However, nonestimable is often taken to mean a linear
function that is not identifiable. In other words, some authors (perhaps, on occasion,
even this one) presume that nonestimable functions are linear, so that nonestimabil-
ity and nonidentifiability become equivalent.

It should be noted that the concepts of identifiability and estimability are based
entirely on the assumption that E(Y ) = Xβ . Identifiability and estimability do not
depend on Cov(Y ) = Cov(e) (as long as the covariance matrix is not also a function
of β ).

An important property of estimable functions Λ ′β = P′Xβ is that although P
need not be unique, its perpendicular projection (columnwise) onto C(X) is unique.
Let P1 and P2 be matrices with Λ ′ = P′

1X = P′
2X , then MP1 = X(X ′X)−X ′P1 =

X(X ′X)−Λ = X(X ′X)−X ′P2 = MP2.

EXAMPLE 2.1.4. In the simple linear regression model of Example 1.0.1, β1 is
estimable because

1
35

(−5,−3,−1,1,3,5)

⎡⎢⎢⎢⎢⎢⎣
1 1
1 2
1 3
1 4
1 5
1 6

⎤⎥⎥⎥⎥⎥⎦
[

β0
β1

]
= (0,1)

[
β0
β1

]
= β1.

β0 is also estimable. Note that

1
6
(1,1,1,1,1,1)

⎡⎢⎢⎢⎢⎢⎣
1 1
1 2
1 3
1 4
1 5
1 6

⎤⎥⎥⎥⎥⎥⎦
[

β0
β1

]
= β0 +

7
2

β1,

so

β0 =
(

β0 +
7
2

β1

)
− 7

2
β1

=

⎡⎢⎢⎢⎢⎢⎣
1
6

⎛⎜⎜⎜⎜⎜⎝
1
1
1
1
1
1

⎞⎟⎟⎟⎟⎟⎠− 7
2

(
1

35

)
⎛⎜⎜⎜⎜⎜⎝
−5
−3
−1

1
3
5

⎞⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎦

′⎡⎢⎢⎢⎢⎢⎣
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1 2
1 3
1 4
1 5
1 6

⎤⎥⎥⎥⎥⎥⎦
[

β0
β1

]
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=
1

30
(20,14,8,2,−4,−10)

⎡⎢⎢⎢⎢⎢⎣
1 1
1 2
1 3
1 4
1 5
1 6

⎤⎥⎥⎥⎥⎥⎦
[

β0
β1

]
.

For any fixed number x, β0 +β1x is estimable because it is a linear combination of
estimable functions.

EXAMPLE 2.1.5. In the one-way ANOVA model of Example 1.0.2, we can esti-
mate parameters like μ +α1, α1 −α3, and α1 +α2 −2α3. Observe that

(1,0,0,0,0,0)

⎡⎢⎢⎢⎢⎢⎣
1 1 0 0
1 1 0 0
1 1 0 0
1 0 1 0
1 0 0 1
1 0 0 1

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎣

μ
α1
α2
α3

⎤⎥⎦= μ +α1,

(1,0,0,0,−1,0)

⎡⎢⎢⎢⎢⎢⎣
1 1 0 0
1 1 0 0
1 1 0 0
1 0 1 0
1 0 0 1
1 0 0 1

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎣

μ
α1
α2
α3

⎤⎥⎦= α1 −α3,

but also

(
1
3
,

1
3
,

1
3
,0,

−1
2

,
−1
2

)
⎡⎢⎢⎢⎢⎢⎣

1 1 0 0
1 1 0 0
1 1 0 0
1 0 1 0
1 0 0 1
1 0 0 1

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎣

μ
α1
α2
α3

⎤⎥⎦= α1 −α3,

and

(1,0,0,1,−2,0)

⎡⎢⎢⎢⎢⎢⎣
1 1 0 0
1 1 0 0
1 1 0 0
1 0 1 0
1 0 0 1
1 0 0 1

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎣

μ
α1
α2
α3

⎤⎥⎦= α1 +α2 −2α3.

We have given two vectors ρ1 and ρ2 with ρ ′
i Xβ = α1 −α3. Using M given in

Exercise 1.5.8b, the reader can verify that Mρ1 = Mρ2.

In the one-way analysis of covariance model,
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yi j = μ +αi + γxi j + ei j, E(ei j) = 0,

i = 1, . . . ,a, j = 1, . . . ,Ni, xi j is a known predictor variable and γ is its unknown
coefficient. γ is generally identifiable but μ and the αis are not. The following result
allows one to tell whether or not an individual parameter is identifiable.

Proposition 2.1.6 For a linear model, write Xβ = ∑p
k=1 Xkβk where the Xks are

the columns of X . An individual parameter βi is not identifiable if and only if there
exist scalars αk such that Xi = ∑k �=i Xkαk.

PROOF. To show that the condition on X implies nonidentifiability, it is enough
to show that there exist β and β∗ with Xβ = Xβ∗ but βi �= β∗i. The condition Xi =
∑k �=i Xkαk is equivalent to there existing a vector α with αi �= 0 and Xα = 0. Let
β∗ = β +α and the proof is complete.

Rather than showing that when βi is not identifiable, the condition on X holds,
we show the contrapositive, i.e., that when the condition on X does not hold, βi is
identifiable. If there do not exist such αks, then whenever Xα = 0, we must have
αi = 0. In particular, if Xβ = Xβ∗, then X(β −β∗) = 0, so (βi −β∗i) = 0 and βi is
identifiable. �

The concepts of identifiability and estimability apply with little change to gen-
eralized linear models. In generalized linear models, the distribution of Y is either
completely determined by E(Y ) or it is determined by E(Y ) along with another pa-
rameter φ that is unrelated to the parameterization of E(Y ). A generalized linear
model has E(Y ) = h(Xβ ). By Theorem 2.1.2, a function g(β ) is identifiable if and
only if it is a function of h(Xβ ). However, the function h(·) is assumed to be in-
vertible, so g(β ) is identifiable if and only if it is a function of Xβ . A vector-valued
linear function of β , say, Λ ′β is identifiable if Λ ′β = P′Xβ for some matrix P,
hence Definition 2.1.3 applies as well to define estimability for generalized linear
models as it does for linear models. Proposition 2.1.6 also applies without change.

Finally, the concept of estimability in linear models can be related to the existence
of linear unbiased estimators. A linear function of the parameter vector β , say λ ′β ,
is estimable if and only if it admits a linear unbiased estimate.

Definition 2.1.7. An estimate f (Y ) of g(β ) is unbiased if E[ f (Y )] = g(β ) for
any β .

Definition 2.1.8. f (Y ) is a linear estimate of λ ′β if f (Y ) = a0 + a′Y for some
scalar a0 and vector a.

Proposition 2.1.9. A linear estimate a0 +a′Y is unbiased for λ ′β if and only if
a0 = 0 and a′X = λ ′.

PROOF. ⇐ If a0 = 0 and a′X = λ ′, then E(a0 +a′Y ) = 0+a′Xβ = λ ′β .
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⇒ If a0 +a′Y is unbiased, λ ′β = E(a0 +a′Y ) = a0 +a′Xβ , for any β . Subtracting
a′Xβ from both sides gives

(λ ′ −a′X)β = a0

for any β . If β = 0, then a0 = 0. Thus the vector λ −X ′a is orthogonal to any vector
β . This can only occur if λ −X ′a = 0; so λ ′ = a′X . �

Corollary 2.1.10. λ ′β is estimable if and only if there exists ρ such that
E(ρ ′Y ) = λ ′β for any β .

2.2 Estimation: Least Squares

Consider the model

Y = Xβ + e, E(e) = 0, Cov(e) = σ 2I.

Suppose we want to estimate E(Y ). We know that E(Y ) = Xβ , but β is unknown; so
all we really know is that E(Y ) ∈C(X). To estimate E(Y ), we might take the vector
in C(X) that is closest to Y . By definition then, an estimate β̂ is a least squares
estimate if X β̂ is the vector in C(X) that is closest to Y . In other words, β̂ is a least
squares estimate (LSE) of β if

(Y −X β̂ )′(Y −X β̂ ) = min
β

(Y −Xβ )′(Y −Xβ ).

For a vector Λ ′β , a least squares estimate is defined as Λ ′β̂ for any least squares
estimate β̂ .

In this section, least squares estimates are characterized and uniqueness and un-
biasedness properties of least squares estimates are given. An unbiased estimate of
σ 2 is then presented. Finally, at the end of the section, the geometry associated with
least squares estimation and unbiased estimation of σ 2 is discussed. The geometry
provides good intuition for n-dimensional problems but the geometry can only be
visualized in three dimensions. In other words, although it is a fine pedagogical tool,
the geometry can only be spelled out for three or fewer data points. The fundamental
goal of this book is to build the theory of linear models on vector space generaliza-
tions of these fundamentally geometric concepts. We now establish the fundamental
theorem of least squares estimation, that the vector in C(X) that is closest to Y is the
perpendicular projection of Y onto C(X).

Theorem 2.2.1. β̂ is a least squares estimate of β if and only if X β̂ = MY , where
M is the perpendicular projection operator onto C(X).

PROOF. We will show that
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(Y −Xβ )′(Y −Xβ) = (Y −MY )′(Y −MY )+(MY −Xβ )′(MY −Xβ ).

Both terms on the righthand side are nonnegative, and the first term does not depend
on β . (Y − Xβ )′(Y − Xβ ) is minimized by minimizing (MY −Xβ )′(MY − Xβ ).
This is the squared distance between MY and Xβ . The distance is zero if and only
if MY = Xβ , which proves the theorem. We now establish the equation.

(Y −Xβ )′(Y −Xβ ) = (Y −MY +MY −Xβ )′(Y −MY +MY −Xβ )
= (Y −MY )′(Y −MY )+(Y −MY )′(MY −Xβ )

+(MY −Xβ )′(Y −MY )+(MY −Xβ)′(MY −Xβ ).

However, (Y −MY )′(MY −Xβ ) = Y ′(I −M)MY −Y ′(I −M)Xβ = 0 because (I −
M)M = 0 and (I −M)X = 0. Similarly, (MY −Xβ )′(Y −MY ) = 0. �

Corollary 2.2.2. (X ′X)−X ′Y is a least squares estimate of β .

In Example 1.0.2, with M given in Exercise 1.5.8b, it is not difficult to see that

MY =

⎡⎢⎢⎢⎢⎢⎣
ȳ1·
ȳ1·
ȳ1·
y21
ȳ3·
ȳ3·

⎤⎥⎥⎥⎥⎥⎦=

⎡⎢⎢⎢⎢⎢⎣
1 1 0 0
1 1 0 0
1 1 0 0
1 0 1 0
1 0 0 1
1 0 0 1

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎣

0
ȳ1·
y21
ȳ3·

⎤⎥⎦=

⎡⎢⎢⎢⎢⎢⎣
1 1 0 0
1 1 0 0
1 1 0 0
1 0 1 0
1 0 0 1
1 0 0 1

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎣

ȳ1·
0

y21 − ȳ1·
ȳ3· − ȳ1·

⎤⎥⎦ .

Thus, both β̂1 = (0, ȳ1·,y21, ȳ3·)′ and β̂2 = (ȳ1·,0,y21− ȳ1·, ȳ3·− ȳ1·)′ are least squares
estimates of β . From Example 2.1.5,

α1 −α3 = (1,0,0,0,−1,0)Xβ = (1/3,1/3,1/3,0,−1/2,−1/2)Xβ .

The least squares estimates are

(1,0,0,0,−1,0)X β̂ = (1,0,0,0,−1,0)MY = ȳ1· − ȳ3·,

but also

(1/3,1/3,1/3,0,−1/2,−1/2)X β̂ = (1/3,1/3,1/3,0,−1/2,−1/2)MY

= ȳ1· − ȳ3·.

Moreover, these estimates do not depend on the choice of least squares estimates.
Either β̂1 or β̂2 gives this result.

In Example 1.0.1, X ′X has a true inverse, so the unique least squares estimate of
β is

β̂ =
(
X ′X
)−1 X ′Y =

[
6 21
21 91

]−1 [1 1 1 1 1 1
1 2 3 4 5 6

]
Y.
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An immediate result of Theorem 2.2.1, the uniqueness of perpendicular projec-
tion operators (Proposition B.34), and Theorem 2.1.2 as applied to linear mod-
els, is that the least squares estimate of any identifiable function is unique. Any
least squares estimates β̂1 and β̂2 have X β̂1 = X β̂2, so if g(β ) is identifiable,
g(β̂1) = g(β̂2). In particular, least squares estimates of estimable functions are
unique.

Corollary 2.2.3. The unique least squares estimate of ρ ′Xβ is ρ ′MY .

Recall that a vector-valued linear function of the parameters, say Λ ′β , is estimable
if and only if Λ ′ = P′X for some matrix P. The unique least squares estimate of Λ ′β
is then P′MY = Λ ′β̂ .

We now show that the least squares estimate of λ ′β is unique only if λ ′β is
estimable.

Theorem 2.2.4. λ ′ = ρ ′X if λ ′β̂1 = λ ′β̂2 for any β̂1, β̂2 that satisfy X β̂1 = X β̂2 =
MY .

PROOF. Decompose λ into vectors in C(X ′) and its orthogonal complement.
Let N be the perpendicular projection operator onto C(X ′); then we can write
λ = X ′ρ1 + (I −N)ρ2. We want to show that (I −N)ρ2 = 0. This will be done
by showing that (I −N)ρ2 is orthogonal to every vector in Rp.

By assumption, λ ′(β̂1 − β̂2) = 0, and we know that ρ ′
1X(β̂1 − β̂2) = 0; so we

must have ρ ′
2(I−N)(β̂1− β̂2) = 0, and this holds for any least squares estimates β̂1,

β̂2.
Let β̂1 be any least squares estimate and take v such that v ⊥ C(X ′), then β̂2 =

β̂1 − v is a least squares estimate. This follows because X β̂2 = X β̂1 −Xv = X β̂1 =
MY . Substituting above gives 0 = ρ ′

2(I −N)(β̂1 − β̂2) = ρ ′
2(I −N)v for any v ⊥

C(X ′). Moreover, by definition of N for any v ∈C(X ′), (I−N)v = 0. It follows that
ρ ′

2(I −N)v = 0 for any v ∈ Rp and thus (I −N)ρ2 = 0. �

When β is not identifiable, sometimes side conditions are arbitrarily imposed on
the parameters to allow “estimation” of nonidentifiable parameters. Imposing side
conditions amounts to choosing one particular least squares estimate of β . In our
earlier discussion of estimation for Example 1.0.2, we presented two sets of param-
eter estimates. The first estimate, β̂1, arbitrarily imposed μ = 0 and β̂2 arbitrarily
imposed α1 = 0. Side conditions determine a particular least squares estimate by
introducing a nonidentifiable, typically a linear nonestimable, constraint on the pa-
rameters. With r ≡ r(X) < p, one needs p− r individual side conditions to identify
the parameters and thus allow “estimation” of the otherwise nonidentifiable param-
eters. Initially, the model was overparameterized. A linear nonestimable constraint
is chosen to remove the ambiguity. Fundamentally, one choice of side conditions is
as good as any other. See the discussion near Corollary 3.3.8 for further explication
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of linear nonestimable constraints. The use of a side condition in one-way ANOVA
is also considered in Chapter 4.

Personally, I find it silly to pretend that nonidentifiable functions of the parame-
ters can be estimated. The one good thing about imposing arbitrary side conditions
is that they allow computer programs to print out parameter estimates. But differ-
ent programs use different (equally valid) side conditions, so the printed estimates
may differ from program to program. Fortunately, the estimates should agree on all
estimable (and, more generally, identifiable) functions of the parameters.

Least squares estimation is not a statistical procedure! Its justification as an op-
timal estimate is geometric, not statistical. Next we consider two statistical results
on unbiased estimation related to least squares estimates. First, we note that least
squares estimates of estimable functions are unbiased.

Proposition 2.2.5. If λ ′ = ρ ′X , then E(ρ ′MY ) = λ ′β .

PROOF. E(ρ ′MY ) = ρ ′ME(Y ) = ρ ′MXβ = ρ ′Xβ = λ ′β . �

None of our results on least squares estimation involve the assumption that
Cov(e) = σ 2I. Least squares provides unique estimates of identifiable functions and
unbiased estimates of estimable functions, regardless of the covariance structure.
The next three sections establish that least squares estimates have good statistical
properties when Cov(e) = σ 2I.

We now consider unbiased estimation of the variance parameter σ 2. First write
the fitted values (also called the predicted values)

Ŷ ≡ X β̂ = MY

and the residuals
ê ≡Y −X β̂ = (I −M)Y.

The data vector Y can be decomposed as

Y = Ŷ + ê = MY +(I −M)Y.

The perpendicular projection of Y onto C(X) (i.e., MY ) provides an estimate of
Xβ . Note that MY = MXβ + Me = Xβ + Me so that MY equals Xβ plus some
error where E(Me) = ME(e) = 0. Similarly, (I −M)Y = (I −M)Xβ +(I −M)e =
(I −M)e, so (I −M)Y depends only on the error vector e. Since σ2 is a property of
the error vector, it is reasonable to use (I −M)Y to estimate σ 2.

Theorem 2.2.6. Let r(X) = r and Cov(e) = σ 2I, then Y ′(I −M)Y/(n− r) is an
unbiased estimate of σ 2.

PROOF. From Theorem 1.3.2 and the facts that E(Y ) = Xβ and Cov(Y ) = σ 2I,
we have

E
[
Y ′(I −M)Y

]
= tr
[
σ 2(I −M)

]
+β ′X ′(I −M)Xβ .
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However, tr
(
σ 2(I −M)

)
= σ 2 tr(I −M) = σ 2 r(I −M) = σ 2 (n− r) and (I −

M)X = 0, so β ′X ′(I −M)Xβ = 0; therefore,

E
[
Y ′(I −M)Y

]
= σ 2 (n− r)

and
E
[
Y ′(I −M)Y/(n− r)

]
= σ 2. �

Y ′(I −M)Y is called the sum of squares for error (SSE). It is the squared length
of the residual vector (I −M)Y . Y ′(I − M)Y/(n− r) is called the mean squared
error (MSE). It is the squared length of (I−M)Y divided by the rank of (I−M). In
a sense, the MSE is the average squared length of (I −M)Y , where the average is
over the number of dimensions in C(I−M). The rank of I−M is called the degrees
of freedom for error, denoted dfE.

For Example 1.0.1,

SSE = (y1 − β̂0 − β̂11)2 +(y2 − β̂0 − β̂12)2 + · · ·+(y6 − β̂0 − β̂16)2

and MSE = SSE/(6−2). For Example 1.0.2,

SSE = (y11 − ȳ1·)2 +(y12 − ȳ1·)2 +(y13 − ȳ1·)2

+(y21 − y21)2 +(y31 − ȳ3·)2 +(y32 − ȳ3·)2

and MSE = SSE/(6−3).
Finally, one can think about the geometry of least squares estimation in three

dimensions. Consider a rectangular table. (Yes, that furniture you have in your
kitchen!) Take one corner of the table to be the origin. Take C(X) as the two-
dimensional subspace determined by the surface of the table. Y can be any vector
originating at the origin, i.e., any point in three-dimensional space. The linear model
says that E(Y ) = Xβ , which just says that E(Y ) is somewhere on the surface of the
table. The least squares estimate MY = X β̂ is the perpendicular projection of Y onto
the table surface. The residual vector (I −M)Y is the vector starting at the origin,
perpendicular to the surface of the table, that reaches the same height as Y . Another
way to think of the residual vector is to connect the ends of MY and Y with a line
segment (that is perpendicular to the surface of the table) but then shift the line seg-
ment along the surface (keeping it perpendicular) until the line segment has one end
at the origin. The residual vector is the perpendicular projection of Y onto C(I−M),
that is, the projection onto the orthogonal complement of the table surface. The or-
thogonal complement is the one-dimension space in the vertical direction that goes
through the origin. Because the orthogonal complement has only one dimension,
MSE is just the squared length of the residual vector.

Alternatively, one could take C(X) to be a one-dimensional subspace determined
by an edge of the table that includes the origin. The linear model now says that E(Y )
is somewhere on this edge of the table. MY = X β̂ is found by dropping a perpen-
dicular from Y to the edge of the table. If you connect MY and Y , you essentially



28 2 Estimation

get the residual vector (I−M)Y , except that the line segment has to be shifted down
the edge so that it has one end at the origin. The residual vector is perpendicular to
the C(X) edge of the table, but typically would not be perpendicular to the surface
of the table. C(I−M) is now the plane that contains everything (through the origin)
that is perpendicular to the C(X) edge of the table. In other words, C(I −M) is the
two-dimensional space determined by the vertical direction and the other edge of
the table that goes through the origin. MSE is the squared length of the residual
vector divided by 2, because C(I −M) is a two-dimensional space.

2.3 Estimation: Best Linear Unbiased

Another criterion for estimation of λ ′β is to choose the best linear unbiased estimate
(BLUE) of λ ′β . We prove the Gauss–Markov theorem that least squares estimates
are best linear unbiased estimates.

Definition 2.3.1. a′Y is a best linear unbiased estimate of λ ′β if a′Y is unbiased
and if for any other linear unbiased estimate b′Y , Var(a′Y ) ≤ Var(b′Y ).

Gauss–Markov Theorem 2.3.2. Consider the linear model

Y = Xβ + e, E(e) = 0, Cov(e) = σ 2I.

If λ ′β is estimable, then the least squares estimate of λ ′β is a BLUE of λ ′β .

PROOF. Let M be the perpendicular projection operator onto C(X). Since λ ′β is
an estimable function, let λ ′ = ρ ′X for some ρ . We need to show that if a′Y is an
unbiased estimate of λ ′β , then Var(a′Y ) ≥ Var(ρ ′MY ). Since a′Y is unbiased for
λ ′β , λ ′β = E(a′Y ) = a′Xβ for any value of β . Therefore ρ ′X = λ ′ = a′X . Write

Var(a′Y ) = Var(a′Y −ρ ′MY +ρ ′MY )
= Var(a′Y −ρ ′MY )+Var(ρ ′MY )+2Cov

[
(a′Y −ρ ′MY ),ρ ′MY

]
.

Since Var(a′Y − ρ ′MY ) ≥ 0, if we show that Cov[(a′Y −ρ ′MY ),ρ ′MY ] = 0, then
Var(a′Y ) ≥ Var(ρ ′MY ) and the theorem holds.

We now show that Cov[(a′Y −ρ ′MY ),ρ ′MY ] = 0.

Cov
[
(a′Y −ρ ′MY ),ρ ′MY

]
= Cov

[
(a′ −ρ ′M)Y,ρ ′MY

]
= (a′ −ρ ′M)Cov(Y )Mρ
= σ2(a′ −ρ ′M)Mρ
= σ2(a′M−ρ ′M)ρ.
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As shown above, a′X = ρ ′X , and since we can write M = X(X ′X)−X ′, we have
a′M = ρ ′M. It follows that σ 2(a′M−ρ ′M)ρ = 0 as required. �

Corollary 2.3.3. If σ2 > 0, there exists a unique BLUE for any estimable func-
tion λ ′β .

PROOF. Let λ ′ = ρ ′X , and recall from Section 1 that the vector ρ ′M is uniquely
determined by λ ′. In the proof of Theorem 2.3.2, it was shown that for an arbitrary
linear unbiased estimate a′Y ,

Var(a′Y ) = Var(ρ ′MY )+Var(a′Y −ρ ′MY ).

If a′Y is a BLUE of λ ′β , it must be true that Var(a′Y −ρ ′MY ) = 0. It is easily seen
that

0 = Var(a′Y −ρ ′MY ) = Var
[
(a′ −ρ ′M)Y

]
= σ 2(a−Mρ)′(a−Mρ).

For σ 2 > 0, this occurs if and only if a−Mρ = 0, which is equivalent to the condi-
tion a = Mρ . �

2.4 Estimation: Maximum Likelihood

Another criterion for choosing estimates of β and σ 2 is maximum likelihood. The
likelihood function is derived from the joint density of the observations by consider-
ing the parameters as variables and the observations as fixed at their observed values.
If we assume Y ∼ N

(
Xβ ,σ 2I

)
, then the maximum likelihood estimates (MLEs) of

β and σ 2 are obtained by maximizing

(2π)−n/2[det(σ 2I)]−1/2 exp
[−(Y −Xβ)′(Y −Xβ )/2σ 2] . (1)

Equivalently, the log of the likelihood can be maximized. The log of (1) is

−n
2

log(2π)− 1
2

log[(σ 2)n]− (Y −Xβ )′(Y −Xβ )/2σ 2.

For every value of σ2, the log-likelihood is maximized by taking β to minimize
(Y −Xβ )′(Y −Xβ ), i.e., least squares estimates are MLEs. To estimate σ 2 we can
substitute Y ′(I−M)Y =(Y −X β̂ )′(Y −X β̂) for (Y −Xβ )′(Y −Xβ ) and differentiate
with respect to σ2 to get Y ′(I −M)Y/n as the MLE of σ2.

The MLE of σ 2 is rarely used in practice. The MSE is the standard estimate of
σ 2. For almost any purpose except point estimation of σ2, it is immaterial whether
the MSE or the MLE is used. They lead to identical confidence intervals and tests for
σ 2. They also lead to identical confidence regions and tests for estimable functions
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of β . It should be emphasized that it is not appropriate to substitute the MLE for the
MSE and then form confidence intervals and tests as if the MSE were being used.

2.5 Estimation: Minimum Variance Unbiased

In Section 3, it was shown that least squares estimates give best estimates among the
class of linear unbiased estimates. If the error vector is normally distributed, least
squares estimates are best estimates among all unbiased estimates. In particular, with
normal errors, the best estimates happen to be linear estimates. As in Section 3, a
best unbiased estimate is taken to be an unbiased estimate with minimum variance.

It is not the purpose of this monograph to develop the theory of minimum vari-
ance unbiased estimation. However, we will outline the application of this theory to
linear models. See Lehmann (1983, Sections 1.4, 1.5) and Lehmann (1986, Sections
2.6, 2.7, 4.3) for a detailed discussion of the definitions and theorems used here. Our
model is

Y = Xβ + e, e ∼ N
(
0,σ 2I

)
.

Definition 2.5.1. A vector-valued sufficient statistic T (Y ) is said to be complete
if E[h(T (Y ))] = 0 for all β and σ 2 implies that Pr[h(T (Y )) = 0] = 1 for all β and
σ 2.

Theorem 2.5.2. If T (Y ) is a complete sufficient statistic, then f (T (Y )) is a
minimum variance unbiased estimate (MVUE) of E[ f (T (Y ))].

PROOF. Suppose g(Y ) is an unbiased estimate of E[ f (T (Y ))]. By the Rao–
Blackwell theorem (see Cox and Hinkley, 1974),

Var(E[g(Y )|T (Y )]) ≤ Var(g(Y )) .

Since E[g(Y )|T (Y )] is unbiased, E{ f (T (Y ))−E[g(Y )|T (Y )]} = 0. By complete-
ness of T (Y ), Pr{ f (T (Y )) = E[g(Y )|T (Y )]} = 1. It follows that Var( f (T (Y ))) ≤
Var(g(Y )). �

We wish to use the following result from Lehmann (1983, pp. 28, 46):

Theorem 2.5.3. Let θ = (θ1, . . . ,θs)′ and let Y be a random vector with proba-
bility density function

f (Y ) = c(θ)exp

[
s

∑
i=1

θiTi(Y )

]
h(Y );
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then T (Y ) = (T1(Y ),T2(Y ), . . . ,Ts(Y ))′ is a complete sufficient statistic provided that
neither θ nor T (Y ) satisfy any linear constraints.

Suppose r(X) = r < p, then the theorem cannot apply to X ′Y because, for b ⊥
C(X ′), Xb = 0; so b′X ′Y is subject to a linear constraint. We need to consider the
following reparameterization. Let Z be an n× r matrix whose columns form a basis
for C(X). For some matrix U , we have X = ZU . Let λ ′β be an estimable function.
Then for some ρ , λ ′β = ρ ′Xβ = ρ ′ZUβ . Define γ = Uβ and consider the linear
model

Y = Zγ + e, e ∼ N
(
0,σ 2I

)
.

The usual estimate of λ ′β = ρ ′Zγ is ρ ′MY regardless of the parameterization used.
We will show that ρ ′MY is a minimum variance unbiased estimate of λ ′β . The
density of Y can be written

f (Y ) = (2π)−n/2 (σ 2)−n/2
exp
[−(Y −Zγ)′(Y −Zγ)/2σ 2]

= C1(σ 2)exp
[−(Y ′Y −2γ ′Z′Y + γ ′Z′Zγ

)
/2σ2]

= C2(γ,σ2)exp
[
(−1/2σ 2)Y ′Y +(σ−2γ ′)(Z′Y )

]
.

This is the form of Theorem 2.5.3. There are no linear constraints on the parameters
(−1/2σ2,γ1/σ2, . . . ,γr/σ 2) nor on (Y ′Y,Y ′Z)′, so (Y ′Y,Y ′Z)′ is a complete suffi-
cient statistic. An unbiased estimate of λ ′β = ρ ′Xβ is ρ ′MY = ρ ′Z(Z′Z)−1Z′Y .
ρ ′MY is a function of Z′Y , so it is a minimum variance unbiased estimate. More-
over, Y ′(I −M)Y/(n− r) is an unbiased estimate of σ 2 and Y ′(I −M)Y = Y ′Y −
(Y ′Z)(Z′Z)−1(Z′Y ) is a function of the complete sufficient statistic (Y ′Y,Y ′Z)′, so
MSE is a minimum variance unbiased estimate. We have established the following
result:

Theorem 2.5.4. MSE is a minimum variance unbiased estimate of σ 2 and ρ ′MY
is a minimum variance unbiased estimate of ρ ′Xβ whenever e ∼ N

(
0,σ 2I

)
.

2.6 Sampling Distributions of Estimates

If we continue to assume that Y ∼ N
(
Xβ ,σ 2I

)
, the distributions of estimates are

straightforward. The least squares estimate of Λ ′β where Λ ′ = P′X is Λ ′β̂ = P′MY .
The distribution of P′MY is N

(
P′Xβ ,σ 2P′MIMP

)
or, equivalently,

P′MY ∼ N
(
Λ ′β ,σ 2P′MP

)
.

Since M = X(X ′X)−X ′, we can also write

Λ ′β̂ ∼ N
(
Λ ′β ,σ 2Λ ′(X ′X)−Λ

)
.
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Two special cases are of interest. First, the estimate of Xβ is

Ŷ ≡ MY ∼ N
(
Xβ ,σ2M

)
.

Second, if (X ′X) is nonsingular, β is estimable and

β̂ ∼ N
(
β ,σ 2(X ′X)−1) .

In Section 2 it was shown that the mean square error Y ′(I −M)Y/(n− r) is an
unbiased estimate of σ2. We now show that Y ′(I −M)Y/σ 2 ∼ χ2(n− r). Clearly
Y/σ ∼ N(Xβ/σ , I), so by Theorem 1.3.3

Y ′(I −M)Y/σ 2 ∼ χ2(r(I −M),β ′X ′(I −M)Xβ/2σ 2) .
We have already shown that r(I −M) = n− r and β ′X ′(I −M)Xβ/2σ 2 = 0. More-
over, by Theorem 1.3.7, MY and Y ′(I −M)Y are independent.

Exercise 2.1 Show that for λ ′β estimable,

λ ′β̂ −λ ′β√
MSE λ ′(X ′X)−λ

∼ t(dfE).

Find the form of an α level test of H0 : λ ′β = 0 and the form for a (1−α)100%
confidence interval for λ ′β .

Hint: The test and confidence interval can be found using the methods of Ap-
pendix E.

Exercise 2.2 Let y11,y12, . . . ,y1r be N(μ1,σ 2) and y21,y22, . . . ,y2s be N(μ2,σ 2)
with all yi js independent. Write this as a linear model. For the rest of the problem
use the results of Chapter 2. Find estimates of μ1, μ2, μ1 − μ2, and σ 2. Using Ap-
pendix E and Exercise 2.1, form an α = .01 test for H0 : μ1 = μ2. Similarly, form
95% confidence intervals for μ1 −μ2 and μ1. What is the test for H0 : μ1 = μ2 +Δ ,
where Δ is some known fixed quantity? How do these results compare with the usual
analysis for two independent samples?

Exercise 2.3 Let y1,y2, . . . ,yn be independent N(μ ,σ 2). Write a linear model for
these data. For the rest of the problem use the results of Chapter 2, Appendix E, and
Exercise 2.1. Form an α = .01 test for H0 : μ = μ0, where μ0 is some known fixed
number and form a 95% confidence interval for μ . How do these results compare
with the usual analysis for one sample?
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2.7 Generalized Least Squares

A slightly more general linear model than the one considered so far is

Y = Xβ + e, E(e) = 0, Cov(e) = σ 2V, (1)

where V is some known positive definite matrix. By Corollary B.23, we can write
V = QQ′ for some nonsingular matrix Q. It follows that Q−1V Q′−1 = I.

Instead of analyzing model (1), we analyze the equivalent model,

Q−1Y = Q−1Xβ +Q−1e. (2)

For model (2), E(Q−1e) = 0 and Cov(Q−1e) = σ 2Q−1V Q−1′ = σ 2I. The trans-
formed model satisfies the assumptions made in the previously developed theory.
For the transformed model, the least squares estimates minimize(

Q−1Y −Q−1Xβ
)′ (

Q−1Y −Q−1Xβ
)

= (Y −Xβ )′ Q−1′Q−1 (Y −Xβ )

= (Y −Xβ )′V−1 (Y −Xβ) .

The estimates of β that minimize this function are called generalized least squares
estimates because instead of minimizing the squared distance between Y and Xβ ,
a generalized squared distance determined by V−1 is minimized. Generalized least
squares is a concept in linear model theory and should not be confused with general-
ized linear models. To differentiate from generalized least squares, the least squares
estimation of Section 2 is sometimes called ordinary least squares (OLS).

Theorem 2.7.1.

(a) λ ′β is estimable in model (1) if and only if λ ′β is estimable in model (2).
(b) β̂ is a generalized least squares estimate of β if and only if

X
(
X ′V−1X

)−
X ′V−1Y = X β̂ .

For any estimable function there exists a unique generalized least squares esti-
mate.

(c) For an estimable function λ ′β , the generalized least squares estimate is the
BLUE of λ ′β .

(d) If e ∼ N(0,σ 2V ), then for any estimable function λ ′β , the generalized least
squares estimate is the minimum variance unbiased estimate.

(e) If e ∼ N(0,σ 2V ), then any generalized least squares estimate of β is a maxi-
mum likelihood estimate of β .

PROOF.

(a) If λ ′β is estimable in model (1), we can write
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λ ′ = ρ ′X = (ρ ′Q)Q−1X ;

so λ ′β is estimable in model (2). If λ ′β is estimable in model (2), then λ ′ =
ρ ′Q−1X = (ρ ′Q−1)X ; so λ ′β is estimable in model (1).

(b) By Theorem 2.2.1, the generalized least squares estimates (i.e., the least
squares estimates for model (2)) satisfy the equation

Q−1X
(
X ′Q−1′Q−1X

)−
X ′Q−1′Q−1Y = Q−1X β̂ .

Simplifying and multiplying through on the left by Q gives the equivalent condition

X
(
X ′V−1X

)−
X ′V−1Y = X β̂ .

From Theorem 2.2.3, generalized least squares estimates of estimable functions are
unique.

(c) From Theorem 2.3.2 as applied to model (2), the generalized least squares
estimate of λ ′β is the BLUE of λ ′β among all unbiased linear combinations of the
vector Q−1Y . However, any linear combination, in fact any function, of Y can be
obtained from Q−1Y because Q−1 is invertible. Thus, the generalized least squares
estimate is the BLUE.

(d) Applying Theorem 2.5.4 to model (2) establishes that the generalized least
squares estimate is the MVUE from among unbiased estimates that are functions
of Q−1Y . Since Q is nonsingular, any function of Y can be written as a function of
Q−1Y ; so the generalized least squares estimate is the minimum variance unbiased
estimate.

(e) The likelihood functions from models (1) and (2) are identical. From model
(2), a generalized least squares estimate β̂ maximizes the likelihood among all func-
tions of Q−1Y , but since Q is nonsingular, β̂ maximizes the likelihood among all
functions of Y . �

Theorem 2.7.1(b) is the generalized least squares equivalent of Theorem 2.2.1.
Theorem 2.2.1 relates X β̂ to the perpendicular projection of Y onto C(X). Theorem
2.7.1(b) also relates X β̂ to a projection of Y onto C(X), but in Theorem 2.7.1(b) the
projection is not the perpendicular projection. If we write

A = X
(
X ′V−1X

)−
X ′V−1, (3)

then the condition in Theorem 2.7.1(b) is

AY = X β̂ .

We wish to show that A is a projection operator onto C(X). The perpendicular
projection operator onto C(Q−1X) is

Q−1X
[
(Q−1X)′(Q−1X)

]−
(Q−1X)′.
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By the definition of a projection operator,

Q−1X
[
(Q−1X)′(Q−1X)

]−
(Q−1X)′Q−1X = Q−1X .

This can also be written as
Q−1AX = Q−1X .

Multiplying on the left by Q gives

AX = X . (4)

From (3) and (4), we immediately have

AA = A,

so A is a projection matrix. From (3), C(A) ⊂C(X) and from (4), C(X) ⊂C(A); so
C(A) = C(X) and we have proven:

Proposition 2.7.2. A is a projection operator onto C(X).

For an estimable function λ ′β with λ ′ = ρ ′X , the generalized least squares esti-
mate is λ ′β̂ = ρ ′AY . This result is analogous to the ordinary least squares result in
Corollary 2.2.3. To obtain tests and confidence intervals for λ ′β , we need to know
Cov(X β̂ ).

Proposition 2.7.3. Cov(X β̂ ) = σ 2X
(
X ′V−1X

)− X ′.

PROOF. Cov(X β̂ ) = Cov(AY ) = σ 2AVA′. From (3) and (4) it is easily seen (cf.
Exercise 2.4) that

AVA′ = AV = VA′.

In particular, AV = X
(
X ′V−1X

)− X ′. �

Corollary 2.7.4. If λ ′β is estimable, then the generalized least squares estimate
has Var(λ ′β̂ ) = σ 2λ ′ (X ′V−1X

)− λ .

It is necessary to have an estimate of σ 2. From model (2),

SSE = (Q−1Y )′
[
I −Q−1X

[
(Q−1X)′(Q−1X)

]−
(Q−1X)′

]
(Q−1Y )

= Y ′V−1Y −Y ′V−1X
(
X ′V−1X

)−
X ′V−1Y

= Y ′(I −A)′V−1(I −A)Y.

Note that (I −A)Y is the vector of residuals, so the SSE is a quadratic form in the
residuals. Because Q is nonsingular, r(Q−1X) = r(X). It follows from model (2)
that an unbiased estimate of σ 2 is obtained from
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MSE = Y ′(I −A)′V−1(I −A)Y
/

[n− r(X)] .

With normal errors, this is also the minimum variance unbiased estimate of σ 2.
Suppose that e is normally distributed. From Theorem 1.3.7 applied to model (2),

the MSE is independent of Q−1X β̂ . Since X β̂ is a function of Q−1X β̂ , the MSE is
independent of X β̂ . Moreover, X β̂ is normally distributed and SSE/σ 2 has a chi-
squared distribution.

A particular application of these results is that, for an estimable function λ ′β ,

λ ′β̂ −λ ′β√
MSE λ ′ (X ′V−1X)− λ

∼ t(n− r(X)).

Given this distribution, tests and confidence intervals involving λ ′β can be obtained
as in Appendix E.

We now give a result that determines when generalized least squares estimates are
(ordinary) least squares estimates. The result will be generalized in Theorem 10.4.5.
The generalization changes it to an if and only if statement for arbitrary covariance
matrices.

Proposition 2.7.5. If V is nonsingular and C(V X) ⊂ C(X), then least squares
estimates are BLUEs.

PROOF. The proof proceeds by showing that A ≡ X(X ′V−1X)−X ′V−1 is the per-
pendicular projection operator onto C(X). We already know that A is a projection
operator onto C(X), so all we need to establish is that if w ⊥C(X), then Aw = 0.

V being nonsingular implies that the null spaces of V X and X are identical, so
r(V X) = r(X). With C(V X)⊂C(X), we must have C(V X) = C(X). C(V X) = C(X)
implies that for some matrices B1 and B2, V XB1 = X and V X = XB2. Multiplying
through by V−1 in both equations gives XB1 = V−1X and X = V−1XB2, so C(X) =
C(V−1X). It follows immediately that C(X)⊥ = C(V−1X)⊥. Now, w ⊥C(X) if and
only if w ⊥C(V−1X), so

Aw =
[
X(X ′V−1X)−X ′V−1]w = X(X ′V−1X)−

[
X ′V−1w

]
= 0. �

Frequently in regression analysis, V is a diagonal matrix, in which case gener-
alized least squares is referred to as weighted least squares (WLS). Considerable
simplification results.

Exercise 2.4

(a) Show that AVA′ = AV = VA′.
(b) Show that A′V−1A = A′V−1 = V−1A.
(c) Show that A is the same for any choice of

(
X ′V−1X

)−.
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The following result will be useful in Section 9. It is essentially the Pythagorean
theorem and can be used directly to show Theorem 2.7.1(b), that X β̂ is a generalized
least squares estimate if and only if X β̂ = AY .

Lemma 2.7.6 Let A = X(X ′V−1X)−X ′V−1, then

(Y −Xβ )V−1(Y −Xβ) = (Y −AY )′V−1(Y −AY )+(AY −Xβ )V−1(AY −Xβ )

= (Y −AY )′V−1(Y −AY )+(β̂ −β )′(X ′V−1X)(β̂ −β )

where β̂ = (X ′V−1X)−X ′V−1Y .

PROOF. Following the proof of Theorem 2.2.2, write (Y −Xβ ) = (Y −AY )+(AY −
Xβ ) and eliminate cross product terms using Exercise 2.4 and

(I −A)′V−1(AY −Xβ ) = V−1(I −A)(AY −Xβ ) = 0. �

Exercise 2.5 Show that A is the perpendicular projection operator onto C(X)
when the inner product between two vectors x and y is defined as x′V−1y.

Hint: Recall the discussion after Definition B.50.

2.8 Normal Equations

An alternative method for finding least squares estimates of the parameter β in the
model

Y = Xβ + e, E(e) = 0, Cov(e) = σ 2I

is to find solutions of what are called the normal equations. The normal equations
are defined as

X ′Xβ = X ′Y.

They are usually arrived at by setting equal to zero the partial derivatives of (Y −
Xβ )′(Y −Xβ ) with respect to β .

Corollary 2.8.2 shows that solutions of the normal equations are least squares
estimates of β . Recall that, by Theorem 2.2.1, least squares estimates are solutions
of Xβ = MY .

Theorem 2.8.1. β̂ is a least squares estimate of β if and only if (Y −X β̂ )⊥C(X).

PROOF. Since M is the perpendicular projection operator onto C(X), (Y −X β̂ )⊥
C(X) if and only if M(Y −X β̂ ) = 0, i.e, if and only if MY = X β̂ . �

Corollary 2.8.2. β̂ is a least squares estimate of β if and only if X ′X β̂ = X ′Y .
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PROOF. X ′X β̂ = X ′Y if and only if X ′(Y −X β̂ ) = 0, which occurs if and only if
(Y −X β̂ ) ⊥C(X). �

For generalized least squares problems, the normal equations are found from
model (2.7.2). The normal equations simplify to

X ′V−1Xβ = X ′V−1Y.

2.9 Bayesian Estimation

Bayesian estimation incorporates the analyst’s subjective information about a prob-
lem into the analysis. It appears to be the only logically consistent method of anal-
ysis, but not the only useful one. Some people object to the loss of objectivity that
results from using the analyst’s subjective information, but either the data are strong
enough for reasonable people to agree on their interpretation or, if not, analysts
should be using their subjective (prior) information for making appropriate deci-
sions related to the data.

There is a vast literature on Bayesian statistics. Three fundamental works are de
Finetti (1974, 1975), Jeffreys (1961), and Savage (1954). Good elementary introduc-
tions to the subject are Lindley (1971) and Berry (1996). A few of the well-known
books on the subject are Berger (1993), Box and Tiao (1973), DeGroot (1970),
Geisser (1993), Raiffa and Schlaifer (1961), and Zellner (1971). My favorite is now
Christensen, Johnson, Branscum, and Hanson (2010), which also includes many
more references to many more excellent books. Christensen et al. contains a far
more extensive discussion of Bayesian linear models than this relatively short sec-
tion.

Consider the linear model

Y = Xβ + e, e ∼ N(0,σ 2I),

where r(X) = r. It will be convenient to consider a full rank reparameterization of
this model,

Y = Zγ + e, e ∼ N(0,σ 2I),

where C(X) = C(Z). As in Sections 1.2 and 2.4, this determines a density for Y
given γ and σ 2, say, f (Y |γ,σ 2). For a Bayesian analysis, we must have a joint den-
sity for γ and σ 2, say p(γ,σ 2). This distribution reflects the analyst’s beliefs, prior
to collecting data, about the process of generating the data. We will actually specify
this distribution conditionally as p(γ,σ 2) = p(γ|σ 2)p(σ 2). In practice, it is difficult
to specify these distributions for γ given σ 2 and σ 2. Convenient choices that have
minimal impact on (most aspects of) the analysis are the (improper) reference priors
p(γ|σ 2) = 1 and p(σ 2) = 1/σ 2. These are improper in that neither prior density in-
tegrates to 1. Although these priors are convenient, a true Bayesian analysis requires
the specification of proper prior distributions.
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Specifying prior information is difficult, particularly about such abstract quan-
tities as regression coefficients. A useful tool in specifying prior information is to
think in terms of the mean of potential observations. For example, we could specify
a vector of predictor variables, say z̃i, and specify the distribution for the mean of
observations having those predictor variables. With covariates z̃i, the mean of poten-
tial observables is z̃′iγ . Typically, we assume that z̃′iγ has a N(ỹi,σ2w̃i) distribution.
One way to think about ỹi and w̃i is that ỹi is a prior guess for what one would see
with covariates z̃i, and 1/w̃i is the number of observations this guess is worth. To
specify a proper prior distribution for γ given σ 2, we specify independent priors at
vectors z̃i, i = 1, . . . ,r, where r is the dimension of γ . As will be seen later, under a
mild condition this prior specification leads easily to a proper prior distribution on
γ . Although choosing the z̃is and specifying the priors may be difficult to do, it is
much easier to do than trying to specify an intelligent joint prior directly on γ . If one
wishes to specify only partial prior information, one can simply choose fewer than
r vectors z̃i and the analysis follows as outlined below. In fact, using the reference
prior for γ amounts to not choosing any z̃is. Again, the analysis follows as outlined
below. Bedrick, Christensen, and Johnson (1996) and Christensen et al. (2010) dis-
cuss these techniques in more detail.

I believe that the most reasonable way to specify a proper prior on σ 2 is to think
in terms of the variability of potential observables around some fixed mean. Unfor-
tunately, the implications of this idea are not currently as well understood as they
are for the related technique of specifying the prior for γ indirectly through priors
on means of potential observables. For now, we will simply consider priors for σ 2

that are inverse gamma distributions, i.e., distributions in which 1/σ 2 has a gamma
distribution. An inverse gamma distribution has two parameters, a and b. One can
think of the prior as being the equivalent of 2a (prior) observations with a prior
guess for σ2 of b/a.

It is convenient to write Ỹ = (ỹ1, . . . , ỹr)′ and Z̃ as the r× r matrix with ith row
z̃′i. In summary, our distributional assumptions are

Y |γ,σ 2 ∼ N(Zγ,σ 2I),
Z̃γ|σ 2 ∼ N(Ỹ ,σ 2D(w̃)),

σ 2 ∼ InvGa(a,b).

We assume that Z̃ is nonsingular, so that the second of these induces the distribution

γ|σ 2 ∼ N(Z̃−1Ỹ ,σ 2Z̃−1D(w̃)Z̃−1′).

Actually, any multivariate normal distribution for γ given σ 2 will lead to essentially
the same analysis as given here.

A Bayesian analysis is based on finding the distribution of the parameters given
the data, i.e., p(γ,σ 2|Y ). This is accomplished by using Bayes’s theorem, which
states that

p(γ ,σ 2|Y ) =
f (Y |γ ,σ 2)p(γ,σ2)

f (Y )
.
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If we know the numerator of the fraction, we can obtain the denominator by

f (Y ) =
∫

f (Y |γ,σ 2)p(γ,σ2)dγ dσ 2.

In fact, because of this relationship, we only need to know the numerator up to a
constant multiple, because any multiple will cancel in the fraction.

Later in this section we will show that

p(γ ,σ 2|Y ) ∝
(
σ2)−(n+r)/2

p(σ2)

× exp
{ −1

2σ 2

[
(γ − γ̂)′(Z′Z + Z̃′D−1(w̃)Z̃)(γ − γ̂)

]}
(1)

× exp
{ −1

2σ 2

[
(Y −Zγ̂)′(Y −Zγ̂)+(Ỹ − Z̃γ̂)′D−1(w̃)(Ỹ − Z̃γ̂)

]}
,

where
γ̂ =
(
Z′Z + Z̃′D−1(w̃)Z̃

)−1 [
Z′Y + Z̃′D−1(w̃)Ỹ

]
. (2)

The joint posterior (post data) density is the righthand side of (1) divided by its
integral with respect to γ and σ 2.

The form (1) for the joint distribution given the data is not particularly useful.
What we really need are the marginal distributions of σ 2 and functions ρ ′Zγ ≡
ρ ′Xβ , and predictive distributions for new observations.

As will be shown, the Bayesian analysis turns out to be quite consistent with the
frequentist analysis. For the time being, we use the reference prior p(σ 2) = 1/σ 2.
In our model, we have Z̃γ random, but it is convenient to think of Ỹ as being r
independent prior observations with mean Z̃γ and weights w̃. Now consider the
generalized least squares model[

Y
Ỹ

]
=
[

Z
Z̃

]
γ +
[

e
ẽ

]
,

[
e
ẽ

]
∼ N
([

0n×1
0r×1

]
,σ 2
[

In 0
0 D(w̃)

])
. (3)

This generalized least squares model can also be written as, say,

Y∗ = Z∗γ + e∗, e∗ ∼ N(0,σ2V∗).

The generalized least squares estimate from this model is γ̂ as given in (2). In the
Bayesian analysis, γ̂ is the expected value of γ given Y . Let BMSE denote the mean
squared error from the (Bayesian) generalized least squares model with BdfE de-
grees of freedom for error.

In the frequentist generalized least squares analysis, for fixed γ with random γ̂
and BMSE ,

λ ′γ̂ −λ ′γ√
BMSE λ ′ (Z′Z + Z̃′D−1(w̃)Z̃

)−1 λ
∼ t(BdfE).

In the Bayesian analysis the same distribution holds, but for fixed γ̂ and BMSE
with random γ . Frequentist confidence intervals for λ ′γ are identical to Bayesian
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posterior probability intervals for λ ′γ . Note that for estimating a function ρ ′Xβ ,
simply write it as ρ ′Xβ = ρ ′Zγ and take λ ′ = ρ ′Z.

In the frequentist generalized least squares analysis, for fixed σ 2 and random
BMSE ,

(BdfE)BMSE
σ2 ∼ χ2(BdfE).

In the Bayesian analysis, the same distribution holds, but for fixed BMSE and ran-
dom σ 2. Confidence intervals for σ2 are identical to Bayesian posterior probability
intervals for σ 2.

In the frequentist generalized least squares analysis, a prediction interval for a
future independent observation y0 with predictor vector z0 and weight 1 is based on
the distribution

y0 − z′0γ̂√
BMSE

[
1+ z′0

(
Z′Z + Z̃′D−1(w̃)Z̃

)−1 z0

] ∼ t(BdfE), (4)

where γ̂ and BMSE are random and y0 is independent of Y for given γ and σ 2,
see Exercise 2.10.1. In the Bayesian analysis, the same distribution holds, but for
fixed γ̂ and BMSE . Standard prediction intervals for y0 are identical to Bayesian
prediction intervals.

If we specify an improper prior on γ using fewer than r vectors z̃i, these relation-
ships between generalized least squares and the Bayesian analysis remain valid. In
fact, for the reference prior on γ , i.e., choosing no z̃is, the generalized least squares
model reduces to the usual model Y = Xβ + e, e ∼ N(0,σ 2I), and the Bayesian
analysis becomes analogous to the usual ordinary least squares analysis.

In the generalized least squares model (3), BdfE = n. If we take σ 2 ∼ InvGa(a,b),
the only changes in the Bayesian analysis are that BMSE changes to [(BdfE)BMSE +
2b]/(BdfE + 2a) and the degrees of freedom for the t and χ2 distributions change
from BdfE to BdfE +2a. With reference priors for both γ and σ 2, BdfE = n− r, as
in ordinary least squares.

EXAMPLE 2.9.1. Schafer (1987) presented data on 93 individuals at the Har-
ris Bank of Chicago in 1977. The response is beginning salary in hundreds of
dollars. There are four covariates: sex, years of education, denoted EDUC, years
of experience, denoted EXP, and time at hiring as measured in months after 1-1-
69, denoted TIME. This is a regression, so we can take Z ≡ X , γ ≡ β , and write
X̃ ≡ Z̃. With an intercept in the model, Johnson, Bedrick, and I began by speci-
fying five covariate vectors x̃′i = (1,SEXi,EDUCi,EXPi,T IMEi), say, (1,0,8,0,0),
(1,1,8,0,0), (1,1,16,0,0), (1,1,16,30,0), and (1,1,8,0,36), where a SEX value
of 1 indicates a male. For example, the vector (1,0,8,0,0) corresponds to a male with
8 years of education, no previous experience, and starting work on 1-1-69. Thinking
about the mean salary for each set of covariates, we chose ỹ′ = (40,40,60,70,50),
which reflects a prior belief that starting salaries are the same for equally quali-
fied men and women and a belief that salary is increasing as a function of EDUC,
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EXP, and TIME. The weights w̃i are all chosen to be 0.4, so that in total the
prior carries the same weight as two sampled observations. The induced prior on
β given σ 2 has mean vector (20,0,2.50,0.33,0.28)′ and standard deviation vector
σ ≡ (2.74,2.24,0.28,0.07,0.06)′.

To illustrate partial prior information, we consider the same example, only with
the fifth “prior observation” deleted. In this instance, the prior does not reflect any
information about the response at TIMEs other than 0. The prior is informative about
the mean responses at the first four covariate vectors but is noninformative (the prior
is constant) for the mean response at the fifth covariate vector. Moreover, the prior
is constant for the mean response with any other choice of fifth vector, provided
this vector is linearly independent of the other four. (All such vectors must have
a nonzero value for the time component.) In this example, the induced improper
distribution on β has the same means and standard deviations for β1, β2, β3, and β4,
but is flat for β5.

We specify a prior on σ2 worth 2a = 2 observations with a prior guess for σ 2

of b/a = 25. The prior guess reflects our belief that a typical salary has a standard
deviation of 5.

Using our informative prior, the posterior mean of β is

β̂ = (33.68,6.96,1.02,0.18,0.23)′

with BdfE = 95 and BMSE = 2404/95 = 25.3053. The standard deviations for β
are
√

95/93(310,114,23.43,6.76,5.01)′/100. In the partially informative case dis-
cussed above, the posterior mean is

β̂ = (34.04,7.11,0.99,0.17,0.23),

BdfE = 94, BMSE = 2383/94 = 25.3511, and the standard deviations for β are√
94/92(313,116,23.78,6.80,5.06)′/100. Using the standard reference prior, i.e.,

using ordinary least squares without prior data, β̂ = (35.26,7.22,0.90,0.15,0.23)′,
BdfE = 88, BMSE = 2266/88 = 25.75, and the standard deviations for β are√

88/86(328,118,24.70,7.05,5.20)′/100. The 95% prediction interval for x0 =
(1,0,10,3.67,7)′ with a weight of 1 is (35.97,56.34) for the informative prior,
(35.99,56.38) with partial prior information, and (36.27,56.76) for the reference
prior.

2.9.1 Distribution Theory

For the time being, we will assume relation (1) for the joint posterior and use it to
arrive at marginal distributions. Afterwards, we will establish relation (1).

The distribution theory for the Bayesian analysis involves computations unlike
anything else done in this book. It requires knowledge of some basic facts.

The density of a gamma distribution with parameters a > 0 and b > 0 is
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g(τ) =
ba

Γ (a)
τa−1 exp[−bτ]

for τ > 0. A Gamma(n/2,1/2) distribution is the same as a χ2(n) distribution. We
will not need the density of an inverse gamma, only the fact that y has a Gamma(a,b)
distribution if and only if 1/y has an InvGa(a,b) distribution. The improper refer-
ence distribution corresponds to a = 0,b = 0.

The t distribution is defined in Appendix C. The density of a t(n) distribution is

g(w) =
[

1+
w2

n

]−(n+1)/2

Γ
(

n+1
2

)/[
Γ
(n

2

)√
nπ
]
.

Eliminating the constants required to make the density integrate to 1 gives

g(w) ∝
[

1+
w2

n

]−(n+1)/2

.

Bayesian linear models involve multivariate t distributions, cf. DeGroot (1970,
Section 5.6). Let W ∼ N(μ,V ), Q ∼ χ2(n), with W and Q independent. Then if

Y ∼ (W −μ)
1√
Q/n

+ μ ,

by definition
Y ∼ t(n,μ,V ) .

For an r vector Y , a multivariate t(n) distribution with center μ and dispersion matrix
V has density

g(y) =
[

1+
1
n
(y−μ)′V−1(y−μ)

]−(n+r)/2

×Γ
(

n+ r
2

)/{
Γ
(n

2

)
(nπ)r/2[det(V )]1/2

}
.

This distribution has mean μ for n > 1 and covariance matrix [n/(n−2)]V for n > 2.
To get noninteger degrees of freedom a, just replace Q/n in the definition with bT/a,
where T ∼ Gamma(a/2,b/2) independent of W .

Note that from the definition of a multivariate t,

λ ′Y −λ ′μ√
λ ′V λ

∼ (λ ′W −λ ′μ)/
√

λ ′Vλ√
Q/n

∼ t(n). (5)

Proceeding with the Bayesian analysis, to find the marginal posterior of γ let

Q =
[
(Y −Zγ̂)′(Y −Zγ̂)+(Ỹ − Z̃γ̂)′D−1(w̃)(Ỹ − Z̃γ̂)

]
+
[
(γ − γ̂)′(Z′Z + Z̃′D−1(w̃)Z̃)(γ − γ̂)

]
.
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From (1),

p(γ|Y ) ∝
∫ (

σ 2)−(n+r)/2
p(σ 2)exp

{ −1
2σ 2 Q

}
dσ2.

Transforming σ 2 into τ = 1/σ 2 gives σ 2 = 1/τ and dσ 2 = |− τ−2|dτ . Thus

p(γ|Y ) ∝
∫

(τ)(n+r)/2 p(1/τ)exp{−τQ/2}τ−2dτ.

Note that if σ 2 has an inverse gamma distribution with parameters a and b, then τ
has a gamma distribution with parameters a and b; so p(1/τ)τ−2 is a gamma density
and

p(γ |Y ) ∝
∫

(τ)(n+r+2a−2)/2 exp{−τ(Q+2b)/2}dτ.

The integral is a gamma integral, e.g., the gamma density given earlier integrates to
1, so

p(γ|Y ) ∝ Γ [(n+ r +2a)/2]
/

[(Q+2b)/2](n+r+2a)/2

or
p(γ|Y ) ∝ [Q+2b]−(n+r+2a)/2 .

We can rewrite this as

p(γ|Y ) ∝
[
(BdfE)(BMSE)+2b+(γ − γ̂)′

(
Z′Z + Z̃′D−1(w̃)Z̃

)
(γ − γ̂)

]−(n+r+2a)/2

∝

[
1+

1
n+2a

(γ − γ̂)′
(
Z′Z + Z̃′D−1(w̃)Z̃

)
(γ − γ̂)

[(BdfE)(BMSE)+2b]/(n+2a)

]−(n+2a+r)/2

,

so

γ|Y ∼ t
(

n+2a, γ̂ ,
(BdfE)(BMSE)+2b

n+2a

(
Z′Z + Z̃′D−1(w̃)Z̃

)−1
)

.

Together with (5), this provides the posterior distribution of λ ′γ .
Now consider the marginal (posterior) distribution of σ 2.

p(σ 2|Y ) ∝
(
σ 2)−n/2

p(σ 2)

× exp
{ −1

2σ 2

[
(Y −Zγ̂)′(Y −Zγ̂)+(Ỹ − Z̃γ̂)′D−1(w̃)(Ỹ − Z̃γ̂)

]}
×
∫ (

σ 2)−r/2
exp
{ −1

2σ 2

[
(γ − γ̂)′(Z′Z + Z̃′D−1(w̃)Z̃)(γ − γ̂)

]}
dγ.

The term being integrated is proportional to a normal density, so the integral is a
constant that does not depend on σ 2. Hence,

p(σ 2|Y ) ∝
(
σ2)−n/2

p(σ 2)

× exp
{ −1

2σ 2

[
(Y −Zγ̂)′(Y −Zγ̂)+(Ỹ − Z̃γ̂)′D−1(w̃)(Ỹ − Z̃γ̂)

]}
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or, using the generalized least squares notation,

p(σ 2|Y ) ∝
(
σ 2)−n/2

p(σ 2)exp
[ −1

2σ 2 (BdfE)(BMSE)
]
.

We transform to the precision, τ ≡ 1/σ 2. The InvGa(a,b) distribution for σ 2 yields

p(τ|Y ) ∝ (τ)n/2 (τ)a−1 exp[−bτ]exp
[−τ

2
(BdfE)(BMSE)

]
= (τ)[(n+2a)/2]−1 exp

[
−2b+(BdfE)(BMSE)

2
τ
]

;

so

τ|Y ∼ Gamma
(

n+2a
2

,
2b+(BdfE)(BMSE)

2

)
.

It is not difficult to show that

[2b+(BdfE)(BMSE)]τ|Y ∼ Gamma
(

n+2a
2

,
1
2

)
,

i.e.,
2b+(BdfE)(BMSE)

σ 2

∣∣∣Y ∼ Gamma
(

n+2a
2

,
1
2

)
.

As mentioned earlier, for the reference distribution with a = 0,b = 0,

(BdfE)(BMSE)
σ2

∣∣∣Y ∼ Gamma
(

n
2
,

1
2

)
= χ2(n).

Finally, we establish relation (1).

p(γ,σ 2|Y ) ∝ f (Y |γ,σ2)p(γ|σ 2)p(σ 2)

∝
{(

σ 2)−n/2
exp
[−(Y −Zγ)′(Y −Zγ)/2σ 2]}

×
{(

σ 2)−r/2
exp
[
−(γ − Z̃−1Ỹ

)′(
Z̃′D−1(w̃)Z̃

)(
γ − Z̃−1Ỹ

)/
2σ 2
]}

× p(σ 2)

Most of the work involves simplifying the terms in the exponents. We isolate those
terms, deleting the multiple −1/2σ 2.

(Y −Zγ)′(Y −Zγ)+
(
γ − Z̃−1Ỹ

)′ (
Z̃′D−1(w̃)Z̃

)(
γ − Z̃−1Ỹ

)
= (Y −Zγ)′(Y −Zγ)+(Ỹ − Z̃γ)′D(w̃)−1(Ỹ − Z̃γ)

=
([

Y
Ỹ

]
−
[

Z
Z̃

]
γ
)′ [ I 0

0 D(w̃)−1

]([
Y
Ỹ

]
−
[

Z
Z̃

]
γ
)

.

Write
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Y∗ =
[

Y
Ỹ

]
, Z∗ =

[
Z
Z̃

]
, V∗ =

[
I 0
0 D(w̃)

]
and apply Lemma 2.7.6 to get

(Y −Zγ)′(Y −Zγ)+
(
γ − Z̃−1Ỹ

)′ (
Z̃′D−1(w̃)Z̃

)(
γ − Z̃−1Ỹ

)
= (Y∗ −Z∗γ)′V−1

∗ (Y∗ −Z∗γ)
= (Y∗ −A∗Y∗)′V−1

∗ (Y∗ −A∗Y∗)+(γ̂ − γ)′(Z′
∗V

−1
∗ Z∗)(γ̂ − γ),

where A∗ = Z∗(Z′∗V−1∗ Z∗)−1Z′∗V−1∗ and

γ̂ = (Z′
∗V

−1
∗ Z∗)−1Z′

∗V
−1
∗ Y∗

=
(
Z′Z + Z̃′D−1(w̃)Z̃

)−1 [
Z′Y + Z̃′D−1(w̃)Ỹ

]
.

Finally, observe that

(Y∗ −A∗Y∗)′V−1
∗ (Y∗ −A∗Y∗)+(γ̂ − γ)′(Z′

∗V
−1
∗ Z∗)(γ̂ − γ)

=
[
(Y −Zγ̂)′(Y −Zγ̂)+(Ỹ − Z̃γ̂)′D−1(w̃)(Ỹ − Z̃γ̂)

]
+
[
(γ − γ̂)′(Z′Z + Z̃′D−1(w̃)Z̃)(γ − γ̂)

]
.

Substitution gives (1).

Exercise 2.6 Prove relation (4).

2.10 Additional Exercises

Exercise 2.10.1 Consider a regression model Y = Xβ + e, e ∼ N(0,σ 2I) and
suppose that we want to predict the value of a future observation, say y0, that will
be independent of Y and be distributed N(x′0β ,σ2).

(a) Find the distribution of

y0 − x′0β̂√
MSE

[
1+ x′0(X ′X)−1x0

] .
(b) Find a 95% prediction interval for y0.
Hint: A prediction interval is similar to a confidence interval except that, rather

than finding parameter values that are consistent with the data and the model, one
finds new observations y0 that are consistent with the data and the model as deter-
mined by an α level test.

(c) Let η ∈ (0,0.5]. The 100η th percentile of the distribution of y0 is, say,
γ(η) = x′0β + z(η)σ . (Note that z(η) is a negative number.) Find a (1−α)100%
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lower confidence bound for γ(η). In reference to the distribution of y0, this lower
confidence bound is referred to as a lower η tolerance point with confidence coef-
ficient (1−α)100%. For example, if η = 0.1, α = 0.05, and y0 is the octane value
of a batch of gasoline manufactured under conditions x0, then we are 95% confident
that no more than 10% of all batches produced under x0 will have an octane value
below the tolerance point.

Hint: Use a noncentral t distribution based on x′0β̂ − γ(η).
Comment: For more detailed discussions of prediction and tolerance (and we all
know that tolerance is a great virtue), see Geisser (1993), Aitchison and Dunsmore
(1975), and Guttman (1970).

Exercise 2.10.2 Consider the model

Y = Xβ +b+ e, E(e) = 0, Cov(e) = σ2I,

where b is a known vector. Show that Proposition 2.1.3 is not valid for this model
by producing a linear unbiased estimate of ρ ′Xβ , say a0 +a′Y , for which a0 �= 0.

Hint: Modify ρ ′MY .

Exercise 2.10.3 Consider the model yi = β1xi1 + β2xi2 + ei, eis i.i.d. N(0,σ 2).
Use the data given below to answer (a) through (d). Show your work, i.e., do not use
a regression or general linear models computer program.

(a) Estimate β1, β2, and σ 2.
(b) Give 95% confidence intervals for β1 and β1 +β2.
(c) Perform an α = 0.01 test for H0 : β2 = 3.
(d) Find an appropriate P value for the test of H0 : β1 −β2 = 0.

obs. 1 2 3 4 5 6 7 8
y 82 79 74 83 80 81 84 81

x1 10 9 9 11 11 10 10 12
x2 15 14 13 15 14 14 16 13

Exercise 2.10.4 Consider the model yi = β1xi1 + β2xi2 + ei, eis i.i.d. N(0,σ 2).
There are 15 observations and the sum of the squared observations is Y ′Y = 3.03.
Use the normal equations given below to answer parts (a) through (c).

(a) Estimate β1, β2, and σ 2.
(b) Give 98% confidence intervals for β2 and β2 −β1.
(c) Perform an α = 0.05 test for H0 : β1 = 0.5.

The normal equations are[
15.00 374.50

374.50 9482.75

][
β1
β2

]
=
[

6.03
158.25

]
.
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Exercise 2.10.5 Consider the model

yi = β0 +β1xi1 +β2xi2 +β11x2
i1 +β22x2

i2 +β12xi1xi2 + ei,

where the predictor variables take on the following values.

i 1 2 3 4 5 6 7
xi1 1 1 −1 −1 0 0 0
xi2 1 −1 1 −1 0 0 0

Show that β0, β1, β2, β11 + β22, β12 are estimable and find (nonmatrix) algebraic
forms for the estimates of these parameters. Find the MSE and the standard errors
of the estimates.



Chapter 3

Testing

We will consider two approaches to testing linear models. The approaches are iden-
tical in that a test under either approach is a well-defined test under the other. The
two methods differ only conceptually. One approach is that of testing models; the
other approach involves testing linear parametric functions.

Section 1 discusses the notion that a linear model depends fundamentally on
C(X) and that the vector of parameters β is of secondary importance. Section 2 dis-
cusses testing different models against each other. Section 3 discusses testing linear
functions of the β vector. Section 4 presents a brief discussion of the relative merits
of testing models versus testing linear parametric functions. Section 5 examines the
problem of testing parametric functions that put a constraint on a given subspace of
C(X). In particular, Section 5 establishes that estimates and tests can be obtained
by using the projection operator onto the subspace. This result is valuable when
using one-way ANOVA methods to analyze balanced multifactor ANOVA mod-
els. Section 6 considers the problem of breaking sums of squares into independent
components. This is a general discussion that relates to breaking ANOVA treatment
sums of squares into sums of squares for orthogonal contrasts and also relates to the
issue of writing multifactor ANOVA tables with independent sums of squares. Sec-
tion 7 discusses the construction of confidence regions for estimable linear paramet-
ric functions. Section 8 presents testing procedures for the generalized least squares
model of Section 2.7.

3.1 More About Models

For estimation in the model

Y = Xβ + e, E(e) = 0, Cov(e) = σ 2I,

we have found that the crucial item needed is M, the perpendicular projection op-
erator onto C(X). For convenience, we will call C(X) the estimation space and
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C(X)⊥ the error space. I − M is the perpendicular projection operator onto the
error space. In a profound sense, any two linear models with the same estima-
tion space are the same model. For example, any two such models will give the
same predicted values for the observations and the same estimate of σ 2. Suppose
we have two linear models for a vector of observations, say Y = X1β1 + e1 and
Y = X2β2 + e2 with C(X1) = C(X2). For these alternative parameterizations, i.e.,
reparameterizations, M does not depend on which of X1 or X2 is used; it depends
only on C(X1)[= C(X2)]. Thus, the MSE does not change, and the least squares esti-
mate of E(Y ) is Ŷ = MY = X1β̂1 = X2β̂2. In fact, we could simply write the original
model as

E(Y ) ∈C(X), Cov(Y ) = σ 2I.

The expected values of the observations are fundamental to estimation in lin-
ear models. Identifiable parameteric functions are functions of the expected val-
ues. Attention is often restricted to estimable functions, i.e., functions ρ ′Xβ where
Xβ = E(Y ). The key idea in estimability is restricting estimation to linear combi-
nations of the rows of E(Y ). E(Y ) depends only on the choice of C(X), whereas
the vector β depends on the particular choice of X . Consider again the two mod-
els discussed above. If λ ′

1β1 is estimable, then λ ′
1β1 = ρ ′X1β1 = ρ ′E(Y ) for some

ρ . This estimable function is the same linear combination of the rows of E(Y ) as
ρ ′E(Y ) = ρ ′X2β2 = λ ′

2β2. These are really the same estimable function, but they
are written with different parameters. This estimable function has a unique least
squares estimate, ρ ′MY .

EXAMPLE 3.1.1. One-Way ANOVA.
Two parameterizations for a one-way ANOVA are commonly used. They are

yi j = μ +αi + ei j

and
yi j = μi + ei j.

It is easily seen that these models determine the same estimation space. The esti-
mates of σ 2 and E(yi j) are identical in the two models. One convenient aspect of
these models is that the relationships between the two sets of parameters are easily
identified. In particular,

μi = E(yi j) = μ +αi.

It follows that the mean of the μis equals μ plus the mean of the αis, i.e., μ̄· = μ + ᾱ·.
It also follows that μ1 − μ2 = α1 −α2, etc. The parameters in the two models are
different, but they are related. Any estimable function in one model determines a
corresponding estimable function in the other model. These functions have the same
estimate. Chapter 4 contains a detailed examination of these models.

EXAMPLE 3.1.2. Simple Linear Regression.
The models

yi = β0 +β1xi + ei
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and
yi = γ0 + γ1(xi − x̄·)+ ei

have the same estimation space (x̄· is the mean of the xis). Since

β0 +β1xi = E(yi) = γ0 + γ1(xi − x̄·) (1)

for all i, it is easily seen from averaging over i that

β0 +β1x̄· = γ0.

Substituting β0 = γ0 −β1x̄· into (1) leads to

β1(xi − x̄·) = γ1(xi − x̄·)

and, if the xis are not all identical,

β1 = γ1.

These models are examined in detail in Section 6.1.

When the estimation spaces C(X1) and C(X2) are the same, write X1 = X2T to
get

X1β1 = X2T β1 = X2β2. (2)

Estimable functions are equivalent in the two models: Λ ′
1β1 = P′X1β1 = P′X2β2 =

Λ ′
2β2. It also follows from equation (2) that the parameterizations must satisfy the

relation
β2 = T β1 + v (3)

for some v ∈ C(X ′
2)

⊥. In general, neither of the parameter vectors β1 or β2 is
uniquely defined but, to the extent that either parameter vector is defined, equation
(3) establishes the relationship between them. A unique parameterization for, say,
the X2 model occurs if and only if X ′

2X2 is nonsingular. In such a case, the columns
of X2 form a basis for C(X2), so the matrix T is uniquely defined. In this case, the
vector v must be zero because C(X ′

2)
⊥ = {0}. An alternative and detailed presenta-

tion of equivalent linear models, both the reparameterizations considered here and
the equivalences between constrained and unconstrained models considered in sub-
sequent sections, is given by Peixoto (1993).

Basically, the β parameters in

Y = Xβ + e, E(e) = 0, Cov(e) = σ 2I

are either a convenience or a nuisance, depending on what we are trying to do.
Having E(e) = 0 gives E(Y ) = Xβ , but since β is unknown, this is merely saying
that E(Y ) is some linear combination of the columns of X . The essence of the model
is that

E(Y ) ∈C(X), Cov(Y ) = σ 2I.
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As long as we do not change C(X), we can change X itself to suit our convenience.

3.2 Testing Models

In this section, the basic theory for testing a linear model against a reduced model
is presented. A generalization of the basic procedure is also presented.

Testing in linear models typically reduces to putting a constraint on the estima-
tion space. We start with a (full) model that we know (assume) to be valid,

Y = Xβ + e, e ∼ N(0,σ 2I). (1)

Our wish is to reduce this model, i.e., we wish to know if some simpler model gives
an acceptable fit to the data. Consider whether the model

Y = X0γ + e, e ∼ N(0,σ2I), C(X0) ⊂C(X) (2)

is acceptable. Clearly, if model (2) is correct, then model (1) is also correct. The
question is whether (2) is correct.

The procedure of testing full and reduced models is a commonly used method in
statistics.

EXAMPLE 3.2.0.

(a) One-Way ANOVA.
The full model is

yi j = μ +αi + ei j.

To test for no treatment effects, i.e., to test that the αis are extraneous, the reduced
model simply eliminates the treatment effects. The reduced model is

yi j = γ + ei j.

Additionally, consider testing H0 : α1 −α3 = 0 in Example 1.0.2. The full model
is ⎡⎢⎢⎢⎢⎢⎣

y11
y12
y13
y21
y31
y32

⎤⎥⎥⎥⎥⎥⎦=

⎡⎢⎢⎢⎢⎢⎣
1 1 0 0
1 1 0 0
1 1 0 0
1 0 1 0
1 0 0 1
1 0 0 1

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎣

μ
α1
α2
α3

⎤⎥⎦+

⎡⎢⎢⎢⎢⎢⎣
e11
e12
e13
e21
e31
e32

⎤⎥⎥⎥⎥⎥⎦ .

We can rewrite this as
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Y = μ

⎡⎢⎢⎢⎢⎢⎣
1
1
1
1
1
1

⎤⎥⎥⎥⎥⎥⎦+α1

⎡⎢⎢⎢⎢⎢⎣
1
1
1
0
0
0

⎤⎥⎥⎥⎥⎥⎦+α2

⎡⎢⎢⎢⎢⎢⎣
0
0
0
1
0
0

⎤⎥⎥⎥⎥⎥⎦+α3

⎡⎢⎢⎢⎢⎢⎣
0
0
0
0
1
1

⎤⎥⎥⎥⎥⎥⎦+ e.

If we impose the constraint H0 : α1 −α3 = 0, i.e., α1 = α3, we get

Y = μJ +α1

⎡⎢⎢⎢⎢⎢⎣
1
1
1
0
0
0

⎤⎥⎥⎥⎥⎥⎦+α2

⎡⎢⎢⎢⎢⎢⎣
0
0
0
1
0
0

⎤⎥⎥⎥⎥⎥⎦+α1

⎡⎢⎢⎢⎢⎢⎣
0
0
0
0
1
1

⎤⎥⎥⎥⎥⎥⎦+ e,

or

Y = μJ +α1

⎛⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎣
1
1
1
0
0
0

⎤⎥⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎢⎣
0
0
0
0
1
1

⎤⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎠+α2

⎡⎢⎢⎢⎢⎢⎣
0
0
0
1
0
0

⎤⎥⎥⎥⎥⎥⎦+ e,

or ⎡⎢⎢⎢⎢⎢⎣
y11
y12
y13
y21
y31
y32

⎤⎥⎥⎥⎥⎥⎦=

⎡⎢⎢⎢⎢⎢⎣
1 1 0
1 1 0
1 1 0
1 0 1
1 1 0
1 1 0

⎤⎥⎥⎥⎥⎥⎦
⎡⎣ μ

α1
α2

⎤⎦+

⎡⎢⎢⎢⎢⎢⎣
e11
e12
e13
e21
e31
e32

⎤⎥⎥⎥⎥⎥⎦ .

This is the reduced model determined by H0 : α1−α3 = 0. However, the parameters
μ , α1, and α2 no longer mean what they did in the full model.

(b) Multiple Regression.
Consider the full model

yi = β0 +β1xi1 +β2xi2 +β3xi3 + ei.

For a simultaneous test of whether the variables x1 and x3 are adding significantly
to the explanatory capability of the regression model, simply eliminate the variables
x1 and x3 from the model. The reduced model is

yi = γ0 + γ2xi2 + ei.

Now write the original model matrix as X = [J,X1,X2,X3], so
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Y = [J,X1,X2,X3]

⎡⎢⎣
β0
β1
β2
β3

⎤⎥⎦+ e = β0J +β1X1 +β2X2 +β3X3 + e.

Consider the hypothesis H0 : β2 −β3 = 0 or H0 : β2 = β3. The reduced model is

Y = β0J +β1X1 +β2X2 +β2X3 + e

= β0J +β1X1 +β2(X2 +X3)+ e

= [J,X1,X2 +X3]

⎡⎣β0
β1
β2

⎤⎦+ e.

However, these β parameters no longer mean what they did in the original model,
so it is better to write the model as

Y = [J,X1,X2 +X3]

⎡⎣γ0
γ1
γ2

⎤⎦+ e.

The distribution theory for testing models is given in Theorem 3.2.1. Before stat-
ing those results, we discuss the intuitive background of the test based only on the
assumptions about the first two moments. Let M and M0 be the perpendicular pro-
jection operators onto C(X) and C(X0), respectively. Note that with C(X0) ⊂C(X),
M −M0 is the perpendicular projection operator onto the orthogonal complement
of C(X0) with respect to C(X), that is, onto C(M −M0) = C(X0)⊥C(X), see Theo-
rems B.47 and B.48.

Under model (1), the estimate of E(Y ) is MY . Under model (2), the estimate is
M0Y . Recall that the validity of model (2) implies the validity of model (1); so if
model (2) is true, MY and M0Y are estimates of the same quantity. This suggests
that the difference between the two estimates, MY −M0Y = (M −M0)Y , should
be reasonably small. Under model (2), the difference is just error because E[(M −
M0)Y ] = 0.

On the other hand, a large difference between the estimates suggests that MY
and M0Y are estimating different things. By assumption, MY is always an estimate
of E(Y ); so M0Y must be estimating something different, namely, M0E(Y ) �= E(Y ).
If M0Y is not estimating E(Y ), model (2) cannot be true because model (2) implies
that M0Y is an estimate of E(Y ).

The decision about whether model (2) is appropriate hinges on deciding whether
the vector (M−M0)Y is large. An obvious measure of the size of (M−M0)Y is its
squared length, [(M −M0)Y ]′[(M−M0)Y ] = Y ′(M −M0)Y . However, the length of
(M−M0)Y is also related to the relative sizes of C(M) and C(M0). It is convenient
(not crucial) to adjust for this factor. As a measure of the size of (M−M0)Y , we use
the value

Y ′(M−M0)Y
/

r(M−M0).
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Even though we have an appropriate measure of the size of (M −M0)Y , we still
need some idea of how large the measure will be both when model (2) is true and
when model (2) is not true. Using only the assumption that model (1) is true, Theo-
rem 1.3.2 implies that

E[Y ′(M−M0)Y
/

r(M−M0)] = σ 2 +β ′X ′(M−M0)Xβ
/

r(M−M0).

If model (2) is also true, Xβ = X0γ and (M −M0)X0 = 0; so the expected value of
Y ′(M −M0)Y

/
r(M −M0) is σ 2. If σ 2 were known, our intuitive argument would

be complete. If Y ′(M−M0)Y
/

r(M−M0) is not much larger than σ2, then we have
observed something that is consistent with the validity of model (2). Values that
are much larger than σ 2 indicate that model (2) is false because they suggest that
β ′X ′(M−M0)Xβ

/
r(M−M0) > 0.

Typically, we do not know σ 2, so the obvious thing to do is to estimate it.
Since model (1) is assumed to be true, the obvious estimate is the MSE = Y ′(I −
M)Y/r(I −M). Now, values of Y ′(M−M0)Y

/
r(M−M0) that are much larger than

MSE cause us to doubt the validity of model (2). Equivalently, values of the test
statistic

Y ′(M−M0)Y
/

r(M−M0)
MSE

that are considerably larger than 1 cause precisely the same doubts.
We now examine the behavior of this test statistic when model (2) is not correct

but model (1) is. Y ′(M −M0)Y/r(M −M0) and MSE are each estimates of their
expected values, so the test statistic obviously provides an estimate of the ratio of
their expected values. Recalling E[Y ′(M −M0)Y/r(M −M0)] from above and that
E(MSE) = σ2, the test statistic gives an estimate of 1 + β ′X ′(M −M0)Xβ

/
r(M −

M0)σ 2. The term β ′X ′(M −M0)Xβ is crucial to evaluating the behavior of the test
statistic when model (1) is valid but model (2) is not, cf. the noncentrality parameter
in Theorem 3.2.1, part i. Note that β ′X ′(M−M0)Xβ = [Xβ −M0Xβ ]′[Xβ −M0Xβ ]
is the squared length of the difference between Xβ (i.e., E(Y)) and M0Xβ (the pro-
jection of Xβ onto C(X0)). If Xβ −M0Xβ is large (relative to σ 2), then model (2)
is very far from being correct, and the test statistic will tend to be large. On the
other hand, if Xβ −M0Xβ is small (relative to σ2), then model (2), although not
correct, is a good approximation to the correct model. In this case the test statistic
will tend to be a little larger than it would be if model (2) were correct, but the effect
will be very slight. In other words, if β ′X ′(M−M0)Xβ

/
r(M−M0)σ 2 is small, it is

unreasonable to expect any test to work very well.
One can think about the geometry of all this in three dimensions. As in Section

2.2, consider a rectangular table. Take one corner of the table to be the origin. Take
C(X) as the two-dimensional subspace determined by the surface of the table and
take C(X0) to be a one-dimensional subspace determined by an edge of the table that
includes the origin. Y can be any vector originating at the origin, i.e., any point in
three-dimensional space. The full model (1) says that E(Y ) = Xβ , which just says
that E(Y ) is somewhere on the surface of the table. The reduced model (2) says that
E(Y ) is somewhere on the C(X0) edge of the table. MY = X β̂ is the perpendicular
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projection of Y onto the table surface. M0Y = X0γ̂ is the perpendicular projection of
Y onto the C(X0) edge of the table. The residual vector (I−M)Y is the perpendicular
projection of Y onto the vertical line through the origin.

If MY is close to the C(X0) edge of the table, it must be close to M0Y . This is
the behavior we would expect if the reduced model is true, i.e., if Xβ = X0γ . The
difference between the two estimates, MY −M0Y , is a vector that is on the table,
but perpendicular to the C(X0) edge. In fact, the table edge through the origin that
is perpendicular to the C(X0) edge is the orthogonal complement of C(X0) with
respect to C(X), that is, it is C(X0)⊥C(X) = C(M −M0). The difference between the
two estimates is MY −M0Y = (M −M0)Y , which is the perpendicular projection
of Y onto C(M −M0). If (M −M0)Y is large, it suggests that the reduced model
is not true. To decide if (M −M0)Y is large, we find its average (mean) squared
length, where the average is computed relative to the dimension of C(M−M0), and
compare that to the averaged squared length of the residual vector (I−M)Y (i.e., the
MSE). In our three-dimensional example, the dimensions of both C(M −M0) and
C(I −M) are 1. If (M −M0)Y is, on average, much larger than (I −M)Y , we reject
the reduced model.

If the true (but unknown) Xβ happens to be far from the C(X0) edge of the table,
it will be very easy to see that the reduced model is not true. This occurs because MY
will be near Xβ , which is far from anything in C(X0) so, in particular, it will be far
from M0Y . Remember that the meaning of “far” depends on σ2 which is estimated
by the MSE . On the other hand, if Xβ happens to be near, but not on, the C(X0) edge
of the table, it will be very hard to tell that the reduced model is not true because
MY and M0Y will tend to be close together. On the other hand, if Xβ is near, but not
on, the C(X0) edge of the table, using the incorrect reduced model may not create
great problems.

To this point, the discussion has been based entirely on the assumptions Y =
Xβ + e, E(e) = 0, Cov(e) = σ2I. We now quantify the precise behavior of the test
statistic for normal errors.

Theorem 3.2.1. Consider a full model

Y = Xβ + e, e ∼ N(0,σ2I)

that holds for some values of β and σ 2 and a reduced model

Y = X0γ + e, e ∼ N(0,σ 2I), C(X0) ⊂C(X).

(i) If the full model is true,

Y ′(M−M0)Y/r(M−M0)
Y ′(I −M)Y/r(I −M)

∼ F
(
r(M−M0),r(I −M),β ′X ′(M−M0)Xβ/2σ 2) .

(ii) If the reduced model is true,
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Y ′(M−M0)Y/r(M−M0)
Y ′(I −M)Y/r(I −M)

∼ F(r(M−M0),r(I −M),0) .

When the full model is true, this distribution holds only if the reduced model is
true.

PROOF.
(i) Since M and M0 are the perpendicular projection matrices onto C(X) and

C(X0), M −M0 is the perpendicular projection matrix onto C(M −M0), cf. Theo-
rem B.47. As in Section 2.6,

Y ′(I −M)Y
σ2 ∼ χ2(r(I −M))

and from Theorem 1.3.3 on the distribution of quadratic forms,

Y ′(M−M0)Y
σ2 ∼ χ2(r(M−M0),β ′X ′(M−M0)Xβ/2σ2) .

Theorem 1.3.7 establishes that Y ′(M −M0)Y and Y ′(I −M)Y are independent be-
cause

(M−M0)(I −M) = M−M0 −M +M0M

= M−M0 −M +M0 = 0.

Finally, part (i) of the theorem holds by Definition C.3.

(ii) It suffices to show that β ′X ′(M−M0)Xβ = 0 if and only if E(Y ) = X0γ for
some γ .

⇐ If E(Y ) = X0γ , we have E(Y ) = Xβ for some β because C(X0) ⊂ C(X). In
particular, β ′X ′(M −M0)Xβ = γ ′X ′

0(M −M0)X0γ , but since (M −M0)X0 = X0 −
X0 = 0, we have β ′X ′(M−M0)Xβ = 0.

⇒ If β ′X ′(M −M0)Xβ = 0, then [(M −M0)Xβ ]′[(M −M0)Xβ ] = 0. Since for
any x, x′x = 0 if and only if x = 0, we have (M −M0)Xβ = 0 or Xβ = M0Xβ =
X0(X ′

0X0)−X ′
0Xβ . Taking γ = (X ′

0X0)−X ′
0Xβ , we have E(Y ) = X0γ . �

People typically reject the hypothesis

H0 : E(Y ) = X0γ for some γ,

for large observed values of the test statistic. The informal second moment argu-
ments given prior to Theorem 3.2.1 suggest rejecting large values and the existence
a positive noncentrality parameter in Theorem 3.2.1(i) would shift the (central) F
distribution to the right which also suggests rejecting large values. Both of these
arguments depend on the full model being true. Theorem 3.2.1(ii) provides a distri-
bution for the test statistic under the reduced (null) model, so under the conditions
of the theorem this test of
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H0 : E(Y ) ∈C(X0)

rejects H0 at level α if

Y ′(M−M0)Y/r(M−M0)
Y ′(I −M)Y/r(I −M)

> F(1−α,r(M−M0),r(I −M)) .

P values are then reported as the probability from an F(r(M−M0),r(I −M)) dis-
tribution of being at least as large as the observed value of the test statistic.

This test procedure is “non-Fisherian” in that it assumes more than just the null
(reduced) model being true. The decision on when to reject the null model depends
on the full model being true. In fact, test statistic values near 0 (reported P values
near 1) can be just as interesting as large test statistic values (reported P values near
0), although large reported P values often need to be closer to 1 to be interesting
than small reported P values need to be close to 0. Personally, I don’t consider
these reported P values to be real P values, although they are not without their uses.
Appendix F discusses the significance of small test statistics and some foundational
issues related to this test. For those willing to assume that the full model is true,
this test is the uniformly most powerful invariant (UMPI) test and the generalized
likelihood ratio test (see Lehmann, 1986, Chapter 7 and Exercise 3.1).

In practice it is often easiest to use the following approach to obtain the test
statistic: Observe that (M−M0) = (I−M0)− (I−M). If we can find the error sums
of squares, Y ′(I−M0)Y from the model Y = X0γ +e and Y ′(I−M)Y from the model
Y = Xβ +e, then the difference is Y ′(I−M0)Y −Y ′(I−M)Y =Y ′(M−M0)Y , which
is the numerator sum of squares for the F test. Unless there is some simplifying
structure to the model matrix (as in cases we will examine later), it is usually easier
to obtain the error sums of squares for the two models than to find Y ′(M −M0)Y
directly.

EXAMPLE 3.2.2. Consider the model matrix given at the end of this example.
It is for the unbalanced analysis of variance yi jk = μ + αi + η j + ei jk, where i =
1,2,3, j = 1,2,3, k = 1, ...,Ni j, N11 = N12 = N21 = 3, N13 = N22 = N23 = N31 =
N32 = N33 = 2. Here we have written Y = Xβ + e with Y = [y111,y112, . . . ,y332]′,
β = [μ ,α1,α2,α3,η1,η2,η3]′, and e = [e111,e112, . . . ,e332]′. We can now test to see
if the model yi jk = μ + αi + ei jk is an adequate representation of the data simply
by dropping the last three columns from the model matrix. We can also test yi jk =
μ +ei jk by dropping the last six columns of the model matrix. In either case, the test
is based on comparing the error sum of squares for the reduced model with that of
the full model.
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X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 1 0 0
1 1 0 0 1 0 0
1 1 0 0 1 0 0
1 1 0 0 0 1 0
1 1 0 0 0 1 0
1 1 0 0 0 1 0
1 1 0 0 0 0 1
1 1 0 0 0 0 1
1 0 1 0 1 0 0
1 0 1 0 1 0 0
1 0 1 0 1 0 0
1 0 1 0 0 1 0
1 0 1 0 0 1 0
1 0 1 0 0 0 1
1 0 1 0 0 0 1
1 0 0 1 1 0 0
1 0 0 1 1 0 0
1 0 0 1 0 1 0
1 0 0 1 0 1 0
1 0 0 1 0 0 1
1 0 0 1 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

3.2.1 A Generalized Test Procedure

Before considering tests of parametric functions, we consider a generalization of the
test procedure outlined earlier. Assume that the model Y = Xβ + e is correct. We
want to test the adequacy of a model Y = X0γ +Xb + e, where C(X0) ⊂ C(X) and
Xb is some known vector. In generalized linear model terminology, Xb is called an
offset.

EXAMPLE 3.2.3. Multiple Regression. Consider the model

Y = [J,X1,X2,X3]

⎡⎢⎣
β0
β1
β2
β3

⎤⎥⎦+ e = β0J +β1X1 +β2X2 +β3X3 + e.

To test H0 : β2 = β3 +5,β1 = 0, write the reduced model as

Y = β0J +(β3 +5)X2 +β3X3 + e

= β0J +β3(X2 +X3)+5X2 + e (3)

= [J,X2 +X3]
[

β0
β3

]
+5X2 + e.
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Alternatively, we could write the reduced model as

Y = β0J +β2X2 +(β2 −5)X3 + e

= β0J +β2(X2 +X3)−5X3 + e (4)

= [J,X2 +X3]
[

β0
β2

]
−5X3 + e.

We will see that both reduced models lead to the same test.

The model Y = Xβ + e can be rewritten as Y −Xb = Xβ −Xb + e. Since Xb ∈
C(X), this amounts to a reparameterization, Y −Xb = Xβ ∗ + e, where β ∗ = β −b.
Since Xb is known, Y −Xb is still an observable random variable.

The reduced model Y = X0γ + Xb + e can be rewritten as Y − Xb = X0γ + e.
The question of testing the adequacy of the reduced model is now a straightforward
application of our previous theory. The distribution of the test statistic is

(Y −Xb)′(M−M0)(Y −Xb)/r(M−M0)
(Y −Xb)′(I −M)(Y −Xb)/r(I −M)

∼ F
(
r(M−M0),r(I −M),β ∗′X ′(M−M0)Xβ ∗/2σ 2) .

The noncentrality parameter is zero if and only if 0 = β ∗′X ′(M−M0)Xβ ∗ = [(M−
M0)(Xβ −Xb)]′[(M−M0)(Xβ −Xb)], which occurs if and only if (M−M0)(Xβ −
Xb) = 0 or Xβ = M0(Xβ −Xb)+Xb. The last condition is nothing more or less than
that the reduced model is valid with γ = (X ′

0X0)−X0(Xβ −Xb), a fixed unknown
parameter.

Note also that, since (I −M)X = 0, in the denominator of the test statistic (Y −
Xb)′(I−M)(Y −Xb) = Y ′(I−M)Y , which is the SSE from the original full model.
Moreover, the numerator sum of squares is

(Y −Xb)′(M−M0)(Y −Xb) = (Y −Xb)′(I −M0)(Y −Xb)−Y ′(I −M)Y,

which can be obtained by subtracting the SSE of the original full model from the
SSE of the reduced model. To see this, write I −M0 = (I −M)+(M−M0).

EXAMPLE 3.2.3 CONTINUED. The numerator sum of squares for testing model
(4) is (Y +5X3)′(M−M0)(Y +5X3). But (M−M0)[X2 +X3] = 0, so, upon observing
that 5X3 = −5X2 +5[X2 +X3],

(Y +5X3)′(M−M0)(Y +5X3)
= (Y −5X2 +5[X2 +X3])′(M−M0)(Y −5X2 +5[X2 +X3])
= (Y −5X2)′(M−M0)(Y −5X2),

which is the numerator sum of squares for testing model (3). In fact, models (3) and
(4) are equivalent because the only thing different about them is that one uses 5X2
and the other uses −5X3; but the only difference between these terms is 5[X2 +X3]∈
C(X0).
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The phenomenon illustrated in this example is a special case of a general result.
Consider the model Y = X0γ +Xb+e for some unknown γ and known b and suppose
X(b−b∗) ∈C(X0) for known b∗. The model E(Y ) = X0γ + Xb holds if and only if
E(Y ) = X0γ + X(b− b∗)+ Xb∗, which holds if and only if E(Y ) = X0γ∗ + Xb∗ for
some unknown γ∗.

Exercise 3.1 (a) Show that the F test developed in the first part of this section
is equivalent to the (generalized) likelihood ratio test for the reduced versus full
models, cf. Casella and Berger (2002, Subsection 8.2.1). (b) Find an F test for H0 :
Xβ = Xβ0 where β0 is known. (c) Construct a full versus reduced model test when
σ 2 has a known value σ 2

0 .

Exercise 3.2 Redo the tests in Exercise 2.2 using the theory of Section 3.2. Write
down the models and explain the procedure.

Exercise 3.3 Redo the tests in Exercise 2.3 using the procedures of Section 3.2.
Write down the models and explain the procedure.

Hints: (a) Let A be a matrix of zeros, the generalized inverse of A, A−, can be
anything at all because AA−A = A for any choice of A−. (b) There is no reason why
X0 cannot be a matrix of zeros.

3.3 Testing Linear Parametric Functions

In this section, the theory of testing linear parametric functions is presented. A basic
test procedure and a generalized test procedure are given. These procedures are anal-
ogous to the model testing procedures of Section 2. In the course of this presentation,
the important concept of the constraint imposed by an hypothesis is introduced. Fi-
nally, a class of hypotheses that is rarely used for linear models but commonly used
with log-linear models is given along with results that define the appropriate testing
procedure.

Consider a general linear model

Y = Xβ + e (1)

with X an n× p matrix. A key aspect of this model is that β is allowed to be any
vector in Rp. Additionally, consider an hypothesis concerning a linear function, say
Λ ′β = 0. The null model to be tested is

H0 : Y = Xβ + e and Λ ′β = 0.

We need to find a reduced model that corresponds to this.
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The constraint Λ ′β = 0 can be stated in an infinite number of ways. Observe that
Λ ′β = 0 holds if and only if β ⊥C(Λ ); so if Γ is another matrix with C(Γ ) =C(Λ ),
the constraint can also be written as β ⊥C(Γ ) or Γ ′β = 0.

To identify the reduced model, pick a matrix U such that

C(U) = C(Λ)⊥,

then Λ ′β = 0 if and only if β ⊥C(Λ ) if and only if β ∈C(U), which occurs if and
only if for some vector γ ,

β = Uγ . (2)

Substituting (2) into the linear model gives the reduced model

Y = XUγ + e

or, letting X0 ≡ XU ,
Y = X0γ + e. (3)

Note that C(X0) ⊂ C(X). If e ∼ N(0,σ 2I), the reduced model (3) allows us to
test Λ ′β = 0 by applying the results of Section 2. If C(X0) = C(X), the constraint
involves only a reparameterization and there is nothing to test. In other words, if
C(X0) = C(X), then Λ ′β = 0 involves only arbitrary side conditions that do not
affect the model. Moreover, the reduced model does not depend on Cov(Y ) or the
exact distribution of e, it only depends on E(Y ) = Xβ and the constraint Λ ′β = 0.

EXAMPLE 3.3.1. Consider the one-way analysis of variance model⎡⎢⎢⎢⎢⎢⎣
y11
y12
y13
y21
y31
y32

⎤⎥⎥⎥⎥⎥⎦=

⎡⎢⎢⎢⎢⎢⎣
1 1 0 0
1 1 0 0
1 1 0 0
1 0 1 0
1 0 0 1
1 0 0 1

⎤⎥⎥⎥⎥⎥⎦β + e,

where β = (μ , α1, α2, α3 )′. The parameters in this model are not uniquely
defined because the rank of X is less than the number of columns.

Let λ ′
1 = (0,1,0,−1). The contrast λ ′

1β is estimable, so the hypothesis α1−α3 =
λ ′

1β = 0 determines an estimable constraint. To obtain C(λ1)⊥ =C(U), one can pick

U =

⎡⎢⎣
1 0 0
0 1 0
0 0 1
0 1 0

⎤⎥⎦ ,

which yields
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XU =

⎡⎢⎢⎢⎢⎢⎣
1 1 0
1 1 0
1 1 0
1 0 1
1 1 0
1 1 0

⎤⎥⎥⎥⎥⎥⎦ . (4)

This is a real restriction on C(X), i.e., C(XU) �= C(X).
Let λ ′

2 = (0,1,1,1). A nonestimable linear constraint for a one-way analysis of
variance is that

α1 +α2 +α3 = λ ′
2β = 0.

Consider two choices for U with C(λ2)⊥ = C(U), i.e.,

U1 =

⎡⎢⎣
1 0 0
0 1 1
0 −1 1
0 0 −2

⎤⎥⎦ and U2 =

⎡⎢⎣
1 0 0
0 1 1
0 0 −2
0 −1 1

⎤⎥⎦ .

These yield

XU1 =

⎡⎢⎢⎢⎢⎢⎣
1 1 1
1 1 1
1 1 1
1 −1 1
1 0 −2
1 0 −2

⎤⎥⎥⎥⎥⎥⎦ and XU2 =

⎡⎢⎢⎢⎢⎢⎣
1 1 1
1 1 1
1 1 1
1 0 −2
1 −1 1
1 −1 1

⎤⎥⎥⎥⎥⎥⎦ .

Note that C(X) = C(XU1) = C(XU2). The models determined by XU1 and XU2 are
equivalent linear models but have different parameterizations, say Y = XU1ξ1 + e
and Y = XU2ξ2 + e, with ξi = (ξi1,ξi2,ξi3)′. Transforming to the original β param-
eterization using (2), for example,⎡⎢⎣

μ
α1
α2
α3

⎤⎥⎦= β = U1ξ1 =

⎡⎢⎣
ξ11

ξ12 +ξ13
−ξ12 +ξ13
−2ξ13

⎤⎥⎦ .

Both ξi parameterizations lead to α1 +α2 +α3 = 0. Thus both determine the same
specific choice for the parameterization of the original one-way analysis of variance
model.

Similar results hold for alternative nonidentifiable constraints such as α1 = 0. As
will be established later, any nonidentifiable constraint leaves the estimation space
unchanged and therefore yields the same estimates of estimable functions.

Now consider the joint constraint Λ ′
1β = 0, where

Λ ′
1 =
[

λ ′
1

λ ′
2

]
.



64 3 Testing

λ ′
1β is a contrast, so it is estimable; therefore Λ ′

1β has estimable aspects. One choice
of U with C(Λ1)⊥ = C(U) is

U3 =

⎡⎢⎣
1 0
0 1
0 −2
0 1

⎤⎥⎦ .

This gives

XU3 =

⎡⎢⎢⎢⎢⎢⎣
1 1
1 1
1 1
1 −2
1 1
1 1

⎤⎥⎥⎥⎥⎥⎦ ,

and the estimation space is the same as in (4), where only the contrast λ ′
1β was

assumed equal to zero.
A constraint equivalent to Λ ′

1β = 0 is Λ ′
2β = 0, where

Λ ′
2 =
[

λ ′
3

λ ′
2

]
=
[

0 2 1 0
0 1 1 1

]
.

The constraints are equivalent because C(Λ1) = C(Λ2). (Note that λ3 − λ2 = λ1.)
Neither λ ′

3β nor λ ′
2β is estimable, so separately they would affect only the param-

eterization of the model. However, Λ ′
1β = 0 involves an estimable constraint, so

Λ ′
2β = 0 also has an estimable part to the constraint. The concept of the estimable

part of a constraint will be examined in detail later.

Estimable Constraints

We have established a perfectly general method for identifying the reduced model
determined by an arbitrary linear constraint Λ ′β = 0, and thus we have a general
method for testing Λ ′β = 0 by applying the results of Section 2. Next, we will
examine the form of the test statistic when Λ ′β is estimable. Afterwards, we present
results showing that there is little reason to consider nonestimable linear constraints.

When Λ ′β is estimable, so that Λ ′ = P′X for some P, rather than finding U
we can find the numerator projection operator for testing Λ ′β = 0 in terms of P
and M. Better yet, we can find the numerator sum of squares in terms of Λ and
any least squares estimate β̂ . Recall from Section 2 that the numerator sum of
squares is Y ′(M −M0)Y , where M −M0 is the perpendicular projection operator
onto the orthogonal complement of C(X0) with respect to C(X). In other words,
M −M0 is a perpendicular projection operator with C(M −M0) = C(X0)⊥C(X). For
testing an estimable parametric hypothesis with Λ ′ = P′X , we now show that the



3.3 Testing Linear Parametric Functions 65

perpendicular projection operator onto C(MP) is also the perpendicular projection
operator onto the orthogonal complement of C(X0) with respect to C(X), i.e., that
C(MP) = C(X0)⊥C(X). It follows immediately that the numerator sum of squares in
the test is Y ′MMPY , where MMP ≡ MP(P′MP)−P′M is the perpendicular projection
operator onto C(MP). In particular, from Section 2

Y ′MMPY/r(MMP)
Y ′(I −M)Y/r(I −M)

∼ F
(
r(MMP),r(I −M),β ′X ′MMPXβ/2σ 2) . (5)

Proposition 3.3.2 provides a formal proof of the necessary result. However, after
the proof, we give an alternative justification based on finding the reduced model
associated with the constraint. This reduced model argument differs from the one
given at the beginning of the section in that it only applies to estimable constraints.

Proposition 3.3.2. With U and P defined for Λ ′β = 0,

C(M−M0) = C(X0)⊥C(X) ≡C(XU)⊥C(X) = C(MP).

PROOF. From Section 2, we already know that C(M −M0) = C(X0)⊥C(X). Since

X0 ≡ XU , we need only establish that C(XU)⊥C(X) = C(MP).
If x ∈C(XU)⊥C(X), then 0 = x′XU , so X ′x ⊥C(U) and X ′x ∈C(Λ ) = C(X ′P). It

follows that

x = Mx = [X(X ′X)−]X ′x ∈C([X(X ′X)−]X ′P) = C(MP).

Conversely, if x ∈C(MP), then x = MPb for some b and

x′XU = b′P′MXU = b′P′XU = b′Λ ′U = 0,

so x ∈C(XU)⊥C(X) . �

Exercise 3.4 Show that β ′X ′MMPXβ = 0 if and only if Λ ′β = 0.

Earlier, we found the reduced model matrix X0 = XU directly and then, for
Λ ′ = P′X , we showed that C(MP) = C(X0)⊥C(X), which led to the numerator sum

of squares. An alternative derivation of the test arrives at C(M−M0) = C(X0)⊥C(X) =
C(MP) more directly for estimable constraints. The reduced model is

Y = Xβ + e and P′Xβ = 0,

or
Y = Xβ + e and P′MXβ = 0,
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or
E(Y ) ∈C(X) and E(Y ) ⊥C(MP),

or
E(Y ) ∈C(X)∩ C(MP)⊥.

The reduced model matrix X0 must satisfy C(X0) = C(X)∩C(MP)⊥ ≡C(MP)⊥C(X).

It follows immediately that C(X0)⊥C(X) = C(MP). Moreover, it is easily seen that X0

can be taken as X0 = (I −MMP)X .

Theorem 3.3.3. C[(I −MMP)X ] = C(X)∩ C(MP)⊥.

PROOF. First, assume x ∈ C(X) and x ⊥ C(MP). Write x = Xb for some b and
note that MMPx = 0. It follows that x = (I −MMP)x = (I −MMP)Xb, so x ∈C[(I −
MMP)X ].

Conversely, if x = (I −MMP)Xb for some b, then clearly x ∈ C(X) and x′MP =
b′X ′(I −MMP)MP = 0 because (I −MMP)MP = 0 �

Note also that C(X)∩ C(MP)⊥ = C(X)∩ C(P)⊥.

EXAMPLE 3.3.4. To illustrate these ideas, consider testing H0 : α1 −α3 = 0 in
Example 3.3.1. The constraint can be written

0 = α1 −α3 =
(

1
3
,

1
3
,

1
3
,0,

−1
2

,
−1
2

)
⎡⎢⎢⎢⎢⎢⎣

1 1 0 0
1 1 0 0
1 1 0 0
1 0 1 0
1 0 0 1
1 0 0 1

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎣

μ
α1
α2
α3

⎤⎥⎦ ,

so P′ = (1/3,1/3,1/3,0,−1/2,−1/2). We need C(X)∩ C(MP)⊥. Note that vec-
tors in C(X) have the form (a,a,a,b,c,c)′ for any a,b,c, so P = MP. Vectors in
C(MP)⊥ are v = (v11,v12,v13,v21,v31,v32)′ with P′v = v̄1· − v̄3· = 0. Vectors in
C(X)∩ C(MP)⊥ have the first three elements identical, the last two elements iden-
tical, and the average of the first three equal to the average of the last two, i.e., they
have the form (a,a,a,b,a,a)′. A spanning set for this space is given by the columns
of

X0 =

⎡⎢⎢⎢⎢⎢⎣
1 1 0
1 1 0
1 1 0
1 0 1
1 1 0
1 1 0

⎤⎥⎥⎥⎥⎥⎦ .

As seen earlier, another choice for P is (1,0,0,0,−1,0)′. Using M from Exer-
cise 1.5.8b, this choice for P also leads to MP = (1/3,1/3,1/3,0,−1/2,−1/2)′. To
compute (I −MMP)X , observe that
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MMP =
1

(1/3)+(1/2)

⎡⎢⎢⎢⎢⎢⎣
1/9 1/9 1/9 0 −1/6 −1/6
1/9 1/9 1/9 0 −1/6 −1/6
1/9 1/9 1/9 0 −1/6 −1/6

0 0 0 0 0 0
−1/6 −1/6 −1/6 0 1/4 1/4
−1/6 −1/6 −1/6 0 1/4 1/4

⎤⎥⎥⎥⎥⎥⎦

=
1
5

⎡⎢⎢⎢⎢⎢⎣
2/3 2/3 2/3 0 −1 −1
2/3 2/3 2/3 0 −1 −1
2/3 2/3 2/3 0 −1 −1

0 0 0 0 0 0
−1 −1 −1 0 3/2 3/2
−1 −1 −1 0 3/2 3/2

⎤⎥⎥⎥⎥⎥⎦ .

Then

(I −MMP)X = X −MMPX

= X − 1
5

⎡⎢⎢⎢⎢⎢⎣
0 2 0 −2
0 2 0 −2
0 2 0 −2
0 0 0 0
0 −3 0 3
0 −3 0 3

⎤⎥⎥⎥⎥⎥⎦=

⎡⎢⎢⎢⎢⎢⎣
1 3/5 0 2/5
1 3/5 0 2/5
1 3/5 0 2/5
1 0 1 0
1 3/5 0 2/5
1 3/5 0 2/5

⎤⎥⎥⎥⎥⎥⎦ ,

which has the same column space as X0 given earlier.
We have reduced the problem of finding X0 to that of finding C(X)∩ C(MP)⊥,

which is just the orthogonal complement of C(MP) with respect to C(X). By Theo-
rem B.48, C(X)∩C(MP)⊥ = C(M−MMP), so M−MMP is another valid choice for
X0. For Example 3.3.1 with H0 : α1 −α3 = 0, M was given in Exercise 1.5.8b and
MMP was given earlier, so

M−MMP =

⎡⎢⎢⎢⎢⎢⎣
1/5 1/5 1/5 0 1/5 1/5
1/5 1/5 1/5 0 1/5 1/5
1/5 1/5 1/5 0 1/5 1/5

0 0 0 1 0 0
1/5 1/5 1/5 0 1/5 1/5
1/5 1/5 1/5 0 1/5 1/5

⎤⎥⎥⎥⎥⎥⎦ .

This matrix has the same column space as the other choices of X0 that have been
given.

For Λ ′β estimable, we now rewrite the test statistic in (5) in terms of Λ and β̂ .
First, we wish to show that r(Λ) = r(MMP). It suffices to show that r(Λ) = r(MP).
Writing Λ = X ′P, we see that for any vector b, X ′Pb = 0 if and only if Pb ⊥C(X),
which occurs if and only if MPb = 0. It follows that C(P′X)⊥ = C(P′M)⊥ so that
C(P′X) = C(P′M), r(P′X) = r(P′M), and r(Λ) = r(X ′P) = r(MP).
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Now rewrite the quadratic form Y ′MMPY . Recall that since X β̂ = MY , we have
Λ ′β̂ = P′X β̂ = P′MY . Substitution gives

Y ′MMPY = Y ′MP(P′MP)−P′MY

= β̂ ′Λ(P′X(X ′X)−X ′P)−Λ ′β̂
= β̂ ′Λ [Λ ′(X ′X)−Λ ]−Λ ′β̂ .

The test statistic in (5) becomes

β̂ ′Λ [Λ ′(X ′X)−Λ ]−Λ ′β̂/r(Λ)
MSE

.

A similar argument shows that the noncentrality parameter in (5) can be writ-
ten as β ′Λ [Λ ′(X ′X)−Λ ]−Λ ′β/2σ 2. The test statistic consists of three main parts:
MSE , Λ ′β̂ , and the generalized inverse of Λ ′(X ′X)−Λ . Note that σ 2Λ ′(X ′X)−Λ =
Cov(Λ ′β̂ ). These facts give an alternative method of deriving tests. One can simply
find the estimate Λ ′β̂ , the covariance matrix of the estimate, and the MSE.

For a single degree of freedom hypothesis H0 : λ ′β = 0, the numerator takes the
especially nice form

β̂ ′λ [λ ′(X ′X)−λ ]−1λ ′β̂ = (λ ′β̂ )2/[λ ′(X ′X)−λ ];

so the F test becomes: reject H0 : λ ′β = 0 if

(λ ′β̂)2

MSE[λ ′(X ′X)−λ ]
> F(1−α,1,d fE) ,

which is just the square of the t test that could be derived from the sampling distri-
butions of the least squares estimate and the MSE , cf. Exercise 2.1.

Definition 3.3.5. The condition E(Y ) ⊥ C(MP) is called the constraint on the
model caused (imposed) by Λ ′β = 0, where Λ ′ = P′X . As a shorthand, we will call
C(MP) the constraint caused by Λ ′β = 0. If M ⊂C(X) and C(MP) ⊂ M , we say
that C(MP) is the constraint on M caused by Λ ′β = 0. If Λ ′β = 0 puts a constraint
on M , we say that Λ ′β = 0 is an hypothesis in M .

Exercise 3.5 Show that a necessary and sufficient condition for ρ ′
1Xβ = 0 and

ρ ′
2Xβ = 0 to determine orthogonal constraints on the model is that ρ ′

1Mρ2 = 0.
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Theoretical Complements

If, rather than testing the constraint Λ ′β = 0, our desire is to estimate β subject to
the constraint, simply estimate γ in model (3) and use β̂ = U γ̂ . In this constrained
estimation, the estimates automatically satisfy Λ ′β̂ = 0. Moreover, estimable func-
tions Γ ′β = Q′Xβ are equivalent to Γ ′Uγ = Q′XUγ , and optimal estimates of γ are
transformed into optimal estimates of β .

We now examine the implications of testing Λ ′β = 0 when Λ ′β is not estimable.
Recall that we began this section by finding the reduced model associated with such
a constraint, so we already have a general method for performing such tests.

The first key result is that in defining a linear constraint there is no reason to use
anything but estimable functions, because only estimable functions induce a real
constraint on C(X). Theorem 3.3.6 identifies the estimable part of Λ ′β , say Λ ′

0β ,
and implies that Λ ′

0β = 0 gives the same reduced model as Λ ′β = 0. Λ0 is a matrix
chosen so that C(Λ )∩ C(X ′) = C(Λ0). With such a choice, Λ ′β = 0 implies that
Λ ′

0β = 0 but Λ ′
0β is estimable because C(Λ0) ⊂C(X ′), so Λ ′

0 = P′
0X for some P0.

Theorem 3.3.6. If C(Λ)∩C(X ′) = C(Λ0) and C(U0) = C(Λ0)⊥, then C(XU) =
C(XU0). Thus Λ ′β = 0 and Λ ′

0β = 0 induce the same reduced model.

PROOF. C(Λ0) ⊂ C(Λ ), so C(U) = C(Λ )⊥ ⊂ C(Λ0)⊥ = C(U0) and C(XU) ⊂
C(XU0).

To complete the proof, we show that there cannot be any vectors in C(XU0)
that are not in C(XU). In particular, we show that there are no nontrivial vectors
in C(XU0) that are orthogonal to C(XU), i.e., if v ∈ C(XU)⊥C(XU0) then v = 0. If

v ∈ C(XU)⊥C(XU0), then v′XU = 0, so X ′v ⊥ C(U) and X ′v ∈ C(Λ). But also note
that X ′v ∈C(X ′), so X ′v∈C(Λ)∩C(X ′) =C(Λ0). This implies that X ′v⊥C(U0), so
v ⊥C(XU0). We have shown that the vector v which, by assumption, is in C(XU0),
is also orthogonal to C(XU0). The only such vector is the 0 vector. �

Nontrivial estimable constraints always induce a real constraint on the column
space.

Proposition 3.3.7. If Λ ′β is estimable and Λ �= 0, then Λ ′β = 0 implies that
C(XU) �= C(X).

PROOF. With Λ ′ = P′X , the definition of U gives 0 = Λ ′U = P′XU = P′MXU , so
C(XU) ⊥C(MP). Both are subspaces of C(X); therefore if C(MP) �= {0}, we have
C(X) �=C(XU). However, P′MX = Λ ′ �= 0, so C(MP) is not orthogonal to C(X) and
C(MP) �= {0}. �

Note that Proposition 3.3.7 also implies that whenever the estimable part Λ0 is dif-
ferent from 0, there is always a real constraint on the column space.
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Corollary 3.3.8 establishes that Λ ′β has no estimable part if and only if the con-
straint does not affect the model. If the constraint does not affect the model, it merely
defines a reparameterization, in other words, it merely specifies arbitrary side con-
ditions. The corollary follows from the observation made about Λ0 after Proposi-
tion 3.3.7 and taking Λ0 = 0 in Theorem 3.3.6.

Corollary 3.3.8. C(Λ)∩ C(X ′) = {0} if and only if C(XU) = C(X).

In particular, if Λ ′β is not estimable, we can obtain the numerator sum of squares
for testing Λ ′β = 0 either by finding X0 = XU directly and using it to get M−M0,
or by finding Λ0, writing Λ ′

0 = P′
0X , and using MMP0 . But as noted earlier, there is

no reason to have Λ ′β not estimable.

3.3.1 A Generalized Test Procedure

We now consider hypotheses of the form Λ ′β = d where d ∈ C(Λ ′) so that the
equation Λ ′β = d is solvable. Let b be such a solution. Note that

Λ ′β = Λ ′b = d

if and only if
Λ ′(β −b) = 0

if and only if
(β −b) ⊥C(Λ ).

Again picking a matrix U such that

C(U) = C(Λ)⊥,

Λ ′(β −b) = 0 if and only if
(β −b) ∈C(U),

which occurs if and only if for some vector γ

(β −b) = Uγ.

Multiplying both sides by X gives

Xβ −Xb = XUγ

or
Xβ = XUγ +Xb.

We can now substitute this into the linear model to get the reduced model
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Y = XUγ +Xb+ e,

or, letting X0 ≡ XU ,
Y = X0γ +Xb+ e. (6)

Recall that b is a vector we can find, so Xb is a known (offset) vector.
The analysis for reduced models such as (6) was developed in Section 2. For non-

estimable linear hypotheses, use that theory directly. If Λ ′ = P′X , then C(X0)⊥C(X) =
C(MP) and the test statistic is easily seen to be

(Y −Xb)′MMP(Y −Xb)/r(MMP)
(Y −Xb)′(I −M)(Y −Xb)/r(I −M)

.

Note that Λ ′β = d imposes the constraint E(Y −Xb) ⊥ C(MP), so once again we
could refer to C(MP) as the constraint imposed by the hypothesis.

We did not specify the solution b to Λ ′β = d that should be used. Fortunately,
for Λ ′β estimable, the test does not depend on the choice of b. As mentioned in
the previous section, (Y −Xb)′(I −M)(Y −Xb) = Y ′(I −M)Y , so the denominator
of the test is just the MSE and does not depend on b. The numerator term (Y −
Xb)′MMP(Y −Xb) equals (Λ ′β̂ −d)′[Λ ′(X ′X)−Λ ]−(Λ ′β̂ −d). The test statistic can
be written as

(Λ ′β̂ −d)′[Λ ′(X ′X)−Λ ]−(Λ ′β̂ −d)/r(Λ)
MSE

.

For Λ ′β estimable, the linear model Y = X0γ + Xb + e implies that Λ ′β = d,
but for nonestimable linear constraints, there are infinitely many constraints that
result in the same reduced model. (If you think of nonestimable linear constraints as
including arbitrary side conditions, that is not surprising.) In particular, if Λ ′β = d,
the same reduced model results if we take Λ ′β = d0 where d0 = d +Λ ′v and v ⊥
C(X ′). Note that, in this construction, if Λ ′β is estimable, d0 = d for any v.

We now present an application of this testing procedure. The results are given
without justification, but they should seem similar to results from a statistical meth-
ods course.

EXAMPLE 3.3.9. Consider the balanced two-way ANOVA without interaction
model

yi jk = μ +αi +η j + ei jk,

i = 1, . . . ,a, j = 1, . . . ,b, k = 1, . . . ,N. (The analysis for this model is presented in
Section 7.1.) We examine the test of the null hypothesis

H0 :
a

∑
i=1

λiαi = 4 and
b

∑
j=1

γ jη j = 7,

where ∑a
i=1 λi = 0 = ∑b

j=1 γ j . The hypothesis is simultaneously specifying the values
of a contrast in the αis and a contrast in the η js.

In terms of the model Y = Xβ + e, we have



72 3 Testing

β = [μ ,α1, . . . ,αa,η1, . . . ,ηb]′

Λ ′ =
[

0 λ1 · · · λa 0 · · · 0
0 0 · · · 0 γ1 · · · γb

]
d =
[

4
7

]
Λ ′β̂ =

[
∑a

i=1 λiȳi··
∑b

j=1 γ j ȳ· j·

]
Cov(Λ ′β̂ )/σ2 = Λ ′(X ′X)−Λ =

[
∑a

i=1 λ 2
i /bN 0

0 ∑b
j=1 γ2

j /aN

]
.

The diagonal elements of the covariance matrix are just the variances of the es-
timated contrasts. The off-diagonal elements are zero because this is a balanced
two-way ANOVA, hence the estimates of the α contrast and the η contrast are inde-
pendent. We will see in Chapter 7 that these contrasts define orthogonal constraints
in the sense of Definition 3.3.5, so they are often referred to as being orthogonal
parameters.

There are two linearly independent contrasts being tested, so r(Λ ) = 2. The test
statistic is

1
2MSE

[∑a
i=1 λiȳi·· −4 ∑b

j=1 γ j ȳ· j· −7 ]

×
⎡⎣ bN

∑a
i=1 λ 2

i
0

0 aN
∑b

j=1 γ2
j

⎤⎦[ ∑a
i=1 λiȳi·· −4

∑b
j=1 γ j ȳ· j· −7

]
or

1
2MSE

[(
∑a

i=1 λiȳi·· −4
)2

∑a
i=1 λ 2

i /bN
+

(
∑b

j=1 γ j ȳ· j· −7
)2

∑b
j=1 γ2

j /aN

]
.

Note that the term (∑a
i=1 λiȳi·· −4)2/(∑a

i=1 λ 2
i /bN

)
is, except for subtracting the 4,

the sum of squares for testing ∑a
i=1 λiαi = 0 We are subtracting the 4 because we

are testing ∑a
i=1 λiαi = 4. Similarly, we have a term that is very similar to the sum

of squares for testing ∑b
j=1 γ jη j = 0. The test statistic takes the average of these

sums of squares and divides by the MSE. The test is then defined by reference to an
F(2,d fE,0) distribution.

3.3.2 Testing an Unusual Class of Hypotheses

Occasionally, a valid linear hypothesis Λ ′β = d is considered where d is not com-
pletely known but involves other parameters. (This is the linear structure involved in
creating a logistic regression model from a log-linear model.) For Λ ′β = d to give
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a valid linear hypothesis, Λ ′β = d must put a restriction on C(X), so that when the
hypothesis is true, E(Y ) lies in some subspace of C(X).

Let X1 be such that C(X1) ⊂C(X) and consider an hypothesis

P′Xβ = P′X1δ

for some parameter vector δ . We seek an appropriate reduced model for such an
hypothesis.

Note that the hypothesis occurs if and only if

P′M(Xβ −X1δ ) = 0,

which occurs if and only if

(Xβ −X1δ ) ⊥C(MP),

which occurs if and only if

(Xβ −X1δ ) ∈C(MP)⊥C(X).

As discussed earlier in this section, we choose X0 so that C(MP)⊥C(X) = C(X0). The
choice of X0 does not depend on X1. Using X0, the hypothesis occurs if and only if
for some γ

(Xβ −X1δ ) = X0γ.

Rewriting these terms, we see that

Xβ = X0γ +X1δ

which is the mean structure for the reduced model. In other words, assuming the
null hypothesis is equivalent to assuming a reduced model

Y = X0γ +X1δ + e.

To illustrate, consider a linear model for pairs of observations (y1 j,y2 j), j =
1, . . . ,N. Write Y = (y11, . . . ,y1N ,y21, . . . ,y2N)′. Initially, we will impose no structure
on the means so that E(yi j) = μi j. We are going to consider an hypothesis for the
differences between the pairs,

μ1 j −μ2 j = z′jδ

for some known predictor vector z j. Of course we could just fit a linear model to the
differences y1 j −y2 j, but we want to think about comparing such a model to models
that are not based on the differences.

The conditions just specified correspond to a linear model Y = Xβ + e in which
X = I2N and β = (μ11, . . . ,μ2N)′. Write
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P =
[

IN
−IN

]
and X1 =

[
Z
0

]
where Z′ = [z1, . . . ,zN ]. Then the hypothesis for the differences can be specified as

P′Xβ = P′X1δ = Zδ .

Finally, it is not difficult to see that a valid choice of X0 is

X0 =
[

IN
IN

]
.

It follows that, under the reduced model

Xβ ≡ Iβ =
[

I Z
I 0

][
γ
δ

]
or that the reduced model is

Y =
[

I Z
I 0

][
γ
δ

]
+ e.

This relationship is of particular importance in the analysis of frequency data.
The model yi j = μi j +ei j is analogous to a saturated log-linear model. An hypothesis
μ1 j −μ2 j = α0 +α1t j ≡ z′jδ is analogous to the hypothesis that a simple linear logit
model holds. We have found the vector space such that restricting the log-linear
model to that space gives the logit model, see also Christensen (1997).

Exercise 3.6 In testing a reduced model Y = X0γ + e against a full model Y =
Xβ + e, what linear parametric function of the parameters is being tested?

3.4 Discussion

The reason that we considered testing models first and then discussed testing para-
metric functions by showing them to be changes in models is because, in general,
only model testing is ever performed. This is not to say that parametric functions are
not tested as such, but that parametric functions are only tested in special cases. In
particular, parametric functions can easily be tested in balanced ANOVA problems
and one-way ANOVAs. Multifactor ANOVA designs with unequal numbers of ob-
servations in the treatment cells, as illustrated in Example 3.2.2, are best analyzed
by considering alternative models. Even in regression models, where all the parame-
ters are estimable, it is often more enlightening to think in terms of model selection.
Of course, in regression there is a special relationship between the parameters and
the model matrix. For the model yi = β0 + β1xi1 + β2xi2 + · · ·+βp−1xi p−1 + e, the
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model matrix can be written as X = [J,X1, . . . ,Xp−1], where Xj = [x1 j,x2 j, . . . ,xn j]′.
The test of H0 : β j = 0 is obtained by just leaving Xj out of the model matrix.

Another advantage of the method of testing models is that it is often easy in
simple but nontrivial cases to see immediately what new model is generated by a
null hypothesis. This was illustrated in Examples 3.2.0 and 3.2.3.

EXAMPLE 3.4.1. One-Way ANOVA.
Consider the model yi j = μ +αi +ei j, i = 1,2,3, j = 1, . . . ,Ni, N1 = N3 = 3, N2 = 2.
In matrix terms this is

Y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0
1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1
1 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎣
μ
α1
α2
α3

⎤⎥⎦+ e.

Let the null hypothesis be α1 = μ +2α2. Writing X = [J,X1,X2,X3] and

E(Y ) = Xβ = μJ +α1X1 +α2X2 +α3X3,

the reduced model is easily found by substituting μ +2α2 for α1 which leads to

E(Y ) = μ(J +X1)+α2(2X1 +X2)+α3X3.

This gives the reduced model

Y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 2 0
2 2 0
2 2 0
1 1 0
1 1 0
1 0 1
1 0 1
1 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎣γ0

γ1
γ2

⎤⎦+ e.

For Examples 3.2.0, 3.2.3, and 3.5.1, it would be considerable work to go through
the procedure developed in Section 3 to test the hypotheses. In fairness, it should be
added that for these special cases, there is no need to go through the general pro-
cedures of Section 3 to get the tests (assuming that you get the necessary computer
output for the regression problem).
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3.5 Testing Single Degrees of Freedom in a Given Subspace

Consider a two-way ANOVA model yi jk = μ +αi +η j + ei jk. Suppose we want to
look at contrasts in the αis and η js. For analyzing a balanced two-way ANOVA it
would be very convenient if estimates and tests for contrasts in the αis, say, could
be based on the projection operator associated with dropping the αis out of the
one-way ANOVA model yi jk = μ +αi + ei jk rather than the projection operator for
the two-way ANOVA model. One convenience is that the projection operator for
the one-way model turns out to be much simpler than the projection operator for
the two-way model. A second convenience is that orthogonality of the projection
operators for dropping the αis and η js in the balanced two-way model leads to
independence between estimates of contrasts in the αis and η js. We would also like
to establish that orthogonal contrasts (contrasts that define orthogonal constraints)
in the αis, say, depend only on the projection operator for dropping the αis in the
one-way model.

With these ultimate goals in mind, we now examine, in general, estimates, tests,
and orthogonality relationships between single degree of freedom hypotheses that
put a constraint on a particular subspace.

Consider a perpendicular projection operator M∗ used in the numerator of a test
statistic. In the situation of testing a model Y = Xβ +e against a reduced model Y =
X0γ +e with C(X0) ⊂C(X), if M and M0 are the perpendicular projection operators
onto C(X) and C(X0), respectively, then M∗ = M −M0. For testing the estimable
parametric hypothesis Λ ′β = 0, if Λ ′ = P′X , then M∗ = MMP.

We want to examine the problem of testing a single degree of freedom hypothesis
in C(M∗). Let λ ′ = ρ ′X . Then, by Definition 3.3.2, λ ′β = 0 puts a constraint on
C(M∗) if and only if Mρ ∈ C(M∗). If Mρ ∈ C(M∗), then Mρ = M∗Mρ = M∗ρ
because MM∗ = M∗. It follows that the estimate of λ ′β is ρ ′M∗Y because ρ ′M∗Y =
ρ ′MY . From Section 3, the test statistic for H0 : λ ′β = 0 is

Y ′M∗ρ(ρ ′M∗ρ)−1ρ ′M∗Y
MSE

=
(ρ ′M∗Y )2/ρ ′M∗ρ

MSE
,

where MSE = Y ′(I −M)Y/r(I −M) and r(M∗ρ(ρ ′M∗ρ)−1ρ ′M∗) = 1.
Let λ ′

1 = ρ ′
1X and λ ′

2 = ρ ′
2X , and let the hypotheses λ ′

1β = 0 and λ ′
2β = 0 define

orthogonal constraints on the model. The constraints are, respectively, E(Y ) ⊥ Mρ1
and E(Y )⊥ Mρ2. These constraints are said to be orthogonal if the vectors Mρ1 and
Mρ2 are orthogonal. This occurs if and only if ρ ′

1Mρ2 = 0. If λ ′
1β = 0 and λ ′

2β = 0
both put constraints on C(M∗), then orthogonality is equivalent to 0 = ρ ′

1Mρ2 =
ρ ′

1M∗ρ2.
We have now shown that for any estimable functions that put constraints on

C(M∗), estimates, tests, and finding orthogonal constraints in C(M∗) require only
the projection operator M∗ and the MSE .

Exercise 3.7 Show that ρ ′MY = ρ ′[Mρ(ρ ′Mρ)−ρ ′M]Y so that to estimate
ρ ′Xβ , one only needs the perpendicular projection of Y onto C(Mρ).
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3.6 Breaking a Sum of Squares into Independent Components

We now present a general theory that includes, as special cases, the breaking down
of the treatment sum of squares in a one-way ANOVA into sums of squares for
orthogonal contrasts and the breaking of the sum of squares for the model into in-
dependent sums of squares as in an ANOVA table. This is an important device in
statistical analyses.

Frequently, a reduced model matrix X0 is a submatrix of X . This is true for
the initial hypotheses considered in both cases of Example 3.2.0 and for Exam-
ple 3.2.2. If we can write X = [X0,X1], it is convenient to write SSR(X1|X0) ≡
Y ′(M−M0)Y . SSR(X1|X0) is called the sum of squares for regressing X1 after X0. We
will also write SSR(X) ≡ Y ′MY , the sum of squares for regressing on X . Similarly,
SSR(X0) ≡ Y ′M0Y . The SSR(·) notation is one way of identifying sums of squares
for tests. Other notations exist, and one alternative will soon be introduced. Note
that SSR(X) = SSR(X0) + SSR(X1|X0), which constitutes a breakdown of SSR(X)
into two parts. If e ∼ N(0,σ 2I), these two parts are independent.

We begin with a general theory and conclude with a discussion of breaking down
the sums of squares in a two-way ANOVA model yi jk = μ + αi + η j + ei jk. The
projection operators used in the numerator sums of squares for dropping the αis and
η js are orthogonal if and only if the numerator sum of squares for dropping the η js
out of the two-way model is the same as the numerator sum of squares for dropping
the η js out of the one-way ANOVA model yi jk = μ +η j + ei jk.

3.6.1 General Theory

We now present a general theory that is based on finding an orthonormal basis for
a subspace of the estimation space. (This subspace could be the entire estimation
space.) We discuss two methods of doing this. The first is a direct method involving
identifying the subspace and choosing an orthonormal basis. The second method
determines an orthonormal basis indirectly by examining single degree of freedom
hypotheses and the constraints imposed by those hypotheses.

Our general model is Y = Xβ + e with M the perpendicular projection operator
onto C(X). Let M∗ be any perpendicular projection operator with C(M∗) ⊂ C(X).
Then M∗ defines a test statistic

Y ′M∗Y/r(M∗)
Y ′(I −M)Y/r(I −M)

for testing the reduced model, say, Y = (M −M∗)γ + e. If r(M∗) = r, then we will
show that we can break the sum of squares based on M∗ (i.e., Y ′M∗Y ) into as many
as r independent sums of squares whose sum will equal Y ′M∗Y . By using M∗ in the
numerator of the test, we are testing whether the subspace C(M∗) is adding anything
to the predictive (estimative) ability of the model. What we have done is break C(X)
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into two orthogonal parts, C(M∗) and C(M −M∗). In this case, C(M −M∗) is the
estimation space under H0 and we can call C(M∗) the test space. C(M∗) is a space
that will contain only error if H0 is true but which is part of the estimation space
under the full model. Note that the error space under H0 is C(I − (M −M∗)), but
I − (M−M∗) = (I −M)+M∗ so that C(I −M) is part of the error space under both
models.

We now break C(M∗) into r orthogonal subspaces. Take an orthonormal basis for
C(M∗), say R1,R2, . . . ,Rr. Note that, using Gram–Schmidt, R1 can be any normal-
ized vector in C(M∗). It is the statistician’s choice. R2 can then be any normalized
vector in C(M∗) orthogonal to R1, etc. Let R = [R1,R2, . . . ,Rr], then as in Theo-
rem B.35,

M∗ = RR′ = [R1, . . . ,Rr]

⎡⎢⎣R′
1
...

R′
r

⎤⎥⎦=
r

∑
i=1

RiR′
i.

Let Mi = RiR′
i, then Mi is a perpendicular projection operator in its own right and

MiMj = 0 for i �= j because of the orthogonality of the Ris.
The goal of this section is to break up the sum of squares into independent com-

ponents. By Theorem 1.3.7, the sums of squares Y ′MiY and Y ′MjY are indepen-
dent for any i �= j because MiMj = 0. Also, Y ′M∗Y = ∑r

i=1Y ′MiY simply because
M∗ = ∑r

i=1 Mi. Moreover, since r(Mi) = 1,

Y ′MiY
Y ′(I −M)Y/r(I −M)

∼ F(1,r(I −M),β ′X ′MiXβ/2σ2).

In a one-way ANOVA, Y ′M∗Y corresponds to the treatment sum of squares while
the Y ′MiY s correspond to the sums of squares for a set of orthogonal contrasts, cf.
Example 3.6.2.

We now consider the correspondence between the hypothesis tested using Y ′M∗Y
and those tested using the Y ′MiY s. Because M∗ and the Mis are nonnegative definite,

0 = β ′X ′M∗Xβ =
r

∑
i=1

β ′X ′MiXβ

if and only if β ′X ′MiXβ = 0 for all i if and only if R′
iXβ = 0 for all i. Thus, the null

hypothesis that corresponds to the test based on M∗ is true if and only if the null
hypotheses R′

iXβ = 0 corresponding to all the Mis are true. Equivalently, if the null
hypothesis corresponding to M∗ is not true, we have

0 < β ′X ′M∗Xβ =
r

∑
i=1

β ′X ′MiXβ .

Again, since M∗ and the Mis are nonnegative definite, this occurs if and only if at
least one of the terms β ′X ′MiXβ is greater than zero. Thus the null hypothesis corre-
sponding to M∗ is not true if and only if at least one of the hypotheses corresponding
to the Mis is not true. Thinking in terms of a one-way ANOVA, these results cor-
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respond to stating that 1) the hypothesis of no treatment effects is true if and only
if all the contrasts in a set of orthogonal contrasts are zero or, equivalently, 2) the
hypothesis of no treatment effects is not true if and only if at least one contrast in a
set of orthogonal contrasts is not zero.

We have broken Y ′M∗Y into r independent parts. It is easy to see how to
break it into less than r parts. Suppose r = 7. We can break Y ′M∗Y into three
parts by looking at projections onto only three subspaces. For example, Y ′M∗Y =
Y ′(M1 + M3 + M6)Y +Y ′(M2 + M7)Y +Y ′(M4 + M5)Y , where we have used three
projection operators M1 + M3 + M6, M2 + M7, and M4 + M5. Note that these three
projection operators are orthogonal, so the sums of squares are independent. By
properly choosing R, an ANOVA table can be developed using this idea.

EXAMPLE 3.6.1. One-Way ANOVA.
In this example we examine breaking up the treatment sum of squares in a one-way
ANOVA. Consider the model yi j = μ + αi + ei j, i = 1,2,3, j = 1,2,3. In matrix
terms this is

Y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0
1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1
1 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎣
μ
α1
α2
α3

⎤⎥⎦+ e. (1)

Denote the model matrix X = [J,X1,X2,X3]. To test H0 : α1 = α2 = α3, the reduced
model is clearly

Y = Jμ + e.

The projection operator for the test is M∗ = M− [1/n]JJ′. The test space is C(M∗) =
C(M− [1/n]JJ′), i.e., the test space is the set of all vectors in C(X) that are orthog-
onal to a column of ones. The test space can be obtained by using Gram–Schmidt
to remove the effect of J from the last three columns of the model matrix, that is,
C(M∗) is spanned by the columns of⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 −1
2 −1 −1
2 −1 −1

−1 2 −1
−1 2 −1
−1 2 −1
−1 −1 2
−1 −1 2
−1 −1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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which is a rank 2 matrix. The statistician is free to choose R1 within C(M∗). R1
could be a normalized version of⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
2
2

−1
−1
−1
−1
−1
−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
−1
−1

2
2
2

−1
−1
−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1
1
1
1

−2
−2
−2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

which was chosen as X1 + X2 with the effect of J removed. R2 must be the only
normalized vector left in C(M∗) that is orthogonal to R1. R2 is a normalized version
of [1,1,1,−1,−1,−1,0,0,0]′. The sum of squares for testing H0 : α1 = α2 = α3 is
Y ′R1R′

1Y +Y ′R2R′
2Y .

Using the specified form of R1, Y ′M1Y is the numerator sum of squares for testing

0 = R′
1Xβ ∝ (0,3,3,−6)

⎡⎢⎣
μ
α1
α2
α3

⎤⎥⎦= 6
(

α1 +α2

2
−α3

)
.

Similarly,
R′

2Xβ ∝ α1 −α2.

R1 was chosen so that Y ′R2R′
2Y would be the sum of squares for testing H0 : α1 = α2.

The discussion thus far has concerned itself with directly choosing an orthonor-
mal basis for C(M∗). An equivalent approach to the problem of finding an orthogo-
nal breakdown is in terms of single degree of freedom hypotheses λ ′β = 0.

If we choose any r single degree of freedom hypotheses λ ′
1β = · · · = λ ′

rβ = 0
with ρ ′

kX = λ ′
k, Mρk ∈ C(M∗), and ρ ′

kMρh = 0 for all k �= h, then the vectors
Mρk/

√
ρ ′

kMρk form an orthonormal basis for C(M∗). The projection operators are
Mk = Mρk(ρ ′

kMρk)−1ρ ′
kM. The sums of squares for these hypotheses, Y ′MkY =

Y ′Mρk(ρ ′
kMρk)−1ρ ′

kMY = (ρ ′
kMY )2/ρ ′

kMρk = (ρkM∗Y )2/ρ ′
kM∗ρk, form an orthog-

onal breakdown of Y ′M∗Y .
As shown in Section 3, the sum of squares for testing λ ′

kβ = 0 can be found
from λk, β̂ , and (X ′X)−. In many ANOVA problems, the condition ρ ′

kMρh = 0 can
be checked by considering an appropriate function of λk and λh. It follows that, in
many problems, an orthogonal breakdown can be obtained without actually finding
the vectors ρ1, . . . ,ρr.

EXAMPLE 3.6.2. One-Way ANOVA.
Consider the model yi j = μ + αi + ei j, i = 1, . . . , t, j = 1, . . . ,Ni. Let Y ′M∗Y cor-
respond to the sum of squares for treatments (i.e., the sum of squares for testing
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α1 = · · ·= αt ). The hypotheses λ ′
kβ = 0 correspond to contrasts ck1α1 + · · ·+cktαt =

0, where ck1 + · · ·+ ckt = 0. In Chapter 4, it will be shown that contrasts are es-
timable functions and that any contrast imposes a constraint on the space for testing
equality of treatments. In other words, Chapter 4 shows that the λ ′

kβ s can be con-
trasts and that if they are contrasts, then Mρk ∈ C(M∗). In Chapter 4 it will also
be shown that the condition for orthogonality, ρ ′

kMρh = 0, reduces to the condition
ck1ch1/N1 + · · ·+ cktcht/Nt = 0. If the contrasts are orthogonal, then the sums of
squares for the contrasts add up to the sums of squares for treatments, and the sums
of squares for the contrasts are independent.

3.6.2 Two-Way ANOVA

We discuss the technique of breaking up sums of squares as it applies to the two-
way ANOVA model of Example 3.2.2. The results really apply to any two-way
ANOVA with unequal numbers. The sum of squares for the full model is Y ′MY
(by definition). We can break this up into three parts, one for fitting the η js after
having fit the αis and μ , one for fitting the αis after fitting μ , and one for fitting μ .
In Example 3.2.2, the model is yi jk = μ +αi +η j + ei jk, i = 1,2,3, j = 1,2,3. The
seven columns of X correspond to the elements of β = [μ ,α1,α2,α3,η1,η2,η3]′.
Let J = (1, . . . ,1)′ be the first column of X . Let X0 be a matrix consisting of the
first four columns of X , those corresponding to μ , α1, α2, and α3. Take M and M0
corresponding to X and X0. It is easy to see that (1/21)JJ′ is the perpendicular
projection operator onto C(J).

Since J ∈C(X0) ⊂C(X), we can write, with n = 21,

Y ′MY = Y ′ 1
n

JJ′Y +Y ′
(

M0 − 1
n

JJ′
)

Y +Y ′ (M−M0)Y,

where (1/n)JJ′, M0 − (1/n)JJ′, and M−M0 are all perpendicular projection matri-
ces. Since X0 is obtained from X by dropping the columns corresponding to the η js,
Y ′(M −M0)Y is the sum of squares used to test the full model against the reduced
model with the η js left out. Recalling our technique of looking at the differences
in error sums of squares, we write Y ′(M −M0)Y ≡ R(η |α ,μ). R(η |α,μ) is the re-
duction in (error) sum of squares due to fitting the η js after fitting μ and the αis,
or, more simply, the sum of squares due to fitting the η js after the αis and μ . Simi-
larly, if we wanted to test the model yi jk = μ + ei jk against yi jk = μ +αi + ei jk, we
would use Y ′(M0 − [1/n]JJ′)Y ≡ R(α|μ), the sum of squares for fitting the αis after
μ . Finally, to test yi jk = μ + ei jk against yi jk = μ + αi + η j + ei jk, we would use
Y ′(M− [1/n]JJ′)Y ≡ R(α,η|μ). Note that R(α,η|μ) = R(η|α,μ)+R(α|μ).

The notations SSR(·) and R(·) are different notations for essentially the same
thing. The SSR(·) notation emphasizes variables and is often used in regression
problems. The R(·) notation emphasizes parameters and is frequently used in anal-
ysis of variance problems.
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Alternatively, we could have chosen to develop the results in this discussion by
comparing the model yi jk = μ + αi + η j + ei jk to the model yi jk = μ + η j + ei jk.
Then we would have taken X0 as columns 1, 5, 6, and 7 of the X matrix in-
stead of columns 1, 2, 3, and 4. This would have led to terms such as R(η|μ),
R(α|η ,μ), and R(α ,η |μ). In general, these two analyses will not be the same. Typ-
ically, R(η |α,μ) �= R(η|μ) and R(α|μ) �= R(α|η ,μ). There do exist cases (e.g.,
balanced two-way ANOVA models) where the order of the analysis has no effect.
Specifically, if the columns of the X matrix associated with α and those associ-
ated with η are orthogonal after somehow fitting μ , then R(η |α ,μ) = R(η |μ) and
R(α|μ) = R(α |η ,μ).

As mentioned, the preceding discussion applies to all two-way ANOVA mod-
els. We now state precisely the sense in which the columns for α and η need to
be orthogonal. Let X0 be the columns of X associated with μ and the αis, and
let X1 be the columns of X associated with μ and the η js. Let M0 and M1 be
the projection operators onto C(X0) and C(X1), respectively. We will show that
R(η|α,μ) = R(η|μ) for all Y if and only if C(M1 − [1/n]JJ′) ⊥C(M0 − [1/n]JJ′),
i.e., (M1 − [1/n]JJ′)(M0 − [1/n]JJ′) = 0.

Since R(η |μ) = Y ′(M1 − [1/n]JJ′)Y and R(η|α,μ) = Y ′(M −M0)Y , it suffices
to show the next proposition.

Proposition 3.6.3. In two-way ANOVA, (M1− [1/n]JJ′) = (M−M0) if and only
if (M1 − [1/n]JJ′)(M0 − [1/n]JJ′) = 0.

PROOF. ⇒ If (M1 − [1/n]JJ′) = (M−M0), then

(M1 − [1/n]JJ′)(M0 − [1/n]JJ′) = (M−M0)(M0 − [1/n]JJ′) = 0

because J ∈C(M0) ⊂C(M).
⇐ To simplify notation, let

Mα ≡ (M0 − [1/n]JJ′) and Mη ≡ (M1 − [1/n]JJ′).

We know that M = [1/n]JJ′+Mα +(M−M0). If we could show that M = [1/n]JJ′+
Mα +Mη , we would be done.

[1/n]JJ′ +Mα +Mη is symmetric and is easily seen to be idempotent since 0 =
MηMα = Mα Mη . It suffices to show that C[(1/n)JJ′ +Mα +Mη ] = C(X). Clearly,
C[(1/n)JJ′ +Mα +Mη ] ⊂C(X).

Suppose now that v ∈C(X). Since C(M0) = C(X0) and C(M1) = C(X1), if we let
Z = [M0,M1], then C(Z) = C(X) and v = Zb = M0b0 +M1b1. Since J ∈C(X0) and
J ∈C(X1), it is easily seen that Mα M1 = MαMη = 0 and Mη M0 = 0. Observe that[

1
n

JJ′ +Mα +Mη

]
v = [M0 +Mη ]M0b0 +[M1 +Mα ]M1b1

= M0b0 +M1b1 = v,

so C(X) ⊂C[(1/n)JJ′ +Mα +Mη ]. �
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The condition (M1 − [1/n]JJ′)(M0 − [1/n]JJ′) = 0 is equivalent to what follows.
Using the Gram–Schmidt orthogonalization algorithm, make all the columns cor-
responding to the αs and ηs orthogonal to J. Now, if the transformed α columns
are orthogonal to the transformed η columns, then R(η|α,μ) = R(η|μ). In other
words, check the condition X ′

0(I − [1/n]JJ′)X1 = 0. In particular, this occurs in a
balanced two-way ANOVA model, see Section 7.1.

From the symmetry of the problem, it follows that R(α|η,μ) = R(α|μ) when-
ever R(η |α,μ) = R(η |μ).

3.7 Confidence Regions

Consider the problem of finding a confidence region for the estimable parametric
vector Λ ′β . A (1−α)100% confidence region for Λ ′β consists of all the vectors
d that would not be rejected by an α level test of Λ ′β = d. That is to say, a (1−
α)100% confidence region for Λ ′β consists of all the vectors d that are consistent
with the data and the full model as determined by an α level test of Λ ′β = d. Based
on the distribution theory of Section 2 and the algebraic simplifications of Section
3, the (1−α)100% confidence region consists of all the vectors d that satisfy the
inequality

[Λ ′β̂ −d]′[Λ ′(X ′X)−Λ ]−[Λ ′β̂ −d]/r(Λ)
MSE

≤ F(1−α,r(Λ ),r(I −M)). (1)

These vectors form an ellipsoid in r(Λ )-dimensional space.
Alternative forms for the confidence region are

[Λ ′β̂ −d]′[Λ ′(X ′X)−Λ ]−[Λ ′β̂ −d] ≤ r(Λ ) MSE F(1−α,r(Λ ),r(I −M))

and

[P′MY −d]′(P′MP)−[P′MY −d] ≤ r(MP) MSE F(1−α,r(MP),r(I −M)).

For regression problems we can get a considerable simplification. If we take
P′ = (X ′X)−1X ′, then we have Λ ′ = P′X = Ip and Λ ′β = β = d. Using these in (1)
and renaming the placeholder variable d as β gives

[Λ ′β̂ −d]′[Λ ′(X ′X)−Λ ]−[Λ ′β̂ −d] = (β̂ −β )′[(X ′X)−1]−1(β̂ −β )

= (β̂ −β )′(X ′X)(β̂ −β )

with r(Λ ) = r(Ip) = r(X). The confidence region is thus the set of all β s satisfying

(β̂ −β )′(X ′X)(β̂ −β ) ≤ p MSE F(1−α, p,n− p).
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3.8 Tests for Generalized Least Squares Models

We now consider the problem of deriving tests for the model of Section 2.7. For
testing, we take the generalized least squares model as

Y = Xβ + e, e ∼ N
(
0,σ 2V

)
, (1)

where V is a known positive definite matrix. As in Section 2.7, we can write V = QQ′
for Q nonsingular. The model

Q−1Y = Q−1Xβ +Q−1e, Q−1e ∼ N
(
0,σ 2I

)
(2)

is analyzed instead of model (1).
First consider the problem of testing model (1) against a reduced model, say

Y = X0β0 + e, e ∼ N
(
0,σ 2V

)
, C(X0) ⊂C(X). (3)

The reduced model can be transformed to

Q−1Y = Q−1X0β0 +Q−1e, Q−1e ∼ N
(
0,σ 2I

)
. (4)

The test of model (3) against model (1) is performed by testing model (4) against
model (2). To test model (4) against model (2), we need to know that model (4)
is a reduced model relative to model (2). In other words, we need to show that
C(Q−1X0) ⊂ C(Q−1X). From model (3), C(X0) ⊂ C(X), so there exists a ma-
trix U such that X0 = XU . It follows immediately that Q−1X0 = Q−1XU ; hence
C(Q−1X0) ⊂C(Q−1X).

Recall from Section 2.7 that A = X(X ′V−1X)−X ′V−1 and that for model (1)

MSE = Y ′(I −A)′V−1(I −A)Y
/

[n− r(X)].

Define A0 = X0(X ′
0V−1X0)−X ′

0V−1. The test comes from the following distributional
result.

Theorem 3.8.1.

(i)
Y ′(A−A0)′V−1(A−A0)Y/[r(X)− r(X0)]

MSE
∼ F(r(X)− r(X0),n− r(X),π) ,

where π = β ′X ′(A−A0)′V−1(A−A0)Xβ/2σ 2.

(ii) β ′X ′(A−A0)′V−1(A−A0)Xβ = 0 if and only if E(Y ) ∈C(X0).

PROOF.
(i) Theorem 3.2.1 applied to models (2) and (4) gives the appropriate test statis-

tic. It remains to show that part (i) involves the same test statistic. Exercise 3.8 is
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to show that Y ′(A−A0)′V−1(A−A0)Y/[r(X)− r(X0)] is the appropriate numerator
mean square.

(ii) From part (i) and Theorem 3.2.1 applied to models (2) and (4),

β ′X ′(A−A0)′V−1(A−A0)Xβ = 0

if and only if E(Q−1Y ) ∈ C(Q−1X0). E(Q−1Y ) ∈ C(Q−1X0) if and only if E(Y ) ∈
C(X0). �

Exercise 3.8 Show that Y ′(A−A0)′V−1(A−A0)Y/[r(X)− r(X0)] is the appro-
priate numerator mean square for testing model (4) against model (2).

The intuition behind the test based on Theorem 3.8.1 is essentially the same as
that behind the usual test (which was discussed in Section 2). The usual test is based
on the difference MY −M0Y = (M −M0)Y . MY is the estimate of E(Y ) from the
full model, and M0Y is the estimate of E(Y ) from the reduced model. The difference
between these estimates indicates how well the reduced model fits. If the difference
is large, the reduced model fits poorly; if the difference is small, the reduced model
fits relatively well. To determine whether the difference vector is large or small, the
squared length of the vector, as measured in Euclidean distance, is used. The squared
length of (M−M0)Y reduces to the usual form Y ′(M−M0)Y . The basis of the test is
to quantify how large the difference vector must be before there is some assurance
that the difference between the vectors is due to more than just the variability of the
data.

For generalized least squares models, the estimate of E(Y ) from the full model
is AY and the estimate of E(Y ) from the reduced model is A0Y . The difference be-
tween these vectors, AY −A0Y = (A−A0)Y , indicates how well the reduced model
fits. The test is based on the squared length of the vector (A−A0)Y , but the length
of the vector is no longer measured in terms of Euclidean distance. The inverse of
the covariance matrix is used to define a distance measure appropriate to general-
ized least squares models. Specifically, the squared distance between two vectors u
and v is defined to be (u− v)′V−1(u− v). Note that with this distance measure, the
generalized least squares estimate AY is the vector in C(X) that is closest to Y , i.e.,
AY is the perpendicular projection onto C(X) (cf. Section 2.7).

It should be noted that if V = I, then A = M, A0 = M0, and the test is exactly as
in Section 2. Also as in Section 2, the key term in the numerator of the test statistic,
Y ′(A−A0)′V−1(A−A0)Y , can be obtained as the difference between the SSE for
the reduced model and the SSE for the full model.

We now consider testing parametric functions. If Λ ′β is an estimable parametric
vector, then the test of the hypothesis Λ ′β = 0 can be obtained from the following
result:

Theorem 3.8.2.

(i)
β̂ ′Λ
[
Λ ′(X ′V−1X)−Λ

]−Λ ′β̂/r(Λ)
MSE

∼ F(r(Λ),n− r(X),π) ,
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where π = β ′Λ
[
Λ ′(X ′V−1X)−Λ

]−Λ ′β/2σ 2.

(ii) β ′Λ
[
Λ ′(X ′V−1X)−Λ

]−Λ ′β = 0 if and only if Λ ′β = 0.

PROOF. Λ ′β is estimable in model (1) if and only if Λ ′β is estimable in model
(2). Λ ′β̂ is the least squares estimate of Λ ′β from model (2), and σ 2Λ ′(X ′V−1X)−Λ
is the covariance matrix of Λ ′β̂ . The result follows immediately from Section 3
applied to model (2). �

Note that Λ ′β = 0 defines the same reduced model as in Section 3 but the test
of the reduced model changes. Just as in Section 3 for ordinary least squares mod-
els, Theorem 3.8.2 provides a method of finding tests for generalized least squares
models. To test Λ ′β = 0, one need only find Λ ′β̂ , Cov(Λ ′β̂ ), and MSE. If these can
be found, the test follows immediately.

We have assumed that V is a known matrix. Since the results depend on V , they
would seem to be of little use if V were not known. Nevertheless, the validity of
the results does not depend on V being known. In Chapter 11, we will consider
cases where V is not known, but where V and X are related in such a way that the
results of this section can be used. In Chapter 11, we will need the distribution of
the numerators of the test statistics.

Theorem 3.8.3.

(i) Y ′(A−A0)′V−1(A−A0)Y/σ 2 ∼ χ2(r(X)− r(X0),π) ,

where π = β ′X ′(A−A0)′V−1(A−A0)Xβ/2σ 2, and β ′X ′(A−A0)′V−1(A−A0)Xβ =
0 if and only if E(Y ) ∈C(X0).

(ii) β̂ ′Λ
[
Λ ′(X ′V−1X)−Λ

]−Λ ′β̂/σ 2 ∼ χ2(r(Λ),π) ,

where π = β ′Λ
[
Λ ′(X ′V−1X)−Λ

]−Λ ′β/2σ 2, and Λ ′β = 0 if and only if π = 0.

PROOF. The results follow from Sections 3.2 and 3.3 applied to model (2). �

Exercise 3.9 Show that Y ′(A−A0)′V−1(A−A0)Y equals the difference in the
SSEs for models (3) and (1).

3.8.1 Conditions for Simpler Procedures

Just as Proposition 2.7.5 establishes that least squares estimates can be BLUEs even
when Cov(Y ) ≡ σ 2V �= σ 2I, there exist conditions where Cov(Y ) ≡ σ 2V �= σ 2I
but under which the F statistic of Section 3.2 still has an F(r(M −M0),r(I −M))
distribution under the null hypothesis with multivariate normal errors. In particular,
when testing Y = Xβ + e versus the reduced model Y = X0γ + e where Cov(Y ) ≡



3.8 Tests for Generalized Least Squares Models 87

V = σ2[I +X0B′ +BX ′
0], the standard central F distribution continues to hold under

the null hypothesis. In fact, the matrix B can even contain unknown parameters
without affecting the validity of this result.

To see the result on F tests, one need only check that the usual numerator and
denominator have the same independent χ2 distributions under the null hypothesis
as established in the proof of Theorem 3.2.1. This can be demonstrated by apply-
ing Theorems 1.3.6 and 1.3.8. In particular, Y ′(M −M0)Y/σ 2 ∼ χ2(r(M −M0))
because, with this V ,[

1
σ 2 (M−M0)

]
V
[

1
σ 2 (M−M0)

]
=

1
σ 2 (M−M0).

Similarly, Y ′(I −M)Y/σ 2 ∼ χ2(r(I −M)) because[
1

σ2 (I −M)
]

V
[

1
σ 2 (I −M)

]
=

1
σ 2 (I −M).

Finally, independence follows from the fact that[
1

σ 2 (M−M0)
]

V
[

1
σ 2 (I −M)

]
= 0.

Moreover, the arguments given in Huynh and Feldt (1970) should generalize to
establish that the F distribution holds only if V has the form indicated.

Of course, it is not clear whether σ2[I + X0B′ + BX ′
0] is positive definite, as

good covariance matrices should be. However, X0B′ + BX ′
0 is symmetric, so it

has real eigenvalues, and if the negative of its smallest eigenvalue is less than 1,
I + X0B′ + BX ′

0 will be positive definite. A special case of this covariance structure
has X0B′ +BX ′

0 = X0B0X ′
0 for some B0. In this special case, it is enough to have B0

nonnegative definite. Also in this special case, not only do standard F tests apply,
but least squares estimates are BLUEs because C(V X)⊂C(X), so Proposition 2.7.5
applies. But in general with V = I +X0B′ +BX ′

0, it is possible to use the standard F
tests even though least squares does not give BLUEs.

To illustrate the ideas, consider a balanced two-way ANOVA without interaction
or replication, yi j = μ + αi + η j + ei j, i = 1, . . . ,a, j = 1, . . . ,b. In this context, we
think about the αis as block effects, so there are a blocks and b treatments. We
explore situations in which observations within each block are correlated, but the
usual F test for treatment effects continues to apply. Write the linear model in matrix
form as

Y = Xβ + e = [Jab,Xα ,Xη ]

⎡⎣μ
α
η

⎤⎦+ e.

Here α = (α1, . . . ,αa)′ and η = (η1, . . . ,ηb)′ The test of no treatment effects uses
the reduced model

Y = X0γ + e = [Jab,Xα ]
[

μ
α

]
+ e.
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In the first illustration given below, V = I +Xα B0∗X ′
α for some B0∗. In the second

illustration, V = I+XαB′∗+B∗X ′
α . In both cases it suffices to write V using Xα rather

than X0. This follows because C(X0) =C(Xα), so we can always write X0B′ = Xα B′∗.
One covariance structure that is commonly used involves compound symmetry,

that is, independence between blocks, homoscedasticity, and constant correlation
within blocks. In other words,

Cov(yi j,yi′ j′) =

⎧⎨⎩σ 2∗ if i = i′, j = j′
σ 2∗ρ if i = i′, j �= j′
0 if i �= i′ .

One way to write this covariance matrix is as

σ 2V = σ2
∗ (1−ρ)I +σ 2

∗ ρXα X ′
α .

In the context, σ 2 from the general theory is σ2∗ (1−ρ) from the example and B0∗ ≡
[ρ/(1−ρ)]Ia.

A more general covariance structure is

Cov(yi j,yi′ j′) =

⎧⎨⎩σ 2(1+2δ j) if i = i′, j = j′
σ 2(δ j +δ j′) if i = i′, j �= j′
0 if i �= i′ .

We want to find B so that this covariance structure can be written as σ 2[I +X0B′ +
BX ′

0]. It suffices to show that for some B∗ we can write V = I + XαB′∗ + B∗X ′
α .

In the balanced two-way ANOVA without interaction or replication, when Y =
[y11,y12, . . . ,yab]′, Xα can be written using Kronecker products as

Xα = [Ia ⊗ Jb] =

⎡⎢⎢⎢⎣
Jb 0 · · · 0

0 Jb
...

...
. . .

0 · · · Jb

⎤⎥⎥⎥⎦ .

Now define δ = (δ1, . . . ,δb)′ and take

B∗ = [Ia ⊗δ ] =

⎡⎢⎢⎢⎣
δ 0 · · · 0

0 δ
...

...
. . .

0 · · · δ

⎤⎥⎥⎥⎦ .

With these choices, it is not difficult to see that the covariance structure specified
earlier has

V = Iab +[Ia ⊗ Jb][Ia ⊗δ ]′ +[Ia ⊗δ ][Ia ⊗ Jb]′.

This second illustration is similar to a discussion in Huynh and Feldt (1970). The
split plot models of Chapter 11 involve covariance matrices with compound sym-
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metry, so they are similar in form to the first illustration that involved σ 2I +X0B0X ′
0.

The results here establish that the F tests in the subplot analyses of Chapter 11 could
still be obtained when using the more general covariance structures considered here.

3.9 Additional Exercises

Exercise 3.9.1 Consider the model yi = β0 +β1xi1 +β2xi2 +ei, eis i.i.d. N(0,σ 2).
Use the data given below to answer (a) and (b).

Obs. 1 2 3 4 5 6
y −2 7 2 5 8 −1
x1 4 −1 2 0 −2 3
x2 2 −3 0 −2 −4 1

(a) Find SSR(X1,X2|J) = R(β1,β2|β0).
(b) Are β0, β1, and β2 estimable?

Exercise 3.9.2 For a standard linear model, find the form of the generalized
likelihood ratio test of H0 : σ2 = σ 2

0 versus HA : σ 2 �= σ 2
0 in terms of rejecting H0

when some function of SSE/σ2
0 is small. Show that the test makes sense in that it

rejects for both large and small values of SSE/σ 2
0 .

Exercise 3.9.3 Consider a set of seemingly unrelated regression equations

Yi = Xiβi + ei, ei ∼ N
(
0,σ 2I

)
,

i = 1, . . . ,r, where Xi is an ni × p matrix and the eis are independent. Find the test
for H0 : β1 = · · · = βr.

Exercise 3.9.4 What happens to the test of Λ ′β = d if Λ ′β has no estimable
part?

Exercise 3.9.5 Consider the model

Y = Xβ + e, E(e) = 0, Cov(e) = σ 2I, (1)

with the additional restriction
Λ ′β = d,

where d = Λ ′b for some (known) vector b and Λ ′ = P′X . Model (1) with the addi-
tional restriction is equivalent to the model
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(Y −Xb) = (M−MMP)γ + e. (2)

If the parameterization of model (1) is particularly appropriate, then we might be
interested in estimating Xβ subject to the restriction Λ ′β = d. To do this, write

Xβ = E(Y ) = (M−MMP)γ +Xb,

and define the BLUE of λ ′β = ρ ′Xβ in the restricted version of (1) to be ρ ′(M −
MMP)γ̂ +ρ ′Xb, where ρ ′(M−MMP)γ̂ is the BLUE of ρ ′(M−MMP)γ in model (2).
Let β̂1 be the least squares estimate of β in the unrestricted version of model (1).
Show that the BLUE of λ ′β in the restricted version of model (1) is

λ ′β̂1 −
[
Cov(λ ′β̂1,Λ ′β̂1)

][
Cov(Λ ′β̂1)

]−
(Λ ′β̂1 −d), (3)

where the covariance matrices are computed as in the unrestricted version of model
(1).

Hint: This exercise is actually nothing more than simplifying the terms in (3) to
show that it equals ρ ′(M−MMP)γ̂ +ρ ′Xb.

Note: The result in (3) is closely related to best linear prediction, cf. Sections 6.3
and 12.2.

Exercise 3.9.6 Discuss how the testing procedures from this chapter would
change if you actually knew the variance σ 2.



Chapter 4

One-Way ANOVA

In this and the following chapters, we apply the general theory of linear models
to various special cases. This chapter considers the analysis of one-way ANOVA
models. A one-way ANOVA model can be written

yi j = μ +αi + ei j, i = 1, . . . , t, j = 1, . . . ,Ni, (1)

where E(ei j) = 0, Var(ei j) = σ 2, and Cov(ei j,ei′ j′) = 0 when (i, j) �= (i′, j′). For
finding tests and confidence intervals, the ei js are assumed to have a multivariate
normal distribution. Here αi is an effect for yi j belonging to the ith group of obser-
vations. Group effects are often called treatment effects because one-way ANOVA
models are used to analyze completely randomized experimental designs.

Section 1 is devoted primarily to deriving the ANOVA table for a one-way
ANOVA. The ANOVA table in this case is a device for presenting the sums of
squares necessary for testing the reduced model

yi j = μ + ei j, i = 1, . . . , t, j = 1, . . . ,Ni, (2)

against model (1). This test is equivalent to testing the hypothesis H0 : α1 = · · ·= αt .
The main tool needed for deriving the analysis of model (1) is the perpendicular

projection operator. The first part of Section 1 is devoted to finding M. Since the ys in
model (1) are identified with two subscripts, it will be necessary to develop notation
that allows the rows of a vector to be denoted by two subscripts. Once M is found,
some comments are made about estimation and the role of side conditions in esti-
mation. Finally, the perpendicular projection operator for testing H0 : α1 = · · · = αt
is found and the ANOVA table is presented. Section 2 is an examination of con-
trasts. First, contrasts are defined and discussed. Estimation and testing procedures
are presented. Orthogonal contrasts are defined and applications of Sections 3.5 and
3.6 are given. Fortunately, many balanced multifactor analysis of variance problems
can be analyzed by repeatedly using the analysis for a one-way analysis of variance.
For that reason, the results of this chapter are particularly important.
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4.1 Analysis of Variance

In linear model theory, the main tools we need are perpendicular projection matrices.
Our first project in this section is finding the perpendicular projection matrix for a
one-way ANOVA model. We will then discuss estimation, side conditions, and the
ANOVA table.

Usually, the one-way ANOVA model is written

yi j = μ +αi + ei j, i = 1, . . . , t, j = 1, . . . ,Ni.

Let n = ∑t
i=1 Ni. Although the notation Ni is standard, we will sometimes use N(i)

instead. Thus, N(i) ≡ Ni. We proceed to find the perpendicular projection matrix
M = X(X ′X)−X ′.

EXAMPLE 4.1.1. In any particular example, the matrix manipulations necessary
for finding M are simple. Suppose t = 3, N1 = 5, N2 = 3, N3 = 3. In matrix notation
the model can be written⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y11
y12
y13
y14
y15
y21
y22
y23
y31
y32
y33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0
1 1 0 0
1 1 0 0
1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1
1 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎣
μ
α1
α2
α3

⎤⎥⎦+ e.

To find the perpendicular projection matrix M, first find

X ′X =

⎡⎢⎣
11 5 3 3
5 5 0 0
3 0 3 0
3 0 0 3

⎤⎥⎦ .

By checking that (X ′X)(X ′X)−(X ′X) = X ′X , it is easy to verify that

(X ′X)− =

⎡⎢⎣
0 0 0 0
0 1/5 0 0
0 0 1/3 0
0 0 0 1/3

⎤⎥⎦ .
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Then

M

= X(X ′X)−X ′

= X

⎡⎢⎣
0 0 0 0 0 0 0 0 0 0 0

1/5 1/5 1/5 1/5 1/5 0 0 0 0 0 0
0 0 0 0 0 1/3 1/3 1/3 0 0 0
0 0 0 0 0 0 0 0 1/3 1/3 1/3

⎤⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1/5 1/5 1/5 1/5 1/5 0 0 0 0 0 0
1/5 1/5 1/5 1/5 1/5 0 0 0 0 0 0
1/5 1/5 1/5 1/5 1/5 0 0 0 0 0 0
1/5 1/5 1/5 1/5 1/5 0 0 0 0 0 0
1/5 1/5 1/5 1/5 1/5 0 0 0 0 0 0
0 0 0 0 0 1/3 1/3 1/3 0 0 0
0 0 0 0 0 1/3 1/3 1/3 0 0 0
0 0 0 0 0 1/3 1/3 1/3 0 0 0
0 0 0 0 0 0 0 0 1/3 1/3 1/3
0 0 0 0 0 0 0 0 1/3 1/3 1/3
0 0 0 0 0 0 0 0 1/3 1/3 1/3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Thus, in this example, M is Blk diag[N−1
i JN(i)

N(i) ], where Jc
r is a matrix of 1s with r

rows and c columns. In fact, we will see below that this is the general form for M in
a one-way ANOVA when the observation vector Y has subscripts changing fastest
on the right.

A somewhat easier way of finding M is as follows. Let Z be the model matrix for
the alternative one-way analysis of variance model

yi j = μi + ei j,

i = 1, . . . , t, j = 1, . . . ,Ni. (See Example 3.1.1.) Z is then just a matrix consist-
ing of the last t columns of X , i.e., X = [J,Z]. Clearly C(X) = C(Z), Z′Z =
Diag(N1,N2, . . . ,Nt), and (Z′Z)−1 = Diag(N−1

1 ,N−1
2 , . . . ,N−1

t ). It is easy to see that
Z(Z′Z)−Z′ = Blk diag[N−1

i JN(i)
N(i) ].

We now present a rigorous derivation of these results. The ideas involved in Ex-
ample 4.1.1 are perfectly general. A similar computation can be performed for any
values of t and the Nis. The difficulty in a rigorous general presentation lies entirely
in being able to write down the model in matrix form. The elements of Y are the yi js.
The yi js have two subscripts, so a pair of subscripts must be used to specify each
row of the vector Y . The elements of the model matrices X and Z are determined
entirely by knowing the order in which the yi js have been listed in the Y vector. For
example, the row of Z corresponding to yi j would have a 1 in the ith column and
0s everywhere else. Clearly, it will also be convenient to use a pair of subscripts to
specify the rows of the model matrices. Specifically, let
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Y ′ = (y11,y12, . . . ,y1N(1),y21, . . . ,ytN(t)),

where y21 is the N1 + 1 row of Y . In general, write a vector S as S = [si j], where
for j = 1, . . . ,Ni, si j denotes the (N1 + · · ·+Ni−1 + j)th row of S. The discussion of
tensors in Appendix B may help the reader feel more comfortable with our use of
subscripts.

To specify the model matrices X and Z we must identify the columns of X and
Z. Write X = [J,X1,X2, . . . ,Xt ] and Z = [X1,X2, . . . ,Xt ]. Note that the kth column of
Z can be written

Xk = [ti j], where ti j = δik (1)

with δik equal to 0 if i �= k and 1 if i = k. This means that if the observation in the i j
row belongs to the kth group, the i j row of Xk is 1. If not, the i j row of Xk is zero.

Our goal is to find M = Z(Z′Z)−1Z′. To do this we need to find (Z′Z) and
(Z′Z)−1. Noting that (Xk)′(Xq) is a real number, we can write the elements of Z′Z
as

(Z′Z) =
[
(Xk)′(Xq)

]
t×t .

Now, from (1)

(Xk)′(Xk) = ∑
i j

δikδik =
t

∑
i=1

Ni

∑
j=1

δik =
t

∑
i=1

Niδik = Nk

and for k �= q

(Xk)′(Xq) =
t

∑
i=1

Ni

∑
j=1

δikδiq =
t

∑
i=1

Niδikδiq = 0.

It follows that
(Z′Z) = Diag(Ni)

and clearly
(Z′Z)−1 = Diag(N−1

i ).

We can now find Z(Z′Z)−1.

Z(Z′Z)−1 = [X1,X2, . . . ,Xt ]Diag(N−1
i )

=
[
N−1

1 X1,N−1
2 X2, . . . ,N−1

t Xt
]
.

Finally, we are in a position to find M = Z(Z′Z)−1Z′. We denote the columns of
an n× n matrix using the convention introduced above for denoting rows, i.e., by
using two subscripts. Then the matrix M can be written

M = [mi j,i′ j′ ].

We now find the entries of this matrix. Note that mi j,i′ j′ is the i j row of Z(Z′Z)−1

times the i′ j′ column of Z′ (i.e., the i′ j′ row of Z). The i j row of Z(Z′Z)−1 is
(N−1

1 δi1, . . . ,N−1
t δit). The i′ j′ row of Z is (δi′1, . . . ,δi′t). The product is
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mi j,i′ j′ =
t

∑
k=1

N−1
k δikδi′k

= N−1
i δii′ .

These values of mi j,i′ j′ determine a block diagonal matrix

M = Blk diag(N−1
i JN(i)

N(i) ),

just as in Example 4.1.1.
The notation and methods developed above are somewhat unusual, but they are

necessary for giving a rigorous treatment of ANOVA models. The device of indi-
cating the rows of vectors with multiple subscripts will be used extensively in later
discussions of multifactor ANOVA. It should be noted that the arguments given
above really apply to any order of specifying the entries in a vector S = [si j]; they do
not really depend on having S = (s11,s12, . . . ,stN(t))′. If we specified some other or-
dering, we would still get the perpendicular projection matrix M; however, M might
no longer be block diagonal.

Exercise 4.1 To develop some facility with this notation, let

Tr = [ti j], where ti j = δir − Nr

n

for r = 1, . . . , t. Find T ′
r Tr, T ′

r Ts for s �= r, and J′Tr.

A very important application of this notation is in characterizing the vector MY .
As discussed in Section 3.1, the vector MY is the base from which all estimates of
parametric functions are found. A second important application involves the projec-
tion operator

Mα = M− 1
n

Jn
n .

Mα is useful in testing hypotheses and is especially important in the analysis of
multifactor ANOVAs. It is therefore necessary to have a characterization of Mα .

Exercise 4.2 Show that

MY = [ti j], where ti j = ȳi·

and
MαY = [ui j], where ui j = ȳi· − ȳ·· .

Hint: Write MαY = MY − ( 1
n Jn

n )Y .

Knowing these characterizations MY and MαY tell us how to find Mv and Mαv
for any vector v. In fact, they completely characterize the perpendicular projection
operators M and Mα .
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EXAMPLE 4.1.1 CONTINUED. In this example,

MY = (ȳ1·, ȳ1·, ȳ1·, ȳ1·, ȳ1·, ȳ2·, ȳ2·, ȳ2·, ȳ3·, ȳ3·, ȳ3·)′

and

MαY = (ȳ1· − ȳ··, ȳ1· − ȳ··, ȳ1· − ȳ··, ȳ1· − ȳ··, ȳ1· − ȳ··,
ȳ2· − ȳ··, ȳ2· − ȳ··, ȳ2· − ȳ··, ȳ3· − ȳ··, ȳ3· − ȳ··, ȳ3· − ȳ··)′.

We can now obtain a variety of estimates. Recall that estimable functions are linear
combinations of the rows of Xβ , e.g., ρ ′Xβ . Since

Xβ =
(
μ +α1,μ +α1,μ +α1,μ +α1,μ +α1,

μ +α2,μ +α2,μ +α2,μ +α3,μ +α3,μ +α3
)′

,

if ρ ′ is taken to be ρ ′ = (1,0,0,0,0,0,0,0,0,0,0)′, then it is easily seen that
μ +α1 = ρ ′Xβ is estimable. The estimate of μ + α1 is ρ ′MY = ȳ1·. Similarly, the
estimates of μ + α2 and μ + α3 are ȳ2· and ȳ3·, respectively. The contrast α1 −α2
can be obtained as ρ ′Xβ using ρ ′ = (1,0,0,0,0,−1,0,0,0,0,0)′. The estimate of
α1 −α2 is ρ ′MY = ȳ1· − ȳ2·. Note that for this contrast ρ ′MY = ρ ′MαY .

Estimation is as easy in a general one-way ANOVA as it is in Example 4.1.1. We
have found M and MY , and it is an easy matter to see that, for instance, μ + αi is
estimable and the estimate of μ +αi is

{μ̂ + α̂i} = ȳi· .

The notation {μ̂ + α̂i} will be used throughout this chapter to denote the estimate
of μ +αi.

For computational purposes, it is often convenient to present one particular set of
least squares estimates. In one-way ANOVA, the traditional side condition on the
parameters is ∑t

i=1 Niαi = 0. With this condition, one obtains

μ =
1
n

t

∑
i=1

Ni(μ +αi)

and an estimate

μ̂ =
1
n

t

∑
i=1

Ni{μ̂ + α̂i} =
1
n

t

∑
i=1

Ni

Ni

Ni

∑
j=1

yi j = ȳ··,

which is the mean of all the observations. Similarly,

α̂i = {μ̂ + α̂i}− μ̂ = ȳi· − ȳ·· .
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Exercise 4.9 involves finding parameter estimates that satisfy a different commonly
used side condition. Fortunately, all side conditions lead to the same estimates of
identifiable functions, so one choice of a side condition is as good as any other. The
best choice of a side condition is the most convenient choice. However, different side
conditions do lead to different “estimates” of nonidentifiable parameters. Do not
be lulled into believing that an arbitrary side condition allows you to say anything
meaningful about nonidentifiable parameters. That is just silly!

We now derive the analysis of variance table for the one-way ANOVA. The anal-
ysis of variance table is a device for displaying an orthogonal breakdown of the total
sum of squares of the data (SSTot), i.e., Y ′Y . Sometimes, the total sum of squares
corrected for fitting the grand mean is broken down. The sum of squares for fitting
the grand mean (SSGM), also known as the correction factor (C), is just the sum of
squares accounted for by the model

Y = Jμ + e.

The total sum of squares corrected for the grand mean (SSTot −C) is the error sum
of squares for this model, i.e., Y ′ (I − [1/n]Jn

n )Y . Included in an ANOVA table is
information to identify the sums of squares (Source), the degrees of freedom for
the sums of squares (df ), the sums of squares (SS), and the mean squares (MS).
The mean squares are just the sums of squares divided by their degrees of freedom.
Sometimes the expected values of the mean squares are included. From the expected
mean squares, the hypotheses tested by the various sums of squares can be identi-
fied. Recall that, when divided by σ 2, the sums of squares have χ2 distributions
and that there is a very close relationship between the expected mean square, the
expected sum of squares, the noncentrality parameter of the χ2 distribution, and the
noncentrality parameter of an F distribution with the mean square in the numerator.
In particular, if the expected mean square is σ 2 + π/df , then the noncentrality pa-
rameter is π/2σ 2. Assuming the full model is true, the null hypothesis being tested
is that the noncentrality parameter of the F distribution is zero.

The usual orthogonal breakdown for a one-way ANOVA is to isolate the effect of
the grand mean (μ), and then the effect of fitting the treatments (αis) after fitting the
mean. The sum of squares for treatments (SSTrts) is just what is left after removing
the sum of squares for μ from the sum of squares for the model. In other words, the
sum of squares for treatments is the sum of squares for testing the reduced model
(4.0.2) against model (4.0.1). As we have seen earlier, the projection operator for
fitting the grand mean is based on the first column of X , i.e., J. The projection
operator is (1/n)Jn

n = (1/n)JJ′. The projection operator for the treatment sum of
squares is then

Mα = M− 1
n

Jn
n .

The sum of squares for fitting treatments after μ , Y ′MαY , is the difference between
the sum of squares for fitting the full model, Y ′MY , and the sum of squares for fitting
the model with just the mean, Y ′ ([1/n]Jn

n )Y .
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Table 1 gives an ANOVA table and indicates some common notation for the
entries.

Table 4.1 One-Way Analysis of Variance Table

Matrix Notation

Source df SS

Grand Mean 1 Y ′ ( 1
n Jn

n
)

Y

Treatments t −1 Y ′ (M− 1
n Jn

n
)

Y

Error n− t Y ′(I −M)Y

Total n Y ′Y

Source SS E(MS)

Grand Mean SSGM σ2 +β ′X ′ ( 1
n Jn

n
)

Xβ

Treatments SSTrts σ2 +β ′X ′ (M− 1
n Jn

n
)

Xβ/(t −1)

Error SSE σ 2

Total SSTot

Algebraic Notation

Source df SS

Grand Mean df GM n−1y2·· = nȳ2··

Treatments df Trts ∑t
i=1 Ni (ȳi· − ȳ··)2

Error dfE ∑t
i=1 ∑Ni

j=1 (yi j − ȳi·)2

Total df Tot ∑t
i=1 ∑Ni

j=1 y2
i j

Source MS E(MS)*

Grand Mean SSGM σ2 +n(μ + ᾱ·)2

Treatments SSTrts/(t −1) σ2 +∑t
i=1 Ni (αi − ᾱ·)2 /(t −1)

Error SSE/(n− t) σ2

Total
*ᾱ· = ∑t

i=1 Niαi/n
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Exercise 4.3 Verify that the estimate of μ + αi is ȳi· and that the algebraic
formulas for the sums of squares in the ANOVA table are correct.

Hint: To find, for example, Y (M− [1/n]Jn
n )Y = Y ′MαY , use Exercise 4.2 to get

MαY and recall that Y ′MαY = [MαY ]′ [MαY ].

Exercise 4.4 Verify that the formulas for expected mean squares in the ANOVA
table are correct.

Hint: Use Theorem 1.3.2 and Exercise 4.3.

The techniques suggested for Exercises 4.3 and 4.4 are very useful. The reader
should make a point of remembering them.

4.2 Estimating and Testing Contrasts

In this section, contrasts are defined and characterizations of contrasts are given.
Estimates of contrasts are found. The numerator sum of squares necessary for doing
an F test of a contrast and the form of the F test are given. The form of a confidence
interval for a contrast is presented and the idea of orthogonal contrasts is discussed.
Finally, the results of Section 3.5 are reviewed by deriving them anew for the one-
way ANOVA model.

A contrast in the one-way ANOVA (4.0.1) is a function ∑t
i=1 λiαi, with ∑t

i=1 λi =
0. In other words, the vector λ ′ in λ ′β is (0,λ1,λ2, . . . ,λt) and λ ′Jt+1 = 0. To es-
tablish that λ ′β is estimable, we need to find ρ such that ρ ′X = λ ′. Write

ρ ′ = (λ1/N1, . . . ,λ1/N1,λ2/N2, . . . ,λ2/N2,λ3/N3, . . . ,λt/Nt),

where ρ ′ is a 1×n vector and the string of λi/Nis is Ni long. In the alternate notation
that uses two subscripts to denote a row of a vector, we have

ρ = [ti j], where ti j = λi/Ni. (1)

Recall from Section 2.1 that, while other choices of ρ may exist with ρ ′X = λ ′,
the vector Mρ is unique. As shown in Exercise 4.10, for ρ as in (1), ρ ∈ C(X); so
ρ = Mρ . Thus, for any contrast λ ′β , the vector Mρ has the structure

Mρ = [ti j], where ti j = λi/Ni. (2)

We now show that the contrasts are precisely the estimable functions that do not
involve μ . Note that since J is the column of X associated with μ , ρ ′Xβ does not
involve μ if and only if ρ ′J = 0.

Proposition 4.2.1. ρ ′Xβ is a contrast if and only if ρ ′J = 0.
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PROOF. Clearly, a contrast does not involve μ , so ρ ′J = 0. Conversely, if ρ ′J = 0,
then ρ ′Xβ = ρ ′[J,Z]β does not involve μ; so we need only show that 0 = ρ ′XJt+1.
This follows because XJt+1 = 2Jn, and we know that ρ ′Jn = 0. �

We now show that the contrasts are the estimable functions that impose con-
straints on C(Mα). Recall that the constraint imposed on C(X) by ρ ′Xβ = 0 is that
E(Y ) ∈C(X) and E(Y ) ⊥ Mρ , i.e., E(Y ) is constrained to be orthogonal to Mρ . By
definition, ρ ′Xβ puts a constraint on C(Mα) if Mρ ∈C(Mα).

Proposition 4.2.2. ρ ′Xβ is a contrast if and only if Mρ ∈C(Mα).

PROOF. Using Proposition 4.2.1 and J ∈C(X), we see that ρ ′Xβ is a contrast if
and only if 0 = ρ ′J = ρ ′MJ, i.e., J ⊥ Mρ . However, C(Mα) is everything in C(X)
that is orthogonal to J; thus J ⊥ Mρ if and only if Mρ ∈C(Mα). �

Finally, we can characterize C(Mα).

Proposition 4.2.3. C(Mα) =
{

ρ
∣∣∣ρ = [ti j], ti j = λi/Ni, ∑t

i=1 λi = 0
}

.

PROOF. Any vector ρ with the structure of (1) and ∑i λi = 0 has ρ ′J = 0 and by
Proposition 4.2.1 determines a contrast ρ ′Xβ . By Proposition 4.2.2, Mρ ∈C(Mα).
However, vectors that satisfy (1) also satisfy Mρ = ρ, so ρ ∈C(Mα). Conversely, if
ρ ∈C(Mα), then ρ ′J = 0; so ρ ′Xβ determines a contrast. It follows that Mρ must
be of the form (2), where λ1 + · · ·+λt = 0. However, since ρ ∈C(Mα), Mρ = ρ; so
ρ must be of the form (1) with λ1 + · · ·+λt = 0.

Exercise 4.5 Show that α1 = α2 = · · · = αt if and only if all contrasts are zero.

We now consider estimation and testing for contrasts. The least squares estimate
of a contrast ∑t

i=1 λiαi is easily obtained. Let μ̂ , α̂1, . . . , α̂t be any choice of least
squares estimates for the nonidentifiable parameters μ ,α1, . . . ,αt . Since ∑t

i=1 λi = 0,
we can write

t

∑
i=1

λiα̂i =
t

∑
i=1

λi{μ̂ + α̂i} =
t

∑
i=1

λiȳi·,

because μ + αi is estimable and its unique least squares estimate is ȳi·. This result
can also be seen by examining ρ ′Y = ρ ′MY for the ρ given earlier in (1). To test the
hypothesis that λ ′β = 0, we have seen that the numerator of the F test statistic is
(ρ ′MY )2/ρ ′Mρ . However, ρ ′MY = ρ ′X β̂ = λ ′β̂ = ∑t

i=1 λiȳi·. We also need to find
ρ ′Mρ . The easiest way is to observe that, since Mρ has the structure of (2),

ρ ′Mρ = [Mρ]′[Mρ]

=
t

∑
i=1

Ni

∑
j=1

λ 2
i /N2

i
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=
t

∑
i=1

λ 2
i /Ni.

The numerator sum of squares for testing the contrast is

SS(λ ′β ) ≡
(

t

∑
i=1

λiȳi·

)2/( t

∑
i=1

λ 2
i /Ni

)
.

The α level test for H0 : ∑t
i=1 λiαi = 0 is to reject H0 if

(∑t
i=1 λiȳi·)

2
/(

∑t
i=1 λ 2

i /Ni
)

MSE
> F(1−α,1,dfE).

Equivalently, ∑t
i=1 λiȳi· has a normal distribution, E(∑t

i=1 λiȳi·) = ∑t
i=1 λi(μ +

αi) = ∑t
i=1 λiαi, and Var(∑t

i=1 λiȳi·) = ∑t
i=1 λ 2

i Var(ȳi·) = σ 2 ∑t
i=1 λ 2

i /Ni, so we have
a t test available. The α level test is to reject H0 if

|∑t
i=1 λiȳi·|√

MSE ∑t
i=1 λ 2

i /Ni

> t
(

1− α
2

,dfE
)

.

Note that since ∑t
i=1 λiȳi· = ρ ′MY is a function of MY and MSE is a function of

Y ′(I −M)Y , we have the necessary independence for the t test. In fact, all tests and
confidence intervals follow as in Exercise 2.1.

In order to break up the sums of squares for treatments into t−1 orthogonal single
degree of freedom sums of squares, we need to find t − 1 contrasts λ ′

1β , . . . ,λ ′
t−1β

with the property that ρ ′
rMρs = 0 for r �= s, where ρ ′

rX = λ ′
r (see Section 3.6). Let

λ ′
r = (0,λr1, . . . ,λrt) and recall that Mρr has the structure of (2). The condition

required is

0 = ρ ′
rMρs

= [Mρr]′[Mρs]

=
t

∑
i=1

Ni

∑
j=1

(λri/Ni)(λsi/Ni)

=
t

∑
i=1

λriλsi/Ni.

With any set of contrasts ∑t
i=1 λriαi, r = 1, . . . , t−1, for which 0 = ∑t

i=1 λriλsi/Ni
for all r �= s, we have a set of t − 1 orthogonal constraints on the test space so that
the sums of squares for the contrasts add up to the SSTrts. Contrasts that determine
orthogonal constraints are referred to as orthogonal contrasts.

In later analyses, we will need to use the fact that the analysis developed here
depends only on the projection matrix onto the space for testing α1 = α2 = · · ·= αt .
That projection matrix is Mα = M − (1/n)Jn

n . Note that M = (1/n)Jn
n + Mα . For
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any contrast λ ′β with ρ ′X = λ ′, we know that ρ ′Jn = 0. It follows that ρ ′M =
ρ ′(1/n)Jn

n +ρ ′Mα = ρ ′Mα . There are two main uses for this fact. First,

t

∑
i=1

λiα̂i =
t

∑
i=1

λiȳi· = ρ ′MY = ρ ′MαY,

t

∑
i=1

λ 2
i /Ni = λ ′(X ′X)−λ = ρ ′Mρ = ρ ′Mα ρ,

so estimation, and therefore tests, depend only on the projection Mα . Second, the
condition for contrasts to give an orthogonal breakdown of SSTrts is

0 =
t

∑
i=1

λriλsi/Ni = ρ ′
rMρs = ρ ′

rMα ρs,

which depends only on Mα . This is just a specific example of the theory of Sec-
tion 3.5.

Exercise 4.6 Using the theories of Sections 3.3 and 2.6, respectively, find the F
test and the t test for the hypothesis H0 : ∑t

i=1 λiαi = d in terms of the MSE , the ȳi·s,
and the λis.

Exercise 4.7 Suppose N1 = N2 = · · · = Nt ≡ N. Rewrite the ANOVA table in-
corporating any simplifications due to this assumption.

Exercise 4.8 If N1 = N2 = · · · = Nt ≡ N, show that two contrasts λ ′
1β and λ ′

2β
are orthogonal if and only if λ ′

1λ2 = 0.

Exercise 4.9 Find the least squares estimates of μ , α1, and αt using the side
condition α1 = 0.

Exercise 4.10 Using ρ as defined by (1) and X as defined in Section 1, especially
(4.1.1), show that

(a) ρ ′X = λ ′, where λ ′ = (0,λ1, . . . ,λt).
(b) ρ ∈C(X).

4.3 Additional Exercises

Exercise 4.3.1 An experiment was conducted to see which of four brands of blue
jeans were most resistant to wearing out as a result of students kneeling before their



4.3 Additional Exercises 103

linear models instructor begging for additional test points. In a class of 32 students,
8 students were randomly assigned to each brand of jeans. Before being informed of
their test score, each student was required to fall to his/her knees and crawl 3 meters
to the instructor’s desk. This was done after each of 5 mid-quarter and 3 final exams.
(The jeans were distributed along with each of the 8 test forms and were collected
again 36 hours after grades were posted.) A fabric wear score was determined for
each pair of jeans. The scores are listed below.

Brand 1: 3.41 1.83 2.69 2.04 2.83 2.46 1.84 2.34
Brand 2: 3.58 3.83 2.64 3.00 3.19 3.57 3.04 3.09
Brand 3: 3.32 2.62 3.92 3.88 2.50 3.30 2.28 3.57
Brand 4: 3.22 2.61 2.07 2.58 2.80 2.98 2.30 1.66

(a) Give an ANOVA table for these data, and perform and interpret the F test
for the differences between brands.

(b) Brands 2 and 3 were relatively inexpensive, while Brands 1 and 4 were very
costly. Based on these facts, determine an appropriate set of orthogonal contrasts to
consider in this problem. Find the sums of squares for the contrasts.

(c) What conclusions can be drawn from these data? Perform any additional
computations that may be necessary

Exercise 4.3.2 After the final exam of spring quarter, 30 of the subjects of the
previous experiment decided to test the sturdiness of 3 brands of sport coats and 2
brands of shirts. In this study, sturdiness was measured as the length of time before
tearing when the instructor was hung by his collar out of his second-story office
window. Each brand was randomly assigned to 6 students, but the instructor was
occasionally dropped before his collar tore, resulting in some missing data. The
data are listed below.

Coat 1: 2.34 2.46 2.83 2.04 2.69
Coat 2: 2.64 3.00 3.19 3.83
Coat 3: 2.61 2.07 2.80 2.58 2.98 2.30
Shirt 1: 1.32 1.62 1.92 0.88 1.50 1.30
Shirt 2: 0.41 0.83 0.53 0.32 1.62

(a) Give an ANOVA table for these data, and perform and interpret the F test
for the differences between brands.

(b) Test whether, on average, these brands of coats are sturdier than these
brands of shirts.

(c) Give three contrasts that are mutually orthogonal and orthogonal to the
contrast used in (b). Compute the sums of squares for all four contrasts.

(d) Give a 95% confidence interval for the difference in sturdiness between
shirt Brands 1 and 2. Is one brand significantly sturdier than the other?



 



Chapter 5

Multiple Comparison Techniques

In analyzing a linear model we can examine as many single degree of freedom
hypotheses as we want. If we test all of these hypotheses at, say, the 0.05 level, then
the (weak) experimentwise error rate (the probability of rejecting at least one of
these hypotheses when all are true) will be greater than 0.05. Multiple comparison
techniques are methods of performing the tests so that if all the hypotheses are
true, then the probability of rejecting any of the hypotheses is no greater than some
specified value, i.e., the experimentwise error rate is controlled.

A multiple comparison method can be said to be more powerful than a competing
method if both methods control the experimentwise error rate at the same level, but
the method in question rejects hypotheses more often than its competitor. Being
more powerful, in this sense, is a mixed blessing. If one admits the idea that a null
hypothesis really can be true (an idea that I am often loath to admit), then the purpose
of a multiple comparison procedure is to identify which hypotheses are true and
which are false. The more powerful of two multiple comparison procedures will be
more likely to correctly identify hypotheses that are false as being false. It will also
be more likely to incorrectly identify hypotheses that are true as being false.

A related issue is that of examining the data before deciding on the hypotheses. If
the data have been examined, an hypothesis may be chosen to test because it looks
as if it is likely to be significant. The nominal significance level of such a test is
invalid. In fact, when doing multiple tests by any standard method, nearly all the
nominal significance levels are invalid. For some methods, however, selecting the
hypotheses after examining the data make the error levels intolerably bad.

The sections of this chapter contain discussions of individual multiple compar-
ison methods. The methods discussed are Scheffé’s method, the Least Significant
Difference (LSD) method, the Bonferroni method, Tukey’s Honest Significant Dif-
ference (HSD) method, and multiple range tests. The section on multiple range tests
examines both the Newman–Keuls method and Duncan’s method. The final section
of the chapter compares the various methods. For a more complete discussion of
multiple comparison methods, see Miller (1981) or, more recently, Hochberg and
Tamhane (1987) or Hsu (1996). Miller’s book includes several methods that are not
discussed here. Christensen (1996a) discusses the methods of this chapter at a more
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applied level, discusses Dunnett’s method for comparing treatments with a control,
and discusses Ott’s analysis of means method.

5.1 Scheffé’s Method

Scheffé’s method of multiple comparisons is an omnibus technique that allows one
to test any and all single degree of freedom hypotheses that put constraints on a
given subspace. It provides the assurance that the experimentwise error rate will not
exceed a given level α . Typically, this subspace will be for fitting a set of parameters
after fitting the mean, and in ANOVA problems is some sort of treatment space.

It is, of course, easy to find silly methods of doing multiple comparisons. One
could, for example, always accept the null hypothesis. However, if the subspace is
of value in fitting the model, Scheffé’s method assures us that there is at least one
hypothesis in the subspace that will be rejected. That is, if the F test is significant
for testing that the subspace adds to the model, then there exists a linear hypothesis,
putting a constraint on the subspace, that will be deemed significant by Scheffé’s
method.

Scheffé’s method is that an hypothesis H0 : λ ′β = 0 is rejected if

SS(λ ′β )/s
MSE

> F(1−α,s,dfE),

where SS(λ ′β ) is the sum of squares for the usual test of the hypothesis, s is the
dimension of the subspace, and λ ′β = 0 is assumed to put a constraint on the sub-
space.

In terms of a one-way analysis of variance where the subspace is the space for
testing equality of the treatment means, Scheffé’s method applies to testing whether
all contrasts equal zero. With t treatments, a contrast is deemed significantly differ-
ent from zero at the α level if the sum of squares for the contrast divided by t − 1
and the MSE is greater than F(1−α, t −1,dfE).

Theorem 5.1.1 given below leads immediately to the key properties of Scheffé’s
method. Recall that if ρ ′Xβ = 0 puts a constraint on a subspace, then Mρ is an
element of that subspace. Theorem 5.1.1 shows that the F test for the subspace re-
jects if and only if the Scheffé test rejects the single degree of freedom hypothesis
ρ ′Xβ = 0 for some ρ with Mρ in the subspace. The proof is accomplished by find-
ing a vector in the subspace having the property that the sum of squares for testing
the corresponding one degree of freedom hypothesis equals the sum of squares for
the entire space. Of course, the particular vector that has this property depends on
Y . To emphasize this dependence on Y , the vector is denoted mY . In the proof of the
theorem, mY is seen to be just the projection of Y onto the subspace (hence the use
of the letter m in the notation).

It follows that for a one-way ANOVA there is always a contrast for which the
contrast sum of squares equals the sum of squares for treatments. The exact nature
of this contrast depends on Y and often the contrast is completely uninterpretable.
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Nevertheless, the existence of such a contrast establishes that Scheffé’s method re-
jects for some contrast if and only if the test for equality of treatments is rejected.

Theorem 5.1.1. Consider the linear model Y = Xβ + e and let M∗ be the per-
pendicular projection operator onto some subspace of C(X). Let r(M∗) = s. Then

Y ′M∗Y/s
MSE

> F(1−α,s,dfE)

if and only if there exists a vector mY such that MmY ∈C(M∗) and

SS(m′
Y Xβ )/s

MSE
> F(1−α,s,dfE).

PROOF. ⇒ We want to find a vector mY so that if the F test for the subspace
is rejected, then MmY is in C(M∗), and the hypothesis m′

Y Xβ = 0 is rejected by
Scheffé’s method. If we find mY within C(M∗) and SS(m′

Y Xβ ) = Y ′M∗Y , we are
done. Let mY = M∗Y .

As in Section 3.5, SS(m′
Y Xβ ) = Y ′M∗mY [m′

Y M∗mY ]−1m′
Y M∗Y . Since

M∗mY = M∗M∗Y = M∗Y = mY , we have SS(m′
Y Xβ ) = Y ′mY [m′

Y mY ]−1m′
YY =

(Y ′M∗Y )2/Y ′M∗Y = Y ′M∗Y , and we are finished.
⇐ We prove the contrapositive, i.e., if Y ′M∗Y/s MSE ≤ F(1−α,s,dfE), then

for any ρ such that Mρ ∈C(M∗), we have SS(ρ ′Xβ)/s MSE ≤ F(1−α,s,dfE). To
see this, observe that

SS(ρ ′Xβ ) = Y ′[Mρ(ρ ′Mρ)−1ρ ′M]Y.

Since [Mρ(ρ ′Mρ)−1ρ ′M] is the perpendicular projection matrix onto a subspace of
C(M∗),

Y ′[Mρ(ρ ′Mρ)−1ρ ′M]Y ≤ Y ′M∗Y

and we are done. �

Y ′M∗Y is the sum of squares for testing the reduced model Y = (M −M∗)γ + e.
If this null model is true,

Pr
[

Y ′M∗Y
s MSE

> F(1−α,s,dfE)
]

= α.

The theorem therefore implies that the experimentwise error rate for testing all hy-
potheses ρ ′Xβ = 0 with Mρ ∈ C(M∗) is exactly α . More technically, we wish to
test the hypotheses

H0 : λ ′β = 0 for λ ∈ {λ |λ ′ = ρ ′X with Mρ ∈C(M∗)}.

The theorem implies that
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Pr
[SS(λ ′β )/s

MSE
> F(1−α,s,dfE) for some λ ,λ ′ = ρ ′X ,Mρ ∈C(M∗)

]
= α ,

so the experimentwise error rate is α . The theorem also implies that if the omnibus
F test rejects, there exists some single degree of freedom test that will be rejected.
Note that which single degree of freedom tests are rejected depends on what the data
are, as should be expected.

Scheffé’s method can also be used for testing a subset of the set of all hypotheses
putting a constraint on C(M∗). For testing a subset, the experimentwise error rate
will be no greater than α and typically much below α . The primary problem with
using Scheffé’s method is that, for testing a finite number of hypotheses, the exper-
imentwise error rate is so much below the nominal rate of α that the procedure has
very little power. (On the other hand, you can be extra confident, when rejecting
with Scheffé’s method, that you are not making a type I error.)

Suppose that we want to test

H0 : λ ′
kβ = 0, k = 1, . . . ,r.

The constraints imposed by these hypotheses are Mρk, k = 1, . . . ,r, where λ ′
k =

ρ ′
kX . If C(M∗) is chosen so that C(Mρ1, . . . ,Mρr) ⊂ C(M∗), then by the previous

paragraph, if H0 is true,

Pr
[SS(λ ′

kβ )/s
MSE

> F(1−α,s,dfE) for some k, k = 1, . . . ,r
]
≤ α.

For testing a finite number of hypotheses, it is possible to reject the overall F test
but not reject for any of the specific hypotheses.

We now show that the most efficient procedure is to choose C(Mρ1, . . . ,Mρr) =
C(M∗). In particular, given that a subspace contains the necessary constraints, the
smaller the rank of the subspace, the more powerful is Scheffé’s procedure. Consider
two subspaces, one of rank s and another of rank t, where s > t. Both procedures
guarantee that the experimentwise error rate is no greater than α . The more powerful
procedure is the one that rejects more often. Based on the rank s subspace, Scheffé’s
method rejects if

SS(λ ′β )/MSE > sF(1−α,s,dfE).

For the rank t subspace, the method rejects if

SS(λ ′β )/MSE > tF(1−α,t,dfE).

With s > t, by Theorem C.4,

sF(1−α,s,dfE) ≥ tF(1−α,t,dfE).

One gets more rejections with the rank t space, hence it gives a more powerful
procedure.
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EXAMPLE 5.1.2. One-Way ANOVA.
Consider the model

yi j = μ +αi + ei j, ei js i.i.d. N(0,σ 2),

i = 1,2,3,4, j = 1, . . . ,N. To test the three contrast hypotheses

λ ′
1β = α1 +α2 −α3 −α4 = 0,

λ ′
2β = α1 −α2 +α3 −α4 = 0,

λ ′
3β = α1 +0+0−α4 = 0,

we can observe that the contrasts put constraints on the space for testing H0 : α1 =
α2 = α3 = α4 and the space has rank 3. We can apply Scheffé’s method: reject
H0 : λ ′

kβ = 0 if
SS(λ ′

kβ )/3
MSE

> F(1−α ,3,4(N −1)).

A more efficient method is to notice that λ ′
1β +λ ′

2β = 2λ ′
3β . This is true for any

β , so λ ′
1 + λ ′

2 = 2λ ′
3 and, using (4.2.2), Mρ1 + Mρ2 = 2Mρ3. Since λ1 and λ2 are

linearly independent, Mρ1 and Mρ2 are also; thus C(Mρ1,Mρ2,Mρ3) is a rank 2
space and Scheffé’s method can be applied as: reject H0 : λ ′

kβ = 0 if

SS(λ ′
kβ )/2

MSE
> F(1−α ,2,4(N −1)).

One virtue of Scheffé’s method is that since it is really a test of all the hypotheses
in a subspace, you can look at the data to help you pick an hypothesis and the test
remains valid.

Scheffé’s method can also be used to find simultaneous confidence intervals. To
show this we need some additional structure for the problem. Let X = [X0,X1] and
let β ′ = [β ′

0,β ′
1], so that

Y = X0β0 +X1β1 + e.

Let M and M0 be the perpendicular projection operators onto C(X) and C(X0), re-
spectively, and let M∗ = M −M0. We seek to find simultaneous confidence inter-
vals for all estimable functions ρ ′X1β1. Note that ρ ′X1β1 is estimable if and only if
ρ ′X0 = 0, which occurs if and only if 0 = M0ρ = Mρ −M∗ρ , i.e., Mρ = M∗ρ . It fol-
lows that if ρ ′X1β1 is an estimable function, then ρ ′X1β1 = ρ ′MX1β1 = ρ ′M∗X1β1.
Conversely, for any vector ρ , ρ ′M∗(X0β0 +X1β1) = ρ ′M∗X1β1 is an estimable func-
tion. Proceeding as in Section 3.7, and observing that M∗Xβ = M∗X0β0 +M∗X1β1 =
M∗X1β1, we have

(Y −X1β1)′M∗(Y −X1β1)/r(M∗)
MSE

∼ F(r(M∗),dfE,0),

so that
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Pr
[ (Y −X1β1)′M∗(Y −X1β1)/r(M∗)

MSE
≤ F(1−α ,r(M∗),dfE)

]
= 1−α

or, equivalently,

1−α = Pr
[
(Y −X1β1)′M∗ρ(ρ ′M∗ρ)−1ρ ′M∗(Y −X1β1)/r(M∗)

MSE

≤ F(1−α,r(M∗),dfE) for all ρ
]

= Pr
[ |ρ ′M∗Y −ρ ′M∗X1β1|

≤
√

(ρ ′M∗ρ)(MSE)r(M∗)F(1−α,r(M∗),dfE) for all ρ
]
.

This leads to obvious confidence intervals for all functions ρ ′M∗X1β1 and thus to
confidence intervals for arbitrary estimable functions ρ ′X1β1.

EXAMPLE 5.1.3. One-Way ANOVA.
Consider the model yi j = μ + αi + ei j, ei js independent N(0,σ 2), i = 1, . . . , t, j =
1, . . . ,Ni, and the space for testing α1 = α2 = · · · = αt . The linear functions that
put constraints on that space are the contrasts. Scheffé’s method indicates that H0 :
∑t

i=1 λiαi = 0 should be rejected if

(∑λiȳi·)2/(∑λ 2
i /Ni)

(t −1)MSE
> F(1−α,t −1,dfE).

To find confidence intervals for contrasts, write X = [J,X1] and β ′ = [μ ,β ′
1],

where β ′
1 = [α1, . . . ,αt ]. We can get simultaneous confidence intervals for estimable

functions ρ ′X1β1. As discussed in Chapter 4, the estimable functions ρ ′X1β1 are
precisely the contrasts. The simultaneous (1−α)100% confidence intervals have
limits

∑λiȳi· ±
√

(t −1)F(1−α,t −1,dfE)MSE
(
∑λ 2

i /Ni
)
.

5.2 Least Significant Difference Method

The Least Significant Difference (LSD) method is a general technique for testing
a fixed number of hypotheses λ ′

kβ = 0, k = 1, . . . ,r, chosen without looking at the
data. The constraints imposed by these hypotheses generate some subspace. (Com-
monly, one identifies the subspace first and picks hypotheses that will generate
it.) The technique is a simple two-stage procedure. First, do an α level F test for
whether the subspace adds to the model. If this omnibus F test is not significant, we
can conclude that the data are consistent with λ ′

kβ = 0, k = 1, . . . ,r. If the F test is
significant, we want to identify which hypotheses are not true. To do this, test each
hypothesis λ ′

kβ = 0 with a t test (or an equivalent F test) at the α level.
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The experimentwise error rate is controlled by using the F test for the subspace.
When all of the hypotheses are true, the probability of identifying any of them as
false is no more than α , because α is the probability of rejecting the omnibus F
test. Although the omnibus F test is precisely a test of λ ′

kβ = 0, k = 1, . . . ,r, even if
the F test is rejected, the LSD method may not reject any of the specific hypotheses
being considered. For this reason, the experimentwise error rate is less than α .

The LSD method is more powerful than Scheffé’s method. If the hypotheses
generate a space of rank s, then Scheffé’s method rejects if SS(λ ′

kβ )/MSE > sF(1−
α,s,dfE). The LSD rejects if SS(λ ′

kβ )/MSE > F(1−α,1,dfE). By Theorem C.4,
sF(1−α,s,dfE) > F(1−α,1,dfE), so the LSD method will reject more often than
Scheffé’s method. Generally, the LSD method is more powerful than other methods
for detecting when λ ′

kβ �= 0; but if λ ′
kβ = 0, it is more likely than other methods to

incorrectly identify the hypothesis as being different from zero.
Note that it is not appropriate to use an F test for a space that is larger than the

space generated by the r hypotheses. Such an F test can be significant for reasons
completely unrelated to the hypotheses, thus invalidating the experimentwise error
rate.

Exercise 5.1 Consider the ANOVA model

yi j = μ +αi + ei j,

i = 1, . . . , t, j = 1, . . . ,N, with the ei js independent N(0,σ 2). Suppose it is desired
to test the hypotheses αi = αi′ for all i �= i′. Show that there is one number, called
the LSD, so that the least significant difference rejects αi = αi′ precisely when

|ȳi· − ȳi′ ·| > LSD.

Exercise 5.2 In the model of Exercise 5.1, let t = 4. Suppose we want to use the
LSD method to test contrasts defined by

Name λ1 λ2 λ3 λ4
A 1 1 −1 −1
B 0 0 1 −1
C 1/3 1/3 1/3 −1

Describe the procedure. Give test statistics for each test that is to be performed.

5.3 Bonferroni Method

Suppose we have chosen, before looking at the data, a set of r hypotheses to test,
say, λ ′

kβ = 0, k = 1, . . . ,r. The Bonferroni method consists of rejecting H0 : λ ′
kβ = 0

if
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SS(λ ′
kβ)

MSE
> F
(

1− α
r

,1,dfE
)

.

The Bonferroni method simply reduces the significance level of each individual
test so that the sum of the significance levels is no greater than α . (In fact, the
reduced significance levels do not have to be α/r as long as the sum of the individual
significance levels is α .)

This method rests on a Bonferroni inequality. For sets A1, . . . ,Ar, Pr(
⋃r

k=1 Ak) ≤
∑r

k=1 Pr(Ak). (This inequality is nothing more than the statement that a probability
measure is finitely subadditive.) If all the hypotheses λ ′

kβ = 0, k = 1, . . . ,r are true,
then the experimentwise error rate is

Pr
(

SS(λ ′
kβ ) > MSE F

(
1− α

r
,1,dfE

)
for some k

)
= Pr

(
r⋃

k=1

[
SS(λ ′

kβ ) > MSE F
(

1− α
r

,1,dfE
)])

≤
r

∑
k=1

Pr
(

SS(λ ′
kβ) > MSE F

(
1− α

r
,1,dfE

))
=

r

∑
k=1

α
r

= α.

If the hypotheses to be tested are chosen after looking at the data, the individual
significance levels of α/r are invalid, so the experimentwise error rate has not been
controlled.

Given that the subspace F test is rejected, the LSD method is more powerful than
the Bonferroni method because F

(
1− α

r ,1,dfE
)

> F(1−α,1,dfE). The Bonfer-
roni method is designed to handle a finite number of hypotheses, so it is not surpris-
ing that it is usually a more powerful method than Scheffé’s method for testing the
r hypotheses if r is not too large.

5.4 Tukey’s Method

Tukey’s method, also known as the Honest Significant Difference (HSD) method, is
designed to compare all pairs of means for a set of independent normally distributed
random variables with a common variance. Let yi ∼ N(μi,σ2), i = 1, . . . , t, let the
yis be independent, and let S2 be an estimate of σ 2 with S2 independent of the yis
and

vS2

σ 2 ∼ χ2(v).

Tukey’s method depends on knowing the distribution of the Studentized range when
μ1 = μ2 = · · · = μt , i.e., we need to know that
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Q ≡ maxi yi −mini yi

S
∼ Q(t,v)

and we need to be able to find percentage points of the Q(t,v) distribution. These
are tabled in many books on statistical methods, e.g., Christensen (1996a), Snedecor
and Cochran (1980), and Kutner, Nachtsheim, Neter, and Li (2005).

If the observed value of Q is too large, the null hypothesis H0 : μ1 = · · · = μt
should be rejected. That is because any differences in the μis will tend to make the
range large relative to the distribution of the range when all the μis are equal. Since
the hypothesis H0 : μ1 = · · · = μt is equivalent to the hypothesis H0 : μi = μ j for all
i and j, we can use the Studentized range test to test all pairs of means. Reject the
hypothesis that H0 : μi = μ j if

|yi − y j|
S

> Q(1−α,t,v),

where Q(1−α,t,v) is the (1−α)100 percentage point of the Q(t,v) distribution.
If H0 : μi = μ j for all i and j is true, then at least one of these tests will reject H0 if
and only if

maxi yi −mini yi

S
> Q(1−α,t,v),

which happens with probability α . Thus the experimentwise error rate is exactly α .

EXAMPLE 5.4.1. Two-Way ANOVA.
Consider the model

yi jk = μ +αi +β j + ei jk, ei jks i.i.d. N(0,σ 2),

i = 1, . . . ,a, j = 1, . . . ,b, k = 1, . . . ,N. Suppose we want to test the hypotheses H0 :
β j = β j′ for all j �= j′. Consider the ȳ· j· values. Here

ȳ· j· ∼ N
(
μ + ᾱ· +β j,σ 2/aN

)
and the ȳ· j·s are independent because ȳ· j· depends only on ē· j· for its randomness;
and since ē· j· and ē· j′· are based on disjoint sets of the ei jks, they must be inde-
pendent. We will see in Section 7.1 that the ȳ· j·s are least squares estimates of the
μ + ᾱ· +β js, so the ȳ· j·s must be independent of the MSE . It follows quickly that if
H0 : β1 = · · · = βb is true, then

max j ȳ· j· −min j ȳ· j·√
MSE/aN

∼ Q(b,dfE);

and we reject H0 : β j = β j′ if

|ȳ· j· − ȳ· j′·| > Q(1−α,b,dfE)
√

MSE/aN.
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Note that Tukey’s method provides a competitor to the usual analysis of variance
F test for the hypothesis H0 : β1 = · · ·= βb. Also, Tukey’s method is only applicable
when all the means being used are based on the same number of observations.

5.5 Multiple Range Tests: Newman–Keuls and Duncan

The Newman–Keuls multiple range method is a competitor to the Tukey method.
It looks at all pairs of means. In fact, it amounts to a sequential version of Tukey’s
method. Using the notation of the previous section, order the yis from smallest to
largest, say

y(1) ≤ y(2) ≤ ·· · ≤ y(t),

and define μ(i) = μ j when y(i) = y j. Note that the μ(i)s need not be ordered in any
particular way. However, the Newman–Keuls method acts as if the μ(i)s are also
ordered. With this notation, we can write the Studentized range as

Q =
y(t)− y(1)

S
.

The Newman–Keuls method rejects H0 : μ(t) = μ(1) if y(t)−y(1) > SQ(1−α ,t,v).
If this hypothesis is not rejected, stop. All means are considered equal. If this hy-
pothesis is rejected, we continue.

The next step tests two hypotheses. H0 : μ(t−1) = μ(1) is rejected if y(t−1)−y(1) >
SQ(1−α ,t − 1,v). H0 : μ(t) = μ(2) is rejected if y(t) − y(2) > SQ(1−α,t − 1,v).
If μ(t−1) = μ(1) is not rejected, then μ(1),μ(2), . . . ,μ(t−1) are assumed to be equal,
and no more tests concerning only those means are performed. Similar conclusions
hold if μ(t) = μ(2) is not rejected. If either hypothesis is rejected, the next round of
hypotheses is considered.

The next round of hypotheses includes three hypotheses: H0 : μ(t) = μ(3), H0 :
μ(t−1) = μ(2), and H0 : μ(t−2) = μ(1). The hypothesis H0 : μ(t−3+i) = μ(i) is rejected
if y(t−3+i) − y(i) > SQ(1−α,t −2,v) for i = 1,2,3.

The procedure continues until, at the last round, the hypotheses H0 : μ(i) = μ(i−1),
i = 2, . . . , t, are considered. An hypothesis is rejected if y(i) = y(i−1) > SQ(1 −
α,2,v).

Remember that if, say, H0 : μ(t−1) = μ(1) is not rejected, we will never test H0 :
μ(t−1) = μ(2) or H0 : μ(t−2) = μ(1) in the next round or any other hypothesis in any
other round that involves only μ(1),μ(2), . . . ,μ(t−1).

The experimentwise error rate is exactly α because if H0 : μ1 = · · · = μt is true,
the Newman–Keuls procedure will conclude that there is a difference in the means
if and only if the Tukey method concludes that there is a difference. Because Q(1−
α,2,v) < Q(1−α ,3,v) < · · · < Q(1−α,t − 1,v) < Q(1−α,t,v), the Newman–
Keuls method will reject the hypothesis that a pair of means is equal more often
than Tukey’s method. The Newman–Keuls method is thus more powerful. On the
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other hand, for pairs of μs that are equal, the Newman–Keuls method will make
more mistakes than the Tukey method.

EXAMPLE 5.5.1. Let α = .01, v = 10, S = 1, t = 5, and y1 = 6.5, y2 = 1.2, y3 =
6.9, y4 = 9.8, y5 = 3.4. We need the numbers Q(0.99,5,10) = 6.14, Q(0.99,4,10) =
5.77, Q(0.99,3,10) = 5.27, Q(0.99,2,10) = 4.48. Ordering the yis gives

i 2 5 1 3 4
yi 1.2 3.4 6.5 6.9 9.8

To test H0 : μ4 = μ2, consider 9.8−1.2 = 8.6, which is larger than SQ(0.99,5,10) =
6.14. There is a difference. Next test H0 : μ2 = μ3. Since 6.9−1.2 = 5.7 is less than
5.77, we conclude that μ2 = μ5 = μ1 = μ3. We do no more tests concerning only
those means. Now test H0 : μ5 = μ4. Since 9.8− 3.4 = 6.4 > 5.77, we reject the
hypothesis.

We have concluded that μ2 = μ5 = μ1 = μ3, so the next allowable test is H0 :
μ1 = μ4. Since 9.8−6.5 = 3.4 < 5.27, we conclude that μ1 = μ3 = μ4.

Drawing lines under the values that give no evidence of a difference in means,
we can summarize our results as follows:

i 2 5 1 3 4
yi 1.2 3.4 6.5 6.9 9.8

Note that if we had concluded that μ2 �= μ3, we could test H0 : μ2 = μ1. The
test would be 6.5− 1.2 = 5.3 > 5.27, so we would have rejected the hypothesis.
However, since we concluded that μ2 = μ5 = μ1 = μ3, we never get to do the test
of μ2 = μ1.

Duncan has a multiple range test that is similar to Newman–Keuls but where the
α levels for the various rounds of tests keep decreasing. In fact, Duncan’s method
is exactly the same as Newman–Keuls except that the α levels used when taking
values from the table of the Studentized range are different. Duncan suggests using
a 1− (1−α)p−1 level test when comparing a set of p means. If there is a total of
t means to be compared, Duncan’s method only controls the experimentwise error
rate at 1−(1−α)t−1. For α = 0.05 and t = 6, Duncan’s method can only be said to
have an experimentwise error rate of 0.23. As Duncan suggests, his method should
only be performed when a corresponding omnibus F test has been found significant.
This two stage procedure may be a reasonable compromise between the powers of
the LSD and Newman–Keuls methods.

5.6 Summary

The emphasis in this chapter has been on controlling the experimentwise error rate.
We have made some mention of power and the fact that increased power can be



116 5 Multiple Comparison Techniques

a mixed blessing. The really difficult problem for multiple comparison procedures
is not in controlling the experimentwise error rate, but in carefully addressing the
issues of power and the sizes of individual tests.

The discussion of Duncan’s multiple range test highlights an interesting fact
about multiple comparison methods. Any method of rejecting hypotheses, if pre-
ceded by an appropriate omnibus F test, is a valid multiple comparison procedure,
valid in the sense that the experimentwise error rate is controlled. For example, if
you do an F test first and stop if the F test does not reject, you can then 1) reject
all individual hypotheses if the analysis is being performed on your mother’s birth
date, 2) reject no individual hypotheses on other dates. As stupid as this is, the ex-
perimentwise error rate is controlled. Intelligent choice of a multiple comparison
method also involves consideration of the error rates (probabilities of type I errors)
for the individual hypotheses. The main question is: If not all of the hypotheses are
true, how many of the various kinds of mistakes do the different methods make?

A reasonable goal might be to have the experimentwise error rate and the error
rates for the individual hypotheses all no greater than α . The Scheffé, LSD, Bonfer-
roni, Tukey, and Newman–Keuls methods all seem to aim at this goal. The Duncan
method does not seem to accept this goal.

Suppose we want α level tests of the hypotheses

H0 : λ ′
kβ = 0, k ∈ Ω .

A reasonable procedure is to reject an hypothesis if

SS(λ ′
kβ )/MSE > C

for some value C. For example, the LSD method takes C = F(1−α,1,dfE). If
Ω consists of all the hypotheses in a t-dimensional space, Scheffé’s method takes
C = tF(1−α,t,dfE). If Ω is a finite set, say Ω = {1, . . . ,r}, then the Bonferroni
method takes C = F(1−α/r,1,dfE).

To control the level of the individual test H0 : λ ′
kβ = 0, one needs to pick C as the

appropriate percentile of the distribution of SS(λ ′
kβ )/MSE . At one extreme, if one

ignores everything else that is going on and if λ ′
kβ was chosen without reference to

the data, the appropriate distribution for SS(λ ′
kβ )/MSE is F(1,dfE). At the other

extreme, if one picks λ ′
kβ so that SS(λ ′

kβ ) is maximized in a t-dimensional space,
then the appropriate distribution for SS(λ ′

kβ )/MSE is t times an F(t,dfE); it is clear
that the probability of rejecting any hypothesis other than that associated with max-
imizing SS(λ ′

kβ ) must be less than α . Thus, in the extremes, we are led to the LSD
and Scheffé methods. What one really needs is the distribution of SS(λ ′

kβ )/MSE
given λ ′

kβ = 0, and all the information contained in knowing λ ′
jβ for j ∈ Ω −{k}

and that SS(λ ′
jβ ) for j ∈ Ω −{k} will also be observed. Since the desired distri-

bution will depend on the λ ′
jβ s, and they will never be known, there is no hope of

achieving this goal.
The quality of the LSD method depends on how many hypotheses are to be tested.

If only one hypothesis is to be tested, LSD is the method of choice. If all of the hy-
potheses in a subspace are to be tested, LSD is clearly a bad choice for testing
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the hypothesis that maximizes SS(λ ′
kβ ) and also a bad choice for testing other hy-

potheses that look likely to be significant. For testing a reasonably small number of
hypotheses that were chosen without looking at the data, the LSD method seems to
keep the levels of the individual tests near the nominal level of α . (The fact that the
individual hypotheses are tested only if the omnibus F test is rejected helps keep the
error rates near their nominal levels.) However, as the number of hypotheses to be
tested increases, the error rate of the individual tests can increase greatly. The LSD
method is not very responsive to the problem of controlling the error level of each
individual test, but it is very powerful in detecting hypotheses that are not zero.

Scheffé’s method puts an upper bound of α on the probability of type I error for
each test, but for an individual hypothesis chosen without examining the data, the
true probability of type I error is typically far below α . Scheffé’s method controls
the type I error but at a great cost in the power of each test.

The Bonferroni method uses the same distributions for SS(λ ′
kβ )/MSE, k ∈ Ω ,

as the LSD method uses. The difference is in the different ways of controlling the
experimentwise error rate. Bonferroni reduces the size of each individual test, while
LSD uses an overall F test. The Bonferroni method, since it reduces the size of each
test, does a better job of controlling the error rate for each individual hypothesis
than does the LSD method. This is done at the cost of reducing the power relative
to LSD. For a reasonable number of hypotheses, the Bonferroni method tends to
be more powerful than Scheffé’s method and tends to have error levels nearer the
nominal than Scheffé’s method.

A similar evaluation can be made of the methods for distinguishing between
pairs of means. The methods that are most powerful have the highest error rates for
individual hypotheses. From greatest to least power, the methods seem to rank as
LSD, Duncan, Newman–Keuls, Tukey. Scheffé’s method should rank after Tukey’s.
The relative position of Bonferroni’s method is unclear.

When deciding on a multiple comparison method, one needs to decide on the
importance of correctly identifying nonzero hypotheses (high power) relative to the
importance of incorrectly identifying zero hypotheses as being nonzero (controlling
the type I error). With high power, one will misidentify some zero hypotheses as
being nonzero. When controlling the type I error, one is more likely not to identify
some nonzero hypotheses as being nonzero.

Table 5.1 contains a summary of the methods considered in this chapter. It lists
the hypotheses for which each method is appropriate, the method by which the
experimentwise error rate is controlled, and comments on the relative powers and
probabilities of type I error (error rates) for testing individual hypotheses.

Exercise 5.3 Show that for testing all hypotheses in a six-dimensional space with
30 degrees of freedom for error, if the subspace F test is omitted and the nominal
LSD level is α = 0.005, then the true error rate must be less than 0.25.

Hint: Try to find a Scheffé rejection region that is comparable to the LSD rejec-
tion region.
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Table 5.1 Summary of Multiple Comparison Methods

Method Hypotheses Control Comments
Scheffé Any and all F test for Lowest error rate and power

hypotheses subspace of any method. Good for
constraining data snooping. HSD better
a particular for pairs of means.
subspace

LSD Any and all F test for Highest error rate and power
hypotheses subspace of any method. Best suited
constraining for a finite number of
a particular hypotheses.
subspace

Bonferroni Any finite set of Bonferroni Most flexible method. Often
hypotheses inequality similar to HSD for pairs of

means.
Tukey’s All differences Studentized Lowest error rate and power
HSD between pairs range test for pairs of means.

of means
Newman– All differences Studentized Error rate and power inter-
Keuls between pairs range test mediate between HSD and

of means Duncan.
Duncan All differences Studentized Error rate and power inter-

between pairs range test mediate between Newman–
of means or F test Keuls and LSD.

5.6.1 Fisher Versus Neyman–Pearson

I have tried to maintain a Fisherian view towards statistical inference in this edition
of the book. However, I think multiple comparison procedures are fundamentally a
tool of Neyman–Pearson testing. Fisherian testing is about measuring the evidence
against the null model, while Neyman–Pearson testing is about controlling error
rates. Controlling the experimentwise error rate seems anti-Fisherian to me.

Fisher is often credited with (blamed for) the LSD method. However, Fisher
(1935, Chapter 24) did not worry about the experimentwise error rate when mak-
ing multiple comparisons using his least significant difference method in analysis of
variance. He did, however, worry about drawing inappropriate conclusions by using
an invalid null distribution for tests determined by examining the data. In particular,
Fisher proposed a Bonferroni correction when comparing the largest and smallest
sample means.

If you are going to look at all pairs of means, then the appropriate distribution for
comparing the largest and smallest sample means is the Studentized range. It gives
the approriate P value. An appropriate P value for other comparisons is difficult, but
P values based on the Studentized range should be conservative (larger than the true
P value). Similar arguments can be made for other procedures.
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5.7 Additional Exercises

Exercise 5.7.1 Compare all pairs of means for the blue jeans exercise of Chap-
ter 4. Use the following methods:

(a) Scheffé’s method, α = 0.01,
(b) LSD method, α = 0.01,
(c) Bonferroni method, α = 0.012,
(d) Tukey’s HSD method, α = 0.01,
(e) Newman–Keuls method, α = 0.01.

Exercise 5.7.2 Test whether the four orthogonal contrasts you chose for the
blue jeans exercise of Chapter 4 equal zero. Use all of the appropriate multiple
comparison methods discussed in this chapter to control the experimentwise error
rate at α = 0.05 (or thereabouts).

Exercise 5.7.3 Compare all pairs of means in the coat–shirt exercise of Chap-
ter 4. Use all of the appropriate multiple comparison methods discussed in this chap-
ter to control the experimentwise error rate at α = 0.05 (or thereabouts).

Exercise 5.7.4 Suppose that in a balanced one-way ANOVA the treatment means
ȳ1·, . . . , ȳt· are not independent but have some nondiagonal covariance matrix V .
How can Tukey’s HSD method be modified to accommodate this situation?

Exercise 5.7.5 For an unbalanced one-way ANOVA, give the contrast coeffi-
cients for the contrast whose sum of squares equals the sum of squares for treat-
ments. Show the equality of the sums of squares.



 



Chapter 6

Regression Analysis

A regression model is any general linear model Y = Xβ +e in which X ′X is nonsin-
gular. X ′X is nonsingular if and only if the n× p matrix X has rank p. In regression
models, the parameter vector β is estimable. Let P′ = (X ′X)−1X ′, then β = P′Xβ .

The simple linear regression model considered in Section 1 is similar to the one-
way ANOVA model considered in Chapter 4 in that the theory of estimation and
testing simplifies to the point that results can be presented in simple algebraic for-
mulae. For the general regression model of Section 2 there is little simplification.
Section 2 also contains brief introductions to nonparametric regression and general-
ized additive models as well as an analysis of a partitioned model. The partitioned
model is important for two reasons. First, the partitioned model appears in many
discussions of regression. Second, the results for the partitioned model are used to
establish the correspondence between the standard regression theory presented in
Section 2 and an alternative approach to regression, based on best prediction and
best linear prediction, presented in Section 3. The approach given in Section 3 as-
sumes that the rows of the model matrix are a random sample from a population
of possible row vectors. Thus, in Section 3, X is a random matrix, whereas in Sec-
tion 2, X is fixed. Section 3 presents the alternative approach which establishes that
best linear prediction also yields the least squares estimates. Sections 4 and 5 dis-
cuss some special correlation coefficients related to best predictors and best linear
predictors. It is established that the natural estimates of these correlation coefficients
can be obtained from standard regression results. Section 6 examines testing for lack
of fit. Finally, Section 7 establishes the basis of the relationship between polynomial
regression and polynomial contrasts in one-way ANOVA.

There is additional material, spread throughout the book, that relates to the ma-
terial in this chapter. Section 2 examines a partitioned model. Partitioned models
are treated in general in Sections 9.1 and 9.2. Chapter 9 also contains an exercise
that establishes the basis of the sweep operator used in regression computations.
The results of Section 7 are extended in Section 7.3 to relate polynomial regres-
sion with polynomial contrasts in a two-way ANOVA. Section 12.2 is an extension
of Section 3. Finally, Chapters 13, 14, and 15 are concerned with topics that are
traditionally considered part of regression analysis.
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There are a number of fine books available on regression analysis. Those that I
refer to most often are Cook and Weisberg (1999), Daniel and Wood (1980), Draper
and Smith (1998), and Weisberg (1985).

6.1 Simple Linear Regression

The model for simple linear regression is yi = β0 +β1xi + ei or Y = Xβ + e, where
β ′ = [β0,β1] and

X ′ =
[

1 1 · · · 1
x1 x2 · · · xn

]
.

Often it is easier to work with the alternative model yi = γ0 + γ1(xi − x̄·) + ei or
Y = X∗γ + e, where γ ′ = [γ0,γ1] and

X ′
∗ =
[

1 1 · · · 1
x1 − x̄· x2 − x̄· · · · xn − x̄·

]
.

Note that C(X) = C(X∗). In fact, letting

U =
[

1 −x̄·
0 1

]
,

we have X∗ = XU and X∗U−1 = X . Moreover, E(Y ) = Xβ = X∗γ = XUγ . Letting
P′ = (X ′X)−1X ′ leads to

β = P′Xβ = P′XUγ = Uγ.

In particular, [
β0
β1

]
=
[

γ0 − γ1x̄·
γ1

]
.

(See also Example 3.1.2.)
To find the least squares estimates and the projection matrix, observe that

X ′
∗X∗ =

[
n 0
0 ∑n

i=1(xi − x̄·)2

]
,

(X ′
∗X∗)−1 =

[
1/n 0
0 1

/
∑n

i=1(xi − x̄·)2

]
,

and, since the inverse of X ′∗X∗ exists, the estimate of γ is

γ̂ = (X ′
∗X∗)−1X ′

∗Y =
[

ȳ·
∑n

i=1(xi − x̄·)yi
/

∑n
i=1(xi − x̄·)2

]
.

Moreover,
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β̂ = U γ̂ ,

so the least squares estimate of β is

β̂ =
[

ȳ· − γ̂1x̄·
γ̂1

]
.

The projection matrix M = X∗(X ′∗X∗)−1X ′∗ is⎡⎢⎢⎣
1
n + (x1−x̄·)2

∑n
i=1(xi−x̄·)2 · · · 1

n + (x1−x̄·)(xn−x̄·)
∑n

i=1(xi−x̄·)2

...
...

1
n + (x1−x̄·)(xn−x̄·)

∑n
i=1(xi−x̄·)2 · · · 1

n + (xn−x̄·)2

∑n
i=1(xi−x̄·)2

⎤⎥⎥⎦ .

The covariance matrix of γ̂ is σ 2(X ′∗X∗)−1; for β̂ it is σ 2(X ′X)−1. The usual tests
and confidence intervals follow immediately upon assuming that e ∼ N(0,σ 2I).

A natural generalization of the simple linear regression model yi = β0 +β1xi +ei
is to expand it into a polynomial, say

yi = β0 +β1xi +β2x2
i + · · ·+βp−1xp−1

i + ei.

Although polynomial regression has some special features that will be discussed
later, at a fundamental level it is simply a linear model that involves an intercept and
p−1 predictor variables. It is thus a special case of multiple regression, the model
treated in the next section.

Exercise 6.1 For simple linear regression, find the MSE , Var(β̂0), Var(β̂1), and
Cov(β̂0, β̂1).

Exercise 6.2 Use Scheffé’s method of multiple comparisons to derive the
Working–Hotelling simultaneous confidence band for a simple linear regression line
E(y) = β0 +β1x.

6.2 Multiple Regression

Multiple regression is any regression problem with p ≥ 2 that is not simple linear
regression. If we take as our model Y = Xβ + e, we have

β̂ = (X ′X)−1X ′Y,

Cov
(

β̂
)

= σ 2(X ′X)−1X ′IX(X ′X)−1 = σ 2(X ′X)−1,

SSR(X) = Y ′MY = β̂ ′(X ′X)β̂ ,
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SSE = Y ′(I −M)Y,

dfE = r(I −M) = n− p.

Since β is estimable, Any linear function λ ′β is estimable. If Y ∼ N(Xβ ,σ 2I),
tests and confidence intervals based on

λ ′β̂ −λ ′β√
MSE λ ′(X ′X)−1λ

∼ t(dfE)

are available.
Suppose we write the regression model as

Y = [X1, . . . ,Xp]

⎡⎢⎣β1
...

βp

⎤⎥⎦+ e.

If we let λ ′
j = (0, . . . ,0,1,0, . . . ,0), with the 1 in the jth place, we have

β̂ j −β j√
MSE λ ′

j(X ′X)−1λ j

∼ t(dfE),

where λ ′
j(X

′X)−1λ j is the jth diagonal element of (X ′X)−1. This yields a test of the
hypothesis H0 : β j = 0. It is important to remember that this t test is equivalent to
the F test for testing the reduced model

Y = [X1, . . . ,Xj−1,Xj+1, . . . ,Xp]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

β1
...

β j−1
β j+1

...
βp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ e

against the full regression model. The t and F tests for β j = 0 depend on all of
the other variables in the regression model. Add or delete any other variable in the
model and the tests change.

SSR(X) can be broken down into single degree of freedom components:

SSR(X) = SSR(X1)+SSR(X2|X1)+SSR(X3|X1,X2)+ · · ·+SSR(Xp|X1, . . . ,Xp−1)
= R(β1)+R(β2|β1)+R(β3|β1,β2)+ · · ·+R(βp|β1, . . . ,βp−1).

Of course, any permutation of the subscripts 1, . . . , p gives another breakdown. The
interpretation of these terms is somewhat unusual. For instance, SSR(X3|X1,X2) is
not the sum of squares for testing any very interesting hypothesis about the full
regression model. SSR(X3|X1,X2) is the sum of squares needed for testing the model
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Y = [X1,X2]
[

β1
β2

]
+ e

against the larger model

Y = [X1,X2,X3]

⎡⎣β1
β2
β3

⎤⎦+ e.

This breakdown is useful in that, for instance,

SSR(Xp−1,Xp|X1, . . . ,Xp−2) = SSR(Xp|X1, . . . ,Xp−1)+SSR(Xp−1|X1, . . . ,Xp−2).

SSR(Xp−1,Xp|X1, . . . ,Xp−2) is the sum of squares needed to test H0 : βp = βp−1 = 0.
Often, multiple regression models are assumed to have a column of 1s in the

model matrix. In that case, the model can be written

yi = β0 +β1xi1 +β2xi2 + · · ·+βp−1xip−1 + ei.

An analysis of variance table is often written for testing this model against the model

yi = β0 + ei,

for which the model matrix consists only of a column of 1s. The table is given below.

ANOVA
Source df SS

β0 1 Y ′ ( 1
n Jn

n
)

Y

Regression p−1 Y ′ (M− 1
n Jn

n
)

Y

Error n− p Y ′ (I −M)Y

Total n Y ′Y

The SSReg from the table can be rewritten as β̂ ′(X ′X)β̂ −C, where C is the
correction factor, i.e., C = Y ′([1/n]Jn

n )Y = n(ȳ·)2.

EXAMPLE 6.2.1. Consider the data given in Table 6.1 on the heating require-
ments for a factory. There are 25 observations on a dependent variable y (the num-
ber of pounds of steam used per month) and 2 independent variables, x1 (the average
atmospheric temperature for the month in ◦F) and x2 (the number of operating days
in the month). The predictor variables are from Draper and Smith (1998).

The parameter estimates, standard errors, and t statistics for testing whether each
parameter equals zero are
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Table 6.1 Steam Data

Obs. Obs.
no. x1 x2 y no. x1 x2 y
1 35.3 20 17.8270 14 39.1 19 19.0198
2 29.7 20 17.0443 15 46.8 23 20.6128
3 30.8 23 15.6764 16 48.5 20 20.7972
4 58.8 20 26.0350 17 59.3 22 28.1459
5 61.4 21 28.3908 18 70.0 22 33.2510
6 71.3 22 31.1388 19 70.0 11 30.4711
7 74.4 11 32.9019 20 74.5 23 36.1130
8 76.7 23 37.7660 21 72.1 20 35.3671
9 70.7 21 31.9286 22 58.1 21 25.7301

10 57.5 20 24.8575 23 44.6 20 19.9729
11 46.4 20 21.0482 24 33.4 20 16.6504
12 28.9 21 15.3141 25 28.6 22 16.5597
13 28.1 21 15.2673

Parameter Estimate SE t
β0 −1.263 2.423 −0.052
β1 0.42499 0.01758 24.18
β2 0.1790 0.1006 1.78

As will be seen from the ANOVA table below, the t statistics have 22 degrees of
freedom. There is a substantial effect for variable x1. The P value for β2 is ap-
proximately 0.10. The estimated covariance matrix for the parameter estimates is
MSE (X ′X)−1. MSE is given in the ANOVA table below. The matrix (X ′X)−1 is

β0 β1 β2
β0 2.77875 −0.01124 −0.10610
β1 −0.01124 0.00015 0.00018
β2 −0.10610 0.00018 0.00479

The analysis of variance table is

ANOVA
Source df SS MS F
β0 1 15270.78 15270.78
Regression 2 1259.32 629.66 298
Error 22 46.50 2.11
Total 25 16576.60

The F statistic is huge. There is a very significant effect due to fitting the regression
variables (after fitting a mean value to the data). One breakdown of the sum of
squares for regression is

SSR(X1|J) = 1252.62
SSR(X2|X1,J) = 6.70.
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We now partition the model matrix and parameter vector in order to get a mul-
tiple regression analogue of the alternative model for simple linear regression. This
alternative model is often discussed in regression analysis and is necessary for es-
tablishing, in the next section, the relationship between multiple regression and best
linear prediction. We can write the regression model as

Y = [J,Z]
[

β0
β∗

]
+ e,

where β∗ = [β1, . . . ,βp−1]′ and

Z =

⎡⎢⎣x11 · · · x1p−1
...

. . .
...

xn1 · · · xnp−1

⎤⎥⎦ .

An alternative way to write the model that is often used is

Y =
[

Jn,

(
I − 1

n
Jn

n

)
Z
][

γ0
γ∗

]
+ e.

The models are equivalent because C[J,Z] =C[J,(I− [1/n]Jn
n )Z]. The second model

is correcting all of the variables in Z for their means, i.e., the second model is

yi = γ0 + γ1(xi1 − x̄·1)+ γ2(xi2 − x̄·2)+ · · ·+ γp−1(xip−1 − x̄·p−1)+ ei.

This is analogous to the alternative model considered for simple linear regression.
We now find formulae for sums of squares and estimation of parameters based on the
adjusted variables (I − [1/n]Jn

n )Z. The formulae derived will be used in subsequent
sections for demonstrating the relationship between regression and best linear pre-
diction. The formulae are also of interest in that some multiple regression computer
programs use them.

The parameters in the two models are related by γ∗ = β∗ and β0 = γ0−(1/n)Jn
1 Zγ∗,

cf. Exercise 6.8.10. Since I − [1/n]Jn
n is the ppo onto C(Jn)⊥, it is easily seen that

C[(I − [1/n]Jn
n )Z] is the orthogonal complement of C(Jn) with respect to C(X);

therefore

SSReg = SS(Z|Jn) = Y ′(M− [1/n]Jn
n )Y

= Y ′(I − [1/n]Jn
n )Z[Z′(I − [1/n]Jn

n )Z]−Z′(I − [1/n]Jn
n )Y.

In order to parallel the theory of best linear prediction, we use the normal equa-
tions to obtain least squares estimates of γ0 and γ∗. Since[

Jn,

(
I − 1

n
Jn

n

)
Z
]′[

Jn,

(
I − 1

n
Jn

n

)
Z
]

=
[

n 0
0 Z′ (I − 1

n Jn
n
)

Z

]
and
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Jn,

(
I − 1

n
Jn

n

)
Z
]′

Y =
[

∑n
i=1 yi

Z′ (I − 1
n Jn

n
)

Y

]
,

the least squares estimates of γ0 and γ∗ are solutions to[
n 0
0 Z′ (I − 1

n Jn
n
)

Z

][
γ0
γ∗

]
=
[

∑n
i=1 yi

Z′ (I − 1
n Jn

n
)

Y

]
.

Equivalently γ̂0 = ȳ· and γ̂∗ is a solution to

Z′
(

I − 1
n

Jn
n

)
Zγ∗ = Z′

(
I − 1

n
Jn

n

)
Y.

Since γ∗ = β∗, we have that γ̂∗ = β̂∗. Since β0 = γ0 − (1/n)Jn
1 Zγ∗ = γ0 − β1x̄·1 −

·· ·−βp−1x̄·p−1, we have β̂0 = γ̂0 − β̂1x̄·1 −·· ·− β̂p−1x̄·p−1.
Finally, from the formula for SSReg developed earlier, the normal equations, and

the fact that γ̂∗ = β̂∗, we get

SSReg = Y ′
(

I − 1
n

Jn
n

)
Z
[

Z′
(

I − 1
n

Jn
n

)
Z
]−

Z′
(

I − 1
n

Jn
n

)
Y

= β̂ ′
∗Z′
(

I − 1
n

Jn
n

)
Z
[

Z′
(

I − 1
n

Jn
n

)
Z
]−

Z′
(

I − 1
n

Jn
n

)
Zβ̂∗

= β̂ ′
∗Z′
(

I − 1
n

Jn
n

)
Zβ̂∗,

where the last equality follows from the definition of a generalized inverse.

6.2.1 Nonparametric Regression and Generalized Additive Models

In general, regression models assume yi = m(xi) + ei, E(ei) = 0, where xi is a p
vector of known predictor variables and m(·) is some function. If m(xi) = x′iβ , the
model is linear. If m(xi) = h(x′iβ ) for a known function h, the model is generalized
linear as discussed in Section 1.4. If m(xi) = h(xi;β ), for a known h depending on
the predictor variables xi and some parameters β , the model is nonlinear regression,
see Christensen (1996a, Chapter 18).

In nonparametric regression, m is not assumed to fall into any such parametric
family. However, by making weak assumptions about m(x), one can often write it
as m(x) = ∑∞

j=1 β jφ j(x) for some class of known functions {φ j}. When x is a scalar,
examples of such classes include polynomials, cosines, and wavelets. In practice,
one fits a linear model

yi =
p

∑
j=1

β jφ j(xi)+ ei, (1)
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where p is large enough to capture the interesting behavior of m(·), see Christensen
(2001, Chapter 7). Note that in the linear model, each of the terms φ j(xi) is a pre-
dictor variable, i.e., the jth column of the model matrix is [φ j(x1), · · · ,φ j(xn)]′.

This “basis function” approach to nonparametric regression involves fitting one
large, complicated linear model. Other approaches involve fitting many simple linear
models. For example, the lowess fit (locally weighted scatterplot smoother) begins
estimation of m(x) by fitting a weighted linear regression to some fraction of the
xis that are nearest x with weights proportional to the distance from x. The linear
model is used only to estimate one point, m(x). One performs a separate fit for a
large number of points xg, and to estimate all of m(x) just connect the dots in the
graph of [xg, m̂(xg)]. Kernel estimation is similar but the weights are determined by
a kernel function and the estimate is just a weighted average, not the result of fitting
a weighted line or plane.

Unfortunately, these methods quickly run into a “curse of dimensionality.” With
the basis function approach and only one predictor variable, it might take, for exam-
ple, p = 8 functions to get an adequate approximation to m(·). No problem! With
2 predictor variables, we could expect to need approximately p = 82 = 64 predic-
tor variables in the linear model. Given a few hundred observations, this is doable.
However, with 5 predictor variables, we could expect to need about p = 85 = 32,768
functions.

One way to get around this curse of dimensionality is to fit generalized additive
models. For example, with 3 predictor variables, x = (x1,x2,x3)′, we might expect
to need p = 83 = 512 terms to approximate m(·). To simplify the problem, we might
assume that m(·) follows a generalized additive model such as

m(x) = f1(x1)+ f23(x2,x3) (2)

or
m(x) = f12(x1,x2)+ f23(x2,x3). (3)

If we need 8 terms to approximate f1(·) and 64 terms to approximate each of the
f jk(·, ·)s, the corresponding linear model for (2) involves fitting only 72 predictor
variables, and for model (3) only 128− 8 = 120 rather than 83 = 512. Fitting f12
and f23 typically duplicates fitting of an f2 term. With the same 8 term approxima-
tions and 5 predictor variables, a generalized additive model that includes all of the
possible f jk(·, ·)s involves only 526 terms, rather than the 32,768 required by a full
implementation of a nonparametric regression.

I should repeat that my use of 8 terms per dimension is merely an illustration.
One might need 5 terms, or 10 terms, or 15 terms. And in two dimensions, one might
need more or less than 82 terms. But these computations illustrate the magnitude of
the problem. It should also be noted that with alternative (nonlinear) methods of
fitting generalized additive models it may be necessary to fit lower order terms, i.e.,
instead of model (3), fit

m(x) = f1(x1)+ f2(x2)+ f3(x3)+ f12(x1,x2)+ f23(x2,x3).
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Another problem with the basis function approach is that it can lead to very
strange results if the number of functions p being fitted is too large. It is well known,
see for example Christensen (1996a, Section 7.11), that fitting high order polyno-
mials can be a bad thing to do. For x a scalar predictor, by a high order polynomial
we mean a polynomial in which the number of polynomial terms p is close to the
number of distinct xi values in the data. If the xi values are all distinct, a high or-
der polynomial will fit every observed data point almost perfectly. The price of this
almost perfect fit to the data is that between the xi values the polynomial can do
very weird and inappropriate things. Thus, we have a model that will work poorly
for future predictions. This behavior is not unique to polynomials. It occurs with all
the standard classes of functions (with the possible exception of wavelets). Similar
problems occur when the xi values are not all distinct.

6.3 General Prediction Theory

General prediction theory provides another approach to regression analysis. It ties in
closely with linear model theory but also with generalized linear models, nonlinear
regression, and nonparametric regression.

One of the great things about writing a technical book is that if you do enough
good mathematics, people will put up with you spouting off once in a while. In
this section, we take up the subject of prediction and its application to linear model
theory. To me, prediction is what science is all about, and I cannot resist the urge
to spout off. If you just want to get to work, skip down to the subsection headed
“General Prediction.”

6.3.1 Discussion

There is a fundamental philosophical conflict in statistics between Bayesians (who
incorporate subjective beliefs into their analyses) and non-Bayesians. On the philo-
sophical issues, the Bayesians seem to me to have much the better of the argument.
(Yes, hard as it may be to believe, the author of this book is a Bayesian.) However, in
the practice of statistics, the non-Bayesians have carried the day. (Although I believe
that the trend is shifting.) Perhaps the most difficult aspect of Bayesian statistics for
non-Bayesians to accept is the incorporation of subjective beliefs. Many scientists
believe that objectivity is of paramount importance, and classical statistics main-
tains the semblance of objectivity. (In fact, classical statistics is rife with subjective
inputs. Choosing an experimental design, choosing independent variables to con-
sider in regression, and any form of data snooping such as choosing contrasts after
looking at the data are examples.)

As Smith (1986) has pointed out, this concept of objectivity is very elusive. Ob-
jectivity is almost indistinguishable from the idea of consensus. If all the “clear
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thinking” people agree on something, then the consensus is (for the time being)
“objective” reality.

Fortunately, the essence of science is not objectivity; it is repeatability. The object
of scientific statistical inference is not the examination of parameters (too often cre-
ated by and for statisticians so that they have something to draw inferences about).
The object of scientific statistical inference is the (correct) prediction of future ob-
servable events. (I bet you were wondering what all this had to do with prediction.)
Parameters are at best a convenience, and parameters are at their best when they are
closely related to prediction (e.g., probabilities of survival). Geisser (1971, 1993)
gives excellent discussions of the predictive approach.

In this book the emphasis has been placed on models rather than on parameters.
Now you know why. Models can be used for prediction. They are an endproduct.
Parameters are an integral part of most models, but they are a tool and not an end in
themselves. Christensen (1995) gives a short discussion on the relation among mod-
els, prediction, and testing. Having now convinced a large portion of the statistical
community of the unreliability of my ideas, I shall return to the issue at hand.

6.3.2 General Prediction

Suppose we have random variables y,x1,x2, . . . ,xp−1. Regression can be viewed as
the problem of predicting y from the values of x1, . . . ,xp−1. We will examine this
problem and consider its relationship to the linear model theory approach to regres-
sion. Let x be the vector x = (x1, . . . ,xp−1)′. A reasonable criterion for choosing a
predictor of y is to pick a predictor f (x) that minimizes the mean squared error,
E[y− f (x)]2. (The MSE defined in linear model theory is a function of the obser-
vations that estimates the theoretical mean squared error defined here.) Note that,
unlike standard linear model theory, the expected value is taken over the joint dis-
tribution of y and x.

The use of an expected squared error criterion presupposes the existence of first
and second moments for y and f (x). Let E(y) = μy, Var(y) = σ 2

y ≡ σyy and let
E[ f (x)] = μ f , Var[ f (x)] = σ f f , and Cov[y, f (x)] = σy f , with similar notations for
other functions of x, e.g., m(x) has σym = Cov[y,m(x)].

The remainder of this section consists of three subsections. The next examines
best predictors, i.e., those functions f (x) that do the best job of predicting y. Without
knowing (or being able to estimate) the joint distribution of x and y, we cannot find
the best predictor, so in Subsection 4 we examine the best predictors among func-
tions f (x) that are restricted to be linear functions of x. These best linear predictors
depend only on the means and covariances of the random variables and are thus rel-
atively easy to estimate. Subsection 4 also examines the relationship between best
linear predictors and least squares estimation. Both the best predictor and the best
linear predictor can be viewed as orthogonal projections in an appropriate vector
space, a subject that is commented on earlier but is amplified in Subsection 5.
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6.3.3 Best Prediction

We now establish that the best predictor is the conditional expectation of y given x.
See Appendix D for definitions and results about conditional expectations.

Theorem 6.3.1. Let m(x) ≡ E(y|x). Then for any other predictor f (x), E[y−
m(x)]2 ≤ E[y− f (x)]2; thus m(x) is the best predictor of y.

PROOF.

E[y− f (x)]2 = E[y−m(x)+m(x)− f (x)]2

= E[y−m(x)]2 +E[m(x)− f (x)]2 +2E{[y−m(x)][m(x)− f (x)]}.

Since both E[y−m(x)]2 and E[m(x)− f (x)]2 are nonnegative, it is enough to show
that E{[y−m(x)][m(x)− f (x)]} = 0. Consider this expectation conditional on x.

E{[y−m(x)][m(x)− f (x)]} = E(E{[y−m(x)][m(x)− f (x)]|x})
= E([m(x)− f (x)]E{[y−m(x)]|x})
= E([m(x)− f (x)]0) = 0

where E{[y−m(x)]|x} = 0 because E(y|x) = m(x). �

The goal of most predictive procedures is to find, or rather estimate, the func-
tion E(y|x) = m(x). Suppose we have a random sample (x′i,yi), i = 1, . . . ,n. In linear
regression, m(xi) = α + x′iβ with α and β unknown. A generalized linear model
assumes a distribution for y given x and that E(yi|xi) = m(xi) = h(α + x′iβ ) for
known h and unknown α and β . Here h is just the inverse of the link function.
The standard nonlinear regression model is a more general version of these. It uses
m(xi) = h(xi;α,β ), where h is some known function but α and β are unknown.
The conditional mean structure of all three parametric models is that of the non-
linear regression model: m(x) = h(x;α,β ), h known. We then become interested in
estimating α and β . Evaluating whether we have the correct “known” form for h
is a question of whether lack of fit exists, see Section 6. Nonparametric regression
is unwilling to assume a functional form h(x;α,β ). The standard nonparametric
regression model is yi = m(xi)+ ei where, conditional on the xis, the eis are inde-
pendent with mean 0 and variance σ 2. In nonparametric regression, m is completely
unknown.

All of these versions of regression involve estimating whatever parts of m(x) are
not assumed to be known. On the other hand, best prediction theory treats m(x) as a
known function, so for models involving α and β it treats them as known.

In Theorem 6.3.3, we present a result that does two things. First, it provides a jus-
tification for the residual plots used in Chapter 13 to identify lack of fit. Second, as
discussed in Subsection 5, it establishes that E(y|x) can be viewed as the perpendic-
ular projection of y into the space of random variables, say f (x), that are functions
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of x alone, have mean E[ f (x)] = E[y], and a finite variance, see also deLaubenfels
(2006). Before doing this, we need to establish some covariance and correlation
properties.

Proposition 6.3.2. Cov[y, f (x)] = Cov[m(x), f (x)]. In particular, Cov[y,m(x)] =
Var[m(x)] = σmm and Corr2[y,m(x)] = σmm/σyy.

PROOF. Recall that, from the definition of conditional expectation, E[m(x)] = μy.

Cov[y, f (x)] = Eyx[(y−μy) f (x)]
= ExEy|x[(y−m(x)+m(x)−μy) f (x)]
= Ex[(m(x)−μy) f (x)]
= Cov[m(x), f (x)].

�

Now consider an arbitrary predictor ỹ(x).

Theorem 6.3.3. Let ỹ(x) be any predictor with E[ỹ(x)] = μy, then Cov[ f (x),y−
ỹ(x)] = 0 for any function f if and only if E(y|x) = ỹ(x) almost surely.

PROOF. ⇐ If E(y|x) ≡ m(x) = ỹ(x), the fact that Cov[ f (x),y−m(x)] = 0 for any
function f is an immediate consequence of Proposition 2.

⇒ Now suppose that E[ỹ(x)] = μy and Cov[ f (x),y− ỹ(x)] = 0 for any function f .
To show that ỹ(x) = m(x) a.s., it is enough to note that E[ỹ(x)−m(x)] = μy −μy =
0 and to show that Var[ỹ(x)−m(x)] = 0. Thinking of f (x) = ỹ(x)−m(x) in the
covariance conditions, observe that

Var[ỹ(x)−m(x)] = Cov[ỹ(x)−m(x), ỹ(x)−m(x)]
= Cov{[y−m(x)]− [y− ỹ(x)], [ỹ(x)−m(x)]}
= Cov{[y−m(x)], [ỹ(x)−m(x)]}−Cov{[y− ỹ(x)], [ỹ(x)−m(x)]}
= 0−0.

�

In fitting linear models, or any other regression procedure, we typically obtain
fitted values ŷi corresponding to the observed data yi, from which we can obtain
residuals yi− ŷi. According to Theorem 6.3.3, if the fitted values are coming from the
best predictor, plotting the residuals against any function of the predictor vector xi
should display zero correlation. Thus, if we plot the residuals against some function
f (xi) of the predictors and observe a correlation, we obviously do not have the
best predictor, so we should try fitting some other model. In particular, regardless
of how nonlinear the original regression model might have been, adding a linear
term to the model using f (xi) as the predictor should improve the fit of the model.
Unfortunately, there is no reason to think that adding such a linear term will get
you to the best predictor. Finally, it should be noted that a common form of lack
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of fit detected in residual plots is a parabolic shape, which does not necessarily
suggest a nonzero correlation with the predictor used in the plot. However, when
the residual plot is a parabola, a plot of the residuals versus the (suitably centered)
squared predictor will display a nonzero correlation.

Finally, if we plot the residuals against some predictor variable z that is not part
of x, the fact that we would make such a plot suggests that we really want the best
predictor m(x,z) rather than m(x), although if we originally left z out, we probably
suspect that m(x) = m(x,z). A linear relationship between the residuals and z indi-
cates that the estimated regression function m̂(x) is not an adequate estimate of the
best predictor m(x,z).

6.3.4 Best Linear Prediction

The ideas of best linear prediction and best linear unbiased prediction (see Sec-
tion 12.2) are very important. As will be seen here and in Chapter 12, best linear
prediction theory has important applications in standard linear models, mixed mod-
els, and the analysis of spatial data. The theory has traditionally been taught as part
of multivariate analysis (cf. Anderson, 1984). It is important for general stochastic
processes (cf. Doob, 1953), time series (cf. Shumway and Stoffer, 2000; Brock-
well and Davis, 1991; or Christensen, 2001, Chapters 4 and 5), principal component
analysis (cf. Christensen, 2001, Chapter 3), and it is the basis for linear Bayesian
methods (cf. Hartigan, 1969). For applications to spatial data, see also Christensen
(2001, Chapter 6), Cressie (1993), and Ripley (1981).

In order to use the results on best prediction, one needs to know E(y|x), which
generally requires knowledge of the joint distribution of (y,x1,x2, . . . ,xp−1)′. If the
joint distribution is not available but the means, variances, and covariances are
known, we can find the best linear predictor of y. We seek a linear predictor α +x′β
that minimizes E[y−α − x′β ]2 for all scalars α and (p−1)×1 vectors β .

In addition to our earlier assumptions that first and second moments for y exist,
we now also assume the existence of E(x) = μx, Cov(x) = Vxx, and Cov(x,y) =
Vxy = V ′

yx = Cov(y,x)′.
Let β∗ be a solution to Vxxβ = Vxy, then we will show that the function

Ê(y|x) ≡ μy +(x−μx)′β∗

is a best linear predictor of y based on x. Ê(y|x) is also called the linear expectation
of y given x. (Actually, it is the linear expectation of y given x and a random variable
that is constant with probability 1.) Note that when Vxx is singular, there are an
infinite number of vectors β∗ that solve to Vxxβ = Vxy, but by using Lemma 1.3.5 we
can show that all such solutions give the same best linear predictor with probability
1. The idea is that since (x− μx) ∈ C(Vxx) with probability 1, for some random b,
(x−μx) = Vxxb with probability 1, so
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(x−μx)′β∗ = b′Vxxβ∗ = b′Vxy,

which does not depend on the choice of β∗ with probability 1.

Theorem 6.3.4. Ê(y|x) is a best linear predictor of y.

PROOF. Define η so that α = η − μ ′
xβ . An arbitrary linear predictor is f (x) =

α + x′β = η +(x−μx)′β .

E[y− f (x)]2 = E[y− Ê(y|x)+ Ê(y|x)− f (x)]2

= E[y− Ê(y|x)]2 +E[Ê(y|x)− f (x)]2

+2E{[y− Ê(y|x)][Ê(y|x)− f (x)]}.

If we show that E{[y− Ê(y|x)][Ê(y|x)− f (x)]}= 0, the result follows almost imme-
diately. In that case,

E[y− f (x)]2 = E[y− Ê(y|x)]2 +E[Ê(y|x)− f (x)]2.

To find f (x) that minimizes the left-hand side, observe that both terms on the right
are nonnegative, the first term does not depend on f (x), and the second term is
minimized by taking f (x) = Ê(y|x).

We now show that E{[y− Ê(y|x)][Ê(y|x)− f (x)]} = 0.

E{[y− Ê(y|x)][Ê(y|x)− f (x)]}
= E({y− [μy +(x−μx)′β∗]}{[μy +(x−μx)′β∗]− [η +(x−μx)′β ]})
= E({(y−μy)− (x−μx)′β∗}{(μy −η)+(x−μx)′(β∗ −β )})
= E
[
(y−μy)(μy −η)− (x−μx)′β∗(μy −η)

+(y−μy)(x−μx)′(β∗ −β )− (x−μx)′β∗(x−μx)′(β∗ −β )
]

= (μy −η)E[(y−μy)]−E[(x−μx)′]β∗(μy −η)
+E[(y−μy)(x−μx)′](β∗ −β)−E[β ′

∗(x−μx)(x−μx)′(β∗ −β )]
= 0−0+Vyx(β∗ −β )−β ′

∗E[(x−μx)(x−μx)′](β∗ −β )
= Vyx(β∗ −β )−β ′

∗Vxx(β∗ −β ).

However, by definition, β ′∗Vxx = Vyx; so

Vyx(β∗ −β )−β ′
∗Vxx(β∗ −β ) = Vyx(β∗ −β )−Vyx(β∗ −β) = 0. �

It is of interest to note that if (y,x′)′ has a multivariate normal distribution, then
the best linear predictor is the best predictor. Morrison (1976) contains a discussion
of conditional expectations for multivariate normals.

The following proposition will be used in Section 12.2 to develop the theory of
best linear unbiased prediction.
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Proposition 6.3.5. E[y−α − x′β ]2 = E[y− Ê(y|x)]2 +E[Ê(y|x)−α − x′β ]2.

PROOF. The result is part of the proof of Theorem 6.3.4. �

We show that best linear predictors are essentially unique. In other words, we
show that to minimize E[Ê(y|x)−η −(x−μx)′β ]2, you need μy = η and β must be
a solution to Vxxβ = Vxy. It is not difficult to show that

E[Ê(y|x)−η − (x−μx)′β ]2 = (μy −η)2 +E[(x−μx)′β∗ − (x−μx)′β ]2.

Clearly, minimization requires μy = η and E[(x− μx)′β∗ − (x− μx)′β ]2 = 0. The
best linear predictors will be essentially unique if we can show that E[(x−μx)′β∗ −
(x−μx)′β ]2 = 0 implies that β must be a solution to Vxxβ = Vxy. Observe that

E[(x−μx)′β∗ − (x−μx)′β ]2 = E[(x−μx)′(β∗ −β )]2

= Cov[(x−μx)′(β∗ −β )]
= (β∗ −β )′Vxx(β∗ −β ).

Write Vxx = QQ′ with C(Vxx) = C(Q). Then (β∗ −β )′Vxx(β∗ −β ) = 0 if and only if
(β∗ −β )′QQ′(β∗ −β ) = 0 if and only if Q′(β∗ −β ) = 0 if and only if (β∗ −β ) ⊥
C(Q) = C(Vxx) if and only if Vxx(β∗ −β ) = 0 if and only if Vxxβ = Vxxβ∗ = Vxy. So
β must be a solution.

The variance of the prediction error y− Ê(y|x) is given in Section 5. (Actually,
the covariance matrix for a bivariate prediction is given.)

Next, we examine the correspondence between this theory and linear model
regression theory. Suppose we have n observations on the vector (y,x′)′ =
(y,x1,x2, . . . ,xp−1)′. We can write these as (yi,x′i)

′ = (yi,xi1,xi2, . . . ,xi,p−1)′, i =
1, . . . ,n. In matrix notation write Y = (y1,y2, . . . ,yn)′ and Z = [xi j], i = 1, . . . ,n,
j = 1, . . . , p− 1. (Z plays the same role as Z did in Section 2 on multiple regres-
sion.) The usual estimates for Vxx and Vxy can be written as

Sxx =
1

n−1
Z′
(

I − 1
n

Jn
n

)
Z =

1
n−1

n

∑
i=1

(xi − x̄·)(xi − x̄·)′

Sxy =
1

n−1
Z′
(

I − 1
n

Jn
n

)
Y =

1
n−1

n

∑
i=1

(xi − x̄·)(yi − ȳ·).

The usual estimates of μy and μx are

ȳ· =
1
n

Jn
1Y =

1
n

n

∑
i=1

yi
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x̄′· =
1
n

Jn
1 Z =

(
1
n

n

∑
i=1

xi1, . . . ,
1
n

n

∑
i=1

xip−1

)′
.

The natural predictor of y is

ŷ = ȳ+(x− x̄)′β̂∗,

where β̂∗ is a solution to Sxxβ∗ = Sxy, i.e., it solves Z′ (I − 1
n Jn

n
)

Zβ∗ = Z′ (I − 1
n Jn

n
)

Y .
From the results of Section 2, ȳ = γ̂0 and any solution of Z′ (I − 1

n Jn
n
)

Zβ∗ =
Z′ (I − 1

n Jn
n
)

Y is a least squares estimate of β∗ = γ∗. Thus, the natural estimates
of the parameters in the best linear predictor are the least squares estimates from the
mean corrected regression model considered in the previous section.

Finally, we include a result for best linear predictors that is analogous to Theo-
rem 6.3.3 for best predictors. First, if we have residuals from the best linear predic-
tor, they will be uncorrelated with any linear combination of the predictor variables.
Second, Ê(y|x) can be viewed as the perpendicular projection of y into the space
of random variables f (x) that are linear functions of x and have E[ f (x)] = E[y], cf.
Subsection 5.

Theorem 6.3.6. Suppose ỹ(x) is any linear predictor with E[ỹ(x)] = μy, then
Cov[ f (x),y− ỹ(x)] = 0 for any linear function f if and only if Ê(y|x) = ỹ(x) almost
surely.

PROOF. Let f (x) = η +(x−μx)′β and let ỹ = μy +(x−μx)′δ .
⇐ For Ê(y|x) = ỹ(x),

Cov[η +(x−μx)′β ,(y−μy)− (x−μx)′β∗] = β ′Vxy −β ′Vxxβ∗
= β ′Vxy −β ′Vxy = 0.

⇒ If

0 = Cov[η +(x−μx)′β ,(y−μy)− (x−μx)′δ ]
= β ′Vxy −β ′Vxxδ

for any β , then Vxy = Vxxδ , so ỹ(x) = Ê(y|x) with probability 1. �

As mentioned earlier, the theory of best linear predictors also comes up in devel-
oping the theory of best linear unbiased predictors (BLUPs), which is an important
subject in models that have random effects. In random effects models, part of the β
vector in Y = Xβ + e is assumed to be random and unobservable. Random effects
models and BLUPs are discussed in Chapter 12.

The result of the next exercise will be used in Section 5 on partial correlations.

Exercise 6.3 For predicting y = (y1, . . . ,yq)′ from x = (x1, . . . ,xp−1)′ we say that
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a predictor f (x) is best if the scalar E{[y− f (x)]′[y− f (x)]} is minimized. Show that
with simple modifications, Theorems 6.3.1 and 6.3.4 hold for the extended problem,
as does Proposition 6.3.5.

6.3.5 Inner Products and Orthogonal Projections in General
Spaces

In most of this book, we define orthogonality and length using the Euclidean inner
product in Rn. For two vectors x and y, the Euclidean inner product is x′y, so x ⊥ y if
x′y = 0 and the length of x is ‖x‖=

√
x′x. In Section B.3 we discussed, in detail, per-

pendicular projection operators relative to this inner product. We established that the
projection of a vector Y into C(X) is Ŷ ≡ MY . It also follows from Theorems 2.2.1
and 2.8.1 that Ŷ is the unique vector in C(X) that satisfies (Y − Ŷ ) ⊥ C(X). This
last property is sometimes used to define what it means for Ŷ to be the perpendic-
ular projection of Y into C(X). We use this concept to extend the application of
perpendicular projections to more general vector spaces

More generally in Rn, we can use any positive definite matrix B to define an in-
ner product between x and y as x′By. As before, x and y are orthogonal if their inner
product x′By is zero and the length of x is the square root of its inner product with it-
self, now ‖x‖B ≡√

x′Bx. As argued in Section B.3, any idempotent matrix is always
a projection operator, but which one is the perpendicular projection operator de-
pends on the inner product. As can be seen from Proposition 2.7.2 and Exercise 2.5,
the matrix A ≡ X(X ′BX)−X ′B is an oblique projection operator onto C(X) for the
Euclidean inner product, but it is the perpendicular projection operator onto C(X)
with the inner product defined using the matrix B. It is not too difficult to see that AY
is the unique vector in C(X) that satisfies (Y −AY ) ⊥B C(X), i.e., (Y −AY )′BX = 0.

These ideas can be applied in very general spaces. In particular, they can be
applied to the concepts of prediction introduced in this section. For example, we
can define the inner product between two random variables y and x with mean 0
and finite variance as the Cov(x,y). In this case, Var(x) plays the role of the squared
length of the random variable and the standard deviation is the length. Two random
variables are orthogonal if they are uncorrelated.

Now consider a vector of random variables x = (x1, . . . ,xp−1)′ and the space of all
functions f (x) into R1 that have mean 0 and variances. We showed in Theorem 6.3.3
that m(x) ≡ E(y|x) is the unique function of x having mean μy for which Cov[y−
m(x), f (x)] = 0 for any f (x). Thus, as alluded to above, m(x)−μy satisfies a property
often used to define the perpendicular projection of y−μy into the space of functions
of x that have mean 0 and variances. Alternatively, we can think of m(x) as the
perpendicular projection of y into the space of functions of x that have mean μy and
variances.

We can also consider a reduced space of random variables, the linear functions of
x, i.e., f (x) = α +x′β . In Theorem 6.3.6 we show that Cov[y− Ê(y|x),α +x′β ] = 0
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for any linear function of x, so once again, the best linear predictor is the perpendic-
ular projection of y into the linear functions of x with mean μy.

We now generalize the definitions of an inner product space, orthogonality, and
orthogonal projection.

Definition A.11 (Alternate). A vector space X is an inner product space if for
any x,y ∈ X , there exists a symmetric bilinear function [x,y] into R with [x,x] >
0 for any x �= 0. A bilinear function has the properties that for any scalars a1,a2
and any vectors x1,x2,y, [a1x1 +a2x2,y] = a1[x1,y]+a2[x2,y] and [y,a1x1 +a2x2] =
a1[y,x1]+a2[y,x2]. A symmetric function has [x1,x2] = [x2,x1]. The vectors x and y
are orthogonal if [x,y] = 0 and the squared length of x is [x,x]. The perpendicular
projection of y into a subspace X0 of X is defined as the unique vector y0 ∈ X0
with the property that [y− y0,x] = 0 for any x ∈ X0.

Note that the set of mean zero, finite variance, real-valued functions of x and
y form a vector space under Definition A.1 and an inner product space using the
covariance of any two such functions as the inner product. Both the set of mean
0, finite variance functions of x and the set of mean 0 linear functions of x are
subspaces, so y can be projected into either subspace.

We now relate Definition A.11 (Alternate) to the concept of a perpendicular pro-
jection operator.

Exercise 6.4 Consider an inner product space X and a subspace X0. Suppose
that any vector y ∈X can be written uniquely as y = y0 +y1 with y0 ∈X0 and y1 ⊥
X0. Let M(x) be a linear operator on X in the sense that for any x ∈ X , M(x) ∈
X and for any scalars a1,a2 and any vectors x1,x2, M(a1x1 + a2x2) = a1M(x1)+
a2M(x2). M(x) is defined to be a perpendicular projection operator onto X0 if for
any x0 ∈ X0, M(x0) = x0, and for any x1 ⊥ X0, M(x1) = 0. Using Definition A.11
(Alternate), show that for any vector y, M(y) is the perpendicular projection of y
into X0.

6.4 Multiple Correlation

The coefficient of determination, denoted R2, is a commonly used measure of the
predictive ability of a model. Computationally, it is most often defined as

R2 =
SSReg

SSTot −C
,

so it is the proportion of the total variability explained by the independent variables.
The greater the proportion of the total variability in the data that is explained by
the model, the better the ability to predict with that model. The use and possible
abuse of R2 as a tool for comparing models is discussed in Chapter 14, however it
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should be noted here that since R2 is a measure of the predictive ability of a model,
R2 does not give direct information about whether a model fits the data properly.
Demonstrably bad models can have very high R2s and perfect models can have low
R2s.

We now define the multiple correlation, characterize it in terms of the best linear
predictor, and show that R2 is the natural estimate of it. Subsection 6.4.1 generalizes
the idea of R2 from best linear prediction to best prediction.

Recall that the correlation between two random variables, say x1 and x2, is

Corr(x1,x2) = Cov(x1,x2)
/√

Var(x1)Var(x2).

1 2 p−1
′

x′β ) over all α and β . Note that

Cov(y,α + x′β ) = Vyxβ = β ′
∗Vxxβ ,

where β∗ is defined as in Subsection 6.3.4 and

Var(α + x′β ) = β ′Vxxβ .

In particular, Cov(y,α + x′β∗) = β ′∗Vxxβ∗ = Var(α + x′β∗). The Cauchy–Schwarz
inequality says that (

t

∑
i=1

risi

)2

≤
t

∑
i=1

r2
i

t

∑
i=1

s2
i .

Since Vxx = RR′ for some matrix R, the Cauchy–Schwarz inequality gives(
β ′
∗Vxxβ

)2 ≤ (β ′Vxxβ
)(

β ′
∗Vxxβ∗

)
.

Considering the squared correlation gives

Corr2(y,α + x′β) =
(
β ′
∗Vxxβ

)2/(β ′Vxxβ
)

σ2
y

≤ β ′
∗Vxxβ∗

/
σ 2

y

=
(
β ′
∗Vxxβ∗

)2/(β ′
∗Vxxβ∗

)
σ 2

y

= Corr2(y,α + x′β∗)

and the squared multiple correlation between y and x equals

Corr2(y,α + x′β∗) = β ′
∗Vxxβ∗

/
σ 2

y .

If we have observations (yi,xi1,xi2, . . . ,xi,p−1)′, i = 1, . . . ,n, the usual estimate of
σ 2

y can be written as

s2
y =

1
n−1

Y ′
(

I − 1
n

Jn
n

)
Y =

1
n−1

n

∑
i=1

(yi − ȳ)2.

The multiple correlation of y and (x ,x ,..., x ) = x is the maximum of Corr(y,α +
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Using equivalences derived earlier, the natural estimate of the squared multiple cor-
relation coefficient between y and x is

β̂ ′∗Sxxβ̂∗
s2

y
=

β̂ ′∗Z′ (I − 1
n Jn

n
)

Zβ̂∗
Y ′ (I − 1

n Jn
n
)

Y
=

SSReg
SSTot −C

.

It is worth noticing that SSTot −C = SSReg+SSE and that

SSReg
/

SSE = SSReg
/
[(SSE +SSReg)−SSReg]

= SSReg
/
[SSTot −C−SSReg]

=
SSReg

[SSTot −C][1−R2]

= R2/[1−R2].

For normally distributed data, the α level F test for H0 : β1 = β2 = · · · = βp−1 = 0
is to reject H0 if

n− p
p−1

R2

1−R2 > F(1−α, p−1,n− p).

EXAMPLE 6.4.1. From the information given in Example 6.2.1, the coefficient
of determination can be found. From the ANOVA table in Example 6.2.1, we get

SSReg = 1259.32

SSTot −C = SSTotal −SS(β0) = 16576.60−15270.78 = 1305.82

and
R2 = 1259.32/1305.82 = 0.964.

This is a very high value for R2 and indicates that the model has very substantial
predictive ability. However, before you conclude that the model actually fits the
data well, see Example 6.6.3.

Exercise 6.5 Show that for a linear model with an intercept, R2 is simply the
square of the correlation between the data yi and the predicted values ŷi.

This discussion has focused on R2, which estimates the squared multiple corre-
lation coefficient, a measure of the predictive ability of the best linear predictor. We
now consider an analogous measure for the best predictor.



142 6 Regression Analysis

6.4.1 Squared Predictive Correlation

As in Subsection 6.3.2, consider an arbitrary predictor ỹ(x). This is a function of x
alone and not a function of y.

The squared predictive correlation of ỹ(x) is Corr2[y, ỹ(x)]. The highest squared
predictive correlation is obtained by using the best predictor. Note that in the spe-
cial case where the best predictor m(x) is also the best linear predictor, the highest
squared predictive correlation equals the squared multiple correlation coefficient.

Theorem 6.4.1. Corr2[y, ỹ(x)] ≤ Corr2[y,m(x)].

PROOF. By Cauchy-Schwarz, (σmỹ)2 ≤ σmmσỹỹ, so (σmỹ)2/σỹỹ ≤ σmm. Using
Proposition 6.3.2,

Corr2[y, ỹ(x)] =
(σyỹ)2

σyyσỹỹ
=

(σmỹ)2

σyyσỹỹ
≤ σmm

σyy
= Corr2[y,m(x)].

The result follows from the last part of Proposition 6.3.2. �

Theorem 6.4.1 is also established in Rao (1973, Section 4g.1). From Theo-
rem 6.4.1, the best regression function m(x) has the highest squared predictive cor-
relation. When we have perfect prediction, the highest squared predictive correlation
is 1. In other words, if the conditional variance of y given x is 0, then y = m(x) a.s.,
and the highest squared predictive correlation is the correlation of m(x) with itself,
which is 1. On the other hand, if there is no regression relationship, i.e., if m(x) = μy
a.s., then σmm = 0, and the highest squared predictive correlation is 0.

We would now like to show that as the squared predictive correlation increases,
we get increasingly better prediction. First we need to deal with the fact that high
squared predictive correlations can be achieved by bad predictors. Just because ỹ(x)
is highly correlated with y does not mean that ỹ(x) is actually close to y. Recall that
ỹ(x) is simply a random variable that is being used to predict y. As such, ỹ(x) is a
linear predictor of y, that is, ỹ(x) = 0 + 1ỹ(x). We can apply Theorem 6.3.4 to this
random variable to obtain a linear predictor that is at least as good as ỹ(x), namely

ŷ(x) = μy +
σyỹ

σỹỹ
[ỹ(x)−μỹ].

We refer to such predictors as linearized predictors. Note that E[ŷ(x)] ≡ μŷ = μy,

σŷŷ ≡ Var[ŷ(x)] =
(

σyỹ

σỹỹ

)2

σỹỹ =
(σyỹ)2

σỹỹ
,

and

σyŷ ≡ Cov[y, ŷ(x)] =
σyỹ

σỹỹ
σyỹ =

(σyỹ)2

σỹỹ
.
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In particular, σŷŷ = σyŷ, so the squared predictive correlation of ŷ(x) is

Corr2[y, ŷ(x)] =
σŷŷ

σyy
.

In addition, the direct measure of the goodness of prediction for ŷ(x) is

E[y− ŷ(x)]2 = σyy −2σyŷ +σŷŷ = σyy −σŷŷ.

This leads directly to the next result.

Theorem 6.4.2. For two linearized predictors ŷ1(x) and ŷ2(x), the squared pre-
dictive correlation of ŷ2(x) is higher if and only if ŷ2(x) is a better predictor.

PROOF. σŷ1 ŷ1/σyy < σŷ2 ŷ2/σyy if and only if σŷ1 ŷ1 < σŷ2 ŷ2 if and only if σyy −
σŷ2 ŷ2 < σyy −σŷ1 ŷ1 . �

It should be noted that linearizing m(x) simply returns m(x).
For any predictor ỹ(x), no matter how one arrives at it, to estimate the squared

predictive correlation from data yi, simply compute the squared sample correlation
between yi and its predictor of ỹ(xi).

6.5 Partial Correlation Coefficients

Many regression programs have options available to the user that depend on the
values of the sample partial correlation coefficients. The partial correlation is defined
in terms of two random variables of interest, say y1 and y2, and several auxiliary
variables, say x1, . . . ,xp−1. The partial correlation coefficient of y1 and y2 given
x1, . . . ,xp−1, written ρy·x, is a measure of the linear relationship between y1 and y2
after taking the effects of x1, . . . ,xp−1 out of both variables.

Writing y = (y1,y2)′ and x = (x1, . . . ,xp−1)′, Exercise 6.3 indicates that the best
linear predictor of y given x is

Ê(y|x) = μy +β ′
∗(x−μx),

where β∗ is a solution of Vxxβ∗ = Vxy and Vxy is now a (p−1)×2 matrix. We take
the effects of x out of y by looking at the prediction error

y− Ê(y|x) = (y−μy)−β ′
∗(x−μx),

which is a 2×1 random vector. The partial correlation is simply the correlation be-
tween the two components of this vector and is readily obtained from the covariance
matrix. We now find the prediction error covariance matrix. Let Cov(y) ≡Vyy.
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Cov[(y−μy)−β ′
∗(x−μx)] = Cov(y−μy)+β ′

∗Cov(x−μx)β∗
−Cov(y−μy,x−μx)β∗
−β ′

∗Cov(x−μx,y−μy)
= Vyy +β ′

∗Vxxβ∗ −Vyxβ∗ −β ′
∗Vxy

= Vyy +β ′
∗Vxxβ∗ −β ′

∗Vxxβ∗ −β ′
∗Vxxβ∗

= Vyy −β ′
∗Vxxβ∗.

Since Vxxβ∗ = Vxy and, for any generalized inverse, VxxV−
xxVxx = Vxx,

Cov[(y−μy)−β ′
∗(x−μx)] = Vyy −β ′

∗VxxV−
xxVxxβ∗

= Vyy −VyxV−
xxVxy.

If we have a sample of the ys and xs, say yi1,yi2,xi1,xi2, . . . ,xi,p−1, i = 1, . . . ,n,
we can estimate the covariance matrix in the usual way. The relationship with the
linear regression model of Section 2 is as follows: Let

Y =

⎡⎢⎣y11 y12
...

...
yn1 yn2

⎤⎥⎦= [Y1,Y2]

and

Z =

⎡⎢⎣x11 · · · x1p−1
...

. . .
...

xn1 · · · xnp−1

⎤⎥⎦ .

The usual estimate of Vyy −VyxV−
xxVxy is (n−1)−1 times

Y ′
(

I − 1
n

Jn
n

)
Y −Y ′

(
I − 1

n
Jn

n

)
Z
[

Z′
(

I − 1
n

Jn
n

)
Z
]−

Z′
(

I − 1
n

Jn
n

)
Y.

From Section 2, we know that this is the same as

Y ′
(

I − 1
n

Jn
n

)
Y −Y ′

(
M− 1

n
Jn

n

)
Y = Y ′ (I −M)Y,

where M is the perpendicular projection operator onto C([J,Z]). Remembering that
Y ′(I−M)Y = [(I−M)Y ]′[(I−M)Y ], we can see that the estimate of ρy·x, written ry·x
and called the sample partial correlation coefficient, is just the sample correlation
coefficient between the residuals of fitting Y1 = [J,Z]β +e and the residuals of fitting
Y2 = [J,Z]β + e, i.e.,

ry·x =
Y ′

1(I −M)Y2√
Y ′

1(I −M)Y1Y ′
2(I −M)Y2

.
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The square of the sample partial correlation coefficient, often called the coeffi-
cient of partial determination, has a nice relationship to another linear model. Con-
sider fitting Y1 = [J,Z,Y2]γ +e. Because C[(I−M)Y2] is the orthogonal complement
of C([J,Z]) with respect to C([J,Z,Y2]), the sum of squares for testing whether Y2
adds to the model is

SSR(Y2|J,Z) = Y ′
1(I −M)Y2[Y ′

2(I −M)Y2]−1Y ′
2(I −M)Y1.

Since Y ′
2(I −M)Y2 is a scalar, it is easily seen that

r2
y·x =

SSR(Y2|J,Z)
SSE(J,Z)

,

where SSE(J,Z) = Y ′
1(I−M)Y1, the sum of squares for error when fitting the model

Y1 = [J,Z]β + e.
Finally, for normally distributed data we can do a t test of the null hypothesis

H0 : ρy·x = 0. If H0 is true, then√
n− p−1 ry·x

/√
1− r2

y·x ∼ t(n− p−1).

See Exercise 6.6 for a proof of this result.

EXAMPLE 6.5.1. Using the data of Example 6.2.1, the coefficient of partial de-
termination (squared sample partial correlation coefficient) between y and x2 given
x1 can be found:

SSR(X2|J,X1) = 6.70,

SSE(J,X1) = SSE(J,X1,X2)+SSR(X2|J,X1) = 46.50+6.70 = 53.20,

r2
y·x = 6.70/53.20 = 0.1259.

The absolute value of the t statistic for testing whether ρy2·1 = 0 can also be found.
In this application we are correcting Y and X2 for only one variable X1, so p−1 = 1
and p = 2. The formula for the absolute t statistic becomes

√
25−2−1

√
0.1259

/√
1−0.1259 = 1.78.

Note that this is precisely the t statistic reported for β2 in Example 6.2.1.

Exercise 6.5 Assume that Vxx is nonsingular. Show that ρy·x = 0 if and only if
the best linear predictor of y1 based on x and y2 equals the best linear predictor of
y1 based on x alone.

Exercise 6.6 If (yi1,yi2,xi1,xi2, . . . ,xi,p−1)′, i = 1, . . . ,n are independent N(μ ,V ),

find the distribution of
√

n− p−1 ry·x
/√

1− r2
y·x when ρy·x = 0.
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Hint: Use the linear model E(Y1|X ,Y2) ∈ C(J,X ,Y2), i.e., Y1 = [J,X ,Y2]γ + e, to
find a distribution conditional on X ,Y2. Note that the distribution does not depend
on the values of X and Y2, so it must also be the unconditional distribution. Note also
that from Exercise 6.5 and the equality between the conditional expectation and the
best linear predictor for multivariate normals that we have ρy·x = 0 if and only if the
regression coefficient of Y2 is zero.

Finally, the usual concept of partial correlation, which looks at the correlation
between the components of y− Ê(y|x), i.e., the residuals based on best linear predic-
tion, can be generalized to a concept based on examining the correlations between
the components of y−E(y|x), the residuals from the best predictor.

6.6 Testing Lack of Fit

Suppose we have a linear model Y = Xβ + e and we suspect that the model is an
inadequate explanation of the data. The obvious thing to do to correct the problem is
to add more variables to the model, i.e, fit a model Y = Zγ +e, where C(X) ⊂C(Z).
Two questions present themselves: 1) how does one choose Z, and 2) is there really
a lack of fit? Given a choice for Z, the second of these questions can be addressed
by testing Y = Xβ + e against Y = Zγ + e. This is referred to as a test for lack of
fit. Since Z is chosen so that Y = Zγ + e will actually fit the data (or at least fit the
data better than Y = Xβ + e), the error sum of squares for the model Y = Zγ + e,
say SSE(Z), can be called the sum of squares for pure error, SSPE. The difference
SSE(X)− SSE(Z) is used for testing lack of fit, so SSE(X)− SSE(Z) is called the
sum of squares for lack of fit, SSLF .

In general, there are few theoretical guidelines for choosing Z. The most com-
mon situation is where there are a variety of other variables that are known and it is
necessary to select variables to include in the model. Variable selection techniques
are discussed in Chapter 14. In this section, we discuss the problem of testing lack
of fit when there are no other variables available for inclusion in the model. With no
other variables available, the model matrix X must be used as the basis for choosing
Z. We will present four approaches. The first is the traditional method based on hav-
ing a model matrix X in which some of the rows are identical. A second approach is
based on identifying clusters of rows in X that are nearly identical. A third approach
examines different subsets of the data. Finally, we briefly mention a nonparametric
regression approach to testing lack of fit.

One final note. This section is in the chapter on regression because testing lack
of fit has traditionally been considered as a topic in regression analysis. Nowhere in
this section do we assume that X ′X is nonsingular. The entire discussion holds for
general linear models.



6.6 Testing Lack of Fit 147

6.6.1 The Traditional Test

To discuss the traditional approach that originated with Fisher (1922), we require
notation for identifying which rows of the model matrix are identical. A model with
replications can be written

yi j = x′iβ + ei j,

where β is the vector of parameters, x′i = (xi1, . . . ,xip), i = 1, · · · ,c, and j = 1, · · · ,Ni.
We will assume that x′i �= x′k for i �= k. Using the notation of Chapter 4 in which a
pair of subscripts is used to denote a row of a vector or a row of the model matrix,
we have Y = [yi j] and

X = [w′
i j], where w′

i j = x′i.

The idea of pure error, when there are rows of X that are replicated, is that if
several observations have the same mean value, the variability about that mean value
is in some sense pure error. The problem is to estimate the mean value. If we estimate
the mean value in the ith group with x′iβ̂ , then estimate the variance for the group
by looking at the deviations about the estimated mean value, and finally pool the
estimates from the different groups, we get MSE(X). Now consider a more general
model, Y = Zγ + e, where C(X) ⊂C(Z) and Z is chosen so that

Z = [z′i j], where z′i j = v′i

for some vectors v′i, i = 1, . . . ,c. Two rows of Z are the same if and only if the
corresponding rows of X are the same. Thus, the groups of observations that had
the same mean value in the original model still have the same mean value in the
generalized model. If there exists a lack of fit, we hope that the more general model
gives a more accurate estimate of the mean value.

It turns out that there exists a most general model Y = Zγ + e that satisfies the
condition that two rows of Z are the same if and only if the corresponding rows of X
are the same. We will refer to the property that rows of Z are identical if and only if
the corresponding rows of X are identical as X and Z having the same row structure.
X was defined to have c distinct rows, therefore r(X) ≤ c. Since Z has the same
row structure as X , we also have r(Z) ≤ c. The most general matrix Z, the one with
the largest column space, will have r(Z) = c. We need to find Z with C(X) ⊂C(Z),
r(Z) = c, and the same row structure as X . We also want to show that the column
space is the same for any such Z.

Let Z be the model matrix for the model yi j = μi +ei j, i = 1, . . . ,c, j = 1, . . . ,Ni.
If we let zi j,k denote the element in the i jth row and kth column of Z, then from
Chapter 4

Z = [zi j,k], where zi j,k = δik.

Z is a matrix where the kth column is 0 everywhere except that it has 1s in rows that
correspond to the yk js. Since the values of zi j,k do not depend on j, it is clear that Z
has the same row structure as X . Since the c columns of Z are linearly independent,
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we have r(Z) = c, and it is not difficult to see that X = MZX , where MZ is the
perpendicular projection operator onto C(Z); so we have C(X) ⊂C(Z).

In fact, because of the form of Z and MZ , it is clear that any matrix Z1 with the
same row structure as X must have Z1 = MZZ1 and C(Z1) ⊂ C(Z). If r(Z1) = c,
then it follows that C(Z1) = C(Z) and the column space of the most general model
Y = Zγ + e does not depend on the specific choice of Z.

If one is willing to assume that the lack of fit is not due to omitting some variable
that, if included, would change the row structure of the model (i.e., if one is willing
to assume that the row structure of the true model is the same as the row structure
of X), then the true model can be written Y = Wδ + e with C(X) ⊂C(W ) ⊂ C(Z).
It is easily seen that the lack of fit test statistic based on X and Z has a noncentral
F distribution and if Y = Xβ + e is the true model, the test statistic has a central F
distribution.

The computations for this lack of fit test are quite simple. With the choice of Z
indicated, C(Z) is just the column space for a one-way ANOVA.

SSPE = SSE(Z) = Y ′(I −MZ)Y =
c

∑
i=1

Ni

∑
j=1

(yi j − ȳi·)2.

With MZY = (ȳ1, . . . ȳ1, ȳ2, . . . ȳ2, . . . , ȳc, . . . ȳc)′, ŷi = x′iβ̂ and MY =
(ŷ1, . . . ŷ1, ŷ2, . . . ŷ2, . . . , ŷc, . . . ŷc)′, the sum of squares for lack of fit is

SSLF = Y ′(MZ −M)Y = [(MZ −M)Y ]′[(MZ −M)Y ]

=
c

∑
i=1

Ni

∑
j=1

(ȳi· − ŷi)2 =
c

∑
i=1

Ni(ȳi· − ŷi)2.

Exercise 6.7 Show that if M is the perpendicular projection operator onto C(X)
with

X =

⎡⎢⎣w′
1

...
w′

n

⎤⎥⎦ and M =

⎡⎢⎣T ′
1
...

T ′
n

⎤⎥⎦ ,

then wi = w j if and only if Ti = Tj .

Exercise 6.8 Discuss the application of the traditional lack of fit test to the
problem where Y = Xβ + e is a simple linear regression model.

As we have seen, in the traditional method of testing for lack of fit, the row struc-
ture of the model matrix X completely determines the choice of Z. Now, suppose
that none of the rows of X are identical. It is still possible to have lack of fit, but the
traditional method no longer applies.
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6.6.2 Near Replicate Lack of Fit Tests

Another set of methods for testing lack of fit is based on mimicking the traditional
lack of fit test. With these methods, rows of the model matrix that are nearly repli-
cates are identified. One way of identifying near replicates is to use a hierarchical
clustering algorithm (see Gnanadesikan, 1977) to identify rows of the model matrix
that are near one another. Tests for lack of fit using near replicates are reviewed
by Neill and Johnson (1984). The theory behind such tests is beautifully explained
in Christensen (1989, 1991). (OK, so I’m biased in favor of this particular author.)
Miller, Neill, and Sherfey (1998, 1999) provide a theoretical basis for choosing near
replicate clusters.

Christensen (1991) suggests that a very good all-purpose near replicate lack of
fit test was introduced by Shillington (1979). Write the regression model in terms of
c clusters of near replicates with the ith cluster containing Ni cases, say

yi j = x′i jβ + ei j, (1)

i = 1, . . . ,c, j = 1, . . . ,Ni. Note that at this point we have done nothing to the model
except play with the subscripts; model (1) is just the original model. Shillington’s
test involves finding means of the predictor variables in each cluster and fitting the
model

yi j = x̄′i·β + ei j. (2)

The numerator for Shillington’s test is then the numerator mean square used in com-
paring this model to the one-way ANOVA model

yi j = μi + ei j. (3)

However, the denominator mean square for Shillington’s test is the mean squared
error from fitting the model

yi j = x′i jβ + μi + ei j. (4)

It is not difficult to see that if model (1) holds, then Shillington’s test statistic has a
central F distribution with the appropriate degrees of freedom. Christensen (1989,
1991) gives details and explains why this should be a good all-purpose test — even
though it is not the optimal test for either of the alternatives developed by Chris-
tensen. The near replicate lack of fit test proposed in Christensen (1989) is the test
of model (1) against model (4). The test proposed in Christensen (1991) uses the
same numerator as Shillington’s test, but a denominator sum of squares that is the
SSE from model (1) minus the numerator sum of squares from Shillington’s test.
Both of Christensen’s tests are optimal for certain types of lack of fit. If the clusters
consist of exact replicates, then all of these tests reduce to the traditional test.
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EXAMPLE 6.6.1. Using the data of Example 6.2.1 we illustrate the near replicate
lack of fit tests. Near replicates were chosen visually by plotting x1 versus x2. The
near replicates are presented below.

Near Replicate Clusters for Steam Data
Obs. Near Obs. Near
no. x1 x2 rep. no. x1 x2 rep.

1 35.3 20 2 14 39.1 19 11
2 29.7 20 2 15 46.8 23 12
3 30.8 23 9 16 48.5 20 3
4 58.8 20 4 17 59.3 22 13
5 61.4 21 5 18 70.0 22 7
6 71.3 22 7 19 70.0 11 1
7 74.4 11 1 20 74.5 23 8
8 76.7 23 8 21 72.1 20 14
9 70.7 21 10 22 58.1 21 5

10 57.5 20 4 23 44.6 20 3
11 46.4 20 3 24 33.4 20 2
12 28.9 21 6 25 28.6 22 15
13 28.1 21 6

Fitting models (1) through (4) gives the following results:

Model (1) (2) (3) (4)
dfE 22 22 10 9
SSE 46.50 50.75 12.136 7.5

Shillington’s test is

FS =
[50.75−12.136]/[22−10]

7.5/9
= 3.8614 > 3.073 = F(0.95,12,9).

Christensen’s (1989) test is

F89 =
[46.50−7.5]/[22−9]

7.5/9
= 3.6000 > 3.048 = F(0.95,13,9).

Christensen’s (1991) test is

F91 =
[50.75−12.136]/[22−10]

[46.5− (50.75−12.136)]/[22− (22−10)]
= 4.0804

> 2.913 = F(0.95,12,10).

All three tests indicate a lack of fit.

In this example, all of the tests behaved similarly. Christensen (1991) shows that
the tests can be quite different and that for the single most interesting type of lack
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of fit, the 91 test will typically be more powerful than Shillington’s test, which is
typically better than the 89 test.

Christensen’s 89 test is similar in spirit to “nonparametric” lack of fit tests based
on using orthogonal series expansions to approximate general regression models,
see Subsection 6.2.1. In particular, it is similar to adding Haar wavelets as addi-
tional predictor variables to model (1) except that Haar wavelets amount to adding
indicator variables for a predetermined partition of the space of predictor variables
while the near replicate methods use the observed predictors to suggest where in-
dicator variables are needed. See Christensen (2001, Section 7.8) and Subsection 4
for additional discussion of these nonparametric approaches.

6.6.3 Partitioning Methods

Another way to use X in determining a more general matrix Z is to partition the
data. Write

X =
[

X1
X2

]
, Y =

[
Y1
Y2

]
.

The model Y = Zγ + e can be chosen with

Z =
[

X1 0
0 X2

]
.

Clearly, C(X) ⊂ C(Z). We again refer to the difference SSE(X)− SSE(Z) as the
SSLF and, in something of an abuse of the concept “pure,” we continue to call
SSE(Z) the SSPE.

Exercise 6.9 Let Mi be the perpendicular projection operator onto C(Xi), i = 1,2.
Show that the perpendicular projection operator onto C(Z) is

MZ =
[

M1 0
0 M2

]
.

Show that SSE(Z) = SSE(X1)+SSE(X2), where SSE(Xi) is the sum of squares for
error from fitting Yi = Xiβi + ei, i = 1,2.

If there is no lack of fit for Y = Xβ + e, since C(X) ⊂C(Z), the test statistic will
have a central F distribution. Suppose that there is lack of fit and the true model is,
say, Y = Wδ + e. It is unlikely that W will have the property that C(X) ⊂C(W ) ⊂
C(Z), which would ensure that the test statistic has a noncentral F distribution. In
general, if there is lack of fit, the test statistic has a doubly noncentral F distribution.
(A doubly noncentral F is the ratio of two independent noncentral chi-squareds
divided by their degrees of freedom.) The idea behind the lack of fit test based on
partitioning the data is the hope that X1 and X2 will be chosen so that the combined
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fit of Y1 = X1β1 + e1 and Y2 = X2β2 + e2 will be qualitatively better than the fit of
Y = Xβ + e. Thus, it is hoped that the noncentrality parameter of the numerator
chi-squared will be larger than the noncentrality parameter of the denominator chi-
squared.

EXAMPLE 6.6.2. Let Y = Xβ +e be the simple linear regression yi = β0 +β1xi +
ei, i = 1, . . . ,2r, with x1 ≤ x2 ≤ ·· · ≤ x2r. Suppose that the lack of fit is due to the true
model being yi = β0 +β1xi +β2x2

i + ei, so the true curve is a parabola. Clearly, one
can approximate a parabola better with two lines than with one line. The combined
fit of yi = η0 +η1xi +ei, i = 1, . . . ,r, and yi = τ0 +τ1xi +ei, i = r+1, . . . ,2r, should
be better than the unpartitioned fit.

EXAMPLE 6.6.3. We now test the model used in Example 6.2.1 for lack of fit
using the partitioning method. The difficulty with the partitioning method lies in
finding some reasonable way to partition the data. Fortunately for me, I constructed
this example, so I know where the lack of fit is and I know a reasonable way to
partition the data. (The example was constructed just like Example 13.4.4. The con-
struction is explained in Chapter 13.) I partitioned the data based on the variable x1.
Any case that had a value of x1 less than 24 went into one group. The remaining
cases went into the other group. This provided a group of 12 cases with small x1
values and a group of 13 cases with large x1 values. The sum of squares for error
for the small group was SSE(S) = 2.925 with 9 degrees of freedom and the sum
of squares for error for the large group was SSE(L) = 13.857 with 10 degrees of
freedom. Using the error from Example 6.2.1, we get

SSPE = 13.857+2.925 = 16.782,

df PE = 10+9 = 19,

MSPE = 0.883,

SSLF = 46.50−16.78 = 29.72,

df LF = 22−19 = 3,

MSLF = 9.91,

F = 9.91/.883 = 11.22.

This has 3 degrees of freedom in the numerator, 19 degrees of freedom in the de-
nominator, is highly significant, and indicates a definite lack of fit. But remember, I
knew that the lack of fit was related to x1, so I could pick an effective partition.

Recall from Example 6.4.1 that the R2 for Example 6.2.1 is 0.964, which indi-
cates a very good predictive model. In spite of the high R2, we are still able to estab-
lish a lack of fit using both the partitioning method and the near replicate method.
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The partitioning method can easily be extended, cf. Atwood and Ryan (1977).
For example, one could select three partitions of the data and write

X =

⎡⎣X1
X2
X3

⎤⎦ , Y =

⎡⎣Y1
Y2
Y3

⎤⎦ , Z =

⎡⎣X1 0 0
0 X2 0
0 0 X3

⎤⎦ .

The lack of fit test would proceed as before. Note that the partitioning method is
actually a generalization of the traditional method. If the partition of the data con-
sists of the different sets of identical rows of the model matrix, then the partitioning
method gives the traditional lack of fit test. The partitioning method can also be
used to give a near replicate lack of fit test with the partitions corresponding to the
clusters of near replicates. As mentioned earlier, it is not clear in general how to
choose an appropriate partition.

Utts (1982) presented a particular partition to be used in what she called the
Rainbow Test (for lack of fit). She suggests selecting a set of rows from X that are
centrally located to serve as X1, and placing each row of X not in X1 into a separate
set that consists only of that row. With this partitioning, each of the separate sets
determined by a single row corresponds to p columns of Z that are zero except for
the entries in that row. These p columns are redundant. Eliminating unnecessary
columns allows the Z matrix to be rewritten as

Z =
[

X1 0
0 I

]
.

From Exercise 6.9, it is immediately seen that SSE(Z) = SSE(X1); thus, the Rain-
bow Test amounts to testing Y = Xβ +e against Y1 = X1β +e1. To select the matrix
X1, Utts suggests looking at the diagonal elements of M = [mi j]. The smallest values
of the miis are the most centrally located data points, cf. Section 13.1. The author’s
experience indicates that the Rainbow Test works best when one is quite selective
about the points included in the central partition.

EXAMPLE 6.6.3 CONTINUED. First consider the Rainbow Test using half of the
data set. The variables x1, x2, and an intercept were fitted to the 12 cases that had
the smallest mii values. This gave a SSE = 16.65 with 9 degrees of freedom. The
Rainbow Test mean square for lack of fit, mean square for pure error, and F statistic
are

MSLF = (46.50−16.65)/(22−9) = 2.296,

MSPE = 16.65/9 = 1.850,

F = 2.296/1.850 = 1.24.

The F statistic is nowhere near being significant. Now consider taking the quarter
of the data with the smallest mii values. These 6 data points provide a SSE = 0.862
with 3 degrees of freedom.

MSLF = (46.50−0.862)/(22−3) = 2.402,



154 6 Regression Analysis

MSPE = .862/3 = 0.288,

F = 2.402/0.288 = 8.35.

In spite of the fact that this has only 3 degrees of freedom in the denominator,
the F statistic is reasonably significant. F(0.95,19,3) is approximately 8.67 and
F(0.90,19,3) is about 5.19.

6.6.4 Nonparametric Methods

As discussed in Subsection 6.2.1, one approach to nonparametric regression is to
fit very complicated linear models. One particular application of this approach to
nonparametric regression is the fitting of moderate (as opposed to low or high)
order polynomials. Christensen (2001, Chapter 7) provides more details of this
general approach to nonparametric regression and in particular his Section 7.8 dis-
cusses testing lack of fit. Fundamentally, the idea is to test the original linear model
yi = x′iβ + ei against a larger model that incorporates the nonparametric regression
components, i.e., yi = x′iβ +∑q

j=1 γ jφ j(xi)+ ei. For high dimensional problems, the
larger model may need to involve generalized additive functions.

Exercise 6.10 Test the model yi j = β0 +β1xi +β2x2
i +ei j for lack of fit using the

data:

xi 1.00 2.00 0.00 −3.00 2.50
yi j 3.41 22.26 −1.74 79.47 37.96

2.12 14.91 1.32 80.04 44.23
6.26 23.41 −2.55 81.63

18.39

Exercise 6.11 Using the following data, test the model yi j = β0 +β1xi1 +β2xi2 +
ei j for lack of fit. Explain and justify your method.

X1 X2 Y X1 X2 Y
31 9.0 122.41 61 2.2 70.08
43 8.0 115.12 36 4.7 66.42
50 2.8 64.90 52 9.4 150.15
38 5.0 64.91 38 1.5 38.15
38 5.1 74.52 41 1.0 45.67
51 4.6 75.02 41 5.0 68.66
41 7.2 101.36 52 4.5 76.15
57 4.0 74.45 29 2.7 36.20
46 2.5 56.22
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6.7 Polynomial Regression and One-Way ANOVA

Polynomial regression is the special case of fitting a model

yi = β0 +β1xi +β2x2
i + · · ·+βp−1xp−1

i + ei,

i.e.,

Y =

⎡⎢⎢⎢⎣
1 x1 x2

1 · · · xp−1
1

1 x2 x2
2 · · · xp−1

2
...

...
...

...
1 xn x2

n · · · xp−1
n

⎤⎥⎥⎥⎦
⎡⎢⎢⎣

β0
β1
...

βp−1

⎤⎥⎥⎦+ e.

All of the standard multiple regression results hold, but there are some additional
issues to consider. For instance, one should think very hard about whether it makes
sense to test H0 : β j = 0 for any j other than j = p−1. Frequently, the model

yi = β0 +β1xi + · · ·+β j−1x j−1
i +β j+1x j+1

i + · · ·+βp−1xp−1
i + ei

is not very meaningful. Typically, it only makes sense to test the coefficient of the
highest order term in the polynomial. One would only test β j = 0 if it had already
been decided that β j+1 = · · · = βp−1 = 0.

Sometimes, polynomial regression models are fitted using orthogonal polynomi-
als. This is a procedure that allows one to perform all the appropriate tests on the β js
without having to fit more than one regression model. The technique uses the Gram–
Schmidt algorithm to orthogonalize the columns of the model matrix and then fits a
model to the orthogonalized columns. Since Gram–Schmidt orthogonalizes vectors
sequentially, the matrix with orthogonal columns can be written T = XP, where P
is a nonsingular upper triangular matrix. The model Y = Xβ + e is equivalent to
Y = T γ + e with γ = P−1β . P−1 is also an upper triangular matrix, so γ j is a linear
function of β j,β j+1, . . . ,βp−1. The test of H0 : γp−1 = 0 is equivalent to the test of
H0 : βp−1 = 0. If β j+1 = β j+2 = · · ·= βp−1 = 0, then the test of H0 : γ j = 0 is equiv-
alent to the test of H0 : β j = 0. In other words, the test of H0 : γ j = 0 is equivalent
to the test of H0 : β j = 0 in the model yi = β0 + · · ·+ β jx

j
i + ei. However, because

the columns of T are orthogonal, the sum of squares for testing H0 : γ j = 0 depends
only on the column of T associated with γ j. It is not necessary to do any additional
model fitting to obtain the test.

An algebraic expression for the orthogonal polynomials being fitted is available
in the row vector

[1,x,x2, . . . ,xp−1]P. (1)

The p−1 different polynomials that are contained in this row vector are orthogonal
only in that the coefficients of the polynomials were determined so that XP has
columns that are orthogonal. As discussed above, the test of γ j = 0 is the same as
the test of β j = 0 when β j+1 = · · · = βp−1 = 0. The test of γ j = 0 is based on the
( j +1)st column of the matrix T . β j is the coefficient of the ( j +1)st column of X ,



156 6 Regression Analysis

i.e., the jth degree term in the polynomial. By analogy, the ( j +1)st column of T is
called the jth degree orthogonal polynomial.

Polynomial regression has some particularly interesting relationships with the
problem of estimating pure error and with one-way ANOVA problems. It is clear
that for all values of p, the row structure of the model matrices for the polynomial
regression models is the same, i.e., if xi = xi′ , then xk

i = xk
i′ ; so the i and i′ rows of X

are the same regardless of the order of the polynomial. Suppose there are q distinct
values of xi in the model matrix. The most general polynomial that can be fitted
must give a rank q model matrix; thus the most general model must be

yi = β0 +β1xi + · · ·+βq−1xq−1
i + ei.

It also follows from the previous section that the column space of this model is ex-
actly the same as the column space for fitting a one-way ANOVA with q treatments.

Using double subscript notation with i = 1, . . . ,q, j = 1, . . . ,Ni, the models

yi j = β0 +β1xi + · · ·+βq−1xq−1
i + ei j (2)

and
yi j = μ +αi + ei j

are equivalent. Since both β0 and μ are parameters corresponding to a column of
1s, the tests of H0 : β1 = · · · = βq−1 = 0 and H0 : α1 = · · · = αq are identical. Both
tests look at the orthogonal complement of Jn with respect to C(X), where C(X) is
the column space for either of the models. Using the ideas of Section 3.6, one way
to break this space up into q−1 orthogonal one-degree-of-freedom hypotheses is to
look at the orthogonal polynomials for i = 1, . . . ,q−1. As seen in Section 4.2, any
vector in C(X) that is orthogonal to J determines a contrast in the αis. In particular,
each orthogonal polynomial corresponds to a contrast in the αis.

Finding a set of q−1 orthogonal contrasts amounts to finding an orthogonal basis
for C(Mα). If we write T = [T0, . . . ,Tq−1], then T1, . . . ,Tq−1 is an orthogonal basis
for C(Mα). Given these vectors in C(Mα), we can use Proposition 4.2.3 to read off
the corresponding contrasts. Moreover, the test for dropping, say, Tj from the model
is the test of H0 : γ j = 0, which is just the test that the corresponding contrast is
zero. Note that testing this contrast is not of interest unless β j+1 = · · · = βq−1 = 0
or, equivalently, if γ j+1 = · · · = γq−1 = 0 or, equivalently, if all the higher order
polynomial contrasts are zero.

Definition 6.7.1. The orthogonal contrasts determined by the orthogonal poly-
nomials are called the polynomial contrasts. The contrast corresponding to the first
degree orthogonal polynomial is called the linear contrast. The contrasts for higher
degree orthogonal polynomials are called the quadratic, cubic, quartic, etc., con-
trasts.

Using Proposition 4.2.3, if we identify an orthogonal polynomial as a vector
ρ ∈C(Mα), then the corresponding contrast can be read off. For example, the second
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column of the model matrix for (2) is X1 = [ti j], where ti j = xi for all i and j. If we
orthogonalize this with respect to J, we get the linear orthogonal polynomial. Letting

x̄· =
q

∑
i=1

Nixi

/ q

∑
i=1

Ni

leads to the linear orthogonal polynomial

T1 = [wi j], where wi j = xi − x̄· .

From Section 4.2, this vector corresponds to a contrast ∑λiαi, where λi/Ni = xi− x̄·.
Solving for λi gives

λi = Ni(xi − x̄·).

The sum of squares for testing H0 : β1 = γ1 = 0 is[
∑

i
Ni(xi − x̄·)ȳi·

]2/[
∑

i
Ni(xi − x̄·)2

]
.

And, of course, one would not do this test unless it had already been established that
β2 = · · · = βq−1 = 0.

As with other directions in vector spaces and linear hypotheses, orthogonal poly-
nomials and orthogonal polynomial contrasts are only of interest up to constant
multiples. In applying the Gram–Schmidt theorem to obtain orthogonal polynomi-
als, we really do not care about normalizing the columns. It is the sequential orthog-
onalization that is important. In the example of the linear contrast, we did not bother
to normalize anything.

It is well known (see Exercise 6.12) that, if Ni = N for all i and the quantitative
levels xi are equally spaced, then the orthogonal polynomial contrasts (up to constant
multiples) depend only on q. For any value of q, the contrasts can be tabled; see, for
example, Snedecor and Cochran (1980) or Christensen (1996a).

Although it is difficult to derive the tabled contrasts directly, one can verify the
appropriateness of the tabled contrasts. Again we appeal to Chapter 4. Let [J,Z]
be the model matrix for the one-way ANOVA and let X be the model matrix for
model (2). The model matrix for the orthogonal polynomial model is T = XP. With
C(X) =C(Z), we can write T = ZB for some matrix B. Writing the q×q matrix B as
B =
[
b0, . . . ,bq−1

]
with bk =

(
b1k, . . . ,bqk

)′, we will show that for k ≥ 1 and Ni = N,
the kth degree orthogonal polynomial contrast is b′kα , where α = (α1, . . . ,αq)

′. To
see this, note that the kth degree orthogonal polynomial is Tk = Zbk. The first column
of X is a column of 1s and T is a successive orthogonalization of the columns of X ;
so Jn = Zb0 and for k ≥ 1, Zbk ⊥ Jn. It follows that b0 = Jq and, from Chapter 4,
for k ≥ 1, Zbk ∈ C(Mα). Thus, for k ≥ 1, Zbk determines a contrast (Zbk)′Zα ≡
∑q

i=1 λiαi. However, (Zbk)′Zα = b′kZ′Zα = b′kDiag(Ni)α . The contrast coefficients
λ1, . . . ,λq satisfy bikNi = λi. When Ni = N, the contrast is ∑i λiαi = N ∑i bikαi =
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Nb′kα . Orthogonal polynomial contrasts are defined only up to constant multiples,
so the kth degree orthogonal polynomial contrast is also b′kα .

Given a set of contrast vectors b1, . . . ,bq−1, we can check whether these are the
orthogonal polynomial contrasts. Simply compute the corresponding matrix T = ZB
and check whether this constitutes a successive orthogonalization of the columns of
X .

Ideas similar to these will be used in Section 9.4 to justify the use of tabled con-
trasts in the analysis of balanced incomplete block designs. These ideas also relate to
Section 7.3 on Polynomial Regression and the Balanced Two-Way ANOVA. Finally,
these ideas relate to nonparametric regression as discussed in Subsection 6.2.1.
There, polynomials were used as an example of a class of functions that can be used
to approximate arbitrary continuous functions. Other examples mentioned were
cosines and wavelets. The development given in this section for polynomials can
be mimicked for any approximating class of functions.

For completeness, an alternative idea of orthogonal polynomials should be men-
tioned. In equation (1), rather than using the matrix P that transforms the columns
of X into T with orthonormal columns, one could instead choose a P0 so that the
transformed functions are orthogonal in an appropriate function space. The Legen-
dre polynomials are such a collection. The fact that such orthogonal polynomials do
not depend on the specific xis in the data is both an advantage and a disadvantage. It
is an advantage in that they are well known and do not have to be derived for each
unique set of xis. It is a disadvantage in that, although they display better numeri-
cal properties than the unadjusted polynomials, since T0 = XP0 typically does not
have (exactly) orthonormal columns, these polynomials will not display the precise
features exploited earlier in this section.

Exercise 6.12

(a) Find the model matrix for the orthogonal polynomial model Y = T γ + e
corresponding to the model

yi j = β0 +β1xi +β2x2
i +β3x3

i + ei j,

i = 1,2,3,4, j = 1, . . . ,N, where xi = a+(i−1)t.
Hint: First consider the case N = 1.

(b) For the model yi j = μ + αi + ei j, i = 1,2,3,4, j = 1, . . . ,N, and for k =
1,2,3, find the contrast ∑λikαi such that the test of H0 : ∑λikαi = 0 is the same as
the test of H0 : γk = 0, i.e., find the polynomial contrasts.

Exercise 6.13 Repeat Exercise 6.11 with N = 2 and x1 = 2, x2 = 3, x3 = 5,
x4 = 8.
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6.8 Additional Exercises

The first three exercises involve deriving Fieller’s method of finding confidence
intervals.

Exercise 6.8.1 Calibration.
Consider the regression model Y = Xβ + e, e ∼ N(0,σ2I) and suppose that we are
interested in a future observation, say y0, that will be independent of Y and have
mean x′0β . In previous work with this situation, y0 was not yet observed but the cor-
responding vector x0 was known. The calibration problem reverses these assump-
tions. Suppose that we have observed y0 and wish to infer what the corresponding
vector x0 might be.

A typical calibration problem might involve two methods of measuring some
quantity: y, a cheap and easy method, and x, an expensive but very accurate method.
Data are obtained to establish the relationship between y and x. Having done this,
future measurements are made with y and the calibration relationship is used to
identify what the value of y really means. For example, in sterilizing canned food,
x would be a direct measure of the heat absorbed into the can, while y might be the
number of bacterial spores of a certain strain that are killed by the heat treatment.
(Obviously, one needs to be able to measure the number of spores in the can both
before and after heating.)

Consider now the simplest calibration model, yi = β0 + β1xi + ei, eis i.i.d.
N(0,σ 2), i = 1,2,3, . . . ,n. Suppose that y0 is observed and that we wish to estimate
the corresponding value x0 (x0 is viewed as a parameter here).

(a) Find the MLEs of β0, β1, x0, and σ 2.
Hint: This is a matter of showing that the obvious estimates are MLEs.
(b) Suppose now that a series of observations y01, . . . ,y0r were taken, all of

which correspond to the same x0. Find the MLEs of β0, β1, x0, and σ 2.
Hint: Only the estimate of σ 2 changes form.
(c) Based on one observation y0, find a (1−α)100% confidence interval for

x0. When does such an interval exist?
Hint: Use an F(1,n−2) distribution based on (y0 − β̂0 − β̂1x0)2.
Comment: Aitchison and Dunsmore (1975) discuss calibration in considerable

detail, including a comparison of different methods.

Exercise 6.8.2 Maximizing a Quadratic Response.
Consider the model, yi = β0 + β1xi +β2x2

i + ei, eis i.i.d. N(0,σ2), i = 1,2,3, . . . ,n.
Let x0 be the value at which the function E(y) = β0 +β1x +β2x2 is maximized (or
minimized).

(a) Find the maximum likelihood estimate of x0.
(b) Find a (1−α)100% confidence interval for x0. Does such an interval al-

ways exist?
Hint: Use an F(1,n−3) distribution based on (β̂1 +2β̂2x0)2.



160 6 Regression Analysis

Comment: The problem of finding values of the independent variables that max-
imize (or minimize) the expected y value is a basic problem in the field of response
surface methods. See Box, Hunter, and Hunter (1978) or Christensen (2001, Chap-
ter 8) for an introduction to the subject, or Box and Draper (1987) for a detailed
treatment.

Exercise 6.8.3 Two-Phase Linear Regression.
Consider the problem of sterilizing canned pudding. As the pudding is sterilized by
a heat treatment, it is simultaneously cooked. If you have ever cooked pudding, you
know that it starts out soupy and eventually thickens. That, dear reader, is the point
of this little tale. Sterilization depends on the transfer of heat to the pudding and
the rate of transfer depends on whether the pudding is soupy or gelatinous. On an
appropriate scale, the heating curve is linear in each phase. The question is, “Where
does the line change phases?”

Suppose that we have collected data (yi,xi), i = 1, . . . ,n + m, and that we know
that the line changes phases between xn and xn+1. The model yi = β10 +β11xi + ei,
eis i.i.d. N(0,σ2), i = 1, . . . ,n, applies to the first phase and the model yi = β20 +
β21xi + ei, eis i.i.d. N(0,σ2), i = n+1, . . . ,n+m, applies to the second phase. Let γ
be the value of x at which the lines intersect.

(a) Find estimates of β10, β11, β20, β21, σ 2, and γ .
Hint: γ is a function of the other parameters.
(b) Find a (1−α)100% confidence interval for γ . Does such an interval always

exist?
Hint: Use an F(1,n+m−4) distribution based on[

(β̂10 + β̂11γ)− (β̂20 + β̂21γ)
]2

.

Comment: Hinkley (1969) has treated the more realistic problem in which it is
not known between which xi values the intersection occurs.

Exercise 6.8.4 Consider the model yi = β0 + β1xi + ei, eis i.i.d. N(0,σ 2di),
i = 1,2,3, . . . ,n, where the dis are known numbers. Derive algebraic formulas for
β̂0, β̂1, Var(β̂0), and Var(β̂1).

Exercise 6.8.5 Consider the model yi = β0 + β1xi + ei, eis i.i.d. N(0,σ 2), i =
1,2,3, . . . ,n. If the xis are restricted to be in the closed interval [−10,15], determine
how to choose the xis to minimize

(a) Var(β̂0).
(b) Var(β̂1).
(c) How would the choice of the xis change if they were restricted to the closed

interval [−10,10]?
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Exercise 6.8.6 Find E[y− Ê(y|x)]2 in terms of the variances and covariances of
x and y. Give a “natural” estimate of E

[
y− Ê(y|x)]2.

Exercise 6.8.7 Test whether the data of Example 6.2.1 indicate that the multiple
correlation coefficient is different from zero.

Exercise 6.8.8 Test whether the data of Example 6.2.1 indicate that the partial
correlation coefficient ρy1·2 is different from zero.

Exercise 6.8.9 Show that

(a) ρ12·3 =
ρ12 −ρ13ρ23√

1−ρ2
13

√
1−ρ2

23

(b) ρ12·34 =
ρ12·4 −ρ13·4ρ23·4√
1−ρ2

13·4
√

1−ρ2
23·4

.

Exercise 6.8.10 Show that in Section 2, γ∗ = β∗ and β0 = γ0 − (1/n)Jn
1 Zγ∗.

Hint: Examine the corresponding argument given in Section 1 for simple linear
regression.



 



Chapter 7

Multifactor Analysis of Variance

Chapter 7 presents the analysis of multifactor ANOVA models. The first three
sections deal with the balanced two-way ANOVA model. Section 1 examines the
no interaction model. Section 2 examines the model with interaction. Section 3 dis-
cusses the relationship between polynomial regression and the balanced two-way
ANOVA model. Sections 4 and 5 discuss unbalanced two-way ANOVA models.
Section 4 treats the special case of proportional numbers. Section 5 examines the
general case. Finally, Section 6 extends the earlier results of the chapter to models
with more than two factors. A review of the tensor concepts in Appendix B may aid
the reader of this chapter.

7.1 Balanced Two-Way ANOVA Without Interaction

The balanced two-way ANOVA without interaction model is generally written

yi jk = μ +αi +η j + ei jk, (1)

i = 1, . . . ,a, j = 1, . . . ,b, k = 1, . . . ,N.
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EXAMPLE 7.1.1. Suppose a = 3, b = 2, N = 4. In matrix terms write⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y111
y112
y113
y114
y121
y122
y123
y124
y211
y212
y213
y214
y221
y222
y223
y224
y311
y312
y313
y314
y321
y322
y323
y324

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 1 0
1 1 0 0 1 0
1 1 0 0 1 0
1 1 0 0 1 0
1 1 0 0 0 1
1 1 0 0 0 1
1 1 0 0 0 1
1 1 0 0 0 1
1 0 1 0 1 0
1 0 1 0 1 0
1 0 1 0 1 0
1 0 1 0 1 0
1 0 1 0 0 1
1 0 1 0 0 1
1 0 1 0 0 1
1 0 1 0 0 1
1 0 0 1 1 0
1 0 0 1 1 0
1 0 0 1 1 0
1 0 0 1 1 0
1 0 0 1 0 1
1 0 0 1 0 1
1 0 0 1 0 1
1 0 0 1 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
μ
α1
α2
α3
η1
η2

⎤⎥⎥⎥⎥⎥⎦+ e.

In general, we can write the model as

Y = [X0,X1, . . . ,Xa,Xa+1, . . . ,Xa+b]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μ
α1
...

αa
η1
...

ηb

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ e.

Write n = abN and the observation vector as Y = [yi jk], where the three subscripts
i, j, and k denote a row of the vector. (Multiple subscripts denoting the rows and
columns of matrices were introduced in Chapter 4.) The model matrix of the bal-
anced two-way ANOVA model has

X0 = J,
Xr = [ti jk], ti jk = δir, r = 1, . . . ,a,

Xa+s = [ti jk], ti jk = δ js, s = 1, . . . ,b,



7.1 Balanced Two-Way ANOVA Without Interaction 165

where δgh = 1 if g = h, and 0 otherwise. This is just a formal way of writing down
model matrices that look like the one in Example 7.1.1. For example, an observation
yrst is subject to the effects of αr and ηs. The rst row of the column Xr needs to be
1 so that αr is added to yrst and the rst row of Xa+s needs to be 1 so that ηr is added
to yrst . The rst rows of the columns Xj , j = 1, . . . ,a, j �= r and Xa+ j, j = 1, . . . ,b,
j �= s need to be 0 so that none of the α js other than αr, nor η js other than ηs, are
added to yrst . The definition of the columns Xr and Xa+s given above ensures that
this occurs.

The analysis of this model is based on doing two separate one-way ANOVAs. It is
frequently said that this can be done because the treatments α and η are orthogonal.
This is true in the sense that after fitting μ , the column space for the αs is orthogonal
to the column space for the ηs. (See the discussion surrounding Proposition 3.6.3.)
To investigate this further, consider a new matrix

Z = [Z0,Z1, . . . ,Za,Za+1, . . . ,Za+b],

where
Z0 = X0 = J

and

Zr = Xr − X ′
rJ

J′J
J,

for r = 1, . . . ,a + b. Here we have used Gram–Schmidt to eliminate the effect of J
(the column associated with μ) from the rest of the columns of X . Since J′J = abN,
X ′

rJ = bN for r = 1, . . . ,a, and X ′
a+sJ = aN for s = 1, . . . ,b, we have

Zr = Xr − 1
a

J, r = 1, . . . ,a,

Za+s = Xa+s − 1
b

J, s = 1, . . . ,b.

Observe that

C(X) = C(X0,X1, . . . ,Xa,Xa+1, . . . ,Xa+b)
= C(Z0,Z1, . . . ,Za,Za+1, . . . ,Za+b) = C(Z),

C(X0,X1, . . . ,Xa) = C(Z0,Z1, . . . ,Za),

C(X0,Xa+1, . . . ,Xa+b) = C(Z0,Za+1, . . . ,Za+b),

Z0 ⊥ Zr, r = 1, . . . ,a+b,

and
C(Z1, . . . ,Za) ⊥ C(Za+1, . . . ,Za+b).

To see the last of these, observe that for r = 1, . . . ,a and s = 1, . . . ,b,

Z′
a+sZr = ∑

i jk
(δ js −1/b)(δir −1/a)
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= ∑
i jk

δ jsδir −∑
i jk

δ js
1
a
−∑

i jk
δir

1
b

+∑
i jk

1
ab

= ∑
i j

Nδ jsδir −∑
j

δ js
aN
a

−∑
i

δir
bN
b

+
abN
ab

= N −aN/a−bN/b+N = 0.

We have decomposed C(X) into three orthogonal parts, C(Z0), C(Z1, . . . ,Za), and
C(Za+1, . . . ,Za+b). M, the perpendicular projection operator onto C(X), can be writ-
ten as the matrix sum of the perpendicular projection matrices onto these three
spaces. By appealing to the one-way ANOVA, we can actually identify these pro-
jection matrices.

C([X0,X1, . . . ,Xa]) is the column space for the one-way ANOVA model

yi jk = μ +αi + ei jk, (2)

where the subscripts j and k are both used to indicate replications. Similarly,
C([X0,Xa+1, . . . ,Xa+b]) is the column space for the one-way ANOVA model

yi jk = μ +η j + ei jk, (3)

where the subscripts i and k are both used to indicate replications. If one actually
writes down the matrix [X0,Xa+1, . . . ,Xa+b], it looks a bit different from the usual
form of a one-way ANOVA model matrix because the rows have been permuted out
of the convenient order generally used.

Let Mα be the projection matrix used to test for no treatment effects in model
(2). Mα is the perpendicular projection matrix onto C(Z1, . . . ,Za). Similarly, if Mη
is the projection matrix for testing no treatment effects in model (3), then Mη is the
perpendicular projection matrix onto C(Za+1, . . . ,Za+b). It follows that

M =
1
n

Jn
n +Mα +Mη .

By comparing models, we see, for instance, that the test for H0 : α1 = · · · = αa is
based on

Y ′MαY/r(Mα)
Y ′(I −M)Y/r(I −M)

.

It is easy to see that r(Mα) = a−1 and r(I −M) = n−a−b+1. Y ′MαY can be
found as in Chapter 4 by appealing to the analysis of the one-way ANOVA model
(2). In particular, since pairs jk identify replications,

MαY = [ti jk], where ti jk = ȳi·· − ȳ··· (4)

and

SS(α) = Y ′MαY = [MαY ]′[MαY ] = bN
a

∑
i=1

(ȳi·· − ȳ···)2.
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Expected mean squares can also be found by appealing to the one-way ANOVA

E(Y ′MαY ) = σ 2(a−1)+β ′X ′Mα Xβ .

Substituting μ +αi +η j for yi jk in (4) gives

Mα Xβ = [ti jk], where ti jk = αi − ᾱ·

and thus

E
[
Y ′MαY/(a−1)

]
= σ 2 +

bN
a−1

a

∑
i=1

(αi − ᾱ·)2.

Similar results hold for testing H0 : η1 = · · · = ηb.
The SSE can be found using (4) and the facts that

MηY = [ti jk], where ti jk = ȳ· j· − ȳ···

and
1
n

Jn
nY = [ti jk], where ti jk = ȳ··· .

Because (I −M)Y = Y − (1/n)Jn
nY −MαY −MηY ,

(I −M)Y = [ti jk]

where

ti jk = yi jk − ȳ··· − (ȳi·· − ȳ···)− (ȳ· j· − ȳ···)
= yi jk − ȳi·· − ȳ· j· + ȳ···.

Finally,

SSE = Y ′(I −M)Y = [(I −M)Y ]′[(I −M)Y ]

=
a

∑
i=1

b

∑
j=1

N

∑
k=1

(yi jk − ȳi·· − ȳ· j· + ȳ···)2.

The analysis of variance table is given in Table 7.1.

7.1.1 Contrasts

We wish to show that estimation and testing of contrasts in a balanced two-way
ANOVA is done exactly as in the one-way ANOVA: by ignoring the fact that a
second type of treatment exists. This follows from showing that, say, a contrast
in the αis involves a constraint on C(Mα), and C(Mα) is defined by the one-way
ANOVA without the η js.
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Table 7.1 Balanced Two-Way Analysis of Variance Table with No Interaction.

Matrix Notation

Source df SS

Grand Mean 1 Y ′ ( 1
n Jn

n
)

Y

Treatments(α) a−1 Y ′MαY

Treatments(η) b−1 Y ′MηY

Error n−a−b+1 Y ′(I−M)Y

Total n = abN Y ′Y

Source SS E(MS)

Grand Mean SSGM σ2 +β ′X ′ ( 1
n Jn

n
)

Xβ

Treatments(α) SS(α) σ2 +β ′X ′Mα Xβ/(a−1)

Treatments(η) SS(η) σ2 +β ′X ′Mη Xβ/(b−1)

Error SSE σ2

Total SSTot

Algebraic Notation

Source df SS

Grand Mean df GM n−1y2··· = nȳ2···

Treatments(α) df (α) bN ∑a
i=1 (ȳi·· − ȳ···)2

Treatments(η) df (η) aN ∑b
j=1 (ȳ· j· − ȳ···)2

Error dfE ∑i jk
(
yi jk − ȳi·· − ȳ· j· + ȳ···

)2
Total df Tot ∑i jk y2

i jk

Source MS E(MS)

Grand Mean SSGM σ2 +abN(μ + ᾱ· + η̄·)2

Treatments(α) SS(α)/(a−1) σ2 +bN ∑a
i=1 (αi − ᾱ·)2 /(a−1)

Treatments(η) SS(η)/(b−1) σ2 +aN ∑b
j=1 (η j − η̄·)2 /(b−1)

Error SSE/(n−a−b+1) σ 2
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Theorem 7.1.2. Let λ ′β be estimable and ρ ′X = λ ′. Then λ ′β is a contrast in
the αis if and only if ρ ′M = ρ ′Mα . In this case, λ ′β̂ = ρ ′MY = ρ ′MαY , which is
the estimate from the one-way ANOVA ignoring the η js.

PROOF. Let λ ′β = ∑a
i=1 ciαi with ∑a

i=1 ci = 0. Thus, λ ′ = (0,c1, . . . ,ca,0, . . . ,0)
and λ ′Ja+b+1 = 0. To have such a λ is to have ρ with

ρ ′Xi = 0, i = 0,a+1,a+2, . . . ,a+b,

which happens if and only if ρ is orthogonal to C(Z0,Za+1, . . . ,Za+b) =C(M−Mα).
In other words, ρ ′(M−Mα) = 0 and ρ ′M = ρ ′Mα . �

One interpretation of this result is that having a contrast in the αis equal to zero
puts a constraint on C(X) that requires E(Y ) ∈C(X) and E(Y ) ⊥ Mα ρ . Clearly this
constitutes a constraint on C(Mα), the space for the α treatments. Another interpre-
tation is that estimation or testing of a contrast in the αis is done using Mα , which
is exactly the way it is done in a one-way ANOVA ignoring the η js.

Specifically, if we have a contrast ∑a
i=1 ciαi, then the corresponding vector Mα ρ

is
Mα ρ = [ti jk], where ti jk = ci/bN.

The estimated contrast is ρ ′MαY = ∑a
i=1 ciȳi·· having a variance of σ 2ρ ′Mα ρ =

σ 2 ∑a
i=1 c2

i /bN and a sum of squares for testing H0 : ∑a
i=1 ciαi = 0 of(

a

∑
i=1

ciȳi··

)2/( a

∑
i=1

c2
i /bN

)
.

To get two orthogonal constraints on C(Mα), as in the one-way ANOVA, take
ρ1 and ρ2 such that ρ ′

1Xβ and ρ ′
2Xβ are contrasts in the αis and ρ ′

1Mαρ2 = 0. If
ρ ′

jXβ = ∑a
i=1 c jiαi, then, as shown for the one-way ANOVA, ρ ′

1Mα ρ2 = 0 if and
only if ∑a

i=1 c1ic2i = 0.
In the balanced two-way ANOVA without interaction, if N is greater than 1, we

have a row structure to the model matrix with ab distinct rows. This allows estima-
tion of pure error and lack of fit. The balanced two-way ANOVA with interaction
retains the row structure and is equivalent to a large one-way ANOVA with ab treat-
ments. Thus, the interaction model provides one parameterization of the model de-
veloped in Subsection 6.6.1 for testing lack of fit. The sum of squares for interaction
is just the sum of squares for lack of fit of the no interaction model.

7.2 Balanced Two-Way ANOVA with Interaction

The balanced two-way ANOVA with interaction model is written
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yi jk = μ +αi +η j + γi j + ei jk,

i = 1, . . . ,a, j = 1, . . . ,b, k = 1, . . . ,N.

EXAMPLE 7.2.1. Suppose a = 3, b = 2, N = 4. In matrix terms we write⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y111
y112
y113
y114
y121
y122
y123
y124
y211
y212
y213
y214
y221
y222
y223
y224
y311
y312
y313
y314
y321
y322
y323
y324

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 1 0 1 0 0 0 0 0
1 1 0 0 1 0 1 0 0 0 0 0
1 1 0 0 1 0 1 0 0 0 0 0
1 1 0 0 1 0 1 0 0 0 0 0
1 1 0 0 0 1 0 1 0 0 0 0
1 1 0 0 0 1 0 1 0 0 0 0
1 1 0 0 0 1 0 1 0 0 0 0
1 1 0 0 0 1 0 1 0 0 0 0
1 0 1 0 1 0 0 0 1 0 0 0
1 0 1 0 1 0 0 0 1 0 0 0
1 0 1 0 1 0 0 0 1 0 0 0
1 0 1 0 1 0 0 0 1 0 0 0
1 0 1 0 0 1 0 0 0 1 0 0
1 0 1 0 0 1 0 0 0 1 0 0
1 0 1 0 0 1 0 0 0 1 0 0
1 0 1 0 0 1 0 0 0 1 0 0
1 0 0 1 1 0 0 0 0 0 1 0
1 0 0 1 1 0 0 0 0 0 1 0
1 0 0 1 1 0 0 0 0 0 1 0
1 0 0 1 1 0 0 0 0 0 1 0
1 0 0 1 0 1 0 0 0 0 0 1
1 0 0 1 0 1 0 0 0 0 0 1
1 0 0 1 0 1 0 0 0 0 0 1
1 0 0 1 0 1 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μ
α1
α2
α3
η1
η2
γ11
γ12
γ21
γ22
γ31
γ32

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ e.

In general, the model matrix can be written

X = [X0,X1, . . . ,Xa,Xa+1, . . . ,Xa+b,Xa+b+1, . . . ,Xa+b+ab].

The columns X0, . . . ,Xa+b are exactly the same as for (7.1.1), the model without
interaction. The key fact to notice is that

C(X) = C(Xa+b+1, . . . ,Xa+b+ab);

this will be shown rigorously later. We can write an equivalent model using just
Xa+b+1, . . . ,Xa+b+ab, say

yi jk = μi j + ei jk.

This is just a one-way ANOVA model with ab treatments and is sometimes called
the cell means model.

We can decompose C(X) into four orthogonal parts based on the identity
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M =
1
n

Jn
n +Mα +Mη +Mγ ,

where
Mγ ≡ M− 1

n
Jn

n −Mα −Mη .

Mα and Mη come from the no interaction model. Thus, as discussed earlier, Mα and
Mη each come from a one-way ANOVA model. Since M also comes from a one-way
ANOVA model, we can actually find Mγ . The interaction space is defined as C(Mγ).
The sum of squares for interaction is Y ′MγY . It is just the sum of squares left over
after explaining as much as possible with μ , the αis, and the η js. The degrees of
freedom for the interaction are

r(Mγ) = r
(

M− 1
n

Jn
n −Mα −Mη

)
= ab−1− (a−1)− (b−1) = (a−1)(b−1).

The algebraic formula for the interaction sum of squares can be found as follows:

SS(γ) = Y ′MγY = [MγY ]′[MγY ], (1)

where

MγY =
(

M− 1
n

Jn
n −Mα −Mη

)
Y = MY − 1

n
Jn

nY −MαY −MηY.

With M the projection operator for a one-way ANOVA, all of the terms on the right
of the last equation have been characterized, so(

M− 1
n

Jn
n −Mα −Mη

)
Y = [ti jk],

where

ti jk = ȳi j· − ȳ··· − (ȳi·· − ȳ···)− (ȳ· j· − ȳ···)
= ȳi j· − ȳi·· − ȳ· j· + ȳ···.

It follows immediately from (1) that

SS(γ) =
a

∑
i=1

b

∑
j=1

N

∑
k=1

[ȳi j· − ȳi·· − ȳ· j· + ȳ···]2

= N
a

∑
i=1

b

∑
j=1

[ȳi j· − ȳi·· − ȳ· j· + ȳ···]2.

The expected value of Y ′MγY is σ 2(a−1)(b−1)+β ′X ′Mγ Xβ . The second term
is a quadratic form in the γi js because (M−Mα −Mη − [1/n]Jn

n )Xr = 0 for r =
0,1, . . . ,a + b. The algebraic form of β ′X ′Mγ Xβ can be found by substituting μ +
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αi +η j + γi j for yi jk in SS(γ). Simplification gives

β ′X ′MγXβ = N ∑
i j

[γi j − γ̄i· − γ̄· j − γ̄··]2.

The expected values of Y ′MαY , Y ′MηY , and Y ′(1/n)Jn
nY are now different from

those found for the no interaction model. As above, algebraic forms for the expected
values can be computed by substituting for the yi jks in the algebraic forms for the
sums of squares. For instance,

E(Y ′MαY ) = σ 2(a−1)+β ′X ′MαXβ = σ 2(a−1)+bN
a

∑
i=1

(αi + γ̄i· − ᾱ· − γ̄··)2,

which depends on the γi js and not just the αis. This implies that the standard test
is not a test that the αis are all equal; it is a test that the (αi + γ̄i·)s are all equal.
In fact, since the column space associated with the γi js spans the entire space, i.e.,
C(Xa+b+1, . . . ,Xa+b+ab) = C(X), all estimable functions of the parameters are func-
tions of the γi js. To see this, note that if λ ′β is not a function of the γi js, but is
estimable, then ρ ′Xi = 0, i = a+b+1, . . . ,a +b +ab, and hence λ ′ = ρ ′X = 0; so
λ ′β is identically zero.

If we impose the “usual” side conditions, α· = η· = γi· = γ· j = 0, we obtain, for
example,

E(Y ′MαY ) = σ 2(a−1)+bN
a

∑
i=1

α2
i ,

which looks nice but serves no purpose other than to hide the fact that these new αi
terms are averages over any interactions that exist.

As we did for a two-way ANOVA without interaction, we can put a single degree
of freedom constraint on, say, C(Mα) by choosing a function λ ′β such that λ ′ = ρ ′X
and ρ ′M = ρ ′Mα . However, such a constraint no longer yields a contrast in the
αis. To examine ρ ′MαXβ , we examine the nature of Mα Xβ . Since MαY is a vector
whose rows are made up of terms like (ȳi·· − ȳ···), algebraic substitution gives Mα Xβ
as a vector whose rows are terms like (αi + γ̄i· − ᾱ· − γ̄··). λ ′β = ρ ′MαXβ will be a
contrast in these terms or, equivalently, in the (αi + γ̄i·)s. Such contrasts are generally
hard to interpret. A contrast in the terms (αi + γ̄i·) will be called a contrast in the α
space. Similarly, a contrast in the terms (η j + γ̄· j) will be called a contrast in the η
space.

There are two fundamental approaches to analyzing a two-way ANOVA with
interaction. In both methods, the test for whether interaction adds to the two-way
without interaction model is performed. If this is not significant, the interactions are
tentatively assumed to be zero. If the effect of the interaction terms is significant,
the easiest approach is to do the entire analysis as a one-way ANOVA. The alterna-
tive approach consists of trying to interpret the contrasts in C(Mα) and C(Mη) and
examining constraints in the interaction space.
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7.2.1 Interaction Contrasts

We now consider how to define and test constraints on the interaction space.
The hypothesis H0 : λ ′β = 0 puts a constraint on the interaction space if and
only if λ ′ = ρ ′X has the property ρ ′M = ρ ′ (M−Mα −Mη − [1/n]Jn

n ). To find
hypotheses that put constraints on the interaction space, it suffices to find ρ ⊥
C(Mα +Mη +[1/n]Jn

n ) or, alternately, ρ ′Xi = 0, i = 0, . . . ,a+b.
The goal of the following discussion is to characterize vectors in the interaction

space, i.e., to characterize the vectors Mρ that have the property ρ ′Xi = 0 for i =
0, . . . ,a + b. A convenient way to do this is to characterize the vectors ρ that have
two properties: 1) Mρ = ρ , and 2) ρ ′Xi = 0 for i = 0, . . . ,a+b. The second property
ensures that Mρ is in the interaction space.

First we find a class of vectors that are contained in the interaction space. From
this class of vectors we will get a class of orthogonal bases for the interaction space.
The class of vectors and the class of orthogonal bases are found by combining a
contrast in the α space with a contrast in the η space. This method leads naturally to
the standard technique of examining interactions. Finally, a second class of vectors
contained in the interaction space will be found. This class contains the first class as
a special case. The second class is closed under linear combinations, so the second
class is a vector space that contains a basis for the interaction space but which is
also contained in the interaction space. It follows that the second class is precisely
the interaction space.

At this point a problem arises. It is very convenient to write down ANOVA mod-
els as was done in Example 7.2.1, with indices to the right in yi jk changing fastest. It
is easy to see what the model looks like and that it can be written in a similar manner
for any choices of a, b, and N. In the example it would be easy to find a vector that
is in the interaction space, and it would be easy to see that the technique could be
extended to cover any two-way ANOVA problem. Although it is easy to see how to
write down models as in the example, it is awkward to develop a notation for it. It is
also less than satisfying to have a proof that depends on the way in which the model
is written down. Consequently, the material on finding a vector in the interaction
space will be presented in three stages: an application to Example 7.2.1, a comment
on how that argument can be generalized, and finally a rigorous presentation.

EXAMPLE 7.2.2. In the model of Example 7.2.1, let d′ = (d1,d2,d3) = (1,2,−3)
and c′ = (c1,c2) = (1,−1). The dis determine a contrast in the α space and the c js
determine a contrast in the η space. Consider

[d′ ⊗ c′] = [c1d1,c2d1,c1d2,c2d2,c1d3,c2d3]
= [1,−1,2,−2,−3,3];

and since N = 4, let

ρ ′ =
1
4
[d′ ⊗ c′]⊗ J4

1 =
1
4
[c1d1J4

1 ,c2d1J4
1 , . . . ,c2d3J4

1 ]
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=
1
4
[
1,1,1,1,−1,−1,−1,−1,2,2,2,2,−2,−2,−2,−2,

−3,−3,−3,−3,3,3,3,3
]
.

It is easily seen that ρ is orthogonal to the first six columns of X ; thus Mρ is in
the interaction space. However, it is also easily seen that ρ ∈C(X), so Mρ = ρ . The
vector ρ is itself a vector in the interaction space.

Extending the argument to an arbitrary two-way ANOVA written in standard
form, let d′ = (d1, . . . ,da) with ∑a

i=1 di = 0 and c′ = (c1, . . . ,cb) with ∑b
j=1 c j = 0.

The dis can be thought of as determining a contrast in the α space and the c js as
determining a contrast in the η space. Let ρ ′ = (1/N)[d′ ⊗ c′]⊗ JN

1 , i.e.,

ρ ′ =
1
N

(c1d1JN
1 ,c2d1JN

1 , . . . ,cbd1JN
1 ,c1d2JN

1 , . . . ,cbdaJN
1 ).

It is clear that ρ ′Xi = 0 for i = 0, . . . ,a+b and ρ ∈C(Xa+b+1, . . . ,Xa+b+ab) so ρ ′M =
ρ ′ and ρ ′Xβ = 0 puts a constraint on the correct space.

To make the argument completely rigorous, with d and c defined as above, take

ρ = [ρi jk], where ρi jk =
1
N

(dic j).

Using the characterizations of X0, . . . ,Xa+b from Section 1 we get

ρ ′X0 = ∑
i

∑
j
∑
k

1
N

(dic j) = ∑
i

di ∑
j

c j = 0;

for r = 1, . . . ,a, we get

ρ ′Xr = ∑
i

∑
j
∑
k

1
N

(dic j)δir = dr ∑
j

c j = 0;

and for s = 1, . . . ,b, we get

ρ ′Xa+s = ∑
i

∑
j
∑
k

1
N

(dic j)δ js = cs ∑
i

di = 0.

This shows that Mρ is in the interaction space.
To show that Mρ = ρ , we show that ρ ∈ C(X). We need to characterize C(X).

The columns of X that correspond to the γi js are the vectors Xa+b+1, . . . ,Xa+b+ab.
Reindex these as X(1,1),X(1,2), . . . ,X(1,b), . . . ,X(2,1), . . . ,X(a,b). Thus X(i, j) is the col-
umn of X corresponding to γi j. We can then write

X(r,s) = [ti jk], where ti jk = δ(i, j)(r,s)

and δ(i, j)(r,s) = 1 if (i, j) = (r,s), and 0 otherwise. It is easily seen that
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X0 =
a

∑
i=1

b

∑
j=1

X(i, j),

Xr =
b

∑
j=1

X(r, j), r = 1, . . . ,a,

Xa+s =
a

∑
i=1

X(i,s), s = 1, . . . ,b.

This shows that C(X) = C(X(1,1),X(1,2), . . . ,X(a,b)). (In the past, we have merely
claimed this result.) It is also easily seen that

ρ =
a

∑
i=1

b

∑
j=1

dic j

N
X(i, j),

so that ρ ∈C(X).
We have found a class of vectors contained in the interaction space. If we find

(a−1)(b−1) such vectors, say ρr, r = 1, . . . ,(a−1)(b−1), where

ρ ′
r (M−Mα −Mη − [1/n]Jn

n )ρs = 0

for any r �= s, then we will have an orthogonal basis for C(M−Mα −Mη − [1/n]Jn
n ).

Consider now another pair of contrasts for α and η , say d∗ = (d∗
1 , . . . ,d∗

a)′ and c∗ =
(c∗1, . . . ,c

∗
b)

′, where one, say c∗ = (c∗1, . . . ,c
∗
b)

′, is orthogonal to the corresponding
contrast in the other pair. We can write

ρ∗ = [ρ∗
i jk], where ρ∗

i jk = d∗
i c∗j/N,

and we know that ∑a
i=1 d∗

i = ∑b
j=1 c∗j = ∑b

j=1 c jc∗j = 0. With our choices of ρ and ρ∗,

ρ ′ (M−Mα −Mη − [1/n]Jn
n )ρ∗ = ρ ′ρ∗

= N−2
a

∑
i=1

b

∑
j=1

N

∑
k=1

did∗
i c jc∗j

= N−1
a

∑
i=1

did∗
i

b

∑
j=1

c jc∗j

= 0.

Since there are (a− 1) orthogonal ways of choosing d′ = (d1, . . . ,da) and (b− 1)
orthogonal ways of choosing c′ = (c1, . . . ,cb), there are (a− 1)(b− 1) orthogonal
vectors ρ that can be chosen in this fashion. This provides the desired orthogonal
breakdown of the interaction space.

To actually compute the estimates of these parametric functions, recall that M
is the perpendicular projection operator for a one-way ANOVA. With ρ chosen as
above,
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ρ ′Xβ =
a

∑
i=1

b

∑
j=1

N

∑
k=1

dic j

N
γi j =

a

∑
i=1

b

∑
j=1

dic jγi j .

Its estimate reduces to

ρ ′MY =
a

∑
i=1

b

∑
j=1

dic jȳi j·

and its variance to

σ 2ρ ′Mρ = σ2ρ ′ρ = σ 2
a

∑
i=1

b

∑
j=1

d2
i c2

j/N.

A handy method for computing these is to write out the following two-way table:

c1 c2 · · · cb hi
d1 ȳ11· ȳ12· · · · ȳ1b· h1
d2 ȳ21· ȳ22· · · · ȳ2b· h2
...

...
...

. . .
...

...
da ȳa1· ȳa2· · · · ȳab· ha
g j g1 g2 · · · gb

where hi = ∑b
j=1 c jȳi j· and g j = ∑a

i=1 diȳi j·. We can then write

ρ ′MY =
b

∑
j=1

c jg j =
a

∑
i=1

dihi.

Unfortunately, not all contrasts in the interaction space can be defined as illus-
trated here. The (a− 1)(b− 1) orthogonal vectors that we have discussed finding
form a basis for the interaction space, so any linear combination of these vectors is
also in the interaction space. However, not all of these linear combinations can be
written with the method based on two contrasts.

Let Q = [qi j] be any a×b matrix such that J′aQ = 0 and QJb = 0 (i.e., qi· = 0 =
q· j). If the model is written down in the usual manner, the vectors in the interaction
space are the vectors of the form ρ = (1/N)Vec(Q′)⊗ JN . In general, we write the
vector ρ with triple subscript notation as

ρ = [ρi jk], where ρi jk = qi j/N with qi· = q· j = 0. (2)

First, note that linear combinations of vectors with this structure retain the structure;
thus vectors of this structure form a vector space. Vectors ρ with this structure are
in C(X), and it is easily seen that ρ ′Xi = 0 for i = 0,1, . . . ,a+b. Thus, a vector with
this structure is contained in the interaction space. Note also that the first method of
finding vectors in the interaction space using a pair of contrasts yields a vector of
the structure that we are currently considering, so the vector space alluded to above
is both contained in the interaction space and contains a basis for the interaction
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space. It follows that the interaction space is precisely the set of all vectors with the
form (2).

Exercise 7.1 Prove the claims of the previous paragraph. In particular, show that
linear combinations of the vectors presented retain their structure, that the vectors
are orthogonal to the columns of X corresponding to the grand mean and the treat-
ment effects, and that the vectors based on contrasts have the same structure as the
vector given above.

For estimation and tests of single-degree-of-freedom hypotheses in the interac-
tion space, it is easily seen, with ρ taken as above, that

ρ ′Xβ =
a

∑
i=1

b

∑
j=1

qi jγi j ,

ρ ′MY =
a

∑
i=1

b

∑
j=1

qi jȳi j· ,

Var(ρ ′MY ) = σ 2
a

∑
i=1

b

∑
j=1

q2
i j/N .

Table 7.2 gives the ANOVA table for the balanced two-way ANOVA with inter-
action. Note that if N = 1, there will be no pure error term available. In that case,
it is often assumed that the interactions add nothing to the model, so that the mean
square for interactions can be used as an estimate of error for the two-way ANOVA
without interaction. See Example 13.2.4 for a graphical procedure that addresses
this problem.

Exercise 7.2 Does the statement “the interactions add nothing to the model”
mean that γ11 = γ12 = · · · = γab? If it does, justify the statement. If it does not, what
does the statement mean?

Two final comments on exploratory work with interactions. If the (a−1)(b−1)
degree-of-freedom F test for interactions is not significant, then neither Scheffé’s
method nor the LSD method will allow us to claim significance for any contrast
in the interactions. Bonferroni’s method may give significance, but it is unlikely.
Nevertheless, if our goal is to explore the data, there may be suggestions of possi-
ble interactions. For example, if you work with interactions long enough, you begin
to think that some interaction contrasts have reasonable interpretations. If such a
contrast exists that accounts for the bulk of the interaction sum of squares, and if
the corresponding F test approaches significance, then it would be unwise to ignore
this possible source of interaction. (As a word of warning though, recall that there
always exists an interaction contrast, usually uninterpretable, that accounts for the
entire sum of squares for interaction.) Second, in exploratory work it is very useful
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Table 7.2 Balanced Two-Way Analysis of Variance Table with Interaction.

Matrix Notation

Source df SS

Grand Mean 1 Y ′ ( 1
n Jn

n
)

Y

Treatments(α) a−1 Y ′MαY

Treatments(η) b−1 Y ′MηY

Interaction(γ) (a−1)(b−1) Y ′ (M−Mα −Mη − 1
n Jn

n
)

Y

Error n−ab Y ′(I −M)Y

Total n = abN Y ′Y

Source SS E(MS)

Grand Mean SSGM σ2 +β ′X ′ ( 1
n Jn

n
)

Xβ

Treatments(α) SS(α) σ2 +β ′X ′Mα Xβ/(a−1)

Treatments(η) SS(η) σ2 +β ′X ′Mη Xβ/(b−1)

Interaction(γ) (a−1)(b−1) σ2 +β ′X ′Mγ Xβ/(a−1)(b−1)

Error SSE σ2

Total SSTot

Algebraic Notation

Source df SS

Grand Mean df GM n−1y2··· = nȳ2···

Treatments(α) df (α) bN ∑a
i=1 (ȳi·· − ȳ···)2

Treatments(η) df (η) aN ∑b
j=1 (ȳ· j· − ȳ···)2

Interaction(γ) df (γ) N ∑i j (ȳi j· − ȳi·· − ȳ· j· + ȳ···)2

Error dfE ∑i jk
(
yi jk − ȳi j·

)2
Total df Tot ∑i jk y2

i jk

Source MS E(MS)

Grand Mean SSGM σ2 +abN(μ + ᾱ· + η̄· + γ̄··)2

Treatments(α) SS(α)/(a−1) σ 2 + bN
a−1 ∑i (αi + γ̄i· − ᾱ· − γ̄··)2

Treatments(η) SS(η)/(b−1) σ 2 + aN
b−1 ∑ j (η j + γ̄· j − η̄· − γ̄··)2

Interaction(γ) SS(γ)/df (γ) σ2 + N
df (γ) ∑i j (γi j − γ̄i· − γ̄· j + γ̄··)2

Error SSE/(n−ab) σ2
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to plot the cell means. For example, one can plot the points (i, ȳi j·) for each value of
j, connecting the points to give b different curves, one for each j. If the α treatments
correspond to levels of some quantitative factor xi, plot the points (xi, ȳi j·) for each
value of j. If there are no interactions, the plots for different values of j should be
(approximately) parallel. (If no interactions are present, the plots estimate plots of
the points (i,μ +αi +η j). These plots are parallel for all j.) Deviations from a par-
allel set of plots can suggest possible sources of interaction. The data are suggesting
possible interaction contrasts, so if valid tests are desired, use Scheffé’s method. Fi-
nally, it is equally appropriate to plot the points ( j, ȳi j·) for all i or a corresponding
set of points using quantitative levels associated with the η treatments.

7.3 Polynomial Regression and the Balanced Two-Way ANOVA

Consider first the balanced two-way ANOVA without interaction. Suppose that the
ith level of the α treatments corresponds to some number wi and that the jth level
of the η treatments corresponds to some number zi. We can write vectors taking
powers of wi and zi. For r = 1, . . . ,a−1 and s = 1, . . . ,b−1, write

W r = [ti jk], where ti jk = wr
i ,

Zr = [ti jk], where ti jk = zs
i .

Note that W 0 = Z0 = J.

EXAMPLE 7.3.1. Consider the model yi jk = μ + αi + η j + ei jk, i = 1,2,3, j =
1,2, k = 1,2. Suppose that the α treatments are 1, 2, and 3 pounds of fertilizer
and that the η treatments are 5 and 7 pounds of manure. Then, if we write Y =
(y111,y112,y121,y122,y211, . . . ,y322)′, we have

W 1 = (1,1,1,1,2,2,2,2,3,3,3,3)′,

W 2 = (1,1,1,1,4,4,4,4,9,9,9,9)′,

Z1 = (5,5,7,7,5,5,7,7,5,5,7,7)′.

From the discussion of Section 6.7 on polynomial regression and one-way
ANOVA, we have

C(J,W 1, . . . ,W a−1) = C(X0,X1, . . . ,Xa),
C(J,Z1, . . . ,Zb−1) = C(X0,Xa+1, . . . ,Xa+b),

and thus
C(J,W 1, . . . ,W a−1,Z1, . . . ,Zb−1) = C(X0,X1, . . . ,Xa+b).
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Fitting the two-way ANOVA is the same as fitting a joint polynomial in wi and z j.
Writing the models out algebraically, the model

yi jk = μ +αi +η j + ei jk,

i = 1, . . . ,a, j = 1, . . . ,b, k = 1, . . . ,N, is equivalent to

yi jk = β0,0 +β1,0wi + · · ·+βa−1,0wa−1
i +β0,1z j + · · ·+β0,b−1zb−1

j + ei jk,

i = 1, . . . ,a, j = 1, . . . ,b, k = 1, . . . ,N. The correspondence between contrasts and
orthogonal polynomials remains valid.

We now show that the model

yi jk = μ +αi +η j + γi j + ei jk

is equivalent to the model

yi jk =
a−1

∑
i=0

b−1

∑
j=0

βrswr
i z

s
j + ei jk.

EXAMPLE 7.3.1 CONTINUED. The model yi jk = μ +αi +η j +γi j +ei jk is equiv-
alent to yi jk = β00 +β10wi +β20w2

i +β01z j +β11wiz j +β21w2
i z j +ei jk, where w1 = 1,

w2 = 2, w3 = 3, z1 = 5, z2 = 7.

The model matrix for this polynomial model can be written

S =
[
J1

n ,W 1,W 2, . . . ,W a−1,Z1, . . . ,Zb−1,

W 1Z1, . . . ,W 1Zb−1,W 2Z1, . . . ,W a−1Zb−1],

where for any two vectors in Rn, say U = (u1, . . . ,un)′ and V = (v1, . . . ,vn)′, we
define VU to be the vector (v1u1,v2u2, . . . ,vnun)′.

To establish the equivalence of the models, it is enough to notice that the row
structure of X = [X0,X1, . . . ,Xa+b+ab] is the same as the row structure of S and that
r(X) = ab = r(S). C(X) is the column space of the one-way ANOVA model that has
a separate effect for each distinct set of rows in S. From our discussion of pure error
and lack of fit in Section 6.6, C(S) ⊂ C(X). Since r(S) = r(X), we have C(S) =
C(X); thus the models are equivalent.

We would like to characterize the test in the interaction space that is determined
by, say, the quadratic contrast in the α space and the cubic contrast in the η space.
We want to show that it is the test for W 2Z3, i.e., that it is the test for H0 : β23 = 0 in
the model yi jk = β00 +β10wi +β20w2

i +β01z j +β02z2
j +β03z3

j +β11wiz j +β12wiz2
j +

β13wiz3
j +β21w2

i z j +β22w2
i z2

j +β23w2
i z3

j +ei jk. In general, we want to be able to iden-
tify the columns W rZs, r ≥ 1,s ≥ 1, with vectors in the interaction space. Specif-
ically, we would like to show that the test of W rZs adding to the model based on
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C([W iZ j : i = 0, . . . ,r, j = 0, . . . ,s]) is precisely the test of the vector in the inter-
action space defined by the rth degree polynomial contrast in the α space and the
sth degree polynomial contrast in the η space. Note that the test of the rth degree
polynomial contrast in the α space is a test of whether the column W r adds to the
model based on C(J,W 1, . . . ,W r), and that the test of the sth degree polynomial
contrast in the η space is a test of whether the column Zs adds to the model based
on C(J,Z1, . . . ,Zs).

It is important to remember that the test for W rZs adding to the model is
not a test for W rZs adding to the full model. It is a test for W rZs adding
to the model spanned by the vectors W iZ j, i = 0, . . . ,r, j = 0, . . . ,s, where
W 0 = Z0 = J1

n . As discussed above, the test of the vector in the interaction
space corresponding to the quadratic contrast in the α space and the cubic con-
trast in the η space should be the test of whether W 2Z3 adds to a model with
C(J1

n ,W 1,W 2,Z1,Z2,Z3,W 1Z1,W 1Z2,W 1Z3,W 2Z1,W 2Z2,W 2Z3). Intuitively, this
is reasonable because the quadratic and cubic contrasts are being fitted after all
terms of smaller order.

As observed earlier, if λ ′ = ρ ′X , then the constraint imposed by λ ′β = 0 is Mρ
and the test of λ ′β = 0 is the test for dropping Mρ from the model. Using the Gram–
Schmidt algorithm, find R0,0,R1,0, . . . ,Ra−1,0,R0,1, . . . ,R0,b−1,R1,1, . . . ,Ra−1,b−1 by
orthonormalizing, in order, the columns of S. Recall that the polynomial contrasts in
the αis correspond to the vectors Ri,0, i = 1, . . . ,a−1, and that C(R1,0, . . . ,Ra−1,0) =
C(Mα). Similarly, the polynomial contrasts in the η js correspond to the vectors R0, j
j = 1, . . . ,b− 1 and C(R0,1, . . . ,R0,a−1) = C(Mη). If the test of λ ′β = 0 is to test
whether, say, Zs adds to the model after fitting Z j , j = 1, . . . ,s− 1, we must have
C(Mρ) = C(R0,s). Similar results hold for the vectors W r.

First, we need to examine the relationship between vectors in C(Mα) and C(Mη)
with vectors in the interaction space. A contrast in the α space is defined by, say,
(d1, . . . ,da), and a contrast in the η space by, say, (c1, . . . ,cb). From Chapter 4, if
we define

ρ1 = [ti jk], where ti jk = di/Nb

and
ρ2 = [ti jk], where ti jk = c j/Na,

then ρ1 ∈C(Mα), ρ2 ∈C(Mη), ρ1Xβ = ∑a
i=1 di(αi + γ̄i·), and ρ2Xβ = ∑b

j=1 c j(η j +
γ̄· j). The vector ρ1ρ2 is

ρ1ρ2 = [ti jk] where ti jk = N−2(ab)−1dic j.

This is proportional to a vector in the interaction space corresponding to (d1, . . . ,da)
and (c1, . . . ,cb).

From this argument, it follows that since Rr,0 is the vector (constraint) in C(Mα)
for testing the rth degree polynomial contrast and R0,s is the vector in C(Mη)
for testing the sth degree polynomial contrast, then Rr,0R0,s is a vector in the in-
teraction space. Since the polynomial contrasts are defined to be orthogonal, and
since Rr,0 and R0,s are defined by polynomial contrasts, our discussion in the pre-
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vious section about orthogonal vectors in the interaction space implies that the set
{Rr,0R0,s|r = 1, . . . ,a−1,s = 1, . . . ,b−1} is an orthogonal basis for the interaction
space. Moreover, with Rr,0 and R0,s orthonormal,

[Rr,0R0,s]′[Rr,0R0,s] = 1/abN.

We now check to see that (abN)Y ′[Rr,0R0,s][Rr,0R0,s]′Y/MSE provides a test of
the correct thing, i.e., that W rZs adds to a model containing all lower order terms.
Since, by Gram–Schmidt, for some ais and bjs we have Rr,0 = a0W r + a1W r−1 +
· · ·+ar−1W 1 +arJ1

n and R0,s = b0Zs +b1Zs−1 + · · ·+bs−1Z1 +bsJ1
n , we also have

Rr,0R0,s = a0b0W rZs +
s

∑
j=1

b jZs− jW r +
r

∑
i=1

aiW r−iZs +
s

∑
j=1

r

∑
i=1

aib jZs− jW r−i.

Letting R1,0 = R0,1 = J, it follows immediately that

C(Ri,0R0, j : i = 0, . . . , r, j = 0, . . . ,s) ⊂C(W iZ j : i = 0, . . . ,r, j = 0, . . . ,s).

However, the vectors listed in each of the sets are linearly independent and the num-
ber of vectors in each set is the same, so the ranks of the column spaces are the same
and

C(Ri,0R0, j : i = 0, . . . , r, j = 0, . . . ,s) = C(W iZ j : i = 0, . . . ,r, j = 0, . . . ,s).

The vectors Ri,0R0, j are orthogonal, so abN[Rr,0R0,s][Rr,0R0,s]′ is the projection op-
erator for testing if W rZs adds to the model after fitting all terms of lower order.
Since Rr,0R0,s was found as the vector in the interaction space corresponding to the
rth orthogonal polynomial contrast in the αis and the sth orthogonal polynomial
contrast in the η js, the technique for testing if W rZs adds to the appropriate model
is a straightforward test of an interaction contrast.

7.4 Two-Way ANOVA with Proportional Numbers

Consider the model
yi jk = μ +αi +η j + ei jk,

i = 1, . . . ,a, j = 1, . . . ,b, k = 1, . . . ,Ni j. We say that the model has proportional
numbers if, for i, i′ = 1, . . . ,a and j, j′ = 1, . . . ,b,

Ni j/Ni j′ = Ni′ j/Ni′ j′ .

The special case of Ni j = N for all i and j is the balanced two-way ANOVA.
The analysis with proportional numbers is in the same spirit as the analysis with

balance presented in Section 1. After fitting the mean, μ , the column space for the
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α treatments and the column space for the η treatments are orthogonal. Before
showing this we need a result on the Ni js.

Lemma 7.4.1. If the Ni js are proportional, then for any r = 1, . . . ,a, and s =
1, . . . ,b,

Nrs = Nr·N·s/N·· .

PROOF. Because the numbers are proportional

Ni jNrs = Nr jNis .

Summing over i and j yields

NrsN·· = Nrs

a

∑
i=1

b

∑
j=1

Ni j =
a

∑
i=1

b

∑
j=1

Nr jNis = Nr·N·s.

Dividing by N·· gives the result. �

As in Section 1, we can write the model matrix as X = [X0,X1, . . . ,Xa+b], where
X0 = J1

n ,

Xr = [ti jk], ti jk = δir, r = 1, . . . ,a;
Xa+s = [ui jk], ui jk = δ js, s = 1, . . . ,b.

Orthogonalizing with respect to J1
n gives

Zr = Xr − Nr·
N··

J, r = 1, . . . ,a;

Za+s = Xa+s − N·s
N··

J, s = 1, . . . ,b.

It is easily seen that for r = 1, . . . ,a, s = 1, . . . ,b,

Z′
a+sZr = Nrs −N·s

Nr·
N··

−Nr·
N·s
N··

+N··
Nr·
N··

N·s
N··

= 0.

Exercise 7.3 Find the ANOVA table for the two-way ANOVA without inter-
action model when there are proportional numbers. Find the least squares estimate
of a contrast in the αis. Find the variance of the contrast and give a definition of
orthogonal contrasts that depends only on the contrast coefficients and the Ni js. If
the αis correspond to levels of a quantitative factor, say xis, find the linear contrast.

The analysis when interaction is included is similar. It is based on repeated use
of the one-way ANOVA.
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Exercise 7.4 Using proportional numbers, find the ANOVA table for the two-
way ANOVA with interaction model.

7.5 Two-Way ANOVA with Unequal Numbers: General Case

Without balance or proportional numbers, there is no simplification of the model,
so, typically, R(α|μ,η) �= R(α |μ) and R(η |μ ,α) �= R(η|μ). We are forced to ana-
lyze the model on the basis of the general theory alone.

First consider the two-way ANOVA without interaction

yi jk = μ +αi +η j + ei jk,

i = 1, . . . ,a, j = 1, . . . ,b, k = 1, . . . ,Ni j. Note that we have not excluded the possi-
bility that Ni j = 0.

One approach to analyzing a two-way ANOVA is by model selection. Consider
R(α|μ ,η) and R(η|μ ,α). If both of these are large, the model is taken as

yi jk = μ +αi +η j + ei jk.

If, say, R(α|μ ,η) is large and R(η |μ ,α) is not, then the model

yi jk = μ +αi + ei jk

should be appropriate; however, a further test of α based on R(α |μ) may give con-
tradictory results. If R(α|μ) is small and R(α,η|μ) is large, we have a problem:
no model seems to fit. The treatments, α and η , are together having an effect, but
neither seems to be helping individually. A model with μ and α is inappropriate
because R(α|μ) is small. A model with μ and η is inappropriate because if μ and η
are in the model and R(α|μ,η) is large, we need α also. However, the model with
μ , α , and η is inappropriate because R(η |μ,α) is small. Finally, the model with μ
alone is inappropriate because R(α,η |μ) is large. Thus, every model that we can
consider is inappropriate by some criterion. If R(α,η |μ) had been small, the best
choice probably would be a model with only μ ; however, some would argue that all
of μ , α , and η should be included on the basis of R(α |μ,η) being large.

Fortunately, it is difficult for these situations to arise. Suppose R(α|μ ,η) = 8 and
R(α|μ) = 6, both with 2 degrees of freedom. Let R(η|μ,α) = 10 with 4 degrees of
freedom, and MSE = 1 with 30 degrees of freedom. The 0.05 test for α after μ and
η is

[8/2]/1 = 4 > 3.32 = F(0.95,2,30).

The test for α after μ is

[6/2]/1 = 3 < 3.32 = F(0.95,2,30).
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The test for η after μ and α is

[10/4]/1 = 2.5 < 2.69 = F(0.95,4,30).

The test for α and η after μ is based on R(α,η|μ) = R(α|μ)+ R(η |μ ,α) = 6 +
10 = 16 with 2 +4 = 6 degrees of freedom. The test is

[16/6]/1 = 2.67 > 2.42 = F(0.95,6,30).

Although the tests are contradictory, the key point is that the P values for all four
tests are about 0.05. For the first and last tests, the P values are just below 0.05; for
the second and third tests, the P values are just above 0.05. The real information is
not which tests are rejected and which are not rejected; the valuable information is
that all four P values are approximately 0.05. All of the sums of squares should be
considered to be either significantly large or not significantly large.

Because of the inflexible nature of hypothesis tests, we have chosen to dis-
cuss sums of squares that are either large or small, without giving a precise def-
inition of what it means to be either large or small. The essence of any defini-
tion of large and small should be that the sum of two large quantities should be
large and the sum of two small quantities should be small. For example, since
R(α,η |μ) = R(α|μ) + R(η|μ ,α), it should be impossible to have R(α|μ) small
and R(η|μ,α) small, but R(α,η|μ) large. This consistency can be achieved by the
following definition that exchanges one undefined term for another: Large means
significant or nearly significant.

With this approach to the terms large and small, the contradiction alluded to
above does not exist. The contradiction was based on the fact that with R(α|μ ,η)
large, R(η|μ ,α) small, R(α|μ) small, and R(α,η|μ) large, no model seemed to fit.
However, this situation is impossible. If R(η|μ ,α) is small and R(α|μ) is small,
then R(α,η|μ) must be small; and the model with μ alone fits. (Note that since
R(α|μ ,η) is large but R(α,η |μ) is small, we must have R(η|μ) small; otherwise,
two large quantities would add up to a small quantity.)

I find the argument of the previous paragraph convincing. Having built a better
mousetrap, I expect the world to beat a path to my door. Unfortunately, I suspect that
when the world comes, it will come carrying tar and feathers. It is my impression
that in this situation most statisticians would prefer to use the model with all of μ ,
α , and η . In any case, the results are sufficiently unclear that further data collection
would probably be worthwhile.

Table 7.3 contains some suggested model choices based on various sums of
squares. Many of the suggestions are potentially controversial; these are indicated
by asterisks.

The example that has been discussed throughout this section is the case in the
fourth row and second column of Table 7.3. The entry in the second row and fourth
column is similar.

The entry in the second row and second column is the case where each effect
is important after fitting the other effect, but neither is important on its own. My
inclination is to choose the model based on the results of examining R(α,η|μ). On
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Table 7.3 Suggested Model Selections: Two-Way Analysis of Variance Without Interaction (Un-
equal Numbers).

Table Entries Are Models as Numbered Below
R(α |μ ,η) L S

R(η |μ ,α) R(α|μ) R(η|μ) L S L S
L L 1 1 3* I

S 1 4,1* 3 4,1*
S L 2* 2 1,2,3* 2

S I 4,1* 3 4
L indicates that the sum of squares is large.
S indicates that the sum of squares is small.
I indicates that the sum of squares is impossible.
* indicates that the model choice is debatable.
Models:
1 yi jk = μ +αi +η j +ei jk
2 yi jk = μ +αi +ei jk
3 yi jk = μ +η j + ei jk
4 yi jk = μ +ei jk

the other hand, it is sometimes argued that since the full model gives no basis for
dropping either α or η individually, the issue of dropping them both should not be
addressed.

The entry in the third row and third column is very interesting. Each effect is
important on its own, but neither effect is important after fitting the other effect. The
corresponding models (2 and 3 in the table) are not hierarchical, i.e., neither column
space is contained in the other, so there is no way of testing which is better. From
a testing standpoint, I can see no basis for choosing the full model; but since both
effects have been shown to be important, many argue that both effects belong in the
model. One particular argument is that the structure of the model matrix is hiding
what would otherwise be a significant effect. As will be seen in Chapter 15, with
collinearity in the model matrix that is quite possible.

The entries in the third row, first column and first row, third column are similar.
Both effects are important by themselves, but one of the effects is not important after
fitting the other. Clearly, the effect that is always important must be in the model.
The model that contains only the effect for which both sums of squares are large is
an adequate substitute for the full model. On the other hand, the arguments in favor
of the full model from the previous paragraph apply equally well to this situation.

Great care needs to be used in all the situations where the choice of model is un-
clear. With unequal numbers, the possibility of collinearity in the model matrix (see
Chapter 15) must be dealt with. If collinearity exists, it will affect the conclusions
that can be made about the models. Of course, when the conclusions to be drawn
are questionable, additional data collection would seem to be appropriate.

The discussion of model selection has been predicated on the assumption that
there is no interaction. Some of the more bizarre situations that come up in model
selection are more likely to arise if there is an interaction that is being ignored. A



7.5 Two-Way ANOVA with Unequal Numbers: General Case 187

test for interaction should be made whenever possible. Of course, just because the
test gives no evidence of interaction does not mean that interaction does not exist,
or even that it is small enough so that it will not affect model selection.

Finally, it should be recalled that model selection is not the only possible goal.
One may accept the full model and only seek to interpret it. For the purpose of
interpreting the full model, R(α |μ) and R(η|μ) are not very enlightening. In terms
of the full model, the hypotheses that can be tested with these sums of squares
are complicated functions of both the αs and the ηs. The exact nature of these
hypotheses under the full model can be obtained from the formulae given below for
the model with interaction.

We now consider the two-way model with interaction. The model can be written

yi jk = μ +αi +η j + γi j + ei jk, (1)

i = 1, . . . ,a, j = 1, . . . ,b, k = 1, . . . ,Ni j. However, for most purposes, we do not
recommend using this parameterization of the model. The full rank cell means pa-
rameterization

yi jk = μi j + ei jk (2)

is much easier to work with. The interaction model has the column space of a one-
way ANOVA with unequal numbers.

Model (1) lends itself to two distinct orthogonal breakdowns of the sum of
squares for the model. These are

R(μ), R(α|μ), R(η|μ ,α), R(γ|μ ,α,η)

and
R(μ), R(η|μ), R(α|μ ,η), R(γ|μ ,α ,η).

If R(γ|μ,α,η) is small, one can work with the reduced model. If R(γ|μ ,α,η) is
large, the full model must be retained. Just as with the balanced model, the F tests
for α and η test hypotheses that involve the interactions. Using the parameterization
of model (2), the hypothesis associated with the test using R(α |μ) is that for all i
and i′,

b

∑
j=1

Ni jμi j/Ni· =
b

∑
j=1

Ni′ jμi′ j/Ni′ · .

The hypothesis associated with the test using R(α|μ ,η) is that for all i,

b

∑
j=1

Ni jμi j −
a

∑
i′=1

b

∑
j=1

Ni jNi′ jμi′ j/N· j = 0.

Since μi j = μ +αi +η j + γi j, the formulae above can be readily changed to involve
the alternative parameterization. Similarly, by dropping the γi j, one can get the hy-
potheses associated with the sums of squares in the no interaction model. Neither of
these hypotheses appears to be very interesting. The first of them is the hypothesis
of equality of the weighted averages, taken over j, of the μi js. It is unclear why
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one should be interested in weighted averages of the μi js when the weights are the
sample sizes. For many purposes, a more reasonable hypothesis would seem to be
that the simple averages, taken over j, are all equal. The second hypothesis above
is almost uninterpretable. In terms of model selection, testing for main effects when
there is interaction does not make much sense. The reduced model corresponding to
such a test is not easy to find, so it is not surprising that the parametric hypotheses
corresponding to these tests are not very interpretable.

A better idea seems to be to choose tests based directly on model (2). For ex-
ample, the hypothesis of equality of the simple averages μ̄i· (i.e., μ̄i· = μ̄i′· for
i, i′ = 1, . . . ,a) is easily tested using the fact that the interaction model is really just
a one-way ANOVA with unequal numbers.

At this point we should say a word about computational techniques, or rather ex-
plain why we will not discuss computational techniques. The difficulty in comput-
ing sums of squares for a two-way ANOVA with interaction and unequal numbers
lies in computing R(α |μ,η) and R(η|μ,α). The sums of squares that are needed
for the analysis are R(γ|μ ,α,η), R(α|μ ,η), R(η |μ,α), R(α |μ), R(η|μ), and SSE .
SSE is the error computed as in a one-way ANOVA. R(α |μ) and R(η|μ) are com-
puted as in a one-way ANOVA, and the interaction sum of squares can be written
as R(γ|μ,α,η) = R(γ|μ)−R(η|μ ,α)−R(α |μ), where R(γ |μ) is computed as in a
one-way ANOVA. Thus, only R(α|μ ,η) and R(η|μ ,α) present difficulties.

There are formulae available for computing R(α|μ ,η) and R(η|μ,α), but the
formulae are both nasty and of little use. With the advent of high speed computing,
the very considerable difficulties in obtaining these sums of squares have vanished.
Moreover, the formulae add very little to one’s understanding of the method of anal-
ysis. The key idea in the analysis is that for, say R(η|μ,α), the η effects are being
fitted after the α effects. The general theory of linear models provides methods for
finding the sums of squares and there is little simplification available in the special
case.

Of course, there is more to an analysis than just testing treatment effects. As
mentioned above, if there is evidence of interactions, probably the simplest approach
is to analyze the μi j model. If there are no interactions, then one is interested in
testing contrasts in the main effects. Just as in the one-way ANOVA, it is easily
seen that all estimable functions of the treatment effects will be contrasts; however,
there is no assurance that all contrasts will be estimable. To test a contrast, say
α1 −α2 = 0, the simplest method is to fit a model that does not distinguish between
α1 and α2, see Example 3.2.0 and Section 3.4. In the two-way ANOVA with unequal
numbers, the model that does not distinguish between α1 and α2 may or may not
have a different column space from that of the unrestricted model.

EXAMPLE 7.5.1. Scheffé (1959) (cf. Bailey, 1953) reports on an experiment in
which infant female rats were given to foster mothers for nursing, and the weights, in
grams, of the infants were measured after 28 days. The two factors in the experiment
were the genotypes of the infants and the genotypes of the foster mothers. In the
experiment, an entire litter was given to a single foster mother. The variability within
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each litter was negligible compared to the variability between different litters, so the
analysis was performed on the litter averages. Table 7.4 contains the data.

Table 7.4 Infant Rats’ Weight Gain with Foster Mothers.

Genotype of Genotype of Foster Mother
Litter A F I J

A 61.5 55.0 52.5 42.0
68.2 42.0 61.8 54.0
64.0 60.2 49.5 61.0
65.0 52.7 48.2
59.7 39.6

F 60.3 50.8 56.5 51.3
51.7 64.7 59.0 40.5
49.3 61.7 47.2
48.0 64.0 53.0

62.0

I 37.0 56.3 39.7 50.0
36.3 69.8 46.0 43.8
68.0 67.0 61.3 54.5

55.3
55.7

J 59.0 59.5 45.2 44.8
57.4 52.8 57.0 51.5
54.0 56.0 61.4 53.0
47.0 42.0

54.0

We use the two-way ANOVA model

yi jk = G+Li +Mj +[LM]i j + ei jk, (3)

where L indicates the effect of the litter genotype and M indicates the effect of
the foster mother genotype. Tables 7.5 and 7.6 contain, respectively, the sums of
squares for error for a variety of submodels and the corresponding reductions in
sums of squares for error and F tests.

Some percentiles of the F distribution that are of interest in evaluating the statis-
tics of Table 7.6 are F(0.9,9,45) = 1.78, F(0.99,3,45) = 4.25, and F(0.95,6,45) =
2.23. Clearly, the litter–mother interaction and the main effect for litters can be
dropped from model (3). However, the main effect for mothers is important. The
smallest model that fits the data is

yi jk = G+Mj + ei jk.
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Table 7.5 Sums of Squares Error for Fitting Models to the Data of Table 7.4.

Model Model SSE df
G+L +M +LM [LM] 2441 45
G+L +M [L][M] 3265 54
G+L [L] 4040 57
G+M [M] 3329 57
G [G] 4100 60

Table 7.6 F Tests for Fitting Models to the Data of Table 7.4.

Reduction in SSE df MS F*
R(LM|L,M,G) = 3265−2441 = 824 9 91.6 1.688
R(M|L,G) = 4040−3265 = 775 3 258.3 4.762
R(L|G) = 4100−4040 = 60 3 20.0 0.369
R(L|M,G) = 3329−3265 = 64 3 21.3 0.393
R(M|G) = 4100−3329 = 771 3 257. 4.738
R(L,M|G) = 4100−3265 = 835 6 139.2 2.565
*All F statistics calculated using MSE([LM]) = 2441/45
= 54.244 in the denominator.

This is just a one-way ANOVA model and can be analyzed as such. By analogy
with balanced two-factor ANOVAs, tests of contrasts might be best performed using
MSE([LM]) rather than MSE([M]) = 3329/57 = 58.40.

Table 7.7 Mean Values for Foster Mother Genotypes.

Foster Mother Parameter N· j Estimate
A G+M1 16 55.400
F G+M2 14 58.700
I G+M3 16 53.363
J G+M4 15 48.680

The mean values for the foster mother genotypes are reported in Table 7.7, along
with the number of observations for each mean. It would be appropriate to continue
the analysis by comparing all pairs of means. This can be done with either Scheffé’s
method, Bonferroni’s method, or the LSD method. The LSD method with α = 0.05
establishes that genotype J is distinct from genotypes A and F . (Genotypes F and I
are almost distinct.) Bonferroni’s method with α = 0.06 establishes that J is distinct
from F and that J is almost distinct from A.

Exercise 7.5 Analyze the following data as a two-factor ANOVA where the
subscripts i and j indicate the two factors.
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yi jks
i 1 2 3

j 1 0.620 1.228 0.615
1.342 3.762 2.245
0.669 2.219 2.077
0.687 4.207 3.357
0.155
2.000

2 1.182 3.080 2.240
1.068 2.741 0.330
2.545 2.522 3.453
2.233 1.647 1.527
2.664 1.999 0.809
1.002 2.939 1.942
2.506
4.285
1.696

The dependent variable is a mathematics ineptitude score. The first factor (i) iden-
tifies economics majors, anthropology majors, and sociology majors, respectively.
The second factor ( j) identifies whether the student’s high school background was
rural (1) or urban (2).

Exercise 7.6 Analyze the following data as a two-factor ANOVA where the
subscripts i and j indicate the two factors.

yi jks
i 1 2 3

j 1 1.620 2.228 2.999
1.669 3.219 1.615
1.155 4.080
2.182
3.545

2 1.342 3.762 2.939
0.687 4.207 2.245
2.000 2.741 1.527
1.068 0.809
2.233 1.942
2.664
1.002

The dependent variable is again a mathematics ineptitude score and the levels of
the first factor identify the same three majors as in Exercise 7.5. In these data, the
second factor identifies whether the student is lefthanded (1) or righthanded (2).

7.6 Three or More Way Analyses

With balanced or proportional numbers, the analyses for more general models
follow the same patterns as those of the two-way ANOVA. (Proportional numbers
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can be defined in terms of complete independence in higher dimensional tables, see
Fienberg (1980) or Christensen (1997).) Consider, for example, the model

yi jkm = μ +αi +η j + γk +(αη)i j +(αγ)ik +(ηγ) jk +(αηγ)i jk + ei jkm,

i = 1, . . . ,a, j = 1, . . . ,b, k = 1, . . . ,c, m = 1, . . . ,N. The sums of squares for the main
effects of α , η , and γ are based on the one-way ANOVA ignoring all other effects,
e.g.,

SS(η) = acN
b

∑
j=1

(ȳ· j·· − ȳ····)2. (1)

The sums of squares for the two-way interactions, αη , αγ , and ηγ , are obtained as
in the two-way ANOVA by ignoring the third effect, e.g.,

SS(αγ) = bN
a

∑
i=1

c

∑
k=1

(ȳi·k· − ȳi··· − ȳ··k· + ȳ····)2. (2)

The sum of squares for the three-way interaction αηγ is found by subtracting all
of the other sums of squares (including the grand mean’s) from the sum of squares
for the full model. Note that the full model is equivalent to the one-way ANOVA
model

yi jkm = μi jk + ei jkm.

Sums of squares and their associated projection operators are defined from reduced
models. For example, Mη is the perpendicular projection operator for fitting the ηs
after μ in the model

yi jkm = μ +η j + ei jkm.

The subscripts i, k, and m are used to indicate the replications in this one-way
ANOVA. SS(η) is defined by

SS(η) = Y ′MηY.

The algebraic formula for SS(η) was given in (1). Similarly, Mαγ is the projection
operator for fitting the (αγ)s after μ , the αs, and the γs in the model

yi jkm = μ +αi + γk +(αγ)ik + ei jkm.

In this model, the subscripts j and m are used to indicate replication. The sum of
squares SS(αγ) is

SS(αγ) = Y ′MαγY.

The algebraic formula for SS(αγ) was given in (2). Because all of the projection
operators (except for the three-factor interaction) are defined on the basis of reduced
models that have previously been discussed, the sums of squares take on the familiar
forms indicated above.

The one new aspect of the model that we are considering is the inclusion of the
three-factor interaction. As mentioned above, the sum of squares for the three-factor
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interaction is just the sum of squares that is left after fitting everything else, i.e.,

SS(αηγ) = R((αηγ)|μ,α,η,γ,(αη),(αγ),(ηγ)).

The space for the three-factor interaction is the orthogonal complement (with re-
spect to the space for the full model) of the design space for the model that includes
all factors except the three-factor interaction. Thus, the space for the three-factor
interaction is orthogonal to everything else. (This is true even when the numbers are
not balanced.)

In order to ensure a nice analysis, we need to show that the spaces associated
with all of the projection operators are orthogonal and that the projection operators
add up to the perpendicular projection operator onto the space for the full model.
First, we show that C(Mμ ,Mα ,Mη ,Mγ ,Mαη ,Mαγ ,Mηγ) is the column space for the
model

yi jkm = μ +αi +η j + γk +(αη)i j +(αγ)ik +(ηγ) jk + ei jkm,

and that all the projection operators are orthogonal. That the column spaces are the
same follows from the fact that the column space of the model without the three-
factor interaction is precisely the column space obtained by combining the column
spaces of all of the two-factor with interaction models. Combining the spaces of
the projection operators is precisely combining the column spaces of all the two-
factor with interaction models. That the spaces associated with all of the projection
operators are orthogonal follows easily from the fact that all of the spaces come
from reduced models. For the reduced models, characterizations have been given
for the various spaces. For example,

C(Mη) = {v|v = [vi jkm], where vi jkm = d j for some d1, . . . ,db with d· = 0}.

Similarly,

C(Mαγ) = {w|w = [wi jkm], where wi jkm = rik for some rik

with ri· = r·k = 0 for i = 1, . . . ,a,k = 1, . . . ,c}.

With these characterizations, it is a simple matter to show that the projection opera-
tors define orthogonal spaces.

Let M denote the perpendicular projection operator for the full model. The pro-
jection operator onto the interaction space, Mαηγ , has been defined as

Mαηγ = M− [Mμ +Mα +Mη +Mγ +Mαη +Mαγ +Mηγ ];

thus,
M = Mμ +Mα +Mη +Mγ +Mαη +Mαγ +Mηγ +Mαηγ ,

where the spaces of all the projection operators on the right side of the equation are
orthogonal to each other.

Exercise 7.7 Show that C(Mη) ⊥C(Mαγ) and that C(Mηγ) ⊥C(Mαγ). Give an
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explicit characterization of a typical vector in C(Mαηγ) and show that your charac-
terization is correct.

If the α , η , and γ effects correspond to quantitative levels of some factor, the
three-way ANOVA corresponds to a polynomial in three variables. The main effects
and the two-way interactions can be dealt with as before. The three-way interaction
can be broken down into contrasts such as the linear-by-linear-by-quadratic.

For unequal numbers, the analysis can be performed by comparing models.

EXAMPLE 7.6.1. Table 7.8 below is derived from Scheffé (1959) and gives the
moisture content (in grams) for samples of a food product made with three kinds of
salt (A), three amounts of salt (B), and two additives (C). The amounts of salt, as
measured in moles, are equally spaced. The two numbers listed for some treatment
combinations are replications. We wish to analyze these data.

Table 7.8 Moisture Content of a Food Product.

A (salt) 1 2 3
B (amount salt) 1 2 3 1 2 3 1 2 3

1 8 17 22 7 26 34 10 24 39
13 20 10 24 9 36

C (additive)
2 5 11 16 3 17 32 5 16 33

4 10 15 5 19 29 4 34

We will consider these data as a three-factor ANOVA. From the structure of the
replications, the ANOVA has unequal numbers. The general model for a three-factor
ANOVA with replications is

yi jkm = G+Ai +B j +Ck +[AB]i j +[AC]ik +[BC] jk +[ABC]i jk + ei jkm.

Our first priority is to find out which interactions are important. Table 7.9 con-
tains the sum of squares for error and the degrees of freedom for error for all models
that include all of the main effects. Each model is identified in the table by the
highest order terms in the model (cf. Table 7.5, Section 5). Readers familiar with
methods for fitting log-linear models (cf. Fienberg, 1980 or Christensen, 1997) will
notice a correspondence between Table 7.9 and similar displays used in fitting three-
dimensional contingency tables. The analogies between selecting log-linear models
and selecting models for unbalanced ANOVA are pervasive.

All of the models have been compared to the full model using F statistics in Ta-
ble 7.9. It takes neither a genius nor an F table to see that the only models that fit
the data are the models that include the [AB] interaction. A number of other compar-
isons can be made among models that include [AB]. These are [AB][AC][BC] versus
[AB][AC], [AB][AC][BC] versus [AB][BC], [AB][AC][BC] versus [AB][C], [AB][AC] ver-
sus [AB][C], and [AB][BC] versus [AB][C]. None of the comparisons show any lack
of fit. The last two comparisons are illustrated below.
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Table 7.9 Statistics for Fitting Models to the Data of Table 7.8.

Model SSE df F*
[ABC] 32.50 14 —
[AB][AC][BC] 39.40 18 0.743
[AB][AC] 45.18 20 0.910
[AB][BC] 40.46 20 0.572
[AC][BC] 333.2 22 16.19
[AB][C] 45.75 22 0.713
[AC][B] 346.8 24 13.54
[BC][A] 339.8 24 13.24
[A][B][C] 351.1 26 11.44
*The F statistics are for testing each model against
the model with a three-factor interaction, i.e., [ABC].
The denominator of each F statistic is
MSE([ABC]) = 32.50/14 = 2.3214.

[AB][AC] versus [AB][C] :

R(AC|AB,C) = 45.75−45.18 = 0.57,

F = (0.57/2)/2.3214 = 0.123.

[AB][BC] versus [AB][C] :

R(BC|AB,C) = 45.75−40.46 = 5.29,

F = (5.29/2)/2.3214 = 1.139.

Note that, by analogy to the commonly accepted practice for balanced ANOVAs,
all tests have been performed using MSE([ABC]), that is, the estimate of pure error
from the full model.

The smallest model that seems to fit the data adequately is [AB][C]. The F statis-
tics for comparing [AB][C] to the larger models are all extremely small. Writing out
the model [AB][C], it is

yi jkm = G+Ai +B j +Ck +[AB]i j + ei jkm.

We need to examine the [AB] interaction. Since the levels of B are quantitative, a
model that is equivalent to [AB][C] is a model that includes the main effects for C
but, instead of fitting an interaction in A and B, fits a separate regression equation in
the levels of B for each level of A. Let x j, j = 1,2,3, denote the levels of B. There
are three levels of B, so the most general polynomial we can fit is a second-degree
polynomial in x j. Since the levels of salt were equally spaced, it does not matter
much what we use for the x js. The computations were performed using x1 = 1,
x2 = 2, x3 = 3. In particular, the model [AB][C] was reparameterized as
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yi jkm = Ai0 +Ai1x j +Ai2x2
j +Ck + ei jkm. (3)

With a notation similar to that used in Table 7.9, the SSE and the dfE are reported
in Table 7.10 for model (3) and three reduced models.

Table 7.10 Additional Statistics for Fitting Models to the Data of Table 7.8.

Model SSE df
[A0][A1][A2][C] 45.75 22
[A0][A1][C] 59.98 25
[A0][A1] 262.0 26
[A0][C] 3130. 28

Note that the SSE and df reported in Table 7.10 for [A0][A1][A2][C] are identical
to the values reported in Table 7.9 for [AB][C]. This, of course, must be true if the
models are merely reparameterizations of one another. First we want to establish
whether the quadratic effects are necessary in the regressions. To do this we test

[A0][A1][A2][C] versus [A0][A1][C] :

R(A2|A1,A0,C) = 59.98−45.75 = 14.23,

F = (14.23/3)/2.3214 = 2.04.

Since F(0.95,3,14) = 3.34, there is no evidence of any nonlinear effects.
At this point it might be of interest to test whether there is any linear effect.

This is done by testing [A0][A1][C] against [A0][C]. The statistics needed for this test
are given in Table 7.10. Instead of actually doing the test, recall that no models in
Table 7.9 fit the data unless they included the [AB] interaction. If we eliminated the
linear effects, we would have a model that involved none of the [AB] interaction.
(The model [A0][C] is identical to the ANOVA model [A][C].) We already know that
such models do not fit.

Finally, we have never explored the possibility that there is no main effect for C.
This can be done by testing

[A0][A1][C] versus [A0][A1] :

R(C|A1,A0) = 262.0−59.98 = 202,

F = (202/1)/2.3214 = 87.

Obviously, there is a substantial main effect for C, the type of food additive.
Our conclusion is that the model [A0][A1][C] is the smallest model yet considered

that adequately fits the data. This model indicates that there is an effect for the type
of additive and a linear relationship between amount of salt and moisture content.
The slope and intercept of the line may depend on the type of salt. (The intercept
of the line also depends on the type of additive.) Table 7.11 contains parameter
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estimates and standard errors for the model. All estimates in the example use the
side condition C1 = 0.

Table 7.11 Parameter Estimates and Standard Errors for the Model yi jkm = Ai0 +Ai1x j +Ck +ei jkm.

Parameter Estimate S.E.
A10 3.350 1.375
A11 5.85 0.5909
A20 −3.789 1.237
A21 13.24 0.5909
A30 −4.967 1.231
A31 14.25 0.5476
C1 0. none
C2 −5.067 0.5522

Note that, in lieu of the F test, the test for the main effect C could be performed
by looking at t =−5.067/0.5522 =−9.176. Moreover, we should have t2 = F . The
t statistic squared is 84, while the F statistic reported earlier is 87. The difference is
due to the fact that the S.E. reported uses the MSE for the model being fitted, while
in performing the F test we used the MSE([ABC]).

Are we done yet? No! The parameter estimates suggest some additional ques-
tions. Are the slopes for salts 2 and 3 the same, i.e., is A21 = A31? In fact, are the
entire lines for salts 2 and 3 the same, i.e., are A21 = A31, A20 = A30? We can fit
models that incorporate these assumptions.

Model SSE df
[A0][A1][C] 59.98 25
[A0][A1][C], A21 = A31 63.73 26
[A0][A1][C], A21 = A31, A20 = A30 66.97 27

It is a small matter to check that there is no lack of fit displayed by any of these
models. The smallest model that fits the data is now [A0][A1][C], A21 = A31, A20 =
A30. Thus there seems to be no difference between salts 2 and 3, but salt 1 has a
different regression than the other two salts. (We did not actually test whether salt 1
is different, but if salt 1 had the same slope as the other two, then there would be no
interaction, and we know that interaction exists.) There is also an effect for the food
additives. The parameter estimates and standard errors for the final model are given
in Table 7.12.

Figure 7.1 shows the fitted values for the final model. The two lines for a given
additive are shockingly close at B = 1, which makes me wonder if B = 1 is the
condition of no salt being used. Scheffé does not say.

Are we done yet? Probably not. We have not even considered the validity of
the assumptions. Are the errors normally distributed? Are the variances the same
for every treatment combination? Some methods for addressing these questions are
discussed in Chapter 13. Technically, we need to ask whether C1 = C2 in this new
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Table 7.12 Parameter Estimates and Standard Errors for the Model [A0][A1][C], A21 = A31, A20 =
A30.

Parameter Estimate S.E.
A10 3.395 1.398
A11 5.845 0.6008
A20 −4.466 0.9030
A21 13.81 0.4078
C1 0. none
C2 −5.130 0.5602
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Fig. 7.1 Fitted values for Scheffé’s (1959) moisture content data.

model. A quick look at the estimate and standard error for C2 answers the question
in the negative. We also have not asked whether A10 = A20. Personally, I find this
last question so uninteresting that I would be loath to examine it. However, a look at
the estimates and standard errors suggests that the answer is no. A more interesting
question is whether A10 +A11 = A20 +A21, but it is pretty clear from Figure 7.1 that
there will be no evidence against this hypothesis that was suggested by the data, cf.
Exercise 7.7.6.

As mentioned in Example 7.6.1, the correspondences between log-linear models
and unbalanced ANOVAs are legion. Often these correspondences have been over-
looked. We have just considered a three-factor unbalanced ANOVA. What would
we do with a four-factor or five-factor ANOVA? There is a considerable amount of
literature in log-linear model theory about how to select models when there are a
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large number of factors. In particular, Benedetti and Brown (1978) and Christensen
(1997) have surveyed strategies for selecting log-linear models. Those strategies can
be applied to unbalanced ANOVAs with equal success.

I might also venture a personal opinion that statisticians tend not to spend enough
time worrying about what high-dimensional ANOVA models actually mean. Log-
linear model theorists do worry about interpreting their models. Wermuth (1976)
has developed a method of searching among log-linear models that have nice inter-
pretations, cf. also Christensen (1997). I believe that her method could be applied
equally well to ANOVA models.

Exercise 7.8 Analyze the following three-way ANOVA: The treatments (amount
of flour, brand of flour, and brand of shortening) are indicated by the subscripts i,
j, and k, respectively. The dependent variable is a “chewiness” score for chocolate
chip cookies. The amounts of flour correspond to quantitative factors,

i 1 2 3
xi 3.2 4.4 6.8

The data are:
yi jks yi jks

j k i 1 2 3 j k i 1 2 3
1 1 1.620 3.228 6.615 2 1 2.282 5.080 8.240

1.342 5.762 8.245 2.068 4.741 6.330
8.077 3.545 4.522 9.453

7.727

1 2 2.669 6.219 11.357 2 2 4.233 4.647 7.809
2.687 8.207 4.664 4.999 8.942
2.155 3.002 5.939
4.000 4.506

6.385
3.696

7.7 Additional Exercises

Exercise 7.7.1 In the mid-1970s, a study on the prices of various motor oils
was conducted in (what passes for) a large town in Montana. The study consisted of
pricing 4 brands of oil at each of 9 stores. The data follow.
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Brand
Store P H V Q

1 87 95 95 82
2 96 104 106 97
3 75 87 81 70
4 81 94 91 77
5 70 85 87 65
6 85 98 97 83
7 110 123 128 112
8 83 98 95 78
9 105 120 119 98

Analyze these data.

Exercise 7.7.2 An experiment was conducted to examine thrust forces when
drilling under different conditions. Data were collected for four drilling speeds and
three feeds. The data are given below.

Speed
Feed 100 250 400 550

121 98 83 58
124 108 81 59

0.005 104 87 88 60
124 94 90 66
110 91 86 56

329 291 281 265
331 265 278 265

0.010 324 295 275 269
338 288 276 260
332 297 287 251

640 569 551 487
600 575 552 481

0.015 612 565 570 487
620 573 546 500
623 588 569 497

Analyze these data.

Exercise 7.7.3 Consider the model

yi jk = μ +αi +η j + γi j + ei jk,

i = 1,2,3,4, j = 1,2,3, k = 1, . . . ,Ni j, where for i �= 1 �= j, Ni j = N, and N11 = 2N.
This model could arise from an experimental design having α treatments of No
Treatment (NT), a1, a2, a3 and η treatments of NT, b1, b2. This gives a total of 12
treatments: NT, a1, a2, a3, b1, a1b1, a2b1, a3b1 b2, a1b2, a2b2, and a3b2. Since NT
is a control, it might be of interest to compare all of the treatments to NT. If NT is to
play such an important role in the analysis, it is reasonable to take more observations
on NT than on the other treatments. Find sums of squares for testing
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(a) no differences between a1, a2, a3,
(b) no differences between b1, b2,
(c) no {a1,a2,a3}×{b1,b2} interaction,
(d) no differences between NT and the averages of a1, a2, and a3 when there

is interaction,
(e) no differences between NT and the average of a1, a2, and a3 when there is

no interaction present,
(f) no differences between NT and the average of b1 and b2 when there is

interaction,
(g) no differences between NT and the average of b1 and b2 when there is no

interaction present.
Discuss the orthogonality relationships among the sums of squares. For parts (e) and
(g), use the assumption of no interaction. Do not just repeat parts (d) and (f)!

Exercise 7.7.4 Consider the linear model yi j = μ +αi +η j +ei j, i = 1, . . . ,a, j =
1, . . . ,b. As in Section 1, write X = [X0,X1, . . . ,Xa,Xa+1, . . . ,Xa+b]. If we write the
observations in the usual order, we can use Kronecker products to write the model
matrix. Write X = [J,X∗,X∗∗], where X∗ = [X1, . . . ,Xa], and X∗∗ = [Xa+1, . . . ,Xa+b].
Using Kronecker products, X∗ = [Ia ⊗ Jb], and X∗∗ = [Ja ⊗ Ib]. In fact, with n = ab,
J = Jn = [Ja ⊗ Jb]. Use Kronecker products to show that X ′∗(I − [1/n]Jn

n )X∗∗ = 0. In
1 a a+1, . . . ,Za+b).

Also show that [(1/a)Ja
a ⊗ Ib] is the perpendicular projection operator onto C(X∗∗)

and that Mη = [(1/a)Ja
a ⊗ (Ib − (1/b)Jb

b )].

Exercise 7.7.5 Consider the balanced two-way ANOVA with interaction model
yi jk = μ + αi + η j + γi j + ei jk, i = 1, . . . ,a, j = 1, . . . ,b, k = 1, . . . ,N, with ei jks
independent N(0,σ 2). Find E[Y ′( 1

n Jn
n + Mα)Y ] in terms of μ , the αis, the η js, and

the γi js.

Exercise 7.7.6 For Example 7.6.1, develop a test for H0 : A10 +A11 = A20 +A21.

C(Z , . . . ,Z )⊥C(Zterms of Section 1, this is the same as showing that



 



Chapter 8

Experimental Design Models

The design of an experiment is extremely important. It identifies the class of linear
models that can be used to analyze the results of the experiment. Perhaps more
accurately, the design identifies large classes of models that are inappropriate for
the analysis of the experiment. Finding appropriate models can be difficult even in
well-designed experiments.

In this chapter we examine three models used to analyze results obtained from
three specific experimental designs. The designs are the completely randomized
design, the randomized complete block design, and the Latin square design. We
also examine a particularly effective method of defining treatments for situations in
which several factors are of interest.

Randomization, that is, the random application of treatments to experimental
units, provides a philosophical justification for inferring that the treatments actu-
ally cause the experimental results. In addition to the models considered here, Ap-
pendix G examines estimation for completely randomized designs and randomized
complete block designs under an alternative error structure that is derived from the
act of randomization.

Blocking is one of the most important concepts in experimental design. Blocking
is used to reduce variability for the comparison of treatments. Blocking consists of
grouping experimental units that will act similarly into blocks and then (randomly)
applying the treatments to the units in each block. A randomized complete block
design is one in which each block has exactly the same number of units as there are
treatments. Each treatment is applied once in each block. If there are more units than
treatments, we can have a complete block with replications. If there are fewer units
than treatments, we have an incomplete block design. A major issue in the subject of
experimental design is how one should assign treatments to blocks in an incomplete
block design. Latin square designs are complete block designs that incorporate two
separate forms of blocking.

The analysis of balanced incomplete block designs is derived in Section 9.4.
Alternative methods for blocking designs are examined in the exercises for Sec-
tion 11.1 and in Section 12.11. For an excellent discussion of the concepts underly-
ing the design of experiments, see Fisher (1935) or Cox (1958). For more detailed

© Springer Science+Business Media, LLC 2011 

203
Springer Texts in Statistics, DOI 10.1007/978-1-4419-9816-3_8,  
R. Christensen, Plane Answers to Complex Questions: The Theory of Linear Models,  



204 8 Experimental Design Models

discussion of the design and analysis of experiments, there are many good books
including Hinkelmann and Kempthorne (1994), Cochran and Cox (1957), Casella
(2008), or [blush, blush] Christensen (1996a).

8.1 Completely Randomized Designs

The simplest experimental design is the completely randomized design (CRD). It
involves no blocking. The experimental technique is simply to decide how many
observations are to be taken on each treatment, obtain an adequate number of exper-
imental units, and apply the treatments to the units (randomly). The standard model
for this design is

yi j = μ +αi + ei j,

i = 1, . . . ,a, j = 1, . . . ,Ni, E(ei j) = 0, Var(ei j) = σ 2, Cov(ei j,ei′ j′) = 0 if (i, j) �=
(i′, j′). This is a one-way ANOVA model and is analyzed as such.

8.2 Randomized Complete Block Designs: Usual Theory

The model usually assumed for a randomized complete block design (RCB) is

yi j = μ +αi +β j + ei j,

i = 1, . . . ,a, j = 1, . . . ,b, E(ei j) = 0, Var(ei j) = σ2, Cov(ei j,ei′ j′) = 0 if (i, j) �=
(i′, j′). The β js stand for an additive effect for each block; the αis are an additive
effect for each treatment. It is assumed that any block-treatment interaction is error
so that an estimate of σ 2 is available. This randomized complete block model is just
a two-way ANOVA without interaction.

In this chapter, we are presenting models that are generally used for analyzing
experiments conducted with certain standard experimental designs. Many people
believe that these models are useful only because they are good approximations to
linear models derived from the random application of the treatments to experimental
units. This randomization theory leads to the conclusion that there is no valid test
for block effects. On the other hand, there is nothing in the two-way ANOVA model
given above to keep one from testing block effects. It is my opinion that this contra-
diction arises simply because the two-way ANOVA model is not very appropriate
for a randomized complete block design. For example, a basic idea of blocking is
that results within a block should be more alike than results in different blocks. The
two-way ANOVA, with only an additive effect for blocks, is a very simplistic model.
Another key idea of blocking is that it reduces the variability of treatment compar-
isons. It is not clear how the existence of additive block effects reduces variability
in a two-way ANOVA. The question of how blocking achieves variance reduction
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is addressed in Exercise 8.1. Exercises 11.4 through 11.6 discuss alternative models
for complete block designs.

Appendix G defines linear models for completely randomized designs and ran-
domized complete block designs that are based on randomization theory. It is shown,
using Theorem 10.4.5 (or Proposition 2.7.5), that least squares estimates are BLUEs
for the randomization theory models.

Exercise 8.1 Using a randomized complete block design is supposed to reduce
the variability of treatment comparisons. If the randomized complete block model
is taken as

yi j = μ +αi +β j + ei j, ei js i.i.d. N(0,σ 2),

i = 1, . . . ,a, j = 1, . . . ,b, argue that the corresponding variance for a completely
randomized design should be σ 2 +∑b

j=1(μ j − μ̄·)2/b, where μi = μ +β j.
Hint: Figure out what population a completely randomized design would have to

be sampled from.

8.3 Latin Square Designs

A Latin square is a design that allows for treatment effects and two different kinds
of block effects. The number of treatments must equal the number of blocks of each
kind. On occasion, the design is used with two kinds of treatments (each with the
same number of levels) and one block effect.

EXAMPLE 8.3.1. A 4× 4 Latin square has four treatments, say, T1, T2, T3, T4.
Consider the block effects as row effects, R1, R2, R3, and R4 and column effects C1,
C2, C3, and C4. We can diagram one example of a 4×4 Latin square as

C1 C2 C3 C4
R1 T1 T2 T3 T4
R2 T2 T3 T4 T1
R3 T3 T4 T1 T2
R4 T4 T1 T2 T3

The key idea is that each treatment occurs once in each row and once in each column.

The model for an a×a Latin square design is

yi jk = μ +αi +β j + γk + ei jk,

E(ei jk) = 0, Var(ei jk) = σ 2, Cov(ei jk,ei′ j′k′) = 0 if (i, j,k) �= (i′, j′,k′). The corre-
spondence between the rows, columns, and treatments and the effects in the model
is: αi is the effect for row Ri, β j is the effect for column Cj, and γk is the effect for
treatment Tk. The subscripting in this model is unusual. The key point is that in a
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Latin square if you know the row and the column, the Latin square design tells you
what the treatment is, so the three subscripts do not vary freely. In particular, we can
specify i = 1, . . . ,a, j = 1, . . . ,a, k ∈ {1,2, . . . ,a} and k = f (i, j), where for each i,
f (i, j) is a one-to-one function of {1,2, . . . ,a} onto itself, and the same is true for
each j. As in the case of the randomized complete block design, this model makes
no distinction between treatment effects and the two sets of block effects.

To derive the analysis of the Latin square model, we need to show that after
fitting μ , the spaces for the three main effects are orthogonal. Before proceeding,
note again that the terms yi jk are overindexed. There are a2 terms but a3 possible
combinations of the indices. Any two of the indices serve to identify all of the ob-
servations. For example, the mean of all a2 observations is

ȳ··· =
1
a2

a

∑
i=1

a

∑
j=1

yi jk =
1
a2

a

∑
i=1

a

∑
k=1

yi jk =
1
a2

a

∑
j=1

a

∑
k=1

yi jk.

We will use triple index notation to describe the rows of the model matrix. Write the
model matrix as X = [X0,X1, . . . ,X3a], where X0 = J,

Xr = [ui jk], ui jk = δir, r = 1, . . . ,a,

Xa+s = [ui jk], ui jk = δ js, s = 1, . . . ,a,

X2a+t = [ui jk], ui jk = δkt , t = 1, . . . ,a.

EXAMPLE 8.3.2. The model for the 4×4 Latin square of Example 8.3.1 is⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y111
y122
y133
y144
y212
y223
y234
y241
y313
y324
y331
y342
y414
y421
y432
y443

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 1 0 0 0 1 0 0 0
1 1 0 0 0 0 1 0 0 0 1 0 0
1 1 0 0 0 0 0 1 0 0 0 1 0
1 1 0 0 0 0 0 0 1 0 0 0 1
1 0 1 0 0 1 0 0 0 0 1 0 0
1 0 1 0 0 0 1 0 0 0 0 1 0
1 0 1 0 0 0 0 1 0 0 0 0 1
1 0 1 0 0 0 0 0 1 1 0 0 0
1 0 0 1 0 1 0 0 0 0 0 1 0
1 0 0 1 0 0 1 0 0 0 0 0 1
1 0 0 1 0 0 0 1 0 1 0 0 0
1 0 0 1 0 0 0 0 1 0 1 0 0
1 0 0 0 1 1 0 0 0 0 0 0 1
1 0 0 0 1 0 1 0 0 1 0 0 0
1 0 0 0 1 0 0 1 0 0 1 0 0
1 0 0 0 1 0 0 0 1 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μ
α1
α2
α3
α4
β1
β2
β3
β4
γ1
γ2
γ3
γ4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ e.

Orthogonalizing columns 1 to 3a of X with respect to J gives the matrix Z with
columns
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Z0 = X0

Zi = Xi − X ′
i J

J′J
J = Xi − a

a2 J, i = 1, . . . ,3a.

The three spaces C(Z1, . . . ,Za), C(Za+1, . . . ,Z2a), and C(Z2a+1, . . . ,Z3a) are orthog-
onal. For example, with r = 1, . . . ,a and t = 1, . . . ,a,

Z′
rZ2a+t =

a

∑
i=1

a

∑
k=1

(
δir − 1

a

)(
δkt − 1

a

)
=

a

∑
i=1

a

∑
k=1

δirδkt −
a

∑
i=1

a

∑
k=1

δir/a−
a

∑
i=1

a

∑
k=1

δkt/a+
a

∑
i=1

a

∑
k=1

1/a2

= 1−1−1+1
= 0.

Similar computations establish the other orthogonality relationships.
Because of the orthogonality, the sum of squares for dropping, say, the αis from

the model is just the sum of squares for dropping the αis from a one-way ANOVA
model that ignores the β j and γk effects. The ANOVA table is

ANOVA
Source d f SS E(MS)

μ 1 a2ȳ2··· σ2 +a2(μ + ᾱ· + β̄· + γ̄·)2

α a−1 a∑a
i=1(ȳi·· − ȳ···)2 σ2 + a

a−1 ∑a
i=1(αi − ᾱ·)2

β a−1 a∑a
j=1(ȳ· j· − ȳ···)2 σ2 + a

a−1 ∑a
j=1(β j − β̄·)2

γ a−1 a∑a
k=1(ȳ··k − ȳ···)2 σ2 + a

a−1 ∑a
k=1(γk − γ̄·)2

Error (a−2)(a−1) by subtraction σ2

Total a2 ∑a
i=1 ∑a

j=1 y2
i jk

Estimation and testing in one of the treatment (block) spaces depends only on the
appropriate projection operator. Since we have the usual one-way ANOVA projec-
tion operators, estimation and testing are performed in the usual way.

The Latin square model assumes that the (αβ ), (αγ), (βγ), and (αβγ) interac-
tions are nonexistent. This assumption is necessary in order to obtain an estimate of
error. If an outside estimate of σ 2 is available, it might be hoped that the interactions
could be examined. Unfortunately, it is impossible to tell from which interaction the
degrees of freedom called “error” come from. For example, in the 4×4 Latin square
of the example, the (αβ ) interaction can be broken up into 3 degrees of freedom for
γ and 6 degrees of freedom for error. Since a similar result holds for each of the
interactions, the 6 degrees of freedom for error involve all of the interactions.

Exercise 8.2 In the 4×4 Latin square of the examples, show that the 9 degrees
of freedom for (αβ ) interaction are being divided into 3 degrees of freedom for γ
and 6 degrees of freedom for error.
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A Graeco-Latin square is a Latin square in which a second group of a treatments
has been applied so that each treatment in the second group occurs once in each row,
once in each column, and once with each of the treatments from the first group.

Exercise 8.3 Derive the analysis for the Graeco-Latin square given below. Use
the model yhi jk = μ +αh +βi + γ j +ηk + ehi jk.

C1 C2 C3 C4 C5
R1 T1τ1 T2τ3 T3τ5 T4τ2 T5τ4
R2 T2τ2 T3τ4 T4τ1 T5τ3 T1τ5
R3 T3τ3 T4τ5 T5τ2 T1τ4 T2τ1
R4 T4τ4 T5τ1 T1τ3 T2τ5 T3τ2
R5 T5τ5 T1τ2 T2τ4 T3τ1 T4τ3

Extend the analysis to an arbitrary a×a Graeco-Latin square.

8.4 Factorial Treatment Structures

For each experimental design considered in this chapter, we have assumed the exis-
tence of “a” treatments. Sometimes the treatments are chosen in such a way that the
treatment space can be conveniently broken into orthogonal subspaces. One of the
most common methods of doing this is to choose treatments with factorial structure.

Suppose that two or more different kinds of treatments are of interest. Each kind
of treatment is called a factor. Each factor is of interest at some number of different
levels. A very efficient way of gaining information on all of the levels of all of the
factors is to use what is called a factorial design. In a factorial design the treatments
are taken to be all possible combinations of the levels of the different factors. Since
a factorial design refers only to the treatment structure, factorial designs can be used
with all of the designs considered in this chapter as well as with balanced incomplete
block designs (cf. Section 9.4) and split plot designs (cf. Section 11.3).

EXAMPLE 8.4.1. An experiment is to be conducted examining the effects of
fertilizer on potato yields. Of interest are two kinds of fertilizer, a nitrogen-based
fertilizer and a phosphate-based fertilizer. The two types of fertilizer are factors.
The nitrogen fertilizer is to be examined at two levels: no nitrogen fertilizer (n0) and
a single dose of nitrogen fertilizer (n1). The phosphate fertilizer has three levels:
no phosphate fertilizer (p0), a single dose of phosphate (p1), and a double dose of
phosphate (p2). The treatments are taken to be all six of the possible combinations:

n0 p0 n0 p1 n0 p2 n1 p0 n1 p1 n1 p2.

The use of treatments with factorial structure has a number of advantages. One
is that it allows study of the interrelationships (interactions) between the factors. In
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Example 8.4.1, it is possible to examine whether the levels of phosphate have dif-
ferent effects depending on whether or not nitrogen was applied. Another advantage
is that if there are no interactions, the experimental material is used very efficiently.
Suppose that there is no interaction between nitrogen and phosphate. The effect of
nitrogen is the difference in yields between experimental units that have the same
level of phosphate but different levels of nitrogen, that is,

n0 p0 −n1 p0,

n0 p1 −n1 p1,

and
n0 p2 −n1 p2.

In each case, the only difference in the pair of treatments is the difference in ni-
trogen. At the same time, the difference in, say, the effects of p1 and p2 can be
examined by looking at the differences

n0 p1 −n0 p2

and
n1 p1 −n1 p2.

The same treatments are used to obtain estimates of both the nitrogen effect and the
phosphate effect.

We now examine the analysis of designs having factorial treatment structure.
Consider a randomized complete block design with c blocks, where the treatments
are all combinations of two factors, say A and B. Suppose factor A has a levels and
factor B has b levels. The total number of treatments is ab. Rewriting the model of
Section 2 with τh denoting treatment effects and ξk denoting block effects, we get

yhk = μ + τh +ξk + ehk, (1)

h = 1, . . . ,ab, k = 1, . . . ,c. In this model, each treatment is indicated by an index h.
Since the treatments consist of all combinations of two factors, it makes sense to
use two indices to identify treatments: one index for each factor. With this idea we
can rewrite model (1) as

yi jk = μ + τi j +ξk + ei jk, (2)

i = 1, . . . ,a, j = 1, . . . ,b, k = 1, . . . ,c.

Exercise 8.4 For model (1), C(Mτ ) is given by Proposition 4.2.3. What is C(Mτ)
in the notation of model (2)?

The orthogonal breakdown of the treatment space follows from a reparameteri-
zation of model (2). Model (2) can be rewritten as
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yi jk = μ +αi +β j +(αβ )i j +ξk + ei jk. (3)

The new parameterization is simply τi j = αi +β j +(αβ )i j. Using the ideas of Sec-
tions 7.1 and 7.2, the treatment space C(Mτ ) can be broken up into three orthogonal
subspaces: one for factor A, C(Mα), one for factor B, C(Mβ ), and one for interac-
tion, C(Mαβ ). The analysis of model (3) follows along the lines of Chapter 7. Model
(3) is just a balanced three-way ANOVA in which some of the interactions (namely,
any interactions that involve blocks) have been thrown into the error.

In practice, it is particularly important to be able to relate contrasts in the treat-
ments (τi js) to contrasts in the main effects (αis and β js) and contrasts in the inter-
actions ((αβ )i js). The relationship is demonstrated in Exercise 8.5. The relationship
is illustrated in the following example.

EXAMPLE 8.4.2. Consider the treatments of Example 8.4.1. There is one contrast
in nitrogen,

n0 n1
N 1 −1

The two orthogonal polynomial contrasts in phosphate are:

p0 p1 p2
P linear −1 0 1
P quadratic 1 −2 1

The main effect contrasts define two orthogonal interaction contrasts: N −P linear

p0 p1 p2
n0 −1 0 1
n1 1 0 −1

and N −P quadratic

p0 p1 p2
n0 1 −2 1
n1 −1 2 −1

The corresponding contrasts in the six treatments are:

n0 p0 n0 p1 n0 p2 n1 p0 n1 p1 n1 p2
N 1 1 1 −1 −1 −1
P linear −1 0 1 −1 0 1
P quadradic 1 −2 1 1 −2 1
N −P linear −1 0 1 1 0 −1
N −P quadradic 1 −2 1 −1 2 −1

It is easily verified that these five contrasts are orthogonal.

Exercise 8.5 Show that the contrasts in the τi js corresponding to the contrasts
∑λiαi and ∑∑λiη j(αβ )i j are ∑∑λiτi j and ∑∑λiη jτi j, respectively.
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Hint: Any contrast in the τi js corresponds to a vector in C(Mτ ), just as any con-
trast in the αis corresponds to a vector in C(Mα) ⊂C(Mτ ). Recall that contrasts are
only defined up to constant multiples; and that contrasts in the αis also involve the
interactions when interaction exists.

8.5 More on Factorial Treatment Structures

We now present a more theoretical discussion of factorial treatment structures and
some interesting new models.

For two factors, say α at s levels and η at t levels, there are a total of p ≡ st
treatment groups. Start by considering a linear model for the data yi jk = (αη)i j +
ei jk. In matrix form, the linear model Y = Xβ +e has X as the indicator matrix used
for a one-way ANOVA model and β = [(αη)11, . . . ,(αη)st ]′ containing a separate
effect for every combination of the two factors.

More generally, if we have r factors αi with si levels respectively, the factorial
structure defines p = ∏r

i=1 si groups. We again take X to be the one-way ANOVA
indicator matrix and define β = [αi1,...,ir ] as a vector providing a separate effect for
each combination of the factors.

The idea is that factorial models are defined by specifying a linear structure for
the group parameters. This consists of putting a linear constraint on β , say β =
Up×qγ for some known matrix U , cf. Section 3.3. For example, in the two-factor
model, one such linear constraint is to force an additive main effects model for
the data, yi jk = μ + αi + η j + ei jk. In matrix terms using Kronecker products, this
amounts to specifying that

β =
(
[Js ⊗ Jt ], [Is ⊗ Jt ], [Js ⊗ It ]

)⎡⎣μ
α
η

⎤⎦≡Uγ, (1)

where α = (α1, . . . ,αs)′ and η = (η1, . . . ,ηt)′. As in Section 3.3, the linear model
for the data has been transformed to Y = XUγ + e, where the model matrix is now
XU , which is a reduced model relative to the original, i.e., C(XU)⊂C(X). Note that
if we define a linear structure for the parameters, β = Uγ and a reduced structure,
i.e., β = U0γ0, where C(U0) ⊂C(U), then this also defines a reduced linear model
for the data in that C(XU0) ⊂C(XU).

I have no difficulty considering all such models to be factorial models, but
McCullagh (2000) proposes a more stringent definition involving “selection in-
variance.” The idea is that if you drop various indices from various factors, the
model should somehow remain invariant. This idea can be executed in the follow-
ing way: Begin with a linear structure β = Uγ but partition U into sets of columns
U = [U0,U1, . . . ,Um] and then specify that

Ui = [Vi1 ⊗Vi2 ⊗·· ·⊗Vir]. (2)
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Such structures should be sufficient to satisfy the basic idea of selection invariance.
However, as will be seen later, other interesting selection invariant factorial models
require us to consider matrices Ui that are linear combinations of matrices with the
structure (2).

An interesting aspect of factorial structures is dealing with factors that have the
same levels. Such factors are called homologous. Example 7.5.1 involves genotypes
of mothers and genotypes of litters, but the genotypes are identical for the mothers
and the litters, so it provides an example of homologous factors. In the additive two-
factor model yi jk = μ +αi +η j + ei jk with s = t and homologous factors, we might
consider situations such as symmetric additive effects where yi jk = μ +αi +α j +ei jk
or alternating (skew symmetric) additive effects where yi jk = μ +αi −α j + ei jk. As
illustrated in (1), we can write the additive model for the parameters in matrix form
as

β = Uγ = [Jst ,U1,U2]

⎡⎣μ
α
η

⎤⎦ .

We can now specify symmetric additive effects by specifying α = η to get

β = [Jst ,U1,U2]

⎡⎣μ
α
α

⎤⎦= [Jst ,(U1 +U2)]
[

μ
α

]
,

thus defining the linear model Y = X [Jst ,(U1 +U2)]
[

μ
α

]
+ e. Similarly, specifying

alternating additive effects α = −η leads to Y = X [Jst ,(U1 −U2)]
[

μ
α

]
+ e. In a

3 × 3 example with β = [(αη)11,(αη)12, . . . ,(αη)33]′, the additive main effects
model has

U = [Jst ,U1,U2] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 1 0 0
1 1 0 0 0 1 0
1 1 0 0 0 0 1
1 0 1 0 1 0 0
1 0 1 0 0 1 0
1 0 1 0 0 0 1
1 0 0 1 1 0 0
1 0 0 1 0 1 0
1 0 0 1 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The symmetric additive effects and alternating additive effects models have
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[Jst ,U1 +U2] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 0 0
1 1 1 0
1 1 0 1
1 1 1 0
1 0 2 0
1 0 1 1
1 1 0 1
1 0 1 1
1 0 0 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, [Jst ,(U1 −U2)] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
1 1 −1 0
1 1 0 −1
1 −1 1 0
1 0 0 0
1 0 1 −1
1 −1 0 1
1 0 −1 1
1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

respectively. Given the simple structure of the original one-way ANOVA matrix X ,
the reduced model matrices X [Jst ,(U1 +U2)] and X [Jst ,(U1 −U2)] have structures
very similar to [Jst ,(U1 +U2)] and [Jst ,(U1 −U2)]. However, these linear structures
for the parameters are not of the form (2), hence the need to consider linear combi-
nations of terms like those in (2).

Models specifying such things as simple symmetry (αη)i j = (αη) ji can also be
specified quite easily by defining an appropriate U matrix, e.g.,⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(αη)11
(αη)12
(αη)13
(αη)21
(αη)22
(αη)23
(αη)31
(αη)32
(αη)33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= β = Uφ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
φ11
φ12
φ13
φ22
φ23
φ33

⎤⎥⎥⎥⎥⎥⎦ .

These also fit into the class of linear combinations of matrices with the pattern (2),
e.g., the column of U associated with φ23 can be written as⎛⎝⎡⎣0

1
0

⎤⎦⊗
⎡⎣0

0
1

⎤⎦⎞⎠+

⎛⎝⎡⎣0
0
1

⎤⎦⊗
⎡⎣0

1
0

⎤⎦⎞⎠ .

These ideas also apply to generalized linear models. For example, in log-linear
models, symmetry is sometimes an interesting model, cf. Christensen (1997, Ex-
ercise 2.7.10), and the symmetric additive effects model is the model of marginal
homogeneity, cf. Christensen (1997, Exercise 10.8.6). See McCullagh (2000) for a
more extensive and theoretical treatment of these ideas.
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8.6 Additional Exercises

Exercise 8.6.1 A study was performed to examine the effect of two factors
on increasing muscle mass in weight lifters. The first factor was dietary protein
level. The levels were use of a relatively low protein diet (L) and use of a high
protein diet (H). The second factor was the use of anabolic steroids. The first level
consisted of no steroid use (N) and the second level involved the use of steroids (S).
Subjects were chosen so that one subject was in each combination of four height
groups (i) and four weight groups ( j). Treatments are identified as LN, LS, HN,
and HS. The dependent variable is a measure of increase in muscle mass during the
treatment period. The study was replicated in two different years. The height groups
and weight groups changed from the first year to the second year. The design and
data are listed below. Heights are the columns of the squares and weights are the
rows. Analyze the data.

Year 1
Weight

Trt(yi jk) 1 2 3 4
1 LN(2.7) LS( 4.6) HS(9.3) HN(0.0)

Height 2 LS(2.0) LN( 5.0) HN(9.1) HS(4.5)
3 HN(6.4) HS(10.2) LS(6.1) LN(2.9)
4 HS(8.3) HN( 6.3) LN(6.3) LS(0.9)

Year 2
Weight

Trt(yi jk) 1 2 3 4
1 LN( 8.6) LS(3.3) HN( 7.6) HS(9.0)

Height 2 LS( 8.9) HN(4.7) HS(12.2) LN(5.2)
3 HN(10.0) HS(7.6) LN(12.3) LS(5.4)
4 HS(10.0) LN(0.5) LS( 5.0) HN(3.7)

Exercise 8.6.2 Show that the set of indices i = 1, . . . ,a, j = 1, . . . ,a, and k =
(i+ j +a−1)mod(a) determines a Latin square design.

Hint: Recall that t mod(a) means t modulo a and is defined as the remainder
when t is divided by a.



Chapter 9

Analysis of Covariance

Traditionally, analysis of covariance (ACOVA) has been used as a tool in the anal-
ysis of designed experiments. Suppose one or more measurements are made on
a group of experimental units. In an agricultural experiment, such a measurement
might be the amount of nitrogen in each plot of ground prior to the application of
any treatments. In animal husbandry, the measurements might be the height and
weight of animals before treatments are applied. One way to use such information
is to create blocks of experimental units that have similar values of the measure-
ments. Analysis of covariance uses a different approach. In analysis of covariance,
an experimental design is chosen that does not depend on these supplemental obser-
vations. The concomitant observations come into play as regression variables that
are added to the basic experimental design model.

The goal of analysis of covariance is the same as the goal of blocking. The re-
gression variables are used to reduce the variability of treatment comparisons. In
this traditional context, comparisons among treatments remain the primary goal of
the analysis. Exercises 9.1 and 9.5 are important practical illustrations of how this
is accomplished. Snedecor and Cochran (1980, Chapter 18) discuss the practical
uses of analysis of covariance. Cox (1958, Chapter 4) discusses the proper role of
concomitant observations in experimental design. Biometrics has devoted two en-
tire issues to analysis of covariance: Volume 13, Number 3, 1957 and Volume 38,
Number 3, 1982.

From a theoretical point of view, analysis of covariance involves the analysis of
a model with a partitioned model matrix, say

Y = [X ,Z]
[

β
γ

]
+ e, (1)

where X is an n× p matrix, Z is an n × s matrix, E(e) = 0, and Cov(e) = σ 2I.
Analysis of covariance is a technique for analyzing model (1) based on the analysis
of the reduced model

Y = Xδ + e. (2)
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The point is that model (2) should be a model whose analysis is relatively easy.
In traditional applications, X is taken as the model matrix for a balanced analysis
of variance. The Z matrix can be anything, but traditionally consists of columns of
regression variables.

The practical application of general linear model theory is prohibitively difficult
without a computer program to perform the worst of the calculations. There are,
however, special cases: notably, simple linear regression, one-way ANOVA, and
balanced multifactor ANOVA, in which the calculations are not prohibitive. Analy-
sis of covariance allows computations of the BLUEs and the SSE for model (1) by
performing several analyses on tractable special cases plus finding the generalized
inverse of an s× s matrix. Since finding the generalized inverse of anything bigger
than, say, a 3× 3 matrix is difficult for hand calculations, one would typically not
want more than three columns in the Z matrix for such purposes.

As mentioned earlier, in the traditional application of performing an ANOVA
while adjusting for the effect of some regression variables, the primary interest is
in the ANOVA. The regression variables are there only to sharpen the analysis. The
inference on the ANOVA part of the model is performed after fitting the regression
variables. To test whether the regression variables really help to sharpen the analy-
sis, they should be tested after fitting the ANOVA portion of the model. The basic
computation for performing these tests is finding the SSE for model (1). This implic-
itly provides a method for finding the SSE for submodels of model (1). Appropriate
tests are performed by comparing the SSE for model (1) to the SSEs of the various
submodels.

Sections 1 and 2 present the theory of estimation and testing for general parti-
tioned models. Sections 3 and 4 present nontraditional applications of the theory.
Section 3 applies the analysis of covariance results to the problem of fixing up bal-
anced ANOVA problems that have lost their balance due to the existence of some
missing data. Although applying analysis of covariance to missing data problems is
not a traditional experimental design application, it is an application that was used
for quite some time until computational improvements made it largely unnecessary.
Section 4 uses the analysis of covariance results to derive the analysis for balanced
incomplete block designs. Section 5 presents Milliken and Graybill’s (1970) test of
a linear model versus a nonlinear alternative.

I might also add that I personally find the techniques of Sections 1 and 2 to be
some of the most valuable tools available for deriving results in linear model theory.

9.1 Estimation of Fixed Effects

To obtain least squares estimates, we break the estimation space of model (9.0.1)
into two orthogonal parts. As usual, let M be the perpendicular projection operator
onto C(X). Note that C(X ,Z) = C[X ,(I −M)Z]. One way to see this is that from
model (9.0.1)
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E(Y ) = Xβ +Zγ = Xβ +MZγ +(I −M)Zγ = [X ,MZ]
[

β
γ

]
+(I −M)Zγ.

Since C(X)=C([X ,MZ]), clearly model (9.0.1) holds if and only if E(Y )∈C[X ,(I−
M)Z].

Let P denote the perpendicular projection matrix onto C([X ,Z]) = C([X ,(I −
M)Z]). Since the two sets of column vectors in [X ,(I −M)Z] are orthogonal, the
perpendicular projection matrix for the entire space is the sum of the perpendicular
projection matrices for the subspaces C(X) and C[(I −M)Z], cf. Theorem B.45.
Thus,

P = M +(I −M)Z
[
Z′(I −M)Z

]− Z′(I −M)

and write
M(I−M)Z ≡ (I −M)Z

[
Z′(I −M)Z

]− Z′(I −M).

Least squares estimates satisfy X β̂ +Zγ̂ = PY = MY +M(I−M)ZY .
We now consider estimation of estimable functions of γ and β . The formulae are

simpler if we incorporate the estimate

γ̂ =
[
Z′(I −M)Z

]− Z′(I −M)Y, (1)

which we will later show to be a least squares estimate.
First consider an estimable function of γ , say, ξ ′γ . For this to be estimable, there

exists a vector ρ such that ξ ′γ = ρ ′[Xβ +Zγ ]. For this equality to hold for all β and
γ , we must have ρ ′X = 0 and ρ ′Z = ξ ′. The least squares estimate of ξ ′γ is

ρ ′PY = ρ ′{M +M(I−M)Z
}

Y

= ρ ′MY +ρ ′(I −M)Z
[
Z′(I −M)Z

]− Z′(I −M)Y
= 0+ρ ′Zγ̂
= ξ ′γ̂.

The penultimate equality stems from the fact that ρ ′X = 0 implies ρ ′M = 0.
An arbitrary estimable function of β , say, λ ′β , has λ ′β = ρ ′[Xβ +Zγ] for some

ρ . For this equality to hold for all β and γ , we must have ρ ′X = λ ′ and ρ ′Z = 0. As
a result, the least squares estimate is

ρ ′PY = ρ ′{M +M(I−M)Z
}

Y

= ρ ′MY +ρ ′(I −M)Z
[
Z′(I −M)Z

]− Z′(I −M)Y
= ρ ′MY +ρ ′(I −M)Zγ̂
= ρ ′MY −ρ ′MZγ̂
= ρ ′M(Y −Zγ̂)

≡ λ ′β̂ .

Define
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X β̂ = M(Y −Zγ̂). (2)

We now establish that
X β̂ +Zγ̂ = PY

so that γ̂ is a least squares estimate of γ and and X β̂ is a least squares estimate of
Xβ . Write

X β̂ +Zγ̂ = M(Y −Zγ̂)+Zγ̂
= MY +(I −M)Zγ̂
= MY +M(I−M)ZY = PY.

Often in ACOVA, the X matrix comes from a model that is simple to analyze,
like one-way ANOVA or a balanced multifactor ANOVA. If the model Y = Xβ +
e has simple formula for computing an estimate of some function λ ′β = ρ ′Xβ ,
say a contrast, then that simple formula must be incorporated into ρ ′MY . Under
conditions that we will explore, λ ′β is also an estimable function under the ACOVA
model Y = Xβ +Zγ +e and, with the same vector ρ , the estimate is λ ′β̂ = ρ ′M(Y −
Zγ̂). That means that the same (simple) computational procedure that was applied
to the data Y in order to estimate λ ′β in Y = Xβ +e can also be applied to Y −Zγ̂ to
estimate λ ′β in Y = Xβ +Zγ + e, see Exercise 9.1. We now explore the conditions
necessary to make this happen, along with other issues related to estimability in
ACOVA models.

Often Z consists of columns of regression variables, in which case Z′(I −M)Z is
typically nonsingular. In that case, both γ and Xβ are estimable. In particular,

γ =
[
Z′(I −M)Z

]−1 Z′(I −M)[Xβ +Zγ]

with estimate

γ̂ =
[
Z′(I −M)Z

]−1 Z′(I −M)PY

=
[
Z′(I −M)Z

]−1 Z′(I −M)[M +M(I−M)Z ]Y

=
[
Z′(I −M)Z

]−1 Z′(I −M)M(I−M)ZY

=
[
Z′(I −M)Z

]−1 Z′(I −M)Y.

X is traditionally the model matrix for an ANOVA model, so β is usually not es-
timable. However, when Z′(I −M)Z is nonsingular, Xβ is estimable in the ACOVA
model. Observe that{

I −Z
[
Z′(I −M)Z

]−1 Z′(I −M)
}

[Xβ +Zγ]

= Xβ +Zγ −Z
[
Z′(I −M)Z

]−1 Z′(I −M)Zγ
= Xβ +Zγ −Zγ
= Xβ .
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Thus, in the nonsingular case, anything that is estimable in Y = Xβ + e is also
estimable in the ACOVA model. In particular, if λ ′ = ρ ′X , the estimate of λ ′β in
Y = Xβ + e is ρ ′MY . Clearly, for the ACOVA model,

ρ ′
{

I −Z
[
Z′(I −M)Z

]−1 Z′(I −M)
}

[Xβ +Zγ] = ρ ′Xβ = λ ′β

and the estimate is

λ ′β̂ = ρ ′
{

I −Z
[
Z′(I −M)Z

]−1 Z′(I −M)
}

PY.

We now show that λ ′β̂ = ρ ′M(Y − Zγ̂). As mentioned earlier, the beauty of this
result is that if we know how to estimate λ ′β in Y = Xβ + e using Y , exactly the
same method applied to Y −Zγ̂ will give the estimate in the ACOVA model.

As discussed earlier, an estimable function λ ′β , has λ ′β = ρ̃ ′[Xβ +Zγ] for some
ρ̃ with ρ̃ ′X = λ ′ and ρ̃ ′Z = 0. Also as before, the least squares estimate is

ρ̃ ′PY = ρ̃ ′M(Y −Zγ̂).

In the nonsingular case, if ρ is any vector that has ρ ′X = λ ′, we can turn it into a
vector ρ̃ that has both ρ̃ ′X = λ ′ and ρ̃ ′Z = 0, simply by defining

ρ̃ ′ = ρ ′
{

I −Z
[
Z′(I −M)Z

]−1 Z′(I −M)
}

.

Moreover,
ρ̃ ′M(Y −Zγ̂) = ρ ′M(Y −Zγ̂),

so the same estimation procedure applied to Y in Y = Xβ +e gets applied to Y −Zγ̂
in Y = Xβ +Zγ + e when estimating the estimable function λ ′β .

In general, if [Z′(I −M)Z] is singular, neither γ nor Xβ are estimable. The es-
timable functions of γ will be those that are linear functions of (I −M)Zγ . This is
shown below.

Proposition 9.1.1. ξ ′γ is estimable if and only if ξ ′ = ρ ′(I −M)Z for some
vector ρ .

PROOF. If ξ ′γ is estimable, there exists ρ such that ξ ′γ = ρ ′[X ,Z]
[

β
γ

]
, so

ρ ′[X ,Z] = (0,ξ ′) and ρ ′X = 0. Therefore, ξ ′ = ρ ′Z = ρ ′(I −M)Z. Conversely, if

ξ ′ = ρ ′(I −M)Z then ρ ′(I −M)[X ,Z]
[

β
γ

]
= ξ ′γ . �

Proposition 9.1.1 is phrased in terms of estimating a function of γ , but it also applies
with appropriate changes to estimation of β .

Finally, if Xβ and γ are estimable, that is, if (I−M)Z is of full rank, it is easy to
see that
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Cov
[

X β̂
γ̂

]
= σ 2

[
M +MZ [Z′(I −M)Z]−1 Z′M −MZ [Z′(I −M)Z]−1

− [Z′(I −M)Z]−1 Z′M [Z′(I −M)Z]−1

]
.

9.2 Estimation of Error and Tests of Hypotheses

The estimate of the variance σ 2 is the MSE. We will find SSE =Y ′(I−P)Y in terms
of M and Z. The error sum of squares is

Y ′(I −P)Y = Y ′
[
(I −M)− (I −M)Z

[
Z′(I −M)Z

]− Z′(I −M)
]
Y (1)

= Y ′(I −M)Y −Y ′(I −M)Z
[
Z′(I −M)Z

]− Z′(I −M)Y.

Using the notation EAB = A′(I −M)B, we have

Y ′(I −P)Y = EYY −EY ZE−
ZZEZY .

EXAMPLE 9.2.1. Consider a balanced two-way analysis of variance with no
replication and one covariate (regression variable, concomitant variable, supplemen-
tal observation). The analysis of covariance model can be written

yi j = μ +αi +η j + γzi j + ei j,

i = 1, . . . ,a, j = 1, . . . ,b. Thus X is the model matrix for the balanced two-way
ANOVA without replication,

yi j = μ +αi +η j + ei j,

i = 1, . . . ,a, j = 1, . . . ,b, and Z is an ab× 1 matrix that contains the values of zi j.
The sum of squares for error in the covariate analysis is EYY −E2

Y Z/EZZ , where

EYY =
a

∑
i=1

b

∑
j=1

(yi j − ȳi· − ȳ· j + ȳ··)2 ,

EY Z = EZY =
a

∑
i=1

b

∑
j=1

(yi j − ȳi· − ȳ· j + ȳ··)(zi j − z̄i· − z̄· j + z̄··) ,

EZZ =
a

∑
i=1

b

∑
j=1

(zi j − z̄i· − z̄· j + z̄··)2 .

Tests for analysis of covariance models are found by considering the reductions
in sums of squares for error due to the models. For instance, if C(X0) ⊂ C(X) and
we want to test the reduced model
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Y = X0β0 +Zγ + e

against the full model (9.0.1), the test statistic is

[Y ′(I −P0)Y −Y ′(I −P)Y ]/ [r(X ,Z)− r(X0,Z)]
[Y ′(I −P)Y ]/ [n− r(X ,Z)]

,

where P0 is the perpendicular projection operator onto C(X0,Z). We have already
found Y ′(I −P)Y . If M0 is the perpendicular projection operator onto C(X0),

Y ′(I −P0)Y = Y ′(I −M0)Y −Y ′(I −M0)Z
[
Z′(I −M0)Z

]− Z′(I −M0)Y.

Often these computations can be facilitated by writing an analysis of covariance
table.

EXAMPLE 9.2.1 CONTINUED. The analysis of covariance table is given below in
matrix notation. Recall that, for example,

Y ′MαY = b
a

∑
i=1

(ȳi· − ȳ··)2 ,

Y ′MαZ = b
a

∑
i=1

(ȳi· − ȳ··)(z̄i· − z̄··) ,

Z′MαZ = b
a

∑
i=1

(z̄i· − z̄··)2 .

ACOVA Table
Source df SSYY SSY Z SSZZ

Grand Mean 1 Y ′ 1
n Jn

nY Y ′ 1
n Jn

n Z Z′ 1
n Jn

n Z

Treatments (α) a−1 Y ′MαY Y ′Mα Z Z′MαZ

Treatments (η) b−1 Y ′MηY Y ′Mη Z Z′MηZ

Error n−a−b+1 Y ′(I −M)Y Y ′(I −M)Z Z′(I −M)Z

If we want to test H0 : η1 = η2 = · · ·= ηb, the error sum of squares under the reduced
model is[

Y ′(I −M)Y +Y ′MηY
]− [Y ′(I −M)Z +Y ′Mη Z

]
× [Z′(I −M)Z +Z′Mη Z

]− [Z′(I −M)Y +Z′MηY
]
.

All of these terms are available from the ACOVA table. With more than one covari-
ate, the terms in the SSY Z and SSZZ columns would be matrices and it would be more
involved to compute [Z′(I −M)Z +Z′Mη Z]−.

Exercise 9.1 Consider a one-way ANOVA with one covariate. The model is
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yi j = μ +αi +ξ xi j + ei j,

i = 1, . . . , t, j = 1, . . . ,Ni. Find the BLUE of the contrast ∑t
i=1 λiαi. Find the variance

of the contrast.

Exercise 9.2 Consider the problem of estimating βp in the regression model

yi = β0 +β1xi1 + · · ·+βpxip + ei. (2)

Let ri be the ordinary residual from fitting

yi = α0 +α1xi1 + · · ·+αp−1xip−1 + ei

and si be the residual from fitting

xip = γ0 + γ1xi1 + · · ·+ γp−1xip−1 + ei.

Show that the least squares estimate of βp is ξ̂ from fitting the model

ri = ξ si + ei, i = 1, . . . ,n, (3)

that the SSE from models (2) and (3) are the same, and that (β̂0, . . . , β̂p−1)′ = α̂ −
β̂pγ̂ with α̂ = (α̂0, . . . , α̂p−1)′ and γ̂ = (γ̂0, . . . , γ̂p−1)′. Discuss the usefulness of these
results for computing regression estimates. (These are the key results behind the
sweep operator that is often used in regression computations.) What happens to the
results if ri is replaced by yi in model (3)?

Exercise 9.3 Suppose λ ′
1β and λ ′

2γ are estimable in model (9.0.1). Use the
normal equations to find find least squares estimates of λ ′

1β and λ ′
2γ .

Hint: Reparameterize the model as Xβ +Zγ = Xδ +(I −M)Zγ and use the nor-
mal equations on the reparameterized model. Note that Xδ = Xβ +MZγ .

Exercise 9.4 Derive the test for model (9.0.1) versus the reduced model Y =
Xβ + Z0γ0 + e, where C(Z0) ⊂ C(Z). Describe how the procedure would work for
testing H0 : γ2 = 0 in the model yi j = μ +αi +η j + γ1zi j1 + γ2zi j2 +ei j, i = 1, . . . ,a,
j = 1, . . . ,b.

Exercise 9.5 An experiment was conducted with two treatments. There were
four levels of the first treatment and five levels of the second treatment. Besides the
data y, two covariates were measured, x1 and x2. The data are given below. Analyze
the data with the assumption that there is no interaction between the treatments.
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i j yi j x1i j x2i j i j yi j x1i j x2i j
1 1 27.8 5.3 9 3 1 22.4 3.0 13

2 27.8 5.2 11 2 21.0 4.5 12
3 26.2 3.6 13 3 30.6 5.4 18
4 24.8 5.2 17 4 25.4 6.6 21
5 17.8 3.6 10 5 15.9 4.1 9

2 1 19.6 4.7 12 4 1 14.1 5.4 10
2 28.4 5.8 17 2 29.5 6.8 18
3 26.3 3.3 22 3 29.2 5.3 22
4 18.3 4.1 8 4 21.5 6.2 9
5 20.8 5.7 11 5 25.5 6.4 22

9.3 Application: Missing Data

When a few observations are missing from, say, a balanced multifactor design, the
balance is lost and the analysis would seem to be quite complicated. One use of the
analysis of covariance is to allow the analysis with missing data to be performed
using results for the original balanced design.

Consider an original design

Y = Xβ + e,

with Y = (y1, . . . ,yn)′. For each missing observation yi, include a covariate zi =
(0, . . . ,0,1,0, . . . ,0)′ with the 1 in the ith place. Set each yi that is missing equal to
zero.

We wish to show that the SSE in this ACOVA model equals the SSE in the model
with the missing observations deleted. The MSE in the covariance model will also
equal the MSE in the model with deletions. In the covariance model, although we
are artificially adding observations by setting missing observations to zero, we are
also removing those degrees of freedom from the error by adding covariates.

Suppose r observations are missing. Without loss of generality, we can assume
that the last r observations are missing. The n×r matrix of covariates can be written

Z =
[

0
Ir

]
,

where Ir is an r× r identity matrix and 0 is an (n− r)× r matrix of zeros. Let X be
the n× p model matrix for the model with no missing observations and let X∗ be
the (n− r)× p model matrix for the model with the missing observations deleted.
Again we can assume that

X =
[

X∗
Xr

]
,
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where Xr is the r × p matrix whose rows are the rows of X corresponding to the
missing observations. The analysis of covariance model

Y = Xβ +Zγ + e

can now be written as

Y =
[

X∗ 0
Xr Ir

][
β
γ

]
+ e.

Notice that

C
([

X∗ 0
Xr Ir

])
= C
([

X∗ 0
0 Ir

])
.

Let M∗ be the perpendicular projection operator onto C(X∗) and let P be the perpen-
dicular projection operator onto

C
([

X∗ 0
Xr Ir

])
.

It is easy to see that

P =
[

M∗ 0
0 Ir

]
.

Writing Y as Y ′ = [Y ′∗,0], we find that

Y ′(I −P)Y = [Y ′∗ 0 ]
[

I −M∗ 0
0 0

][
Y∗
0

]
= Y ′

∗(I −M∗)Y∗.

Since Y ′(I −P)Y is the SSE from the covariate model and Y ′∗(I −M∗)Y∗ is the SSE
for the model with the missing observations dropped, we are done. Note that the
values we put in for the missing observations do not matter for computing the SSE .
Tests of hypotheses can be conducted by comparing SSEs for different models.

With Y ′ = [Y ′∗,0], estimation will be the same in both models. The least squares
estimate of [

X∗β
Xrβ + γ

]
is

PY =
[

M∗Y∗
0

]
.

Any estimable function in the model Y∗ = X∗β + e∗ is estimable in the covariate
model, and the estimates are the same. The function ρ ′∗X∗β equals ρ ′(Xβ + Zγ),
where ρ ′ = [ρ ′∗,0] and 0 is a 1× r matrix of zeros. Thus, ρ ′PY = ρ ′∗M∗Y∗.

Exercise 9.6 Show that

P =
[

M∗ 0
0 Ir

]
.
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An alternative approach to the missing value problem is based on finding substi-
tutes for the missing values. The substitutes are chosen so that if one acts like the
substitutes are real data, the correct SSE is computed. (The degrees of freedom for
error must be corrected.)

Setting the problem up as before, we have

Y = Xβ +Zγ + e,

and the estimate γ̂ can be found. It is proposed to treat Y −Zγ̂ = [Y ′∗,−γ̂ ′]′ as the data
from an experiment with model matrix X . Recalling that γ̂ = [Z′(I −M)Z]−1Z′(I −
M)Y , we see that the SSE from this analysis is

(Y −Zγ̂)′(I −M)(Y −Zγ̂)
= Y ′(I −M)Y −2γ̂ ′Z′(I −M)Y + γ̂ ′Z′(I −M)Zγ̂
= Y ′(I −M)Y −2Y ′(I −M)Z[Z′(I −M)Z]−1Z′(I −M)Y

+Y ′(I −M)Z[Z′(I −M)Z]−1[Z′(I −M)Z][Z′(I −M)Z]−1Z′(I −M)Y
= Y ′(I −M)Y −Y ′(I −M)Z[Z′(I −M)Z]−1Z′(I −M)Y,

which is the SSE from the covariate analysis. Therefore, if we replace missing values
by −γ̂ and do the regular analysis, we get the correct SSE .

This procedure also gives the same estimates as the ACOVA procedure. Using
this method, the estimate of Xβ is M(Y − Zγ̂) just as in (9.1.2) of the ACOVA
procedure. The variance of an estimate, say ρ ′X β̂ , needs to be calculated as in an
analysis of covariance. It is σ 2(ρ ′Mρ + ρ ′MZ[Z′(I −M)Z]−1Z′Mρ), not the naive
value of σ 2ρ ′Mρ .

For r = 1 missing observation and a variety of balanced designs, formulae have
been obtained for −γ̂ and are available in many statistical methods books.

Exercise 9.7 Derive −γ̂ for a randomized complete block design when r = 1.

9.4 Application: Balanced Incomplete Block Designs

The analysis of covariance technique can be used to develop the analysis of a bal-
anced incomplete block design. Suppose that a design is to be set up with b blocks
and t treatments, but the number of treatments that can be observed in any block is
k, where k < t. One natural way to proceed would be to find a design where each
pair of treatments occurs together in the same block a fixed number of times, say λ .
Such a design is called a balanced incomplete block (BIB) design.

Let r be the common number of replications for each treatment. There are two
well-known facts about the parameters introduced so far. First, the total number of
experimental units in the design must be the number of blocks times the number of
units in each block, i.e., bk, but the total number of units must also be the number
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of treatments times the number of times we observe each treatment, i.e., tr; thus

tr = bk. (1)

Second, the number of within block comparisons between any given treatment and
the other treatments is fixed. One way to count this is to multiply the number of
other treatments (t−1) by the number of times each occurs in a block with the given
treatment (λ ). Another way to count it is to multiply the number of other treatments
in a block (k− 1) times the number of blocks that contain the given treatment (r).
Therefore,

(t −1)λ = r(k−1). (2)

EXAMPLE 9.4.1. An experiment was conducted to examine the effects of fertil-
izers on potato yields. Six treatments (A, B, C, D, E, and F) were used but blocks
were chosen that contained only five experimental units. The experiment was per-
formed using a balanced incomplete block design with six blocks. The potato yields
(in pounds) along with the mean yield for each block are reported in Table 9.1.

Table 9.1 Potato Yields in Pounds for Six Fertilizer Treatments.

Block
Block Data Means

1 E 583 B 512 F 661 A 399 C 525 536.0
2 B 439 C 460 D 424 E 497 F 592 482.4
3 A 334 E 466 C 492 B 431 D 355 415.6
4 F 570 D 433 E 514 C 448 A 344 461.8
5 D 402 A 417 B 420 F 626 E 615 496.0
6 C 450 F 490 A 268 D 375 B 347 386.0

The six treatments consist of all of the possible combinations of two factors.
One factor was that a nitrogen-based fertilizer was either applied (n1) or not applied
(n0). The other factor was that a phosphate-based fertilizer was either not applied
(p0), applied in a single dose (p1), or applied in a double dose (p2). In terms of the
factorial structure, the six treatments are A = n0 p0, B = n0 p1, C = n0 p2, D = n1 p0,
E = n1 p1, and F = n1 p2. From the information in Table 9.1, it is a simple matter
to check that t = 6, b = 6, k = 5, r = 5, and λ = 4. After deriving the theory for
balanced incomplete block designs, we will return to these data and analyze them.

The balanced incomplete block model can be written as

yi j = μ +βi + τ j + ei j, ei js i.i.d. N(0,σ 2), (3)

where i = 1, . . . ,b and j ∈ Di or j = 1, . . . , t and i ∈ A j. Di is the set of indices for
the treatments in block i. A j is the set of indices for the blocks in which treatment j
occurs. Note that there are k elements in each set Di and r elements in each set A j .
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In applying the analysis of covariance, we will use the balanced one-way ANOVA
determined by the grand mean and the blocks to help analyze the model with covari-
ates. The covariates are taken as the columns of the model matrix associated with
the treatments. Writing (3) in matrix terms, we get

Y = [X ,Z]
[

β
τ

]
+ e,

β ′ = (μ,β1, . . . ,βb) , τ ′ = (τ1, . . . ,τt) .

Note that in performing the analysis of covariance for this model our primary inter-
est lies in the coefficients of the covariates, i.e., the treatment effects. To perform an
analysis of covariance, we need to find Y ′(I −M)Z and [Z′(I −M)Z]−.

First, find Z′(I−M)Z. There are t columns in Z; write Z = [Z1, . . . ,Zt ]. The rows
of the mth column indicate the presence or absence of the mth treatment. Using two
subscripts to denote the rows of vectors, we can write the mth column as

Zm = [zi j,m], where zi j,m = δ jm

and δ jm is 1 if j = m, and 0 otherwise. In other words, Zm is 0 for all rows except
the r rows that correspond to an observation on treatment m; those r rows are 1.

To get the t × t matrix Z′(I −M)Z, we find each individual element of Z′Z and
Z′MZ. This is done by finding Z′

sZm and Z′
sM

′MZm for all values of m and s. If m = s,
we get

Z′
mZm = ∑

i
∑

j
(zi j,m)2 =

t

∑
j=1

∑
i∈A j

δ jm =
t

∑
j=1

rδ jm = r.

Now, if m �= s, because each observation has only one treatment associated with it,
either zi j,s or zi j,m equals 0; so for s �= m,

Z′
sZm = ∑

i
∑

j
(zi j,s)(zi j,m) =

t

∑
j=1

∑
i∈A j

δ jsδ jm =
t

∑
j=1

rδ jsδ jm = 0.

Thus the matrix Z′Z is rIt , where It is a t × t identity matrix.
Recall that in this problem, X is the model matrix for a one-way ANOVA where

the “treatments” of the ANOVA are the blocks of the BIB design and there are
k observations on each “treatment.” Using two subscripts to denote each row and
each column of a matrix, we can write the projection matrix as in Section 4.1,

M = [vi j,i′ j′ ], where vi j,i′ j′ =
1
k

δii′ .

Let
MZm = [di j,m].

Then
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di j,m = ∑
i′ j′

vi j,i′ j′zi′ j′,m

=
t

∑
j′=1

∑
i′∈A j′

1
k

δii′δ j′m

=
t

∑
j′=1

δ j′m ∑
i′∈A j′

1
k

δii′

= ∑
i′∈Am

1
k

δii′

=
1
k

δi(Am),

where δi(Am) is 1 if i ∈ Am and 0 otherwise. In other words, if treatment m is in
block i, then all k of the units in block i have di j,m = 1/k. If treatment m is not in
block i, all k of the units in block i have di j,m = 0. Since treatment m is contained in
exactly r blocks,

Z′
mM′MZm = ∑

i j
(di j,m)2 =

b

∑
i=1

∑
j∈Di

k−2δi(Am)

=
b

∑
i=1

(k/k2)δi(Am) =
r
k
.

Since, for s �= m, there are λ blocks in which both treatments s and m are contained,

Z′
sM

′MZm = ∑
i j

(di j,s)(di j,m) =
b

∑
i=1

∑
j∈Di

(1/k2)δi(As)δi(Am)

=
b

∑
i=1

(k/k2)δi(As)δi(Am) =
λ
k

.

It follows that the matrix Z′MZ has values r/k down the diagonal and values λ/k
off the diagonal. This can be written as

Z′MZ =
1
k

[
(r−λ )I +λJt

t
]
.

Finally, we can now write

Z′(I −M)Z = Z′Z −Z′MZ

= rI − k−1 [(r−λ)I +λJt
t
]

= k−1 [(r(k−1)+λ )I −λJt
t
]
.

This matrix can be simplified further. Define
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W = I − (1/t)Jt
t . (4)

Note that W is a perpendicular projection operator and that equation (2) gives

r(k−1)+λ = λ t.

With these substitutions, we obtain

Z′(I −M)Z = (λ/k)
[
tI− Jt

t
]
= (λ t/k)

[
I − (1/t)Jt

t
]
= (λ t/k)W.

We need to find a generalized inverse of Z′(I −M)Z. Because W is a projection
operator, it is easily seen that[

Z′(I −M)Z
]− = (k/λ t)W. (5)

We also need to be able to find the 1× t vector Y ′(I−M)Z. The vector (I−M)Y
has elements (yi j − ȳi·), so

Y ′(I −M)Zm = ∑
i j

(yi j − ȳi·)zi j,m =
t

∑
j=1

δ jm ∑
i∈A j

(yi j − ȳi·) = ∑
i∈Am

(yim − ȳi·).

Define
Qm = ∑

i∈Am

(yim − ȳi·).

Then
Y ′(I −M)Z = (Q1, . . . ,Qt).

Since the β effects are for blocks, our primary interests are in estimable functions
ξ ′τ and in estimating σ 2. From (9.1.1) and Proposition 9.1.1, write

ξ ′ = ρ ′(I −M)Z

to get
ξ ′τ̂ = ρ ′(I −M)Z

[
Z′(I −M)Z

]− Z′(I −M)Y

and, from (9.2.1),

SSE = Y ′(I −M)Y −Y ′(I −M)Z
[
Z′(I −M)Z

]− Z′(I −M)Y.

Both of these formulae involve the term (I −M)Z [Z′(I −M)Z]−. This term can be
simplified considerably. Note that since the columns of Z are 0s and 1s, indicating
the presence or absence of a treatment effect,

ZJ1
t = J1

n .

Because M is defined from a one-way ANOVA,

0 = (I −M)J1
n = (I −M)ZJ1

t . (6)
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From (5), (4), and (6), it is easily seen that

(I −M)Z
[
Z′(I −M)Z

]− = (k/λ t)(I −M)Z.

Using this fact, we get that the BLUE of ξ ′τ is

ξ ′τ̂ = ρ ′(I −M)Z
[
Z′(I −M)Z

]− Z′(I −M)Y
= ρ ′(k/λ t)(I −M)ZZ′(I −M)Y
= (k/λ t)ξ ′(Q1, . . . ,Qt)′

= (k/λ t)
t

∑
j=1

ξ jQ j.

j
ȳ·· that can be used to estimate contrasts, because ∑ j ξ j ȳ·· = 0. The variance of the
estimate of the contrast is

Var
(
ξ ′τ̂
)

= σ 2ρ ′(I −M)Z
[
Z′(I −M)Z

]− Z′(I −M)ρ

= σ 2(k/λ t)ξ ′ξ .

From the estimate and the variance, it is a simple matter to see that

SS
(
ξ ′τ
)

= (k/λ t)

[
t

∑
j=1

ξ jQ j

]2/
ξ ′ξ .

The error sum of squares is

SSE = Y ′(I −M)Y −Y ′(I −M)Z
[
Z′(I −M)Z

]− Z′(I −M)Y
= Y ′(I −M)Y − (k/λ t)Y ′(I −M)ZZ′(I −M)Y

= ∑
i j

(yi j − ȳi·)2 − k
λ t

t

∑
j=1

Q2
j .

Exercise 9.8 Show that ξ ′τ is estimable if and only if ξ ′τ is a contrast.
Hint: One direction is easy. For the other direction, show that for ξ ′ = (ξ1, . . . ,ξt),

ξ ′ = (k/λ t)ξ ′Z′(I −M)Z.

Exercise 9.9 Show that if ξ ′τ and η ′τ are contrasts and that if ξ ′η = 0, then
ξ ′τ = 0 and η ′τ = 0 put orthogonal constraints on C(X ,Z), i.e., the treatment sum
of squares can be broken down with orthogonal contrasts in the usual way.

Hint: Let ξ ′ = ρ ′
1[X ,Z] and η ′ = ρ ′

2[X ,Z]. Show that

Many computer programs, e.g., Minitab, present adjusted treatment means (k/λt)Q +
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ρ ′
1(I −M)Z

[
Z′(I −M)Z

]− Z′(I −M)ρ2 = 0.

Suppose that the treatments have quantitative levels, say x1, . . . ,xt , that are
equally spaced. Model (3) can be reparameterized as

yi j = μ +βi + γ1x j + γ2x2
j + · · ·+ γt−1xt−1

j + ei j.

We would like to show that the orthogonal polynomial contrasts for the balanced
incomplete block design are the same as for a balanced one-way ANOVA. In other
words, tabled polynomial contrasts, which are useful in balanced ANOVAs, can
also be used to analyze balanced incomplete block designs. More generally, the
treatments in a BIB may have a factorial structure with quantitative levels in some
factor (e.g., Example 9.4.1). We would like to establish that the polynomial contrasts
in the factor can be used in the usual way to analyze the data.

Because this is a balanced incomplete block design, Z is the model matrix for
a balanced one-way ANOVA (without a grand mean). As in Section 7.3, define
orthogonal polynomials T = ZB by ignoring blocks. (Here we are not interested
in J as an orthogonal polynomial, so we take B as a t × t − 1 matrix.) Write B =
[b1, . . . ,bt−1]. If treatments are levels of a single quantitative factor, then the b js are
tabled orthogonal polynomial contrasts. If the treatments have factorial structure,
the b js are obtained from tabled contrasts as in the continuation of Example 9.4.1
below. The important fact is that the bjs are readily obtained. Note that J′t b j = 0 for
all j, and b′ib j = 0 for i �= j.

A model with treatments replaced by regression variables can be written Y =
Xβ +T η +e, where η = (η1, . . . ,ηt−1)′. For a simple treatment structure, η j would
be the coefficient for a jth degree polynomial. For a factorial treatment structure,
η j could be the coefficient for some cross-product term. The key points are that
the hypothesis η j = 0 corresponds to some hypothesis that can be interpreted as in
Section 6.7 or Section 7.3, and that the columns of T are orthogonal.

As we have seen, the model Y = Xβ + T η + e is equivalent to the model Y =
Xδ +(I −M)T η + e, where η is identical in the two models. Thus the test of η j =
0 can be performed in the second model. In the second model, η̂ is independent
of δ̂ because of the orthogonality. If the columns of (I −M)T are orthogonal, the
estimates of the η js are independent. Finally, and most importantly, we can show
that the contrast in the τs that corresponds to testing η j = 0 is simply b′jτ , where
τ = (τ1, . . . ,τt)′.

To show that the columns of (I −M)T are orthogonal, it suffices to show that
T ′(I −M)T is diagonal.

T ′(I −M)T = B′Z′(I −M)ZB

= (λ t/k)B′WB

= (λ t/k)B′B.

The last equality follows from the definition of W and the fact that J′t b j = 0 for all
j. Note that B′B is diagonal because b′ib j = 0 for i �= j.
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Finally, the contrast that corresponds to testing η j = 0 is ρ ′(I −M)Zτ , where ρ
is the jth column of (I −M)T , i.e., ρ = (I −M)Zb j. This is true because (I −M)T
has orthogonal columns. The contrast is then

[(I −M)Zbj]′(I −M)Zτ = b′jZ
′(I −M)Zτ

= (λ t/k)b′jWτ
= (λ t/k)b′jτ

or, equivalently, the contrast is
b′jτ.

We now apply these results to the analysis of the data in Example 9.4.1.

EXAMPLE 9.4.1 CONTINUED. The computation of the Qms is facilitated by the
following table.

Treatment n0 p0 n0 p1 n0 p2 n1 p0 n1 p1 n1 p2

∑i∈Am yim 1762.0 2149.0 2375.0 1989.0 2675.0 2939.0
∑i∈Am ȳi· 2295.4 2316.0 2281.8 2241.8 2391.8 2362.2
Qm −533.4 −167.0 93.2 −252.8 283.2 576.8

An analysis of variance table can be computed.

ANOVA
Source df SS MS F
Blocks (Ignoring Trts) 5 74857.77 14971.553
Treatments (After Blks) 5 166228.98 33245.797 31.97
Error 19 19758.22 1039.906
Total 29 260844.97

Clearly, there are significant differences among the treatments. These can be ex-
plored further by examining contrasts. The factorial structure of the treatments sug-
gests looking at nitrogen effects, phosphate effects, and interaction effects. With two
levels of nitrogen, the only available contrast is (1)n0 +(−1)n1. Phosphate was ap-
plied at quantitative levels 0, 1, and 2. The linear contrast in phosphate is (−1)p0 +
(0)p1 +(1)p2. The quadratic contrast in phosphate is (1)p0 +(−2)p1 +(1)p2. Com-
bining these to obtain interaction contrasts and rewriting them as contrasts in the
original six treatments gives b1, . . . ,b5.

b js
Treatments n0 p0 n0 p1 n0 p2 n1 p0 n1 p1 n1 p2
N 1 1 1 −1 −1 −1
P linear −1 0 1 −1 0 1
P quadratic 1 −2 1 1 −2 1
N −P linear −1 0 1 1 0 −1
N −P quadratic 1 −2 1 −1 2 −1
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Source df SS F
N 1 51207.20 49.24
P linear 1 110443.67 106.21
P quadratic 1 2109.76 2.03
N −P linear 1 2146.30 2.06
N −P quadratic 1 322.06 0.31

The conclusions to be drawn are clear. There is a substantial increase in yields
due to adding the nitrogen-based fertilizer. For the dosages of phosphate used, there
is a definite increasing linear relationship between amount of phosphate and yield
of potatoes. There is no evidence of any interaction.

Note that the linear relationship between phosphate and yield is an approximation
that holds in some neighborhood of the dosages used in the experiment. It is well
known that too much fertilizer will actually kill most plants. In particular, no potato
plant will survive having an entire truckload of phosphate dumped on it.

Exercise 9.10 Derive the analysis for a Latin square with one row missing.
Hint: This problem is at the end of Section 9.4, not Section 9.3.

Exercise 9.11 Eighty wheat plants were grown in each of 5 different fields.
Each of 6 individuals (A, B, C, D, E, and F) were asked to pick 8 “representative”
plants in each field and measure the plants’s heights. Measurements were taken on 6
different days. The data consist of the differences between the mean height of the 8
“representative” plants and the mean of all the heights in the field on that day. Thus
the data measure the bias in selecting “representative” plants. The exact design and
the data are given below. Analyze the data. (Although they are barely recognizable
as such, these data are from Cochran and Cox, 1957.)

Field
Day 1 2 3 4 5

1 E 3.50 A 0.75 C 2.28 F 1.77 D 2.28
2 D 3.78 B 1.46 A−1.06 E 1.46 F 2.76
3 F 2.32 C 2.99 B−0.28 D 1.18 E 3.39
4 C 4.13 D 4.02 E 1.81 B 1.46 A 1.50
5 A 1.38 E 1.65 F 2.64 C 2.60 B 1.50
6 B 1.22 F 2.83 D 1.57 A−1.30 C 1.97

9.5 Application: Testing a Nonlinear Full Model

Consider testing the model

Y = Xβ + e, e ∼ N(0,σ 2I), (1)

against a nonlinear model that involves a matrix function of Xβ , say
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Y = Xβ +Z(Xβ )γ + e.

We assume that the matrix Z(Xβ ) has constant rank. More precisely, we need to
assume that r[(I −M)Z(Xβ )] and r[X ,Z(Xβ )] are constant functions of β . If each
column of Z(v) is a distinct nonlinear function of v, these conditions often hold.

Milliken and Graybill (1970) developed an exact F test for this problem. A simi-
lar result appears in the first (1965) edition of Rao (1973). When Z(v)≡ [v2

1, . . . ,v
2
n]
′,

the procedure gives Tukey’s famous one degree of freedom for nonadditivity test,
cf. Tukey (1949) or Christensen (1996a, Section 10.4). Tests for Mandel’s (1961,
1971) extensions of the Tukey model also fit in this class of tests. Christensen and
Utts (1992) extended these tests to log-linear and logit models, and Christensen
(1997, Section 7.3) examines the Tukey and Mandel models in the context of log-
linear models. St. Laurent (1990) showed that Milliken and Graybill’s test is equiv-
alent to a score test and thus shares the asymptotic properties of the generalized
likelihood ratio test. St. Laurent also provides references to other applications of
this class of tests.

To develop the test, fit model (1) to get Ỹ ≡ MY and define

Z̃ ≡ Z(Ỹ ).

Now fit the model
Y = Xβ + Z̃γ + e

treating Z̃ as a known model matrix that does not depend on Y . Let P be the perpen-
dicular projection operator onto C(X , Z̃), so the usual F test for H0 : γ = 0 is based
on

F =
Y ′M(I−M)Z̃Y/r[(I −M)Z̃]

Y ′(I −P)Y/[n− r(X , Z̃)]
∼ F(r[(I −M)Z̃],n− r[X , Z̃]). (2)

To show that (2) really holds under the null hypothesis of model (1), consider the
distribution of Y given Ỹ . Write

Y = MY +(I −M)Y = Ỹ +(I −M)Y.

Under the null model, Ỹ and (I −M)Y are independent and

(I −M)Y ∼ N[0,σ 2(I −M)],

so
Y |Ỹ ∼ N[Ỹ ,σ 2(I −M)].

Use the general results from Section 1.3 that involve checking conditions like
VAVAV = VAV and VAV BV = 0 to establish that the F statistic has the stated
F(r[(I −M)Z̃],n− r[X , Z̃]) distribution conditional on Ỹ . Finally, by assumption,
the degrees of freedom for the F distribution do not depend on Ỹ , so the conditional
distribution does not depend on Ỹ and it must also be the unconditional distribution.
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Exercise 9.12 Prove that display (2) is true.

9.6 Additional Exercises

Exercise 9.6.1 Sulzberger (1953) and Williams (1959) examined the maximum
compressive strength parallel to the grain (y) of 10 hoop trees and how it was af-
fected by temperature. A covariate, the moisture content of the wood (x), was also
measured. Analyze the data, which are reported below.

Temperature in Celsius
−20 0 20 40 60

Tree y x y x y x y x y x
1 13.14 42.1 12.46 41.1 9.43 43.1 7.63 41.4 6.34 39.1
2 15.90 41.0 14.11 39.4 11.30 40.3 9.56 38.6 7.27 36.7
3 13.39 41.1 12.32 40.2 9.65 40.6 7.90 41.7 6.41 39.7
4 15.51 41.0 13.68 39.8 10.33 40.4 8.27 39.8 7.06 39.3
5 15.53 41.0 13.16 41.2 10.29 39.7 8.67 39.0 6.68 39.0
6 15.26 42.0 13.64 40.0 10.35 40.3 8.67 40.9 6.62 41.2
7 15.06 40.4 13.25 39.0 10.56 34.9 8.10 40.1 6.15 41.4
8 15.21 39.3 13.54 38.8 10.46 37.5 8.30 40.6 6.09 41.8
9 16.90 39.2 15.23 38.5 11.94 38.5 9.34 39.4 6.26 41.7

10 15.45 37.7 14.06 35.7 10.74 36.7 7.75 38.9 6.29 38.2

Exercise 9.6.2 Suppose that in Exercise 7.7.1 on motor oil pricing, the obser-
vation on store 7, brand H was lost. Treat the stores as blocks in a randomized
complete block design. Plug in an estimate of the missing value and analyze the
data without correcting the MSTrts or any variance estimates. Compare the results
of this approximate analysis to the results of a correct analysis.

Exercise 9.6.3 The missing value procedure that consists of analyzing the model
(Y −Zγ̂) = Xβ + e has been shown to give the correct SSE and BLUEs; however,
sums of squares explained by the model are biased upwards. For a randomized com-
plete block design with a treatments and b blocks and the observation in the c,d cell
missing, show that the correct mean square for treatments is the naive (biased) mean
square treatments minus [y·d −(a−1)ŷcd ]2/a(a−1)2, where y·d is the sum of all ac-
tual observations in block d, and ŷcd is the pseudo-observation (the nonzero element
of Zγ̂).
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Exercise 9.6.4 State whether each design given below is a balanced incomplete
block design, and if so, give the values of b, t, k, r, and λ .

(a) The experiment involves 5 treatments: A, B, C, D, and E . The experiment
is laid out as follows.

Block Treatments Block Treatments
1 A,B,C 6 A,B,D
2 A,B,E 7 A,C,D
3 A,D,E 8 A,C,E
4 B,C,D 9 B,C,E
5 C,D,E 10 B,D,E

(b) The following design has 9 treatments: A, B, C, D, E, F , G, H, and I.

Block Treatments Block Treatments
1 B,C,D,G 6 C,D,E, I
2 A,C,E,H 7 A,D,H, I
3 A,B,F, I 8 B,E,G, I
4 A,E,F,G 9 C,F,G,H
5 B,D,F,H

(c) The following design has 7 treatments: A, B, C, D, E, F , G.

Block Treatments Block Treatments
1 C,E,F,G 5 B,C,D,G
2 A,D,F,G 6 A,C,D,E
3 A,B,E,G 7 B,D,E,F
4 A,B,C,F



Chapter 10

General Gauss–Markov Models

A general Gauss–Markov model is a model

Y = Xβ + e, E(e) = 0, Cov(e) = σ 2V,

where V is a known matrix. Linear models can be divided into four categories de-
pending on the assumptions made about V :

(a) V is an identity matrix,
(b) V is nonsingular,
(c) V is possibly singular but C(X) ⊂C(V ),
(d) V is possibly singular.

The categories are increasingly general. Any results for category (d) apply to all
other categories. Any results for category (c) apply to categories (a) and (b). Any
results for (b) apply to (a).

The majority of Chapters 1 through 9 have dealt with category (a). In Sections 2.7
and 3.8, models in category (b) were discussed. In this chapter, categories (c) and
(d) are discussed. Section 1 is devoted to finding BLUEs for models in categories
(c) and (d). Theorem 10.1.2 and the discussion following it give the main results for
category (c). The approach is similar in spirit to Section 2.7. The model is trans-
formed into an equivalent model that fits into category (a), and BLUEs are found
for the equivalent model. Although similar in spirit to Section 2.7, the details are
considerably more complicated because of the possibility that V is singular. Having
found BLUEs for category (c), the extension to category (d) is very simple. The
extension follows from Theorem 10.1.3. Finally, Section 1 contains some results on
the uniqueness of BLUEs for category (d).

Section 2 contains a discussion of the geometry of estimation for category (d).
In particular, it points out the need for a consistency criterion and the crucial role of
projection operators in linear unbiased estimation. Section 3 examines the problem
of testing a model against a reduced model for category (d). Section 4 discusses
the extension of least squares estimation to category (d) in light of the consistency
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requirement of Section 2. Section 4 also contains the very important result that least
squares estimates are BLUEs if and only if C(V X) ⊂C(X).

Section 5 considers estimable parameters that can be known with certainty when
C(X) �⊂ C(V ) and a relatively simple way to estimate estimable parameters that
are not known with certainty. Some of the nastier parts in Sections 1 through 4 are
those that provide sufficient generality to allow C(X) �⊂C(V ). The simpler approach
of Section 5 seems to obviate the need for much of that. Groß (2004) surveyed
important results in linear models with possibly singular covariance matrices.

10.1 BLUEs with an Arbitrary Covariance Matrix

Consider the model

Y = Xβ + e, E(e) = 0, Cov(e) = σ 2V, (1)

where V is a known matrix. We want to find the best linear unbiased estimate of
E(Y ).

Definition 10.1.1. Let Λ ′ be an r × p matrix with Λ ′ = P′X for some P. An
estimate B0Y is called a best linear unbiased estimate (BLUE) of Λ ′β if

(a) E(B0Y ) = Λ ′β for any β , and
(b) if BY is any other linear unbiased estimate of Λ ′β , then for any r×1 vector ξ

Var(ξ ′B0Y ) ≤ Var(ξ ′BY ).

Exercise 10.1 Show that A0Y is a BLUE of Xβ if and only if, for every estimable
function λ ′β such that ρ ′X = λ ′, ρ ′A0Y is a BLUE of λ ′β .

Exercise 10.2 Show that if Λ ′ = P′X and if A0Y is a BLUE of Xβ , then P′A0Y
is a BLUE of Λ ′β .

In the case of a general covariance matrix V , it is a good idea to reconsider
what the linear model (1) is really saying. The obvious thing it is saying is that
E(Y ) ∈ C(X). From Lemma 1.3.5, the model also says that e ∈ C(V ) or, in other
notation, Y ∈ C(X ,V ). If V is a nonsingular matrix, C(V ) = Rn; so the conditions
on e and Y are really meaningless. When V is a singular matrix, the conditions on e
and Y are extremely important.

For any matrix A, let MA denote the perpendicular projection matrix onto C(A).
M without a subscript is MX . Any property that holds with probability 1 will be said
to hold almost surely (a.s.). For example, Lemma 1.3.5 indicates that e ∈C(V ) a.s.
and, adding Xβ to Y −Xβ , the lemma gives Y ∈C(X ,V ) a.s.
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If R and S are any two random vectors with R = S a.s., then E(R) = E(S) and
Cov(R) = Cov(S). In particular, if R = S a.s. and R is a BLUE, then S is also a
BLUE.

Results on estimation will be established by comparing the estimation problem
in model (1) to the estimation problem in two other, more easily analyzed, models.

Before proceeding to the first theorem on estimation, recall the eigenvector de-
composition of the symmetric, nonnegative definite matrix V . One can pick ma-
trices E and D so that V E = ED. Here D = Diag(di), where the dis are the, say
m, positive eigenvalues of V (with the correct multiplicities). E is a matrix of or-
thonormal columns with the ith column an eigenvector corresponding to di. Define
D1/2 ≡ Diag

(√
di
)
. Write

Q ≡ ED1/2 and Q− ≡ D−1/2E ′.

Useful facts are

1. C(V ) = C(E) = C(Q)
2. MV = EE ′ = QQ−
3. Im = Q−Q
4. V = QQ′
5. QQ−Q = Q
6. Q−V Q−′ = Im
7. Q−′Q− = V−.

Consider the linear model

Q−Y = Q−Xβ +Q−e, E(Q−e) = 0, Cov(Q−e) = σ2Im. (2)

Models (1) and (2) are equivalent when C(X) ⊂C(V ). Clearly, (2) can be obtained
from (1) by multiplying on the left by Q−. Moreover, with C(X) ⊂ C(V ), each of
Y , C(X), and e are contained in C(V ) a.s.; so multiplying (2) on the left by Q gives
MVY = MV Xβ + MV e, which is model (1) a.s. Note that Q−Y ∈ Rm and that the
Gauss–Markov theorem can be used to get estimates in model (2). Moreover, if
C(X) ⊂C(V ), then X = MV X = QQ−X ; so Xβ is estimable in model (2).

Theorem 10.1.2. If C(X) ⊂ C(V ), then A0Y is a BLUE of Xβ in model (1) if
and only if (A0Q)Q−Y is a BLUE of Xβ in model (2).

PROOF. If this theorem is to make any sense at all, we need to first show that
E(A0Y ) = Xβ iff E(A0QQ−Y ) = Xβ . Recall that Y ∈C(X ,V ) a.s., so in this special
case where C(X) ⊂C(V ), we have Y ∈C(V ) a.s. Thus, for the purposes of finding
expected values and covariances, we can assume that Y = MVY . Let B be an arbi-
trary n× n matrix. Then E(BY ) = E(BMVY ) = E(BQQ−Y ), so E(A0Y ) = Xβ iff
E(A0QQ−Y ) = Xβ . It is also handy to know the following fact:

Var(ρ ′BY ) = Var(ρ ′BMVY ) = Var(ρ ′BQQ−Y ).
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Now suppose that A0Y is a BLUE for Xβ in model (1). We show that A0QQ−Y is
a BLUE of Xβ in model (2). Let BQ−Y be another unbiased estimate of Xβ in model
(2). Then Xβ = E(BQ−Y ), so BQ−Y is an unbiased estimate of Xβ in model (1) and,
since A0Y is a BLUE in model (1), Var(ρ ′A0QQ−Y ) = Var(ρ ′A0Y )≤Var(ρ ′BQ−Y ).
Thus A0QQ−Y is a BLUE of Xβ in model (2).

Conversely, suppose that A0QQ−Y is a BLUE of Xβ in model (2). Let BY be an
unbiased estimate for Xβ in model (1). Then BQQ−Y is unbiased for Xβ in model
(2) and Var(ρ ′A0Y ) = Var(ρ ′A0QQ−Y ) ≤ Var(ρ ′BQQ−Y ) = Var(ρ ′BY ); so ρ ′A0Y
is a BLUE of Xβ in model (1). �

Note that with C(X)⊂C(V ), A0Y = A0MVY = A0QQ−Y a.s., so Theorem 10.1.2
is really saying that A0Y is a BLUE in model (1) if and only if A0Y is a BLUE in
model (2). The virtue of Theorem 10.1.2 is that we can actually find a BLUE for Xβ
in model (2). From Exercises 10.1 and 10.2, a BLUE of Xβ = QQ−Xβ from model
(2) is

X β̂ = QMQ−X Q−Y

= Q
[
Q−X(X ′Q−′Q−X)−X ′Q−′]Q−Y

= MV X(X ′V−X)−X ′V−Y

= X(X ′V−X)−X ′V−Y. (3)

It is useful to observe that we can get a BLUE from any choice of V− and
(X ′V−X)−. First, notice that X ′V−X does not depend on V−. Since C(X) ⊂C(V ),
we can write X = VC for some matrix C. Then X ′V−X = C′VV−VC = C′VC. Sec-
ond, Q−X(X ′Q−′Q−X)−X ′Q−′ does not depend on the choice of (X ′Q−′Q−X)−.
Therefore, X(X ′V−X)−X ′V− does not depend on the choice of (X ′V−X)−. More-
over, for any Y ∈C(V ), X(X ′V−X)−X ′V− does not depend on the choice of V−. To
see this, write Y = V b. Then X ′V−Y = (C′V )V−(V b) = C′V b. Since Y ∈C(V ) a.s.,
X(X ′V−X)−X ′V−Y is a BLUE of Xβ for any choices of V− and (X ′V−X)−.

To obtain the general estimation result for arbitrary singular V , consider the linear
model

Y1 = Xβ + e1, E(e1) = 0, Cov(e1) = σ 2 (V +XUX ′) , (4)

where U is any symmetric nonnegative definite matrix.

Theorem 10.1.3. A0Y is a BLUE for Xβ in model (1) if and only if A0Y1 is a
BLUE for Xβ in model (4).

PROOF. Clearly, for any matrix B, BY is unbiased if and only if BY1 is unbiased
and both are equivalent to the condition BX = X . In the remainder of the proof,
B will be an arbitrary matrix with BX = X so that BY and BY1 are arbitrary linear
unbiased estimates of Xβ in models (1) and (4), respectively. The key fact in the
proof is that

Var(ρ ′BY1) = σ2ρ ′B
(
V +XUX ′)B′ρ
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= σ2ρ ′BV B′ρ +ρ ′BXUX ′B′ρ
= Var(ρ ′BY )+σ2ρ ′XUX ′ρ.

Now suppose that A0Y is a BLUE for Xβ in model (1). Then

Var(ρ ′A0Y ) ≤ Var(ρ ′BY).

Adding σ 2ρ ′XUX ′ρ to both sides we get

Var(ρ ′A0Y1) ≤ Var(ρ ′BY1),

and since BY1 is an arbitrary linear unbiased estimate, A0Y1 is a BLUE.
Conversely, suppose A0Y1 is a BLUE for Xβ in model (4). Then

Var(ρ ′A0Y1) ≤ Var(ρ ′BY1),

or
Var(ρ ′A0Y )+σ 2ρ ′XUX ′ρ ≤ Var(ρ ′BY)+σ 2ρ ′XUX ′ρ.

Subtracting σ 2ρ ′XUX ′ρ from both sides we get

Var(ρ ′A0Y ) ≤ Var(ρ ′BY ),

so A0Y is a BLUE. �

As with Theorem 10.1.2, this result is useful because a BLUE for Xβ can ac-
tually be found in one of the models. Let T = V + XUX ′. If U is chosen so that
C(X) ⊂ C(T ), then Theorem 10.1.2 applies to model (4) and a BLUE for Xβ is
X(X ′T−X)−X ′T−Y . Exercise 10.3 establishes that such matrices U exist. Since
this is an application of Theorem 10.1.2, X(X ′T−X)−X ′T−Y does not depend on
the choice of (X ′T−X)− and, for Y ∈ C(T ), it does not depend on the choice of
T−. Proposition 10.1.4 below shows that C(X) ⊂C(T ) implies C(T ) = C(X ,V ); so
Y ∈C(T ) a.s., and any choice of T− gives a BLUE.

Exercise 10.3 The BLUE of Xβ can be obtained by taking T = V +XX ′. Prove
this by showing that

(a) C(X) ⊂C(T ) if and only if T T−X = X , and
(b) if T = V +XX ′, then T T−X = X .

Hint: Searle and Pukelsheim (1987) base a proof of (b) on

0 = (I −T T−)T (I −T T−)′

= (I −T T−)V (I −T T−)′ +(I −T T−)XX ′(I −T T−)′

and the fact that the last term is the sum of two nonnegative definite matrices.
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Proposition 10.1.4. If C(X) ⊂C(T ), then C(V ) ⊂C(T ) and C(X ,V ) = C(T ).

PROOF. We know that C(X) ⊂C(T ), so X = T G for some matrix G. If v ∈C(V ),
then v =V b1, and v =V b1 +XUX ′b1 −XUX ′b1 = T b1−T G(UX ′b1); so v ∈C(T ).
Thus, C(X ,V ) ⊂C(T ). But clearly, by the definition of T , C(T ) ⊂C(X ,V ); so we
have C(X ,V ) = C(T ). �

To complete our characterization of best linear unbiased estimates, we will show
that for practical purposes BLUEs of Xβ are unique.

Theorem 10.1.5. Let AY and BY be BLUEs of Xβ in model (1), then Pr(AY =
BY ) = 1.

PROOF. It is enough to show that Pr[(A−B)Y = 0] = 1. We need only observe
that E[(A−B)Y ] = 0 and show that for any ρ , Var[ρ ′(A−B)Y ] = 0.

Remembering that Var(ρ ′AY ) = Var(ρ ′BY ), we first consider the unbiased esti-
mate of Xβ , 1

2(A+B)Y :

Var(ρ ′AY ) ≤ Var
(

ρ ′ 1
2
(A+B)Y

)
but

Var
(

ρ ′ 1
2
(A+B)Y

)
=

1
4
[
Var(ρ ′AY )+Var(ρ ′BY )+2Cov(ρ ′AY,ρ ′BY )

]
,

so
Var(ρ ′AY ) ≤ 1

2
Var(ρ ′AY )+

1
2

Cov(ρ ′AY,ρ ′BY ).

Simplifying, we find that

Var(ρ ′AY ) ≤ Cov(ρ ′AY,ρ ′BY ).

Now look at Var(ρ ′(A−B)Y ),

0 ≤ Var
(
ρ ′(A−B)Y

)
= Var(ρ ′AY )+Var(ρ ′BY )−2Cov(ρ ′AY,ρ ′BY ) ≤ 0. �

Finally, the most exact characterization of a BLUE is the following:

Theorem 10.1.6. If AY and BY are BLUEs for Xβ in model (1), then AY = BY
for any Y ∈C(X ,V ).

PROOF. It is enough to show that AY = BY , first when Y ∈ C(X) and then when
Y ∈C(V ). When Y ∈C(X), by unbiasedness AY = BY .
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We want to show that AY = BY for all Y ∈C(V ). Let M = {Y ∈C(V )|AY = BY}.
It is easily seen that M is a vector space, and clearly M ⊂ C(V ). If C(V ) ⊂ M ,
then M = C(V ), and we are done.

From unbiasedness, AY = Xβ +Ae and BY = Xβ +Be, so AY = BY if and only
if Ae = Be. From Theorem 10.1.5, Pr(Ae = Be) = 1. We also know that Pr(e ∈
C(V )) = 1. Therefore, Pr(e ∈ M ) = 1.

Computing the covariance of e we find that

σ 2V =
∫

ee′dP =
∫

e∈M
ee′dP;

so, by Exercise 10.4, C(V ) ⊂ M . �

Exercise 10.4 Ferguson (1967, Section 2.7, page 74) proves the following:

Lemma (3) If S is a convex subset of Rn, and Z is an n-dimensional random
vector for which Pr(Z ∈ S) = 1 and for which E(Z) exists and is finite, then E(Z)∈ S.

Use this lemma to show that

C(V ) = C
[∫

e∈M
ee′dP

]
⊂ M .

After establishing Theorem 10.1.5, we only need to find any one BLUE, because
for any observations that have a chance of happening, all BLUEs give the same
estimates. Fortunately, we have already shown how to obtain a BLUE, so this section
is finished. There is only one problem. Best linear unbiased estimates might be pure
garbage. We pursue this issue in the next section.

10.2 Geometric Aspects of Estimation

The linear model

Y = Xβ + e, E(e) = 0, Cov(e) = σ 2V, (1)

says two important things:

(a) E(Y ) = Xβ ∈C(X), and
(b) Pr(e ∈C(V )) = 1.

Note that (b) also says something about E(Y ):

(b′) Xβ = Y − e ∈Y +C(V ) a.s.
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Intuitively, any reasonable estimate of E(Y ), say X β̂ , should satisfy the following
definition for consistency.

Definition 10.2.1. An estimate X̂β of Xβ is called a consistent estimate if

(i) X̂β ∈C(X) for any Y , and
(ii) X̂β ∈Y +C(V ) for any Y ∈C(X ,V ).

X̂β is called almost surely consistent if conditions (i) and (ii) hold almost surely.

Note that this concept of consistency is distinct from the usual large sample idea
of consistency. The idea is that a consistent estimate, in our sense, is consistent with
respect to conditions (a) and (b′).

EXAMPLE 10.2.2. Consider the linear model determined by

X =

⎡⎣1 0
0 1
0 0

⎤⎦ and V =

⎡⎣ 1
2 0 1

2
0 1 0
1
2 0 1

2

⎤⎦ .

If this model is graphed with coordinates (x,y,z), then C(X) is the x,y plane and
C(V ) is the plane determined by the y-axis and the line [x = z,y = 0]. (See Fig-
ure 10.1.)

Fig. 10.1 Estimation space and singular covariance space for Example 10.2.2.
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Suppose that Y = (7,6,2)′. Then (see Figure 10.2) E(Y ) is in C(X) (the x,y plane)
and also in Y +C(V ) (which is the plane C(V ) in Figure 10.1, translated over until
it contains Y ). The intersection of C(X) and Y +C(V ) is the line [x = 5,z = 0], so
any consistent estimate of Xβ will be in the line [x = 5,z = 0]. To see this, note that
C(X) consists of vectors with the form (a,b,0)′, and Y +C(V ) consists of vectors
like (7,6,2)′ +(c,d,c)′. The intersection is those vectors with c = −2, so they are
of the form (5,6+d,0)′ or (5,b,0)′.

The problem with BLUEs of Xβ is that there is no apparent reason why a BLUE
should be consistent. The class of linear unbiased estimates (LUEs) is very broad. It
consists of all estimates AY with AX = X . There are many linear unbiased estimates
that are not consistent. For example, Y itself is a LUE and it satisfies condition (ii)
of consistency; however, one would certainly not want to use it as an estimate.

EXAMPLE 10.2.2 CONTINUED. MY is a LUE and satisfies condition (i) of
consistency; however, with Y = (7,6,2)′, MY = (7,6,0)′, but (7,6,0)′ is not in
C(X)∩ [Y +C(V )] = [x = 5,z = 0]. (See Figure 10.2.)

Fig. 10.2 Consistent estimation for Example 10.2.2.

Before showing that BLUEs of Xβ are almost surely consistent, several observa-
tions will be made. The object is to explicate the case C(X)⊂C(V ), give alternative
conditions that can be used in place of conditions (i) and (ii) of consistency, and
display the importance of projections in linear estimation.
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(a) In practice, when a covariance matrix other than σ 2I is appropriate, most of
the time the condition C(X) ⊂C(V ) will be satisfied. When C(X) ⊂C(V ), then
Y ∈C(X ,V ) = C(V ) a.s., so the condition X̂β ∈ Y +C(V ) a.s. merely indicates
that X̂β ∈C(V ) a.s. In fact, any estimate of Xβ satisfying condition (i) of consis-
tency also satisfies condition (ii). (Note: The last claim is not restricted to linear
estimates or even unbiased estimates.)

(b) An estimate AY satisfies condition (i) of consistency if and only if A = XB for
some matrix B.

(c) An estimate AY satisfies condition (ii) of consistency if and only if (I −A)Y ∈
C(V ) for any Y ∈C(X ,V ).

(d) If AY is a LUE of Xβ , then AY satisfies condition (ii) of consistency if and
only if AY ∈C(V ) for any Y ∈C(V ), i.e., iff C(AV ) ⊂C(V ).
PROOF. Y ∈ C(X ,V ) iff Y = x + v for x ∈ C(X) and v ∈ C(V ). (I −A)Y =
(x− x)+(v−Av). v−Av ∈C(V ) iff Av ∈C(V ). �

(e) AY is a LUE satisfying condition (i) if and only if A is a projection matrix (not
necessarily perpendicular) onto C(X).
PROOF. From unbiasedness, AX = X , and from (b), A = XB. Hence AA =
AXB = XB = A, and so A is idempotent and a projection onto C(A). Since AX =
X , we have C(X) ⊂C(A); and since A = XB, we have C(A) ⊂C(X). Therefore,
C(A) = C(X). �

Exercise 10.5 Prove observations (a), (b), and (c).

Notice that in general all consistent linear unbiased estimates (CLUEs) are pro-
jections onto C(X) and that if C(X) ⊂C(V ), all projections onto C(X) are CLUEs.
This goes far to show the importance of projection matrices in estimation. In partic-
ular, the BLUEs that we actually found in the previous section satisfy condition (i)
by observation (b). Thus, by observation (e) they are projections onto C(X).

Before proving the main result, we need the following proposition:

Proposition 10.2.3. For T = V + XUX ′ with U nonnegative definite and A =
X(X ′T−X)−X ′T− with C(X) ⊂C(T ), AV = VA′.

PROOF. Consider the symmetric matrix X(X ′T−X)−X ′, where the generalized
inverses are taken as in Corollary B.41. By the choice of T , write X = T G.

X ′ = G′T = G′T T−T = X ′T−T,

X(X ′T−X)−X ′ = X(X ′T−X)−X ′T−T = A(V +XUX ′).

Since A is a projection operator onto C(X), AXUX ′ = XUX ′; thus,

X(X ′T−X)−X ′ −XUX ′ = AV.

The lefthand side is symmetric. �
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Proposition 10.2.4. There exists a BLUE of Xβ in model (1) that is a CLUE.

PROOF. AY = X(X ′T−X)−X ′T−Y is a BLUE satisfying condition (i). In Propo-
sition 10.2.3, we proved that AV = VA′. By observation (d), the proposition holds.

�

Theorem 10.2.5. If AY is a BLUE of Xβ in model (1), then AY is almost surely
consistent.

PROOF. By Proposition 10.2.4, a consistent BLUE exists. By Theorem 10.1.5,
any BLUE must almost surely satisfy consistency. �

10.3 Hypothesis Testing

We consider the problem of testing the model

Y = Xβ + e, e ∼ N
(
0,σ2V

)
(1)

against the reduced model

Y = X0γ + e, e ∼ N
(
0,σ 2V

)
, (2)

where C(X0) ⊂C(X). In particular, we use the approach of looking at reductions in
the sum of squares for error. First we need to define what we mean by the sum of
squares for error.

In the remainder of this section, let A = X(X ′T−X)−X ′T−, where T− and
(X ′T−X)− are chosen (for convenience) as in Corollary B.41 and as usual T =
V + XUX ′ for some nonnegative definite matrix U such that C(X) ⊂ C(T ). AY is
a BLUE of Xβ in model (1). We will define the sum of squares for error (SSE) in
model (1) as

SSE = Y ′(I −A)′T−(I −A)Y. (3)

The idea of using a quadratic form in the residuals to estimate the error is reason-
able, and any quadratic form in the residuals, when normalized, gives an unbiased
estimate of σ 2. The terminology SSE literally comes from the use of the quadratic
form Y ′(I −A)′(I −A)Y . In particular, if V = I, then

Y ′(I −A)′(I −A)Y/σ 2 = Y ′(I −A)′[σ2I]−1(I −A)Y

has a χ2 distribution and is independent of AY . For an arbitrary covariance matrix,
an analogous procedure would be to use Y ′(I−A)′V−(I −A)Y to get an estimate of
σ 2 and develop tests. To simplify computations, we have chosen to define SSE as in
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(3). However, we will show that for Y ∈C(X ,V ), SSE = Y ′(I −A)′V−(I −A)Y for
any choice of V−.

The sum of squares error in model (2) (SSE0) is defined similarly. Let T0 = V +
X0U0X ′

0 for a nonnegative definite matrix U0 for which C(X0) ⊂ C(T0). Let A0 =
X0(X ′

0T−
0 X0)−X ′

0T−
0 , where again for convenience take T−

0 and (X ′
0T−

0 X0)− as in
Corollary B.41.

SSE0 = Y ′(I −A0)′T−
0 (I −A0)Y.

The test will be, for some constant K, based on

K (SSE0 −SSE)
/

SSE,

which will be shown to have an F distribution. We will use Theorem 1.3.6 and
Theorem 1.3.9 to obtain distribution results.

Theorem 10.3.1. If Y ∈C(T ), then

(a) Y ′(I −A)′T−(I −A)Y = Y ′(I −A)′V−(I −A)Y for any V−,
(b) Y ′(I −A)′T−(I −A)Y = 0 if and only if (I −A)Y = 0.

PROOF. The proof is given after Proposition 10.3.6. �

These results also hold when A is replaced by A0. Denote C ≡ (I −A)′T−(I −A)
and C0 ≡ (I −A0)′T−

0 (I −A0). Thus SSE = Y ′CY and SSE0 = Y ′C0Y . The distribu-
tion theory is:

Theorem 10.3.2.

(a) Y ′CY/σ 2 ∼ χ2(tr(CV ),0).
If Xβ ∈C(X0,V ), then

(b) Y ′(C0 −C)Y/σ 2 ∼ χ2(tr(C0V −CV ),β ′X ′C0Xβ )
and

(c) Y ′CY and Y ′(C0 −C)Y are independent.

PROOF. The proof consists of checking the conditions in Theorems 1.3.6 and
1.3.9. There are many conditions to be checked. This is done in Lemmas 10.3.7
through 10.3.9 at the end of the section. �

The last result before stating the test establishes behavior of the distributions
under the two models. Model (2) is true if and only if Xβ ∈C(X0).

Theorem 10.3.3.

(a) If Xβ ∈C(X0), then Pr(Y ∈C(X0,V )) = 1 and β ′X ′C0Xβ = 0.
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(b) If Xβ �∈ C(X0), then either Xβ ∈ C(X0,V ) and β ′X ′C0Xβ > 0 or Xβ �∈
C(X0,V ) and Pr(Y �∈C(X0,V )) = 1

PROOF.

(a) The first part is clear, the second is because C0X0 = 0.
(b) If Xβ �∈C(X0), then either Xβ ∈C(X0,V ) or Xβ �∈C(X0,V ). If Xβ ∈C(X0,V ),

then by Theorem 10.3.1b, β ′X ′C0Xβ = 0 if and only if (I − A0)Xβ = 0 or
Xβ = A0Xβ . Since Xβ �∈ C(X0), β ′X ′C0Xβ > 0. If Xβ �∈ C(X0,V ), suppose
e ∈C(V ) and Y ∈C(X0,V ), then Xβ = Y −e ∈C(X0,V ), a contradiction. There-
fore either e �∈ C(V ) or Y �∈ C(X0,V ). Since Pr(e ∈ C(V )) = 1, we must have
Pr(Y �∈C(X0,V )) = 1. �

The test at the α level is to reject H0 that model (2) is adequate if Y �∈C(X0,V )
or if

(SSE0 −SSE)/tr[(C0 −C)V ]
SSE/tr(CV )

> F(1−α, tr[(C0 −C)V ], tr(CV )).

This is an α level test because, under H0, Pr(Y �∈ C(X0,V )) = 0. The power of the
test is at least as great as that of a noncentral F test and is always greater than α
because if β ′X ′C0Xβ = 0 under the alternative, Theorem 10.3.3 ensures that the test
will reject with probability 1.

In the next section we consider extensions of least squares and conditions under
which such extended least squares estimates are best estimates.

Proofs of Theorems 10.3.1 and 10.3.2.

Before proceeding with the proofs of the theorems, we need some background re-
sults.

Proposition 10.3.4. A′T−A = A′T− = T−A.

PROOF.

A′T− = T−X(X ′T−X)−X ′T− = T−A,

A′T−A = T−X(X ′T−X)−X ′T−X(X ′T−X)−X ′T−;

but, as discussed earlier, A does not depend on the choice of (X ′T−X)− and
(X ′T−X)−X ′T−X(X ′T−X)− is a generalized inverse of X ′T−X , so A′T−A = T−A.

�

Corollary 10.3.5. (I −A)′T−(I −A) = (I −A)′T− = T−(I −A).
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In the remainder of this discussion we will let X = T G and V = T BT . (The latter
comes from Proposition 10.1.4 and symmetry.)

Proposition 10.3.6.

(a) V T−(I −A) = T T−(I −A),
(b) V T−(I −A)V = (I −A)V .

PROOF. From Corollary 10.3.5 and unbiasedness, i.e., AX=X,

T T−(I −A) = T (I −A)′T− = V (I −A)′T− = V T−(I −A).

With V = T BT and, from Proposition 10.2.3, AV symmetric, we have

V T−(I −A)V = T T−(I −A)V = T T−V (I −A)′

= T T−T BT (I −A)′ = T BT (I −A)′ = V (I −A)′ = (I −A)V. �

PROOF OF THEOREM 10.3.1. Recalling Proposition 10.1.4, if Y ∈ C(T ), write
Y = Xb1 +V b2.

(a) Using Proposition 10.2.3,

Y ′(I −A)′T−(I −A)Y = (Xb1 +V b2)′(I −A)′T−(I −A)(Xb1 +V b2)
= b′2V (I −A)′T−(I −A)V b2

= b′2(I −A)V T−(I −A)V b2

= b′2(I −A)(I −A)V b2

= b′2(I −A)V (I −A)′b2

= b′2(I −A)VV−V (I −A)′b2

= b′2V (I −A)′V−(I −A)V b2

= Y ′(I −A)′V−(I −A)Y.

(b) From the proof of (a),

Y ′(I −A)′T−(I −A)Y = b′2(I −A)V (I −A)′b2.

Recall that we can write V = EDE ′ with E ′E = I, D = Diag(di), and di > 0 for
all i.

Y ′(I −A)′T−(I −A)Y = 0 iff b′2(I −A)V (I −A)′b2 = 0
iff E ′(I −A)′b2 = 0
iff (I −A)′b2 ⊥C(E)
iff (I −A)′b2 ⊥C(V )
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iff V (I −A)′b2 = 0
iff (I −A)V b2 = 0
iff (I −A)Y = 0. �

The following lemmas constitute the proof of Theorem 10.3.2.

Lemma 10.3.7.

(a) CVC = C and C0VC0 = C0,
(b) CVC0V = CV ,
(c) VCVCV = VCV , β ′X ′CVCXβ = β ′X ′CXβ = 0, VCVCXβ = VCXβ = 0.

PROOF.

(a) Using Corollary 10.3.5 and Proposition 10.3.6, CVC = CV T−(I − A) =
CT T−(I −A) = (I −A)′T−T T−(I −A) = (I −A)′T−(I −A) = C.

(b) A similar argument gives the second equality: CVC0V = CV T−
0 (I −A0)V =

C(I −A0)V = T−(I −A)(I −A0)V = T−(I −A)V = CV .
(c) The equalities in (c) follow from (a) and the fact that CX = T−(I −A)X = 0.

�

Note that Lemma 10.3.7c leads directly to Theorem 10.3.2a. We now establish
the conditions necessary for Theorem 10.3.2b.

Lemma 10.3.8.

(a) V (C0 −C)V (C0 −C)V = V (C0 −C)V ,
(b) β ′X ′(C0 −C)V (C0 −C)Xβ = β ′X ′(C0 −C)Xβ = β ′X ′C0Xβ ,
(c) if Xβ ∈C(X0,V ), then V (C0 −C)V (C0 −C)Xβ = V (C0 −C)Xβ .

PROOF. From parts (a) and (b) of Lemma 10.3.7,

V (C0 −C)V (C0 −C)V = VC0VC0V −VC0VCV −VCVC0V +VCVCV

= VC0V −VCV −VCV +VCV

= VC0V −VCV

= V (C0 −C)V.

To show (b), we need only show that

X ′(C0 −C)V (C0 −C)X = X ′(C0 −C)X .

Since CX = 0, this is equivalent to showing X ′C0VC0X = X ′C0X . The result is im-
mediate from part (a) of Lemma 10.3.7.

To show (c), we need to show that
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V (C0 −C)V (C0 −C)Xβ = V (C0 −C)Xβ .

Since CX = 0, it is enough to show that VC0VC0Xβ −VCVC0Xβ = VC0Xβ . With
VC0VC0Xβ = VC0Xβ , we only need VCVC0Xβ = 0. Since Xβ ∈ C(T0), by as-
sumption, (I −A0)Xβ = T0γ for some γ ,

VCVC0Xβ = VCV T−
0 (I −A0)Xβ = VCT0T−

0 (I −A0)Xβ
= VCT0T−

0 T0γ = VCT0γ = VC(I −A0)Xβ
= V T−(I −A)(I −A0)Xβ = V T−(I −A)Xβ = 0. �

To establish Theorem 10.3.2c, use the following lemma:

Lemma 10.3.9.

(a) VCV (C0 −C)V = 0,
(b) VCV (C0 −C)Xβ = 0 if Xβ ∈C(X0,V ),
(c) V (C0 −C)VCXβ = 0,
(d) β ′X ′(C0 −C)VCXβ = 0.

PROOF. For part (a), VCV (C0−C)V =VCVC0V −VCVCV =VCV −VCV . Parts
(c) and (d) follow because CX = 0; also, (b) becomes the condition VCVC0Xβ = 0,
as was shown in the proof of Lemma 10.3.8. �

10.4 Least Squares Consistent Estimation

Definition 10.4.1. An estimate β̃ of β is said to be consistent if X β̃ is a consistent
estimate of Xβ . β̂ is said to be a least squares consistent estimate of β if for any
other consistent estimate β̃ and any Y ∈C(X ,V ),

(Y −X β̂ )′(Y −X β̂ ) ≤ (Y −X β̃)′(Y −X β̃ ).

How does this differ from the usual definition of least squares? In the case where
C(X) ⊂C(V ), it hardly differs at all. Any estimate β̃ will have X β̃ ∈C(X), and, as
we observed earlier, when C(X)⊂C(V ), any estimate of Xβ satisfying condition (i)
of consistency (Definition 10.2.1) also satisfies condition (ii). The main difference
between consistent least squares and least squares is that we are restricting ourselves
to consistent estimates of Xβ . As we saw earlier, estimates that are not consistent
are just not reasonable, so we are not losing anything. (Recall Example 10.2.2, in
which the least squares estimate was not consistent.) The other difference between
consistent least squares estimation and regular least squares is that the current defi-
nition restricts Y to C(X ,V ). In the case where C(X) ⊂C(V ), this restriction would
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not be necessary because a least squares estimate will have to be a least squares
consistent estimate. In the general case, we need to actually use condition (ii) of
consistency. Condition (ii) was based on the fact that e ∈ C(V ) a.s. Since e cannot
be observed, we used the related fact that Y ∈C(X ,V ) a.s., and made condition (ii)
apply only when Y ∈C(X ,V ).

Theorem 10.4.2a. If AY is a CLUE and (I −A)r ⊥ C(X)∩ C(V ) for any r ∈
C(X ,V ), then any β̂ satisfying AY = X β̂ is a least squares consistent estimate.

PROOF. Let β̃ be any consistent estimate,

(Y −X β̃)′(Y −X β̃ ) = (Y −AY +AY −X β̃ )′(Y −AY +AY −X β̃ )
= Y ′(I −A)′(I −A)Y +(AY −X β̃ )′(AY −X β̃ )

+2Y ′(I −A)′(AY −X β̃ ).

It is enough to show that

Y ′(I −A)′(AY −X β̃ ) = 0 for Y ∈C(X ,V ).

Note that AY −X β̃ ∈C(X). Also observe that since AY and X β̃ are consistent, AY −
X β̃ = (Y −X β̃ )−(I−A)Y ∈C(V ) for Y ∈C(X ,V ). Thus AY −X β̃ ∈C(X)∩C(V ).
For any Y ∈C(X ,V ), we have

(I −A)Y ⊥C(X)∩ C(V );

so Y ′(I −A)′(AY −X β̃ ) = 0. �

We now give a formula for a least squares consistent estimate. Choose V0 with or-
thonormal columns such that C(V0) = C(X)∩ C(V ). Also choose V1 with orthonor-
mal columns such that C(V1) ⊥ C(V0) and C(V0,V1) = C(V ). It is easily seen that
MY −MV1γ̂ is a CLUE, where γ̂ = [V ′

1(I −M)V1]−1V ′
1(I −M)Y . Observe that

C(X ,V ) = C(X ,V0,V1) = C(X ,(I −M)V1).

To put the computations into a somewhat familiar form, consider the analysis of
covariance model

Y = [X ,(I −M)V1]
[

β
γ

]
+ e, E(e) = 0. (1)

We are interested in the least squares estimate of E(Y ), so the error vector e is of no
interest except that E(e) = 0. The least squares estimate of E(Y ) is MY +(I−M)V1γ̂ ,
where γ̂ = [V ′

1(I −M)V1]−1V ′
1(I −M)Y . It turns out that MY −MV1γ̂ is a CLUE for

Xβ in model (10.1.1).
First, MY −MV1γ̂ is unbiased, because E(MY ) = Xβ and E(γ̂) = 0. E(γ̂) is found

by replacing Y with Xβ in the formula for γ̂ , but the product of (I −M)Xβ = 0.
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Second, it is clear that for any Y

MY −MV1γ̂ ∈C(X).

Finally, it is enough to show that if Y ∈C(V ), then MY −MV1γ̂ ∈C(V ). If Y ∈C(V ),
then Y ∈C(X ,(I −M)V1) = C(X ,V ). Therefore, the least squares estimate of E(Y )
in model (1) is Y itself. We have two characterizations of the least squares estimate,
and equating them gives

MY +(I −M)V1γ̂ = Y

or
MY −MV1γ̂ = Y −V1γ̂ .

Now, it is clear that V1γ̂ ∈C(V ); so if Y ∈C(V ), then MY −MV1γ̂ ∈C(V ).

Proposition 10.4.3. If β̂ is an estimate with X β̂ = MY −MV1γ̂ , then β̂ is a least
squares consistent estimate.

PROOF. By Theorem 10.4.2a, it is enough to show that

(Y −MY +MV1γ̂) ⊥C(V0)

for any Y ∈C(X ,V ). Let w ∈C(V0); then, since Mw = w,

w′(Y −MY +MV1γ̂) = w′Y −w′MY +w′MV1γ̂
= w′Y −w′Y +w′V1γ̂
= w′V1γ̂
= 0. �

Theorem 10.4.2b. If β̂ is a least squares consistent estimate, then (Y −X β̂ ) ⊥
C(X)∩ C(V ) for any Y ∈ C(X ,V ); and if β̃ is any other least squares consistent
estimate, X β̂ = X β̃ for any Y ∈C(X ,V ).

PROOF. Let A be the matrix determined by AY = MY −MV1γ̂ for all Y . We show
that AY = X β̂ for any Y ∈C(X ,V ) and are done.

We know, by Definition 10.4.1, that

(Y −X β̂ )′(Y −X β̂) = (Y −AY )′(Y −AY ) for Y ∈C(X ,V ).

As in the proof of Theorem 10.4.2a, we also know that, for Y ∈C(X ,V ),

(Y −X β̂ )′(Y −X β̂ ) = (Y −AY )′(Y −AY )+(AY −X β̂ )′(AY −X β̂ ).

Therefore,
(AY −X β̂ )′(AY −X β̂ ) = 0;
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hence
AY −X β̂ = 0

or
AY = X β̂ for Y ∈C(X ,V ). �

Together, Theorems 10.4.2a and 10.4.2b give an “if and only if” condition for β̂
to be a least squares CLUE.

In the future, any CLUE of Xβ , say AY , that satisfies (I −A)r ⊥ C(X)∩ C(V )
for any r ∈ C(X ,V ) will be referred to as a least squares CLUE of Xβ . The most
important result on least squares CLUEs is:

Theorem 10.4.4. If in model (10.1.1), C(VV0) ⊂ C(V0), then a least squares
CLUE of Xβ is a best CLUE of Xβ (and hence a BLUE of Xβ ).

PROOF. Let AY be a least squares CLUE and BY any other CLUE. We need to
show that, for any vector ρ ,

Var(ρ ′AY ) ≤ Var(ρ ′BY ).

We can decompose Var(ρ ′BY ),

Var(ρ ′BY ) = Var(ρ ′(B−A)Y +ρ ′AY )
= Var(ρ ′(B−A)Y )+Var(ρ ′AY )+2Cov(ρ ′(B−A)Y,ρ ′AY ).

Since variances are nonnegative, it suffices to show that

0 = Cov(ρ ′(B−A)Y,ρ ′AY ) = σ2ρ ′(B−A)VA′ρ.

First, we will establish that it is enough to show that the covariance is zero when
ρ ∈C(X)∩C(V ). Let M0 be the perpendicular projection matrix onto C(X)∩C(V ).
Then ρ = M0ρ +(I −M0)ρ and

ρ ′(B−A)VA′ρ = ρ ′(B−A)VA′M0ρ +ρ ′(B−A)VA′(I −M0)ρ
= ρ ′M0(B−A)VA′M0ρ +ρ ′(I −M0)(B−A)VA′M0ρ

+ρ ′M0(B−A)VA′(I −M0)ρ
+ρ ′(I −M0)(B−A)VA′(I −M0)ρ.

It turns out that all of these terms except the first is zero. Since AY and BY are
CLUEs, unbiasedness and observation (d) in Section 2 give C(AV ) ⊂C(X)∩ C(V )
and C(BV ) ⊂C(X)∩ C(V ). By orthogonality,

VA′(I −M0)ρ = 0 and ρ ′(I −M0)(B−A)V = 0;

so
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ρ ′(B−A)VA′ρ = ρ ′M0(B−A)VA′M0ρ.

Henceforth, assume ρ ∈C(X)∩ C(V ).
To obtain the final result, observe that since AY is a least squares CLUE, any

column of (I −A)V is orthogonal to ρ; so

V (I −A)′ρ = 0 and Vρ = VA′ρ.

Since, by assumption, C(VV0) ⊂C(V0), we also have V ρ ∈ C(X)∩ C(V ). The co-
variance term is ρ ′(B−A)VA′ρ = ρ ′(B−A)V ρ. Since AY and BY are unbiased and
V ρ ∈C(X), (B−A)Vρ = 0; hence

ρ ′(B−A)VA′ρ = 0. �

As mentioned in the statement of the theorem, a best CLUE is a BLUE. That
occurs because all BLUEs have the same variance and there is a BLUE that is a
CLUE.

As would be expected, when C(X) ⊂ C(V ), a least squares CLUE will equal
MY for all Y ∈ C(V ). When C(X) ⊂ C(V ), then C(X) = C(V0); so MV1 = 0 and
MY −MV1γ̂ = MY .

The following theorem characterizes when ordinary least squares estimates are
BLUEs.

Theorem 10.4.5. The following conditions are equivalent:

(a) C(V X) ⊂C(X),
(b) C(VV0) ⊂C(V0) and X ′V1 = 0,
(c) MY is a BLUE for Xβ .

PROOF. Let X1 be a matrix with orthonormal columns such that C(X) =C(V0,X1)
and V ′

0X1 = 0. Also let

V = [V0,V1]
[

B11 B12
B21 B22

][
V ′

0
V ′

1

]
;

so V = V0B11V ′
0 +V1B22V ′

1 +V0B12V ′
1 +V1B21V ′

0. By symmetry, B12 = B′
21. Recall

that V0 and V1 also have orthonormal columns.
a ⇒ b

Clearly C(V X) ⊂ C(V ); so if C(V X) ⊂ C(X), we have C(V X) ⊂ C(V0). It is
easily seen that

C(V X) ⊂C(V0) if and only if C(VV0) ⊂C(V0) and C(V X1) ⊂C(V0).

We show that C(V X1) ⊂ C(V0) implies that X ′
1V = 0; hence X ′

1V1 = 0 and
X ′V1 = 0. First V X1 = V1B22V ′

1X1 +V0B12V ′
1X1; we show that both terms are zero.
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Consider VV0 =V0B11 +V1B21; since C(VV0)⊂C(V0), we must have V1B21 = 0. By
symmetry, B12V ′

1 = 0 and V0B12V ′
1X1 = 0. To see that V X1 =V1B22V ′

1X1 = 0, observe
that since C(V X1) ⊂ C(V0), it must be true that C(V1B22V ′

1X1) ⊂ C(V0). However,
C(V1B22V ′

1X1) ⊂C(V1) but C(V0) and C(V1) are orthogonal, so V1B22V ′
1X1 = 0.

b ⇒ a
If X ′V1 = 0, then X ′

1V1 = 0 and X ′
1V = 0. Write X = V0B0 + X1B1 so V X =

VV0B0 +V X1B1 = VV0B0. Thus,

C(V X) = C(VV0B0) ⊂C(VV0) ⊂C(V0) ⊂C(X).

b ⇒ c
If C(VV0) ⊂ C(V0), then MY −MV1γ̂ is a BLUE. Since X ′V1 = 0, MV1 = 0 and

MY is a BLUE.
c ⇒ b

If AY and BY are BLUEs, then AY = BY for Y ∈ C(X ,V ). As in Proposi-
tion 10.2.3, there exists a BLUE, say AY , such that AV = VA′. Since MY is a BLUE
and C(V ) ⊂C(X ,V ), AV = MV and MV = V M. Finally, VV0 = V MV0 = MVV0, so
C(VV0) = C(MVV0) ⊂C(X). Since C(VV0) ⊂C(V ), we have C(VV0) ⊂C(V0).

From Theorem 10.4.4 we know that a least squares CLUE is a BLUE; hence
MY = MY −MV1γ̂ for Y ∈C(X ,V ) = C(X ,V1). Since

γ̂ =
[
V ′

1(I −M)V1
]−1 V ′

1(I −M)Y,

we must have 0 = MV1 [V ′
1(I −M)V1]

−1 V ′
1(I −M)V1 = MV1. Thus 0 = X ′V1. �

In the proof of a ⇒ b, it was noted that V1B21 = 0. That means we can write V =
V0B11V ′

0 +V1B22V ′
1. For ordinary least squares estimates to be BLUEs, C(V ) must

admit an orthogonal decomposition into a subspace contained in C(X) and a sub-
space orthogonal to C(X). Moreover, the error term e in model (10.1.1) must have
e = e0 + e1, where Cov(e0,e1) = 0, Cov(e0) = V0B11V ′

0, and Cov(e1) = V1B22V ′
1.

Thus, with probability 1, the error can be written as the sum of two orthogonal
vectors, both in C(V ), and one in C(X). The two vectors must also be uncorrelated.

Exercise 10.6 Show that V ′
1(I −M)V1 is invertible.

Answer: The columns of V1 form a basis, so 0 =V1b iff b = 0. Also (I−M)V1b =
0 iff V1b ∈C(X), but V1b ∈C(X) iff b = 0 by choice of V1. Thus, (I−M)V1b = 0 iff
b = 0; hence (I −M)V1 has full column rank and V ′

1(I −M)V1 is invertible.

Exercise 10.7 Show that if MY −MV1γ̂ is a BLUE of Xβ , then C(VV0)⊂C(V0).
Hint: Multiply on the right by V0 after showing that[
M−MV1

[
V ′

1(I −M)V1
]−1 V ′

1(I −M)
]

V

= V
[
M− (I −M)V1

[
V ′

1(I −M)V1
]−1 V ′

1M
]
.
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We include a result that allows one to find the matrix V1, and thus find least
squares CLUEs.

Proposition 10.4.6. r ⊥C(X)∩ C(V ) if and only if r ∈C(I −M, I −MV ).

PROOF. If r ∈C(I −M, I −MV ), then write r = (I −M)r1 +(I −MV )r2.
Let w ∈ C(X)∩ C(V ) so that w = MV w = Mw. We need to show that w′r = 0.

Observe that

w′r = w′(I −M)r1 +w′(I −MV )r2

= w′M(I −M)r1 +w′MV (I −MV )r2

= 0.

The vector space here is, say, Rn. Let r[C(X)∩C(V )] = m. From the above result,
C(I −M, I −MV ) is orthogonal to C(X)∩ C(V ). It is enough to show that the rank
of C(I −M, I−MV ) is n−m. If this is not the case, there exists a vector w �= 0 such
that w ⊥C(I −M, I −MV ) and w ⊥C(X)∩ C(V ).

Since w⊥C(I−M, I−MV ), we have (I−M)w = 0 or w = Mw∈C(X). Similarly,
w = MV w ∈C(V ); so w ∈C(X)∩ C(V ), a contradiction. �

To find V1, one could use Gram–Schmidt to first get an orthonormal basis for
C(I−M, I−MV ), then extend this to Rn. The extension is a basis for C(V0). Finally,
extend the basis for C(V0) to an orthonormal basis for C(V ). The extension is a basis
for C(V1). A basis for C(X1) can be found by extending the basis for C(V0) to a basis
for C(X).

Exercise 10.8 Give the general form for a BLUE of Xβ in model (10.1.1).
Hint: Add something to a particular BLUE.

Exercise 10.9 From inspecting Figure 10.2, give the least squares CLUE for
Example 10.2.2. Do not do any matrix manipulations.

Remark. Suppose that we are analyzing the model Y = Xβ +e, E(e) = 0, Cov(e) =
Σ(θ), where Σ(θ ) is some nonnegative definite matrix depending on a vector of un-
known parameters θ . The special case where Σ(θ) = σ 2V is what we have been
considering so far. It is clear that if θ is known, our current theory gives BLUEs. If
it happens to be the case that for any value of θ the BLUEs are identical, then the
BLUEs are known even though θ may not be. This is precisely what we have been
doing with Σ(θ ) = σ 2V . We have found BLUEs for any value of σ 2, and they do not
depend on σ2. Another important example of this occurs when C(Σ(θ )X) ⊂C(X)
for any θ . In this case, least squares estimates are BLUEs for any θ , and least
squares estimates do not depend on θ , so it does not matter that θ is unknown. The
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split plot design model is one in which the covariance matrix depends on two pa-
rameters, but for any value of those parameters, least squares estimates are BLUEs.
Such models are examined in the next chapter.

Exercise 10.10 Show that ordinary least squares estimates are best linear unbi-
ased estimates in the model Y = Xβ + e, E(e) = 0, Cov(e) = V if the columns of X
are eigenvectors of V .

Exercise 10.11 Use Definition B.31 and Proposition 10.4.6 to show that
MC(X)∩C(V ) = M−MW where C(W ) = C[M(I −MV )].

10.5 Perfect Estimation and More

One of the interesting things about the linear model

Y = Xβ + e, E(e) = 0, Cov(e) = σ 2V, (1)

is that when C(X) �⊂C(V ) you can learn things about the parameters with probability
1. We identify these estimable functions of the parameters and consider the process
of estimating those parameters that are not perfectly known.

Earlier, to treat C(X) �⊂ C(V ), we obtained estimates and tests by replacing V
in model (1) with T where C(X) ⊂ C(T ). Although we showed that the procedure
works, it is probably not the first thing one would think to do. In this section, after
isolating the estimable functions of Xβ that can be known perfectly, we replace
model (1) with a new model Ỹ =V0γ +e, E(e) = 0, Cov(e) = σ2V in which C(V0)⊂
C(V ) and Ỹ is just Y minus a perfectly known component of Xβ . I find it far more
intuitive to make adjustments to the model matrix X , something we do regularly
in defining reduced and restricted models, than to adjust the covariance matrix V .
Additional details are given in Christensen and Lin (2010).

EXAMPLE 10.5.1. Consider a one-sample model yi = μ +εi, i = 1,2,3, with un-
correlated observations but in which the second and third observations have variance
0. If this model is correct, you obviously should have μ = y2 = y3 with probability
1. The matrices for model (1) are

Y =

⎡⎣y1
y2
y3

⎤⎦ , X =

⎡⎣1
1
1

⎤⎦ , V =

⎡⎣1 0 0
0 0 0
0 0 0

⎤⎦ .

All of our examples in this section use this same Y vector.

The first thing to do with models having C(X) �⊂C(V ) is to see whether they are
even plausible for the data. In particular, Lemma 1.3.5 implies that Pr[(Y −Xβ ) ∈
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C(V )] = 1 so that Y ∈C(X ,V ) a.s. This should be used as a model-checking device.
If Y �∈C(X ,V ), you clearly have the wrong model.

EXAMPLE 10.5.1 CONTINUED. In this example, if y2 �= y3 we obviously have
the wrong model. It is easily seen that

C(X ,V ) = C

⎛⎝⎡⎣0
1
1

⎤⎦ ,

⎡⎣1
0
0

⎤⎦⎞⎠
and if y2 �= y3, Y �∈C(X ,V ).

To identify the estimable parameters that can be known perfectly, let Q be a full
rank matrix with

C(Q) = C(V )⊥.

Note that if C(X) �⊂C(V ), then Q′X �= 0. Actually, the contrapositive is more obvi-
ous, if Q′X = 0 then

C(X) ⊂C(Q)⊥ =
[
C(V )⊥

]⊥
= C(V ).

The fact that Q′X �= 0 means that the estimable function Q′Xβ is nontrivial. Note
also that C(X) �⊂C(V ) implies that V must be singular. If V were nonsingular, then
C(V ) = Rn and C(X) has to be contained in it.

We can now identify the estimable functions that are known perfectly. Because
Pr[(Y −Xβ ) ∈ C(V )] = 1, clearly Pr[Q′(Y −Xβ) = 0] = 1 and Q′Y = Q′Xβ a.s.
Therefore, whenever C(X) �⊂ C(V ), there are nontrivial estimable functions of β
that we can learn without error. Moreover, Cov(Q′Y ) = σ2Q′V Q = 0 and only linear
functions of Q′Y will have 0 covariance matrices, so only linear functions of Q′Xβ
will be estimated perfectly.

Exercise 10.13 Show that Cov(B′Y ) = 0 iff B′ = B′∗Q′ for some matrix B∗.
Hint: First, decompose B into the sum of two matrices B0 and B1 with C(B0) ⊂

C(V ) and C(B1)⊥C(V ). Then use a singular value decomposition of V to show that
B′

0V B0 = 0 iff B0 = 0.

If Q′X has full column rank, we can actually learn all of Xβ without error. In that
case, with probability 1 we can write

Xβ = X
(
X ′QQ′X

)−1 [X ′QQ′X
]

β = X(X ′QQ′X)−1X ′QQ′Y.

For convenience, define A so that AY ≡ X(X ′QQ′X)−1X ′QQ′Y , in which case Xβ =
AY a.s. In particular, it is easy to see that E[AY ] = Xβ and Cov[AY ] = 0. We now
illustrate these matrix formulations in some simple examples to show that the matrix
results give obviously correct answers.
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EXAMPLE 10.5.1 CONTINUED. Using the earlier forms for X and V ,

Q =

⎡⎣0 0
1 0
0 1

⎤⎦ .

It follows that

Q′X =
[

1
1

]
and Q′Y = Q′Xβ reduces to [

y2
y3

]
= μJ2 a.s.

Obviously, for this to be true, y2 = y3 a.s. Moreover, since Q′X is full rank, upon
observing that X ′QQ′X = 2 we can compute

μJ3 = Xβ = AY = [(y2 + y3)/2]J3 a.s.

EXAMPLE 10.5.2. This is a two-sample problem, with the first two observations
from sample one and the third from sample two. Again, observations two and three
have 0 variance. Clearly, with probability 1, μ1 = y2 and μ2 = y3. The key matrices
are

X =

⎡⎣1 0
1 0
0 1

⎤⎦ , V =

⎡⎣1 0 0
0 0 0
0 0 0

⎤⎦ , Q =

⎡⎣0 0
1 0
0 1

⎤⎦ .

Since β = [μ1,μ2]′ in the two-sample problem and

Q′X =
[

1 0
0 1

]
,

we have [
μ1
μ2

]
= Q′Xβ = Q′Y =

[
y2
y3

]
a.s.

In particular, with probability 1,⎡⎣μ1
μ1
μ2

⎤⎦= Xβ = AY =

⎡⎣y2
y2
y3

⎤⎦ .

EXAMPLE 10.5.3. This is a one-sample problem similar to Example 10.5.1 ex-
cept that now the first two observations have variance 1 but the third has variance 0.
The key matrices are
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X =

⎡⎣1
1
1

⎤⎦ , V =

⎡⎣1 0 0
0 1 0
0 0 0

⎤⎦ , Q =

⎡⎣0
0
1

⎤⎦ .

With Q′X = 1 we get Q′Xβ = μ equaling Q′Y = y3 with probability 1. Moreover,
since X ′QQ′X = 1 we can easily compute

μJ3 = Xβ = AY = y3J3.

The next two examples do not have Q′X with full rank, so they actually have
something to estimate.

EXAMPLE 10.5.4. Consider a two-sample problem similar to Example 10.5.2
except that now the first two observations have variance 1 but the third has variance
0. The key matrices are

X =

⎡⎣1 0
1 0
0 1

⎤⎦ , V =

⎡⎣1 0 0
0 1 0
0 0 0

⎤⎦ , Q =

⎡⎣0
0
1

⎤⎦ .

With β = [μ1,μ2]′ and
Q′X = [0 1 ] ,

we get

μ2 = [0 1 ]
[

μ1
μ2

]
= Q′Xβ = Q′Y = y3 a.s.

Clearly, y3 = μ2 a.s. but μ1 would be estimated with the average (y1 + y2)/2. More
on this later.

EXAMPLE 10.5.5 Finally, in the two-sample problem we move the second ob-
servation from the first group to the second group. This time

X =

⎡⎣1 0
0 1
0 1

⎤⎦ , V =

⎡⎣1 0 0
0 1 0
0 0 0

⎤⎦ , Q =

⎡⎣0
0
1

⎤⎦ ,

with
Q′X = [0 1 ] .

Again, with probability 1,

μ2 = [0 1 ]
[

μ1
μ2

]
= Q′Xβ = Q′Y = y3,

so y3 = μ2 a.s. But this time, only y1 would be used to estimate μ1, and y2 is of no
value for estimating the means. However, y2 could be used to estimate an unknown
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variance via (y2−μ2)2 = (y2−y3)2. Similar results on estimating the variance apply
in all the examples except Example 10.5.4.

To get perfect estimation of anything, we need C(X) �⊂ C(V ). To get perfect
estimation of everything we need C(X)∩C(V ) = {0}. In other words, to get perfect
estimation of Xβ we need Q′X with full column rank and to get Q′X with full
column rank, we need C(X)∩ C(V ) = {0}.

Proposition 10.5.6. For X of full column rank, Q′X is of full column rank if and
only if C(X)∩ C(V ) = {0}.

PROOF. This is a special case of Lemma 10.5.7. �

Although C(X)∩C(V ) = {0} is actually a necessary and sufficient condition for
perfect estimation of Xβ , with the methods we have illustrated it is not obviously
sufficient. For our current method, we need Q′X to have full column rank, which
obviously will not happen if X is not full rank. Fortunately, we can always sim-
ply choose X to have full column rank. In addition, we close this section with the
mathematics needed to deal with arbitrary X .

Now consider models in which some aspect of Xβ is known but some aspect is
not. In particular, we know that Q′Xβ is known, but how do we estimate the rest of
Xβ? As discussed above, we must now consider the case where C(X)∩C(V ) �= {0}.
Write β = β0 +β1 with β0 ∈C(X ′Q) and β1 ⊥C(X ′Q). We show that Xβ0 is known,
so that we need only estimate Xβ1 to learn all that can be learned about Xβ . These
methods make no assumption about r(X).

In fact, β0 is known, not just Xβ0. Let PX ′Q be the ppo onto C(X ′Q). By the
definition of β0 as part of an (unique) orthogonal decomposition, with probability 1,

β0 = PX ′Qβ = X ′Q[Q′XX ′Q]−Q′Xβ = X ′Q[Q′XX ′Q]−Q′Y.

Since the perpendicular projection operator does not depend on the choice of gen-
eralized inverse, neither does β0.

Now we show how to estimate Xβ1. Let V0 be such that C(V0) = C(X)∩ C(V ).
Proposition 10.4.6 can be used to find V0. Note that β1 ⊥C(X ′Q) iff Q′Xβ1 = 0 iff
Xβ1 ⊥C(Q) iff Xβ1 ∈C(V ) iff Xβ1 ∈C(V0) iff Xβ1 = V0γ for some γ . Since Xβ0
is fixed and known, it follows that E(Y −Xβ0) = Xβ1 ∈C(V0) and Cov(Y −Xβ0) =
σ 2V , so we can estimate Xβ1 by fitting

Y −Xβ0 = V0γ + e, E(e) = 0, Cov(e) = σ 2V, (2)

and taking
X β̂1 ≡V0γ̂ = V0(V ′

0V−V0)−V0V−(Y −Xβ0),

cf. Section 2. Under normality, tests are also relatively easy to construct.

EXAMPLE 10.5.4 CONTINUED. Using the earlier versions of X , V , Q, and Q′X ,
observe that
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C(V0) = C

⎛⎝⎡⎣1
1
0

⎤⎦⎞⎠ , C(X ′Q) = C
([

0
1

])
.

It follows that with β = [μ1,μ2]′,

β0 =
[

0
μ2

]
, β1 =

[
μ1
0

]
.

Thus, since we already know that μ2 = y3 a.s., Xβ0 = [0,0,μ2]′ = [0,0,y3]′ and
Xβ1 = [μ1,μ1,0]′. Finally, model (2) reduces, with probability 1, to

Y −Xβ0 =

⎡⎣ y1
y2

y3 −μ2

⎤⎦=

⎡⎣y1
y2
0

⎤⎦=

⎡⎣1
1
0

⎤⎦γ + e.

Recalling that Xβ1 ≡V0γ , it is easily seen in this example that the BLUE of μ1 ≡ γ
is (y1 + y2)/2.

This theory applied to Example 10.5.1 is quite degenerate, but it still works.

EXAMPLE 10.5.1 CONTINUED. Using the earlier versions of X , V , Q, and Q′X ,
observe that

C(V0) = C

⎛⎝⎡⎣0
0
0

⎤⎦⎞⎠ , C(X ′Q) = C ([1 1 ]) .

It follows that
β0 = μ , β1 = 0.

Since we already know that μ = y2 = y3 a.s.,

Xβ0 =

⎡⎣μ
μ
μ

⎤⎦=

⎡⎣y2
y2
y2

⎤⎦=

⎡⎣y3
y3
y3

⎤⎦=

⎡⎣y2
y2
y3

⎤⎦ a.s.

and Xβ1 = [0,0,0]′. Finally, model (2) reduces, with probability 1, to

Y −Xβ0 =

⎡⎣y1 −μ
y2 −μ
y3 −μ

⎤⎦=

⎡⎣y1 − y2
0
0

⎤⎦=

⎡⎣0
0
0

⎤⎦γ + e,

which provides us with one degree of freedom for estimating σ 2 using either of
(y1 − yi)2, i = 2,3.

The results in the early part of this section on perfect estimation of Xβ required X
to be of full rank. That is never a very satisfying state of affairs. Rather than assum-
ing X to be of full rank and considering whether Q′X is also of full rank, the more
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general condition for estimating Xβ perfectly is that r(X) = r(Q′X). Moreover, with
A ≡ X(X ′QQ′X)−X ′QQ′, we always have perfect estimation of AXβ because AXβ
is a linear function of Q′Xβ = Q′Y a.s. but for perfect estimation of Xβ we need

Xβ = AXβ = AY a.s.

for any β which requires A to be a projection operator onto C(X). This added gen-
erality requires some added work.

Lemma 10.5.7

(a) r(X) = r(Q′X) iff for any b, Q′Xb = 0 implies Xb = 0.
(b) r(X) = r(Q′X) iff C(X)∩ C(V ) = {0}.

PROOF.
Proof of (a): Recall that r(Q′X) = r(X) iff r[N (Q′X)] = r[N (X)]. Since the

null spaces have N (X)⊂N (Q′X), it is enough to show that N (Q′X) = N (X) is
equivalent to the condition that for any b, Q′Xb = 0 implies Xb = 0 and, in particular,
it is enough to show that N (Q′X)⊂N (X) is equivalent to the condition. But by the
very definition of the null spaces, N (Q′X) ⊂ N (X) is equivalent to the condition
that for any b we have Q′Xb = 0 implies that Xb = 0.

Proof of (b): Note that for any b,

Q′Xb = 0 iff Xb ⊥C(Q) iff Xb ∈C(Q)⊥ =
[
C(V )⊥

]⊥
= C(V ),

so
Q′Xb = 0 iff Xb ∈C(V ) iff Xb ∈C(X)∩ C(V ).

If follows immediately that if C(X)∩ C(V ) = {0}, then Q′Xb = 0 implies Xb = 0
and r(X) = r(Q′X). It also follows immediately that since Q′Xb = 0 is equivalent to
having Xb ∈C(X)∩ C(V ), the condition that Q′Xb = 0 implies Xb = 0 means that
the only vector in C(X)∩ C(V ) is the 0 vector. �

Proposition 10.5.8 If r(X) = r(Q′X), the matrix A ≡ X(X ′QQ′X)−X ′QQ′ is a
projection operator onto C(X).

PROOF. By its definition we clearly have C(A) ⊂C(X), so it is enough to show that
AX = X .

Let MQ′X be the ppo onto C(Q′X). Note that for any b, Xb−AXb ∈C(X). More-
over, from the definitions of A and MQ′X ,

Q′Xb−Q′AXb = Q′Xb−MQ′X Q′Xb = 0.

Writing

0 = Q′Xb−MQ′X Q′Xb = Q′X
[
I − (X ′QQ′X)−X ′QQ′X

]
b,
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by the condition r(X) = r(Q′X) and Lemma 10.5.8a, we have

0 = X
[
I − (X ′QQ′X)−X ′QQ′X

]
b = Xb−AXb,

hence X = AX . �

Exercise 10.13 Show that the results in this section do not depend on the partic-
ular choice of Q.

Exercise 10.14 Let C(V0) = C(X)∩ C(V ), C(X) = C(V0,X1), C(V ) = C(V0,V1)
with the columns of V0, V1, and X1 being orthonormal. Show that the columns of
[V0,V1,X1] are linearly dependent.

Hint: Write V0b0 +V1b1 +X1b2 = 0 and show that bi = 0, i = 0,1,2. In particular,
write

0.5V0b0 +V1b1 = −(0.5V0b0 +X1b2),

0.5V0b0 +V1b1 ∈C(V ) and −(0.5V0b0 +X1b2) ∈C(X) so the vector is in C(V0) =
C(X)∩ C(V ).



Chapter 11

Split Plot Models

In an experiment with at least two factors, it is sometimes convenient to apply some
of the factors to large experimental units (called whole plots) and then to split the
large units into smaller parts to which the remaining factors are applied. The subdi-
visions of the whole plots are called subplots or split plots.

Split plot designs are often used when either (1) the factors applied to whole
plots are not of direct interest or (2) some factors require larger experimental units
than the other factors. The first case is illustrated with an experiment to evaluate
crop yields when using varying levels of a standard herbicide and a new pesticide.
If the standard herbicide is not of direct interest, but rather primary interest is in
the effects of the pesticide and any possible interaction between the herbicide and
the pesticide, then it is appropriate to apply herbicides as whole plot treatments.
(It will be seen later that interaction contrasts and comparisons between pesticides
are subject to less error than comparisons among herbicides.) The second case that
split plot designs are often used for can also be illustrated with this experiment. If
the standard herbicide is applied using a tractor, but the new pesticide is applied by
crop dusting, then the experimental procedure makes it necessary to use pesticides
as whole plot treatments. (Clearly, an airplane requires a larger plot of ground for
spraying than does a tractor.)

It is of interest to note that a split plot design can be thought of as an (unbal-
anced) incomplete block design. In this approach, each whole plot is thought of as
a block. Each block contains the treatments that are all combinations of the subplot
factor levels with the one combination of whole plot factor levels that was applied.
As with other incomplete block designs, a split plot design is necessary when there
are not enough blocks available that can accommodate all of the treatment combina-
tions. In split plot designs, this means that there are not enough subplots per whole
plot so that all treatment combinations could be applied at the subplot level. If, in
addition, there are not enough whole plots so that each treatment combination could
be applied to a whole plot, then a split plot design is an attractive option.

Mathematically, the key characteristic of a split plot model is the covariance
structure. Typically, observations taken on the subplots of any particular whole plot
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268 11 Split Plot Models

are assumed to have a constant nonzero correlation. Observations taken on different
whole plots are assumed to be uncorrelated.

The main purpose of this chapter is to derive the analysis for split plot models. In
Section 1, we consider a special cluster sampling model. The cluster sampling model
has the same covariance structure as a split plot model. In Section 2, we consider
ways of generalizing the cluster sampling model that allow for an easy analysis
of the data. The discussion in Section 2 is really an examination of generalized
split plot models. Section 3 derives the analysis for the traditional split plot model
by using the results of Section 2. Section 4 discusses the issues of identifying an
appropriate error term and of subsampling.

Sections 1 and 2 are closely related to Christensen (1984) and (1987b), respec-
tively. In fact, Christensen (1987b) is probably easier to read than Section 2 be-
cause it includes more introductory material and fewer of the mathematical details.
Closely related work is contained in Monlezun and Blouin (1988) and Mathew and
Sinha (1992). A general review of methods for analyzing cluster sampling models
is given in Skinner, Holt, and Smith (1989).

11.1 A Cluster Sampling Model

A commonly used technique in survey sampling is cluster sampling (also called
two-stage sampling). This technique is applied when the population to be sampled
consists of some kind of clusters. The sample is obtained by taking a random sample
of clusters and then taking a random sample of the individuals within each of the
sampled clusters. For example, suppose it was desired to sample the population
of grade school students in Montana. One could take a random sample of grade
schools in the state, and then for each school that was chosen take a random sample
of the students in the school. One complication of this method is that students from
the same school will tend to be more alike than students from different schools. In
general, there will be a nonnegative correlation among the individual units within a
cluster.

General Cluster Sampling Models

Suppose n observations are available from a two-stage sample with c clusters. From
each cluster, mi units are sampled and variables Y,X1, . . . ,Xp are obtained. Since
observations in a cluster are typically not independent, we will consider the linear
model

Y = Xβ + e, e ∼ N
(
0,σ 2V

)
,

where X is n× p of rank r and (assuming the elements of Y are listed by clusters) V
is the block diagonal matrix
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V = Blk diag(Vi),

where Vi is an mi ×mi intraclass correlation matrix

Vi =

⎡⎢⎢⎣
1 ρ · · · ρ
ρ 1 · · · ρ
...

...
. . .

...
ρ ρ · · · 1

⎤⎥⎥⎦ .

If we let Jm(i) be an mi ×1 vector of ones, then

V = (1−ρ)I +ρBlk diag(Jm(i)J
′
m(i)).

Now let X1 be an n× c matrix of indicator variables for the clusters. In other
words, a row of the ith column of X1 is 1 if the row corresponds to an observation
from the ith cluster and 0 otherwise. It follows that X1X ′

1 = Blk diag(Jm(i)J′m(i)), so

V = (1−ρ)I +ρX1X ′
1. (1)

In fact, equation (1) holds even if the elements of Y are not listed by cluster.
We can now provide an interesting condition for when ordinary least squares

(OLS) estimates are best linear unbiased estimates (BLUEs) in cluster sampling
models. Recall from Theorem 10.4.5 that OLS estimates are BLUEs if and only if
C(V X) ⊂ C(X). This condition holds if and only if C(X1X ′

1X) ⊂ C(X). Since the
columns of X1 are indicator variables for the clusters, X1X ′

1X takes each column of
X , computes the cluster totals, and replaces each component with the corresponding
cluster total. Thus, OLS estimates are BLUEs if and only if for any variable in the
model, the variable formed by replacing each component with the corresponding
cluster total is also, either implicitly or explicitly, contained in the model.

A Special Cluster Sampling Model

We now consider a particular cluster sampling model for which OLS estimates
are BLUEs, and for which tests and confidence intervals are readily available for
the most interesting parameters. Consider a model in which X can be written as
X = [X1,X2], where X1 is again the matrix of indicator variables for the clusters.
Rewriting the linear model as

Y = [X1,X2]
[

α
γ

]
+ e (2)

leads to the interpretation that the αis are separate cluster effects. Typically, one
would not be very interested in these cluster effects. One’s primary interest would
be in the vector γ .
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It is easily seen that C(V X)⊂C(X), so OLS estimates are BLUEs. The notewor-
thy thing about this model is that inference on the parameter vector γ can proceed
just as when Cov(Y ) = σ 2I. Treating (2) as an analysis of covariance model, we
obtain for any estimable function λ ′γ

λ ′γ̂ = λ ′ [X ′
2(I −M1)X2

]− X ′
2(I −M1)Y,

where M1 is the perpendicular projection matrix onto C(X1).
The variance of λ ′γ̂ is

Var(λ ′γ̂) = σ 2λ ′ [X ′
2(I −M1)X2

]−X ′
2(I−M1)V (I−M1)X2

[
X ′

2(I −M1)X2
]−λ . (3)

From (1) observe that

V (I −M1) = (1−ρ)(I −M1).

Substitution into (3) gives

Var(λ ′γ̂) = σ 2(1−ρ)λ ′ [X ′
2(I −M1)X2

]− λ , (4)

which, except for the term (1−ρ), is the variance from assuming Cov(Y ) = σ 2I.

Exercise 11.1 Prove that equation (4) is true.

The mean square error (MSE) from ordinary least squares provides an indepen-
dent estimate of σ 2(1−ρ). Let M = X(X ′X)−X ′, so MSE = Y ′(I −M)Y/(n− r).

E(MSE) = (n− r)−1σ 2tr[(I −M)V ].

Since C(X1) ⊂C(X), from (1) we have

(I −M)V = (I −M)(1−ρ)I = (1−ρ)(I −M).

But, tr[(1−ρ)(I −M)] = (1−ρ)(n− r), so

E(MSE) = σ2(1−ρ).

Theorem 11.1.1.

(i) Y ′(I −M)Y/σ 2(1−ρ) ∼ χ2(n− r,0).
(ii) MSE and X β̂ are independent. In particular, MSE and λ ′γ̂ are independent.

Exercise 11.2 Prove Theorem 11.1.1.
Hint: For (i), use Theorem 1.3.6. For (ii), show that Cov[(I −M)Y,MY ] = 0.
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These results provide a basis for finding tests and confidence intervals for an
estimable function λ ′γ . We might also want to consider doing F tests. Suppose we
want to test some vector of estimable restrictions on γ , say Λ ′γ = 0. The test can be
derived from Λ ′γ̂ , Cov(Λ ′γ̂), and MSE, using Theorem 11.1.1 and Corollary 3.8.3.
In particular,

Theorem 11.1.2.

(i)
(Λ ′γ̂)′

(
Λ ′ [X ′

2(I −M1)X2]
−Λ
)−

(Λ ′γ̂)/r(Λ )
MSE

∼ F(r(Λ),n− r,π),

where π = (Λ ′γ)′
(
Λ ′ [X ′

2(I −M1)X2]
−Λ
)−

(Λ ′γ)/2σ 2(1−ρ).

(ii) (Λ ′γ)′
(
Λ ′ [X ′

2(I −M1)X2]
−Λ
)−

(Λ ′γ) = 0 if and only if Λ ′γ = 0.

An alternative to testing linear parametric functions is testing models. To test
model (2) against a reduced model, say

Y = X0β0 + e, C(X1) ⊂C(X0) ⊂C(X),

the test is the usual Cov(Y ) = σ 2I test. With M0 = X0(X ′
0X0)−X ′

0, we have:

Theorem 11.1.3.

(i)
Y ′(M−M0)Y/[r(X)− r(X0)]

MSE
∼ F(r(X)− r(X0),n− r,π),

where π = β ′
0X ′(M−M0)Xβ0/2σ 2(1−ρ).

(ii) β ′
0X ′(M−M0)Xβ0 = 0 if and only if E(Y ) ∈C(X0).

PROOF. For part (i), see Exercise 11.3. Part (ii) follows exactly as in Theo-
rem 3.2.1. �

Exercise 11.3 Prove Theorem 11.1.3(i).

In summary, for a model that includes separate fixed effects for each cluster, the
ordinary least squares fit gives optimal estimates of all effects and valid estimates of
standard errors for all effects not involving the cluster effects. If normal distributions
are assumed, the usual Cov(Y ) = σ 2I tests and confidence intervals are valid unless
the cluster effects are involved. If the cluster effects are not of interest, the entire
analysis can be performed with ordinary least squares. This substantially reduces
the effort required to analyze the data.

The assumption that the αis are fixed effects is necessary for the result to hold.
However, if additional random cluster effects are added to the model so that there
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are both fixed and random cluster effects, then the basic structure of the covariance
matrix remains unchanged and the optimality of ordinary least squares is retained.

Exercise 11.4 The usual model for a randomized complete block design was
given in Section 8.2 as

yi j = μ +αi +β j + ei j,

i = 1, . . . ,a, j = 1, . . . ,b, Var(ei j) = σ 2, and Cov(ei j,ei′ j′) = 0 for (i, j) �= (i′, j′).
The β js are considered as fixed block effects. Consider now a model

yi j = μ +αi +β j +η j + ei j.

The η js are independent N(0,σ 2
2 ) and the ei js are independent N(0,σ 2

1 ). The η js
and ei js are also independent. The block effects are now (β j +η j). There is a fixed
component and a random component with mean zero in each block effect. Use the
results of this section to derive an analysis for this model. Give an ANOVA table
and discuss interval estimates for contrasts in the αis.

Exercise 11.5 An alternative model for a block design is

yi j = μ +αi +β j + ei j, (5)

where the β js are independent N(0,σ 2
2 ) and the β js and ei js are independent. If this

model is used for a balanced incomplete block design, the BLUEs are different than
they are when the β js are assumed to be fixed. Discuss the appropriateness of the
analysis based on this model in light of the results of Exercise 11.4.

Exercise 11.6 Show that when using model (5) for a randomized complete block
design, the BLUE of a contrast in the αis is the same regardless of whether the β js
are assumed random or fixed. Show that the estimates of a contrast’s variance are
the same.

11.2 Generalized Split Plot Models

By placing additional conditions on model (11.1.2), we can get a simple analysis of
the cluster effects while retaining a simple analysis for the noncluster effects. The
analysis of the cluster effects corresponds to the analysis of whole plot treatments
in a split plot model. The noncluster effects relate to effects on the subplot level.

Generalized split plot models are models obtained by imposing additional struc-
ture on the cluster sampling model (11.1.2). This additional structure involves sim-
plifying the covariance matrix and modeling the whole plot (cluster) effects. First,
a condition on the whole plots is discussed. The condition is that the number of
observations in each whole plot is the same. This condition simplifies the covari-
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ance matrix considerably. Next, the whole plot effects are modeled by assuming a
reduced model that does not allow separate effects for each whole plot. As part of
the modeling process, a condition is imposed on the model matrix of the reduced
model that ensures that least squares estimates are BLUEs. The problem of drawing
inferences about generalized split plot models is discussed in two parts, (1) estima-
tion and testing of estimable functions and (2) testing reduced models. A condition
that allows for a simple analysis of the whole plot effects is mentioned, a discussion
of how to identify generalized split plot models is given, and finally some computa-
tional methods are presented.

The Covariance Matrix

Writing Y so that observations in each whole plot are listed contiguously, we can
rewrite the covariance matrix of model (11.1.2) as

σ 2V = σ2 [(1−ρ)I +ρM1{Blk diag(miIm(i))}
]
,

where Im(i) is an mi ×mi identity matrix and M1 is the perpendicular projection ma-
trix onto C(X1). This follows from Section 1 because M1 = Blk diag(m−1

i Jm(i)J′m(i)).
This characterization of V is not convenient in itself because of the Blk diag(miIm(i))
term. For example, the expected value of a quadratic form, say Y ′AY , is E(Y ′AY ) =
σ 2tr(AV )+ β ′X ′AXβ . The trace of AV is not easy to compute. To simplify the sub-
sequent analysis, we impose

Condition 11.2.1. All whole plots (clusters) are of the same size, say mi = m for
all i.

It follows that
V = (1−ρ)I +mρM1. (1)

This form for V will be assumed in the remainder of Section 2.

Modeling the Whole Plots

Model (11.1.2) assumes separate effects for each whole plot (cluster). Modeling the
cluster effects consists of imposing structure on those effects. This is done by putting
a constraint on C(X1). The simplest way to do this is by postulating a reduced model,
say

Y = Zβ∗ + e, Z = [X∗,X2] , C(X∗) ⊂C(X1). (2)

Partitioning β∗ in conformance with Z, write
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β ′
∗ =
[
δ ′,γ ′

]
.

Remember, this is not the same γ as in (11.1.2), but it is the coefficient for X2, just
as in (11.1.2). Define the perpendicular projection operators onto C(Z) and C(X∗)
as MZ and M∗, respectively.

In Section 1, it was shown that least squares estimates were BLUEs for model
(11.1.2). We are now dealing with a different model, model (2), so another proof
is required. To check if least squares estimates are BLUEs, we need to see whether
C(V Z) ⊂ C(Z). Since by equation (1), V = (1−ρ)I + mρM1, we have V Z = (1−
ρ)Z +mρM1Z. Clearly, it is enough to check whether C(M1Z) ⊂C(Z). This is true
for a special case.

Proposition 11.2.2. Let M and N be subspaces of C(Z). If C(Z) = M +N ,
where M ⊂C(X1) and N ⊥C(X1), then C(M1Z) ⊂C(Z).

PROOF. For any v ∈C(Z), write v = v1 + v2, where v1 ∈ M and v2 ∈ N . M1v =
M1v1 +M1v2 = v1, but v1 ∈ M ⊂C(Z). �

A condition that is easy to check is

Condition 11.2.3. C(Z) = C(X∗,(I −M1)X2) and C(X∗) ⊂C(X1).

If Condition 11.2.3 holds, then Proposition 11.2.2 applies with M = C(X∗) and
N = C[(I −M1)X2]. If Proposition 11.2.2 applies, then least squares estimates are
BLUEs.

EXAMPLE 11.2.4. Let whole plots be denoted by the subscripts i and j, and let
subplots have the subscript k. Let the dependent variable be yi jk and let xi jk1, xi jk2,
and xi jk3 be three covariates. The model given below is a generalized split plot model
(see Exercise 11.7.):

yi jk = μ +ωi + γ1x̄i j·1 + γ21x̄i j·2 +ηi j

+ τk +(ωτ)ik + γ22(xi jk2 − x̄i j·2)+ γ3(xi jk3 − x̄i j·3) (3)
+ ei jk,

i = 1, . . . ,a, j = 1, . . . ,Ni, k = 1, . . . ,m. The ηi js and ei jks are all independent with
ηi j ∼ N(0,σ 2

w) and ei jk ∼ N(0,σ 2
s ). With these assumptions

σ 2 = σ2
w +σ 2

s

and
ρ = σ 2

w/(σ 2
w +σ 2

s ).

The ωis are treatment effects for a one-way ANOVA with unequal numbers in
the whole plots. The whole plot treatments can obviously be generalized to include
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multifactor ANOVAs with unequal numbers. The ωis, γ1, γ21, and μ make up the
δ vector. The τks, (ωτ)iks, γ22, and γ3 make up the vector γ from model (2). Note
that the covariate used with γ22 could be changed to xi jk2 without changing C(Z) or
invalidating Condition 11.2.3.

Exercise 11.7 Verify that Condition 11.2.3 holds for model (3).

Estimation and Testing of Estimable Functions

We now discuss estimation and testing for model (2). Under Condition 11.2.1 and
Condition 11.2.3, least squares estimates are BLUEs. Define

M2 = (I −M1)X2
[
X ′

2(I −M1)X2
]− X ′

2(I −M1).

From Condition 11.2.3, the perpendicular projection operator onto C(Z) is

MZ = M∗ +M2. (4)

Given the perpendicular projection operator, the least squares estimates can be found
in the usual way.

First, consider drawing inferences about γ . For estimable functions of γ , the esti-
mates are exactly as in Section 1. In both cases, the estimates depend only on M2Y .
(See Proposition 9.1.1.) Since model (11.1.2) is a larger model than model (2) [i.e.,
C(Z) ⊂C(X)], model (11.1.2) remains valid. It follows that all of the distributional
results in Section 1 remain valid. In particular,

Y ′(I −M)Y/σ 2(1−ρ) ∼ χ2(n− r(X),0), (5)

and Y ′(I−M)Y/[n−r(X)] is an unbiased estimate of σ 2(1−ρ). In split plot models,
σ 2(1 − ρ) is called the subplot error variance. Y ′(I − M)Y is called the sum of
squares for subplot error [SSE(s)] and Y ′(I −M)Y/[n− r(X)] is the mean square
for subplot error [MSE(s)].

The results in Section 1 are for functions of γ that are estimable in model (11.1.2).
We now show that λ ′γ is estimable in (11.1.2) if and only if λ ′γ is estimable in (2).
The argument is given for real-valued estimable functions, but it clearly applies to
vector-valued estimable functions. First, suppose that λ ′γ is estimable in (11.1.2).
Then there exists a vector ξ such that λ ′ = ξ ′X2 and ξ ′X1 = 0. It follows immedi-
ately that λ ′ = ξ ′X2 and ξ ′X∗ = 0, so λ ′γ is estimable in model (2).

Now suppose that λ ′γ is estimable in model (2). There exists a vector ξ such that
ξ ′X∗ = 0 and ξ ′X2 = λ ′. Using equation (4) and ξ ′M∗ = 0, it is easily seen that

λ ′ = ξ ′X2 = ξ ′MZX2 = ξ ′M2X2

and, since M2X1 = 0,
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ξ ′M2X1 = 0.

The vector ξ ′M2 satisfies the two conditions needed to show that λ ′γ is estimable in
(11.1.2). Thus, inferences about estimable functions λ ′γ can be made exactly as in
Section 1.

Drawing inferences about δ is trickier. The projection operator MZ is the sum
of two orthogonal projection operators M∗ and M2. Estimation of λ ′γ can be ac-
complished easily because the estimate depends on M2Y alone. Similarly, estimable
functions whose estimates depend on M∗Y alone can be handled simply. The prob-
lem lies in identifying which estimable functions have estimates that depend on
M∗Y alone. Since estimable functions of γ depend on M2Y , any estimable function
with an estimate that depends on M∗Y alone must involve δ . (Of course, there ex-
ist estimable functions that depend on both M∗Y and M2Y .) Later, a condition will
be discussed that forces all estimable functions of δ to depend only on M∗Y . With
this condition, we have a convenient dichotomy in that estimates of functions of δ
depend on the perpendicular projection operator M∗, and estimates of functions of
γ depend on the perpendicular projection operator M2. The condition referred to is
convenient, but it is not necessary for having a generalized split plot model.

As discussed in Chapter 3 the question of whether the estimate of an estimable
function, say Λ ′β∗, depends only on M∗Y is closely related to the constraint on the
model imposed by the hypothesis Λ ′β∗ = 0. In particular, if Λ ′ = P′Z, then the
constraint imposed by Λ ′β∗ = 0 is E(Y ) ⊥ C(MZP), and Λ ′β̂∗ depends on M∗Y if
and only if C(MZP) ⊂ C(M∗) = C(X∗). In the discussion that follows, Λ ′β∗ = 0 is
assumed to put a constraint on C(X∗).

We seek to derive an F test for Λ ′β∗ = 0. From Corollary 3.8.3,(
Λ ′β̂∗

)′ [
Cov
(

Λ ′β̂∗
)]−(

Λ ′β̂∗
)

∼ χ2
(

r(Λ),
(
Λ ′β∗

)′ [Cov
(

Λ ′β̂∗
)]− (

Λ ′β∗
)
/2
)

.

We need the covariance of Λ ′β̂∗. Note that Λ ′β̂∗ = P′MZY = P′M∗Y . From equation
(1) and the fact that C(X∗) ⊂C(X1), it is easily seen that

M∗V = [(1−ρ)+mρ]M∗; (6)

so

Cov
(

Λ ′β̂∗
)

= σ 2P′M∗V M∗P = σ 2 [(1−ρ)+mρ]P′M∗P

= σ 2 [(1−ρ)+mρ]P′MZP

= σ 2 [(1−ρ)+mρ]Λ ′ (Z′Z
)−Λ ,

which, except for the term (1−ρ)+mρ , is the usual covariance of Λ ′β̂∗ from ordi-
nary least squares. We can get an F test of Λ ′β∗ = 0 if we can find an independent
chi-squared estimate of σ2 [(1−ρ)+mρ].
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Theorem 11.2.5. Under model (2),

Y ′(M1 −M∗)Y/σ 2 [(1−ρ)+mρ] ∼ χ2(r(X1)− r(X∗),0) .

PROOF. Observe that

M1V = [(1−ρ)+mρ]M1. (7)

Using equations (6) and (7), it is easy to check the conditions of Theorem 1.3.6. It
remains to show that β ′∗Z′ (M1 −M∗)Zβ∗ = 0. Recall that MZ = M∗ +M2, and note
that M = M1 +M2. It follows that M1 −M∗ = M−MZ . Clearly, (M−MZ)Zβ∗ = 0.

�

The quadratic form Y ′(M1 −M∗)Y is called the sum of squares for whole plot
(cluster) error. This is denoted SSE(w). An unbiased estimate of σ2 [(1−ρ)+mρ]
is available from

MSE(w) = Y ′(M1 −M∗)Y
/

[r(X1)− r(X∗)] .

To complete the derivation for the F test of Λ ′β∗ = 0, we need to show that Λ ′β̂∗
and Y ′(M1 −M∗)Y are independent. It suffices to note that

Cov(M∗Y,(M1 −M∗)Y ) = σ 2M∗V (M1 −M∗)
= σ 2 [(1−ρ)+mρ]M∗(M1 −M∗)
= 0.

The F test is based on the distributional result(
Λ ′β̂∗

)′
[Λ ′(Z′Z)−Λ ]−

(
Λ ′β̂∗

)/
r(Λ )

MSE(w)
∼ F(r(Λ ),r(X1)− r(X∗),π) ,

where
π =
(
Λ ′β∗

)′ [Λ ′(Z′Z)−Λ
]− (Λ ′β∗

)/
2σ 2 [(1−ρ)+mρ]

and (Λ ′β∗)′ [Λ ′(Z′Z)−Λ ]− (Λ ′β∗) = 0 if and only if Λ ′β∗ = 0.
The argument establishing the independence of Λ ′β̂∗ and MSE(w) can be ex-

tended to establish the independence of all the distinct statistics being used.

Theorem 11.2.6. M∗Y , M2Y , SSE(w), and SSE(s) are mutually independent.

PROOF. Since the joint distribution of Y is multivariate normal, it suffices to use
equations (6) and (7) to establish that the covariance between any pair of M∗Y , M2Y ,
(M1 −M∗)Y , and (I −M)Y is 0. �
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To summarize the results so far, if the linear model satisfies Conditions 11.2.1 and
11.2.3, then (a) least squares estimates are BLUEs, (b) inferences about estimable
functions λ ′γ can be made in the usual way (i.e., just as if V = I) with the exception
that the estimate of error is taken to be MSE(s), and (c) inferences about estimable
functions of Λ ′β∗ that put a constraint on C(X∗) can be drawn in the usual way,
except that MSE(w) is used as the estimate of error.

As mentioned, it is not clear what kind of estimable functions put a constraint on
C(X∗). Two ways of getting around this problem will be discussed. As mentioned
above, one way is to place another condition on the model matrix Z of model (2),
a condition that forces the estimable functions of δ to put constraints on C(X∗). A
second approach, that requires no additional conditions, is to abandon the idea of
testing estimable functions and to look at testing models.

Inferences About δ

One of the problems with generalized split plot models is in identifying the hypothe-
ses that put constraints on C(X∗). In general, such hypotheses can involve both the
δ and the γ parameters. For example, suppose that C(X∗)∩C(X2) contains a nonzero
vector ξ . Then, since MZξ = ξ ∈ C(X∗), the hypothesis ξ ′X∗δ + ξ ′X2γ = 0 puts a
constraint on C(X∗). However, ξ ′X∗δ +ξ ′X2γ involves both the δ and γ parameters
because, with ξ ∈ C(X∗)∩C(X2), neither ξ ′X∗ nor ξ ′X2 is 0. The most common
example of this phenomenon occurs when X∗ and X2 are chosen so that C(X∗) and
C(X2) both contain a column of 1s (i.e., Jn). It follows that inferences about the
grand mean, n−1JnZβ∗, are made using MSE(w).

The condition stated below ensures that any estimable function of the δ s puts a
constraint on C(X∗). This condition is typically satisfied when Z is the model matrix
for a balanced multifactor ANOVA (with some of the interactions possibly deleted).

Condition 11.2.7. For v ∈C(X), if v ⊥C(X2), then v ∈C(X1).

Suppose that λ ′δ is an estimable function. Then λ ′ = ξ ′X∗ and ξ ′X2 = 0 for some
ξ ∈C(Z). Since ξ ′X2 = 0, Condition 11.2.7 implies that ξ ∈C(X1); thus M2ξ = 0.
Finally, by (4),

MZξ = M∗ξ ∈C(X∗).

Thus, estimable functions of δ put a constraint on C(X∗) and inferences about such
functions are made using M∗Y and MSE(w).
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Testing Models

We will now examine the problem of testing model (2) against reduced models.
To look at the complete problem, we will discuss both reduced models that put a
constraint on C(X∗) and reduced models that put a constraint on C(X2). For both
kinds of reduced models, the tests are analogous to those developed in Section 3.2.
A reduced model that puts a constraint on C(X∗) can be tested by comparing the
SSE(w) for model (2) with the SSE(w) for the reduced model. The difference in
SSE(w)s is divided by the difference in the ranks of the design matrices to give a
numerator mean square for the test. The denominator mean square is MSE(w) from
model (2). The test for a reduced model that puts a constraint on C(X2) is performed
in a similar fashion using SSE(s) and MSE(s). In the discussion below, specific
models and notation are presented to justify these claims.

First, consider a reduced model that puts a constraint on C(X∗). The reduced
model is a model of the form

Y = Z0ξ + e, Z0 = [X0∗,X2] , C(X0∗) ⊂C(X∗). (8)

Let M0 = Z0(Z′
0Z0)−Z′

0 and M0∗ = X0∗(X ′
0∗X0∗)−X ′

0∗. If the equivalent of Condi-
tion 11.2.3 holds for model (8), then

Y ′(M∗ −M0∗)Y/[r(X∗)− r(X0∗)]
MSE(w)

∼ F (r(X∗)− r(X0∗),r(X1)− r(X∗),π) ,

where
π = β ′

∗Z′(M∗ −M0∗)Zβ∗
/

2σ 2[(1−ρ)+mρ]

and β ′∗Z′(M∗ −M0∗)Zβ∗ = 0 if and only if E(Y ) ∈C(Z0).
These results follow from Theorems 11.2.5 and 11.2.6 and Corollary 3.8.3 upon

noticing two things: First, in Corollary 3.8.3, A−A0 = MZ −M0 = M∗ −M0∗. Sec-
ond, from equation (6), M∗ = [(1−ρ)+ mρ]M∗V−1, with a similar result holding
for M0∗V−1.

The other kind of reduced model that can be treated conveniently is a reduced
model that puts a constraint on C(X2). The reduced model is written as

Y = Z0ξ + e, Z0 = [X∗,X3] , C(X3) ⊂C(X2). (9)

If the equivalent of Condition 11.2.3 holds for model (9), write M0 as before and
M3 = (I −M1)X3 [X ′

3(I −M1)X3]
− X ′

3(I −M1). Then

Y ′(M2 −M3)Y/[r(M2)− r(M3)]
MSE(s)

∼ F (r(M2)− r(M3),n− r(X),π) ,

where
π = β ′

∗Z′(M2 −M3)Zβ∗
/

2σ 2(1−ρ)

and β ′∗Z′(M2 −M3)Zβ∗ = 0 if and only if E(Y ) ∈C(Z0).
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These results follow from Theorem 11.2.6, Corollary 3.8.3, and relation (5) upon
noticing that A−A0 = MZ −M0 = M2 −M3; and, since M2V = (1−ρ)M2, we have
(1−ρ)−1M2 = M2V−1, and a similar result for M3.

Identifying Generalized Split Plot Models

There are only two conditions necessary for having a generalized split plot model,
Condition 11.2.1 and Condition 11.2.3. The form of generalized split plot models
can be read from these conditions. Condition 11.2.1 requires that an equal number of
observations be obtained within each whole plot. Condition 11.2.3 requires C(Z) =
C(X∗,(I − M1)X2), where C(X∗) ⊂ C(X1). Since C(X1) is the column space that
allows a separate effect for each cluster, X∗δ can be anything that treats all of the
observations in a given whole plot the same. The matrix X2 can contain the columns
for any ANOVA effects that are balanced within whole plots. X2 can also contain
any columns that are orthogonal to C(X1). Model (3) in Example 11.2.4 displays
these characteristics.

Computations

The simplest way to actually fit generalized split plot models would seem to be to
fit both models (2) and (11.1.2) using an ordinary least squares computer program.
Fitting model (2) provides least squares estimates of δ and γ . Fitting model (2) also
provides Y ′(I −MZ)Y as the reported SSE . This reported SSE is not appropriate for
any inferences, but, as seen below, it can be used to obtain the whole plot sum of
squares error. Fitting model (11.1.2) provides least squares estimates of α and γ
and the reported SSE is Y ′(I −M)Y . If the model is a generalized split plot model,
the two estimates of γ should be identical. Since Y (I −M)Y is the SSE(s) (sum of
squares for subplot error), any conclusions about γ obtained from fitting (11.1.2)
will be appropriate. To obtain SSE(w) (sum of squares for whole plot error), note
that

Y ′(I −MZ)Y −Y ′(I −M)Y = Y ′(M−MZ)Y
= Y ′(M1 +M2 −M∗ −M2)Y
= Y ′(M1 −M∗)Y.

Thus, all of the computationally intensive work can be performed on standard com-
puter programs.

Exercise 11.8 Give detailed proofs of the test statistic’s distribution for
(a) testing model (8) against model (2),
(b) testing model (9) against model (2).
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11.3 The Split Plot Design

The traditional model for a split plot design is a special case of the model pre-
sented in Section 2. We will present the split plot model and a model equivalent to
model (11.1.2). We will use the balance of the split plot design to argue that Con-
ditions 11.2.1, 11.2.3, and 11.2.7 hold. The arguments based on the balance of the
split plot model are similar to those presented in Section 7.6. Statistical inferences
are based on least squares estimates and quadratic forms in corresponding perpen-
dicular projection matrices. The balance of the split plot model dictates results that
are very similar to those described in Sections 7.1, 7.2, and 7.6.

The traditional split plot model involves a randomized complete block design
in the whole plots. In fact, a completely randomized design or a Latin square in
the whole plots leads to an analogous analysis. Suppose that there are r blocks of
t whole plots available. Within each block, a different (whole plot) treatment is ap-
plied to each whole plot. Let μ denote a grand mean, ξ s denote block effects, and ωs
denote whole plot treatment effects. Let each whole plot be divided into m subplots
with a different (subplot) treatment applied to each subplot. The τs denote subplot
treatment effects, and the (ωτ)s denote interaction effects between the whole plot
treatments and the subplot treatments. The split plot model has two sources of error,
whole plot to whole plot variation denoted by η , and subplot to subplot variation
denoted by e. The split plot model is

yi jk = μ +ξi +ω j +ηi j + τk +(ωτ) jk + ei jk, (1)

i = 1, . . . ,r, j = 1, . . . , t, k = 1, . . . ,m, ηi js independent N(0,σ2
w), ei jks independent

N(0,σ 2
s ). The ηi js and ei jks are assumed to be independent. We can combine the er-

ror terms as εi jk = ηi j +ei jk. Writing the vector of errors as ε = [ε111,ε112, . . . ,εrtm]′,
we get

Cov(ε) = Blk diag[σ 2
s Im +σ 2

wJm
m ]

= σ 2[(1−ρ)I +mρM1],

where σ 2 = σ2
w +σ 2

s and ρ = σ 2
w/(σ2

w +σ 2
s ). In a split plot model, the whole plots

are considered as the different combinations of i and j. There are m observations for
each whole plot, so Condition 11.2.1 holds.

The model that includes separate effects αi j for each whole plot can be written
as

yi jk = αi j +ηi j + τk +(ωτ) jk + ei jk .

Combining the error terms gives

yi jk = αi j + τk +(ωτ) jk + εi jk ,

or, using a parameterization with interactions,

yi jk = μ +ξi +ω j +(ξ ω)i j + τk +(ωτ) jk + εi jk . (2)
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From Section 2, C(X1) is the space spanned by the columns associated with the
αi js and C(X2) is the space spanned by the columns associated with the τks and
(ωτ) jks. C(X) is the column space for model (2). Using the parameterization of
model (2) and the notation and results of Section 7.6 gives

C(X1) = C(Mμ +Mξ +Mω +Mξ ω),
C(X2) = C(Mμ +Mω +Mτ +Mωτ),
C(X) = C(Mμ +Mξ +Mω +Mξ ω +Mτ +Mωτ).

Recall that all of the M matrices on the right-hand sides are perpendicular projection
matrices, and that all are mutually orthogonal. In particular, M = Mμ +Mξ +Mω +
Mξ ω +Mτ +Mωτ and M1 = Mμ +Mξ +Mω +Mξ ω .

The split plot model (1) is a reduced model relative to model (2). The ξ ω inter-
actions are dropped to create the split plot model. C(X∗) is the space spanned by the
columns associated with μ , the ξis, and the ω js. Again using results from 7.6,

C(X∗) = C(Mμ +Mξ +Mω),
C[(I −M1)X2] = C(Mτ +Mωτ ),

C(Z) = C(Mμ +Mξ +Mω +Mτ +Mωτ).

Clearly, Condition 11.2.3 applies.
In fact, even Condition 11.2.7 holds, so that estimable functions of the ξ s and

ωs are tested using MSE(w). To check Condition 11.2.7, it suffices to show that if
v ∈ C(X) and v ⊥ C(X2), then v ∈ C(X1). If v ∈ C(X), then Mv = v. If v ⊥ C(X2),
then (Mμ +Mω +Mτ +Mωτ)v = 0. Thus

v = Mv = (Mμ +Mξ +Mω +Mξ ω +Mτ +Mωτ)v
= (Mξ +Mξ ω)v.

But, v = (Mξ +Mξ ω )v ∈C(X1). It should be noted that with (ωτ) interaction in the
model, contrasts in the ωs are not estimable. The usual procedure gives estimates of
contrasts in the ω j +(ωτ) j·s. Without (ωτ) interaction, contrasts in the ωs become
estimable. In either case, the estimates are obtained using M∗.

We can now write out an ANOVA table.
Source df SS E(MS)

μ r(Mμ ) Y ′MμY (σ2
s +mσ2

w)+β ′X ′Mμ Xβ/r(Mμ )
ξ r(Mξ ) Y ′MξY (σ2

s +mσ2
w)+β ′X ′Mξ Xβ/r(Mξ )

ω r(Mω ) Y ′MωY (σ2
s +mσ2

w)+β ′X ′Mω Xβ/r(Mω )
error 1 r(Mξ ω ) Y ′Mξ ωY σ2

s +mσ2
w

τ r(Mτ ) Y ′MτY σ2
s +β ′X ′Mτ Xβ/r(Mτ )

ωτ r(Mωτ ) Y ′MωτY σ2
s +β ′X ′Mωτ Xβ/r(Mωτ )

error 2 r(I −M) Y ′(I−M)Y σ2
s

Total n Y ′Y
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Note that σ 2[(1−ρ)+mρ] = σ2
s +mσ2

w and σ 2(1−ρ) = σ2
s . Algebraically, we can

write the table as

Source df SS E(MS)

μ 1 rtmȳ2···
ξ r−1 tm∑i(ȳi·· − ȳ···)2 (σ 2

s +mσ2
w)+A

ω t −1 rm∑ j(ȳ· j· − ȳ···)2 (σ 2
s +mσ 2

w)+B
error 1 (r−1)(t −1) m∑i j(ȳi j· − ȳi·· − ȳ· j· + ȳ···)2 σ 2

s +mσ 2
w

τ m−1 rt ∑k(ȳ··k − ȳ···)2 σ 2
s +C

ωτ (t −1)(m−1) r ∑ jk(ȳ· jk − ȳ· j· − ȳ··k + ȳ···)2 σ 2
s +D

error 2 by by σ 2
s

subtraction subtraction

Total n ∑i jk y2
i jk

A = tm∑
i
(ξi − ξ̄·)2/(r−1),

B = rm∑
j
(ω j +(ωτ) j· − ω̄· − (ωτ)··)

2/(t −1),

C = rt ∑
k

(τk +(ωτ)·k − τ̄· − (ωτ)··)
2/(m−1),

D = r∑
jk

((ωτ) jk − (ωτ) j· − (ωτ)·k +(ωτ)··)
2/(t −1)(m−1).

Tests and confidence intervals for contrasts in the τks and (ωτ) jks are based on
the usual least squares estimates and use the mean square from the “error 2” line
for an estimate of variance. Tests and confidence intervals in the ξis and ω js also
use least squares estimates, but use the mean square from the “error 1” line for
an estimate of variance. Note that contrasts in the ω js are really contrasts in the
(ω j +(ωτ) j·)s when interaction is present.

Finally, a word about missing data. If one or more whole plots are missing, the
data can still be analyzed as in Section 2. If one or more subplots are missing, the
data can still be analyzed as in Section 1; however, with missing subplots, some sort
of ad hoc analysis for the whole plot effects must be used.

Exercise 11.9 Consider the table of means

τ
1 2 · · · m

1 ȳ·11 ȳ·12 · · · ȳ·1m
ω 2 ȳ·21 ȳ·22 · · · ȳ·2m

...
...

...
. . .

...
t ȳ·t1 ȳ·t2 · · · ȳ·tm

Let ∑m
k=1 dk = 0. For any fixed j, find a confidence interval for ∑m

k=1 dkμ jk, where
μ jk = μ + ξ̄·+ω j +τk +(ωτ) jk. (Hint: The estimate of the variance comes from the
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“error 2” line.) Let ∑t
j=1 c j = 0. Why is it not possible to find a confidence interval

for ∑t
j=1 c jμ jk?

11.4 Identifying the Appropriate Error

Statistics is all about drawing conclusions from data that are subject to error. One of
the crucial problems in statistics is identifying and estimating the appropriate error
so that valid conclusions can be made. The importance of this issue has long been
recognized by the statistical community. The necessity of having a valid estimate
of error is one of the main points in The Design of Experiments, Fisher’s (1935)
seminal work.

The key feature of split plot models is that they involve two separate sources of
variation. The analysis involves two separate estimates of error, and a correct analy-
sis requires that the estimates be used appropriately. If the existence of two separate
sources of variability is not noticed, the estimate of error will probably be obtained
by pooling the sums of squares for the two separate errors. The pooled estimate of
error will generally be too small for comparing treatments applied to whole plots
and too large for comparing treatments applied to subplots. The whole plot treat-
ments will appear more significant than they really are. The subplot treatments will
appear less significant than they really are. The interactions between whole plot and
subplot treatments will also appear less significant than they really are.

The problem of identifying the appropriate error is a difficult one. In this section,
some additional examples of the problem are discussed. First, the problem of sub-
sampling is considered. The section ends with a discussion of the appropriate error
for testing main effects in the presence of interactions.

Subsampling

One of the most commonly used, misused, and abused of models is the subsampling
model.

EXAMPLE 11.4.1. In an agricultural experiment, one treatment is applied to each
of 6 pastures. The experiment involves 4 different treatments, so there are a total of
24 pastures in the experiment. On each pasture 10 observations are taken. The 10
observations taken on each pasture are referred to as subsamples. Each observation
is subject to two kinds of variability: (1) pasture to pasture variability and (2) within
pasture variability. Note, however, that in comparing the 10 observations taken on a
given pasture, there is no pasture to pasture variability. The correct model for this
experiment involves error terms for both kinds of variability. Typically the model is
taken as

yi jk = μ +ωi +ηi j + ei jk, (1)
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i = 1,2,3,4, j = 1, . . . ,6, k = 1, . . . ,10, ηi js i.i.d. N(0,σ 2
w), ei jks i.i.d. N(0,σ 2

s ), and
the ηi js and ei jks are independent. In this model, σ 2

w is the pasture to pasture variance
and σ 2

s is the within pasture or subsampling variance.
As will be seen below, the statistical analysis of model (1) acts like there is only

1 observation on each pasture. That 1 observation is the mean of the 10 actual obser-
vations that were taken. If the analysis acts like only 1 observation was taken on a
pasture, why should an experimenter trouble to take 10 observations? Why not take
just 1 observation on each pasture?

With 1 real observation on each pasture, the statistical analysis is subject to the
whole weight of the within pasture variability. By taking 10 observations on a pas-
ture and averaging them to perform the analysis, the mean of the 10 observations still
has the full pasture to pasture variability, but the within pasture variability (variance)
is cut by a factor of 10. The experiment is being improved by reducing the variabil-
ity of the treatment estimates, but that improvement comes only in the reduction of
the within pasture variability. The effects of pasture to pasture variability are not
reduced by subsampling.

Rather than subsampling, it would be preferable to use more pastures. Using
more pastures reduces the effects of both kinds of variability. Unfortunately, doing
that is often not feasible. In the current example, the same reduction in within pas-
ture variation without subsampling would require the use of 240 pastures instead
of the 24 pastures that are used in the experiment with subsampling. In practice,
obtaining 24 pastures for an experiment can be difficult. Obtaining 240 pastures can
be well nigh impossible.

In general, a subsampling model is

yi jk = μ +ωi +ηi j + ei jk, Var(ηi j) = σ 2
w, Var(ei jk) = σ 2

s , (2)

i = 1, . . . , t, j = 1, . . . ,r, k = 1, . . . ,m. By checking Conditions 11.2.1, 11.2.3, and
11.2.7, it is easily seen that this is a generalized split plot model with X2 vacuous.
An ANOVA table can be written:

Source df SS E(MS)

ω t −1 rm∑i(ȳi·· − ȳ···)2 σ2
s +mσ2

w +A

error 1 t(r−1) m∑i j(ȳi j· − ȳi··)2 σ2
s +mσ2

w

error 2 rt(m−1) ∑i jk(yi jk − ȳi j·)2 σ2
s

where A = rm∑i(ωi − ω̄·)2/(t − 1). The entire analysis is performed as a standard
one-way ANOVA. The variance of ȳi·· is (σ 2

s + mσ2
w)/rm, so the “error 1” line is

used for all tests and confidence intervals.
As mentioned above, an equivalent analysis can be made with the averages of the

observations in each subsample. The model based on the averages is

ȳi j· = μ +ωi +ξi j, Var(ξi j) = [σ2
w +(σ2

s /m)],
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i = 1, . . . , t, j = 1, . . . ,r. It is easily seen that this gives exactly the same tests and
confidence intervals as those obtained from model (2).

One of the most common mistakes in statistical practice is to mistake subsam-
pling for independent replication in an experiment. Example 11.4.1 involves 6 in-
dependent replications, i.e., the 6 pastures to which each treatment is applied. The
10 observations on a given pasture are not independent because the random effect
for pastures is the same for all of them. The incorrect model that is often analyzed
instead of model (2) is

yi j = μ +ωi + ei j, (3)

i = 1, . . . , t, j = 1, . . . ,rm. The effect of analyzing model (3) is that the “error 1” and
“error 2” lines of the ANOVA are pooled together. Since the expected mean square
for “error 2” is only σ 2

s , the pooled mean square error is inappropriately small and
all effects will appear to be more significant than they really are.

Subsampling can be an important tool, especially when the variability between
subsamples is large. However, it is important to remember that subsampling is to
be used in addition to independent replication. It does not eliminate the need for an
adequate number of independent replicates. In terms of Example 11.4.1, an experi-
menter should first decide on a reasonable number of pastures and then address the
question of how many observations to take within a pasture. If the pasture to pasture
variability is large compared to the within pasture variability, subsampling will be
of very limited value. If the within pasture variability is large, subsampling can be
extremely worthwhile.

The existence of subsampling can usually be determined by carefully identifying
the treatments and the experimental units to which the treatments are applied. In the
agricultural example, identifying the subsampling structure was easy. Treatments
were applied to pastures. If differences between treatments are to be examined, then
differences between pastures with the same treatment must be error.

Lest the reader think that identifying subsampling is easy, let us try to confuse the
issue. The analysis that has been discussed is based on the assumption that pasture
to pasture variability is error, but now suppose that the experimenter has an interest
in the pastures. For example, different pastures have different fertilities, so some
pastures are better than others. If differences in pastures are of interest, it may be
reasonable to think of the ηi js as fixed effects, in which case there is no subsampling
and the ANOVA table gives only one error line. The expected mean squares are:

Source df E(MS)

ω 3 σ 2 +20∑i(ωi + η̄i· − ω̄· − η̄··)2

η 20 σ 2 + .5∑i j(ηi j − η̄i·)2

error 216 σ 2

The mean square for η can be used to test whether there are any differences between
pastures that have the same treatment. The MSE(ω) provides a test of whether the
treatment effects added to their average pasture effects are different. The test from
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MSE(ω) may not be very interesting if there are different pasture effects. In sum-
mary, the analysis depends crucially on whether the ηi js are assumed to be random
or fixed. When the ω treatments are of primary importance it makes sense to treat
the η effects as random.

Two-Way ANOVA with Interaction

The two-way ANOVA with interaction model from Section 7.2 is

yi jk = μ +αi +η j + γi j + ei jk, (4)

i = 1, . . . ,a, j = 1, . . . ,b, k = 1, . . . ,N. First, the question of subsampling in a two-
way ANOVA will be addressed. The discussion of subsampling leads to an exam-
ination of independent replication, and to the question of whether the interactions
should be considered fixed or random. The discussion of identifying the appropriate
error begins with an example:

EXAMPLE 11.4.2. We want to investigate the effects of 4 fertilizers and 6 her-
bicides on pastures used for raising cane (as in sugar cane). There are a total of
4× 6 = 24 treatment combinations. If each treatment combination is applied to 5
pastures, then model (4) is appropriate with a = 4, b = 6, and N = 5.

Now consider an alternative experimental design that is easily confused with this.
Suppose each treatment combination is applied to 1 pasture and 5 observations are
taken on each pasture. There is no independent replication. The 5 observations on
each pasture are subsamples. Comparisons within pastures do not include pasture
to pasture variability. If model (4) is used to analyze such data, the MSE is actually
the estimated subsampling variance. It is based on comparisons within pastures. An
analysis based on model (4) will inflate the significance of all effects.

The appropriate model for this subsampling design is

yi jk = μ +αi +η j + γi j +ξi j + ei jk,

where ξi j ∼ N(0,σ 2
w) and ei jk ∼ N(0,σ2

s ). Note that the indices on γ and ξ are
exactly the same. It is impossible to tell interactions apart from pasture to pasture
variability. As a result, unless the interactions can be assumed nonexistent, there is
no appropriate estimate of error available in this experiment.

In the example, two extreme cases were considered, one case with no subsam-
pling and one case with no independent replication. Of course, any combination of
subsampling and independent replication can be used. In the example, the designs
were clearly stated so that the subsampling structures were clear. In practice, this
rarely occurs. When presented with data that have been collected, it can be very
difficult to identify how the experiment was designed.
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Designs without independent replications are actually quite common. When con-
fronted with a two-factor ANOVA without any independent replication, the fixed
interaction effects are generally assumed to be zero so that an analysis can be per-
formed. This is precisely the assumption made in Chapter 8 in analyzing the Ran-
domized Complete Block model. An alternate way of phrasing this idea is that any
interaction effects that exist must be due to error. This idea that interaction effects
can themselves be errors is important. If the interactions are errors, then model (4)
needs to be changed. The standard assumption would be that the γi js are independent
N(0,σ 2

w) random variables.
Note that the assumption of random γi js does not imply the existence of sub-

sampling. Subsampling is a property of the experimental design. What is being dis-
cussed is simply a choice about how to model interactions. Should they be modeled
as fixed effects, or should they be modeled as random errors? One guideline is based
on the repeatability of the results. If the pattern of interactions should be the same
in other similar studies, then the interactions are fixed. If there is little reason to
believe that the pattern of interactions would be the same in other studies, then the
interactions would seem to be random.

The analysis of model (4) with random interactions is straightforward. The model
is a generalized split plot model with X2 vacuous. The mean square for interactions
becomes the mean square for “error 1.” The mean square error from assuming fixed
interactions becomes the mean square for “error 2.” The analysis for main effects
uses the mean square “error 1” exclusively as the estimate of error.

Although this is not a subsampling model, it does involve two sources of varia-
tion: 1) variation due to interactions, and 2) variation due to independent replication
(i.e., variation from experimental unit to experimental unit). It seems to be diffi-
cult to reduce the effects on comparisons among treatments of the variability due
to interactions. The effect of variation due to experimental units can be reduced by
taking additional independent replications.

11.5 Exercise: An Unusual Split Plot Analysis

Cornell (1988) considered data on the production of vinyl for automobile seat cov-
ers. Different blends involve various plasticizers, stabilizers, lubricants, pigments,
fillers, drying agents, and resins. The current data involve 5 blends of vinyl.

The 5 blends represent various percentages of 3 plasticizers that together make
up 40.7% of the product. The first plasticizer is restricted to be between 19.1% and
34.6% of the product. The second plasticizer is restricted to be between 0% and
10.2% of the product. The third plasticizer is restricted to be between 6.1% and
11.4% of the product. Changing these restrictions to fractions of the 40.7% of the
total, we get

0.47 ≤ x1 ≤ 0.85, 0 ≤ x2 ≤ 0.25, 0.15 ≤ x1 ≤ 0.28.
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The 5 blends are

Blend (x1,x2,x3)
1 (0.85, 0.000, 0.150)
2 (0.72, 0.000, 0.280)
3 (0.60, 0.250, 0.150)
4 (0.47, 0.250, 0.280)
5 (0.66, 0.125, 0.215)

Note that the first four blends have all combinations of x2 and x3 at their extremes
with x1 values decreasing at about 0.13 per blend. Blend 5 is in the center of the
other blends. In particular, for i = 1,2,3, the xi value of blend 5 is the mean of the
other four xi values. Eight groups of the five different blends were prepared.

The first group of 5 blends was run with the production process set for a high
rate of extrusion (z1 = 1) and a low drying temperature (z2 = −1). The process was
then reset for low extrusion rate and high drying temperature (z1 = −1,z2 = 1), and
another group of 5 blends was run. For subsequent runs of 5 blends, the process was
set for z1 = −1,z2 = −1, and z1 = 1,z2 = 1 to finish the first replication. Later, the
second replication was run in the order z1 = −1,z2 = 1; z1 = 1,z2 = 1; z1 = 1,z2 =
−1; z1 = −1,z2 = −1. The data are presented in Table 11.1

Table 11.1 Cornell’s Scaled Vinyl Thickness Values.

Blend x1 x2 x3 z1 z2 Rep. 1 Rep. 2
1 0.85 0.000 0.150 1 −1 8 7
2 0.72 0.000 0.280 1 −1 6 5
3 0.60 0.250 0.150 1 −1 10 11
4 0.47 0.250 0.280 1 −1 4 5
5 0.66 0.125 0.215 1 −1 11 10
1 0.85 0.000 0.150 −1 1 12 10
2 0.72 0.000 0.280 −1 1 9 8
3 0.60 0.250 0.150 −1 1 13 12
4 0.47 0.250 0.280 −1 1 6 3
5 0.66 0.125 0.215 −1 1 15 11
1 0.85 0.000 0.150 −1 −1 7 8
2 0.72 0.000 0.280 −1 −1 7 6
3 0.60 0.250 0.150 −1 −1 9 10
4 0.47 0.250 0.280 −1 −1 5 4
5 0.66 0.125 0.215 −1 −1 9 7
1 0.85 0.000 0.150 1 1 12 11
2 0.72 0.000 0.280 1 1 10 9
3 0.60 0.250 0.150 1 1 14 12
4 0.47 0.250 0.280 1 1 6 5
5 0.66 0.125 0.215 1 1 13 9

Compare the RCB model for the five blend treatments
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yhi jk = γh + τi jk + εhi jk,

where the triples (i, j,k) only take on five distinct values, with the reduced regression
model

yhi jk = γh +β1x1i +β2x2 j +β3x3k + εhi jk.

Test lack of fit. Average over blends to do a whole plot analysis. Finally, do a split
plot analysis.



Chapter 12

Mixed Models and Variance Components

Traditionally, linear models have been divided into three categories: fixed effects
models, random effects models, and mixed models. The categorization depends on
whether the β vector in Y = Xβ + e is fixed, random, or has both fixed and random
elements. Random effects models always assume that there is a fixed overall mean
for observations, so random effects models are actually mixed.

Variance components are the variances of the random elements of β . Sections 1
through 3 discuss mixed models in general and prediction for mixed models. Sec-
tions 4 through 9 present methods of estimation for variance components. Section 10
examines exact tests for variance components. Section 11 uses the ideas of the chap-
ter to develop the interblock analysis for balanced incomplete block designs. Searle,
Casella, and McCulloch (1992) give an extensive discussion of variance component
estimation. Khuri, Mathew, and Sinha (1998) give an extensive discussion of testing
in mixed models.

The methods considered in this chapter are presented in terms of fitting general
linear models. In many special cases, considerable simplification results. For exam-
ple, the RCB models of (11.1.5) and Exercise 11.4, the split plot model (11.3.1), and
the subsampling model (11.4.2) are all mixed models with very special structures.

12.1 Mixed Models

The mixed model is a linear model in which some of the parameters, instead of being
fixed effects, are random. The model can be written

Y = Xβ +Zγ + e, (1)

where X and Z are known matrices, β is an unobservable vector of fixed effects,
and γ is an unobservable vector of random effects with E(γ) = 0, Cov(γ) = D, and
Cov(γ ,e) = 0. Let Cov(e) = R.
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For estimation of the fixed effects β , the mixed model can be written as a general
Gauss–Markov model. Write

V = Cov(Y ) = Cov(Zγ + e) = ZDZ′ +R.

V is assumed to be nonsingular. Model (1) is equivalent to

Y = Xβ +ξ , E(ξ ) = 0, Cov(ξ ) = V.

The BLUE of Xβ can be found using the theory for general Gauss–Markov mod-
els. Unfortunately, finding the BLUE requires knowledge (at least up to a constant
multiple) of V . This is rarely available. Currently, the best procedure available for
estimating Xβ is to estimate V and then act as if the estimate is the real value of V .
In other words, if V is estimated with V̂ , then Xβ is estimated with

X β̂ = X
[
X ′V̂−1X

]−
X ′V̂−1Y. (2)

If V̂ is close to V , then the estimate of Xβ should be close to the BLUE of Xβ .
Corresponding standard errors will tend to be underestimated, cf. Eaton (1985),
Harville (1985), or Christensen (2001, Section 6.5).

Estimation of V is obviously crucial for the estimation of the fixed effects. It is
also frequently of interest in its own right. Estimation of V is indirectly referred to
as variance component estimation. We discuss several approaches to the problem of
estimating V .

If γ were a fixed effect, we would be interested in estimating estimable functions
like λ ′γ . Since γ is random, we cannot estimate λ ′γ , but we can predict λ ′γ from the
observable vector Y . The theory of Subsection 6.3.4 provides a best linear predictor,
but requires knowledge of E(λ ′γ), Cov(λ ′γ ,Y ), E(Y ), and Cov(Y ). We know that
E(λ ′γ) = 0. As will be seen in Section 2, if we assume that D and R are known,
our only problem in predicting λ ′γ is not knowing E(Y ) = Xβ . We will not be able
to find a best linear predictor, but we will find the best linear unbiased predictor
(BLUP) of λ ′γ . Of course, D and R are not known, but we will have a theory for
prediction of λ ′γ that is the equivalent of BLUE estimation. With good estimates of
D and R provided by variance component techniques, we can get predictions of λ ′γ
that are close to the BLUP.

Sometimes we would like to obtain an estimate of Xβ without going to the trou-
ble and expense of finding V−1, which is needed to apply equation (2). One simple
estimate is the least squares estimate, MY . This gives an unbiased estimate of Xβ ,
but ignores the existence of the random effects. An alternative method is to fit the
model

Y = Xβ +Zδ +Zγ + e, R = σ2I, (3)

where δ is a vector of fixed effects corresponding to the vector of random effects γ .
In model (3), there is no hope of estimating variance components because the fixed
effects δ and the random effects γ are completely confounded. However, it is easily
seen that C(V [X ,Z]) ⊂ C(X ,Z), so by Theorem 10.4.5, least squares estimates are
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BLUEs in model (3). To see that C(V [X ,Z]) ⊂C(X ,Z), observe that

C(V [X ,Z]) = C({σ 2I +ZDZ′}[X ,Z])
= C(σ 2X +ZDZ′X ,σ 2Z +ZDZ′Z)
⊂ C(X ,Z).

From Chapter 9, a least squares estimate of β is

β̂ =
[
X ′(I −MZ)X

]− X ′(I −MZ)Y, (4)

where MZ = Z(Z′Z)−Z′. Although estimates obtained using (4) are not typically
BLUEs for model (1), since model (3) is a larger model than model (1), the estimates
should be reasonable. The only serious problem with using equation (4) is that it is
not clear which functions of β are estimable in model (3).

12.2 Best Linear Unbiased Prediction

In this section we consider the general theory of best linear unbiased prediction. In a
series of examples, this theory will be used to examine prediction in standard linear
model theory, Kriging of spatial data, and prediction of random effects in mixed
models. The placement of this section in Chapter 12 is obviously based on the last
of these applications.

Consider a set of random variables yi, i = 0,1, . . . ,n. We want to use y1, . . . ,yn to
predict y0. Let Y = (y1, . . . ,yn)′. In Section 6.3 it was shown that the best predictor
(BP) of y0 is E(y0|Y ). Typically, the joint distribution of y0 and Y is not available,
so E(y0|Y ) cannot be found. However, if the means and covariances of the yis are
available, then we can find the best linear predictor (BLP) of y0. Let Cov(Y ) =
V , Cov(Y,y0) = Vy0, E(yi) = μi, i = 0,1, . . . ,n, and μ = (μ1, . . . ,μn)′. Again from
Subsection 6.3.4, the BLP of y0 is

Ê(y0|Y ) ≡ μ0 +δ ′
∗(Y −μ), (1)

where δ∗ satisfies Vδ∗ = Vy0.
We now want to weaken the assumption that μ and μ0 are known. Since the

prediction is based on Y and there are as many unknown parameters in μ as there
are observations in Y , we need to impose some structure on the mean vector μ before
we can generalize the theory. This will be done by specifying a linear model for Y .
Since y0 is being predicted and has not been observed, it is necessary either to know
μ0 or to know that μ0 is related to μ in a specified manner. In the theory below, it
will be assumed that μ0 is related to the linear model for Y .

Suppose that a vector of known concomitant variables x′i = (xi1, . . . ,xip) is as-
sociated with each random observation yi, i = 0, . . . ,n. We impose structure on the
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μis by assuming that μi = x′iβ for some vector of unknown parameters β and all
i = 0,1, . . . ,n.

We can now reset our notation in terms of linear model theory. Let

X =

⎡⎢⎣x′1
...

x′n

⎤⎥⎦ .

The observed vector Y satisfies the linear model

Y = Xβ + e, E(e) = 0, Cov(e) = V. (2)

With this additional structure, the BLP of y0 given in (1) becomes

Ê(y0|Y ) = x′0β +δ ′
∗(Y −Xβ ), (3)

where again Vδ∗ = Vy0.
The standard assumption that μ and μ0 are known now amounts to the assump-

tion that β is known. It is this assumption that we renounce. By weakening the
assumptions, we consequently weaken the predictor. If β is known, we can find the
best linear predictor. When β is unknown, we find the best linear unbiased predictor.

Before proceeding, a technical detail must be mentioned. To satisfy estimability
conditions, we need to assume that x′0 = ρ ′X for some vector ρ . Frequently, model
(2) will be a regression model, so choosing ρ ′ = x′0(X

′X)−1X ′ will suffice. In appli-
cations to mixed models, x′0 = 0, so ρ = 0 will suffice.

Definition 12.2.1. A predictor f (Y ) of y0 is said to be unbiased if

E[ f (Y )] = E(y0).

Definition 12.2.2. a0 +a′Y is a best linear unbiased predictor of y0 if a0 +a′Y
is unbiased and if, for any other unbiased predictor b0 +b′Y ,

E
[
y0 −a0 −a′Y

]2 ≤ E
[
y0 −b0 −b′Y

]2
.

Theorem 12.2.3. The best linear unbiased predictor of y0 is x′0β̂ +δ ′∗(Y −X β̂ ),
where Vδ∗ = Vy0 and X β̂ is a BLUE of Xβ .

PROOF. The technique of the proof is to change the prediction problem into an
estimation problem and then to use the theory of best linear unbiased estimation.
Consider an arbitrary linear unbiased predictor of y0, say b0 + b′Y . By Proposi-
tion 6.3.3,
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E[y0 −b0 −b′Y ]2 = E[y0 − Ê(y0|Y )]2 +E[Ê(y0|Y )−b0 −b′Y ]2;

so it is enough to find b0 +b′Y that minimizes E[Ê(y0|Y )−b0 −b′Y ]2.
From the definition of Ê(y0|Y ) and unbiasedness of b0 +b′Y , we have

0 = E[Ê(y0|Y )−b0 −b′Y ].

Substituting from equation (3) gives

0 = E[x′0β +δ ′
∗(Y −Xβ )−b0 −b′Y ].

This relationship holds if and only if b0 +(b−δ∗)′Y is a linear unbiased estimate of
x′0β −δ ′∗Xβ . By Proposition 2.1.9,

b0 = 0;

so the term we are trying to minimize is

E[Ê(y0|Y )−b0 −b′Y ]2 = E[(b−δ∗)′Y − (x′0β −δ ′
∗Xβ )]2

= Var
[
(b−δ∗)′Y

]
.

Because (b−δ∗)′Y is a linear unbiased estimate, to minimize the variance choose b
so that (b−δ∗)′Y = x′0β̂ −δ ′∗X β̂ is a BLUE of x′0β −δ ′∗Xβ . It follows that the best
linear unbiased predictor of y0 is

b′Y = x′0β̂ +δ ′
∗(Y −X β̂ ). �

It should not be overlooked that both β̂ and δ∗ depend crucially on V . When
all inverses exist, β̂ = (X ′V−1X)−1X ′V−1Y and δ∗ = V−1Vy0. However, this proof
remains valid when either inverse does not exist.

It is also of value to know the prediction variance of the BLUP. Let Var(y0) = σ 2
0 .

E
[
y0 − x′0β̂ −δ ′

∗(Y −X β̂ )
]2

= E
[
y0 − Ê(y0|Y )

]2 +E
[
Ê(y0|Y )− x′0β̂ −δ ′

∗(Y −X β̂ )
]2

= E
[
y0 − Ê(y0|Y )

]2 +Var
[
x′0β̂ −δ ′

∗X β̂
]

= σ 2
0 −V ′

y0V−Vy0 +(x′0 −δ ′
∗X)(X ′V−X)−(x0 −X ′δ∗),

or, writing the BLUP as b′Y , the prediction variance becomes

E
[
y0 −b′Y

]2 = σ 2
0 −2b′Vy0 +b′V b.

EXAMPLE 12.2.4. Prediction in Standard Linear Models.
Our usual linear model situation is that the yis have zero covariance and identical
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variances. Thus, model (2) is satisfied with V = σ 2I. A new observation y0 would
typically have zero covariance with the previous data, so Vy0 = 0. It follows that
δ∗ = 0 and the BLUP of y0 is x′0β̂ . This is just the BLUE of E(y0) = x′0β .

EXAMPLE 12.2.5. Spatial Data and Kriging.
If yi is an observation taken at some point in space, then x′i typically contains the
coordinates of the point. In dealing with spatial data, finding the BLUP is often
called Kriging. The real challenge with spatial data is getting some idea of the co-
variance matrices V and Vy0. See Christensen (2001) for a more detailed discussion
with additional references.

Exercise 12.1 Prove three facts about Kriging.
(a) If b′Y is the BLUP of y0 and if xi1 = 1, i = 0,1, . . . ,n, then b′J = 1.
(b) If (y0,x′0) = (yi,x′i) for some i ≥ 1, then the BLUP of y0 is just yi.
(c) If V is nonsingular and b′Y is the BLUP of y0, then there exists a vector γ

such that the following equation is satisfied:[
V X
X ′ 0

][
b
γ

]
=
[

Vy0
x0

]
.

Typically, this equation will have a unique solution.
Hint: Recall that x′0 = ρ ′X and that X(X ′V−1X)−X ′V−1 is a projection operator

onto C(X).

EXAMPLE 12.2.6. Mixed Model Prediction.
In the mixed model (12.1.1), we wish to find the BLUP of λ ′γ based on the data Y .
The vector λ can be any known vector. Note that E(λ ′γ) = 0; so we can let y0 = λ ′γ
and x′0 = 0. From Section 1, V = ZDZ′ +R and

Vy0 = Cov(Y,λ ′γ)
= Cov(Zγ + e,λ ′γ)
= Cov(Zγ ,λ ′γ)
= ZDλ .

The BLUP of λ ′γ is
δ ′
∗(Y −X β̂ ),

where X β̂ is the BLUE of Xβ and δ∗ satisfies (ZDZ′+R)δ∗ = ZDλ . The matrices X ,
Z, and λ are all known. As in Kriging, the practical challenge is to get some idea of
the covariance matrices. In this case, we need D and R. Estimates of D and R are one
byproduct of variance component estimation. Estimation of variance components is
discussed later in this chapter.

Exercise 12.2 If λ ′
1β is estimable, find the best linear unbiased predictor of
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λ ′
1β + λ ′

2γ . For this problem, b0 + b′Y is unbiased if E(b0 + b′Y ) = E(λ ′
1β +λ ′

2γ).
The best predictor minimizes E[b0 +b′Y −λ ′

1β −λ ′
2γ]2.

Exercise 12.3 Assuming the results of Exercise 6.3, show that the BLUP of the
random vector Λ ′γ is Q′(Y −X β̂ ), where V Q = ZDΛ .

12.3 Mixed Model Equations

We now develop the well-known mixed model equations. These equations are sim-
ilar in spirit to normal equations; however, the mixed model equations simultane-
ously provide BLUEs and BLUPs.

Suppose that R is nonsingular. If γ were not random, the normal equations for
model (12.1.1) would be[

X ′
Z′

]
R−1[X ,Z]

[
β
γ

]
=
[

X ′
Z′

]
R−1Y

or [
X ′R−1X X ′R−1Z
Z′R−1X Z′R−1Z

][
β
γ

]
=
[

X ′R−1Y
Z′R−1Y

]
.

For D nonsingular, the mixed model equations are defined as[
X ′R−1X X ′R−1Z
Z′R−1X D−1 +Z′R−1Z

][
β
γ

]
=
[

X ′R−1Y
Z′R−1Y

]
. (1)

Theorem 12.3.1. If [β̂ ′, γ̂ ′] is a solution to the mixed model equations, then X β̂
is a BLUE of Xβ and γ̂ is a BLUP of γ .

PROOF. From Section 2.8, X β̂ will be a BLUE of Xβ if β̂ is a solution to
X ′V−1Xβ = X ′V−1Y . To use this equation we need a form for V−1 in terms of
Z, D, and R:

V−1 = R−1 −R−1Z
[
D−1 +Z′R−1Z

]−1
Z′R−1.

This follows from Theorem B.56.
If β̂ and γ̂ are solutions, then the second row of the mixed model equations gives

Z′R−1X β̂ +
[
D−1 +Z′R−1Z

]
γ̂ = Z′R−1Y

or
γ̂ =
[
D−1 +Z′R−1Z

]−1
Z′R−1(Y −X β̂ ). (2)

The first row of the equations is

X ′R−1X β̂ +X ′R−1Zγ̂ = X ′R−1Y.
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Substituting for γ̂ gives

X ′R−1X β̂ +X ′R−1Z
[
D−1 +Z′R−1Z

]−1
Z′R−1(Y −X β̂ ) = X ′R−1Y

or

X ′R−1X β̂ −X ′R−1Z
[
D−1 +Z′R−1Z

]−1
Z′R−1X β̂

= X ′R−1Y −X ′R−1Z
[
D−1 +Z′R−1Z

]−1
Z′R−1Y,

which is X ′V−1X β̂ = X ′V−1Y . Thus, β̂ is a generalized least squares solution and
X β̂ is a BLUE.

γ̂ in (2) can be rewritten as

γ̂ =
(
D
[
D−1 +Z′R−1Z

]−DZ′R−1Z
)[

D−1 +Z′R−1Z
]−1

Z′R−1(Y −X β̂)

=
(

DZ′R−1 −DZ′R−1Z
[
D−1 +Z′R−1Z

]−1
Z′R−1

)
(Y −X β̂ )

= DZ′V−1(Y −X β̂ ),

which is the BLUP of γ from Exercise 12.3, taking Q = V−1ZD. �

The mixed model equations’ primary usefulness is that they are relatively easy
to solve. Finding the solution to

X ′V−1Xβ = X ′V−1Y

requires inversion of the n×n matrix V . The mixed model equations[
X ′R−1X X ′R−1Z
Z′R−1X D−1 +Z′R−1Z

][
β
γ

]
=
[

X ′R−1Y
Z′R−1Y

]
require computation of two inverses, D−1, which is of the order of magnitude of
the number of random effects, and R−1, which generally is taken to be a diagonal
matrix. If there are many observations relative to the number of random effects, it is
easier to solve the mixed model equations. Of course, using Theorem B.56 to obtain
V−1 for the generalized normal equations accomplishes the same thing.

An equivalent form of the mixed model equations that does not require D to be
nonsingular is [

X ′R−1X X ′R−1ZD
Z′R−1X I +Z′R−1ZD

][
β
ξ

]
=
[

X ′R−1Y
Z′R−1Y

]
. (3)

Solutions β̂ , ξ̂ have X β̂ a BLUE of Xβ and Dξ̂ = γ̂ a BLUP of γ̂ .

Exercise 12.4 Even when D is singular, equation (3) has an advantage over
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equation (1) in that equation (3) does not require D−1. Show that equations (1) and
(3) are equivalent when D is nonsingular.

The mixed model equations can also be arrived at from a Bayesian argument.
Consider the model

Y = Xβ +Zγ + e, e ∼ N(0,R),

and, as discussed in Section 2.9, incorporate partial prior information in the form

γ ∼ N(0,D),

where D is again assumed to be nonsingular. A minor generalization of equation
(2.9.3) allows the data Y to have an arbitrary nonsingular covariance matrix, so the
Bayesian analysis can be obtained from fitting the generalized least squares model[

Y
0

]
=
[

X Z
0 I

][
β
γ

]
+
[

e
ẽ

]
,

[
e
ẽ

]
∼ N
([

0n×1
0r×1

]
,

[
R 0
0 D

])
.

The generalized least squares estimates from this model will be the posterior means
of β and γ , respectively. However, the generalized least squares estimates can be
obtained from the corresponding normal equations, and the normal equations are
the mixed model equations (1).

12.4 Variance Component Estimation: Maximum Likelihood

Assume that Y ∼ N(Xβ ,V ) and that V is nonsingular, so that the density of Y exists.
In this chapter we write determinants as |V | ≡ det(V ). The density of Y is

(2π)−n/2|V |−1/2 exp
[−(Y −Xβ )′V−1(Y −Xβ )/2

]
,

where |V | denotes the determinant of V . (The earlier notation det(V ) becomes awk-
ward.) The log-likelihood is

L(Xβ ,V ) = −n
2

log(2π)− 1
2

log(|V |)− 1
2
(Y −Xβ )′V−1(Y −Xβ ).

For fixed V , this is maximized by minimizing (Y −Xβ )′V−1(Y −Xβ ). It follows
from Section 2.8 that, given the maximum likelihood estimate of V , the maximum
likelihood estimate of Xβ is obtained by treating the MLE of V as the true value of
V and taking the usual generalized least squares estimator of Xβ .

Finding the MLE of V is rather more involved. In general, R could involve
n(n + 1)/2 distinct parameters, and D could involve another q(q + 1)/2, where q
is the number of columns in Z. There is little hope of estimating that many pa-
rameters from n observations. We need to assume some additional structure for the
mixed model. Traditionally, variance component problems are analysis of variance
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problems with random rather than fixed effects. The levels of any particular effect
are assumed to be independent with the same variance. Different effects are al-
lowed different variances and are assumed independent. A natural generalization of
model (12.1.1) is to partition Z into, say, r submatrices. Write Z = [Z1,Z2, . . . ,Zr]
and γ ′ = [γ ′1,γ ′2, . . . ,γ ′r] with Cov(γi) = σ 2

i Iq(i) and, for i �= j, Cov(γi,γ j) = 0. The
notation q(i) is used to indicate the number of columns in Zi. Iq(i) is a q(i)× q(i)
identity matrix. The covariance matrix of γ is

D = Blk diag[σ 2
i Iq(i)].

As usual, assume R = σ2
0 In. With these conventions we can write

V = σ 2
0 In +

r

∑
i=1

σ 2
i ZiZ′

i =
r

∑
i=0

σ2
i ZiZ′

i ,

where we take Z0 ≡ I. This model is used for all the variance component estimation
methods that we will discuss.

To find the maximum likelihood estimates, take the partial derivatives of the log-
likelihood and set them equal to zero. To find these equations, several results on
matrix differentiation are needed.

Proposition 12.4.1.

(1) ∂ Ax
/

∂x = A.
(2) ∂ x′Ax

/
∂x = 2x′A.

(3) If A is a function of a scalar s,

∂A−1

∂ s
= −A−1 ∂A

∂ s
A−1.

(4) For V as above,

∂
∂σ 2

i
log |V | = tr

[
V−1 ∂V

∂σ2
i

]
= tr
(
V−1ZiZ′

i
)
.

PROOF. (1), (2), and (3) are standard results. (4) can be found in Searle et al.
(1992, p. 457). �

The partial derivatives of the log-likelihood are

∂L
∂β

= −β ′X ′V−1X +Y ′V−1X

∂ L
∂σ2

i
= −1

2
tr
(
V−1ZiZ′

i
)
+

1
2
(Y −Xβ )′V−1 ∂V

∂σ 2
i

V−1(Y −Xβ ),

i = 0, . . . ,r. Setting the partial derivatives equal to zero gives
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X ′V−1Xβ = X ′V−1Y

tr
(
V−1ZiZ′

i
)

= (Y −Xβ )′V−1ZiZ′
iV

−1(Y −Xβ ),

i = 0, . . . ,r. Generally, some sort of iterative computation procedure is required to
solve these equations. In particular, methods based on solving a system of linear
equations similar to those discussed in Section 6 can be used.

It is interesting to note that solving the likelihood equations also gives method
of moments (or estimating equation) estimates. The likelihood equations can be
viewed as setting

X ′V−1Y = E[X ′V−1Y ]

and for i = 0, . . . , r.

(Y −Xβ )′V−1ZiZ′
iV

−1(Y −Xβ ) = E[(Y −Xβ )′V−1ZiZ′
iV

−1(Y −Xβ )].

There are many questions about this technique. The MLEs may be solutions to
the equations with σ 2

i > 0 for all i, or they may not be solutions, but rather be on a
boundary of the parameter space. There may be solutions other than the maximum.
What are good computing techniques? These questions are beyond the scope of this
book.

EXAMPLE 12.4.2. Balanced One-Way ANOVA.
Let yi j = μ +αi + ei j, i = 1, . . . , t, j = 1, . . . ,N, with the αis independent N(0,σ 2

1 ),
the ei js independent N(0,σ 2

0 ), and the αis and ei js independent.
The matrix [X ,Z] for the general mixed model is just the model matrix from

Chapter 4, where X = J1
n , r = 1, and Z1 = Z = [X1, . . . ,Xt ]. As in Chapter 11,

V = σ 2
0 I +σ 2

1 ZZ′ = σ 2
0 I +Nσ 2

1 MZ ,

where MZ is the perpendicular projection matrix onto C(Z). The inverse of V is
easily seen to be

V−1 =
1

σ 2
0

[
I − Nσ 2

1
σ 2

0 +Nσ 2
1

MZ

]
,

cf. Proposition 12.11.1.
We can now find the estimates. It is easily seen that C(V X) ⊂ C(X), so least

squares estimates provide solutions to X ′V−1Xβ = X ′V−1Y . Simply put, μ̂ = ȳ··.
For i = 0, the likelihood equation is

tr(V−1) = (Y − μ̂J)′V−2(Y − μ̂J).

Observe that

V−1(Y − μ̂J) =
1

σ 2
0

[
I − Nσ 2

1

σ 2
0 +Nσ 2

1
MZ

](
I − 1

n
Jn

n

)
Y

=
1

σ 2
0

[(
I − 1

n
Jn

n

)
Y − Nσ 2

1

σ 2
0 +Nσ 2

1

(
MZ − 1

n
Jn

n

)
Y
]
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=
1

σ 2
0

[
(I −MZ)Y −

(
Nσ 2

1
σ2

0 +Nσ 2
1
−1
)(

MZ − 1
n

Jn
n

)
Y
]

=
1

σ 2
0

(I −MZ)Y − 1
σ 2

0 +Nσ 2
1

(
MZ − 1

n
Jn

n

)
Y.

Thus, evaluating tr(V−1) on the lefthand side and computing the squared length on
the righthand side leads to the equation

Nt[σ 2
0 +(N −1)σ 2

1 ]
σ 2

0 (σ2
0 +Nσ 2

1 )
=

SSE
σ 4

0
+

SSTrts
(σ2

0 +Nσ 2
1 )2 . (1)

For i = 1, the likelihood equation is

tr(V−1ZZ′) = (Y − μ̂J)′V−1ZZ′V−1(Y − μ̂J). (2)

Using ZZ′ = N MZ and the characterization of V−1(Y − μ̂J), the righthand side of
(2) can be written

(Y − μ̂J)′V−1ZZ′V−1(Y − μ̂J) = N(Y − μ̂J)′V−1MZV−1(Y − μ̂J)

=
N(

σ 2
0 +Nσ 2

1

)2 Y ′
(

MZ − 1
n

Jn
n

)
Y

=
N SSTrts(

σ 2
0 +Nσ 2

1
)2 .

To evaluate the lefthand side of (2), note that

tr(V−1ZZ′) = tr
{

1
σ 2

0

[
I − Nσ 2

1
σ 2

0 +Nσ 2
1

MZ

]
N MZ

}
=

N
σ 2

0
tr
[

MZ − Nσ 2
1

σ 2
0 +Nσ 2

1
MZ

]
=

N
σ 2

0

σ2
0

σ 2
0 +Nσ2

1
tr(MZ)

=
Nt

σ 2
0 +Nσ 2

1
.

Equation (2) becomes
Nt

σ 2
0 +Nσ 2

1
=

N SSTrts(
σ 2

0 +Nσ 2
1

)2
or

σ 2
0 +Nσ 2

1 = SSTrts
/

t. (3)

Substituting equation (3) into equation (1) and multiplying through by σ4
0 gives
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Ntσ 2
0 [σ 2

0 +(N −1)σ 2
1 ]

(σ 2
0 +Nσ 2

1 )
= SSE +

tσ 4
0

(σ 2
0 +Nσ 2

1 )

or
t(N −1)σ 2

0 = SSE.

The maximum likelihood estimates appear to be σ̂ 2
0 = MSE and σ̂2

1 = [(σ̂ 2
0 +

Nσ̂2
1 )− σ̂ 2

0 ]/N = [SSTrts/t −MSE]/N. However, this is true only if SSTrts/t −
MSE > 0. Otherwise, the maximum is on a boundary, so σ̂ 2

1 = 0 and σ̂2
0 = SSE/tN.

The maximum likelihood procedure tends to ignore the fact that mean parameters
are being fitted. In the one-way ANOVA example, the estimate of σ 2

0 + Nσ 2
1 was

SSTrts/t instead of the unbiased estimate MSTrts. No correction was included for
fitting the parameter μ . To avoid this, one can perform maximum likelihood on the
residuals, the subject of Section 6.

12.5 Maximum Likelihood Estimation for Singular Normal

Distributions

Maximum likelihood estimation involves maximizing the joint density of the obser-
vations over the possible values of the parameters. This assumes the existence of a
density. A density cannot exist if the covariance matrix of the observations is sin-
gular, as is the case with residuals. We consider an approach that allows maximum
likelihood estimation and show some uniqueness properties of the approach.

Suppose Y is a random vector in Rn, E(Y ) = μ , Cov(Y ) = V . If r(V ) = r < n,
then, as seen in Lemma 1.3.5, Pr[(Y − μ) ∈ C(V )] = 1 and Y − μ is restricted to
an r-dimensional subspace of Rn. It is this restriction of Y − μ to a subspace of Rn

(with Lesbesgue measure zero) that causes the nonexistence of the density. We seek
a linear transformation from Rn to Rr that will admit a density for the transformed
random vector. The linear transformation should not lose any information and the
MLEs should, in some sense, be the unique MLEs.

Suppose we pick an n× r matrix B with C(B) = C(V ). B′Y together with a non-
random function of Y can reconstruct Y with probability 1. Let MV be the per-
pendicular projection operator onto C(V ), then Y = MVY + (I − MV )Y . MVY =
B(B′B)−1B′Y is a function of B′Y while (I−MV )Y = (I−MV )μ with probability 1,
because Cov[(I −MV )Y ] = (I −MV )V (I −MV ) = 0.

We would also like to see that Cov(B′Y ) = B′V B is nonsingular, so that a density
can exist. Since C(B) = C(V ) and V is symmetric, V = BT B′ for some symmetric
matrix T . If T is nonsingular, then B′V B = (B′B)T (B′B) is nonsingular, because
both T and B′B are nonsingular. We now show that T is nonsingular. Suppose T is
singular. Then there exists d ∈Rr, d �= 0, so that T d = 0. Since r(B) = r, there exists
b �= 0 such that d = B′b. Because B′b = B′MV b, we can assume that b ∈C(V ). Now,
V b = BT B′b = BT d = 0. However, for b ∈C(V ), V b = 0 can only happen if b = 0,
which is a contradiction.
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As mentioned earlier, there is little hope of estimating the entire matrix V . A
more manageable problem is to assume that V is a function of a parameter vector θ .
It should also be clear that in order to transform to a nonsingular random variable,
we will need to know C(V ). This forces us to assume that C(V (θ )) does not depend
on θ .

Suppose now that Y ∼ N(μ ,V (θ)); then B′Y ∼ N(B′μ ,B′V (θ )B). The density of
B′Y is

f (B′Y |μ ,θ )

=
1

(2π)
r
2

1

|B′V (θ)B| 1
2

exp[−(B′Y −B′μ)′[B′V (θ )B]−1(B′Y −B′μ)/2]

= (2π)−r/2|B|−1|V (θ )|−1/2 exp[−(Y −μ)′B[B′V (θ)B]−1B′(Y −μ)/2].

The MLEs are obtained by maximizing this with respect to μ and θ . A direct conse-
quence of Proposition 12.5.1 below is that maximization of f (B′Y ) does not depend
on the choice of B.

Proposition 12.5.1. If B and B0 are two n× r matrices of rank r and C(B) =
C(B0), then

(1) for some scalar k, k|B′V B| = |B′
0V B0|;

(2) B[B′V B]−1B′ = B0[B′
0V B0]−1B′

0 when the inverses exist.

PROOF. Since C(B) = C(B0) and both are full rank, B0 = BK for some nonsingu-
lar K.

(1) |B′
0V B0| = |K′B′V BK| = |K|2|B′V B|. Take k = |K|2.

(2) B0[B′
0V B0]−1B′

0 = BK[K′B′V BK]−1K′B′

= BKK−1[B′V B]−1(K′)−1K′B′

= B[B′V B]−1B′. �

Corollary 12.5.2. f (B′Y |μ,θ) = k−1/2 f (B′
0Y |μ ,θ).

12.6 Variance Component Estimation: REML

Restricted (or residual) maximum likelihood (REML) estimation involves finding
maximum likelihood estimates of variance components from the distribution of the
residuals. This allows for estimation of the variance components without the com-
plication of the fixed effects. An apparent problem is that of defining the residuals,
since V is unknown. We show that any reasonable definition gives the same answers.
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Consider the model of Section 4,

Y = Xβ +ξ , ξ ∼ N(0,V (θ)),

θ = (σ 2
0 , . . . ,σ 2

r )′, V (θ) = ∑r
i=0 σ2

i ZiZ′
i . As discussed in Section 10.2, the only rea-

sonable linear unbiased estimates of Xβ are of the form AY , where A is some projec-
tion operator onto C(X). The residuals can be defined as (I −A)Y . The distribution
of the residuals is

(I −A)Y ∼ N(0,(I −A)V (θ )(I −A)′).

V (θ ) is assumed nonsingular in the mixed model, so C((I − A)V (θ )(I − A)′) =
C(I −A). Let r(X) ≡ s; so r(I −A) = n− s. For an n× s matrix B with C(B) =
C(I −A), the MLE of θ maximizes

f (B′(I −A)Y |θ) = (2π)−(n−s)/2|B′(I −A)V (θ)(I −A)′B|−1/2

×exp[−Y ′(I −A)′B[B′(I −A)V (θ )(I −A)′B]−1B′(I −A)Y/2].

We will show that this depends on neither A nor B by showing that C[(I −A)′B] =
C(X)⊥ and appealing to Section 5.

Proposition 12.6.1. C((I −A)′B) = C(X)⊥.

PROOF. Clearly, B′(I −A)X = 0, so C((I −A)′B) ⊂ C(X)⊥. The rank of C(X)⊥
is n− s, so it is enough to show that the rank of (I −A)′B is n− s. Since (I −A)′B
is an n× (n− s) matrix it is enough to show that for any d ∈ Rn−s, (I −A)′Bd = 0
implies d = 0. Since C(I−A) = C(B), Bd = (I −A)c for some c. If (I −A)′Bd = 0,
then c(I −A)′Bd = d′B′Bd = 0; so Bd = 0. Since B is an n× (n− s) matrix of full
column rank, d = 0. �

Frequently, REML is defined as maximum likelihood estimation from B′Y , where
r(B) = n− s and B′X = 0. This definition is equivalent to the one used here. Choose
A = M. Then I −M is the perpendicular projection operator onto C(X)⊥. Since for
any choice of B in this alternative definition, r(B) = n− s and B′X = 0, we have
C(B) = C(X)⊥, and the B from this alternative definition also works in the origi-
nal definition. The procedure presented here dictates doing maximum likelihood on
B′(I −M)Y = B′Y . We will assume henceforth that r(B) = n− s and B′X = 0.

As in Section 4, setting the partial derivatives to zero determines the likelihood
equations

tr[(B′V B)−1B′ZiZ′
iB] = Y ′B(B′V B)−1B′ZiZ′

iB(B′V B)−1B′Y, (1)

i = 0,1, . . . ,r. These can be written in a particularly nice form. To do this, we need
some results on projection operators. Recall that if A is idempotent, then A is the
projection operator onto C(A) along C(A′)⊥. The rank of A is s, so r(C(A′)⊥) is
n− s. Moreover, for any w, w ∈C(A′)⊥ if and only if Aw = 0. To show that A is the
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projection operator onto M along N for two spaces M and N , it is enough to
show that 1) for v ∈ M , Av = v; 2) for w ∈ N , Aw = 0, and 3) r(M )+ r(N ) = n.

Lemma 12.6.2. Let A0 = X(X ′V−1X)−X ′V−1. Then I − A0 is the projection
operator onto C(V B) along C(X).

PROOF. Since C(B) = C(X)⊥ and V is nonsingular, r(V B) = n− s = r(I −A0).
Also, (I −A0)V B = V B−X(X ′V−1X)−X ′B = V B, so I −A0 is a projection onto
C(V B). It is along C(X) because r(X) = s and (I −A0)X = X −X = 0. �

Lemma 12.6.3. V B(B′V B)−1B′ is the projection operator onto C(V B) along
C(X).

PROOF. V B(B′V B)−1B′ = V B[(B′V )V−1(V B)]−1(B′V )V−1 is a projection onto
C(V B). Since C(B) = C(X)⊥, V B(B′V B)−1B′X = 0. Moreover, r(V B) = n− s and
r(X) = s. �

It follows from the lemmas that (I − A0) = V B(B′V B)−1B′ and that V−1(I −
A0) = B(B′V B)−1B′. Observing that tr[(B′V B)−1B′ZiZ′

iB] = tr[B(B′V B)−1B′ZiZ′
i ],

(1) can be rewritten as

tr[V−1(I −A0)ZiZ′
i ] = Y ′(I −A0)′V−1ZiZ′

iV
−1(I −A0)Y,

i = 0,1, . . . ,r, where (I −A0)Y are the residuals from the BLUE of Xβ , i.e., (I −
A0)Y = Y −X β̂ .

As in Section 4, the REML equations can also be viewed as method of moments
(estimating equation) methods because they involve setting a series of quadratic
forms equal to their expectations. In particular, the REML equations involve setting

Y ′(I −A0)′V−1ZiZ′
iV

−1(I −A0)Y = E[Y ′(I −A0)′V−1ZiZ′
iV

−1(I −A0)Y ]

for i = 0,1, . . . ,r. To see this observe that

E[Y ′(I −A0)′V−1ZiZ′
iV

−1(I −A0)Y ] = tr[(I −A0)′V−1ZiZ′
iV

−1(I −A0)V ]
= tr[V−1(I −A0)V (I −A0)′V−1ZiZ′

i ]
= tr[V−1(I −A0)VV−1(I −A0)ZiZ′

i ]
= tr[V−1(I −A0)(I −A0)ZiZ′

i ]
= tr[V−1(I −A0)ZiZ′

i ].

To solve the REML equations, it is useful to write

tr[V−1(I −A0)ZiZ′
i ] = tr[(I −A0)′V−1ZiZ′

iV
−1(I −A0)V ]

= tr[V (I −A0)′V−1ZiZ′
iV

−1(I −A0)]
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= tr

[(
r

∑
j=0

σ 2
j Z jZ′

j

)
(I −A0)′V−1ZiZ′

iV
−1(I −A0)

]

=
r

∑
j=0

σ 2
j tr
[
ZjZ′

j(I −A0)′V−1ZiZ′
iV

−1(I −A0)
]
.

The equations for finding the REML estimates can now be written

r

∑
j=0

σ 2
j tr
[
ZjZ′

jV
−1(I −A0)ZiZ′

iV
−1(I −A0)

]
= Y ′(I −A0)′V−1ZiZ′

iV
−1(I −A0)Y,

i = 0, . . . ,r. Since V is unknown, typically an initial guess for V will be made and
estimates of the σ 2

i will be computed as the solution to the system of linear equa-
tions. These estimates of the variance components determine a new estimate of V
that can be used to get updated values of the σ 2

i s. This iterative procedure is repeated
until the σ 2

i s converge. Since the equations are linear, solutions are easy to find. As
mentioned in Section 4, similar methods can be used to find unrestricted MLEs. In
fact, this only involves removing the terms (I −A0) from the traces.

Exercise 12.5 Consider the model Y = Xβ + e, e ∼ N(0,σ2I). Show that the
MSE is the REML estimate of σ 2.

12.7 Variance Component Estimation: MINQUE

MINQUE is short for minimum norm quadratic unbiased (translation invariant)
estimation. Attention is restricted to estimates that are translation invariant unbiased
quadratic forms in the observations.

Translation invariant means that a quadratic form, say Y ′BY , has the property
that (Y + Xδ )′B(Y + Xδ ) = Y ′BY for all Y and δ . This simplifies to −2Y ′BXδ =
δ ′X ′BXδ for all Y and δ . In particular, δ ′X ′BXδ =−2E(Y )′BXδ =−2β ′X ′BXδ for
all β and δ . It follows that X ′BX = 0. Combining this with δ ′X ′BXδ = −2Y ′BXδ
implies that Y ′BXδ = 0 for all Y and δ . This can occur only if BX = 0. Conversely,
if BX = 0, then Y ′BY is translation invariant.

As seen in Appendix B, Y ′BY = Vec(B)′[Y ⊗Y ], which is a linear function of
[Y ⊗Y ]. An alternative approach to variance component estimation involves fitting
linear models to the vector [Y ⊗Y ], cf. Searle et al. (1992, Chapter 12) or Christensen
(1993). In this section we use a somewhat less appealing but more elementary ap-
proach.

Minimum norm estimation considers unobservable “natural estimates” of the pa-
rameters σ 2

0 , . . . ,σ 2
r , and seeks real estimates of σ 2

0 , . . . ,σ 2
r that are closest to the

“natural” estimates. “Closest” could be defined by minimizing the distance between
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the vectors. Distance can be the usual Euclidean distance or some distance function
that puts weights on the different dimensions of the vectors. A distance function is
defined by a norm; hence the name “minimum norm.”

Writing the model of Section 4 as

Y = Xβ +[Z1, . . . ,Zr]

⎡⎢⎣γ1
...

γr

⎤⎥⎦+ e,

with e = (e1, . . . ,en)′ and γ j = (γ j1, . . . ,γ jq( j))′. The “natural estimate” of σ 2
0 is

∑n
i=1 e2

i /n = e′e/n, and a “natural estimate” of σ 2
j is ∑q( j)

i=1 γ2
ji/q( j) = γ ′jγ j/q( j). As

a notational convenience, let γ0 ≡ e.
Suppose now that we want to estimate ∑r

i=0 piσ2
i with an unbiased transla-

tion invariant quadratic form Y ′BY . Because it is translation invariant, Y ′BY =
(Y −Xβ )′B(Y −Xβ ) = ∑r

i=0 ∑r
j=0 γ ′i Z′

iBZ jγ j. To investigate unbiasedness, note that
E(γ ′i Z′

iBZ jγ j) = E[tr(Z′
iBZ jγ jγ ′i )] = tr[E(Z′

iBZ jγ jγ ′i )] = tr[Z′
iBZ jCov(γ j,γi)]. If i = j,

Cov(γi,γ j) = σ 2
i Iq(i), If i �= j, Cov(γi,γ j) = 0; so E(Y ′BY ) = ∑r

i=0 σ 2
i tr(Z′

iBZi). Un-
biasedness requires tr(Z′

iBZi) = pi. The quadratic form Y ′BY is using “estimates”
γ ′i Z′

iBZiγi/pi for σ 2
i and “estimates” γ ′i Z′

iBZ jγ j for zero. Unfortunately, estimation
procedures cannot depend on the unobservable γis.

It is reasonable to pick B to minimize

r

∑
i=0

w2
i [γ

′
i Z

′
iBZiγi − γ ′i γi(pi/q(i))]2 + ∑

i �= j
wiw j[γ ′i Z

′
iBZ jγ j]2.

This is a weighted distance between the “natural estimates” of the piσ2
i s and the

“estimates” of the piσ 2
i s implied by the use of Y ′BY , plus a weighted distance be-

tween the covariances, which are zero, and the “estimates” of them from Y ′BY .
The weights, the wis, are assumed to be fixed numbers supplied by the user. Un-
fortunately, without knowing the γis, this distance cannot be minimized. MINQUE
instead minimizes

r

∑
i=0

tr(w2
i [Z

′
iBZi − (pi/q(i))I]2)+ ∑

i�= j
tr(wiw j[Z′

iBZ j][Z′
jBZi]).

This can be simplified somewhat. Since tr(Z′
iBZi) = pi,

tr(w2
i [Z

′
iBZi − (pi/q(i))I]2) = tr(w2

i [(Z
′
iBZi)2 −2Z′

iBZi(pi/q(i))+(pi/q(i))2I])
= tr(w2

i (Z
′
iBZi)2)−2w2

i p2
i /q(i)+w2

i p2
i /q(i)

= tr(w2
i (Z

′
iBZi)2)−w2

i p2
i /q(i).

Only the term tr(w2
i (Z

′
iBZi)2) involves B. Therefore, the MINQUE estimate mini-

mizes
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r

∑
i=0

r

∑
j=0

tr(wiwj[Z′
iBZ j][Z′

jBZi])

with respect to B, subject to the conditions that tr(Z′
iBZi) = pi and BX = 0. (B is

assumed to be symmetric.)
Define Vw = ∑r

i=0 wiZiZ′
i and Aw = X(X ′V−1

w X)−X ′V−1
w . With this notation the

MINQUE is minimizing tr[(BVw)2] subject to tr(Z′
iBZi) = pi and BX = 0. Rao

(1971) has shown that the MINQUE estimate is Y ′B0Y , where

B0 =
r

∑
i=0

λi(I −Aw)′V−1
w ZiZ′

iV
−1
w (I −Aw), (1)

and where λ0, . . . ,λr are defined as solutions to the set of equations

r

∑
j=0

λ jtr[Z jZ′
jV

−1
w (I −Aw)ZiZ′

iV
−1
w (I −Aw)] = pi, (2)

i = 0, . . . ,r. Setting Y ′B0Y equal to ∑r
j=0 p jσ̂ 2

j and substituting for B0 and pi with
(1) and (2), we can obtain estimates of the σ 2

i s.

r

∑
i=0

λiY ′(I −Aw)′V−1
w ZiZ′

iV
−1
w (I −Aw)Y = Y ′B0Y =

r

∑
i=0

piσ̂ 2
i

=
r

∑
i=0

σ̂ 2
i

r

∑
j=0

λ jtr[Z jZ′
jV

−1
w (I −Aw)ZiZ′

iV
−1
w (I −Aw)].

Changing the order of summation on the last term, one sees that for any set of pis,
estimates can be obtained by solving

r

∑
j=0

σ̂ 2
j tr[ZjZ′

jV
−1
w (I −Aw)ZiZ′

iV
−1
w (I −Aw)]

= Y ′(I −Aw)′V−1
w ZiZ′

iV
−1
w (I −Aw)Y

for i = 0, . . . ,r.
These equations are precisely the REML equations with Vw and Aw substituted

for V and A. MINQUE estimates with Vw = V are REML estimates. The key differ-
ence in the methods is that Vw is a known matrix, whereas V is unknown.

If one finds the MINQUE estimates and then uses those estimates as weights
in another round of MINQUE estimation, one has an iterative procedure that will
eventually give REML estimates.

As mentioned, the choice of weights for MINQUE estimation is up to the user.
A frequently used choice of weights is wi = 1 for all i. This is the Euclidean norm.
A very convenient set of weights is w0 = 1, wi = 0 for all i �= 0. These are con-
venient in that with these weights, Vw = I and Aw = M, the perpendicular projec-
tion matrix onto C(X). The estimates obtained from these weights are often called
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MINQUE(0) estimates and are sometimes called MIVQUE(0) estimates (see Sec-
tion 8). Another possibility is to use an inexpensive estimation technique such as
Henderson’s Method 3 to obtain estimates σ̂ 2

i , i = 0, . . . ,r. The weights can be taken
as wi = σ̂ 2

i . The point of this adaptive method seems to be that the MINQUE esti-
mates should then be very close to the REML estimates. In other words, with good
initial weights, repeated iteration to the REML estimates should be unnecessary.
One iteration may well do the job.

12.8 Variance Component Estimation: MIVQUE

MIVQUE is minimum variance quadratic unbiased (translation invariant) estima-
tion. MIVQUE, like the maximum likelihood and REML procedures, and unlike
MINQUE, assumes that Y has a normal distribution. We need to know the variance
of a quadratic form.

Theorem 12.8.1. Suppose Y ∼N(μ,V ) and V is nonsingular. Then Var(Y ′BY ) =
2tr
[
(BV )2

]
+4μ ′BV Bμ .

PROOF. See Searle (1971, Section 2.5). �

Since we are considering translation invariant quadratic forms Y ′BY , we have
Var(Y ′BY ) = 2tr

[
(BV )2

]
.

If Y ′B0Y is to be the minimum variance quadratic unbiased translation invariant
estimate of ∑r

i=0 piσ 2
i , then Y ′B0Y must minimize tr

[
(BV )2

]
subject to BX = 0 and

tr(Z′
iBZi) = pi. This is precisely the condition for getting a MINQUE estimate when

Vw = V .
Unfortunately, it is virtually impossible to find MIVQUE estimates. In order to

find B, one must minimize tr
[
(BV )2]. To do the minimization, one needs to know

V . It is difficult for me to imagine a situation in which V would be known, yet not
provide information about the variance components.

In practice, one can guess at V , find an appropriate MIVQUE matrix B based
on the guess, obtain a new estimate of V , and repeat the procedure using the new
V as the guess of V . This procedure should give something close to a MIVQUE,
but it will not be exact. Because of the iterations involved, the estimates will not
typically be quadratic unbiased translation invariant estimates. On the other hand,
these iterated MIVQUE estimates can be viewed as iterated MINQUE estimates.
Thus, they are precisely the REML estimates.
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12.9 Variance Component Estimation: Henderson’s Method 3

Long before the development of the other methods described, Henderson (1953)
presented a way of obtaining unbiased method of moment estimates of variance
components. Suppose we want to estimate σ 2

r . (The choice of σ 2
r is for convenience

only. The technique applies to estimating any of σ 2
1 to σ 2

r .) Let P be the perpendic-
ular projection operator onto C(X ,Z1, . . . ,Zr) and P0 the perpendicular projection
operator onto C(X ,Z1, . . . ,Zr−1). The expected value of Y ′(P−P0)Y is

E[Y ′(P−P0)Y ] = tr[(P−P0)V ]+β ′X ′(P−P0)Xβ .

Since C(X) ⊂ C(P0) ⊂ C(P), (P−P0)X = 0 and β ′X ′(P−P0)Xβ = 0. Rewriting
(P−P0)V gives

(P−P0)V = (P−P0)σ 2
0 +

r

∑
i=1

σ 2
i (P−P0)ZiZ′

i

= (P−P0)σ 2
0 +(P−P0)ZrZ′

rσ2
r ,

because (P−P0)Zi = 0 for i = 1, . . . ,r−1. It follows that

E[Y ′(P−P0)Y ] = tr
[
(P−P0)σ 2

0 +(P−P0)ZrZ′
rσ

2
r
]

(1)

= σ 2
0 tr(P−P0)+σ2

r tr
[
(P−P0)ZrZ′

r
]
.

A similar argument shows that

E[Y ′(I −P)Y ] = σ 2
0 tr(I −P).

An unbiased estimate of σ 2
0 is

σ̂ 2
0 = [Y ′(I −P)Y ]

/
tr(I −P). (2)

From (1) and (2), an unbiased estimate of σ2
r is

σ̂2
r = [Y ′(P−P0)Y − σ̂ 2

0 tr(P−P0)]
/

tr
[
(P−P0)ZrZ′

r
]
, (3)

provided that P �= P0.
Henderson’s Method 3 has no known (to me) optimality properties. Henderson

himself recommended the use of other techniques. Method 3’s greatest advantage is
that it is easy to compute. It uses standard techniques from fitting linear models by
least squares, except that it requires the computation of tr[(P−P0)ZrZ′

r]. Even this
can be computed using standard techniques. Note that

tr
[
(P−P0)ZrZ′

r
]
= tr
[
Z′

r(P−P0)Zr
]
= tr
[
Z′

r(I −P0)Zr
]
.

Write Zr =
[
Z1

r ,Z2
r , . . . ,Zq(r)

r

]
, where each Z j

r is a vector. By fitting the model
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Z j
r = Xβ +

r−1

∑
i=1

Ziγi + e

as if the γis are all fixed, we can obtain (Z j
r )′(I−P0)(Z

j
r ) as the sum of squares error,

and thus

tr
[
Z′

r(I −P0)Zr
]
=

q(r)

∑
j=1

(Z j
r )

′(I −P0)(Z j
r ).

In other words, all of the numbers required for estimating σ2
r can be obtained from

a standard least squares computer program.

EXAMPLE 12.9.1. Balanced One-Way ANOVA, continued from Example 12.4.2.
We relate the notation of this section to that of the earlier example:

P = MZ ,

P0 =
1
n

Jn
n ,

tr(P−P0) = t −1,

tr(I −P) = t(N −1),

Y ′(P−P0)Y
/

tr(P−P0) = MSTrts,

Y ′(I −P)Y
/

tr(I −P) = MSE = σ̂ 2
0 .

Recall that ZZ′ = N MZ , so

tr
[
(P−P0)ZZ′] = tr[(P−P0)N P]

= Ntr[(P−P0)]
= N(t −1).

From (3) it is found that

σ̂ 2
1 =

SSTrts−MSE(t −1)
N(t −1)

=
MSTrts−MSE

N
.

Exercise 12.6 Consider the Method 3 estimates of σ 2
0 and σ 2

1 in Example 12.9.1.
(a) Show that these are also the REML estimates.
(b) Show that the vector (Y ′Y,Y ′MZY,J′Y )′ is a complete sufficient statistic for

the balanced one-way random effects model.
(c) Show that the Method 3 estimates are minimum variance unbiased.
(d) Find the distributions of SSTrts and SSE.
(e) Find a generalized likelihood ratio test of level α for H0 : σ 2

1 = 0.
Hint: Use the concepts of Section 2.5 and the methods of Example 12.4.2.
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For estimating more than one variance component, Method 3 is not, in general,
well defined. Suppose that we desire to estimate both σ 2

r and σ2
r−1. To estimate σ 2

r ,
we proceed as before. To estimate σ 2

r−1, fit the model

Y = Xβ +
r−2

∑
i=1

Ziγi + e.

Let P∗ be the perpendicular projection matrix onto C(X ,Z1, . . . ,Zr−2).

E[Y ′(P0 −P∗)Y ] = tr[(P0 −P∗)V ]+β ′X ′(P0 −P∗)Xβ
= tr
[
(P0 −P∗)σ 2

0 +(P0 −P∗)Zr−1Z′
r−1σ 2

r−1 +(P0 −P∗)ZrZ′
rσ 2

r
]

= σ 2
0 t0 +σ 2

r−1tr−1 +σ 2
r tr,

where t0 = tr(P0 −P∗), tr−1 = tr[(P0 −P∗)Zr−1Z′
r−1], and tr = tr[(P0 −P∗)ZrZ′

r]. An
unbiased estimate of σ 2

r−1 is

σ̂2
r−1 = [Y ′(P0 −P∗)Y − σ̂ 2

0 t0 − σ̂2
r tr]
/

tr−1.

Note that t0, tr−1, and tr can also be obtained from a least squares program.
The problem with this procedure is that the estimates depend on the order of

estimation. One could equally well estimate σ 2
r−1 first with the technique as origi-

nally described, and use this second stage to estimate σ 2
r . Generally, the estimates

of, say σ 2
r , will be different for the two methods of estimation. For nested mod-

els, however, only one order of estimation is possible. If C(Zr−1) ⊂ C(Zr), we say
that γr is nested within γr−1. We can estimate σ 2

r first and then use it to estimate
σ 2

r−1. The alternative order is not possible. If we desire to estimate σ 2
r−1 first, we

require the perpendicular projection operator onto the orthogonal complement of
C(X ,Z1, . . . ,Zr−2,Zr) with respect to C(X ,Z1, . . . ,Zr). Because C(Zr−1) ⊂ C(Zr),
we have C(X ,Z1, . . . ,Zr−2,Zr) = C(X ,Z1, . . . ,Zr). The orthogonal complement is
the zero space, and the projection matrix is the zero matrix.

For balanced ANOVA models, Henderson’s Method 3 gives unique answers, be-
cause all of the effects are either orthogonal (e.g., main effects) or nested (e.g., a
two-factor interaction is nested within both of the main effects). The definition of
nested effects used here is somewhat nonstandard. To many people, interaction ef-
fects are not nested. As used here, interaction effects are nested in more than one
other term.

Exercise 12.7 Data were generated according to the model

yi jk = μ +αi +η j + γi j + ei jk,

i = 1,2, j = 1,2,3, k = 1, . . . ,Ni j, where E(η j) = E(γi j) = E(ei jk) = 0, Var(ei jk) =
σ 2

0 = 64, Var(η j) = σ 2
1 = 784, and Var(γi j) = σ 2

2 = 25. All of the random effects
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were taken independently and normally distributed. The fixed effects were taken as
μ +α1 = 200 and μ +α2 = 150. The data are

j j
i 1 2 3 i 1 2 3
1 250 211 199 2 195 153 131

262 198 184 187 150 133
251 199 200 203 135 135

198 187 192
184 184 209

184

Estimate the variance components using MINQUE(0), MINQUE with all weights
equal to 1, and Henderson’s Method 3. Estimate the variance components using
each of these three sets of estimates as starting values for REML and as starting
values for maximum likelihood. For each method of estimation, find estimates of
the fixed effects. Compare all the estimates with each other and with the true values.
What tentative conclusions can you draw about the relative merits of the estimation
procedures?

12.10 Exact F Tests for Variance Components

In this section we examine two procedures for testing whether a variance component
is zero. The first test method is closely related to Henderson’s estimation method.

12.10.1 Wald’s Test

Seely and El-Bassiouni (1983) considered extensions of Wald’s variance component
test. They examined the mixed linear model

Y = Xβ +Z1γ1 +Z2γ2 + e. (1)

Here, Z1 and Z2 are, respectively, n×q and n× s matrices of known quantities. γ1,
γ2, and e are independent random vectors with

γ1 ∼ N(0,R), γ2 ∼ N(0,σ 2
2 Is), e ∼ N(0,σ 2

0 In).

The null hypothesis H0 : σ 2
2 = 0 can be tested by using ordinary least squares calcu-

lations treating the γis as fixed effects. Let SSE(1) be the sum of squares error from
fitting model (1). The degrees of freedom error are dfE(1). Also let SSE(2) be the
sum of squares error from the least squares fit of

Y = Xβ +Z1γ1 + e (2)
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with degrees of freedom error dfE(2). The Wald test is simply based on the fact that
under H0

[SSE(2)−SSE(1)]
/
[dfE(2)−dfE(1)]

SSE(1)/dfE(1)
∼ F(dfE(2)−dfE(1),dfE(1)).

Of course, if the two model matrix column spaces are the same, i.e., if C(X ,Z1,Z2) =
C(X ,Z1), then there is no test because both the numerator sum of squares and de-
grees of freedom are zero.

We now verify the distribution given above. Note that under the mixed model,

Cov(Y ) ≡V = σ 2
0 I +σ 2

2 Z2Z′
2 +Z1RZ′

1.

Let P0 be the perpendicular projection operator onto the column space C(X ,Z1),
and let P be the perpendicular projection operator onto C(X ,Z1,Z2). It follows
that SSE(2)− SSE(1) = Y ′(P − P0)Y , dfE(2) − dfE(1) = r(P − P0), SSE(1) =
Y ′(I −P)Y , and dfE(1) = r(I − P). Note that PZ1 = Z1 and PP0 = P0. We need
to show that Y ′(I −P)Y/σ2

0 ∼ χ2(r(I −P)), that Y ′(I −P)Y and Y ′(P−P0)Y are
independent, and that, under H0, Y ′(P−P0)Y/σ 2

0 ∼ χ2(r(P−P0)). Using results
from Section 1.3, we need only show that σ−4

0 (I −P)V (I −P) = σ−2
0 (I −P), that

(I−P)V (P−P0) = 0, and that, when σ 2
2 = 0, σ−4

0 (P−P0)V (P−P0) = σ−2
0 (P−P0).

Verifying these results involves only straightforward linear algebra along with prop-
erties of projection operators. In general, the distribution of Y ′(P−P0)Y seems to
be intractable without the assumption that σ2

2 = 0, but see Subsection 3.
To facilitate extensions of this test in the next subsection, we use a simple gener-

alization of the Seely and El-Bassiouni results. The mixed model considered in (1)
can also be written as

Y ∼ N
(
Xβ ,σ 2

0 I +σ 2
2 Z2Z′

2 +Z1RZ′
1
)
,

so the test applies for any data with a distribution of this form. If we let Σ be any
known nonnegative definite matrix, the method also applies to

Y ∼ N
(
Xβ ,σ 2

0 Σ +σ 2
2 Z2Z′

2 +Z1RZ′
1
)
. (3)

Simply write Σ = QQ′. Then there exists a matrix T such that T Q = I; so

TY ∼ N
(
T Xβ ,σ 2

0 I +σ 2
2 (T Z2)(T Z2)′ +(T Z1)R(T Z1)′

)
,

and the method applies to TY . Obviously, for Σ positive definite, T = Q−1. The test
based on (3) is simply the standard generalized least squares test of model (2) versus
(1) when Cov(Y ) = σ2

0 Σ , see Section 3.8.
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12.10.2 Öfversten’s Second Method

Consider the special case of the model discussed in Subsection 1 with R = σ2
1 Iq.

Then Cov(Y ) ≡ V = σ 2
0 I + σ 2

2 Z2Z′
2 + σ 2

1 Z1Z′
1. The object of the second method

is to obtain an exact F test for H0 : σ 2
1 = 0. This is of primary interest when

C(X ,Z1) ⊂ C(X ,Z2). If C(X ,Z1) �⊂ C(X ,Z2), a Wald test of H0 : σ 2
1 = 0 is avail-

able by simply interchanging the roles of Z1γ1 and Z2γ2 in the previous sec-
tion. If C(X ,Z1) ⊂ C(X ,Z2), this interchange does not provide a test because then
C(X ,Z2) = C(X ,Z1,Z2). As developed here, if Öfversten’s second method provides
a test, that test is valid regardless of the relationship of C(X ,Z1) and C(X ,Z2). At
the end of the subsection, the test is presented for more general models.

Öfversten’s (1993) second method as presented in Christensen (1996b) involves
using an orthonormal basis. For example, use Gram–Schmidt on the columns of
[X ,Z2,Z1, In] to obtain an orthonormal basis for Rn, say c1, . . . ,cn. Write these as
columns of a matrix C = [c1, . . . ,cn]. Partition C as C = [C1,C2,C3,C4], where the
columns of C1 are an orthonormal basis for C(X), the columns of C2 are an orthonor-
mal basis for the orthogonal complement of C(X) with respect to C(X ,Z2), the
columns of C3 are an orthonormal basis for the orthogonal complement of C(X ,Z2)
with respect to C(X ,Z2,Z1), and the columns of C4 are an orthonormal basis for the
orthogonal complement of C(X ,Z2,Z1). Note that if C(X ,Z1) ⊂ C(X ,Z2), then C3
is vacuous.

The basic idea of this method is to choose a matrix K so that the extended Wald’s
test for model (3) can be applied to C′

2Y +KC′
4Y . In executing the test of H0 : σ 2

1 = 0,
σ 2

1 plays the role assigned to σ2
2 in (3), a function of σ 2

0 and σ 2
2 plays the role

assigned to σ 2
0 in (3), and the role of R in (3) is vacuous. In particular, for some

number λ and some matrix K, we want to have

C′
2Y +KC′

4Y ∼ N
(
0,(σ 2

2 +σ 2
0 /λ )C′

2Z2Z′
2C2 +σ 2

1 C′
2Z1Z′

1C2
)
. (4)

This is of the form (3). As shown in Exercise 12.8, C′
2Z2Z′

2C2 is a positive definite
matrix, so the test follows immediately from generalized least squares. The test
cannot be performed if C′

2Z1 = 0, which occurs, for example, if C(Z1)⊂C(X). Note
that C4C′

4Y is the vector of residuals from treating the random γ effects as fixed.
Thus, in using KC′

4Y = KC′
4C4C′

4Y we are using some of the residual variability to
construct the test.

To get the degrees of freedom for the test, we identify correspondences between
(3) and (4). There are r(C2) “observations” available in (4). In (3), the numerator
degrees of freedom for the test are r(X ,Z1,Z2)− r(X ,Z1). With mean zero in (4)
there is no linear mean structure, i.e, nothing corresponding to X in (3), Z1 from (3)
is also vacuous in (4), and C′

2Z1 is playing the role of Z2 in (3). Thus the numerator
degrees of freedom for the test are r(C′

2Z1) and the denominator degrees of freedom
are r(C2)− r(C′

2Z1). In model (4), r(C2) = r(X ,Z2)− r(X). If C(Z1) ⊂C(X ,Z2), it
is shown in Exercise 12.8 that r(C′

2Z1) = r(X ,Z1)−r(X) and the degrees of freedom
for the test are r(X ,Z1)− r(X) and r(X ,Z1,Z2)− r(X ,Z1), respectively.

Observe that
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C′
2Y ∼ N

(
0,σ 2

0 I +σ 2
2 C′

2Z2Z′
2C2 +σ 2

1 C′
2Z1Z′

1C2
)
.

In many interesting cases, C′
2Z2Z′

2C2 = λ I; so an ordinary least squares Wald test
can be applied immediately without any use of C′

4Y as long as C′
2Z1 �= 0.

It is not difficult to see that in balanced ANOVA problems either C′
2Z2Z′

2C2 = λ I
when a standard balanced ANOVA test is available, or C′

2Z1 = 0 when such a test is
not available. For example, consider (1) as modeling a balanced two-way ANOVA
yi jk = μ + γ1i + γ2 j + ei jk, i = 1, . . . ,q, j = 1, . . . ,s, k = 1, . . . ,N, with Xβ being
the vector Jμ . The γ1 and γ2 treatments are often said to be orthogonal. Letting
M be the perpendicular projection operator onto C(X), this orthogonality means
precisely that C[(I −M)Z1] and C[(I −M)Z2] are orthogonal, i.e., Z′

2(I−M)Z1 = 0,
cf. Section 7.1. Now, by the definition of C2, C(C2) = C[(I −M)Z2], so C′

2Z1 = 0
iff Z′

2(I −M)Z1 = 0, which we know is true from orthogonality. Hence, no test of
H0 : σ 2

1 = 0 is available from this method.
Now consider a balanced nested model yi jk = μ + γ1i + γ2i j + ei jk with i, j, and

k as above. In this model, C(X ,Z1) ⊂ C(Z2) and 1
N Z2Z′

2 ≡ P is the perpendicular
projection operator onto C(Z2). Observing that C(C2) ⊂ C(Z2) and using the or-
thonormality of the columns of C2,

C′
2Z2Z′

2C2 = NC′
2PC2 = NC′

2C2 = N I.

Thus an ordinary least squares Wald test is available. Given that a Wald test simply
compares models in the usual way, for H0 : σ 2

1 = 0 this test is simply the standard
balanced ANOVA test for no fixed γ1i effects when γ2 is random. Similar orthog-
onality and containment results hold in more general balanced ANOVAs. For the
special case of C(Z1) ⊂ C(X ,Z2) with C′

2Z2Z′
2C2 = λ I, a general explicit form for

the test statistic is given in (7).
In general, C′

2Z2Z′
2C2 �= λ I, so the test requires C′

4Y . If r(X ,Z2,Z1) = t,

C′
4Y ∼ N

(
0,σ 2

0 In−t
)
.

It is easy to see that C′
2VC4 = 0, so C′

2Y and C′
4Y are independent. To obtain (4),

simply pick K so that

KC′
4Y ∼ N

(
0,σ 2

0
[
λ−1C′

2Z2Z′
2C2 − I

])
.

Obviously one can do this provided that λ−1C′
2Z2Z′

2C2 − I is a nonnegative definite
matrix. λ is chosen to ensure that the matrix is nonnegative definite. By the choice of
C2, C′

2Z2Z′
2C2 is a positive definite matrix and λ is taken as its smallest eigenvalue.

Then if we use the eigenvalue, eigenvector decomposition C′
2Z2Z′

2C2 = WD(λi)W ′
with W orthogonal,

λ−1C′
2Z2Z′

2C2 − I = WD
(

λi

λ
−1
)

W ′,

which is clearly nonnegative definite.
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Note that this development makes it obvious why λ needs to be the smallest
eigenvalue. Actually, the test would still work if λ were chosen to be any positive
number less than the smallest eigenvalue, but we want KC′

4Y to increase the vari-
ability of C′

2Y as little as possible, and this is accomplished by taking λ as large as
possible. In particular, choosing λ as the smallest eigenvalue gives KC′

4Y a singu-
lar covariance matrix and thus no variability in at least one direction. Other valid
choices of λ can only increase variability.

Also note that KC′
4Y = 0 a.s. if the eigenvalues of C′

2Z2Z′
2C2 all happen to be the

same. In this case, λ−1C′
2Z2Z′

2C2 − I = 0 and C′
2Z2Z′

2C2 = λ I, so we get the simpler
Wald test alluded to earlier.

The difficulty with the second method is that K is not unique, and typically the
results of the test depend on the choice of K. In particular, K is a w× (n− t) matrix,
where typically w ≡ r(X ,Z2)− r(X) < (n− t), while λ−1C′

2Z2Z′
2C2 − I is a w×w

matrix. Thus, we can take K =
[
WD
(√

λi
λ −1

)
,0
]

or K =
[

0,WD
(√

λi
λ −1

)]
or

any number of other matrices. Modifying Öfversten, a reasonable procedure might
be just to pick one of these convenient K matrices, but first randomly permute the
rows of C′

4Y .
This method applies quite generally. A proof consists of observing that the test

of H0 : σ 2
1 = 0 remains valid when X = [X1,X2], β = (β ′

1,β ′
2)

′ with β2 ∼ N(0,R2),
and β2 independent of γ1 and γ2. This model allows for interaction between two
random factors and arbitrary numbers of factors. The method will be most useful
when C(X ,Z1) ⊂C(X ,Z2); if this is not the case, the simpler Wald test is available.
Whenever C′

2Z1 = 0, no test is available. For example, this will occur whenever
C(Z1) ⊂C(X), which is precisely what happens when one tries to test the variance
component of a random main effect in a three-way analysis of variance with all
interactions.

12.10.3 Comparison of Tests

When C(Z1) �⊂ C(X ,Z2), we have two tests of H0 : σ 2
1 = 0 available. (See Lin and

Harville (1991) and Christensen and Bedrick (1999) for some alternatives to Wald’s
test other than that just developed.) Let M, P2, P, and P0 be perpendicular projection
matrices onto C(X), C(X ,Z2), C(X ,Z2,Z1), and C(X ,Z1), respectively. The simple
Wald test has the F statistic

F =
Y ′(P−P2)Y/r(P−P2)

Y ′(I −P)Y/r(I −P)
.

It can be of interest to examine the power (probability of rejecting the test) un-
der some alternative to the null model, e.g., the model when the null hypothesis is
false. The power of this test is quite complicated, but for given values of the param-



12.10 Exact F Tests for Variance Components 319

eters the power can be computed as in Davies (1980). Software is available through
STATLIB. See also Christensen and Bedrick (1997).

Intuitively, the power depends in part (and only in part) on the degrees of free-
dom, r(X ,Z2,Z1)− r(X ,Z2), n − r(X ,Z2,Z1) and the ratio of the expected mean
squares,

1+
σ 2

1
σ 2

0

tr [Z′
1(P−P2)Z1]

r(X ,Z2,Z1)− r(X ,Z2)
. (5)

The basic idea behind F tests is that under the null hypothesis the test statistic is
the ratio of two estimates of a common variance. Obviously, since the two are es-
timating the same thing under H0, the ratio should be about 1. The F distribution
quantifies the null variability about 1 for this ratio of estimates. If the numerator and
denominator are actually estimates of very different things, the ratio should deviate
substantially from the target value of 1. In fixed effects models, the power of an F
test under the full model is simply a function of the ratio of expected values of the
two estimates and the degrees of freedom of the estimates. In mixed models, the
power is generally much more complicated, but the ratio of expected values can still
provide some insight into the behavior of the tests. The ratio in (5) is strictly greater
than 1 whenever the test exists and σ 2

1 > 0, thus indicating that larger values of the
test statistic can be expected under the alternative. The power of the test should tend
to increase as this ratio increases but in fact the power is quite complicated. Note
that Y ′(P−P2)Y = Y ′C3C′

3Y and Y ′(I −P)Y = Y ′C4C′
4Y ; so this test uses only C′

3Y
and C′

4Y .
The second test is based on C′

2Y +KC′
4Y . Again, exact powers can be computed

as in Davies (1980). As shown in Exercise 12.8, the ratio of the expected mean
squares for the second test is

1+
σ 2

1

σ 2
2 +σ2

0 /λ
tr
[
(C′

2Z2Z′
2C2)−1C′

2Z1Z′
1C2
]

r(C′
2Z1)

. (6)

Again, this is strictly greater than 1 whenever the test exists and σ 2
1 > 0.

The degrees of freedom for the second test were given earlier. To compare the
degrees of freedom for the two tests, observe that

C(X) ⊂C(X ,{P2 −M}Z1) = C(X ,P2Z1) ⊂C(X ,Z2) ⊂C(X ,Z2,Z1).

The degrees of freedom for the second test are, respectively, the ranks of the or-
thogonal complement of C(X) with respect to C(X ,{P2 −M}Z1) and the orthogo-
nal complement of C(X ,{P2 −M}Z1) with respect to C(X ,Z2). (The first orthog-
onal complement is C(C2C′

2Z1) with the same rank as C′
2Z1, and the second or-

thogonal complement has rank r(X ,Z2)− [r(X) + r(C′
2Z1)].) The degrees of free-

dom for the simple Wald test are, respectively, the ranks of the orthogonal comple-
ment of C(X ,Z2) with respect to C(X ,Z2,Z1) and the orthogonal complement of
C(X ,Z2,Z1). In practice, the simple Wald test would typically have an advantage
in having larger denominator degrees of freedom, but that could be outweighed by
other factors in a given situation. We also see that, in some sense, the second test is
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being constructed inside C(X ,Z2); it focuses on the overlap of C(X ,Z2) and C(Z1).
On the other hand, the simple Wald test is constructed from the overlap of C(Z1)
with the orthogonal complement of C(X ,Z2).

In the special case of C(Z1) ⊂C(X ,Z2) with C′
2Z2Z′

2C2 = λ I, the second method
gives the test statistic

F =
Y ′(P0 −M)Y/r(P0 −M)
Y ′(P2 −P0)Y/r(P2 −P0)

. (7)

See Exercise 12.8 for a proof. For example, in a two-way ANOVA, X can indicate
the grand mean and a fixed main effect, Z1 can indicate the random main effect
to be tested, and Z2 can indicate the interaction. When the two-way is balanced,
C′

2Z2Z′
2C2 = λ I and we have the traditional test, i.e., the mean square for the random

main effect divided by the mean square for interaction.
It should be noted that under H0 : σ 2

1 = 0, C′
3Y also has a N(0,σ 2

0 I) distribution
so it could also be used, along with C′

4Y , to adjust the distribution of C′
2Y and still

maintain a valid F test. However, this would be likely to have a deleterious effect
on the power since then both the expected numerator mean square and the expected
denominator mean square would involve positive multiples of σ 2

1 under the alterna-
tive.

The material in this section is closely related to Christensen (1996b). The near
replicate lack of fit tests discussed in Subsection 6.6.2 can also be used to construct
exact F tests for variance components. In fact, when used as a variance compo-
nent test, Christensen’s (1989) test is identical to Wald’s test. See Christensen and
Bedrick (1999) for an examination of these procedures.

Exercise 12.8

(a) Prove that r(C′
2Z1) = r(X ,Z1)− r(X) when C(Z1) ⊂C(X ,Z2).

(b) Prove that C′
2Z2Z′

2C2 is positive definite.
(c) Prove (6).
(d) Prove (7).

Exercise 12.9 Use the data and model of Exercise 12.7 to test H0 : σ 2
1 = 0 and

H0 : σ 2
2 = 0.

12.11 Recovery of Interblock Information in BIB Designs

Consider the analysis of a balanced incomplete block (BIB) design in which blocks
are random effects. This analysis is known as the recovery of interblock information.
The mixed model for BIBs was mentioned previously in Exercise 11.5. The analysis
involves ideas from Chapters 9 through 11. BIB designs are discussed in Section 9.4,
from which most of the current notation is taken. In estimating treatment effects,
Theorem 10.4.5 is used. The model is a mixed model, so variance components are
estimated using methods from this chapter. Finally, the variance structure breaks up
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into within cluster and between cluster components as in Chapter 11. In our analysis
of the model, blocks are clusters, within cluster error is called intrablock error, and
between cluster error is interblock error.

We begin by fixing notation and relating it back to Section 9.4. The model for a
BIB is

yi j = μ +βi + τ j + ei j,

i = 1, . . . ,b, with j ∈ Di or, equivalently, j = 1, . . . ,t, with i ∈ Ai. Here β and τ
indicate block and treatment effects, respectively, Di is the set of treatment indices
for block i, and A j is the set of indices for blocks that contain treatment j. The model
is written using matrices as

Y = Jμ +Xβ +Zτ + e,

where μ , β , and τ are the grand mean, block effects vector, and treatment effects
vector, respectively. The matrix notation is a slight change from Section 9.4 in that
J is no longer included in the X matrix. The matrix X is the matrix of indicators for
the blocks and can be written

X = [xi j,m], xi j,m = δim,

where the columns of X are m = 1, . . . ,b and the pair i j identifies a row of the matrix.
Z is a matrix of indicators for the treatments and is defined as in Section 9.4, i.e.,
Z = [zi j,r] with zi j,r = δ jr, r = 1, . . . , t, and the pair i j denoting a row of the matrix.
Recall two fundamental relations necessary for a BIB,

rt = bk

and
(t −1)λ = r(k−1),

where r is the number of replications for each treatment, k is the number of units
in each block, and λ is the number of times any two treatments occur in the same
block.

In the mixed model, β is a random vector with E(β ) = 0, Cov(β ) = σ 2
BIb, and

Cov(β ,e) = 0. In a slight change of notation write Cov(e) = σ 2
e In, where n = rt =

bk. Combining the random effects, write η = Xβ + e and the model as

Y = Zτ +η, E(η) = 0, Cov(η) = σ 2
e In +σ 2

BXX ′. (1)

Note that we have dropped the grand mean, thus removing the overparameterization
associated with the treatment effects. In other words, we are using the model yi j =
τ j +ηi j, where ηi j ≡ β j + ei j is the random error term.

As in Chapter 11, write σ 2 = σ 2
e + σ 2

B and ρ = σ 2
B/
(
σ 2

e +σ2
B
)
. It follows that

σ 2
e = σ 2(1−ρ) and σ2

B = σ 2ρ . A term that frequently appears in the analysis is the
interblock (between cluster) error term,
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σ2 [(1−ρ)+ kρ] = σ 2
e + kσ 2

B.

With the notation given earlier, write

Cov(η) = σ 2V,

where, again as in Chapter 11,

V =
[
(1−ρ)I +ρXX ′]

= [(1−ρ)I + kρM]

and M is the perpendicular projection operator onto C(X).

12.11.1 Estimation

In this subsection we derive the BLUE of τ . From Section 2.7,

Zτ̂ = AY

= Z
(
Z′V−1Z

)−1
Z′V−1Y.

Note that finding τ̂ is essentially equivalent to finding the oblique projection opera-
tor A. Given τ̂ we can easily find Zτ̂; thus we know AY . With AY known for any vec-
tor Y , the matrix A is completely characterized. Finding τ̂ =

(
Z′V−1Z

)−1 Z′V−1Y

requires computation of both V−1 and
(
Z′V−1Z

)−1. These computations are facili-
tated by the following result.

Proposition 12.11.1. Let P be a projection operator (idempotent), and let a and
b be real numbers. Then

[aI +bP]−1 =
1
a

[
I − b

a+b
P
]
.

PROOF.

1
a

[
I − b

a+b
P
]
[aI +bP] =

1
a

[
aI +bP− ab

a+b
P− b2

a+b
P
]

= I. �

Using this result, we obtain two forms for V−1:

V−1 =
1

1−ρ

[
I − kρ

[(1−ρ)+kρ]
M
]

=
1

1−ρ

[
(I −M)+

1−ρ
[(1−ρ)+ kρ]

M
]
. (2)

Both forms will be used frequently.
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We now compute Z′V−1Z and
(
Z′V−1Z

)−1. First note that the fundamental rela-
tion (t −1)λ = r(k−1) implies

λ t = rk− (r−λ ).

Using this equality, the characterizations of Z′Z and Z′MZ given in Section 9.4, the
first form for V−1 in equation (2), and writing Pt = 1

t Jt
t , we get

(Z′V−1Z) =
1

1−ρ

[
Z′Z− kρ

[(1−ρ)+ kρ]
Z′MZ

]
=

1
1−ρ

[
rI − ρ

[(1−ρ)+ kρ]
{(r−λ )I +λ tPt}

]
=

1
1−ρ

[
r(1−ρ)

[(1−ρ)+kρ]
I +

λ tρ
[(1−ρ)+ kρ]

(I −Pt)
]

=
1

(1−ρ) [(1−ρ)+kρ]
[r(1−ρ)I +λ tρ(I −Pt)] .

From Proposition 12.11.1,

(Z′V−1Z)−1 =
[(1−ρ)+ kρ]

r

[
I − λ tρ

r(1−ρ)+λ tρ
(I −Pt)

]
(3)

=
[(1−ρ)+ kρ]

r

[
r(1−ρ)

r(1−ρ)+λ tρ
I +

λ tρ
r(1−ρ)+λ tρ

Pt

]
.

Rather than computing τ̂ = (Z′V−1Z)−1Z′V−1Y directly, it is convenient to de-
compose Z′V−1Y into intrablock and interblock components. The intrablock com-
ponent is related to the fixed block effect analysis. The interblock component is
what is left. The fixed block effect analysis is based on

Q = (Q1, . . . ,Qt)′,

where Q ≡ Z′(I −M)Y , cf. Section 9.4. Similarly, define

W = (W1, . . . ,Wt)′,

where W ≡ Z′MY . M is the perpendicular projection operator for the one-way
ANOVA in blocks (ignoring treatments) so

MY = [ti j], ti j = ȳi· ,

with
ȳi· ≡ 1

k ∑
j∈Di

yi j .

Z is a matrix of treatment indicators, so Z′MY yields
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Wj = ∑
i∈A j

ȳi· .

In Section 9.4, the Wjs were computed in the process of computing the Q js. In
particular,

Q j = ∑
i∈A j

(yi j − ȳi·) = ∑
i∈A j

yi j −Wj,

as in the first table in the continuation of Example 9.4.1. In computing τ̂ , we will
also have occasion to use

W · ≡ 1
t

t

∑
j=1

Wj

and the fact that

Q· ≡
1
t

t

∑
j=1

Q j =
1
t

J′t Z
′(I −M)Y =

1
t

J′n(I −M)Y = 0.

Using the second form of V−1 given in (2),

Z′V−1Y =
1

1−ρ
Z′(I −M)Y +

1
(1−ρ)+ kρ

Z′MY (4)

=
1

1−ρ
Q+

1
(1−ρ)+ kρ

W.

Finally, using (3) and (4),

τ̂ = (Z′V−1Z)−1Z′V−1Y

=
[(1−ρ)+ kρ]

r

[
r(1−ρ)

r(1−ρ)+λ tρ
I +

λ tρ
r(1−ρ)+λ tρ

Pt

]
Z′V−1Y

=
[(1−ρ)+ kρ] (1−ρ)

r(1−ρ)+λ tρ
Z′V−1Y +

[(1−ρ)+ kρ]λ tρ
r [r(1−ρ)+λ tρ]

PtZ′V−1Y

=
[(1−ρ)+ kρ]
r(1−ρ)+λ tρ

Q+
(1−ρ)

r(1−ρ)+λ tρ
W +

λ tρW ·
r [r(1−ρ)+λ tρ]

Jt .

The last equality comes from PtQ = Q·Jt = 0 and PtW = W ·Jt . In particular, an
individual component of τ̂ is

τ̂ j =
[(1−ρ)+kρ]
r(1−ρ)+λ tρ

Q j +
(1−ρ)

r(1−ρ)+λ tρ
Wj +

λ tρW ·
r [r(1−ρ)+λ tρ]

.

For purposes of comparing treatments, the term involving W ·, which is constant, can
be dropped. Finally, the projection operator is characterized by

AY = Zτ̂ = [ti j], ti j = τ̂ j .
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There are three additional aspects of the analysis to consider. First, we need to
consider testing the hypothesis τ1 = · · ·= τt . Second, we need to examine contrasts.
Third, we need to deal with the fact that our estimate of τ̂ is useless. The estimate de-
pends on ρ = σ 2

B/(σ 2
e +σ2

B). This is an unknown parameter. Writing τ̂ = (σ 2/σ 2)τ̂ ,
and using σ 2(1−ρ) = σ 2

e and σ2ρ = σ 2
B , gives

τ̂ =
σ2

e + kσ 2
B

rσ2
e +λ tσ 2

B
Q+

σ 2
e

rσ 2
e +λ tσ 2

B
W +

λ tσ 2
BW ·

rσ2
e +λ tσ 2

B
Jt . (5)

Model (1) is a mixed model, so the methods of this chapter can be used to estimate
σ 2

e and σ 2
B . The variance estimates can be substituted into (5) to give a usable es-

timate of τ . Traditionally, Henderson’s Method 3 has been used to obtain variance
estimates. The use of Henderson’s Method 3 will be discussed in detail later. Tests
of models and examination of contrasts will be discussed as if σ2

e and σ 2
B (hence σ 2

and ρ) were known. A discussion in which only ρ is assumed known is also given.
Throughout we assume that η ≡ Xβ + e ∼ N(0,σ 2V ).

12.11.2 Model Testing

We desire to test model (1) against the reduced model

Y = Jμ +η. (6)

In particular, we will show that an α level test rejects H0 if

rσ 2
e +λ tσ 2

B

σ 2
e
[
σ 2

e + kσ 2
B

] t

∑
i=1

(τ̂ j − τ̃·) > χ2(1−α,t −1), (7)

where τ̃· = ∑t
j=1 τ̂ j/t is the mean of the τ̂ js. The remainder of this subsection is

devoted to showing that this is the appropriate test.
We begin by finding the BLUE of Jμ from model (6). The BLUE is Jμ̂ = A0Y =

J
(
J′V−1J

)−1 J′V−1Y . However, we can apply Theorem 10.4.5 to see that the simple
least squares estimate Jμ̂ with μ̂ = ∑i j yi j/rt is the BLUE. To use Theorem 10.4.5,
we need to show that C(V J)⊂C(J). Because J ∈C(X), V J = [(1−ρ)I + kρM]J =
(1−ρ)J + kρJ = [(1−ρ)+ kρ]J ∈C(J).

From Corollary 3.8.3,

Y ′(A−A0)′V−1(A−A0)Y
/

σ 2 ∼ χ2(t −1,0)

if and only if model (6) is true. We wish to show that the test statistic is identical to
that used in (7). Our argument involves five algebraic identities. First,

t

∑
j=1

(τ̂ j − τ̃·)2 = τ̂ ′(I −Pt)τ̂ .



326 12 Mixed Models and Variance Components

Second, we show that μ̂ = τ̃·. Using the second form for V−1 in (2) gives V−1J =
[(1−ρ)+ kρ]−1J; also recall that J ∈C(Z) so AJ = J. These equalities lead to the
result.

τ̃· =
1
t

J′t τ̂ =
1
rt

J′Zτ̂ =
1
rt

J′AY

=
(1−ρ)+ kρ

rt
J′V−1AY

=
(1−ρ)+ kρ

rt
J′A′V−1Y

=
(1−ρ)+ kρ

rt
J′V−1Y

=
1
rt

J′Y = μ̂.

Third,

τ̂ ′(I −Pt)τ̂ = τ̂ ′τ̂ − t
(

1
t

τ̂ ′J′t

)2

= τ̂ ′τ̂ − t μ̂2

= [τ̂ − Jt μ̂ ]′[τ̂ − Jt μ̂ ].

Fourth, recall from Section 9.4 that

Z′(I −M)Z =
λ t
k

(I −Pt) ,

and, finally, from Section 9.4, and because r−λ = rk−λ t,

Z′MZ =
1
k

[(r−λ )I +λ tPt ]

=
1
k

[rkI −λ t (I −Pt)] .

Using the second form of V−1 in (2),

Y ′ (A−A0)
′V−1 (A−A0)Y

= [Zτ̂ − Jμ̂ ]′V−1 [Zτ̂ − Jμ̂ ]

=
1

1−ρ
[Zτ̂ − Jμ̂ ]′ (I −M) [Zτ̂ − Jμ̂ ]+

1
(1−ρ)+kρ

[Zτ̂ − Jμ̂]′ M [Zτ̂ − Jμ̂ ]

=
1

1−ρ
τ̂ ′Z′(I −M)Zτ̂ +

1
(1−ρ)+ kρ

[Zτ̂ −ZJt μ̂ ]′M[Zτ̂ −ZJt μ̂ ]

=
1

1−ρ
λ t
k

τ̂ ′(I −Pt)τ̂ +
1

(1−ρ)+ kρ
[τ̂ − Jt μ̂ ]′Z′MZ[τ̂ − Jt μ̂ ]
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=
1

1−ρ
λ t
k

τ̂ ′(I −Pt)τ̂ +
1

(1−ρ)+ kρ
[τ̂ − Jt μ̂ ]′

{
1
k

[rkI −λ t (I −Pt)]
}

[τ̂ − Jt μ̂ ]

=
λ t
k

τ̂ ′(I −Pt)τ̂
{

1
1−ρ

− 1
(1−ρ)+ kρ

}
+

r
(1−ρ)+kρ

[τ̂ − Jt μ̂]′[τ̂ − Jt μ̂ ]

=
kρ

[(1−ρ)+ kρ] (1−ρ)
λ t
k

τ̂ ′(I −Pt)τ̂ +
r

(1−ρ)+ kρ
τ̂ ′(I −Pt)τ̂

=
r(1−ρ)+λ tρ

(1−ρ) [(1−ρ)+ kρ]
τ̂ ′(I −Pt)τ̂

=
rσ 2(1−ρ)+λ tσ 2ρ

σ 2(1−ρ) [(1−ρ)+ kρ ]
τ̂ ′(I −Pt)τ̂

=
rσ 2

e +λ tσ 2
B

σ 2
e [(1−ρ)+kρ]

τ̂ ′(I −Pt)τ̂.

Dividing by σ 2 gives

Y ′ (A−A0)
′V−1 (A−A0)Y
σ 2 =

rσ2
e +λ tσ 2

B

σ 2
e
[
σ 2

e + kσ 2
B
] τ̂ ′(I −Pt)τ̂,

which is the test statistic in (7). In practice, estimates of σ2
e and σ2

B are used to
compute both the multiplier and τ̂ . The substitution is then ignored and the χ2 test
is conducted as if σ2

e and σ 2
B were known.

12.11.3 Contrasts

Model (1) is a one-way ANOVA model with an unusual covariance structure. How-
ever, estimable functions do not depend on the covariance matrix, so contrasts are
estimable. This is true regardless of whether μ is included as a parameter in the
model. A contrast is a linear parametric function ξ ′τ with ξ ′Jt = 0. The estimate is
ξ ′τ̂ = ∑t

j=1 ξ ′
jτ̂ j, where τ̂ has already been characterized.

We need to compute the variance of the estimate. Recall that with ξ ′Jt = 0 we
have ξ ′Pt = 0. Using the second form in (3),

Var
(
ξ ′τ̂
)

= ξ ′Cov(τ̂)ξ

= σ 2ξ ′ (Z′V−1Z
)−1 ξ

= σ 2 [(1−ρ)+ kρ] (1−ρ)
r(1−ρ)+λ tρ

ξ ′ξ +σ 2 [(1−ρ)+ kρ]λ tρ
r [r(1−ρ)+λ tρ]

ξ ′Ptξ

=

[
σ 2(1−ρ)+ kσ2ρ

]
σ 2(1−ρ)

rσ 2(1−ρ)+λ tσ 2ρ
ξ ′ξ

=

[
σ 2

e + kσ 2
B
]

σ 2
e

rσ 2
e +λ tσ 2

B
ξ ′ξ .
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Note that the variance can also be written as

Var(ξ ′τ̂) = σ 2
e

[(1−ρ)+kρ]
r(1−ρ)+λ tρ

ξ ′ξ ;

this second form will be used in the next subsection. Under normality,

ξ ′τ̂ ∼ N

(
ξ ′τ,

[
σ2

e + kσ 2
B
]

σ 2
e

rσ2
e +λ tσ 2

B
ξ ′ξ

)
. (8)

In practice, estimates of σ2
e and σ 2

B are substituted to find τ̂ and the estimated vari-
ance. Tests and confidence intervals are conducted using the distribution (8), ignor-
ing the fact that estimates have been substituted for σ2

e and σ 2
B .

12.11.4 Alternative Inferential Procedures

Traditionally, statistical inferences have been conducted using the distributions in
(7) and (8). These are based on the incorrect assumption that both σ 2

e and σ 2
B are

known. Some improvement is made by assuming that only ρ = σ 2
B/
(
σ 2

e +σ 2
B
)

is
known while σ 2 is unknown. In particular, it follows from Section 11.1 that the
model with both fixed block effects δ and random block effects β , i.e.,

Y = Jμ +Xδ +Zτ +η,

provides an estimate of σ2(1−ρ) = σ 2
e . This estimate is σ̂ 2

e , the mean squared error
for the fixed block effect model of Section 9.4.

The key results are that, under model (1),

σ̂ 2
e /σ 2

e (1−ρ) ∼ χ2(rt −b− t +1)

and σ̂ 2
e is independent of τ̂ . We show the independence and leave the distributional

result to the reader:
Let P be the perpendicular projection operator onto C(X ,Z) so

σ̂2
e =

Y ′(I −P)Y
rt −b− t +1

.

Independence follows from Theorem 1.2.3 upon observing that

Cov
(
(I −P)Y,(A−A0)Y

)
= σ 2(I −P) [(1−ρ)I + kρM] (A−A0)

= σ 2(1−ρ)(I −P)(A−A0)+σ 2kρ(I −P)M(A−A0)
= 0 .
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The last equality holds because C(A−A0) ⊂ C(X ,Z) = C(P) so that (I −P)(A−
A0) = 0 and (I −P)M = 0.

A test of model (6) versus model (1) can be based on

r(1−ρ)+λ tρ
σ̂ 2

e [(1−ρ)+kρ]
τ̂ ′(I −Pt)τ̂

t −1
∼ F(t −1,rt − t −b−1). (9)

This is true because the lefthand side equals

Y ′ (A−A0)
′V−1 (A−A0)Y/σ 2(t −1)
σ̂ 2

e /σ 2(1−ρ)
,

which has the appropriate F distribution under H0. To see the equality of the two
statistics, examine the third to the last equality given earlier in the simplification of
Y ′ (A−A0)

′V−1 (A−A0)Y . Similarly, tests and confidence intervals can be based
on

ξ ′τ̂ −ξ ′τ√
σ̂ 2

e [(1−ρ)+ kρ]/[r(1−ρ)+λ tρ]
∼ t(rt − t −b+1). (10)

This uses the second form for Var(ξ ′τ̂) given earlier. To actually use (9) and (10), we
need to estimate ρ = σ 2

B/
(
σ2

e +σ 2
B
)
. If we estimate σ2

B and take ρ̂ = σ̂2
B/
(
σ̂ 2

e + σ̂2
B
)
,

the inferential procedures will be identical to those based on (7) and (8), except that
they will be based on the more realistic F and t distributions rather than the χ2 and
normal. Thus we have replaced the traditional analysis, which does not account for
the estimation of either of the two unknown parameters σ 2

e and σ 2
B , with an analysis

that does not account for the estimation of only one parameter, ρ .

12.11.5 Estimation of Variance Components

The traditional analysis of a BIB with recovery of interblock information uses the
variance component estimates of Henderson’s Method 3, cf. Section 9. The estimate
of σ 2

e is just that described in the previous subsection. To estimate σ 2
B , let Pτ be the

perpendicular projection operator onto C(Z) and recall that P is the perpendicular
projection operator onto C(X ,Z). Using Henderson’s Method 3,

σ̂ 2
B =

[
Y ′ (P−Pτ )Y − σ̂ 2

e tr(P−Pτ)
]

tr [X ′ (P−Pτ)X ]
.

All of these terms are easily computed. Y ′ (P−Pτ)Y =Y ′PY −Y PτY . Y ′PY is avail-
able from the fixed block effect analysis. In particular,

Y ′PY = SS(Grand Mean)+SS(Blocks)+SS(Treatments After Blocks)

and
Y ′PτY = SS(Grand Mean)+SS(Treatments),
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where SS(Treatments) is just the sum of squares from a standard one-way ANOVA
that ignores the blocks and the covariance structure. The term tr(P−Pτ) is simply
b−1. It is shown later that tr[X ′ (P−Pτ)X ] = t(r−1); thus

σ̂ 2
B =

SS(Blocks after Treatments)− σ̂ 2
e (b−1)

t(r−1)
.

To see that tr [X ′ (P−Pτ)X ] = t(r−1), note that tr [X ′ (P−Pτ )X ] = tr(X ′PX)−
tr(X ′PτX) = tr(X ′X)− tr(X ′Pτ X). However, X ′X = kIb, so tr(X ′X) = bk = rt. The
trace of X ′Pτ X is more complicated. From the one-way ANOVA, for any vector Y ,

PτY = [ti j], where ti j =
1
r ∑

i∈A j

yi j.

The matrix X = [X1, . . . ,Xb] has

Xm = [vi j], where vi j = δim,

for m = 1, . . . ,b; so applying Pτ to Xm gives

Pτ Xm = [ti j], where ti j =
1
r ∑

i∈A j

δim =
1
r

δm(A j).

Recall that A j is the set of indices for blocks that include treatment j so that δm(A j)
is 1 if block m contains treatment j, and 0 otherwise. This occurs if and only if
treatment j is in block m, so δm(A j) = δ j(Dm). Again, Dm is the set of indices for
the treatments contained in block m. It follows that

X ′
mPτXm = [PτXm]′ [PτXm]

=
t

∑
j=1

∑
i∈A j

1
r2 δm(A j)

=
1
r2

t

∑
j=1

δm(A j) ∑
i∈A j

1

=
1
r

t

∑
j=1

δm(A j)

=
1
r

t

∑
j=1

δ j(Dm)

=
k
r
,

and therefore

tr
(
X ′Pτ X

)
=

b

∑
m=1

X ′
mPτXm =

bk
r

=
rt
r

= t.
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Combining results gives

tr
[
X ′ (P−Pτ )X

]
= rt − t = t(r−1).

Exercise 12.10 Do an interblock analysis of the BIB data of Example 9.4.1.

Exercise 12.11 Find the REML estimates of σ 2
e and σ 2

B .



 



Chapter 13

Model Diagnostics

This book deals with linear model theory, and as such we have assumed that the
data are good and that the models are true. Unfortunately, good data are rare and
true models are even rarer. Chapters 13 through 15 discuss some additional tools
used by statisticians to deal with the problems presented by real data.

All models are based on assumptions. We typically assume that E(Y ) has a lin-
ear structure, that the observations are independent, that the variance is the same
for each observation, and that the observations are normally distributed. In truth,
these assumptions will probably never be correct. It is our hope that if we check the
assumptions and if the assumptions look plausible, then the mathematical methods
presented here will work quite well.

If the assumptions are checked and found to be implausible, we need to have
alternate ways of analyzing the data. In Section 2.7, Section 3.8, Chapter 10, and
Chapter 12, we discussed the analysis of linear models with general covariance ma-
trices. If an approximate covariance matrix can be found, the methods presented
earlier can be used. (See also the discussion of the deleterious effects of estimating
covariance matrices in Christensen (2001, Section 6.5).) Another approach is to find
a transformation of the data so that the assumptions seem plausible for a standard
linear model in the transformed data.

The primary purpose of this chapter is to present methods of identifying when
there may be trouble with the assumptions. Analysis of the residuals is the method
most often used for detecting invalidity of the assumptions. Residuals are used to
check for nonnormality of errors, nonindependence, lack of fit, heteroscedasticity
(inequality) of variances, and outliers (unusual data). They also help identify influ-
ential observations.

The vector of residuals is, essentially, an estimate of e in the model

Y = Xβ + e, E(e) = 0, Cov(e) = σ 2I.

The residual vector is
ê = Y −X β̂ = (I −M)Y,

with
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E(ê) = (I −M)Xβ = 0

and
Cov(ê) = (I −M)σ2I(I −M)′ = σ 2(I −M).

For many of the techniques that we will discuss, the residuals are standardized
so that their variances are about 1. The standardized residuals are

ri = êi
/√

MSE(1−mii),

where mii is the ith diagonal element of M and ê = [ê1, . . . , ên]′.
When checking for nonnormality or heteroscedastic variances, it is important to

use the standardized residuals rather than unstandardized residuals. As just seen, the
ordinary residuals have heteroscedastic variances. Before they are useful in check-
ing for equality of the variances of the observations, they need to be standardized.
Moreover, methods for detecting nonnormality are often sensitive to inequality of
variances, so the use of ordinary residuals can make it appear that the errors are not
normal even when they are.

Some computer programs used to use ê/
√

MSE as standardized residuals, but I
hope that is a thing of the past. This method is inferior to the standardization given
above because it ignores the fact that the variances of the residuals are not all equal.
The standardized residuals are also sometimes called the Studentized residuals, but
that term is also sometimes used for another quantity discussed in Section 6.

Influential observations have been mentioned. What are they? One idea is that
an observation is influential if it greatly affects the fitted regression equation. Influ-
ential observations are not intrinsically good or bad, but they are always important.
Typically, influential observations are outliers: data points that are, in some sense,
far from the other data points being analyzed. This happens in two ways. First, the
y value associated with a particular row of the X matrix can be unlike what would
be expected from examining the rest of the data. Second, a particular row of the X
matrix can be unlike any of the other rows of the X matrix.

A frequently used method for analyzing residuals is to plot the (standardized)
residuals against various other variables. We now consider an example that will be
used throughout this chapter to illustrate the use of residual plots. In the example,
we consider a model that will later be perturbed in various ways. This model and
its perturbations will provide residuals that can be plotted to show characteristics of
residual plots and the effects of unsatisfied assumptions.

EXAMPLE 13.0.1. Draper and Smith (1998) presented an example with 25 ob-
servations on a dependent variable, pounds of steam used by a company per month,
and two predictor variables: x1, the average atmospheric temperature for the month
(in ◦F); and x2, the number of operating days in the month. The values of x1 and x2
are listed in Table 13.1.

Draper and Smith’s fitted equation is

y = 9.1266−0.0724x1 +0.2029x2.
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Table 13.1 Steam Data

Obs. Obs.
no. x1 x2 no. x1 x2
1 35.3 20 14 39.1 19
2 29.7 20 15 46.8 23
3 30.8 23 16 48.5 20
4 58.8 20 17 59.3 22
5 61.4 21 18 70.0 22
6 71.3 22 19 70.0 11
7 74.4 11 20 74.5 23
8 76.7 23 21 72.1 20
9 70.7 21 22 58.1 21
10 57.5 20 23 44.6 20
11 46.4 20 24 33.4 20
12 28.9 21 25 28.6 22
13 28.1 21

Our examples will frequently be set up so that the true model is

yi = 9.1266−0.0724xi1 +0.2029xi2 + ei . (1)

The vector Y = (y1, . . . ,y25)′ can be obtained by generating the eis and adding the
terms on the right-hand side of the equation. Once Y is obtained, the equation yi =
β0 +β1xi1 +β2xi2 +ei can be fitted by least squares and the residuals computed. By
generating errors that have independent identical normal distributions, nonnormal
distributions, serial correlations, or unequal variances, we can examine how residual
plots should look when these conditions exist. By fitting models with incorrect mean
structure, we can examine how residual plots for detecting lack of fit should look.

The material in this chapter is presented with applications to regression models
in mind, but can be applied to ANOVA models with little modification. Excellent
discussions of residuals and influential observations are found in Cook and Weis-
berg (1982), Atkinson (1985), and elsewhere. Cook and Weisberg (1994) give an
extensive discussion of regression graphics.

Exercise 13.1 Show that ê is the BLUP of e.

13.1 Leverage

A data point (case) that corresponds to a row of the X matrix that is “unlike” the
other rows is said to have high leverage. In this section we will define the Maha-
lanobis distance and use it as a basis for identifying rows of X that are unusual. It
will be shown that for regression models that include an intercept (a column of 1s),
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the diagonal elements of the ppo M and the Mahalanobis distances are equivalent
measures. In particular, a diagonal element of the ppo is an increasing function of
the corresponding Mahalanobis distance. (There are some minor technical difficul-
ties with this claim when X is not a full rank matrix.) This equivalence justifies
the use of the diagonal elements to measure the abnormality of a row of the model
matrix. The diagonal elements of the ppo are the standard tool used for measuring
leverage.

In addition to their interpretation as a measure of abnormality, it will be shown
that the diagonal elements of the projection matrix can have direct implications
on the fit of a regression model. A diagonal element of the projection matrix that
happens to be near 1 (the maximum possible) will force the estimated regression
equation to go very near the corresponding y value. Thus, cases with extremely large
diagonal elements have considerable influence on the estimated regression equation.
It will be shown through examples that diagonal elements that are large, but not near
1, can also have substantial influence.

High leverage points are not necessarily bad. If a case with high leverage is con-
sistent with the remainder of the data, then the case with high leverage causes no
problems. In fact, the case with high leverage can greatly reduce the variability of
the least squares fit. In other words, with an essentially correct model and good data,
high leverage points actually help the analysis.

On the other hand, high leverage points are dangerous. The regression model
that one chooses is rarely the true model. Usually it is only an approximation of
the truth. High leverage points can change a good approximate model into a bad
approximate model. An approximate model is likely to work well only on data that
are limited to some particular range of values. It is unreasonable to expect to find a
model that works well in places where very little data were collected. By definition,
high leverage points exist where very little data were collected, so one would not
expect them to be modeled well. Ironically, just the opposite result usually occurs.
The high leverage points are often fit very well, while the fit of the other data is
often harmed. The model for the bulk of the data is easily distorted to accommodate
the high leverage points. When high leverage points are identified, the researcher is
often left to decide between a bad model for the entire data and a good model for a
more limited problem.

The purpose of this discussion of cases with high leverage is to make one point.
If some data were collected in unusual places, then the appropriate goal may be
to find a good approximate model for the area in which the bulk of the data were
collected. This is not to say that high leverage points should always be thrown out of
a data set. High leverage points need to be handled with care, and the implications
of excluding high leverage points from a particular data set need to be thoroughly
examined. High leverage points can be the most important cases in the entire data.

We begin by defining the Mahalanobis distance and establishing its equivalence
to the diagonal elements of the projection operator. This will be followed by an
examination of diagonal elements that are near 1. The section closes with a series of
examples.
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13.1.1 Mahalanobis Distances

The Mahalanobis distance measures how far a random vector is from the middle
of its distribution. For this purpose, we will think of the rows of the matrix X as a
sample of vectors from some population. Although this contradicts our assumption
that the matrix X is fixed and known, our only purpose is to arrive at a reasonable
summary measure of the distance of each row from the other rows. The Mahalanobis
distance provides such a measure. The notation and ideas involved in estimating
Mahalanobis distances are similar to those used in estimating best linear predictors.
Estimation of best linear predictors was discussed in Subsection 6.3.4. In particular,
we write the ith row of X as (1,x′i) so that the corresponding linear model contains
an intercept.

Let x be a random vector.

Definition 13.1.1. Let E(x) = μ and Cov(x) = V . The squared Mahalanobis
distance is

D2 = (x−μ)′V−1(x−μ).

For a sample x1, . . . ,xn, the relative distances of the observations from the center of
the distribution can be measured by the squared distances

D2
i = (xi −μ)′V−1(xi −μ), i = 1, . . . ,n.

Usually, μ and V are not available, so they must be estimated. Write

Z =

⎡⎢⎣x′1
...

x′n

⎤⎥⎦ .

Then μ can be estimated with x̄′· = (1/n)Jn
1 Z, and V can be estimated with

S =
1

n−1

[
n

∑
i=1

(xi − x̄·)(xi − x̄·)′
]

=
1

n−1
Z′
(

I − 1
n

Jn
n

)
Z.

Definition 13.1.2. The estimated squared Mahalanobis distance for the ith case
in a sample of vectors x1, . . . ,xn is

D̂2
i = (xi − x̄·)′S−1(xi − x̄·).

Note that the values of D̂2 are precisely the diagonal elements of

(n−1)
(

I − 1
n

Jn
n

)
Z
[

Z′
(

I − 1
n

Jn
n

)
Z
]−1

Z′
(

I − 1
n

Jn
n

)
.
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Our interest in these definitions is that for a regression model Y = Xβ + e, the
distance of the ith row of X from the other rows can be measured by the estimated
squared Mahalanobis distance D̂2

i . In this context the rows of X are treated as a sam-
ple from some population. As mentioned earlier, when the model has an intercept,
the diagonal elements of M and the estimated squared Mahalanobis distances are
equivalent measures. When an intercept is included in the model, X can be written
as X = [J,Z]. Since the rows of J are identical, the matrix S, defined for the entire
matrix X , is singular. Thus, S−1 does not exist and the estimated Mahalanobis dis-
tances are not defined. Instead, we can measure the relative distances of the rows of
Z from their center.

Theorem 13.1.3. Consider the linear model Y = Xβ + e, where X is a full rank
matrix and X = [J,Z]. Then,

mii =
1
n

+
D̂2

n−1
.

PROOF. The theorem follows immediately from the fact that

M =
1
n

Jn
n +
(

I − 1
n

Jn
n

)
Z
[

Z′
(

I − 1
n

Jn
n

)
Z
]−1

Z′
(

I − 1
n

Jn
n

)
(cf. Sections 6.2, 9.1, and 9.2). The inverse in the second term of the right-hand side
exists because X , and therefore

(
I − 1

n Jn
n
)

Z, are full rank matrices. �

From this theorem, it is clear that the rows with the largest squared Mahalanobis
distances are precisely the rows with the largest diagonal elements of the perpen-
dicular projection matrix. For identifying high leverage cases in a regression model
with an intercept, using the diagonal elements of M is equivalent to using the squared
Mahalanobis distances.

Of course, for regression models that do not include an intercept, using the
squared Mahalanobis distances is not equivalent to using the diagonal elements of
the projection matrix. For such models it would probably be wise to examine both
measures of leverage. The diagonal elements of the projection matrix are either
given by or easily obtained from many computer programs. The information in the
squared Mahalanobis distances can be obtained by the artifice of adding an inter-
cept to the model and obtaining the diagonal elements of the projection matrix for
the augmented model.

For linear models in which X is not of full rank, similar definitions could be
made using a generalized inverse of the (estimated) covariance matrix rather than
the inverse.

Exercise 13.2 Show that for a regression model that does not contain an inter-
cept, the diagonal elements of the perpendicular projection operator are equivalent
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to the estimated squared Mahalanobis distances computed with the assumption that
μ = 0.

13.1.2 Diagonal Elements of the Projection Operator

Having established that the diagonal elements of M are a reasonable measure of how
unusual a row of X is, we are left with the problem of calibrating the measure. How
big does mii have to be before we need to worry about it? The following proposition
indirectly establishes several facts that allow us to provide some guidelines.

Proposition 13.1.4. For any i

mii(1−mii) = ∑
j �=i

m2
i j.

PROOF. Because M is a symmetric idempotent matrix,

mii =
n

∑
j=1

mi jm ji =
n

∑
j=1

m2
i j = m2

ii + ∑
j �=i

m2
i j.

Subtracting gives
mii(1−mii) = mii −m2

ii = ∑
j �=i

m2
i j. �

The term on the right-hand side of Proposition 13.1.4 is a sum of squared terms.
This must be nonnegative, so mii(1−mii) ≥ 0. It follows immediately that the miis
must lie between 0 and 1.

Since the largest value that an mii can take is 1, any value near 1 indicates a point
with extremely high leverage. Other values, considerably less than 1, can also indi-
cate high leverage. Because tr(M) = r(M), the average value of the miis is p/n. Any
mii value that is substantially larger than p/n indicates a point with high leverage.
Some useful but imprecise terminology is set in the following definition.

Definition 13.1.5. Any case that corresponds to a row of the model matrix that
is unlike the other rows is called an outlier in the design space (or estimation space).
Any case corresponding to an mii substantially larger than p/n is called a case with
high leverage. Any case corresponding to an mii near 1 is called a case with ex-
tremely high leverage.

Points with extremely high leverage have dramatic effects. If mii happens to
be near 1, then mii(1−mii) must be near zero and the right-hand side of Propo-
sition 13.1.4 must be near zero. Since the right-hand side is a sum of squared terms,
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for all j �= i the terms mi j must be near zero. As will be shown, this causes a point
with extremely high leverage to dominate the fitting process.

Let ρi be a vector of zeros with a 1 in the ith row, and let x′i = ρ ′
i X . The mean for

the ith case is ρ ′
i Xβ = x′iβ , which is estimated by x′iβ̂ = ρ ′

i MY = ∑n
j=1 mi jy j. If mii is

close to 1, mi j is close to zero for all j �= i; thus, the rough approximation ρ ′
i MY .= yi

applies. This approximation is by no means unusual. It simply says that the model
fits well; however, the fact that the estimate largely ignores observations other than
yi indicates that something strange is occurring. Since mii is near 1, x′i is far from the
other rows of X . Thus, there is little information available about behavior at x′i other
than the observation yi.

The fact that yi is fit reasonably well has important implications for the estimated
regression equation f (x) = x′β̂ . This function, when evaluated at xi, must be near yi.
Regardless of whether yi is an aberrant observation or whether a different approxi-
mate model is needed for observations taken near xi, the estimated regression equa-
tion will adjust itself to fit yi reasonably well. If necessary, the estimated regression
equation will ignore the structure of the other data points in order to get a reason-
able fit to the point with extremely high leverage. Thus, points with extremely high
leverage have the potential to influence the estimated regression equation a great
deal.

13.1.3 Examples

EXAMPLE 13.1.6. Simple Linear Regression.
Consider the model yi = β0 +β1xi + ei, i = 1, . . . ,6, x1 = 1, x2 = 2, x3 = 3, x4 = 4,
x5 = 5, x6 = 15. x6 is far from the other x values, so it should be a case with high
leverage. In particular, m66 = .936, so case six is an extremely high leverage point.
(Section 6.1 gives a formula for M.)

For i = 1, . . . ,5, data were generated using the model

yi = 2+3xi + ei,

with the eis independent N(0,1) random variates. The y values actually obtained
were y1 = 7.455, y2 = 7.469, y3 = 10.366, y4 = 14.279, y5 = 17.046. The model
was fit under three conditions: (1) with the sixth case deleted, (2) with y6 = 47 =
2 +3(x6), and (3) with y6 = 11 = 2 +3(x3). The results of fitting the simple linear
regression model are summarized in the table below.

Condition y6 ŷ6 β̂0 β̂1
√

MSE dfE
1 deleted 43.91 3.425 2.699 1.423 3
2 47 46.80 2.753 2.937 1.293 4
3 11 13.11 10.599 0.1674 4.345 4

Figure 13.1 contains a scatterplot of the data under condition (3) and the fitted
lines for conditions (1) and (3). Under conditions (1) and (2), reasonably consistent
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fits are obtained. In particular, the extremely high leverage case has little effect on
point estimation in these situations where the data are good and the model is true.
(The high leverage case could have a large effect in decreasing the size of interval
estimates.)
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y

Fig. 13.1 Scatterplot and fitted lines for Example 13.1.6. (Note the optical illusions.)

Under condition (3), when the model is no longer valid for case six, the fit is
grossly different from those obtained under conditions (1) and (2). When the ex-
tremely high leverage case is inconsistent with the rest of the data, the fit of the
regression equation is dominated by that case. Note that the first five cases lead us
to expect a value for y6 in the mid-40s, but with y6 = 11, the fitted value is 13.11,
close to 11 and far from the mid-40s. Finally, the fit of the model, as measured by
the MSE, is good under conditions (1) and (2), but much poorer under condition (3).

Other things being equal, under condition (2) it would be wise to include case
six in the analysis. Under condition (3), it might be wiser not to try to model all the
data, but rather to model only the first five cases and admit that little is known about
behavior at x values substantially larger than 5. Unfortunately, in order to distinguish
between conditions (2) and (3), the true model must be known, which in practice is
not the case.

Finally, a word about residuals for case six. Under condition (2), the regression
equation is right on the data point, ê6 = 0.2, and r6 = 0.611. On the other hand,
for condition (3) there is a reasonable amount of error. The residual is ê6 = −2.11.
Compared to the other residuals (cf. Figure 13.1), ê6 is not large, but neither is it
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extremely small. The standardized residuals have a standard deviation of about 1, so
the standardized residual for case six, r6 = −1.918, is quite substantial.

Another useful tool is to look at the predicted residuals. For case six, this in-
volves looking at the predicted value with case six deleted, 43.91, and comparing
that to the observed value. For condition (2), the predicted residual is 3.09. For con-
dition (3), the predicted residual is −32.91, which seems immense. To get a better
handle on what these numbers mean, we need to standardize the predicted residu-
als. Predicted residuals are discussed in more detail in Sections 5 and 6. Proposi-
tion 13.6.1 gives a simple formula for computing standardized predicted residuals.
Using this formula, the standardized predicted residual for case six under condi-
tion (2) is t6 = 0.556, which is very reasonable. For condition (3), it is t6 = −5.86,
which is large enough to cause concern. (Section 6 explains why t6 is not huge under
condition (3).)

EXAMPLE 13.1.7. We now modify Example 13.1.6 by adding a second point far
away from the bulk of the data. This is done in two ways. First, the extremely high
leverage point is replicated with a second observation taken at x = 15. Second, a
high leverage point is added that is smaller than the bulk of the data. In both cases,
the y values for the first five cases remain unchanged.

With two observations at x = 15, m66 = m77 = 0.48. This is well above the value
p/n = 2/7 = 0.29. In particular, the diagonal values for the other five cases are all
less than 0.29.

To illustrate the effect of the high leverage points on the regression equation,
conditions (2) and (3) of the previous example were combined. In other words, the
two y values for x = 15 were taken as 11 and 47. The estimated regression equation
becomes ŷ = 6.783 + 1.5140x. The slope of the line is about halfway between the
slopes under conditions (2) and (3). More importantly, the predicted value for x = 15
is 29.49. The regression equation is being forced near the mean of y6 and y7. (The
mean is 29.)

One of the salient points in this example is the effect on the root mean squared er-
ror. Under condition (2), where the high leverage point was consistent with the other
data, the root mean squared error was 1.293. Under condition (3), where the high
leverage point was grossly inconsistent with the other data, the root mean squared
error was 4.293. In this case, with two high leverage points, one consistent with the
bulk of the data and one not, the root mean squared error is 11.567. This drastic
change is because, with two y values so far apart, one point almost has to be an
outlier. Having an outlier in the ys at a high leverage point has a devastating effect
on all estimates, especially the estimated error.

In the second illustration, x7 was taken as −9. This was based on adding a second
observation as far to the left of the bulk of the data as x6 = 15 is to the right. The
leverages are m66 = m77 = 0.63. Again, this value is well above 2/7 and is far above
the other diagonal values, which are around 0.15.

To illustrate the effect of high leverage on estimation, the y values were taken as
y6 = y7 = 11. The estimated regression equation was 11.0906 + 0.0906x. The root
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mean squared error was 3.921. The t statistic for testing that the slope equaled zero
was 0.40.

In essence, the data in the second illustration have been reduced to three points:
a point x = −9 with a y value of 11, a point x = 15 with a y value of 11, and a
point x = 3 (the mean of x1 to x5) with a y value of 11.523 (the mean of y1 to
y5). Compared to the high leverage points at −9 and 15, the five points near 3 are
essentially replicates.

Both of these scenarios illustrate situations where the leverages contain gaps. The
first illustration has no points with leverages between 0.28 and 0.48. The second has
no leverages between 0.16 and 0.63. Such gaps in the leverages indicate the the
predictor variables contain clusters of observations that are separated from each
other.

The final example of this section illustrates that high leverage points are model
dependent. Since our measure of leverage is based on the perpendicular projection
operator onto C(X), it is not surprising that changing the model can affect the lever-
age of a case. The example below is a polynomial regression where a particular case
does not have high leverage for fitting a line, but does have high leverage for fitting
a parabola.

EXAMPLE 13.1.8. Quadratic Regression.
Consider fitting the models

yi = β0 +β1xi + ei,

yi = γ0 + γ1xi + γ2x2
i + ei,

i = 1, . . . ,7. The values of the xis used were x1 = −10, x2 = −9, x3 = −8, x4 = 0,
x5 = 8, x6 = 9, x7 = 10. Note that the value of x4 appears to be in the center of
the data. For fitting a straight line, that appearance is correct. For fitting a line, the
leverage of the fourth case is 0.14.

The model matrix for the quadratic model is

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 −10 100
1 −9 81
1 −8 64
1 0 0
1 8 64
1 9 81
1 10 100

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Note that the choice of the xis makes the second column of x orthogonal to the
other two columns. An orthonormal basis for C(X) is easily obtained, and thus the
diagonal elements of M are also easily obtained. The value of m44 is 0.84, which is
quite large. From inspecting the third column of the model matrix, it is clear that the
fourth case is unlike the rest of the data.

To make the example more specific, for i �= 4 data were generated from the model
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yi = 19.6+0.4xi −0.1x2
i + ei

= −0.1(xi −2)2 +20+ ei,

with the eis independent N(0,1) random variables. The values 0, 11.5, and 19.6
were used for y4. These values were chosen to illustrate a variety of conditions. The
value 19.6 is consistent with the model given above. In particular, 19.6 = E(y4).
The value 11.5 = E(y2 + y6)/2 should give a fit that is nearly linear. The value 0 is
simply a convenient choice that is likely to be smaller than any other observation.
The Y vector obtained was

Y = (6.230,8.275,8.580,y4,16.249,14.791,14.024)′.

Figure 13.2 contains a scatterplot of the data that includes all three values for y4 as
well as a plot of the true regression curve.
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Fig. 13.2 Scatterplot for Example 13.1.8.

The linear and quadratic models were fitted with all three of the y4 values and
with the fourth case deleted from the model. For all models fitted, the coefficient
of the linear term was 0.4040. As mentioned above, the second column (the linear
column) of the matrix X is orthogonal to the other columns. Thus, for any value
of y4 the linear coefficient will be the same for the quadratic model and the linear
model. The linear coefficient does not depend on the value of y4 because x4 = 0.
Also, because x4 = 0, the predicted value for y4 is just the intercept of the line.
Fitting simple linear regressions resulted in the following:
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Linear Fits
y4 ŷ4 = β̂0

√
MSE dfE

deleted 11.36 1.263 4
0.0 9.74 4.836 5

11.5 11.38 1.131 5
19.6 12.54 3.594 5

As designed, the fits for y4 deleted and y4 = 11.5 are almost identical. The other
values of y4 serve merely to move the intercept up or down a bit. They do not move
the line enough so that the predicted value ŷ4 is close to the observed value y4. The
y4 values of 0 and 19.6 do not fit the line well, which is reflected in the increased
values for the root mean squared error. In summary, the values of y4 do not have a
great effect on the fitted lines.

The results of the quadratic fits, including the t statistic for testing γ2 = 0, are

Quadratic Fits
y4 ŷ4 = γ̂0 γ̂2 t(γ2)

√
MSE dfE

deleted 16.564 −0.064 −3.78 0.607 3
0.0 2.626 0.102 2.55 3.339 4

11.5 12.303 −0.013 −0.97 1.137 4
19.6 19.119 −0.094 −9.83 0.802 4

As expected, the y4 deleted and y4 = 19.6 situations are similar, and approximate
the true model. The y4 = 11.5 situation gives essentially a straight line; the t statistic
for testing H0 : γ2 = 0 is very small. The true quadratic structure of all but one case
is ignored in favor of the linear fit. (Note that the root mean squared error is almost
identical in the linear and quadratic fits when y4 = 11.5.) Finally, with y4 = 0, the
entire structure of the problem is turned upside down. The true model for all cases
except case four is a parabola opening down. With y4 = 0, the fitted parabola opens
up. Although the fourth case does not have high leverage for the linear fits, the fourth
case greatly affects the quadratic fits.

It is important to note that the problems caused by high leverage points are not
unique to fitting models by least squares. When fitting by least squares, high lever-
age points are fit well, because it is assumed that the model is correct for all of the
data points. Least squares accommodates all the data points, including the points
with high leverage. If a model, say model A, fits the bulk of the data, but a differ-
ent model, say model B, is necessary to explain the data when including the cases
with high leverage, then the error of fitting model A to the high leverage cases is
likely to be large. Any method of fitting models (e.g., robust regression) that seeks
to minimize errors will modify the fit so that those large errors do not occur. Thus,
any fitting mechanism forces the fitted model to do a reasonable job of fitting all
of the data. Since the high leverage cases must be fit reasonably well and since, by
definition, data are sparse near the high leverage points, the high leverage points are
often fit extremely well.
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13.2 Checking Normality

We give a general discussion of the problem of checking normality for a random
sample and then relate it to the analysis of residuals. Suppose v1, . . . ,vn are i.i.d.
N(μ,σ 2) and z1, . . . ,zn are i.i.d. N(0,1). Ordering these from smallest to largest
gives the order statistics v(1) ≤ ·· · ≤ v(n) and z(1) ≤ ·· · ≤ z(n). The expected values of
the standard normal order statistics are E[z(1)], . . . ,E[z(n)]. Since the vis are normal,
[v(i) − μ ]/σ ∼ z(i) and we should have the approximate equality, [v(i) − μ]/σ .=
E[z(i)] or v(i)

.= σE[z(i)]+ μ .
Suppose now that v1, . . . ,vn are observed and we want to see if they are a random

sample from a normal distribution. If the vis are from a normal distribution, a graph
of the pairs (E[z(i)],v(i)) should be an approximate straight line. If the graph is not
an approximate straight line, nonnormality is indicated. These graphs are variously
called rankit plots, normal plots, or q-q plots.

To make the graph, one needs the values E[z(i)]. These values, often called
rankits, normal scores, or theoretical (normal) quantiles, are frequently approxi-
mated as follows. Let

Φ(x) =
∫ x

−∞
(2π)−1/2 exp[−t2/2]dt.

Φ(x) is the cumulative distribution function for a standard normal random variable.
Let u have a uniform distribution on the interval (0,1). Write u ∼U(0,1). It can be
shown that

Φ−1(u) ∼ N(0,1).

If z1, . . . ,zn are i.i.d. N(0,1) and u1, . . . ,un are i.i.d. U(0,1), then

z(i) ∼ Φ−1(u(i)),

and
E[z(i)] = E[Φ−1(u(i))].

One reasonable approximation for E[z(i)] is

E[z(i)]
.= Φ−1(E[u(i)]) = Φ−1

(
i

n+1

)
.

In practice, better approximations are available. Take

E[z(i)]
.= Φ−1

(
i−a

n+(1−2a)

)
. (1)

For n ≥ 5, an excellent approximation is a = 3/8, see Blom (1958). The R program-
ming language defaults to a = 3/8 when n ≤ 10 with a = 0.5 otherwise. MINITAB
always uses a = 3/8.
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Fig. 13.3 Normal plots for normal data, n = 10.

To check whether e ∼ N(0,σ2I) in a linear model, the standardized residuals are
plotted against the rankits. If the plot is not linear, nonnormality is suspected.

EXAMPLE 13.2.1. For n = 10,25,50, nine random vectors, say Ei, i = 1, . . . ,9,
were generated so that the Eis were independent and

Ei ∼ N(0, I).

The corresponding Ei — rankit plots in Figures 13.3 through 13.5 give an idea of
how straight one can reasonably expect rankit plots to be for normal data. All plots
use rankits from equation (1) with a = 3/8.

Figure 13.3 gives rankit plots for random samples of size n = 10. Notice the sub-
stantial deviations from linearity in these plots even though the data are iid normal.
Figure 13.4 gives rankit plots for samples of size n = 25 and Figure 13.5 gives plots
for samples of size n = 50. As the sample sizes increase, the plots become more
linear.
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Fig. 13.4 Normal plots for normal data, n = 25.
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Fig. 13.5 Normal plots for normal data, n = 50.
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In addition, for n = 25 the Eis were used with (13.0.1) to generate nine Y vectors
and the standardized residuals from fitting

yi = β0 +β1xi1 +β2xi2 + ei (2)

were computed. The Eis and the corresponding standardized residual vectors (Ris)
were plotted against the approximate rankits. Two Ri — rankit plots are provided to
give some idea of how the correlations among the residuals can affect the plots. Of
the nine pairs of plots generated, only the two that look least normal (based on Ei as
determined by the author) are displayed in Figures 13.6. The standardized residuals
in plot (b) seem more normal than the original normal observations in plot (a).
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Fig. 13.6 Normal plots for normal data and corresponding standardized residual plots.
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Duan (1981) established that the residuals provide an asymptotically consistent
estimate of the underlying error distribution. Thus for large samples, the residual —
rankit plot should provide an accurate evaluation of normality. In practice, however,
the real question is not whether the data are nonnormal, but whether they are suf-
ficiently nonnormal to invalidate a normal approximation. This is a more difficult
question to address. See Arnold (1981, Chapter 10) for a discussion of asymptotic
consistency of least squares estimates.

Shapiro and Wilk (1965) developed a formal test for normality related to normal
plots. Unfortunately, the test involves knowing the inverse of the covariance matrix
of z(1), . . . ,z(n). An excellent approximation to their test was suggested by Shapiro
and Francia (1972). The approximate test statistic is the square of the sample corre-
lation coefficient computed from the pairs (E[z(i)],v(i)), i = 1, . . . ,n. Let

W ′ =

(
n

∑
i=1

E[z(i)]v(i)

)2/ n

∑
i=1

(E[z(i)])
2

n

∑
i=1

(v(i) − v̄)2.

(Note: ∑n
i=1 E[z(i)] = 0 by symmetry.) If W ′ is large, there is no evidence of nonnor-

mality. Small values of W ′ are inconsistent with the hypothesis that the data are a
random sample from a normal distribution. Approximate percentage points for the
distribution of W ′ are given by Christensen (1996a).

To test for normality in linear models, the vis are generally replaced by the ris,
i.e., the standardized residuals.

EXAMPLE 13.2.2. The W ′ statistics were computed for the Eis and Ris from
Example 13.2.1 with n = 25. The values are listed below.

i W ′(E) W ′(R)
1 0.966 0.951
2 0.975 0.982
3 0.980 0.980
4 0.973 0.968
5 0.978 0.973
6 0.981 0.975
7 0.945 0.964
8 0.955 0.947
9 0.946 0.948

Note that, in this example (as in previous editions of the book), the W ′ values do
not seem to be either systematically higher or lower when computed on the residuals
rather than the true errors. Denoting the lower α percentile of W ′ from a sample of
size n as W ′(α,n), a simulation similar to that used in Christensen (1996a) gives
W ′(0.01,25) = 0.874 and W ′(0.05,25) = 0.918. None of the tests are rejected.

To give some indication of the power of the W ′ test, the example was repeated
using ten samples of data generated using nonnormal errors. In one case, the errors
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were generated from a Cauchy distribution (a t distribution with 1 degree of free-
dom), and in a second case the errors were generated from a t distribution with three
degrees of freedom. The results follow.

Cauchy t(3)
i W ′(E) W ′(R) i W ′(E) W ′(R)
1 0.491 0.553 1 0.861 0.871
2 0.539 0.561 2 0.878 0.966
3 0.903 0.909 3 0.891 0.856
4 0.822 0.783 4 0.654 0.637
5 0.575 0.644 5 0.953 0.951
6 0.354 0.442 6 0.912 0.905
7 0.502 0.748 7 0.978 0.979
8 0.753 0.792 8 0.958 0.959
9 0.921 0.952 9 0.896 0.881

10 0.276 0.293 10 0.972 0.967

With the Cauchy distribution, all but two of the tests are rejected at the 0.01 level,
and one of these is rejected at the 0.05 level. With the t(3) distribution, only two
tests are rejected at the 0.01 level, with six of the tests based on E and five of the
tests based on R rejected at 0.05.

The techniques for checking normality are applied directly to the standardized
residuals. The theory assumed that the vis were independent, but Cov(ê) = σ 2(I −
M), so both the residuals and the standardized residuals are correlated. One way to
avoid this problem is to consider the (n− p)×1 vector O′ê, where the columns of
O are an orthonormal basis for C(I −M).

Cov(O′ê) = σ 2O′(I −M)O = σ 2O′O = σ 2I,

so the procedures for checking normality can be validly applied to O′ê. The prob-
lem with this is that there are an infinite number of ways to pick O and the results
depend on the choice of O. In fact, one can pick O so that W ′ = 1. Note that for
any choice of O′, O1O′ is another valid choice, where O1 is any n− p orthogonal
matrix. Because O1 is an arbitrary orthogonal matrix, O1O′ê can be any rotation
of O′ê. In particular, it can be one that is in exactly the same direction as the vec-
tor an−p = (an−p,1, . . . ,an−p,n−p)′, where an,i = E[z(i)] from a sample of size n. The
sample correlation between these two vectors will be 1; thus W ′ = 1.

Exercise 13.3 Show that the sample correlation between two (mean adjusted)
vectors in the same direction is 1.

Exercise 13.4 Using the model of Example 13.2.2, estimate the power of detect-
ing a t(3) with α = 0.05 by simulation.
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13.2.1 Other Applications for Normal Plots

We close this section with two variations on the use of normal rankit plots.

EXAMPLE 13.2.3. Consider an ANOVA, say

yi jk = μi j + ei jk,

i = 1, . . . ,a, j = 1, . . . ,b, k = 1, . . . ,Ni j. Rather than using residuals to check whether
the ei jks are i.i.d. N(0,σ 2), for each pair i, j we can check whether yi j1, . . . ,yi jNi j are
i.i.d. N(μi j,σ2). The model assumes that for each treatment i j, the Ni j observations
are a random sample from a normal population. Each treatment can be checked for
normality individually. This leads to forming ab normal plots, one for each treat-
ment. Of course, these plots will only work well if the Ni js are reasonably large.

EXAMPLE 13.2.4. We now present a graphical method for evaluating the inter-
action in a two-way ANOVA with only one observation in each cell. The model
is

yi j = μ +αi +η j +(αη)i j + ei j,

i = 1, . . . ,a, j = 1, . . . ,b. Here the ei js are assumed to be i.i.d. N(0,σ2). With one
observation per cell, the (αη)i js are confounded with the ei js; the effects of inter-
action cannot be separated from those of error.

As was mentioned in Section 7.2, the interactions in this model are often assumed
to be nonexistent so that an analysis of the main effects can be performed. As an
alternative to assuming no interaction, one can evaluate graphically an orthogonal
set of (a− 1)(b− 1) interaction contrasts, say λ ′

rsβ . If there are no interactions,
the values λ ′

rsβ̂
/√

λ ′
rs(X ′X)−λrs are i.i.d. N(0,σ 2). Recall that for an interaction

contrast, λ ′β = ∑i j qi j(αη)i j,

λ ′β̂ = ∑
i j

qi j yi j

and
λ ′(X ′X)−λ = ∑

i j
q2

i j.

The graphical procedure is to order the λ ′
rsβ̂
/√

λ ′
rs(X ′X)−λrs values and form a nor-

mal rankit plot. If there are no interactions, the plot should be linear. Often there will
be some estimated interactions that are near zero and some that are clearly nonzero.
The near zero interactions should fall on a line, but clearly nonzero interactions will
show up as deviations from the line. Contrasts that do not fit the line are identified
as nonzero interaction contrasts (without having executed a formal test).

The interactions that fit on a line are used to estimate σ 2. This can be done in
either of two ways. First, an estimate of the slope of the linear part of the graph can
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be used as an estimate of the standard deviation σ . Second, sums of squares for the
contrasts that fit the line can be averaged to obtain a mean squared error.

Both methods of estimating σ 2 are open to criticism. Consider the slope estimate
and, in particular, assume that (a−1)(b−1) = 12 and that there are three nonzero
contrasts all yielding large positive values of λ ′

rsβ̂
/√

λ ′
rs(X ′X)−λrs. In this case, the

ninth largest value is plotted against the ninth largest rankit. Unfortunately, we do
not know that the ninth largest value is the ninth largest observation in a random
sample of size 12. If we could correct for the nonzero means of the three largest
contrasts, what we observed as the ninth largest value could become anything from
the ninth to the twelfth largest value. To estimate σ , we need to plot the mean ad-
justed statistics

(
λ ′

rsβ̂ −λ ′
rsβ
)/√

λ ′
rs(X ′X)−λrs. We know that 9 of the 12 values

λ ′
rsβ are zero. The ninth largest value of λ ′

rsβ̂
/√

λ ′
rs(X ′X)−λrs can be any of the or-

der statistics of the mean adjusted values
(

λ ′
rsβ̂ −λ ′

rsβ
)/√

λ ′
rs(X ′X)−λrs between 9

and 12. The graphical method assumes that extreme values of λ ′
rsβ̂
/√

λ ′
rs(X ′X)−λrs

are also extreme values of the mean adjusted statistics. There is no justification for
this assumption. If the ninth largest value were really the largest of the 12 mean
adjusted statistics, then plotting the ninth largest value rather than the ninth largest
mean adjusted value against the ninth largest rankit typically indicates a slope that
is larger than σ . Thus the graphical procedure tends to overestimate the variance.
Alternatively, the ninth largest value may not seem to fit the line and so, inappro-
priately, be declared nonzero. These problems should be ameliorated by dropping
the three clearly nonzero contrasts and replotting the remaining contrasts as if they
were a sample of size 9. In fact, the replotting method will tend to have a downward
bias, as discussed in the next paragraph.

The criticism of the graphical procedure was based on what happens when there
are nonzero interaction contrasts. The criticism of the mean squared error procedure
is based on what happens when there are no nonzero interaction contrasts. In this
case, if one erroneously identifies contrasts as being nonzero, the remaining con-
trasts have been selected for having small absolute values of λ ′

rsβ̂
/√

λ ′
rs(X ′X)−λrs

or, equivalently, for having small sums of squares. Averaging a group of sums of
squares that were chosen to be small clearly underestimates σ 2. The author’s incli-
nation is to use the mean squared error criterion and try very hard to avoid erro-
neously identifying zero interactions as nonzero. This avoids the problem of esti-
mating the slope of the normal plot. Simulation envelopes such as those discussed
by Atkinson (1985, Chapter 4) can be very helpful in deciding which contrasts to
identify as nonzero.

Some authors contend that, for visual reasons, normal plots should be replaced
with plots that do not involve the sign of the contrasts, see Atkinson (1981, 1982).
Rather than having a graphical procedure based on the values λ ′

rsβ̂
/√

λ ′
rs(X ′X)−λrs,

the squared values, i.e., the sums of squares for the λ ′
rsβ contrasts, can be used.

When there are no interactions,

SS(λ ′
rsβ )

σ 2 ∼ χ2(1).
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The contrasts are orthogonal so, with no interactions, the values SS(λ ′
rsβ ) form a

random sample from a σ 2χ2(1) distribution. Let w1, . . . ,wr be i.i.d χ2(1), where
r = (a− 1)(b−1). Compute the expected order statistics E[w(i)] and plot the pairs(
E[w(i)],SS(λ ′

(i)β )
)
, where SS(λ ′

(i)β ) is the ith smallest of the sums of squares. With
no interactions, this should be an approximate straight line through zero with slope
σ 2. For nonzero contrasts, SS(λ ′

rsβ ) has a distribution that is σ 2 times a noncentral
χ2(1). Values of SS(λ ′

rsβ ) that are substantially above the linear portion of the graph
indicate nonzero contrasts. A graphical estimate of σ 2 is available from the sums of
squares that fit on a line; this has bias problems similar to that of a normal plot. The
theoretical quantiles E[w(i)] can be approximated by evaluating the inverse of the
χ2(1) cdf at i/(n+1).

A corresponding method for estimating σ , based on the square roots of the sums
of squares, is called a half-normal plot. The expected order statistics are often ap-
proximated as Φ−1((n+ i)/(2n+1)).

These methods can be easily extended to handle other situations in which there
is no estimate of error available. In fact, this graphical method was first proposed
by Daniel (1959) for analyzing 2n factorial designs. Daniel (1976) also contains a
useful discussion.

13.3 Checking Independence

Lack of independence occurs when Cov(e) is not diagonal. One reason that good
methods for evaluating independence are difficult to develop is that, unlike the other
assumptions involved in e ∼ N(0,σ2I), independence is not a property of the pop-
ulation in question. Independence is a property of the way that the population is
sampled. As a result, there is no way to check independence without thinking hard
about the method of sampling. Identifying lack of independence is closely related
to identifying lack of fit. For example, consider data from a randomized complete
block (RCB) experiment being analyzed with a one-way analysis of variance model
that ignores blocks. If the blocks have fixed effects, the one-way model suffers from
lack of fit. If the blocks have random effects with a common mean, the one-way
model suffers from lack of independence. We begin with a general discussion of
ideas for testing the independence assumption based upon Christensen and Bedrick
(1997). This is followed by a subsection on detecting serial correlation.

A key idea in checking independence is the formation of rational subgroups. To
evaluate whether a group of numbers form a random sample from a population,
Shewhart (1931) proposed using control charts for means. The means being charted
were to be formed from rational subgroups of the observations that were obtained
under essentially identical conditions. Shewhart (1939, p. 42) suggests that a control
chart is less a test for whether data form a random sample and more an operational
definition of what it means to have a random sample. It is easily seen that a means
chart based on rational subgroups is sensitive to lack of independence, lack of fit
(nonconstant mean), inequality of variances, and nonnormality. In analyzing linear
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models, statisticians seek assurance that any lack of independence or other viola-
tions of the assumptions are not so bad as to invalidate their conclusions. Essentially,
statisticians need an operational definition of when traditional linear model theory
can be applied.

As used with linear models, rational subgroups are simply clusters of observa-
tions. They can be clustered in time, or in space, by having similar predictor vari-
ables, by being responses on the same individual, or by almost anything that the
sampling scheme suggests could make observations within a cluster more alike than
observations outside a cluster. To test for lack of independence, the near replicate
lack of fit tests presented in Subsection 6.6.2 can be used. Simply replace the clus-
ters of near replicates with clusters of rational subgroups determined by the sam-
pling scheme. Christensen and Bedrick (1997) found that the analysis of covariance
test, i.e., the Christensen (1989) test, worked well in a wide variety of situations,
though the Shillington test often worked better when the clusters were very small.
Of course, specialized tests for specific patterns of nonindependence can work much
better than these general tests when the specific patterns are appropriate.

13.3.1 Serial Correlation

An interesting case of nonindependence is serial correlation. This occurs frequently
when observations y1,y2, . . . ,yn are taken serially at equally spaced time periods. A
model often used when the observations form such a time series is

Cov(e) = σ 2

⎡⎢⎢⎢⎢⎣
1 ρ1 ρ2 · · · ρn−1
ρ1 1 ρ1 · · · ρn−2
ρ2 ρ1 1 · · · ρn−3
...

...
...

. . .
...

ρn−1 ρn−2 ρn−3 · · · 1

⎤⎥⎥⎥⎥⎦ ,

where ρ1,ρ2, . . . ,ρn−1 are such that Cov(e) is positive definite. Typically, only the
first few of ρ1,ρ2, . . . ,ρn−1 will be substantially different from zero. One way of
detecting serial correlation is to plot ri versus i. If, say, ρ1 and ρ2 are positive and
ρ3, . . . ,ρn are near zero, a plot of ri versus i may have oscillations, but residuals that
are adjacent should be close. If ρ1 is negative, then ρ2 must be positive. The plot
of ri versus i in this case may or may not show overall oscillations, but adjacent
residuals should be oscillating rapidly. An effective way to detect a nonzero ρs is to
plot (ri,ri+s) for i = 1, . . . ,n−s or to compute the corresponding sample correlation
coefficient from these pairs.

A special case of serial correlation is ρs = ρs for some parameter ρ between −1
and 1. This AR(1), i.e., autoregressive order 1, covariance structure can be obtained
by assuming 1) e1 ∼ N(0,σ 2), and 2) for i > 1, ei+1 = ρei + vi+1, where v2, . . . ,vn
are i.i.d. N(0,(1−ρ2)σ 2) and vi+1 is independent of ei for all i. Other models for
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Fig. 13.7 Serial correlation standardized residual plots.

serial correlation are discussed in Christensen et al. (2010, Section 10.3). Most are
based on ARMA time series models, cf. Christensen (2001, Chapter 5).

EXAMPLE 13.3.1. For ρ equal to −0.9, 0.5, 0.5, and 0.9, serially correlated
error vectors were generated as just described. Dependent variable values y were
obtained using (13.0.1) and the model (13.2.2) was fitted, giving a standardized
residual vector r. For all values of ρ , the standardized residuals are plotted against
their observation numbers. Within each figure, z1,z2, . . . ,zn are i.i.d. N(0,1) with
e1 = z1 and vi =

√
1−ρ2zi, so only ρ changes. Figures 13.7 through 13.9 give

three independent sets of plots. Note that when ρ is positive, adjacent observations
remain near one another. The overall pattern tends to oscillate slowly. When ρ is
negative, the observations oscillate very rapidly; adjacent observations tend to be
far apart, but observations that are one apart (e.g., ei and ei+2) are fairly close.

Figures 13.10 through 13.14 contain plots with ρ = 0. Figure 13.10 is in the same
form as Figures 13.7 through 13.9. The other figures use a different style. Comparing
Figure 13.10 with Figures 13.7–13.9, it does not seem easy to distinguish between
ρ = 0 and moderate correlations like ρ = ±0.5.

Figures 13.10 through 13.14 are of interest not only for illustrating a lack of
serial correlation, but also as examples of what the plots in Section 4 should look
like, i.e., these are standardized residual plots when all the model assumptions are
valid. Note that the horizontal axis is not specified, because the residual plots should
show no correlation, regardless of what they are plotted against. It is interesting to
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Fig. 13.8 Serial correlation standardized residual plots.
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Fig. 13.9 Serial correlation standardized residual plots.
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Fig. 13.10 Serial correlation standardized residual plots with uncorrelated data.
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Fig. 13.11 Standardized residual plots when model assumptions are valid.

try to detect patterns in Figures 13.10 though 13.14 because the human eye is good
at detecting/creating patterns, even though none exist in these plots.
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Fig. 13.12 Standardized residual plots when model assumptions are valid.
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Fig. 13.13 Standardized residual plots when model assumptions are valid.
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Fig. 13.14 Standardized residual plots when model assumptions are valid.

Durbin and Watson (1951) provided an approximate test for the hypothesis ρ = 0.
The Durbin–Watson test statistic is

d =
n−1

∑
i=1

(êi+1 − êi)2
/ n

∑
i=1

ê2
i .

Here d is an estimate of ∑n−1
i=1 (ei+1 − ei)2/∑n

i=1 e2
i . For an AR(1) structure,

ei+1 − ei = ρei + vi+1 − ei = (1−ρ)ei + vi+1,

so we have

E[ei+1 − ei]2 = E[(1−ρ)ei + vi+1]2 = (1−ρ)2σ2 +(1−ρ2)σ 2 = 2(1−ρ)σ2,

and
E[e2

i ] = σ 2.

It follows that ∑n−1
i=1 (êi+1− êi)2 should, for some constant K1, estimate K1(1−ρ)σ 2,

and ∑n
i=1 ê2

i estimates K2σ2. d is a rough estimate of (K1/K2)(1−ρ) or K[1−ρ]. If
ρ = 0, d should be near K. If ρ > 0, d will tend to be small. If ρ < 0, d will tend to
be large.

The exact distribution of d varies with X . For example, ∑n−1
i=1 (êi+1 − êi)2 is just a

quadratic form in ê, say êAê = Y ′(I −M)A(I −M)Y . It takes little effort to see that
A is a very simple matrix. By Theorem 1.3.2,
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E(êAê) = tr[(I −M)A(I −M)Cov(Y )].

Thus, even the expected value of the numerator of d depends on the model matrix.
Since the distribution depends on X , it is not surprising that the exact distribution of
d varies with X .

Exercise 13.5 Show that d is approximately equal to 2(1− ra), where ra is the
sample (auto)correlation between the pairs (êi+1, êi) i = 1, . . . ,n−1.

13.4 Heteroscedasticity and Lack of Fit

Heteroscedasticity refers to having unequal variances. In particular, an independent
heteroscedastic model has

Cov(e) = Diag(σ 2
i ).

Lack of fit refers to having an incorrect model for E(Y ). In Section 6.6 on testing
lack of fit, we viewed this as having an insufficiently general model matrix. When
lack of fit occurs, E(e) ≡ E(Y −Xβ ) �= 0. Both heteroscedasticity and lack of fit
are diagnosed by plotting the standardized residuals against any variable of choice.
The chosen variable may be case numbers, time sequence, any predictor variable
included in the model, any predictor variable not included in the model, or the pre-
dicted values Ŷ = MY . If there is no lack of fit or heteroscedasticity, the residual
plots should form a horizontal band. The plots in Section 3 with ρ = 0.0 are exam-
ples of such plots when the horizontal axis has equally spaced entries.

13.4.1 Heteroscedasticity

A horn-shaped pattern in a residual plot indicates that the variance of the observa-
tions is increasing or decreasing with the other variable.

EXAMPLE 13.4.1. Twenty-five i.i.d. N(0,1) random variates, z1, . . . ,z25 were
generated and y values were computed using (13.0.1) with ei = xi1zi/60. The vari-
ance of the eis increase as the xi1s increase.

Figure 13.15 plots the standardized residuals R1 against Ŷ and X2. The plot of
R1 versus Ŷ shows something of a horn shape, but it opens to the left and is largely
dependent on one large residual with a ŷ of about 8.3. The plot against X2 shows
very little. It is difficult to detect any pattern in either plot. In (b) the two relatively
small values of x2 don’t help. The top left component of Figure 13.16 plots R1
against X1 where you can detect a pattern but, again, by no means an obvious one.
The impression of a horn shape opening to the right is due almost entirely to one
large residual near x1 = 70. The remaining plots in Figure 13.16 as well as the plots
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in Figures 13.17 and 13.18 are independent replications. Often you can detect the
horn shape but sometimes you cannot.
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Fig. 13.15 Variance increasing with x1.

EXAMPLE 13.4.2. To illustrate horn shapes that open to the left, Example 13.4.1
was repeated using ei = 60zi/xi1. With these eis, the variance decreases as x1 in-
creases. The plots are contained in Figures 13.19 through 13.21. In Figure 13.19(a)
of R1 versus Ŷ , we see a horn opening to the right. Note that from (13.0.1), if x2 is
held constant, y increases as x1 decreases. In the plot, x2 is not being held constant,
but the relationship still appears. There is little to see in Figure 13.19(b) R1 versus
X2. The plot of R1 versus X1 in the top left of Figure 13.20 shows a horn opening to
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Fig. 13.16 Variance increasing with x1.
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Fig. 13.17 Variance increasing with x1.
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Fig. 13.18 Variance increasing with x1.

the left. The remaining plots in Figure 13.20 as well as the plots in Figure 13.21 are
independent replications.

Although plotting the residuals seems to be the standard method for examining
heteroscedasticity of variances, Examples 13.4.1 and 13.4.2 indicate that residual
plots are far from foolproof.

For one-way ANOVA models (and equivalent models such as two-way ANOVA
with interaction), there are formal tests of heteroscedasticity available. The best
known of these are Hartley’s, Bartlett’s, and Cochran’s tests. The tests are based
on the sample variances for the individual groups, say s2

1, . . . ,s
2
t . Hartley’s and

Cochran’s tests require equal sample sizes for each treatment group; Bartlett’s
test does not. Hartley’s test statistic is maxi s2

i /mini s2
i . Cochran’s test statistic is

maxi s2
i
/

∑t
i=1 s2

i . Bartlett’s test statistic is (n− t) log s̄2· −∑i(Ni −1) log s2
i . Descrip-

tions of these and other tests can be found in Mandansky (1988).
All of these tests are based on the assumption that the data are normally dis-

tributed, and the tests are quite notoriously sensitive to the invalidity of that assump-
tion. For nonnormal data, the tests frequently reject the hypothesis of all variances
being equal, even when all variances are, in fact, equal. This is important because
t and F tests tend not to be horribly sensitive to nonnormality. In other words, if
the data are not normally distributed (and they never are), the data may be close
enough to being normally distributed so that the t and F tests are approximately
correct. However, the nonnormality may be enough to make Hartley’s, Bartlett’s,
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Fig. 13.19 Variance decreasing with x1.

and Cochran’s tests reject, so that the data analyst worries about a nonexistent prob-
lem of heteroscedasticity.

13.4.2 Lack of Fit

An additional use of residual plots is to identify lack of fit. The assumption is that
E(e) = 0, so any systematic pattern in the residuals (other than a horn shape) can
indicate lack of fit. Most commonly, one looks for a linear or quadratic trend in the



366 13 Model Diagnostics

30 40 50 60 70

−2
−1

0
1

2
3

R1

x1

30 40 50 60 70

−2
−1

0
1

2

R2

x1

30 40 50 60 70

−2
−1

0
1

R3

x1

30 40 50 60 70

−2
−1

0
1

2

R4

x1

Fig. 13.20 Variance decreasing with x1.
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Fig. 13.21 Variance decreasing with x1.
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residuals. Such trends indicate the existence of effects that have not been removed
from the residuals, i.e., effects that have not been accounted for in the model.

Theorems 6.3.3 and 6.3.6 indicate that the residuals should be uncorrelated with
any function of the predictor variables when we have the best possible model. So
a nonzero correlation between the residuals and any other variable, say z, indicates
that something is wrong with the model. If z were not originally in the model, then
it needs to be. A quadratic relationship between the residuals and z is indicative of
a nonzero correlation between the residuals and z2, although the linear relationship
might be much clearer when plotting the residuals against a standardized version of
z, say z− z̄.

For examining heteroscedasticity, the standardized residuals need to be used be-
cause the ordinary residuals are themselves heteroscedastic. For examining lack of
fit, the ordinary residuals are preferred but we often use the standardized residuals
for convenience.

EXAMPLE 13.4.3. Data were generated using (13.0.1) and the incorrect model

yi = β0 +β2xi2 + ei

was fitted. In the independently generated Figures 13.22 and 13.23, the ordinary
residuals ê and the standardized residuals R are plotted against x1 in (a) and (b) to
examine whether X1 needs to be added to the model. The decreasing trends in the
residual plots indicate that x1 may be worth adding to the model.
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Fig. 13.22 Linear lack of fit plots.
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Part (c) contains an added variable plot. To obtain it, find the ordinary residuals,
say ê(x1), from fitting

xi1 = γ0 + γ2xi2 + ei.

By Exercise 9.2, a plot of ê versus ê(x1) gives an exact graphical display of the effect
of adding x1 to the model.
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Fig. 13.23 Linear lack of fit plots.

The disadvantage of added variable plots is that it is time consuming to adjust the
predictor variables under consideration for the variables already in the model. It is
more convenient to plot residuals against predictor variables that have not been ad-
justed. As in Example 13.4.3, such plots are often informative but could, potentially,
be misleading.

The final example in this section displays a quadratic lack of fit:

EXAMPLE 13.4.4. Data were generated by adding 0.005x2
1 to (13.0.1). The model

yi = β0 +β1xi1 +β2xi2 + ei

was fitted and standardized residuals R were obtained. Figures 13.24 and 13.25 are
independent replications in which the standardized residuals are plotted against pre-
dicted values ŷ, against x2, and against x1. The quadratic trend appears clearly in the
plots of residuals versus ŷ and x1, and even seems to be hinted at in the plot versus
x2.
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Fig. 13.24 Quadratic lack of fit plots.
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In Figures 13.24 and 13.25, it would not be possible to have a linear effect. The
residuals are being plotted against variables x1 and x2 that are already included in the
fitted model as well as ŷ which is a linear combination of x1 and x2. Any linear effect
of these variables would be eliminated by the fitting procedure. However, plotting
the residuals against a variable not included in the model does allow the possibility
of seeing a linear effect, e.g., plotting against (xi1 − x̄·1)2.

EXAMPLE 13.4.5. As mentioned earlier, lack of independence and lack of fit are
closely related. In Figures 13.7 through 13.9, we plotted residuals against case num-
bers. When observations are taken sequentially, the case numbers can be thought of
as a measure of time. There was no lack of fit present in the fitted models for these
plots. Nonetheless, the serial correlation can cause the plots to look like the models
are lacking linear or quadratic effects in time, respectively, especially when ρ = 0.9.

Tests for lack of fit were discussed in Section 6.6. Although no examples of it
have been presented, it should be noted that it is possible to have both lack of fit and
heteroscedasticity in the same plot.

13.5 Updating Formulae and Predicted Residuals

Frequently, it is of interest to see how well the data could predict yi if the ith case
were left out when the model was fitted. The difference between yi and the estimate
ŷ[i] with the ith case deleted is called either the predicted residual or the deleted
residual. The computations for fitting the model with the ith case left out can be
performed by using simple updating formulae on the complete model. We give sev-
eral of these formulae.

Let X[i] and Y[i] be X and Y with the ith row deleted. Write x′i for the ith row of X
and

β̂[i] = (X ′
[i]X[i])

−1X ′
[i]Y[i]

for the estimate of β without the ith case. The predicted residual is defined as

ê[i] = yi − x′iβ̂[i].

The predicted residuals are useful in checking for outliers. They are also used for
model selection. The Predicted REsidual Sum of Squares (PRESS) is defined as

PRESS =
n

∑
i=1

ê2
[i].

Models with relatively low values of the PRESS statistic should be better than mod-
els with high PRESS statistics. It is tempting to think that PRESS is a more valid
measure of how well a model fits than SSE, because PRESS predicts values not
used in fitting the model. This reasoning may seem less compelling after the updat-
ing formula for the predicted residuals has been established.
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The predicted residuals can also be used to check normality, heteroscedasticity,
and lack of fit in the same way that the usual residuals are used. For these purposes
they should be standardized. Their variances are

Var(ê[i]) = σ 2 +σ2x′i(X
′
[i]X[i])

−1xi

= σ 2
[
1+ x′i(X

′
[i]X[i])

−1xi

]
.

A reasonable estimate of σ 2 is MSE[i], the mean squared error for the model with the
ith case deleted. Alternatively, σ 2 could be estimated with the regular MSE. If MSE
is used, then the standardized predicted residuals are identical to the standardized
residuals (see Exercise 13.6). Standardized predicted residuals will be discussed
again in Section 6. A more useful formula for Var(ê[i]) is given in Proposition 13.5.4.

We now present a series of results that establish the updating formulae for models
with one deleted case.

Proposition 13.5.1. Let A be a p× p nonsingular matrix, and let a and b be q× p
rank q matrices. Then, if all inverses exist,

(A+a′b)−1 = A−1 −A−1a′(I +bA−1a′)−1bA−1.

PROOF. This is a special case of Theorem B.56. �

The application of Proposition 13.5.1 is

Corollary 13.5.2.

(X ′
[i]X[i])

−1 = (X ′X)−1 +[(X ′X)−1xix′i(X
′X)−1]

/
[1− x′i(X

′X)−1xi].

PROOF. The corollary follows from noticing that X ′
[i]X[i] = (X ′X − xix′i). �

Proposition 13.5.3. β̂[i] = β̂ − [(X ′X)−1xiêi]
/
(1−mii).

PROOF. First, note that x′i(X
′X)−1xi = mii and X ′

[i]Y[i] = X ′Y − xiyi. Now, from
Corollary 13.5.2,

β̂[i] = (X ′
[i]X[i])

−1X ′
[i]Y[i]

= (X ′
[i]X[i])

−1(X ′Y − xiyi)

= β̂ − (X ′X)−1xiyi +
[
(X ′X)−1xix′iβ̂ − (X ′X)−1xix′i(X

′X)−1xiyi

]/
(1−mii).

Writing (X ′X)−1xiyi as (X ′X)−1xiyi/(1−mii)−mii(X ′X)−1xiyi/(1−mii), it is eas-
ily seen that
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β̂[i] = β̂ − [(X ′X)−1xi(yi − x′iβ̂ )]/(1−mii)

+
[
mii(X ′X)−1xiyi − (X ′X)−1ximiiyi

]
/(1−mii)

= β̂ − [(X ′X)−1xiêi]/(1−mii). �

The predicted residuals can now be written in a simple way.

Proposition 13.5.4.

(a) ê[i] = êi/(1−mii).
(b) Var(ê[i]) = σ 2/(1−mii).

PROOF.

(a) ê[i] = yi − x′iβ̂[i]

= yi − x′i

[
β̂ − (X ′X)−1xiêi

1−mii

]
= êi +miiêi/(1−mii)
= êi/(1−mii).

(b) This follows from having ê[i] = êi/(1−mii) and Var(êi) = σ 2(1−mii). �

The PRESS statistic can now be written as

PRESS =
n

∑
i=1

ê2
i
/
(1−mii)2.

The value of ê2
i
/
(1−mii)2 will usually be large when mii is near 1. Model selec-

tion with PRESS puts a premium on having models in which observations with
extremely high leverage are fitted very well. As will be discussed in Chapter 14,
when fitting a model after going through a procedure to select a good model, the fit-
ted model tends to be very optimistic in the sense of indicating much less variability
than is appropriate. Model selection using the PRESS statistic tends to continue that
phenomenon, cf. Picard and Cook (1984) and Picard and Berk (1990).

Later, we will also need the sum of squares for error with the ith case deleted,
say SSE[i].

Proposition 13.5.5. SSE[i] = SSE − ê2
i
/
(1−mii).

PROOF. By definition,

SSE[i] = Y ′
[i]Y[i]−Y ′

[i]X[i](X
′
[i]X[i])

−1X ′
[i]Y[i]

= (Y ′Y − y2
i )−Y ′

[i]X[i]β̂[i].
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The second term can be written

Y ′
[i]X[i]β̂[i] = (Y ′X − yix′i)

{
β̂ − [(X ′X)−1xiêi]

/
(1−mii)

}
= Y ′X β̂ − yix′iβ̂ − x′iβ̂ êi

/
(1−mii)+ yimiiêi

/
(1−mii)

= Y ′MY − yix′iβ̂ + yiêi
/
(1−mii)− x′iβ̂ êi

/
(1−mii)

− yiêi
/
(1−mii)+ yimiiêi

/
(1−mii)

= Y ′MY − yix′iβ̂ + ê2
i
/
(1−mii)− yiêi

= Y ′MY + ê2
i
/
(1−mii)− y2

i .

Therefore,

SSE[i] = Y ′Y − y2
i − [Y ′MY + ê2

i
/
(1−mii)− y2

i ]

= Y ′(I −M)Y − ê2
i
/
(1−mii)

= SSE − ê2
i
/
(1−mii). �

Exercise 13.6 Show that the standardized predicted residuals with σ 2 estimated
by MSE are the same as the standardized residuals.

13.6 Outliers and Influential Observations

Realistically, the purpose of fitting a linear model is to get a (relatively) succinct
summary of the important features of the data. Rarely is the chosen linear model
really correct. Usually, the linear model is no more than a rough approximation to
reality.

Outliers are cases that do not seem to fit the chosen linear model. There are two
kinds of outliers. Outliers may occur because the predictor variables for the case are
unlike the predictor variables for the other cases. These are cases with high leverage.
If we think of the linear model as being an approximation to reality, the approxima-
tion may be quite good within a certain range of the predictor variables, but poor
outside that range. A few cases that fall outside the range of good approximation
can greatly distort the fitted model and lead to a bad fit, even on the range of good
approximation. Outliers of this kind are referred to as outliers in the design space
(estimation space).

The other kind of outliers are those due to bizarre values of the dependent vari-
able. These may occur because of gross measurement error, or from recording the
data incorrectly. Not infrequently, data are generated from a mixture process. In
other words, the data fit one pattern most of the time, but occasionally data with a
different pattern are generated. Often it is appropriate to identify the different kinds
of data and model them separately. If the vast majority of data fit a common pattern,
there may not be enough of the rare observations for a complete analysis; but it is
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still important to identify such observations. In fact, these rare observations can be
more important than all of the other data.

Not only is it important to be able to identify outliers, but it must also be decided
whether such observations should be included when fitting the model. If they are
left out, one gets an approximation to what usually happens, and one must be aware
that something unusual will happen every so often.

Outliers in the design space are identified by their leverages, the miis. Bizarre val-
ues of yi can often be identified by their standardized residuals. Large standardized
residuals indicate outliers. Typically, these are easily spotted in residual plots. How-
ever, if a case with an unusual yi also has high leverage, the standardized residual
may not be large. If there is only one bizarre value of yi, it should be easy to identify
by examining all the cases with either a large standardized residual or high leverage.
With more than one bizarre value, they may mask each other. (I believe that careful
examination of the leverages will almost always identify possible masking, cf. the
comments in Section 1 on gaps in the leverage values.)

An alternative to examining the standardized residuals is to examine the stan-
dardized predicted residuals, also known as the standardized deleted residuals, the
t residuals, and sometimes (as in the R programming language) the Studentized
residuals. The standardized predicted residuals are

ti =
ê[i]√

MSE[i]/(1−mii)
=

yi − x′iβ̂[i]√
MSE[i]/(1−mii)

.

Since yi, β̂[i], and MSE[i] are independent,

ti ∼ t(n− p−1),

where p = r(X). This allows a formal t test for whether the value yi is consistent
with the rest of the data. Actually, this procedure is equivalent to examining the
standardized residuals, but using the t(n− p− 1) distribution is more convenient
than using the appropriate distribution for the ris, cf. Cook and Weisberg (1982).

When all the values ti, i = 1, . . . ,n, are computed, the large values will naturally
be singled out for testing. The appropriate test statistic is actually maxi |ti|. The
null distribution of this statistic is quite different from a t(n− p− 1). Fortunately,
Bonferroni’s inequality provides an appropriate, actually a conservative, P value by
multiplying the P value from a t(n− p− 1) distribution by n. Alternatively, for an
α level test, use a critical value of t(1−α/2n,n− p−1).

If yi corresponds to a case with extremely high leverage, the standard error for
the predicted residual,

√
MSE[i]/(1−mii), will be large, and it will be difficult to

reject the t test. Recall from Example 13.1.6 that under condition (3) the y value
for case six is clearly discordant. Although the absolute t value is quite large,
t6 = −5.86 with m66 = 0.936, it is smaller than one might expect, considering the
obvious discordance of case six. In particular, the absolute t value is smaller than
the critical point for the Bonferroni method with α = 0.05. (The critical point is
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t(1− 0.025/6,3) = 6.23.) Of course, with three degrees of freedom, the power of
this test is very small. A larger α level would probably be more appropriate. Using
the Bonferroni method with α = 0.10 leads to rejection.

The updating formula for ti is

Proposition 13.6.1.

ti = ri

√
n− p−1
n− p− r2

i
.

PROOF. Using the updating formulae of Section 5,

ti = ê[i]
/√

MSE[i]/(1−mii)

= ê[i]
√

(1−mii)
/√

MSE[i]

= ri
√

MSE
/√

MSE[i]

= ri
√

(n− p−1)/(n− p)
√

SSE
/

SSE[i]

= ri
√

(n− p−1)/(n− p)
√

SSE
/
[SSE − ê2

i /(1−mii)]

= ri
√

(n− p−1)/(n− p)
√

1
/
[1− r2

i /(n− p)]

= ri

√
(n− p−1)

/
(n− p− r2

i ). �

As indicated earlier, ti really contains the same information as ri.
A test that a given set of y values does not fit the model is easily available from

general linear model theory. Suppose that the r observations i = n− r +1, . . . ,n are
suspected of being outliers. The model Y = Xβ + e can be written with

Y =
[

Y0
Y1

]
, X =

[
X0
X1

]
, e =

[
e0
e1

]
,

where Y1, X1, and e1 each have r rows. If Z =
[

0
Ir

]
, then the model with the possible

outliers deleted
Y0 = X0β + e0 (1)

and the model
Y = Xβ +Zγ + e (2)

are equivalent for estimating β and σ 2. A test of the reduced model Y = Xβ + e
against the full model Y = Xβ +Zγ + e is rejected if

(SSE −SSE0)/r
MSE0

> F(1−α ,r,n− p− r).



376 13 Model Diagnostics

If the test is rejected, the r observations appear to contain outliers. Note that this
procedure is essentially the same as Utts’s Rainbow Test for lack of fit discussed in
Section 6.6. The difference is in how one identifies the cases to be eliminated.

In my opinion, the two most valuable tools for identifying outliers are the miis
and the tis. It would be unusual to have outliers in the design space without large
values of the miis. Such outliers would have to be “far” from the other data without
the Mahalanobis distance being large. For bizarre values of the yis, it is useful to
determine whether the value is so bizarre that it could not reasonably come from the
model under consideration. The tis provide a test of exactly what is needed.

Cook (1977) presented a distance measure that combines the standardized resid-
ual with the leverage to get a single measure of the influence a case has on the fit of
the regression model. Cook’s distance (Ci) measures the statistical distance between
β̂ and β̂[i]. It is defined as

Ci =
(β̂[i] − β̂ )′(X ′X)(β̂[i]− β̂ )

pMSE
.

Written as a function of the standardized residual and the leverage, Cook’s distance
is:

Proposition 13.6.2. Ci = r2
i [mii/p(1−mii)].

Exercise 13.7 Prove Proposition 13.6.2.

From Proposition 13.6.2 it can be seen that Cook’s distance takes the size of
the standardized residual and rescales it based on the leverage of the case. For an
extremely high leverage case, the squared standardized residual gets multiplied by
a very large number. For low leverage cases the multiplier is very small. Another
interpretation of Cook’s distance is that it is a standardized version of how far the
predicted values X β̂ move when the ith case is deleted.

In Section 1, after establishing that the miis were a reasonable measure of lever-
age, it was necessary to find guidelines for what particular values of mii meant. This
can also be done for Cook’s distance. Cook’s distance can be calibrated in terms of
confidence regions. Recall that a (1−α)100% confidence region for β is{

β
∣∣∣ (β − β̂ )′(X ′X)(β − β̂ )

pMSE
< F(1−α , p,n− p)

}
.

If Ci
.= F(0.75, p,n− p), then deleting the ith case moves the estimate of β to the

edge of a 75% confidence region for β based on β̂ . This is a very substantial move.
Since F(0.5, p,n− p) .= 1, any case with Ci > 1 probably has above average in-
fluence. Note that Ci does not actually have an F distribution. While many people
consider such calibrations a necessity, other people, including the author, prefer sim-
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ply to examine those cases with distances that are substantially larger than the other
distances.

Cook’s distance can be modified in an obvious way to measure the influence of
any set of observations. Cook and Weisberg (1982) give a more detailed discussion
of all of the topics in this section.

Updating formulae and case deletion diagnostics for linear models with gen-
eral covariance matrices are discussed by Christensen, Johnson, and Pearson (1992,
1993), Christensen, Pearson, and Johnson (1992), and by Haslett and Hayes (1998)
and Martin (1992). A nice review of these procedures is given by Shi and Chen
(2009).

Haslett (1999) establishes two results that can greatly simplify case deletion di-
agnostics for correlated data. First, he shows that an analysis based on Y[i], X[i], and
V[ii] (the covariance matrix with the ith row and column removed) is the same as an
analysis based on Ỹ (i), X , and V where

Ỹ (i) =
[

ŷi(Y[i])
Y[i]

]
and ŷi(Y[i]) is the BLUP of yi based on Y[i]. Second, he shows that there is a relatively
simple way to find a matrix Pi such that Ỹ (i) = PiY .

13.7 Transformations

If the residuals suggest nonnormality, heteroscedasticity of variances, or lack of fit, a
transformation of the yis may eliminate the problem. Cook and Weisberg (1982) and
Atkinson (1985) give extensive discussions of transformations. Only a brief review
is presented here.

Picking a transformation is often a matter of trial and error. Different transfor-
mations are tried until one is found for which the residuals seem reasonable. Three
more systematic methods of choosing transformations will be discussed: Box–Cox
power transformations, variance stabilizing transformations, and the generalized
least squares approach of Grizzle, Starmer, and Koch (1969).

Box and Cox (1964) suggested a systematic method of picking transformations.
They suggested using the family of transformations

y(λ ) =
{

(yλ −1)/λ , λ �= 0
logy, λ = 0

and choosing λ by maximum likelihood. Convenient methods of executing this pro-
cedure are discussed in Cook and Weisberg (1982), Weisberg (1985), and Chris-
tensen (1996a).
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If the distribution of the yis is known, the commonly used variance stabilizing
transformations can be tried (cf. Rao, 1973, Section 6g, or Christensen, 1996a). For
example,

if yi ∼ Binomial(Ni, pi), use arcsin(
√

yi/Ni),
if yi ∼ Poisson(λi), use

√
yi,

if yi has σi/E(yi) constant, use log(yi).

More generally, arcsin(
√

yi/Ni) can be tried for any problem where yi is a count
between 0 and Ni or a proportion,

√
yi can be used for any problem where yi is a

count, and log(yi) can be used if yi is a count or amount.
The transformation log(yi) is also frequently used because, for a linear model

in log(yi), the additive effects of the predictor variables transform to multiplicative
effects on the original scale. If multiplicative effects seem reasonable, the log trans-
formation may be appropriate.

As an alternative to the variance stabilizing transformations, there exist general-
ized linear models specifically designed for treating binomial and Poisson data. For
Poisson data there exists a well developed theory for fitting log-linear models. One
branch of the theory of log-linear models is the theory of logistic regression, which
is used to analyze binomial data. As shown by Grizzle, Starmer, and Koch (1969),
generalized least squares methods can be used to fit log-linear models to Poisson
data and logistic regression models to binomial data. The method involves both a
transformation of the dependent variable and weights. The appropriate transforma-
tion and weights are:

Distribution of yi Transformation Weights
Poisson(λi) logyi yi
Binomial(Ni, pi) log(yi/[Ni − yi]) yi(Ni − yi)/Ni

With these weights, the asymptotic variance of the transformed data is 1.0. Standard
errors for regression coefficients are computed as usual except that no estimate of
σ 2 is required (σ 2 is known to be 1). Since σ 2 is known, t tests and F tests are
replaced with normal tests and chi-squared tests. In particular, if the linear model
fits the data and the observations yi are large, the SSE has an asymptotic chi-squared
distribution with the usual degrees of freedom. If the SSE is too large, a lack of fit is
indicated. Tests of various models can be performed by comparing the difference in
the SSEs for the model. The difference in the SSEs has an asymptotic chi-squared
distribution with the usual degrees of freedom. If the difference is too large, then
the smaller model is deemed inadequate. Unlike the lack of fit test, these model
comparison tests are typically valid if n is large even when the individual yis are
not. Fitting log-linear and logistic models both by generalized least squares and by
maximum likelihood is discussed in detail by Christensen (1997).

Exercise 13.8 The data given below were first presented by Brownlee (1965)
and have subsequently appeared in Daniel and Wood (1980), Draper and Smith
(1998), and Andrews (1974), among other places. The data consist of measurements
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taken on 21 successive days at a plant that oxidizes ammonia into nitric acid. The
dependent variable y is stack loss. It is 10 times the percentage of ammonia that is
lost (in the form of unabsorbed nitric oxides) during the oxidation process. There
are three predictor variables: x1, x2, and x3. The first predictor variable is air flow
into the plant. The second predictor variable is the cooling water temperature as it
enters the countercurrent nitric oxide absorption tower. The third predictor variable
is a coded version of the nitric acid concentration in the absorbing liquid. Analyze
these data giving special emphasis to residual analysis and influential observations.

Obs. x1 x2 x3 y Obs. x1 x2 x3 y
1 80 27 89 42 12 58 17 88 13
2 80 27 88 37 13 58 18 82 11
3 75 25 90 37 14 58 19 93 12
4 62 24 87 28 15 50 18 89 8
5 62 22 87 18 16 50 18 86 7
6 62 23 87 18 17 50 19 72 8
7 62 24 93 19 18 50 19 79 8
8 62 24 93 20 19 50 20 80 9
9 58 23 87 15 20 56 20 82 15

10 58 18 80 14 21 70 20 91 15
11 58 18 89 14

Exercise 13.9 For testing whether one observation yi is an outlier, show that the
F statistic is equal to the squared standardized predicted residual.



 



Chapter 14

Variable Selection

Suppose we have a set of variables y,x1, . . . ,xs and observations on these variables
y1,xi1, . . . ,xis, i = 1, . . . ,n. We want to identify which of the independent variables
x j are important for a regression on y. There are several methods available for doing
this.

Obviously, the most complete method is to look at all possible regression equa-
tions involving x1, . . . ,xs. There are 2s of these. Even if one has the time and money
to compute all of them, it may be very difficult to assimilate that much informa-
tion. Tests for the adequacy of various models can be based on general linear model
theory, assuming of course that the model

yi = β0 +β1xi1 + · · ·+βsxis + ei (1)

is an adequate model for the data.
A more efficient procedure than computing all possible regressions is to choose a

criterion for ranking how well different models fit and compute only the best fitting
models. Typically, one would want to identify several of the best fitting models
and investigate them further. The computing effort for this “best subset regression”
method is still considerable.

An older group of methods is stepwise regression. These methods consider the
efficacy of adding or deleting individual variables to a model that is currently under
consideration. These methods have the flaw of considering variables only one at a
time. For example, there is no reason to believe that the best two variables to add to a
model are the one variable that adds most to the model followed by the one variable
that adds the most to this augmented model. The flaw of stepwise procedures is also
their virtue. Because computations go one variable at a time, they are relatively easy.

In this book, the term “mean squared error” (MSE) has generally denoted the
quantity Y ′(I −M)Y/r(I −M). This is a sample quantity, a function of the data. In
Chapters 6 and 12, when discussing prediction, we needed a theoretical concept of
the mean squared error. Fortunately, up until this point we have not needed to discuss
both the sample quantity and the theoretical one at the same time. To discuss variable
selection methods and techniques of dealing with collinearity, we will need both
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concepts simultaneously. To reduce confusion, we will refer to Y ′(I−M)Y/r(I−M)
as the residual mean square (RMS) and Y ′(I −M)Y as the residual sum of squares
(RSS). Since Y ′(I−M)Y = [(I−M)Y ]′[(I−M)Y ] is the sum of the squared residuals,
this is a very natural nomenclature.

14.1 All Possible Regressions and Best Subset Regression

There is very little to say about the “all possible regressions” technique. The effi-
cient computation of all possible regressions is due to Schatzoff, Tsao, and Fien-
berg (1968). Their algorithm was a major advance. Further advances have made
this method obsolete. It is a waste of money to compute all possible regressions.
One should only compute those regressions that consist of the best subsets of the
predictor variables.

The efficient computation of the best regressions is due to Furnival and Wilson
(1974). “Best” is defined by ranking models on the basis of some measure of how
well they fit. The most commonly used of these measures are R2, adjusted R2, and
Mallows’s Cp. These criteria are discussed in the subsections that follow.

14.1.1 R2

The coefficient of determination, R2, was discussed in Section 6.4. It is computed as

R2 =
SSReg

SSTot−C

and is just the ratio of the variability in y explained by the regression to the total
variability of y. R2 measures how well a regression model fits the data as compared
to just fitting a mean to the data. If one has two models with, say, p independent
variables, other things being equal, the model with the higher R2 will be the better
model.

Using R2 is not a valid way to compare models with different numbers of inde-
pendent variables. The R2 for the model

yi = β0 +β1xi1 + · · ·+βpxip + ei (1)

must be less than the R2 for the model

yi = β0 +β1xi1 + · · ·+βpxip +βp+1xi p+1 + · · ·+βqxiq + ei . (2)

The second model has all the variables in the first model plus more, so

SSReg(1) ≤ SSReg(2)
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and
R2(1) ≤ R2(2).

Typically, if the R2 criterion is chosen, a program for doing best subset regression
will print out the models with the highest R2 for each possible value of the number
of predictor variables. It is the use of the R2 criterion in best subset regression that
makes computing all possible regressions obsolete. The R2 criterion fits all the good
models one could ever want. In fact, it probably fits too many models.

14.1.2 Adjusted R2

The adjusted R2 is a modification of R2 so that it can be used to compare models with
different numbers of predictor variables. For a model with p−1 predictor variables
plus an intercept, the adjusted R2 is defined as

Adj R2 = 1− n−1
n− p

(
1−R2) .

(With the intercept there are a total of p variables in the model.)
Define s2

y = (SSTot−C)/(n−1). Then s2
y is the sample variance of the yis ignor-

ing any regression structure. It is easily seen (Exercise 14.1) that

Adj R2 = 1− RMS
s2

y
.

The best models based on the Adj R2 criterion are those models with the smallest
residual mean squares.

As a method of identifying sets of good models, this is very attractive. The mod-
els with the smallest residual mean squares should be among the best models. How-
ever, the model with the smallest residual mean square may very well not be the best
model.

Consider the question of deleting one variable from a model. If the F for testing
that variable is greater than 1, then deleting the variable will increase the residual
mean square. By the adjusted R2 criterion, the variable should not be deleted. How-
ever, unless the F value is substantially greater than 1, the variable probably should
be deleted. The Adj R2 criterion tends to include too many variables in the model.
(See Exercise 14.2.)

Exercise 14.1 Show that Adj R2 = 1− (RMS/s2
y).

Exercise 14.2 Consider testing the regression model (1) against (2). Show that
F > 1 if and only if the Adj R2 for model (1) is less than the Adj R2 for model (2).
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14.1.3 Mallows’s Cp

Suppose we have a model that is assumed to be correct, say Y = Xβ + e. In the
regression setup, this is the model with all the predictor variables yi = β0 +β1xi1 +
· · ·+βsxis +ei. Our problem is that some of the β js may be zero. Rather than merely
trying to identify which β js are zero, Mallows suggested that the appropriate crite-
rion for evaluating a reduced model Y = X0γ + e is by its mean squared error for
estimating Xβ , i.e.,

E
[
(X0γ̂ −Xβ )′(X0γ̂ −Xβ )

]
.

As mentioned earlier, to distinguish between this use of the term “mean squared
error” and the estimate of the variance in a linear model with E(Y ) = Xβ , we refer
to Y ′(I−M)Y as the residual sum of squares, i.e., RSS(β ), and Y ′(I−M)Y/r(I−M)
as the residual mean square, i.e., RMS(β ). The statistics RSS(γ) and RMS(γ) are the
corresponding quantities for the model Y = X0γ + e.

The quantity
(X0γ̂ −Xβ )′(X0γ̂ −Xβ)

is a quadratic form in the vector (X0γ̂ −Xβ ). Writing

M0 = X0(X ′
0X0)−X ′

0

gives
(X0γ̂ −Xβ ) = M0Y −Xβ ,

E(X0γ̂ −Xβ ) = M0Xβ −Xβ = −(I −M0)Xβ ,

Cov(X0γ̂ −Xβ ) = σ 2M0.

From Theorem 1.3.2

E
[
(X0γ̂ −Xβ )′(X0γ̂ −Xβ )

]
= σ 2tr(M0)+β ′X ′(I −M0)Xβ .

We do not know σ2 or β , but we can estimate the mean squared error. First note
that

E
[
Y ′(I −M0)Y

]
= σ 2tr(I −M0)+β ′X ′(I −M0)Xβ ;

so

E
[
(X0γ̂ −Xβ )′(X0γ̂ −Xβ )

]
= σ 2 [tr(M0)− tr(I −M0)]+E

[
Y ′(I −M0)Y

]
.

With p = tr(M0), an unbiased estimate of the mean squared error is

RMS(β )[2p−n]+RSS(γ).

Mallows’s Cp statistic simply rescales the estimated mean squared error,

Cp =
RSS(γ)

RMS(β )
− (n−2p).
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The models with the smallest values of Cp have the smallest estimated mean squared
error and should be among the best models for the data.

Exercise 14.3 Give an informal argument to show that if Y = X0γ +e is a correct
model, then the value of Cp should be around p. Provide a formal argument for this
fact. Show that if (n− s) > 2, then E(Cp) = p + 2(s− p)/(n− s− 2). To do this
you need to know that if W ∼ F(u,v,0), then E(W ) = v/(v−2) for v > 2. For large
values of n (relative to s and p), what is the approximate value of E(Cp)?

Exercise 14.4 Consider the F statistic for testing model (1) against model
(14.0.1): (a) Show that Cp = (s− p)(F − 2) + s; (b) show that, for a given value
of p, the R2, Adj R2, and Cp criteria all induce the same rankings of models.

14.2 Stepwise Regression

Stepwise regression methods involve adding or deleting variables one at a time.

14.2.1 Forward Selection

Forward selection sequentially adds variables to the model. Since this is a sequen-
tial procedure, the model in question is constantly changing. At any stage in the
selection process, forward selection adds the variable that:

1. has the highest partial correlation,
2. increases R2 the most,
3. gives the largest absolute t or F statistic.

These criteria are equivalent.

EXAMPLE 14.2.1. Suppose we have variables y, x1, x2, and x3 and the current
model is

yi = β0 +β1xi1 + ei.

We must choose between adding variables x2 and x3. Fit the models

yi = β0 +β1xi1 +β2xi2 + ei,

yi = β0 +β1xi1 +β3xi3 + ei.

Choose the model with the higher R2. Equivalently, one could look at the t (or F)
statistics for testing H0 : β2 = 0 and H0 : β3 = 0 and choose the model that gives the
larger absolute value of the statistic. Finally, one could look at ry2·1 and ry3·1 and
pick the variable that gives the larger absolute value for the partial correlation.
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Exercise 14.5 Show that these three criteria for selecting a variable are equiva-
lent.

Forward selection stops adding variables when one of three things happens:

1. p∗ variables have been added,
2. all absolute t statistics for adding variables not in the model are less than t∗,
3. the tolerance is too small for all variables not in the model.

The user picks the values of p∗ and t∗. Tolerance is discussed in the next subsection.
No variable is ever added if its tolerance is too small, regardless of its absolute t
statistic.

The forward selection process is often started with the initial model

yi = β0 + ei.

14.2.2 Tolerance

Regression assumes that the model matrix in Y = Xβ + e has full rank. Mathemat-
ically, either the columns of X are linearly independent or they are not. In practice,
computational difficulties arise if the columns of X are “nearly linearly dependent.”
By nearly linearly dependent, we mean that one column of X can be nearly repro-
duced by the other columns.

Suppose we have the model

yi = β0 +β1xi1 + · · ·+βp−1xi p−1 + ei,

and we are considering adding variable xp to the model. To check the tolerance, fit

xip = α0 +α1xi1 + · · ·+αp−1xi p−1 + ei. (1)

If the R2 from this model is high, the column vectors, say J,X1, . . . ,Xp, are nearly
linearly dependent. The tolerance of xp (relative to x1, . . . ,xp−1) is defined as the
value of 1− R2 for fitting model (1). If the tolerance is too small, variable xp is
not used. Often, in a computer program, the user can define which values of the
tolerance should be considered too small.

14.2.3 Backward Elimination

Backward elimination sequentially deletes variables from the model. At any stage
in the selection process, it deletes the variable with the smallest absolute t or F
statistic. Backward elimination stops deleting variables when:
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1. p∗ variables have been eliminated,
2. the smallest absolute t statistic for eliminating a variable is greater than t∗.

The user can usually specify p∗ and t∗ in a computer program.
The initial model in the backward elimination procedure is the model with all of

the predictor variables included,

yi = β0 +β1xi1 + · · ·+βsxis + ei.

Backward elimination should give an adequate model. We assume that the pro-
cess is started with an adequate model, and so only variables that add nothing are
eliminated. The model arrived at may, however, be far from the most succinct. On
the other hand, there is no reason to believe that forward selection gives even an
adequate model.

14.2.4 Other Methods

Forward selection is such an obviously faulty method that several improvements
have been recommended. These consist of introducing rules for eliminating and ex-
changing variables. Four rules for adding, deleting, and exchanging variables follow.

1. Add the variable with the largest absolute t statistic if that value is greater than
t∗.

2. Delete the variable with the smallest absolute t statistic if that value is less than
t∗.

3. A variable not in the model is exchanged for a variable in the model if the ex-
change increases R2.

4. The largest R2 for each size model considered so far is saved. Delete a variable if
the deletion gives a model with R2 larger than any other model of the same size.

These rules can be used in combination. For example, 1 then 2, 1 then 2 then 3,
1 then 4, or 1 then 4 then 3. Again, no variable is ever added if its tolerance is too
small.

14.3 Discussion of Variable Selection Techniques

Stepwise regression methods are fast, easy, cheap, and readily available. When the
number of observations, n, is less than the number of variables, s + 1, forward se-
lection or a modification of it is the only available method for variable selection.
Backward elimination and best subset regression assume that one can fit the model
that includes all the predictor variables. This is not possible when n < s+1.

There are serious problems with stepwise methods. They do not give the best
model (based on any of the criteria we have discussed). In fact, stepwise methods
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can give models that contain none of the variables that are in the best regressions.
That is because, as mentioned earlier, they handle variables one at a time. Another
problem is nontechnical. The user of a stepwise regression program will end up
with one model. The user may be inclined to think that this is the model. It probably
is not. In fact, the model probably does not exist. Even though the Adjusted R2

and Mallows’s Cp methods define a unique best model and could be subject to the
same problem, best subset regression programs generally present several of the best
models.

A problem with best subset selection methods is that they tend to give models
that appear to be better than they really are. For example, the Adjusted R2 criterion
chooses the model with the smallest RMS. Because one has selected the smallest
RMS, the RMS for that model is biased toward being too small. Almost any measure
of the fit of a model is related to the RMS, so the fit of the model will appear to be
better than it is. If one could sample the data over again and fit the same model, the
RMS would almost certainly be larger, perhaps substantially so.

When using Mallows’s Cp statistic, one often picks models with the smallest
value of Cp. This can be justified by the fact that the model with the smallest Cp is
the model with the smallest estimated expected mean squared error. However, if the
target value of Cp is p (as suggested by Exercise 14.3), it seems to make little sense
to pick the model with the smallest Cp. It seems that one should pick models for
which Cp is close to p.

The result of Exercise 14.4, that for a fixed number of predictor variables the
three best regression criteria are equivalent, is very interesting. The Adj R2 and
Cp criteria can be viewed as simply different methods of penalizing models that
include more variables. The penalty is needed because models with more variables
necessarily explain more variation (have higher R2s).

Influential observations are a problem in any regression analysis. Variable se-
lection techniques involve fitting lots of models, so the problem of influential ob-
servations is multiplied. Recall that an influential observation in one model is not
necessarily influential in a different model.

Some statisticians think that the magnitude of the problem of influential obser-
vations is so great as to reject all variable selection techniques. They argue that the
models arrived at from variable selection techniques depend almost exclusively on
the influential observations and have little to do with any real world effects. Most
statisticians, however, approve of the judicious use of variable selection techniques.
(But then, by definition, everyone will approve of the judicious use of anything.)

John W. Tukey, among others, has emphasized the difference between exploratory
and confirmatory data analysis. Briefly, exploratory data analysis (EDA) deals with
situations in which you are trying to find out what is going on in a set of data.
Confirmatory data analysis is for proving what you already think is going on. EDA
frequently involves looking at lots of graphs. Confirmatory data analysis looks at
things like tests and confidence intervals. Strictly speaking, you cannot do both ex-
ploratory data analysis and confirmatory data analysis on the same set of data.

Variable selection is an exploratory technique. If you know what variables are
important, you do not need it and should not use it. When you do use variable
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selection, if the model is fitted with the same set of data that determined the variable
selection, then the model you eventually decide on will give biased estimates and
invalid tests and confidence intervals. This sounds a lot worse than it is. The biased
estimates may very well be better estimates than you could get by refitting with
another data set. (This is related to James–Stein estimation. See also Section 15.4.)
The test and confidence intervals, although not strictly valid, are often reasonable.

One solution to this problem of selecting variables and fitting parameters with
the same data is to divide the data into two parts. Do an exploratory analysis on
one part and then a confirmatory analysis on the other. To do this well requires a
lot of data. It also demonstrates the problem of influential observations. Depending
on where the influential observations are, you can get pretty strange results. The
PRESS statistic was designed to be used in procedures similar to this. However, as
we have seen, the PRESS statistic is highly sensitive to influential observations.

Finally, a word about R2. R2 is a good statistic for measuring the predictive ability
of a model. R2 is also a good statistic for comparing models. That is what we used
it for here. But the actual value of R2 should not be overemphasized when it is
being used to identify correct models (rather than models that are merely useful for
prediction). If you have data with a lot of variability, it is possible to have a very
good fit to the underlying regression model without having a high R2. For example,
if the SSE admits a decomposition into pure error and lack of fit, it is possible to
have very little lack of fit while having a substantial pure error so that R2 is small
while the fit is good.

If transformations of the dependent variable y are considered, it is inappropriate
to compare R2 for models based on different transformations. For example, it is
possible for a transformation to increase R2 without really increasing the predictive
ability of the model. One way to check whether this is happening is to compare
the width of confidence intervals for predicted values after transforming them to a
common scale.

To compare models based on different transformations of y, say y1 = f1(y) and
y2 = f2(y), fit models to the transformed data to obtained predicted values ŷ1 and
ŷ2. Return these to the original scale with ỹ1 = f−1

1 (ŷ1) and ỹ2 = f−1
2 (ŷ2). Finally,

define R2
1 as the squared sample correlation between the ys and the ỹ1s and define

R2
2 as the squared sample correlation between the ys and the ỹ2s. These R2 values

are comparable.

Exercise 14.6 Mosteller and Tukey (1977) reported data on verbal test scores
for sixth graders. They used a sample of 20 Mid-Atlantic and New England schools
taken from The Coleman Report. The dependent variable y was the mean verbal test
score for each school. The predictor variables were: x1 = staff salaries per pupil,
x2 = percent of sixth grader’s fathers employed in white collar jobs, x3 = a com-
posite score measuring socioeconomic status, x4 = the mean score on a verbal test
administered to teachers, and x5 = one-half of the sixth grader’s mothers’ mean
number of years of schooling. Compare the results of using the various model se-
lection techniques on the data.
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Obs. x1 x2 x3 x4 x5 y

1 3.83 28.87 7.20 26.60 6.19 37.01
2 2.89 20.10 −11.71 24.40 5.17 26.51
3 2.86 69.05 12.32 25.70 7.04 36.51
4 2.92 65.40 14.28 25.70 7.10 40.70
5 3.06 29.59 6.31 25.40 6.15 37.10
6 2.07 44.82 6.16 21.60 6.41 33.90
7 2.52 77.37 12.70 24.90 6.86 41.80
8 2.45 24.67 −0.17 25.01 5.78 33.40
9 3.13 65.01 9.85 26.60 6.51 41.01

10 2.44 9.99 −0.05 28.01 5.57 37.20
11 2.09 12.20 −12.86 23.51 5.62 23.30
12 2.52 22.55 0.92 23.60 5.34 35.20
13 2.22 14.30 4.77 24.51 5.80 34.90
14 2.67 31.79 −0.96 25.80 6.19 33.10
15 2.71 11.60 −16.04 25.20 5.62 22.70
16 3.14 68.47 10.62 25.01 6.94 39.70
17 3.54 42.64 2.66 25.01 6.33 31.80
18 2.52 16.70 −10.99 24.80 6.01 31.70
19 2.68 86.27 15.03 25.51 7.51 43.10
20 2.37 76.73 12.77 24.51 6.96 41.01



Chapter 15

Collinearity and Alternative Estimates

Collinearity or multicollinearity refers to the problem in regression analysis of the
columns of the model matrix being nearly linear dependent. Ideally, this is no prob-
lem at all. There are numerical difficulties associated with the actual computations,
but there are no theoretical difficulties. If, however, one has any doubts about the
accuracy of the model matrix, the analysis could be in deep trouble.

Section 1 discusses what collinearity is and what problems it can cause. Four
techniques for dealing with collinearity are examined. These are regression in
canonical form, principal component regression, generalized inverse regression, and
classical ridge regression. The methods, other than classical ridge regression, are es-
sentially the same. Section 4 presents additional comments on the potential benefits
of biased estimation. Section 5 discusses penalized estimation. Finally, Section 6
presents an alternative to least squares estimation. Least squares minimizes the ver-
tical distances between the dependent variable and the regression surface. Section 6
considers minimizing the perpendicular distance between the dependent variable
and the regression surface.

15.1 Defining Collinearity

In this section we define the problem of collinearity. The approach taken is to quan-
tify the idea of having columns of the model matrix that are “nearly linearly depen-
dent.” The effects of near linear dependencies are examined. The section concludes
by establishing the relationship between the definition given here and other com-
monly used concepts of collinearity.

Suppose we have a regression model

Y = Xβ + e, E(e) = 0, Cov(e) = σ 2I, (1)

where Y is n × 1, X is n × p, β is p × 1, and r(X) = p. The essence of model
(1) is that E(Y ) ∈ C(X). Suppose that the model matrix consists of some predictor

© Springer Science+Business Media, LLC 2011 

391
Springer Texts in Statistics, DOI 10.1007/978-1-4419-9816-3_15,  
R. Christensen, Plane Answers to Complex Questions: The Theory of Linear Models,  



392 15 Collinearity and Alternative Estimates

variables, say x1,x2, . . . ,xp, that are measured with some small error. A near linear
dependence in the observed model matrix X could mean a real linear dependence
in the underlying model matrix of variables measured without error. Let X∗ be the
underlying model matrix. If the columns of X∗ are linearly dependent, there exists
an infinite number of least squares estimates for the true regression coefficients.
If X is nearly linearly dependent, the estimated regression coefficients may not be
meaningful and may be highly variable.

The real essence of this particular problem is that C(X) is too large. Generally, we
hope that in some sense, C(X) is close to C(X∗). Regression should work well pre-
cisely when this is the case. However, when X∗ has linearly dependent columns, X
typically will not. Thus r(X) > r(X∗). C(X∗) may be close to some proper subspace
of C(X), but C(X) has extra dimensions. By pure chance, these extra dimensions
could be very good at explaining the Y vector that happened to be observed. In this
case, we get an apparently good fit that has no real world significance.

The extra dimensions of C(X) are due to the existence of vectors b such that
X∗b = 0 but Xb �= 0. If the errors in X are small, then Xb should be approximately
zero. We would like to say that a vector w in C(X) is ill-defined if there exists b such
that w = Xb is approximately zero, where w is approximately the zero vector if its
length is near zero. Unfortunately, multiplying w by a scalar can increase or decrease
the length of the vector arbitrarily, while not changing the direction determined
within C(X). To rectify this, we can restrict attention to vectors b with b′b = 1
(i.e., the length of b is 1), or, equivalently, we make the following:

Definition 15.1.1. A vector w = Xb is said to be ε ill-defined if w′w/b′b =
b′X ′Xb/b′b < ε . The matrix X is ε ill-defined if any vector in C(X) is ε ill-defined.
We use the terms “ill-defined” and “ill-conditioned” interchangeably.

The assumption of a real linear dependence in the X∗ matrix is a strong one. We
now indicate how that assumption can be weakened. Let X = X∗ + Δ , where the
elements of Δ are uniformly small errors. Consider the vector Xb. (For simplicity,
assume b′b = 1.) The corresponding direction in the underlying model matrix is
X∗b.

Note that b′X ′Xb = b′X ′∗X∗b+2b′Δ ′X∗b+b′Δ ′Δb. The vector Δ ′b is short; so if
Xb and X∗b are of reasonable size, they have about the same length. Also

b′X ′
∗Xb = b′X ′

∗X∗b+b′X ′
∗Δb, (2)

where b′X ′∗Δb is small; so the angle between Xb and X∗b should be near zero.
(For any two vectors x and y, let θ be the angle between x and y. Then x′y =√

x′x
√

y′y cosθ .) On the other hand, if Xb is ill-defined, X∗b will also be small,
and the term b′X ′∗Δb could be a substantial part of b′X ′∗Xb. Thus, the angle between
Xb and X∗b could be substantial. In that case, the use of the direction Xb is called
into question because it may be substantially different from the underlying direction
X∗b. In practice, we generally cannot know if the angle between Xb and X∗b is large.
Considerable care must be taken when using a direction in C(X) that is ill-defined.
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So far we have not discussed whether the columns of X should be adjusted for
their mean values or rescaled. I think that one should not be dogmatic about this
issue; however, it should be noted that if the squared length of a column of X is less
than ε , that direction will be ε ill-defined, regardless of what other vectors are in
C(X). The question of standardizing the columns of X arises frequently.

The intercept term is frequently handled separately from all other variables in
techniques for dealing with collinearity. The model

yi = β0 +β1xi1 + · · ·+βp−1xi p−1 + ei (3)

Y = [J,Z]
[

β0
β∗

]
+ e

is often rewritten as

yi = α +β1(xi1 − x̄·1)+ . . .+βp−1(xi p−1 − x̄·p−1)+ei, (4)

or

Y =
[

J,
(

I − 1
n

Jn
n

)
Z
][

α
β∗

]
+ e,

where x̄· j = n−1 ∑n
i=1 xi j. It is easily seen that β∗ is the same in both models, but

β0 �= α . We dispense with the concept of the underlying model matrix and write

X∗ =
(

I − 1
n

Jn
n

)
Z.

Because of orthogonality, α̂ = ȳ·, and β∗ can be estimated from the model

Y∗ = X∗β∗ + e, (5)

where Y ′∗ = [y1 − ȳ·,y2 − ȳ·, . . . ,yn − ȳ·].
Frequently, the scales of the x variables are also standardized. Let q2

j = ∑n
i=1(xi j−

x̄· j)2. Model (5) is equivalent to

Y∗ = X∗Diag(q−1
j )γ∗ + e, (6)

where γ∗ = Diag(q j)β∗. In model (6), the model matrix is X∗Diag(q−1
j ).

Model (3) is rarely used in techniques for dealing with collinearity. Usually
model (6) is assumed, and sometimes model (5). To retain full generality, our dis-
cussion uses model (3), but all the results apply to models (5) and (6). Note that
the matrix X ′∗X∗ is proportional to the sample covariance matrix of the Xs when
(xi1, . . . ,xi p−1), i = 1, . . . ,n, is thought of as a sample of size n from a p−1 dimen-
sional random vector. Diag(q−1

j )X ′∗X∗Diag(q−1
j ) is the sample correlation matrix.

We now present the relationship between ε ill-defined matrices and three other
commonly used methods of identifying ill-conditioned matrices.
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One of the main tools in the examination of collinearity is the examination of the
eigenvalues of X ′X . We discuss the relationship between Definition 15.1.1 and an
eigen-analysis of X ′X .

Recall that X has linearly dependent columns if and only if X ′X is singular, which
happens if and only if X ′X has a zero eigenvalue. One often-used (but I think unintu-
itive) definition is that the columns of X are nearly linearly dependent if X ′X has at
least one small eigenvalue. Suppose that v1, . . . ,vp is an orthogonal set of eigenvec-
tors for X ′X corresponding to the eigenvalues δ1,δ2, . . . ,δp. Then v1, . . . ,vp form a
basis for Rp. If δi < ε , then δi = v′iX

′Xvi/v′ivi; so Xvi is a direction in C(X) that is ε
ill-defined. Conversely, if an ε ill-defined vector exists, we show that at least one of
the δis must be less than ε . Let w = Xd be ε ill-defined. Write d = ∑p

i=1 αivi. Then
w′w = d′X ′Xd = ∑p

i=1 α2
i δi and d′d = ∑p

i=1 α2
i . Since ∑p

i=1 α2
i δi/∑p

i=1 α2
i < ε , and

since the δis are all nonnegative, at least one of the δis must be less than ε . We have
proved:

Theorem 15.1.2. The matrix X is ε ill-defined if and only if X ′X has an eigen-
value less than ε .

The orthogonal eigenvectors of X ′X lead to a useful breakdown of C(X) into
orthogonal components. Let δ1, . . . ,δr be eigenvalues of at least ε and δr+1, . . . ,δp
eigenvalues less than ε . It is easily seen that Xvr+1, . . . ,Xvp form an orthogonal basis
for a subspace of C(X) in which all vectors are ε ill-defined. The space spanned by
Xv1, . . . ,Xvr is a subspace in which none of the vectors are ε ill-defined. These two
spaces are orthogonal complements with respect to C(X). (Note that by taking a
linear combination of a vector in each of the orthogonal subspaces one can get a
vector that is ε ill-defined, but is in neither subspace.)

A second commonly used method of identifying ill-conditioned matrices was
presented by Belsley, Kuh, and Welsch (1980). See also Belsley (1991). They use
the condition number (CN) as the basis of their definition of collinearity. If the
columns of X are rescaled to have length 1, the condition number is

CN ≡
√

max
i

δi

/
min

i
δi.

Large values of the condition number indicate that X is ill-conditioned.

Theorem 15.1.3.

(a) If CN >
√

p/ε , then X is ε ill-defined.
(b) If X is ε ill-defined, then CN >

√
1/ε .

PROOF. See Exercise 15.2. �

If the columns of X have not been rescaled to have length 1, the CN is inappropri-
ate. If X has two orthogonal columns, with one of length 103 and one of length 10−3,
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the condition number is 106. Rescaling would make the columns of X orthonormal,
which is the ideal of noncollinearity. (Note that such an X matrix is also ill-defined
for any ε > 10−6.)

Finally, in Section 14.2 the tolerance was used to measure collinearity. In Sec-
tion 14.2 the motivation was to exclude from consideration any variables that were
too similar to other variables already in the model. The relationship between the
concept of tolerance and ill-defined vectors is complex. The tolerance is defined as
T = 1−R2. R2, as a measure of predictive ability, examines the predictive ability
after correcting all variables for their means. While this is usually appropriate, in
the current discussion it would be more appropriate to define tolerance as

T = sum of squares error/sum of squares total(uncorrected).

If it is decided to adjust all variables for their means, this becomes the usual defini-
tion. We will use this alternative definition of T .

In a more subtle way, T also adjusts for the scale of Xp = [x1p, . . . ,xnp]′. The scale
adjustment comes because T is the ratio of two squared lengths. This issue arises
again in our later analysis.

Rewrite model (14.2.1) as
Xp = Xβ + e. (7)

The new dimension added to C(X) by including the variable xp in the regression is
the vector of residuals from fitting model (7), i.e., Xp−X β̂ . Our question is whether
Xp −X β̂ is ill-defined within C(X ,Xp).

Let M be the perpendicular projection operator onto C(X). By definition,

T = X ′
p(I −M)Xp

/
X ′

pXp

= X ′
p(I −M)Xp

/
[X ′

p(I −M)Xp +X ′
pMXp].

T is small when X ′
p(I −M)Xp is small relative to X ′

pMXp.
The residual vector, Xp −X β̂ , is ε ill-defined in C(X ,Xp) if

ε >
(Xp −X β̂ )′(Xp −X β̂ )

1+ β̂ ′β̂
=

X ′
p(I −M)Xp

1+ β̂ ′β̂
.

By examining the regression in canonical form (see Section 5 and Exercise 15.3), it
is easy to see that

δ1
X ′

p(I −M)Xp

δ1 +X ′
pMXp

≤ X ′
p(I −M)Xp

1+ β̂ ′β̂
≤ δp

X ′
p(I −M)Xp

δp +X ′
pMXp

,

where δ1 and δp are the smallest and largest eigenvalues of X ′X . Note that for pos-
itive a and b, a/(a + b) < ε implies a/(δp + b) < a/b < ε/(1− ε); so it follows
immediately that if T < ε , Xp −X β̂ is δpε/(1−ε) ill-defined. On the other hand, if
Xp −X β̂ is ε ill-defined, some algebra shows that
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T <
δ1ε

(δ1 + ε)X ′
pXp

+
ε

δ1 + ε
.

By picking ε small, the tolerance can be made small. This bound depends on the
squared length of Xp. In practice, however, if Xp is short, Xp may not have small
tolerance, but the vector of residuals may be ill-defined. If Xp is standardized so that
X ′

pXp = 1, this problem is eliminated. Standardizing the columns of X also ensures
that there are some reasonable limits on the values of δ1 and δp. (One would assume
in this context that X is not ill-defined.)

Exercise 15.1 Show that any linear combination of ill-defined orthonormal
eigenvectors is ill-defined. In particular, if w = X(avi +bv j), then

w′w
(avi +bv j)′(avi +bv j)

≤ max(δi,δ j).

Exercise 15.2 Prove Theorem 15.1.3.
Hint: For a model matrix with columns of length 1, tr(X ′X) = p. It follows that

1 ≤ maxi δi ≤ p.

15.2 Regression in Canonical Form and on Principal

Components

Regression in canonical form involves transforming the Y and β vectors so that the
model matrix is particularly nice. Regression in canonical form is closely related to
two procedures that have been proposed for dealing with collinearity. To transform
the regression problem we need

Theorem 15.2.1. The Singular Value Decomposition.
Let X be an n× p matrix with rank p. Then X can be written as

X = ULV ′,

where U is n× p, L is p× p, V is p× p, and

L = Diag(λ j).

The λ js are the square roots of the eigenvalues (singular values) of X ′X (i.e., λ 2
j =

δ j). The columns of V are orthonormal eigenvectors of X ′X with

X ′XV = V L2,
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and the columns of U are p orthonormal eigenvectors of XX ′ with

XX ′U = UL2.

PROOF. We can pick L and V as indicated in the theorem. Note that since X ′X is
nonsingular, λ j > 0 for all j. We need to show that we can find U so that the theorem
holds. If we take U = XV L−1, then

XX ′U = XX ′XV L−1 = XV L2L−1 = XV L = XV L−1L2 = UL2;

so the columns of U are eigenvectors of XX ′ corresponding to the λ 2
i s. The columns

of U are orthonormal because the columns of V are orthonormal and

U ′U = L−1V ′X ′XV L−1 = L−1V ′V L2L−1 = L−1IL = I.

Having found U we need to show that X = ULV ′. Note that

U ′XV = U ′XV L−1L = U ′UL = L,

thus
UU ′XVV ′ = ULV ′.

Note that VV ′ = I and, by Proposition B.54, C(U) = C(X); so by Theorem B.35,
UU ′ is the perpendicular projection operator onto C(X). Hence, X = ULV ′. �

We can now derive the canonical form of a regression problem. Consider the
linear model

Y = Xβ + e, E(e) = 0, Cov(e) = σ 2I. (1)

Write X = ULV ′ as in Theorem 15.2.1 and write U∗ = [U,U1], where the columns
of U∗ are an orthonormal basis for Rn. Transform model (1) to

U ′
∗Y = U ′

∗Xβ +U ′
∗e. (2)

Let Y∗ = U ′∗Y and e∗ = U ′∗e. Then

E(e∗) = 0, Cov(e∗) = σ2U ′
∗U∗ = σ2I.

Using Theorem 15.2.1 again,

U ′
∗Xβ = U ′

∗ULV ′β =
[

U ′
U ′

1

]
ULV ′β =

[
L
0

]
V ′β .

Reparameterizing by letting γ = V ′β gives the canonical regression model

Y∗ =
[

L
0

]
γ + e∗, E(e∗) = 0, Cov(e∗) = σ 2I. (3)
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Since this was obtained by a nonsingular transformation of model (1), it contains all
of the information in model (1).

Estimation of parameters becomes trivial in this model:

γ̂ = (L−1,0)Y∗ = L−1U ′Y,

Cov(γ̂) = σ 2L−2,

RSS = Y ′
∗

[
0 0
0 In−p

]
Y∗,

RMS =
n

∑
i=p+1

y2
∗i

/
(n− p).

In particular, the estimate of γ j is γ̂ j = y∗ j/λ j, and the variance of γ̂ j is σ 2/λ 2
j . The

estimates γ̂ j and γ̂k have zero covariance if j �= k.
Models (1) and (3) are also equivalent to

Y = ULγ + e, (4)

so, writing U = [u1, . . . ,up] and V = [v1, . . . ,vp], γ j is the coefficient in the direction
λ ju j. If λ j is small, λ ju j = Xv j is ill-defined, and the variance of γ̂ j , σ 2/λ 2

j , is large.
Since the variance is large, it will be difficult to reject H0 : γ j = 0. If the data are
consistent with γ j = 0, life is great. We conclude that there is no evidence of an
effect in the ill-defined direction λ ju j. If H0 : γ j = 0 is rejected, we have to weigh
the evidence that the direction u j is important in explaining Y against the evidence
that the ill-defined direction u j should not be included in C(X).

Regression in canonical form can, of course, be applied to models (15.1.5) and
(15.1.6), where the predictor variables have been standardized.

Exercise 15.3 Show the following.
(a) Y ′MY = ∑p

i=1 y2
∗i .

(b) Y ′(I −M)Y = ∑n
i=p+1 y2

∗i .
(c) β̂ ′β̂ = ∑p

i=1 y2
∗i
/

λ 2
i .

(d) If λ 2
1 ≤ ·· · ≤ λ 2

p , then

λ 2
1

Y ′(I −M)Y
λ 2

1 +Y ′MY
≤ Y ′(I −M)Y

1+ β̂ ′β̂
≤ λ 2

p
Y ′(I −M)Y
λ 2

p +Y ′MY
.

15.2.1 Principal Component Regression

If the direction u j is ill-defined, we may decide that the direction should not be used
for estimation. Not using the direction u j amounts to setting γ j = 0 in model (4). If
ill-defined directions are not to be used, and if ill-defined is taken to mean that λ j < ε



15.3 Classical Ridge Regression 399

for some small value of ε , then we can take as our estimate of γ , γ̃ = (γ̃1, . . . , γ̃p)′,
where

γ̃ j =
{

γ̂ j, if λ j ≥ ε
0, if λ j < ε .

As an estimate of β in the original model (1) we can use β̃ = V γ̃ . This is reasonable
because V ′β = γ; so V γ = VV ′β = β .

If we take as our original model a standardized version such as (15.1.5) or
(15.1.6), the model matrix UL of model (4) has columns that are the principal com-
ponents of the multivariate data set (xi1, . . . ,xi p−1)′, i = 1, . . . ,n. See Johnson and
Wichern (1988) or Christensen (2001) for a discussion of principal components.
The procedure outlined here for obtaining an estimate of β is referred to as princi-
pal component regression. See Christensen (1996a, Section 15.6) for an example.

15.2.2 Generalized Inverse Regression

To deal with collinearity, Marquardt (1970) suggested using the estimate

β̃ = (X ′X)−r X ′Y,

where

(X ′X)−r =
p

∑
j=p−r+1

v jv′j/λ 2
j ,

and the λ js are written so that λ1 ≤ λ2 ≤ ·· · ≤ λp. (X ′X)−r would be the (Moore–
Penrose) generalized inverse of (X ′X) if r(X ′X) = r, i.e., if 0 = λ1 = · · · = λp−r.
Since X = ULV ′,

β̃ = (X ′X)−r X ′Y =
p

∑
j=p−r+1

v jv′jV LU ′Y/λ 2
j =

p

∑
j=p−r+1

v j γ̂ j.

This is the same procedure as principal component regression. Marquardt originally
suggested this as an alternative to classical ridge regression, which is the subject of
the next section.

15.3 Classical Ridge Regression

Ridge regression was originally proposed by Hoerl and Kennard (1970) as a method
to deal with collinearity. Now it is more commonly viewed as a form of penalized
likelihood estimation, which makes it a form of Bayesian estimation. In this section,
we consider the traditional view of ridge regression. In the penultimate section we
relate ridge regression to penalty functions.
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Hoerl and Kennard (1970) looked at the mean squared error, E[(β̂ −β )′(β̂ −β )],
for estimating β with least squares. This is the expected value of a quadratic form
in (β̂ −β ). E(β̂ −β ) = 0 and Cov(β̂ −β ) = σ2(X ′X)−1; so by Theorem 1.3.2

E[(β̂ −β )′(β̂ −β )] = tr[σ 2(X ′X)−1].

If λ 2
1 , . . . ,λ 2

p are the eigenvalues of (X ′X), we see that tr[(X ′X)−1] = ∑p
j=1 λ−2

j ; so

E[(β̂ −β )′(β̂ −β )] = σ 2
p

∑
j=1

λ−2
j .

If some of the values λ 2
j are small, the mean squared error will be large.

Hoerl and Kennard suggested using the estimate

β̃ = (X ′X + kI)−1X ′Y, (1)

where k is some fixed scalar. The choice of k will be discussed briefly later. The
consequences of using this estimate are easily studied in the canonical regression
model. The canonical regression model (15.2.3) is

Y∗ =
[

L
0

]
γ + e∗.

The ridge regression estimate is

γ̃ = (L′L+ kI)−1[L′,0]Y∗ = (L2 + kI)−1L2γ̂. (2)

In particular,

γ̃ j =
λ 2

j

λ 2
j + k

γ̂ j.

If λ j is small, γ̃ j will be shrunk toward zero. If λ j is large, γ̃ j will change relatively
little from γ̂ j .

Exercise 15.4 illustrates the relationship between ridge regression performed on
the canonical model and ridge regression performed on the usual model. The trans-
formation matrix V is defined as in Section 2.

Exercise 15.4 Use equations (1) and (2) to show that
(a) β̃ = V γ̃ ,
(b) E[(β̃ −β)′(β̃ −β )] = E[(γ̃ − γ)′(γ̃ − γ)].

The estimate β̃ has expected mean square

E[(β̃ −β )′(β̃ −β )] = σ 2tr[(X ′X + kI)−1X ′X(X ′X + kI)−1]

+β ′{(X ′X + kI)−1X ′X − I
}′{

(X ′X + kI)−1X ′X − I
}

β .



15.3 Classical Ridge Regression 401

Writing X ′X =V L2V ′, I =VV ′, and in the second term I = (X ′X +kI)−1(X ′X +kI),
so that (X ′X + kI)−1X ′X − I = −(X ′X + kI)−1kI, this can be simplified to

E[(β̃ −β )′(β̃ −β )] = σ 2
p

∑
j=1

λ 2
j
/
(λ 2

j + k)2 + k2β ′(X ′X + kI)−2β .

The derivative of this with respect to k at k = 0 can be shown to be negative. Since
k = 0 is least squares estimation, in terms of mean squared error there exists k >
0 that gives better estimates of β than least squares. Unfortunately, the particular
values of such k are not known.

Frequently, a ridge trace is used to determine k. A ridge trace is a simultaneous
plot of the estimated regression coefficients (which are functions of k) against k. The
value of k is chosen so that the regression coefficients change little for any larger
values of k.

Because the mean squared error, E[(β̃ −β )′(β̃ −β )], puts equal weight on each
regression coefficient, it is often suggested that ridge regression be used only on
model (15.1.6).

The ridge regression technique admits obvious generalizations. One is to use β̃ =
(X ′X +K)−1X ′Y , where K = Diag(k j). The ridge estimates for canonical regression
become

γ̃ j =
λ 2

j

λ 2
j + k j

γ̂ j.

The ridge regression estimate (1) can also be arrived at from a Bayesian argu-
ment. With Y = Xβ + e and e ∼ N(0,σ 2I), incorporating prior information of the
form β |σ 2 ∼ N[0,(σ 2/k)I] leads to fitting a version of (2.9.3) that has[

Y
0

]
=
[

X
I

]
β +
[

e
ẽ

]
,

[
e
ẽ

]
∼ N
([

0n×1
0p×1

]
,σ 2
[

In 0
0 (1/k)Ip)

])
.

It is easily seen that the generalized least squares estimate of β associated with this
model is (1). When k is near 0, the prior variance is large, so the prior information
is very weak and the posterior mean is very close to the least squares estimate.

Exercise 15.5 Evaluate the data of Exercise 14.6 for collinearity problems and
if necessary apply an appropriate procedure.

Exercise 15.6 It could be argued the the canonical model should be standardized
before applying ridge regression. Define an appropriate standardization and show
that under this standardization

γ̃ j =
1

1+ k j
γ̂ j.
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15.4 More on Mean Squared Error

For the canonical regression model, Goldstein and Smith (1974) have shown that
for 0 ≤ h j ≤ 1, if γ̃ j is defined by

γ̃ j = h j γ̂ j

and if
γ2

j

Var(γ̂ j)
<

1+h j

1−h j
, (1)

then γ̃ j is a better estimate than γ̂ j in that

E(γ̃ j − γ j)2 ≤ E(γ̂ j − γ j)2.

In particular, if
γ2

j < Var(γ̂ j) = σ 2/λ 2
j , (2)

then γ̃ j = 0 is a better estimate than γ̂ j . Estimating σ 2 with RMS and γ j with γ̂ j leads
to taking γ̃ j = 0 if the absolute t statistic for testing H0 : γ j = 0 is less than 1. This
is only an approximation to condition (2), so taking γ̃ j = 0 only for larger values of
the t statistic may well be justified.

For ridge regression, h j = λ 2
j
/
(λ 2

j + k j), and condition (1) becomes

γ2
j <

σ 2

λ 2
j

2λ 2
j + k j

k j
= σ2

[
2
k j

+
1

λ 2
j

]
.

If λ 2
j is small, almost any value of k will give an improvement over least squares. If

λ 2
j is large, only very small values of k will give an improvement.

Note that, since the γ̂ js are unbiased, the γ̃ js will, in general, be biased estimates.

15.5 Penalized Estimation

In applications of linear model theory to nonparametric regression (cf. Subsec-
tion 6.2.1 and Christensen, 2001, Chapter 7) and in applications where p is large
relative to n, it is not uncommon to replace least squares estimates with estimates
that incorporate a penalty on the regression coefficients. These estimates are deter-
mined by adding a nonnegative penalty function p(β ) to the least squares criterion
function, i.e., they minimize

(Y −Xβ )′(Y −Xβ )+ k p(β ), (1)

where k ≥ 0 is a tuning parameter. Obviously, if k = 0, the estimates are least
squares estimates. Typical penalty functions are minimized at the vector β = 0, so
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as k gets large, the penalty function dominates the minimization and the procedure,
in some fashion, shrinks the least squares estimates towards 0.

Because of the nature of commonly used penalty functions, it is often suggested
that the model matrix X should be standardized as in (15.1.6). If the height of my
doghouse is a predictor variable, the appropriate regression coefficient depends a
great deal on whether the height is measured in kilometers or microns. For a penalty
function to be meaningful, it needs to be defined on an appropriate scale in each
dimension.

As in Subsection 6.2.1, when using a basis function approach for nonparametric
regression of y on a scalar predictor x, the linear model is

yi = β0 +β1φ1(xi)+ · · ·+βp−1φp−1(xi)+εi

for known functions φ j. The basis functions φ j(x) are frequently subjected to some
form of standardization when being defined, thus obviating a strong need for further
standardization. For example, if 0 ≤ xi ≤ 1 and φ j(x) = cos(π jx), there is little need
to standardize X further. When using simple polynomials φ j(x) = x j, the model ma-
trix should be standardized. When using the corresponding Legendre polynomials,
it need not be.

Penalty functions are often used to avoid overfitting a model. For example, with
φ j(x) = cos(π jx), when j is large the cosine functions oscillate very rapidly, lead-
ing to nonsmooth or noisy behavior. Typically, with basis function approaches to
nonparametric regression, large j is indicative of more noisy behavior. We want to
allow noisy behavior if the data require it, but we prefer smooth functions if they
seem reasonable. It therefore makes sense to place larger penalties on the regres-
sion coefficients for large j. In other words, for large values of j we shrink the least
squares estimate β̂ j towards 0 more than when j is small. Such penalty functions
make it possible to use numbers of parameters that are similar to the number of ob-
servations without overfitting the model. See Christensen (1996, Section 7.11) for
some plots of overfitted polynomials.

to using the penalty function

pR(β ) =
p−1

∑
j=0

β 2
j = β ′β .

Note that this application does not penalize coefficients differently based on j. It is
easy to see that the function (Y −Xβ )′(Y −Xβ )+kβ ′β is the least squares criterion
function for the model [

Y
0

]
=
[

X√
kI

]
β +
[

e
ẽ

]
.

Fitting this augmented model by least squares yields the ridge regression estimate
β̂R = (X ′X + kI)−1X ′Y.

Generalized ridge regression takes the form of a penalty

Classical ridge regression provides one application of penalty functions. It amounts
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pGR(β ) = β ′Qβ ,

where Q is a nonnegative definite matrix. Most often Q is diagonal so that pGR(β ) =
∑p−1

j=0 q j jβ 2
j . We can minimize

(Y −Xβ )′(Y −Xβ )+ kβ ′Qβ (2)

using the least squares fit to [
Y
0

]
=
[

X√
kQ̃

]
β +
[

e
ẽ

]
,

where Q = Q̃′Q̃. Alternatively, when Q is nonsingular, finding the generalized least
squares estimate for the model[

Y
0

]
=
[

X
I

]
β +
[

e
ẽ

]
, E
[

e
ẽ

]
=
[

0n×1
0p×1

]
, Cov

[
e
ẽ

]
= σ 2

[
In 0
0 (1/k)Q−1

]
also leads to minimizing the criterion function (2) and gives the generalized ridge
estimate β̂GR = (X ′X + kQ)−1X ′Y .

Green and Silverman (1994, Section 3.6) discuss different choices for Q. Those
choices generally follow the pattern of more shrinkage for β js that incorporate nois-
ier behavior into the model. In particular, they often determine Q = D(q j j) with q j j
increasing in j. In Section 3, our generalized ridge estimates used k j ≡ kq j j.

Currently, a very popular penalty function is Tibshirani’s (1996) lasso (least ab-
solute shrinkage and selection operator),

pL(β ) =
p−1

∑
j=0

|β j|. (3)

Because this penalty function is not a quadratic form in β , unlike ridge regression
the estimate cannot be obtained by fitting an augmented linear model using least
squares. Lasso estimates can be computed efficiently for a variety of values k using
a modification of the LARS algorithm of Efron et al. (2004).

As the actual name (not the acronym) suggests, one of the benefits of the lasso
penalty is that it automates variable selection. Rather than gradually shrinking all
regression coefficients towards 0 like ridge regression, lasso can make some of the
regression coefficients collapse to 0.

Just as, in Section 3, we used canonical regression to explore ridge estimation,
we can also use canonical regression to explicate the behavior of lasso regression.
Applying the lasso criterion to canonical regression we need to minimize

p

∑
j=1

[
(y∗ j −λ jγ j)2 + k|γ j|

]
.
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Because of the simple structure of canonical regression, the lasso criterion acts in-
dependently on each coefficient. Without loss of generality, assume y∗ j > 0. Clearly,
γ j < 0 will not minimize the criterion, because γ j = 0 will be better. We therefore
want to minimize (y∗ j −λ jγ j)2 + kγ j for γ j ≥ 0.

With γ̂ j = y∗ j/λ j being the least squares estimate, a little bit of work shows that
the derivative of the criterion function with respect to γ j is zero at γ j = γ̂ j − k/2λ 2

j .
However, if γ̂ j < k/2λ 2

j , the critical point is outside the domain of the function, so
the minimum must occur at the boundary. Therefore, the lasso estimate is

γ̂L j =

⎧⎪⎨⎪⎩
γ̂ j − k/2λ 2

j , if γ̂ j ≥ k/2λ 2
j

0, if |γ̂ j| < k/2λ 2
j

γ̂ j + k/2λ 2
j , if γ̂ j ≤−k/2λ 2

j

.

Clearly, if the least squares estimate is too small, the lasso estimate is zero and the
variable is effectively removed from the model.

The lasso penalty (3) treats every coefficient the same. An obvious modification
of lasso to penalize coefficients at different rates has

pGL(β ) =
p−1

∑
j=0

q j j|β j|

with q j j often increasing in j.

Exercise 15.7 Using the standardization for the canonical model of Exer-
cise 15.6, find the lasso estimates.

15.5.1 Bayesian Connections

Another way to address the issue of penalizing regression coefficients is through the
Bayesian methods illustrated in Section 2.9. The likelihood function for normal data
is

L(β ,σ 2) = (2π)−n/2[det(σ2I)]−1/2 exp
[−(Y −Xβ )′(Y −Xβ )/2σ 2] .

We take a prior density of the form π(β ,σ 2) ≡ π1(β |σ2)π2(σ 2) where the condi-
tional density of β given σ 2 is written as

π1(β |σ 2) = h(σ 2)exp
[−k p(β )/2σ2] ,

with p(β ) once again being the penalty function. The posterior is proportional to
the likelihood times the prior, so it has the form

π(β ,σ 2|Y ) ∝
(
σ 2)−n/2 π2(σ 2)h(σ 2)×
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exp
{
− 1

2σ 2

[
(Y −Xβ )′(Y −Xβ )+ k p(β )

]}
.

The value β̂ that minimizes (1) is also the posterior mode, regardless of the value of
σ 2. A further prior can be placed on k.

Ridge regression amounts to placing a normal prior on β and using the one num-
ber that is the posterior mean, median, and mode as an estimate of β . In particular,
the generalized ridge estimate devolves from the prior distribution

β |σ 2 ∼ N
(

0,
σ 2

k
Q−1
)

.

When Q is diagonal, large penalties clearly correspond to small prior variances, i.e.,
strong prior beliefs that β j is near the prior mean of 0.

Lasso regression can be constructed as the posterior mode of β by putting a
Laplace (double exponential) prior on β . Given the discontinuous nature of the lasso
minimization problem, it is not surprising that technical difficulties can arise. Park
and Casella (2008) provide a good discussion, but use a slightly different prior.

Another interesting Bayesian method for avoiding overfitting is thresholding, see
Smith and Kohn (1996), Clyde and George (2004), or Christensen et al. (2010, Sec-
tion 15.2). The idea is to put positive prior probability on each regression coefficient
being 0, so there will be positive, although perhaps very small, posterior probabil-
ity of it being 0. For example, with a basis function model a form of generalized
ridge regression corresponds to independent normal priors on β j with mean 0 and a
variance σ 2/kq j j decreasing in j. Instead, we might write

β j = δ jβ ∗
j

with β ∗
j ∼ N(0,σ 2/k) independent of δ j ∼ Bern(2− j), i.e., Pr[δ j = 1] = 2− j . This

obviously makes it harder, but not impossible, for β j to be nonzero as j increases.

15.6 Orthogonal Regression

Suppose we have bivariate data (xi,yi) and want to fit a line ŷ = β̂0 + β̂1x. Rather
than using least squares (that minimizes vertical distances to the line) we will do
orthogonal regression that minimizes perpendicular distances to the line. We will
run this line through the point (x̄·, ȳ·) so we need only worry about the slope of the
line.

Transform (xi,yi)′ into vi ≡ (xi − x̄·,yi − ȳ·)′. We want to find a vector a, or more
properly a one-dimensional column space C(a), that minimizes the squared per-
pendicular distances between the data vi and the regression line that consists of all
multiples of the vector a. We need to take vi and project it onto the line, that is,
project it into C(a). The projection is Mavi. The squared perpendicular distance be-
tween the data and the line is ‖vi −Mavi‖2 = ‖(I −Ma)vi‖2 = v′i(I −Ma)vi. It will
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become important later to recognize this as the squared length of the perpendicular
projection of vi onto the orthogonal complement of the regression surface vector
space. In any case, we need to pick the line so as to minimize the sum of all these
squared distances, i.e., so that ∑n

i=1 v′i(I −Ma)vi is minimized. However, if a mini-
mizes ∑n

i=1 v′i(I −Ma)vi, it maximizes ∑n
i=1 v′iMavi. Note also that

max
a

n

∑
i=1

v′iMavi = max
a

n

∑
i=1

v′ia(a′a)−1a′vi

= max
a

1
a′a

n

∑
i=1

a′viv′ia

= max
a

1
a′a

a′
(

n

∑
i=1

viv′i

)
a

= max
a

n−1
a′a

a′Sa,

where S is the sample covariance matrix of the data.
It is enough to find â such that

â′Sâ
â′â

= max
a

a′Sa
a′a

.

It is well-known (see Christensen, 2001, Proposition 2.3.4) that this max is achieved
by eigenvectors associated with the largest eigenvalue of S. In particular, if we pick
a maximizing eigenvector â to be â′ = (1, β̂ ), then β̂ is the orthogonal regression
slope estimate. The estimated line becomes

ŷ = ȳ· + β̂ (x− x̄·).

Technically, this occurs because for the fitted values to fall on the regression line,
they must determine a multiple of the eigenvector, i.e., ŷ is defined so that[

x− x̄·
ŷ− ȳ·

]
≡ (x− x̄·)

[
1
β̂

]
.

Normally, we would find the eigenvector corresponding to the largest eigenvalue
computationally, but our problem can be solved analytically. To find the maximizing
eigenvector we need to solve the matrix equation[

s2
x −λ sxy
sxy s2

y −λ

][
1
β̂

]
=
[

0
0

]
.

This simplifies to the set of equations

λ = s2
x + sxyβ̂ (1)

and
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sxy +(s2
y −λ )β̂ = 0. (2)

Substituting λ from (1) into (2),

sxy +(s2
y − s2

x)β̂ − sxyβ̂ 2 = 0. (3)

Applying the quadratic formula gives

β̂ =
−(s2

y − s2
x)±
√

(s2
y − s2

x)2 +4s2
xy

−2sxy
=

(s2
y − s2

x)±
√

(s2
y − s2

x)2 +4s2
xy

2sxy
.

Substituting β̂ back into (1), the larger of the two values of λ corresponds to

β̂ =
(s2

y − s2
x)+
√

(s2
y − s2

x)2 +4s2
xy

2sxy
,

which is our slope estimate.
If you find the eigenvalues and eigenvectors computationally, remember that

eigenvectors for a given eigenvalue (essentially) form a vector space. (Eigenvec-
tors are not allowed to be 0.) Thus, a reported eigenvector (a1,a2)′ for the largest
eigenvalue also determines the eigenvector we want, (1,a2/a1)′.

It turns out that we can also get least squares estimates by modifying these matrix
equations. Consider[

s2
x +[s2

y − s2
xy/s2

x ]−λ sxy

sxy s2
y −λ

][
1
β̂

]
=
[

0
0

]
or equivalently, [

s2
x +[s2

y − s2
xy/s2

x ] sxy

sxy s2
y

][
1
β̂

]
= λ
[

1
β̂

]
.

Rather than solving this for β̂ , simply observe that one solution is λ = s2
x + s2

y and
(1, β̂ )′ = (1,sxy/s2

x)
′. Note that [s2

y − s2
xy/s2

x ] = [(n−2)/(n−1)]MSE where MSE is
the mean squared error from the least squares fit of yi = β0 +β1xi + εi.

To generalize the orthogonal regression procedure to multiple regression we need
a more oblique approach. With data (x′i,yi) consisting of p-dimensional vectors, a
linear regression surface corresponds to a (p− 1)-dimensional hyperplane so that
if we specify a (p− 1) vector of predictor variables x, we know the fitted value ŷ
because it is the point corresponding to x on the hyperplane. By considering data
v′i ≡ (x′i − x̄′·,yi − ȳ·), the regression surface goes through the origin and becomes
a (p − 1)-dimensional vector space. Rather than specify the (p− 1)-dimensional
space, it is easier to find the orthogonal complement which is one-dimensional.
Writing the one-dimensional space as C(a) for a p vector a, the regression sur-
face will be C(a)⊥. The squared distances from the vis to the (p− 1)-dimensional
regression space are now v′iMavi, so we want to minimize ∑n

i=1 v′iMavi. Similar to
our earlier argument,
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min
a

n

∑
i=1

v′iMavi = min
a

n−1
a′a

a′Sa,

with S being the sample covariance matrix of the complete data. However, now
we obtain our fitted values differently. The minimum is achieved by choosing the
eigenvector â = (β̂ ′,−1)′ corresponding to the smallest eigenvalue. Our fitted values
ŷ now must determine vectors that are orthogonal to this eigenvector, so they satisfy

[
β̂ ′ −1

][x− x̄·
ŷ− ȳ·

]
= 0

or
ŷ = ȳ· + β̂ ′(x− x̄·).

As illustrated earlier for p = 2, any eigenvector (for the smallest eigenvalue) re-
ported by a computer program is easily rescaled to (β̂ ′,−1)′

Finally, this approach better give the same answers for simple linear regression
that we got from our first procedure. It is not difficult to see that[

s2
x −λ sxy
sxy s2

y −λ

][
β̂
−1

]
=
[

0
0

]
once again leads to equation (3) but now

β̂ =
(s2

y − s2
x)+
√

(s2
y − s2

x)2 +4s2
xy

2sxy

corresponds to the smallest eigenvalue. If you think about it, with distinct eigenval-
ues, the eigenvector (1, β̂)′ corresponding to the largest eigenvalue must be orthog-
onal to any eigenvector for the smallest eigenvalue, and (β̂ ,−1)′ is orthogonal to
(1, β̂ )′.

Like least squares, this procedure is a geometric justification for an estimate, not
a statistical justification. In Chapter 2 we showed that least squares estimates have
statistical optimality properties like being BLUEs, MVUEs, and MLEs. The ideas
used here are similar to those needed for looking at the separating hyperplanes used
in support vector machines, see Moguerza and Muñoz (2006) or Zhu (2008).



 



Appendix A

Vector Spaces

This appendix reviews some of the basic definitions and properties of vector spaces.
It is presumed that, with the possible exception of Theorem A.14, all of the material
presented here is familiar to the reader.

Definition A.1. A set M is a vector space if, for any x,y,z ∈ M and scalars
α,β , operations of vector addition and scalar multiplication are defined such that:

(1) (x+ y)+ z = x+(y+ z).
(2) x + y = y+ x.
(3) There exists a vector 0 ∈ M such that x +0 = x = 0+ x for any x ∈ M .
(4) For any x ∈ M , there exists y ≡−x such that x + y = 0 = y+ x.
(5) α(x+ y) = αx +αy.
(6) (α +β )x = αx+βx.
(7) (αβ )x = α(βx).
(8) There exists a scalar ξ such that ξ x = x. (Typically, ξ = 1.)

In nearly all of our applications, we assume M ⊂ Rn.

Definition A.2. Let M be a vector space, and let N be a set with N ⊂M . N
is a subspace of M if and only if N is a vector space.

Vectors in Rn will be considered as n× 1 matrices. The 0 vector referred to in
Definition A.1 is just an n×1 matrix of zeros. Think of vectors in three dimensions
as (x,y,z)′, where w′ denotes the transpose of a matrix w. The subspace consisting
of the z axis is

⎧⎨⎩
⎛⎝0

0
z

⎞⎠∣∣∣∣ z ∈ R

⎫⎬⎭ .
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The subspace consisting of the x,y plane is⎧⎨⎩
⎛⎝ x

y
0

⎞⎠∣∣∣∣ x,y ∈ R

⎫⎬⎭ .

The subspace consisting of the plane that is perpendicular to the line x = y in the x,y
plane is ⎧⎨⎩

⎛⎝ x
−x

z

⎞⎠∣∣∣∣ x,z ∈ R

⎫⎬⎭ .

Theorem A.3. Let M be a vector space, and let N be a nonempty subset of
M . If N is closed under vector addition and scalar multiplication, then N is a
subspace of M .

Theorem A.4. Let M be a vector space, and let x1, . . . ,xr be in M . The set
of all linear combinations of x1, . . . ,xr, i.e., {v |v = α1x1 + · · ·+αrxr,αi ∈ R}, is a
subspace of M .

Definition A.5. The set of all linear combinations of x1, . . . ,xr is called the space
spanned by x1, . . . ,xr. If N is a subspace of M , and N equals the space spanned
by x1, . . . ,xr, then {x1, . . . ,xr} is called a spanning set for N .

For example, the space spanned by the vectors

x1 =

⎛⎝1
1
1

⎞⎠ , x2 =

⎛⎝1
0
0

⎞⎠
consists of all vectors of the form (a,b,b)′, where a and b are any real numbers.

Let A be an n× p matrix. Each column of A is a vector in Rn. The space spanned
by the columns of A is called the column space of A and written C(A). (Some people
refer to C(A) as the range space of A and write it R(A).) If B is an n× r matrix, then
C(A,B) is the space spanned by the p+ r columns of A and B.

Definition A.6. Let x1, . . . ,xr be vectors in M . If there exist scalars α1, . . . ,αr
not all zero so that ∑αixi = 0, then x1, . . . ,xr are linearly dependent. If such αis do
not exist, x1, . . . ,xr are linearly independent.

Definition A.7. If N is a subspace of M and if {x1, . . . ,xr} is a linearly inde-
pendent spanning set for N , then {x1, . . . ,xr} is called a basis for N .



A Vector Spaces 413

Theorem A.8. If N is a subspace of M , all bases for N have the same number
of vectors.

Theorem A.9. If v1, . . . ,vr is a basis for N , and x∈N , then the characterization
x = ∑r

i=1 αivi is unique.

PROOF. Suppose x = ∑r
i=1 αivi and x = ∑r

i=1 βivi. Then 0 = ∑r
i=1(αi−βi)vi. Since

the vectors vi are linearly independent, αi −βi = 0 for all i. �

Definition A.10. The rank of a subspace N is the number of elements in a basis
for N . The rank is written r(N ). If A is a matrix, the rank of C(A) is called the
rank of A and is written r(A).

The vectors

x1 =

⎛⎝1
1
1

⎞⎠ , x2 =

⎛⎝1
0
0

⎞⎠ , x3 =

⎛⎝2
3
3

⎞⎠
are linearly dependent because 0 = 3x1 − x2 − x3. Any two of x1,x2,x3 form a basis
for the space of vectors with the form (a,b,b)′. This space has rank 2.

Definition A.11. The (Euclidean) inner product between two vectors x and y
in Rn is x′y. Two vectors x and y are orthogonal (written x ⊥ y) if x′y = 0. Two
subspaces N1 and N2 are orthogonal if x ∈ N1 and y ∈ N2 imply that x′y = 0.
{x1, . . . ,xr} is an orthogonal basis for a space N if {x1, . . . ,xr} is a basis for N
and for i �= j, x′ix j = 0. {x1, . . . ,xr} is an orthonormal basis for N if {x1, . . . ,xr}
is an orthogonal basis and x′ixi = 1 for i = 1, . . . ,r. The terms orthogonal and per-
pendicular are used interchangeably. The length of a vector x is ‖x‖ ≡ √

x′x. The
distance between two vectors x and y is the length of their difference, i.e., ‖x− y‖.

The lengths of the vectors given earlier are

‖x1‖ =
√

12 +12 +12 =
√

3, ‖x2‖ = 1, ‖x3‖ =
√

22 .= 4.7.

Also, if x = (2,1)′, its length is ‖x‖ =
√

22 +12 =
√

5. If y = (3,2)′, the distance
between x and y is the length of x− y = (2,1)′ − (3,2)′ = (−1,−1)′, which is ‖x−
y‖ =

√
(−1)2 +(−1)2 =

√
2.

Just prior to Section B.4 and in Sections 2.7 and 6.3 we discuss more general
versions of the concepts of inner product and length. In particular, a more general
version of Definition A.11 is given in Subsection 6.3.5. The remaining results and
definitions in this appendix are easily extended to general inner products.

Our emphasis on orthogonality and our need to find orthogonal projection ma-
trices make both the following theorem and its proof fundamental tools in linear
model theory:
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Theorem A.12. The Gram–Schmidt Theorem.
Let N be a space with basis {x1, . . . ,xr}. There exists an orthonormal basis for N ,
say {y1, . . . ,yr}, with ys in the space spanned by x1, . . . ,xs, s = 1, . . . ,r.

PROOF. Define the yis inductively:

y1 = x1
/√

x′1x1 ,

ws = xs −
s−1

∑
i=1

(x′syi)yi ,

ys = ws
/√

w′
sws .

See Exercise A.1. �

The vectors

x1 =

⎛⎝1
1
1

⎞⎠ , x2 =

⎛⎝1
0
0

⎞⎠
are a basis for the space of vectors with the form (a,b,b)′. To orthonormalize this
basis, take y1 = x1/

√
3. Then take

w2 =

⎛⎝1
0
0

⎞⎠− 1√
3

⎛⎝1/
√

3
1/

√
3

1/
√

3

⎞⎠=

⎛⎝ 2/3
−1/3
−1/3

⎞⎠ .

Finally, normalize w2 to give

y2 = w2

/√
6/9 = (2/

√
6,−1/

√
6,−1/

√
6)′.

Note that another orthonormal basis for this space consists of the vectors

z1 =

⎛⎝ 0
1/

√
2

1/
√

2

⎞⎠ , z2 =

⎛⎝1
0
0

⎞⎠ .

Definition A.13. For N a subspace of M , let N ⊥
M ≡ {y ∈ M |y ⊥ N }. N ⊥

M
is called the orthogonal complement of N with respect to M . If M is taken as Rn,
then N ⊥ ≡ N ⊥

M is simply referred to as the orthogonal complement of N .

Theorem A.14. Let M be a vector space, and let N be a subspace of M . The
orthogonal complement of N with respect to M is a subspace of M ; and if x ∈M ,
x can be written uniquely as x = x0 + x1 with x0 ∈ N and x1 ∈ N ⊥

M . The ranks of
these spaces satisfy the relation r(M ) = r(N )+ r(N ⊥

M ).
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For example, let M = R3 and let N be the space of vectors with the form
(a,b,b)′. It is not difficult to see that the orthogonal complement of N consists of
vectors of the form (0,c,−c)′. Any vector (x,y,z)′ can be written uniquely as⎛⎝x

y
z

⎞⎠=

⎛⎝ x
(y+ z)/2
(y+ z)/2

⎞⎠+

⎛⎝ 0
(y− z)/2
−(y− z)/2

⎞⎠ .

The space of vectors with form (a,b,b)′ has rank 2, and the space (0,c,−c)′ has
rank 1.

For additional examples, let

X0 =

⎡⎣1
1
1

⎤⎦ and X =

⎡⎣1 1
1 2
1 3

⎤⎦ .

In this case,

C(X0)⊥ = C

⎛⎝⎡⎣−1 1
0 −2
1 1

⎤⎦⎞⎠ , C(X0)⊥C(X) = C

⎛⎝⎡⎣−1
0
1

⎤⎦⎞⎠ ,

and

C(X)⊥ = C

⎛⎝⎡⎣ 1
−2

1

⎤⎦⎞⎠ .

PROOF OF THEOREM A.14. It is easily seen that N ⊥
M is a subspace by checking

Theorem A.3. Let r(M ) = n and r(N ) = r. Let v1, . . . ,vr be a basis for N and ex-
tend this with w1, . . . ,wn−r to a basis for M . Apply Gram–Schmidt to get v∗1, . . . ,v

∗
r ,

w∗
1, . . . ,w

∗
n−r an orthonormal basis for M with v∗1, . . . ,v

∗
r an orthonormal basis for

N .
If x ∈ M , then

x =
r

∑
i=1

αiv∗i +
n−r

∑
j=1

β jw∗
j .

Let x0 = ∑r
i=1 αiv∗i and x1 = ∑n−r

j=1 β jw∗
j . Then x0 ∈ N , x1 ∈ N ⊥

M , and x = x0 + x1.
To establish the uniqueness of the representation and the rank relationship, we

need to establish that {w∗
1, . . . ,w

∗
n−r} is a basis for N ⊥

M . Since, by construction, the
w∗

js are linearly independent and w∗
j ∈N ⊥

M , j = 1, . . . ,n− r, it suffices to show that
{w∗

1, . . . ,w
∗
n−r} is a spanning set for N ⊥

M . If x ∈ N ⊥
M , write

x =
r

∑
i=1

αiv∗i +
n−r

∑
j=1

β jw∗
j .

However, since x ∈ N ⊥
M and v∗k ∈ N for k = 1, . . . ,r,
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0 = x′v∗k =

(
r

∑
i=1

αiv∗i +
n−r

∑
j=1

β jw∗
j

)′
v∗k

=
r

∑
i=1

αiv∗′i v∗k +
n−r

∑
j=1

β jw∗′
j v∗k

= αkv∗′k v∗k = αk

for k = 1, . . . ,r. Thus x = ∑n−r
j=1 β jw∗

j , implying that {w∗
1, . . . ,w

∗
n−r} is a spanning set

and a basis for N ⊥
M .

To establish uniqueness, let x = y0 + y1 with y0 ∈ N and y1 ∈ N ⊥
M . Then y0 =

∑r
i=1 γiv∗i and y1 = ∑n−r

j=1 δ jw∗
j ; so x = ∑r

i=1 γiv∗i + ∑n−r
j=1 δ jw∗

j . By the uniqueness of
the representation of x under any basis, γi = αi and β j = δ j for all i and j; thus
x0 = y0 and x1 = y1.

Since a basis has been found for each of M , N , and N ⊥
M , we have r(M ) = n,

r(N ) = r, and r(N ⊥
M ) = n− r. Thus, r(M ) = r(N )+ r(N ⊥

M ). �

Definition A.15. Let N1 and N2 be vector subspaces. Then the sum of N1 and
N2 is N1 +N2 = {x|x = x1 + x2,x1 ∈ N1,x2 ∈ N2}.

Theorem A.16. N1 +N2 is a vector space and C(A,B) = C(A)+C(B).

Exercises

Exercise A.1 Give a detailed proof of the Gram–Schmidt theorem.

Questions A.2 through A.13 involve the following matrices:

A =

⎡⎢⎣
1 1 0 0
1 1 0 0
0 0 1 0
0 0 1 1

⎤⎥⎦, B =

⎡⎢⎣
1 0 0
1 0 0
0 1 0
0 0 1

⎤⎥⎦, D =

⎡⎢⎣
1 0
1 0
2 5
0 0

⎤⎥⎦, E =

⎡⎢⎣
1 2
1 2
2 7
0 0

⎤⎥⎦,

F =

⎡⎢⎣
1 5 6
1 5 6
0 7 2
0 0 9

⎤⎥⎦, G =

⎡⎢⎣
1 0 5 2
1 0 5 2
2 5 7 9
0 0 0 3

⎤⎥⎦, H =

⎡⎢⎣
1 0 2 2 6
1 0 2 2 6
7 9 3 9 −1
0 0 0 3 −7

⎤⎥⎦,
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K =

⎡⎢⎣
1 0 0
1 0 0
1 1 0
1 0 1

⎤⎥⎦, L =

⎡⎢⎣
2 0 0
2 0 0
1 1 0
1 0 1

⎤⎥⎦, N =

⎡⎢⎣
1
2
3
4

⎤⎥⎦.
Exercise A.2 Is the space spanned by the columns of A the same as the space
spanned by the columns of B? How about the spaces spanned by the columns of
K,L,F,D, and G?

Exercise A.3 Give a matrix whose column space contains C(A).

Exercise A.4 Give two matrices whose column spaces contain C(B).

Exercise A.5 Which of the following equalities are valid: C(A) = C(A,D),
C(D) = C(A,B), C(A,N) = C(A), C(N) = C(A), C(A) = C(F), C(A) = C(G),
C(A) = C(H), C(A) = C(D)?

Exercise A.6 Which of the following matrices have linearly independent
columns: A, B, D, N, F , H, G?

Exercise A.7 Give a basis for the space spanned by the columns of each of the
following matrices: A, B, D, N, F , H, G.

Exercise A.8 Give the ranks of A, B, D, E, F , G, H, K, L, N.

Exercise A.9 Which of the following matrices have columns that are mutually
orthogonal: B, A, D?

Exercise A.10 Give an orthogonal basis for the space spanned by the columns
of each of the following matrices: A, D, N, K, H, G.

Exercise A.11 Find C(A)⊥ and C(B)⊥ (with respect to R4).

Exercise A.12 Find two linearly independent vectors in the orthogonal comple-
ment of C(D) (with respect to R4).

Exercise A.13 Find a vector in the orthogonal complement of C(D) with respect
to C(A).
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Exercise A.14 Find an orthogonal basis for the space spanned by the columns
of

X =

⎡⎢⎢⎢⎢⎢⎣
1 1 4
1 2 1
1 3 0
1 4 0
1 5 1
1 6 4

⎤⎥⎥⎥⎥⎥⎦ .

Exercise A.15 For X as above, find two linearly independent vectors in the
orthogonal complement of C(X) (with respect to R6).

Exercise A.16 Let X be an n× p matrix. Prove or disprove the following state-
ment: Every vector in Rn is in either C(X) or C(X)⊥ or both.

Exercise A.17 For any matrix A, prove that C(A) and the null space of A′ are
orthogonal complements. Note: The null space is defined in Definition B.11.



Appendix B

Matrix Results

This appendix reviews standard ideas in matrix theory with emphasis given to im-
portant results that are less commonly taught in a junior/senior level linear algebra
course. The appendix begins with basic definitions and results. A section devoted
to eigenvalues and their applications follows. This section contains a number of
standard definitions, but it also contains a number of very specific results that are
unlikely to be familiar to people with only an undergraduate background in linear
algebra. The third section is devoted to an intense (brief but detailed) examination
of projections and their properties. The appendix closes with some miscellaneous
results, some results on Kronecker products and Vec operators, and an introduction
to tensors.

B.1 Basic Ideas

Definition B.1. Any matrix with the same number of rows and columns is called
a square matrix.

Definition B.2. Let A = [ai j] be a matrix. The transpose of A, written A′, is the
matrix A′ = [bi j], where bi j = a ji.

Definition B.3. If A = A′, then A is called symmetric. Note that only square
matrices can be symmetric.

Definition B.4. If A = [ai j] is a square matrix and ai j = 0 for i �= j, then A is a di-
agonal matrix. If λ1, . . . ,λn are scalars, then D(λ j) and Diag(λ j) are used to indicate
an n×n matrix D = [di j] with di j = 0, i �= j, and dii = λi. If λ ≡ (λ1, . . . ,λn)′, then

419
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D(λ ) ≡ D(λ j). A diagonal matrix with all 1s on the diagonal is called an identity
matrix and is denoted I. Occasionally, In is used to denote an n×n identity matrix.

If A = [ai j] is n× p and B = [bi j] is n× q, we can write an n× (p + q) matrix
C = [A,B], where ci j = ai j, i = 1, . . . ,n, j = 1, . . . , p, and ci j = bi, j−p, i = 1, . . . ,n,

j = p+1, . . . , p+q. This notation can be extended in obvious ways, e.g., C′ =
[

A′
B′

]
.

Definition B.5. Let A = [ai j] be an r×c matrix and B = [bi j] be an s×d matrix.
The Kronecker product of A and B, written A⊗B, is an r×c matrix of s×d matrices.
The matrix in the ith row and jth column is ai jB. In total, A⊗B is an rs×cd matrix.

Definition B.6. Let A be an r× c matrix. Write A = [A1,A2, . . . ,Ac], where Ai is
the ith column of A. Then the Vec operator stacks the columns of A into an rc× 1
vector; thus,

[Vec(A)]′ = [A′
1,A

′
2, . . . ,A

′
c].

EXAMPLE B.7.

A =
[

1 4
2 5

]
, B =

[
1 3
0 4

]
,

A⊗B =

⎡⎢⎢⎣1
(

1 3
0 4

)
4
(

1 3
0 4

)
2
(

1 3
0 4

)
5
(

1 3
0 4

)
⎤⎥⎥⎦=

⎡⎢⎣
1 3 4 12
0 4 0 16
2 6 5 15
0 8 0 20

⎤⎥⎦ ,

Vec(A) = [1,2,4,5]′.

Definition B.8. Let A be an n×n matrix. A is nonsingular if there exists a matrix
A−1 such that A−1A = I = AA−1. If no such matrix exists, then A is singular. If A−1

exists, it is called the inverse of A.

Theorem B.9. An n×n matrix A is nonsingular if and only if r(A) = n, i.e., the
columns of A form a basis for Rn.

Corollary B.10. An×n is singular if and only if there exists x �= 0 such that
Ax = 0.

For any matrix A, the set of all x such that Ax = 0 is easily seen to be a vector
space.

Definition B.11. The set of all x such that Ax = 0 is called the null space of A.
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Theorem B.12. If A is n× n and r(A) = r, then the null space of A has rank
n− r.

B.2 Eigenvalues and Related Results

The material in this section deals with eigenvalues and eigenvectors either in the
statements of the results or in their proofs. Again, this is meant to be a brief review
of important concepts; but, in addition, there are a number of specific results that
may be unfamiliar.

Definition B.13. The scalar λ is an eigenvalue of An×n if A−λ I is singular. λ is
an eigenvalue of multiplicity s if the rank of the null space of A−λ I is s. A nonzero
vector x is an eigenvector of A corresponding to the eigenvalue λ if x is in the null
space of A− λ I, i.e., if Ax = λx. Eigenvalues are also called singular values and
characteristic roots.

For example, [
2 1
1 2

](
1
1

)
= 3
(

1
1

)
and [

2 1
1 2

](−1
1

)
= 1
(−1

1

)
.

Combining the two equations gives[
2 1
1 2

][
1 −1
1 1

]
=
[

1 −1
1 1

][
3 0
0 1

]
.

Note that if λ �= 0 is an eigenvalue of A, the eigenvectors corresponding to λ
(along with the vector 0) form a subspace of C(A). For example, if Ax1 = λx1 and
Ax2 = λx2, then A(x1 + x2) = λ (x1 + x2), so the set of eigenvectors is closed un-
der vector addition. Similarly, it is closed under scalar multiplication, so it forms a
subspace (except that eigenvectors cannot be 0 and every subspace contains 0). If
λ = 0, the subspace is the null space of A.

If A is a symmetric matrix, and γ and λ are distinct eigenvalues, then the eigen-
vectors corresponding to λ and γ are orthogonal. To see this, let x be an eigenvector
for λ and y an eigenvector for γ . Then λx′y = x′Ay = γx′y, which can happen only
if λ = γ or if x′y = 0. Since λ and γ are distinct, we have x′y = 0.

Let λ1, . . . ,λr be the distinct nonzero eigenvalues of a symmetric matrix A with
respective multiplicities s(1), . . . ,s(r). Let vi1, . . . ,vis(i) be a basis for the space of
eigenvectors of λi. We want to show that v11,v12, . . . ,vrs(r) is a basis for C(A). Sup-
pose v11,v12, . . . ,vrs(r) is not a basis. Since vi j ∈C(A) and the vi js are linearly inde-
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pendent, we can pick x∈C(A) with x⊥ vi j for all i and j. Note that since Avi j = λivi j,
we have (A)pvi j = (λi)pvi j. In particular, x′(A)pvi j = x′(λi)pvi j = (λi)px′vi j = 0, so
Apx ⊥ vi j for any i, j, and p. The vectors x, Ax, A2x, . . . cannot all be linearly inde-
pendent, so there exists a smallest value k ≤ n such that

Akx+bk−1Ak−1x + · · ·+b0x = 0.

Since there is a solution to this, for some real number μ we can write the equation
as

(A−μI)
(

Ak−1x+ γk−2Ak−2x+ · · ·+ γ0x
)

= 0,

and μ is an eigenvalue. (See Exercise B.1.) An eigenvector for μ is y = Ak−1x +
γk−2Ak−2x + · · ·+ γ0x. Clearly, y ⊥ vi j for any i and j. Since k was chosen as the
smallest value to get linear dependence, we have y �= 0. If μ �= 0, y is an eigenvector
that does not correspond to any of λ1, . . . ,λr, a contradiction. If μ = 0, we have
Ay = 0; and since A is symmetric, y is a vector in C(A) that is orthogonal to every
other vector in C(A), i.e., y′y = 0 but y �= 0, a contradiction. We have proven

Theorem B.14. If A is a symmetric matrix, then there exists a basis for C(A)
consisting of eigenvectors of nonzero eigenvalues. If λ is a nonzero eigenvalue of
multiplicity s, then the basis will contain s eigenvectors for λ .

If λ is an eigenvalue of A with multiplicity s, then we can think of λ as being
an eigenvalue s times. With this convention, the rank of A is the number of nonzero
eigenvalues. The total number of eigenvalues is n if A is an n×n matrix.

For a symmetric matrix A, if we use eigenvectors corresponding to the zero eigen-
value, we can get a basis for Rn consisting of eigenvectors. We already have a basis
for C(A), and the eigenvectors of 0 are the null space of A. For A symmetric, C(A)
and the null space of A are orthogonal complements. Let λ1, . . . ,λn be the eigenval-
ues of a symmetric matrix A. Let v1, . . . ,vn denote a basis of eigenvectors for Rn,
with vi being an eigenvector for λi for any i.

Theorem B.15. If A is symmetric, there exists an orthonormal basis for Rn

consisting of eigenvectors of A.

PROOF. Assume λi1 = · · ·= λik are all the λis equal to any particular value λ , and
let vi1, . . . ,vik be a basis for the space of eigenvectors for λ . By Gram–Schmidt there
exists an orthonormal basis wi1, . . . ,wik for the space of eigenvectors corresponding
to λ . If we do this for each distinct eigenvalue, we get a collection of orthonormal
sets that form a basis for Rn. Since, as we have seen, for λi �= λ j, any eigenvector
for λi is orthogonal to any eigenvector for λ j, the basis is orthonormal. �

Definition B.16. A square matrix P is orthogonal if P′ = P−1. Note that if P is
orthogonal, so is P′.
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Some examples of orthogonal matrices are

P1 =
1√
6

⎡⎣√2 −√
3 1√

2 0 −2√
2

√
3 1

⎤⎦ , P2 =
1√
2

[
1 1
1 −1

]
,

P3 =

⎡⎣1 0 0
0 −1 0
0 0 1

⎤⎦ .

Theorem B.17. Pn×n is orthogonal if and only if the columns of P form an
orthonormal basis for Rn.

PROOF. ⇐ It is clear that if the columns of P form an orthonormal basis for Rn,
then P′P = I.

⇒ Since P is nonsingular, the columns of P form a basis for Rn. Since P′P = I,
the basis is orthonormal. �

Corollary B.18. Pn×n is orthogonal if and only if the rows of P form an or-
thonormal basis for Rn.

PROOF. P is orthogonal if and only if P′ is orthogonal if and only if the columns
of P′ are an orthonormal basis if and only if the rows of P are an orthonormal basis.

�

Theorem B.19. If A is an n×n symmetric matrix, then there exists an orthogonal
matrix P such that P′AP = Diag(λi), where λ1,λ2, . . . ,λn are the eigenvalues of A.

PROOF. Let v1,v2, . . . ,vn be an orthonormal set of eigenvectors of A correspond-
ing, respectively, to λ1,λ2, . . . ,λn. Let P = [v1, . . . ,vn]. Then

P′AP =

⎡⎢⎣v′1
...

v′n

⎤⎥⎦ [Av1, . . . ,Avn]

=

⎡⎢⎣v′1
...

v′n

⎤⎥⎦ [λ1v1, . . . ,λnvn]

=

⎡⎢⎣λ1v′1v1 . . . λnv′1vn
...

. . .
...

λ1v′nv1 . . . λnv′nvn

⎤⎥⎦
= Diag(λi). �
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The singular value decomposition for a symmetric matrix is given by the follow-
ing corollary.

Corollary B.20. A = PD(λi)P′.

For example, using results illustrated earlier,[
2 1
1 2

]
=
[

1/
√

2 −1/
√

2
1/

√
2 1/

√
2

][
3 0
0 1

][
1/
√

2 1/
√

2
−1/

√
2 1/

√
2

]
.

Definition B.21. A symmetric matrix A is positive (nonnegative) definite if, for
any nonzero vector v ∈ Rn, v′Av is positive (nonnegative).

Theorem B.22. A is nonnegative definite if and only if there exists a square
matrix Q such that A = QQ′.

PROOF. ⇒ We know that there exists P orthogonal with P′AP = Diag(λi). The
λis must all be nonnegative, because if e′j = (0, . . . ,0,1,0, . . . ,0) with the 1 in the jth
place and we let v = Pej, then 0 ≤ v′Av = e′jDiag(λi)e j = λ j. Let Q = PDiag

(√
λi
)
.

Then, since PDiag(λi)P′ = A, we have

QQ′ = PDiag(λi)P′ = A.

⇐ If A = QQ′, then v′Av = (Q′v)′(Q′v) ≥ 0. �

Corollary B.23. A is positive definite if and only if Q is nonsingular for any
choice of Q.

PROOF. There exists v �= 0 such that v′Av = 0 if and only if there exists v �= 0 such
that Q′v = 0, which occurs if and only if Q′ is singular. The contrapositive of this is
that v′Av > 0 for all v �= 0 if and only if Q′ is nonsingular. �

Theorem B.24. If A is an n×n nonnegative definite matrix with nonzero eigen-
values λ1, . . . ,λr, then there exists an n× r matrix Q = Q1Q−1

2 such that Q1 has or-
thonormal columns, C(Q1) = C(A), Q2 is diagonal and nonsingular, and Q′AQ = I.

PROOF. Let v1, . . . ,vn be an orthonormal basis of eigenvectors with v1, . . . ,vr cor-
responding to λ1, . . . ,λr. Let Q1 = [v1, . . . ,vr]. By an argument similar to that in the
proof of Theorem B.19, Q′

1AQ1 = Diag(λi), i = 1, . . . ,r. Now take Q2 = Diag(
√

λi)
and Q = Q1Q−1

2 . �

Corollary B.25. Let W = Q1Q2. Then WW ′ = A.
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PROOF. Since Q′AQ = Q−1
2 Q′

1AQ1Q−1
2 = I and Q2 is symmetric, Q′

1AQ1 = Q2Q′
2.

Multiplying gives

Q1Q′
1AQ1Q′

1 = (Q1Q2)(Q′
2Q′

1) = WW ′.

But Q1Q′
1 is a perpendicular projection matrix onto C(A), so Q1Q′

1AQ1Q′
1 = A (cf.

Definition B.31 and Theorem B.35). �

Corollary B.26. AQQ′A = A and QQ′AQQ′ = QQ′.

PROOF. AQQ′A = WW ′QQ′WW ′ = WQ2Q′
1Q1Q−1

2 Q−1
2 Q′

1Q1Q2W ′ = A. More-
over, QQ′AQQ′ = QQ′WW ′QQ′ = QQ−1

2 Q′
1Q1Q2Q2Q′

1Q1Q−1
2 Q′ = QQ′. �

Definition B.27. Let A = [ai j] be an n× n matrix. The trace of A is tr(A) =
∑n

i=1 aii.

Theorem B.28. For matrices Ar×s and Bs×r, tr(AB) = tr(BA).

PROOF. See Exercise B.8. �

Theorem B.29. If A is a symmetric matrix, tr(A) = ∑n
i=1 λi, where λ1, . . . ,λn are

the eigenvalues of A.

PROOF. A = PD(λi)P′ with P orthogonal

tr(A) = tr(PD(λi)P′) = tr(D(λi)P′P)

= tr(D(λi)) =
n

∑
i=1

λi. �

To illustrate, we saw earlier that the matrix
[

2 1
1 2

]
had eigenvalues of 3 and 1.

In fact, a stronger result than Theorem B.29 is true. We give it without proof.

Theorem B.30. tr(A) = ∑n
i=1 λi, where λ1, . . . ,λn are the eigenvalues of A. More-

over, the determinant of A is det(V ) = ∏n
i=1 λi.

B.3 Projections

This section is devoted primarily to a discussion of perpendicular projection opera-
tors. It begins with their definition, some basic properties, and two important char-
acterizations: Theorems B.33 and B.35. A third important characterization, Theo-
rem B.44, involves generalized inverses. Generalized inverses are defined, briefly
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studied, and applied to projection operators. The section continues with the ex-
amination of the relationships between two perpendicular projection operators and
closes with discussions of the Gram–Schmidt theorem, eigenvalues of projection
operators, and oblique (nonperpendicular) projection operators.

We begin by defining a perpendicular projection operator (ppo) onto an arbitrary
space. To be consistent with later usage, we denote the arbitrary space C(X) for
some matrix X .

Definition B.31. M is a perpendicular projection operator (matrix) onto C(X) if
and only if

(i) v ∈C(X) implies Mv = v (projection),
(ii) w ⊥C(X) implies Mw = 0 (perpendicularity).

For example, consider the subspace of R2 determined by vectors of the form
(2a,a)′. It is not difficult to see that the orthogonal complement of this subspace
consists of vectors of the form (b,−2b)′. The perpendicular projection operator onto
the (2a,a)′ subspace is

M =
[

0.8 0.4
0.4 0.2

]
.

To verify this note that

M
(

2a
a

)
=
[

0.8 0.4
0.4 0.2

](
2a
a

)
=
(

(0.8)2a+0.4a
(0.4)2a+0.2a

)
=
(

2a
a

)
and

M
(

b
−2b

)
=
[

0.8 0.4
0.4 0.2

](
b

−2b

)
=
(

0.8b+0.4(−2b)
0.4b+0.2(−2b)

)
=
(

0
0

)
.

Notationally, M is used to indicate the ppo onto C(X). If A is another matrix, MA
denotes the ppo onto C(A). Thus, M ≡ MX . When using X with a subscript, say 0,
write the ppo onto C(X0) as M0 ≡ MX0 .

Proposition B.32. If M is a perpendicular projection operator onto C(X), then
C(M) = C(X).

PROOF. See Exercise B.2. �

Note that both columns of

M =
[

0.8 0.4
0.4 0.2

]
have the form (2a,a)′.
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Theorem B.33. M is a perpendicular projection operator on C(M) if and only if
MM = M and M′ = M.

PROOF. ⇒ Write v = v1 + v2, where v1 ∈ C(M) and v2 ⊥ C(M), and let w =
w1 + w2 with w1 ∈ C(M) and w2 ⊥ C(M). Since (I −M)v = (I −M)v2 = v2 and
Mw = Mw1 = w1, we get

w′M′(I −M)v = w′
1M′(I −M)v2 = w′

1v2 = 0.

This is true for any v and w, so we have M′(I−M) = 0 or M′ = M′M. Since M′M is
symmetric, M′ must also be symmetric, and this implies that M = MM.

⇐ If M2 = M and v ∈C(M), then since v = Mb we have Mv = MMb = Mb = v.
If M′ = M and w ⊥ C(M), then Mw = M′w = 0 because the columns of M are in
C(M). �

In our example,

MM =
[

0.8 0.4
0.4 0.2

][
0.8 0.4
0.4 0.2

]
=
[

0.8 0.4
0.4 0.2

]
= M

and

M =
[

0.8 0.4
0.4 0.2

]
= M′.

Proposition B.34. Perpendicular projection operators are unique.

PROOF. Let M and P be perpendicular projection operators onto some space M .
Let v ∈ Rn and write v = v1 + v2, v1 ∈ M , v2 ⊥ M . Since v is arbitrary and Mv =
v1 = Pv, we have M = P. �

For any matrix X , we will now find two ways to characterize the perpendicu-
lar projection operator onto C(X). The first method depends on the Gram–Schmidt
theorem; the second depends on the concept of a generalized inverse.

Theorem B.35. Let o1, . . . ,or be an orthonormal basis for C(X), and let
O = [o1, . . . ,or]. Then OO′ = ∑r

i=1 oio′i is the perpendicular projection operator onto
C(X).

PROOF. OO′ is symmetric and OO′OO′ = OIrO′ = OO′; so, by Theorem B.33, it
only remains to show that C(OO′) =C(X). Clearly C(OO′)⊂C(O) =C(X). On the
other hand, if v ∈C(O), then v = Ob for some vector b ∈ Rr and v = Ob = OIrb =
OO′Ob; so clearly v ∈C(OO′). �
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For example, to find the perpendicular projection operator for vectors of the form
(2a,a)′, we can find an orthonormal basis. The space has rank 1 and to normalize
(2a,a)′, we must have

1 = (2a,a)′
(

2a
a

)
= 4a2 +a2 = 5a2;

so a2 = 1/5 and a = ±1/
√

5. If we take (2/
√

5,1/
√

5)′ as our orthonormal basis,
then

M =
(

2/
√

5
1/
√

5

)
(2/

√
5,1/

√
5) =

[
0.8 0.4
0.4 0.2

]
,

as was demonstrated earlier.
One use of Theorem B.35 is that, given a matrix X , one can use the Gram–

Schmidt theorem to get an orthonormal basis for C(X) and thus obtain the perpen-
dicular projection operator.

We now examine properties of generalized inverses. Generalized inverses are a
generalization on the concept of the inverse of a matrix. Although the most common
use of generalized inverses is in solving systems of linear equations, our interest lies
primarily in their relationship to projection operators. The discussion below is given
for an arbitrary matrix A.

Definition B.36. A generalized inverse of a matrix A is any matrix G such that
AGA = A. The notation A− is used to indicate a generalized inverse of A.

Theorem B.37. If A is nonsingular, the unique generalized inverse of A is A−1.

PROOF. AA−1A = IA = A, so A−1 is a generalized inverse. If AA−A = A, then
AA− = AA−AA−1 = AA−1 = I; so A− is the inverse of A. �

Theorem B.38. For any symmetric matrix A, there exists a generalized inverse
of A.

PROOF. There exists P orthogonal so that P′AP = D(λi) and A = PD(λi)P′. Let

γi =
{

1/λi, if λi �= 0
0, if λi = 0 ,

and G = PD(γi)P′. We now show that G is a generalized inverse of A. P is orthogo-
nal, so P′P = I and

AGA = PD(λi)P′PD(γi)P′PD(λi)P′

= PD(λi)D(γi)D(λi)P′

= PD(λi)P′

= A. �
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Although this is the only existence result we really need, later we will show that
generalized inverses exist for arbitrary matrices.

Theorem B.39. If G1 and G2 are generalized inverses of A, then so is G1AG2.

PROOF. A(G1AG2)A = (AG1A)G2A = AG2A = A. �

For A symmetric, A− need not be symmetric.

EXAMPLE B.40. Consider the matrix[
a b
b b2/a

]
.

It has a generalized inverse [
1/a −1

1 0

]
,

and in fact, by considering the equation[
a b
b b2/a

][
r s
t u

][
a b
b b2/a

]
=
[

a b
b b2/a

]
,

it can be shown that if r = 1/a, then any solution of at +as+bu = 0 gives a gener-
alized inverse.

Corollary B.41. For a symmetric matrix A, there exists A− such that A−AA− =
A− and (A−)′ = A−.

PROOF. Take A− as the generalized inverse in the proof of Theorem B.38. Clearly,
A− = PD(γi)P′ is symmetric and

A−AA− = PD(γi)P′PD(λi)P′PD(γi)P′ = PD(γi)D(λi)D(γi)P′ = PD(γi)P′ = A−.
�

Definition B.42. A generalized inverse A− for a matrix A that has the property
A−AA− = A− is said to be reflexive.

Corollary B.41 establishes the existence of a reflexive generalized inverse for any
symmetric matrix. Note that Corollary B.26 previously established the existence of
a reflexive generalized inverse for any nonnegative definite matrix.

Generalized inverses are of interest in that they provide an alternative to the char-
acterization of perpendicular projection matrices given in Theorem B.35. The two
results immediately below characterize the perpendicular projection matrix onto
C(X).
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Lemma B.43. If G and H are generalized inverses of (X ′X), then

(i) XGX ′X = XHX ′X = X ,
(ii) XGX ′ = XHX ′.

PROOF. For v ∈ Rn, let v = v1 + v2 with v1 ∈ C(X) and v2 ⊥ C(X). Also let
v1 = Xb for some vector b. Then

v′XGX ′X = v′1XGX ′X = b′(X ′X)G(X ′X) = b′(X ′X) = v′X .

Since v and G are arbitrary, we have shown (i).
To see (ii), observe that for the arbitrary vector v above,

XGX ′v = XGX ′Xb = XHX ′Xb = XHX ′v. �

Since X ′X is symmetric, there exists a generalized inverse (X ′X)− that is symmetric.
For this generalized inverse, X(X ′X)−X ′ is symmetric; so, by the above lemma,
X(X ′X)−X ′ must be symmetric for any choice of (X ′X)−.

Theorem B.44. X(X ′X)−X ′ is the perpendicular projection operator onto C(X).

PROOF. We need to establish conditions (i) and (ii) of Definition B.31. (i) For v ∈
C(X), write v = Xb, so by Lemma B.43, X(X ′X)−X ′v = X(X ′X)−X ′Xb = Xb = v.
(ii) If w ⊥C(X), X(X ′X)−X ′w = 0. �

For example, one spanning set for the subspace of vectors with the form (2a,a)′
is (2,1)′. It follows that

M =
(

2
1

)[
(2,1)

(
2
1

)]−1

(2,1) =
[

0.8 0.4
0.4 0.2

]
,

as was shown earlier.
The next five results examine the relationships between two perpendicular pro-

jection matrices.

Theorem B.45. Let M1 and M2 be perpendicular projection matrices on Rn.
(M1 + M2) is the perpendicular projection matrix onto C(M1,M2) if and only if
C(M1) ⊥C(M2).

PROOF. ⇐ If C(M1) ⊥C(M2), then M1M2 = M2M1 = 0. Because

(M1 +M2)2 = M2
1 +M2

2 +M1M2 +M2M1 = M2
1 +M2

2 = M1 +M2
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and
(M1 +M2)′ = M′

1 +M′
2 = M1 +M2,

M1 +M2 is the perpendicular projection matrix onto C(M1 + M2). Clearly C(M1 +
M2) ⊂ C(M1,M2). To see that C(M1,M2) ⊂ C(M1 + M2), write v = M1b1 + M2b2.
Then, because M1M2 = M2M1 = 0, (M1 + M2)v = v. Thus, C(M1,M2) = C(M1 +
M2).

⇒ If M1 +M2 is a perpendicular projection matrix, then

(M1 +M2) = (M1 +M2)2 = M2
1 +M2

2 +M1M2 +M2M1

= M1 +M2 +M1M2 +M2M1.

Thus, M1M2 +M2M1 = 0.
Multiplying by M1 gives 0 = M2

1 M2 + M1M2M1 = M1M2 + M1M2M1 and thus
−M1M2M1 = M1M2. Since −M1M2M1 is symmetric, so is M1M2. This gives M1M2 =
(M1M2)′ = M2M1, so the condition M1M2 + M2M1 = 0 becomes 2(M1M2) = 0 or
M1M2 = 0. By symmetry, this says that the columns of M1 are orthogonal to the
columns of M2. �

Theorem B.46. If M1 and M2 are symmetric, C(M1) ⊥ C(M2), and (M1 + M2)
is a perpendicular projection matrix, then M1 and M2 are perpendicular projection
matrices.

PROOF.
(M1 +M2) = (M1 +M2)2 = M2

1 +M2
2 +M1M2 +M2M1.

Since M1 and M2 are symmetric with C(M1) ⊥C(M2), we have M1M2 +M2M1 = 0
and M1 +M2 = M2

1 +M2
2 . Rearranging gives M2−M2

2 = M2
1 −M1, so C(M2−M2

2) =
C(M2

1 −M1). Now C(M2 −M2
2) ⊂ C(M2) and C(M2

1 −M1) ⊂ C(M1), so C(M2 −
M2

2) ⊥C(M2
1 −M1). The only way a vector space can be orthogonal to itself is if it

consists only of the zero vector. Thus, M2 −M2
2 = M2

1 −M1 = 0, and M2 = M2
2 and

M1 = M2
1 . �

Theorem B.47. Let M and M0 be perpendicular projection matrices with
C(M0) ⊂C(M). Then M−M0 is a perpendicular projection matrix.

PROOF. Since C(M0)⊂C(M), MM0 = M0 and, by symmetry, M0M = M0. Check-
ing the conditions of Theorem B.33, we see that (M−M0)2 = M2 −MM0 −M0M +
M2

0 = M−M0 −M0 +M0 = M−M0, and (M−M0)′ = M−M0. �

Theorem B.48. Let M and M0 be perpendicular projection matrices with
C(M0) ⊂ C(M). Then C(M −M0) is the orthogonal complement of C(M0) with
respect to C(M), i.e., C(M−M0) = C(M0)⊥C(M).
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PROOF. C(M−M0)⊥C(M0) because (M−M0)M0 = MM0−M2
0 = M0−M0 = 0.

Thus, C(M−M0) is contained in the orthogonal complement of C(M0) with respect
to C(M). If x∈C(M) and x⊥C(M0), then x = Mx = (M−M0)x+M0x = (M−M0)x.
Thus, x ∈C(M−M0), so the orthogonal complement of C(M0) with respect to C(M)
is contained in C(M−M0). �

Corollary B.49. r(M) = r(M0)+ r(M−M0).

One particular application of these results involves I, the perpendicular projection
operator onto Rn. For any other perpendicular projection operator M, I −M is the
perpendicular projection operator onto the orthogonal complement of C(M) with
respect to Rn.

For example, the subspace of vectors with the form (2a,a)′ has an orthogonal
complement consisting of vectors with the form (b,−2b)′. With M as given earlier,

I −M =
[

1 0
0 1

]
−
[

0.8 0.4
0.4 0.2

]
=
[

0.2 −0.4
−0.4 0.8

]
.

Note that

(I −M)
(

b
−2b

)
=
(

b
−2b

)
and (I −M)

(
2a
a

)
= 0;

so by definition I −M is the perpendicular projection operator onto the space of
vectors with the form (b,−2b)′.

At this point, we examine the relationship between perpendicular projection op-
erations and the Gram–Schmidt theorem (Theorem A.12). Recall that in the Gram–
Schmidt theorem, x1, . . . ,xr denotes the original basis and y1, . . . ,yr denotes the or-
thonormal basis. Let

Ms =
s

∑
i=1

yiy′i.

Applying Theorem B.35, Ms is the ppo onto C(x1, . . . ,xs). Now define

ws+1 = (I −Ms)xs+1.

Thus, ws+1 is the projection of xs+1 onto the orthogonal complement of C(x1, . . . ,xs).
Finally, ys+1 is just ws+1 normalized.

Consider the eigenvalues of a perpendicular projection operator M. Let v1, . . . ,vr
be a basis for C(M). Then Mvi = vi, so vi is an eigenvector of M with eigenvalue 1.
In fact, 1 is an eigenvalue of M with multiplicity r. Now, let w1, . . . ,wn−r be a basis
for C(M)⊥. Mwj = 0, so 0 is an eigenvalue of M with multiplicity n− r. We have
completely characterized the n eigenvalues of M. Since tr(M) equals the sum of the
eigenvalues, we have tr(M) = r(M).

In fact, if A is an n× n matrix with A2 = A, any basis for C(A) is a basis for
the space of eigenvectors for the eigenvalue 1. The null space of A is the space of
eigenvectors for the eigenvalue 0. The rank of A and the rank of the null space of A
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add to n, and A has n eigenvalues, so all the eigenvalues are accounted for. Again,
tr(A) = r(A).

Definition B.50.

(a) If A is a square matrix with A2 = A, then A is called idempotent.
(b) Let N and M be two spaces with N ∩M = {0} and r(N )+ r(M ) = n.

The square matrix A is a projection operator onto N along M if 1) Av = v for
any v ∈ N , and 2) Aw = 0 for any w ∈ M .

If the square matrix A has the property that Av = v for any v ∈C(A), then A is the
projection operator (matrix) onto C(A) along C(A′)⊥. (Note that C(A′)⊥ is the null
space of A.) It follows immediately that if A is idempotent, then A is a projection
operator onto C(A) along N (A) = C(A′)⊥.

The uniqueness of projection operators can be established like it was for perpen-
dicular projection operators. Note that x ∈ Rn can be written uniquely as x = v+w
for v ∈N and w∈M . To see this, take basis matrices for the two spaces, say N and
M, respectively. The result follows from observing that [N,M] is a basis matrix for
Rn. Because of the rank conditions, [N,M] is an n×n matrix. It is enough to show
that the columns of [N,M] must be linearly independent.

0 = [N,M]
[

b
c

]
= Nb+Mc

implies Nb = M(−c) which, since N ∩M = {0}, can only happen when Nb =
0 = M(−c), which, because they are basis matrices, can only happen when b = 0 =

(−c), which implies that
[

b
c

]
= 0, and we are done.

Any projection operator that is not a perpendicular projection is referred to as an
oblique projection operator.

To show that a matrix A is a projection operator onto an arbitrary space, say
C(X), it is necessary to show that C(A) = C(X) and that for x ∈ C(X), Ax = x. A
typical proof runs in the following pattern. First, show that Ax = x for any x ∈C(X).
This also establishes that C(X) ⊂C(A). To finish the proof, it suffices to show that
Av ∈C(X) for any v ∈ Rn because this implies that C(A) ⊂C(X).

In this book, our use of the word “perpendicular” is based on the standard inner
product, that defines Euclidean distance. In other words, for two vectors x and y,
their inner product is x′y. By definition, the vectors x and y are orthogonal if their
inner product is 0. In fact, for any two vectors x and y, let θ be the angle between x
and y. Then x′y =

√
x′x

√
y′y cosθ . The length of a vector x is defined as the square

root of the inner product of x with itself, i.e., ‖x‖ ≡√
x′x. The distance between two

vectors x and y is the length of their difference, i.e., ‖x− y‖.
These concepts can be generalized. For a positive definite matrix B, we can define

an inner product between x and y as x′By. As before, x and y are orthogonal if their
inner product is 0 and the length of x is the square root of its inner product with



434 B Matrix Results

itself (now ‖x‖B ≡ √
x′Bx). As argued above, any idempotent matrix is always a

projection operator, but which one is the perpendicular projection operator depends
on the inner product. As can be seen from Proposition 2.7.2 and Exercise 2.5, the
matrix X(X ′BX)−X ′B is an oblique projection onto C(X) for the standard inner
product; but it is the perpendicular projection operator onto C(X) with the inner
product defined using the matrix B.

B.4 Miscellaneous Results

Proposition B.51. For any matrix X , C(XX ′) = C(X).

PROOF. Clearly C(XX ′)⊂C(X), so we need to show that C(X)⊂C(XX ′). Let x∈
C(X). Then x = Xb for some b. Write b = b0 +b1, where b0 ∈C(X ′) and b1 ⊥C(X ′).
Clearly, Xb1 = 0, so we have x = Xb0. But b0 = X ′d for some d; so x = Xb0 = XX ′d
and x ∈C(XX ′). �

Corollary B.52. For any matrix X , r(XX ′) = r(X).

PROOF. See Exercise B.4. �

Corollary B.53. If Xn×p has r(X) = p, then the p× p matrix X ′X is nonsingular.

PROOF. See Exercise B.5. �

Proposition B.54. If B is nonsingular, C(XB) = C(X).

PROOF. Clearly, C(XB) ⊂ C(X). To see that C(X) ⊂ C(XB), take x ∈ C(X). It
follows that for some vector b, x = Xb; so x = XB(B−1b) ∈C(XB). �

It follows immediately from Proposition B.54 that the perpendicular projection op-
erators onto C(XB) and C(X) are identical.

We now show that generalized inverses always exist.

Theorem B.55. For any matrix X , there exists a generalized inverse X−.

PROOF. We know that (X ′X)− exists. Set X− = (X ′X)−X ′. Then XX−X =
X(X ′X)−X ′X = X because X(X ′X)−X ′ is a projection matrix onto C(X). �
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Note that for any X−, the matrix XX−is idempotent and hence a projection oper-
ator.

Proposition B.56. When all inverses exist,

[A+BCD]−1 = A−1 −A−1B
[
C−1 +DA−1B

]−1
DA−1.

PROOF.

[A+BCD]
[
A−1 −A−1B

[
C−1 +DA−1B

]−1
DA−1

]
= I −B

[
C−1 +DA−1B

]−1
DA−1 +BCDA−1

−BCDA−1B
[
C−1 +DA−1B

]−1
DA−1

= I −B
[
I +CDA−1B

][
C−1 +DA−1B

]−1
DA−1 +BCDA−1

= I −BC
[
C−1 +DA−1B

][
C−1 +DA−1B

]−1
DA−1 +BCDA−1

= I −BCDA−1 +BCDA−1 = I. �

When we study linear models, we frequently need to refer to matrices and vectors
that consist entirely of 1s. Such matrices are denoted by the letter J with various
subscripts and superscripts to specify their dimensions. Jc

r is an r× c matrix of 1s.
The subscript indicates the number of rows and the superscript indicates the number
of columns. If there is only one column, the superscript may be suppressed, e.g.,
Jr = J1

r . In a context where we are dealing with vectors in Rn, the subscript may
also be suppressed, e.g., J = Jn = J1

n .
A matrix of 0s is always denoted by 0.

B.5 Properties of Kronecker Products and Vec Operators

Kronecker products and Vec operators are extremely useful in multivariate analysis
and some approaches to variance component estimation. They are also often used in
writing balanced ANOVA models. We now present their basic algebraic properties.

1. If the matrices are of conformable sizes, [A⊗ (B+C)] = [A⊗B]+ [A⊗C].
2. If the matrices are of conformable sizes, [(A+B)⊗C] = [A⊗C]+ [B⊗C].
3. If a and b are scalars, ab[A⊗B] = [aA⊗bB].
4. If the matrices are of conformable sizes, [A⊗B][C⊗D] = [AC⊗BD].
5. The transpose of a Kronecker product matrix is [A⊗B]′ = [A′ ⊗B′].
6. The generalized inverse of a Kronecker product matrix is [A⊗B]− = [A−⊗B−].
7. For two vectors v and w, Vec(vw′) = w⊗ v.
8. For a matrix W and conformable matrices A and B, Vec(AWB′) = [B⊗A]Vec(W ).
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Most of these are well-known facts and easy to establish. Two of them are some-
what more unusual, and we present proofs.

ITEM 8. We show that for a matrix W and conformable matrices A and B,
Vec(AWB′) = [B ⊗ A]Vec(W ). First note that if Vec(AW ) = [I ⊗ A]Vec(W ) and
Vec(WB′) = [B ⊗ I]Vec(W ), then Vec(AWB′) = [I ⊗ A]Vec(WB′) = [I ⊗ A][B ⊗
I]Vec(W ) = [B⊗A]Vec(W ).

To see that Vec(AW) = [I ⊗A]Vec(W ), let W be r× s and write W in terms of
its columns W = [w1, . . . ,ws]. Then AW = [Aw1, . . . ,Aws] and Vec(AW ) stacks the
columns Aw1, . . . ,Aws. On the other hand,

[I ⊗A]Vec(W ) =

⎡⎣A 0
. . .

0 A

⎤⎦⎡⎣w1
...

ws

⎤⎦=

⎡⎣Aw1
...

Aws

⎤⎦ .

To see that Vec(WB′) = [B⊗ I]Vec(W ), take W as above and write Bm×s = [bi j]
with rows b′1, . . . ,b

′
m. First note that WB′ = [Wb1, . . . ,Wbm], so Vec(WB′) stacks the

columns Wb1, . . . ,Wbm. Now observe that

[B⊗ Ir]Vec(W ) =

⎡⎣ b11Ir · · · b1sIr
...

. . .
...

bm1Ir · · · bmsIr

⎤⎦⎡⎣w1
...

ws

⎤⎦=

⎡⎣Wb1
...

Wbm

⎤⎦ .

ITEM 11. To see that if Ar×r and Bs×s are positive definite, then A ⊗ B is
positive definite, consider the eigenvalues and eigenvectors of A and B. Recall that a
symmetric matrix is positive definite if and only if all of its eigenvalues are positive.
Suppose that Av = φv and Bw = θw. We now show that all of the eigenvalues of
A⊗B are positive. Observe that

[A⊗B][v⊗w] = [Av⊗Bw]
= [φv⊗θw]
= φθ [v⊗w].

This shows that [v⊗w] is an eigenvector of [A⊗B] corresponding to the eigenvalue
φθ . As there are r choices for φ and s choices for θ , this accounts for all rs of the
eigenvalues in the rs× rs matrix [A⊗B]. Moreover, φ and θ are both positive, so all
of the eigenvalues of [A⊗B] are positive.

9. For conformable matrices A and B, Vec(A)′Vec(B) = tr(A′B).

Vec(A)+Vec(B) and Vec(φA) = φVec(A).
11. If A and B are positive definite, then A⊗B is positive definite.

10. The Vec operator commutes with any matrix operation that is performed ele-
mentwise. For example, E{Vec(W )} = Vec{E(W)} when W is a random ma-
trix. Similarly, for conformable matrices A and B and scalar φ ,Vec(A + B) =
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B.6 Tensors

Tensors are simply an alternative notation for writing vectors. This notation has
substantial advantages when dealing with quadratic forms and when dealing with
more general concepts than quadratic forms. Our main purpose in discussing them
here is simply to illustrate how flexibly subscripts can be used in writing vectors.

Consider a vector Y = (y1, . . . ,yn)′. The tensor notation for this is simply yi.
We can write another vector a = (a1, . . . ,an)′ as ai. When written individually, the
subscript is not important. In other words, ai is the same vector as a j. Note that the
length of these vectors needs to be understood from the context. Just as when we
write Y and a in conventional vector notation, there is nothing in the notation yi or
ai to tell us how many elements are in the vector.

If we want the inner product a′Y , in tensor notation we write aiyi. Here we are
using something called the summation convention. Because the subscripts on ai and
yi are the same, aiyi is taken to mean ∑n

i=1 aiyi. If, on the other hand, we wrote aiy j,
this means something completely different. aiy j is an alternative notation for the
Kronecker product [a⊗Y ] = (a1y1, . . . ,a1yn,a2y1, . . . ,anyn)′. In [a⊗Y ] ≡ aiy j, we
have two subscripts identifying the rows of the vector.

Now, suppose we want to look at a quadratic form Y ′AY , where Y is an n vector
and A is n×n. One way to rewrite this is

Y ′AY =
n

∑
i=1

n

∑
j=1

yiai jy j =
n

∑
i=1

n

∑
j=1

ai jyiy j = Vec(A)′[Y ⊗Y ].

Here we have rewritten the quadratic form as a linear combination of the elements
in the vector [Y ⊗Y ]. The linear combination is determined by the elements of the
vector Vec(A). In tensor notation, this becomes quite simple. Using the summation
convention in which objects with the same subscript are summed over,

Y ′AY = yiai jy j = ai jyiy j.

The second term just has the summation signs removed, but the third term, which
obviously gives the same sum as the second, is actually the tensor notation for
Vec(A)′[Y ⊗Y ]. Again, Vec(A) = (a11,a21,a31, . . . ,ann)′ uses two subscripts to iden-
tify rows of the vector. Obviously, if you had a need to consider things like

n

∑
i=1

n

∑
j=1

n

∑
k=1

ai jkyiy jyk ≡ ai jkyiy jyk,

the tensor version ai jkyiy jyk saves some work.
There is one slight complication in how we have been writing things. Suppose A

is not symmetric and we have another n vector W . Then we might want to consider

W ′AY =
n

∑
i=1

n

∑
j=1

wiai jy j.
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From item 8 in the previous subsection,

W ′AY = Vec(W ′AY ) = [Y ′ ⊗W ′]Vec(A).

Alternatively,

W ′AY =
n

∑
i=1

n

∑
j=1

wiai jy j =
n

∑
i=1

n

∑
j=1

ai jy jwi = Vec(A)′[Y ⊗W ]

or W ′AY = Y ′A′W = Vec(A′)′[W ⊗Y ]. However, with A nonsymmetric, W ′A′Y =
Vec(A′)′[Y ⊗W ] is typically different from W ′AY . The Kronecker notation requires
that care be taken in specifying the order of the vectors in the Kronecker product, and
whether or not to transpose A before using the Vec operator. In tensor notation, W ′AY
is simply wiai jy j. In fact, the orders of the vectors can be permuted in any way; so,
for example, ai jy jwi means the same thing. W ′A′Y is simply wia jiy j . The tensor
notation and the matrix notation require less effort than the Kronecker notation.

For our purposes, the real moral here is simply that the subscripting of an indi-
vidual vector does not matter. We can write a vector Y = (y1, . . . ,yn)′ as Y = [yk]
(in tensor notation as simply yk), or we can write the same n vector as Y = [yi j] (in
tensor notation, simply yi j), where, as long as we know the possible values that i
and j can take on, the actual order in which we list the elements is not of much
importance. Thus, if i = 1, . . . , t and j = 1, . . . ,Ni, with n = ∑t

i=1 Ni, it really does
not matter if we write a vector Y as (y1, . . . ,yn), or (y11, . . . ,y1N1 ,y21, . . . ,ytNt )

′ or
(yt1, . . . ,ytNt ,yt−1,1, . . . ,y1N1)

′ or in any other fashion we may choose, as long as
we keep straight which row of the vector is which. Thus, a linear combination a′Y
can be written ∑n

k=1 akyk or ∑t
i=1 ∑Ni

j=1 ai jyi j. In tensor notation, the first of these
is simply akyk and the second is ai jyi j. These ideas become very handy in exam-
ining analysis of variance models, where the standard approach is to use multiple
subscripts to identify the various observations. The subscripting has no intrinsic im-
portance; the only thing that matters is knowing which row is which in the vectors.
The subscripts are an aid in this identification, but they do not create any problems.
We can still put all of the observations into a vector and use standard operations on
them.

B.7 Exercises

Exercise B.1

(a) Show that

Akx+bk−1Ak−1x + · · ·+b0x = (A−μI)
(

Ak−1x+ τk−2Ak−2x + · · ·+ τ0x
)

= 0,
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where μ is any nonzero solution of b0 + b1w + · · ·+ bkwk = 0 with bk = 1 and
τ j = −(b0 +b1μ + · · ·+bjμ j)/μ j+1, j = 0, . . . ,k.

(b) Show that if the only root of b0 +b1w+ · · ·+bkwk is zero, then the factor-
ization in (a) still holds.

(c) The solution μ used in (a) need not be a real number, in which case μ is a
complex eigenvalue and the τis are complex; so the eigenvector is complex. Show
that with A symmetric, μ must be real because the eigenvalues of A must be real. In
particular, assume that

A(y+ iz) = (λ + iγ)(y+ iz),

for y, z, λ , and γ real vectors and scalars, respectively, set Ay = λy − γz, Az =
γy+λ z, and examine z′Ay = y′Az.

Exercise B.2 Prove Proposition B.32.

Exercise B.3 Show that any nonzero symmetric matrix A can be written as
A = PDP′, where C(A) = C(P), P′P = I, and D is nonsingular.

Exercise B.4 Prove Corollary B.52.

Exercise B.5 Prove Corollary B.53.

Exercise B.6 Show tr(cIn) = nc.

Exercise B.7 Let a,b,c, and d be real numbers. If ad −bc �= 0, find the inverse
of [

a b
c d

]
.

Exercise B.8 Prove Theorem B.28, i.e., let A be an r×s matrix, let B be an s× r
matrix, and show that tr(AB) = tr(BA).

Exercise B.9 Determine whether the matrices given below are positive definite,
nonnegative definite, or neither.

⎡⎣ 3 2 −2
2 2 −2

−2 −2 10

⎤⎦ ,

⎡⎣ 26 −2 −7
−2 4 −6
−7 −6 13

⎤⎦ ,

⎡⎣26 2 13
2 4 6

13 6 13

⎤⎦ ,

⎡⎣ 3 2 −2
2 −2 −2

−2 −2 10

⎤⎦ .

Exercise B.10 Show that the matrix B given below is positive definite, and find
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a matrix Q such that B = QQ′. (Hint: The first row of Q can be taken as (1,−1,0).)

B =

⎡⎣ 2 −1 1
−1 1 0

1 0 2

⎤⎦ .

Exercise B.11 Let

A =

⎡⎣2 0 4
1 5 7
1 −5 −3

⎤⎦ , B =

⎡⎣1 0 0
0 0 1
0 1 0

⎤⎦ , C =

⎡⎣ 1 4 1
2 5 1

−3 0 1

⎤⎦ .

Use Theorem B.35 to find the perpendicular projection operator onto the column
space of each matrix.

Exercise B.12 Show that for a perpendicular projection matrix M,

∑
i

∑
j

m2
i j = r(M).

Exercise B.13 Prove that if M = M′M, then M = M′ and M = M2.

Exercise B.14 Let M1 and M2 be perpendicular projection matrices, and let M0
be a perpendicular projection operator onto C(M1)∩C(M2). Show that the following
are equivalent:

(a) M1M2 = M2M1.
(b) M1M2 = M0.
(c)

{
C(M1)∩ [C(M1)∩C(M2)]

⊥
}
⊥
{

C(M2)∩ [C(M1)∩C(M2)]
⊥
}

.
Hints: (i) Show that M1M2 is a projection operator. (ii) Show that M1M2 is sym-

metric. (iii) Note that C(M1)∩ [C(M1)∩C(M2)]
⊥ = C(M1 −M0).

Exercise B.15 Let M1 and M2 be perpendicular projection matrices. Show that
(a) the eigenvalues of M1M2 have length no greater than 1 in absolute value

(they may be complex);
(b) tr(M1M2) ≤ r(M1M2).
Hints: For part (a) show that with x′Mx ≡ ‖Mx‖2, ‖Mx‖ ≤ ‖x‖ for any per-

pendicular projection operator M. Use this to show that if M1M2x = λx, then
‖M1M2x‖ ≥ |λ |‖M1M2x‖.

Exercise B.16 For vectors x and y, let Mx = x(x′x)−1x′ and My = y(y′y)−1y′.
Show that MxMy = MyMx if and only if C(x) = C(y) or x ⊥ y.



B.7 Exercises 441

Exercise B.17 Consider the matrix

A =
[

0 1
0 1

]
.

(a) Show that A is a projection matrix.
(b) Is A a perpendicular projection matrix? Why or why not?
(c) Describe the space that A projects onto and the space that A projects along.

Sketch these spaces.
(d) Find another projection operator onto the space that A projects onto.

Exercise B.18 Let A be an arbitrary projection matrix. Show that C(I −A) =
C(A′)⊥.

Hints: Recall that C(A′)⊥ is the null space of A. Show that (I−A) is a projection
matrix.

Exercise B.19 Show that if A− is a generalized inverse of A, then so is

G = A−AA− +(I −A−A)B1 +B2(I −AA−)

for any choices of B1 and B2 with conformable dimensions.

Exercise B.20 Let A be positive definite with eigenvalues λ1, . . . ,λn. Show that
A−1 has eigenvalues 1/λ1, . . . ,1/λn and the same eigenvectors as A.

Exercise B.21 For A nonsingular, let

A =
[

A11 A12
A21 A22

]
,

and let A1·2 = A11 −A12A−1
22 A21. Show that if all inverses exist,

A−1 =

⎡⎣ A−1
1·2 −A−1

1·2A12A−1
22

−A−1
22 A21A−1

1·2 A−1
22 +A−1

22 A21A−1
1·2A12A−1

22

⎤⎦
and that

A−1
22 +A−1

22 A21A−1
1·2A12A−1

22 =
[
A22 −A21A−1

11 A12
]−1

.



 



Appendix C

Some Univariate Distributions

The tests and confidence intervals presented in this book rely almost exclusively on
the χ2, t, and F distributions. This appendix defines each of the distributions.

Definition C.1. Let Z1, . . . ,Zn be independent with Zi ∼ N(μi,1). Then

W =
n

∑
i=1

Z2
i

has a noncentral chi-squared distribution with n degrees of freedom and noncen-
trality parameter γ = ∑n

i=1 μ2
i /2. Write W ∼ χ2(n,γ).

See Rao (1973, Section 3b.2) for a proof that the distribution of W depends only on
n and γ .

It is evident from the definition that if X ∼ χ2(r,γ) and Y ∼ χ2(s,δ ) with X
and Y independent, then (X +Y ) ∼ χ2(r + s,γ + δ ). A central χ2 distribution is a
distribution with a noncentrality parameter of zero, i.e., χ2(r,0). We will use χ2(r)
to denote a χ2(r,0) distribution. The 100αth percentile of a χ2(r) distribution is the
point χ2(α,r) that satisfies the equation

Pr
[
χ2(r) ≤ χ2(α,r)

]
= α.

Note that if 0 ≤ a < 1, the 100a percentile of a central χ2(b) is denoted χ2(a,b).
However, if a is a positive integer, χ2(a,b) denotes a noncentral chi-squared distri-
bution.

Definition C.2. Let X ∼N(μ,1) and Y ∼ χ2(n) with X and Y independent. Then

W =
X√
Y/n
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444 C Some Univariate Distributions

has a noncentral t distribution with n degrees of freedom and noncentrality pa-
rameter μ . Write W ∼ t(n,μ). If μ = 0, we say that the distribution is a central
t distribution and write W ∼ t(n). The 100αth percentile of a t(n) distribution is
denoted t(α,n).

Definition C.3. Let X ∼ χ2(r,γ) and Y ∼ χ2(s,0) with X and Y independent.
Then

W =
X/r
Y/s

has a noncentral F distribution with r numerator and s denominator degrees of free-
dom and noncentrality parameter γ . Write W ∼ F(r,s,γ). If γ = 0, write W ∼ F(r,s)
for the central F distribution. The 100αth percentile F(r,s) is denoted F(α,r,s).

As indicated, if the noncentrality parameter of any of these distributions is zero,
the distribution is referred to as a central distribution (e.g., central F distribution).
The central distributions are those commonly used in statistical methods courses. If
any of these distributions is not specifically identified as a noncentral distribution, it
should be assumed to be a central distribution.

It is easily seen from Definition C.1 that any noncentral chi-squared distribution
tends to be larger than the central chi-squared distribution with the same number
of degrees of freedom. Similarly, from Definition C.3, a noncentral F tends to be
larger than the corresponding central F distribution. (These ideas are made rigorous
in Exercise C.1.) The fact that the noncentral F distribution tends to be larger than
the corresponding central F distribution is the basis for many of the tests used in
linear models. Typically, test statistics are used that have a central F distribution if
the reduced (null) model is true and a noncentral F distribution if the full model is
true but the null model is not. Since the noncentral F distribution tends to be larger,
large values of the test statistic are more consistent with the full model than with the
null. Thus, the form of an appropriate rejection region when the full model is true is
to reject the null hypothesis for large values of the test statistic.

The power of these F tests is simply a function of the noncentrality parameter.
Given a value for the noncentrality parameter, there is no theoretical difficulty in
finding the power of an F test. The power simply involves computing the probability
of the rejection region when the probability distribution is a noncentral F . Davies
(1980) gives an algorithm for making these and more general computations.

We now prove a theorem about central F distributions that will be useful in Chap-
ter 5.

Theorem C.4. If s > t, then sF(1−α,s,v) ≥ tF(1−α,t,v).

PROOF. Let X ∼ χ2(s), Y ∼ χ2(t), and Z ∼ χ2(v). Let Z be independent of X
and Y . Note that (X/s)

/
(Z/v) has an F(s,v) distribution; so sF(1−α,s,v) is the

100(1−α) percentile of the distribution of X
/
(Z/v). Similarly, tF(1−α,t,v) is the

100(1−α) percentile of the distribution of Y
/
(Z/v).
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We will first argue that to prove the theorem it is enough to show that

Pr [X ≤ d] ≤ Pr [Y ≤ d] (1)

for all real numbers d. We will then show that (1) is true.
If (1) is true, if c is any real number, and if Z = z, by independence we have

Pr [X ≤ cz/v] = Pr [X ≤ cz/v|Z = z] ≤ Pr [Y ≤ cz/v|Z = z] = Pr [Y ≤ cz/v] .

Taking expectations with respect to Z,

Pr
[
X
/
(Z/v) ≤ c

]
= E(Pr [X ≤ cz/v|Z = z])
≤ E(Pr [Y ≤ cz/v|Z = z])
= Pr

[
Y
/
(Z/v) ≤ c

]
.

Since the cumulative distribution function (cdf) for X
/
(Z/v) is always no greater

than the cdf for Y
/
(Z/v), the point at which a probability of 1−α is attained for

X
/
(Z/v) must be no less than the similar point for Y

/
(Z/v). Therefore,

sF(1−α ,s,v) ≥ tF(1−α,t,v).

To see that (1) holds, let Q be independent of Y and Q ∼ χ2(s− t). Then, because
Q is nonnegative,

Pr [X ≤ d] = Pr [Y +Q ≤ d] ≤ Pr [Y ≤ d] . �

Exercise

Definition C.5. Consider two random variables W1 and W2. W2 is said to be
stochastically larger than W1 if for every real number w

Pr [W1 > w] ≤ Pr [W2 > w] .

If for some random variables W1 and W2, W2 is stochastically larger than W1, then
we also say that the distribution of W2 is stochastically larger than the distribution
of W1.

Exercise C.1 Show that a noncentral chi-squared distribution is stochastically
larger than the central chi-squared distribution with the same degrees of freedom.
Show that a noncentral F distribution is stochastically larger than the corresponding
central F distribution.



 



Appendix D

Multivariate Distributions

Let (x1, . . . ,xn)′ be a random vector. The joint cumulative distribution function (cdf)
of (x1, . . . ,xn)′ is

F(u1, . . . ,un) ≡ Pr [x1 ≤ u1, . . . ,xn ≤ un] .

If F(u1, . . . ,un) is the cdf of a discrete random variable, we can define a (joint)
probability mass function

f (u1, . . . ,un) ≡ Pr [x1 = u1, . . . ,xn = un] .

If F(u1, . . . ,un) admits the nth order mixed partial derivative, then we can define a
(joint) density function

f (u1, . . . ,un) ≡ ∂ n

∂u1 · · ·∂ un
F(u1, . . . ,un).

The cdf can be recovered from the density as

F(u1, . . . ,un) =
∫ u1

−∞
· · ·
∫ un

−∞
f (w1, . . . ,wn)dw1 · · ·dwn.

For a function g(·) of (x1, . . . ,xn)′ into R, the expected value is defined as

E [g(x1, . . . ,xn)] =
∫ ∞

−∞
· · ·
∫ ∞

−∞
g(u1, . . . ,un) f (u1, . . . ,un)du1 · · ·dun.

We now consider relationships between two random vectors, say x = (x1, . . . ,xn)′
and y = (y1, . . . ,ym)′. Assume that the joint vector (x′,y′)′ = (x1, . . . ,xn,y1, . . . ,ym)′
has a density function

fx,y(u,v) ≡ fx,y(u1, . . . ,un,v1, . . . ,vm).

Similar definitions and results hold if (x′,y′)′ has a probability mass function.
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448 D Multivariate Distributions

The distribution of one random vector, say x, ignoring the other vector, y, is called
the marginal distribution of x. The marginal cdf of x can be obtained by substituting
the value +∞ into the joint cdf for all of the y variables:

Fx(u) = Fx,y(u1, . . . ,un,+∞, . . . ,+∞).

The marginal density can be obtained either by partial differentiation of Fx(u) or by
integrating the joint density over the y variables:

fx(u) =
∫ ∞

−∞
· · ·
∫ ∞

−∞
fx,y(u1, . . . ,un,v1, . . . ,vm)dv1 · · ·dvm.

The conditional density of a vector, say x, given the value of the other vector, say
y = v, is obtained by dividing the density of (x′,y′)′ by the density of y evaluated at
v, i.e.,

fx|y(u|v) ≡ fx,y(u,v)
/

fy(v).

The conditional density is a well-defined density, so expectations with respect to it
are well defined. Let g be a function from Rn into R,

E[g(x)|y = v] =
∫ ∞

−∞
· · ·
∫ ∞

−∞
g(u) fx|y(u|v)du,

where du = du1du2 · · ·dun. The standard properties of expectations hold for condi-
tional expectations. For example, with a and b real,

E[ag1(x)+bg2(x)|y = v] = aE[g1(x)|y = v]+bE[g2(x)|y = v] .

The conditional expectation of E[g(x)|y = v] is a function of the value v. Since y
is random, we can consider E[g(x)|y = v] as a random variable. In this context we
write E[g(x)|y]. An important property of conditional expectations is

E[g(x)] = E[E[g(x)|y] ] .

To see this, note that fx|y(u|v) fy(v) = fx,y(u,v) and

E[E[g(x)|y] ] =
∫ ∞

−∞
· · ·
∫ ∞

−∞
E[g(x)|y = v] fy(v)dv

=
∫ ∞

−∞
· · ·
∫ ∞

−∞

[∫ ∞

−∞
· · ·
∫ ∞

−∞
g(u) fx|y(u|v)du

]
fy(v)dv

=
∫ ∞

−∞
· · ·
∫ ∞

−∞
g(u) fx|y(u|v) fy(v)dudv

=
∫ ∞

−∞
· · ·
∫ ∞

−∞
g(u) fx,y(u,v)dudv

= E[g(x)] .
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In fact, both the notion of conditional expectation and this result can be gen-
eralized. Consider a function g(x,y) from Rn+m into R. If y = v, we can de-
fine E[g(x,y)|y = v] in a natural manner. If we consider y as random, we write
E[g(x,y)|y]. It can be easily shown that

E[g(x,y)] = E[E[g(x,y)|y]] .

A function of x or y alone can also be considered as a function from Rn+m into R.
A second important property of conditional expectations is that if h(y) is a func-

tion from Rm into R, we have

E[h(y)g(x,y)|y] = h(y)E[g(x,y)|y] . (1)

This follows because if y = v,

E[h(y)g(x,y)|y = v] =
∫ ∞

−∞
· · ·
∫ ∞

−∞
h(v)g(u,v) fx|y(u|v)du

= h(v)
∫ ∞

−∞
· · ·
∫ ∞

−∞
g(u,v) fx|y(u|v)du

= h(v)E[g(x,y)|y = v] .

This is true for all v, so (1) holds. In particular, if g(x,y) ≡ 1, we get

E[h(y)|y] = h(y).

Finally, we can extend the idea of conditional expectation to a function g(x,y)
from Rn+m into Rs. Write g(x,y) = [g1(x,y), . . . ,gs(x,y)]

′. Then define

E[g(x,y)|y] = (E[g1(x,y)|y] , . . . ,E[gs(x,y)|y])′ .

If their densities exist, two random vectors are independent if and only if their
joint density is equal to the product of their marginal densities, i.e., x and y are
independent if and only if

fx,y(u,v) = fx(u) fy(v).

Note that if x and y are independent,

fx|y(u|v) = fx(u).

If the random vectors x and y are independent, then any vector-valued functions
of them, say g(x) and h(y), are also independent. This follows easily from a more
general definition of the independence of two random vectors: The random vectors
x and y are independent if for any two (reasonable) sets A and B,

Pr[x ∈ A,y ∈ B] = Pr[y ∈ A]Pr[y ∈ B].
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To prove that functions of random variables are independent, recall that the set in-
verse of a function g(u) on a set A0 is g−1(A0) = {u|g(u) ∈ A0}. That g(x) and h(y)
are independent follows from the fact that for any (reasonable) sets A0 and B0,

Pr[g(x) ∈ A0,h(y) ∈ B0] = Pr[x ∈ g−1(A0),y ∈ h−1(B0)]
= Pr[x ∈ g−1(A0)]Pr[y ∈ h−1(B0)]
= Pr[g(x) ∈ A0]Pr[h(y) ∈ B0].

The characteristic function of a random vector x = (x1, . . . ,xn)′ is a function from
Rn to C, the complex numbers. It is defined by

ϕx(t1, . . . , tn) =
∫ ∞

−∞
· · ·
∫ ∞

−∞
exp

[
i

n

∑
j=1

t ju j

]
fx(u1, . . . ,un)du1 · · ·dun.

We are interested in characteristic functions because if x = (x1, . . . ,xn)′ and y =
(y1, . . . ,yn)′ are random vectors and if

ϕx(t1, . . . , tn) = ϕy(t1, . . . , tn)

for all (t1, . . . , tn), then x and y have the same distribution.
For convenience, we have assumed the existence of densities. With minor modi-

fications, the definitions and results of this appendix hold for any probability defined
on Rn.

Exercise

Exercise D.1 Let x and y be independent. Show that
(a) E[g(x)|y] = E[g(x)];
(b) E[g(x)h(y)] = E[g(x)]E[h(y)].



Appendix E

Inference for One Parameter

Since the third edition of this book, I have thought hard about the philosophy of test-
ing as a basis for non-Bayesian statistical inference, cf. Christensen (2005, 2008).
This appendix has been modified accordingly. The approach taken is one I call Fish-
erian, as opposed to the Neyman–Pearson approach. The theory presented here has
no formal role for alternative hypotheses.

A statistical testing problem is essentially a form of proof by contradiction. We
have a null model for the data and we determine whether the observed data seem
to contradict that null model or whether they are consistent with it. If the data con-
tradict the null model, something must be wrong with the null model. Having data
consistent with the null model certainly does not suggest that the null model is cor-
rect but may suggest that the model is tentatively adequate. The catch is that we
rarely get an absolute contradiction to the null model, so we use probability to de-
termine the extent to which the data seem inconsistent with the null model.

In the current discussion, it is convenient to break the null model into two parts:
a general model for the data and a particular statement about a single parameter
of interest, called the null hypothesis (H0).

Many statistical tests and confidence intervals for a single parameter are appli-
cations of the same theory. (Tests and confidence intervals for variances are an ex-
ception.) To use this theory we need to know four things: [1] The unobservable
parameter of interest (Par). [2] The estimate of the parameter (Est). [3] The stan-
dard error of the estimate (SE(Est)), wherein SE(Est) is typically an estimate of
the standard deviation of Est, but if we happened to know the actual standard devi-
ation, we would be happy to use it. And [4] an appropriate reference distribution.
Specifically, we need the distribution of

Est−Par
SE(Est)

.

If the SE(Est) is estimated, the reference distribution is usually the t distribution
with some known number of degrees of freedom df , say, t(df ). If the SE(Est) is
known, then the distribution is usually the standard normal distribution, i.e., a t(∞).
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452 E Inference for One Parameter

In some problems (e.g., problems involving the binomial distribution) large sample
results are used to get an approximate distribution and then the technique proceeds
as if the approximate distribution were correct. When appealing to large sample
results, the known distribution of part [4] is the standard normal (although I suspect
that a t(df ) distribution with a reasonable, finite number of degrees of freedom
would give more realistic results).

These four required items are derived from the model for the data (although
sometimes the standard error incorporates the null hypothesis). For convenience,
we may refer to these four items as “the model.”

The 1−α percentile of a distribution is the point that cuts off the top α of the
distribution. For a t distribution, denote this t(1−α,df ) as seen in Figure E.1. For-
mally, we can write

Pr
[

Est−Par
SE(Est)

≥ t(1−α,df )
]

= α.

By symmetry about zero, we also have

Pr
[

Est−Par
SE(Est)

≤−t(1−α ,df )
]

= α.

To keep the discussion as simple as possible, numerical examples have been re-
stricted to one-sample normal theory. However, the results also apply to inferences
on each individual mean and the difference between the means in two-sample prob-
lems, contrasts in analysis of variance, coefficients in regression, and, in general, to
one-dimension estimable parametric functions in arbitrary linear models.

E.1 Testing

We want to test the null hypothesis

H0 : Par = m,

where m is some known number. In significance (Fisherian) testing, we cannot do
that. What we can do is test the null model, which is the combination of the model
and the null hypothesis. The test is based on the assumption that both the model
and H0 are true. As mentioned earlier, it is rare that data contradict the null model
absolutely, so we check to see if the data seem inconsistent with the null model.

What kind of data are inconsistent with the null model? Consider the test statistic

Est−m
SE(Est)

.

With m known, the test statistic is an observable random variable. If the null model is
true, the test statistic has a known t(df ) distribution as illustrated in Figure E.1. The
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t(1 − α, df)0

0

1 − α α

Fig. E.1 Percentiles of t(df ) distributions.

t(df ) distribution is likely to give values near 0 and is increasingly less likely to give
values far from 0. Therefore, weird data, i.e., those that are most inconsistent with
the null model, are large positive and large negative values of [Est−m]/SE(Est).
The density (shape) of the t(df ) distribution allows us to order the possible values
of the test statistic in terms of how weird they are relative to the null model.

To decide on a formal test, we need to decide which values of the test statistic will
cause us to reject the null model and which will not. In other words, “How weird
must data be before we question the null model?” We solve this problem by picking
a small probability α that determines a rejection region, sometimes called a critical
region. The rejection region consists of the weirdest test statistic values under the
null model, but is restricted to have a probability of only α under the null model.
Since a t(df ) distribution is symmetric about 0 and the density decreases as we go
away from 0, the α critical region consists of points less than −t(1−α/2,df ) and
points larger than t(1−α/2,df ). In other words, the α level test for the model with
H0 : Par = m is to reject the null model if

Est−m
SE(Est)

≥ t
(

1− α
2

,df
)
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or if
Est−m
SE(Est)

≤−t
(

1− α
2

,df
)

.

This is equivalent to rejecting the null model if

|Est−m|
SE(Est)

≥ t
(

1− α
2

,df
)

.

What causes us to reject the null model? Either having a true model that is so dif-
ferent from the null that the data look “weird,” or having the null model true and
getting unlucky with the data.

Observing weird data, i.e., data that are inconsistent with the null model, gives us
cause to question the validity of the null model. Specifying a small α level merely
ensures that everything in the rejection region really constitutes weird data. More
properly, specifying a small α level is our means of determining what constitutes
weird data. Although α can be viewed as a probability, it is better viewed as a
measure of how weird the data must be relative to the null model before we will
reject. We want α small so that we only reject the null model for data that are truly
weird, but we do not want α so small that we fail to reject the null model even when
very strange data occur.

Rejecting the null model means that either the null hypothesis or the model is
deemed incorrect. Only if we are confident that the model is correct can we conclude
that the null hypothesis is wrong. If we want to make conclusions about the null
hypothesis, it is important to do everything possible to assure ourselves that the
model is reasonable.

If we do not reject the null model, we merely have data that are consistent with
the null model. That in no way implies that the null model is true. Many other
models will also be consistent with the data. Typically, Par = m + 0.00001 fits the
data about as well as the null model. Not rejecting the test does not imply that the
null model is true any more than rejecting the null model implies that the underlying
model is true.

EXAMPLE E.1. Suppose that 16 independent observations are taken from a normal
population. Test H0 : μ = 20 with α level 0.01. The observed values of ȳ· and s2

were 19.78 and 0.25, respectively.

[1] Par = μ ,
[2] Est = ȳ·,
[3] SE(Est) =

√
s2/16. In this case, the SE(Est) is estimated.

[4] [Est−Par]/SE(Est) = [ȳ· −μ ]
/√

s2/16 has a t(15) distribution.

With m = 20, the α = 0.01 test is to reject the H0 model if

|ȳ· −20|/[s/4] ≥ 2.947 = t(0.995,15).

Having ȳ· = 19.78 and s2 = 0.25, we reject if
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|19.78−20|√
.25/16

≥ 2.947.

Since |19.78−20|/√.25/16 = |−1.76| is less than 2.947, we do not reject the null
model at the α = 0.01 level.

Nobody actually does this! Or at least, nobody should do it. Although this proce-
dure provides a philosophical basis for our statistical inferences, there are two other
procedures, both based on this, that give uniformly more information. This proce-
dure requires us to specify the model, the null hypothesis parameter value m, and
the α level. For a fixed model and a fixed null parameter m, P values are more infor-
mative because they allow us to report test results for all α levels. Alternatively, for
a fixed model and a fixed α level, confidence intervals report the values of all pa-
rameters that are consistent with the model and the data. (Parameter values that are
inconsistent with the model and the data are those that would be rejected, assuming
the model is true.) We now discuss these other procedures.

E.2 P values

The P value of a test is the probability under the null model of seeing data as weird
or weirder than we actually saw. Weirdness is determined by the distribution of the
test statistic. If the observed value of the test statistic from Section 1 is tobs, then the
P value is the probability of seeing data as far or farther from 0 than tobs. In general,
we do not know if tobs will be positive or negative, but its distance from 0 is |tobs|.
The P value is the probability that a t(df ) distribution is less than or equal to −|tobs|
or greater than or equal to |tobs|.

In Example E.1, the value of the test statistic is −1.76. Since t(0.95,15) = 1.75,
the P value of the test is approximately (just smaller than) 0.10. An α = 0.10 test
would use the t(0.95,15) value.

It is not difficult to see that the P value is the α level at which the test would just
barely be rejected. So if P ≤ α , the null model is rejected, and if P > α , the data
are deemed consistent with the null model. Knowing the P value lets us do all α
level tests of the null model. In fact, historically and philosophically, P values come
before α level tests. Rather than noticing that the α level test has this relationship
with P values, it is more general to define the α level test as rejecting precisely when
P ≤ α . We can then observe that, for our setup, the α level test has the form given
in Section 1.

While an α level constitutes a particular choice about how weird the data must
be before we decide to reject the null model, the P value measures the evidence
against the null hypothesis. The smaller the P value, the more evidence against the
null model.
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E.3 Confidence Intervals

A (1−α)100% confidence interval (CI) for Par is defined to be the set of all pa-
rameter values m that would not be rejected by an α level test. In Section 1 we gave
the rule for when an α level test of H0 : Par = m rejects. Conversely, the null model
will not be rejected if

−t
(

1− α
2

,df
)

<
Est−m
SE(Est)

< t
(

1− α
2

,df
)

. (1)

Some algebra, given later, establishes that we do not reject the null model if and
only if

Est− t
(

1− α
2

,df
)

SE(Est) < m < Est+ t
(

1− α
2

,df
)

SE(Est). (2)

This interval consists of all the parameter values m that are consistent with the data
and the model as determined by an α level test. The endpoints of the CI can be
written

Est± t
(

1− α
2

,df
)

SE(Est).

On occasion (as with binomial data), when doing an α level test or a P value,
we may let the standard error depend on the null hypothesis. To obtain a confidence
interval using this approach, we need a standard error that does not depend on m.

EXAMPLE E.2. We have 10 independent observations from a normal population
with variance 6. ȳ· is observed to be 17. We find a 95% CI for μ , the mean of the
population.

[1] Par = μ ,
[2] Est = ȳ·,
[3] SE(Est) =

√
6/10. In this case, SE(Est) is known and not estimated.

[4] [Est−Par]/SE(Est) = [ȳ· −μ ]
/√

6/10 ∼ N(0,1) = t(∞).

The confidence coefficient is 95% = (1−α)100%, so 1−α = 0.95 and α = 0.05.
The percentage point from the normal distribution that we require is t

(
1− α

2 ,∞
)

=
t(0.975,∞) = 1.96. The limits of the 95% CI are, in general,

ȳ· ±1.96
√

6/10

or, since ȳ· = 17,
17±1.96

√
6/10.

The μ values in the interval (15.48,18.52) are consistent with the data and the nor-
mal random sampling model as determined by an α = 0.05 test.

To see that statements (1) and (2) are algebraically equivalent, the argument runs
as follows:
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−t
(

1− α
2

,df
)

<
Est−m
SE(Est)

< t
(

1− α
2

,df
)

if and only if −t
(
1− α

2 ,df
)

SE(Est) < Est−m < t
(
1− α

2 ,df
)

SE(Est);
if and only if t

(
1− α

2 ,df
)

SE(Est) > −Est+m > −t
(
1− α

2 ,df
)

SE(Est);
if and only if Est+ t

(
1− α

2 ,df
)

SE(Est) > m > Est− t
(
1− α

2 ,df
)

SE(Est);
if and only if Est− t

(
1− α

2 ,df
)

SE(Est) < m < Est+ t
(
1− α

2 ,df
)

SE(Est).

E.4 Final Comments on Significance Testing

The most arbitrary element in Fisherian testing is the choice of a test statistic. Al-
though alternative hypotheses do not play a formal role in significance testing, in-
teresting possible alternative hypotheses do inform the choice of test statistic.

For example, in linear models we often test a full model Y = Xβ + e against a
reduced model Y = X0γ + e, with e ∼ N(0,σ 2I) and C(X0) ⊂ C(X). Although we
choose a test statistic based on comparing these models, the significance test is only
a test of whether the data are consistent with the reduced model. Rejecting the F
test does not suggest that the full model is correct, it only suggests that the reduced
model is wrong. Nonetheless, it is of interest to see how the test behaves if the
full model is correct. But models other than the full model can also cause the test
to reject, see Appendix F, especially Section F.2. For example, it is of interest to
examine the power of a test. The power of an α level test at some alternative model
is the probability of rejecting the null model when the alternative model is true. But
in significance testing, there is no thought of accepting any alternative model. Any
number of things can cause the rejection of the null model. Similar comments hold
for testing generalized linear models.

When testing a null model based on a single parameter hypothesis H0 : Par = m,
interesting possible alternatives include Par �= m. Our test statistic is designed to be
sensitive to these alternatives, but problems with the null model other than Par �= m
can cause us to reject the null model.

In general, a test statistic can be any function of the data for which the distribu-
tion under the null model is known (or can be approximated). But finding a usable
test statistic can be difficult. Having to choose between alternative test statistics for
the same null model is something of a luxury. For example, to test the null model
of equal means in a balanced one-way ANOVA, we can use either the F test of
Chapter 4 or the Studentized range test of Section 5.4



 



Appendix F

Significantly Insignificant Tests

Philosophically, the test of a null model occurs almost in a vacuum. Either the data
contradict the null model or they are consistent with it. The discussion of model
testing in Section 3.2 largely assumes that the full model is true. While it is inter-
esting to explore the behavior of the F test statistic when the full model is true, and
indeed it is reasonable and appropriate to choose a test statistic that will work well
when the full model is true, the act of rejecting the null model in no way implies
that the full model is true. It is perfectly reasonable that the null (reduced) model
can be rejected when the full model is false.

Throughout this book we have examined standard approaches to testing in which
F tests are rejected only for large values. The rationale for this is based on the full
model being true. We now examine the significance of small F statistics. Small F
statistics can be caused by an unsuspected lack of fit or, when the mean structure of
the reduced model is correct, they can be caused by not accounting for negatively
correlated data or not accounting for heteroscedasticity. We also demonstrate that
large F statistics can be generated by not accounting for positively correlated data
or heteroscedasticity, even when the mean structure of the reduced model is correct.

Christensen (1995, 2005, 2008) argues that (non-Bayesian) testing should be
viewed as an exercise in examining whether or not the data are consistent with a
particular (predictive) model. While possible alternative hypotheses may drive the
choice of a test statistic, any unusual values of the test statistic should be considered
important. By this standard, perhaps the only general way to decide which values
of the test statistic are unusual is to identify as unusual those values that have small
probabilities or small densities under the model being tested.

The F test statistic is driven by the idea of testing the reduced model against
the full model. However, given the test statistic, any unusual values of that statistic
should be recognized as indicating data that are inconsistent with the model being
tested. If the full model is true, values of F much larger than 1 are inconsistent with
the reduced model. Values of F much larger than 1 are consistent with the full model
but, as we shall see, they are consistent with other models as well. Similarly, values
of F much smaller than 1 are also inconsistent with the reduced model and we will
examine models that can generate small F statistics.

459
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I have been hesitant to discuss what I think of as a Fisherian F test, since no-
body actually performs them. (That includes me, because it is so much easier to use
the reported P values provided by standard computer programs.) Although the test
statistic comes from considering both the reduced (null) model and the full model,
once the test statistic is chosen, the full model no longer plays a role. From Theo-
rem 3.2.1(ii), if the reduced model is true,

F ≡ Y ′(M−M0)Y/r(M−M0)
Y ′(I −M)Y/r(I −M)

∼ F(r(M−M0),r(I −M),0) .

We use the density to define “weird” values of the F distribution. The smaller the
density, the weirder the observation. Write r1 ≡ r(M−M0) and r2 ≡ r(I−M), denote
the density g( f |r1,r2), and let Fobs denote the observed value of the F statistic. Since
the P value of a test is the probability under the null model of seeing data as weird
or weirder than we actually saw, and weirdness is defined by the density, the P value
of the test is

P = Pr[g(F |r1,r2) ≤ g(Fobs|r1,r2)],

wherein Fobs is treated as fixed and known. This is computed under the only distri-
bution we have, the F(r1,r2) distribution. An α level test is defined as rejecting the
null model precisely when P ≤ α .

If r1 > 2, the F(r1,r2) density has the familiar shape that starts at 0, rises to a
maximum in the vicinity of 1, and drops back down to zero for large values. Unless
Fobs happens to be the mode, there are two values f1 < f2 that have

g(Fobs|r1,r2) = g( f1|r1,r2) = g( f2|r1,r2).

(One of f1 and f2 will be Fobs.) In this case, the P value reduces to

P = Pr[F ≤ f1]+Pr[F ≥ f2].

In other words, the Fisherian F test is a two-sided F test, rejecting both for very
small and very large values of Fobs. For r1 = 1,2, the Fisherian test agrees with
the usual test because then the F(r1,r2) density starts high and decreases as f gets
larger.

I should also admit that there remain open questions about the appropriateness
of using densities, rather than actual probabilities, to define the weirdness of obser-
vations. The remainder of this appendix is closely related to Christensen (2003).

F.1 Lack of Fit and Small F Statistics

The standard assumption in testing models is that there is a full model Y = Xβ + e,
E(e) = 0, Cov(e) = σ 2I that fits the data. We then test the adequacy of a reduced
model Y = X0γ +e, E(e) = 0, Cov(e) = σ 2I in which C(X0)⊂C(X), cf. Section 3.2.
Based on second moment arguments, the test statistic is a ratio of variance estimates.
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We construct an unbiased estimate of σ 2, Y ′(I−M)Y/r(I−M), and another statistic
Y ′(M −M0)Y/r(M −M0) that has E[Y ′(M −M0)Y/r(M −M0)] = σ 2 + β ′X ′(M −
M0)Xβ/r(M −M0). Under the assumed covariance structure, this second statistic
is an unbiased estimate of σ 2 if and only if the reduced model is correct. The test
statistic

F =
Y ′(M−M0)Y/r(M−M0)

Y ′(I −M)Y/r(I −M)

is a (biased) estimate of

σ 2 +β ′X ′(M−M0)Xβ/r(M−M0)
σ 2 = 1+

β ′X ′(M−M0)Xβ
σ 2 r(M−M0)

.

Under the null model, F is an estimate of the number 1. When the full model is true,
values of F much larger than 1 suggest that F is estimating something larger than 1,
which suggests that β ′X ′(M−M0)Xβ/σ2 r(M−M0) > 0, something that occurs if
and only if the reduced model is false. The standard normality assumption leads to
an exact central F distribution for the test statistic under the null model, so we are
able to quantify how unusual it is to observe any F statistic greater than 1. Although
the test is based on second moment considerations, under the normality assumption
it is also the generalized likelihood ratio test, see Exercise 3.1, and a uniformly most
powerful invariant test, see Lehmann (1986, Section 7.1).

In testing lack of fit, the same basic ideas apply except that we start with the
(reduced) model Y = Xβ + e. The ideal situation would be to know that if Y =
Xβ + e has the wrong mean structure, then a model of the form

Y = Xβ +Wδ + e, C(W ) ⊥C(X) (1)

fits the data where assuming C(W ) ⊥ C(X) creates no loss of generality. Unfortu-
nately, there is rarely anyone to tell us the true matrix W . Lack of fit testing is largely
about constructing a full model, say, Y = X∗β∗ + e with C(X) ⊂ C(X∗) based on
reasonable assumptions about the nature of any lack of fit. The test for lack of fit is
simply the test of Y = Xβ +e against the constructed model Y = X∗β∗+e. Typically,
the constructed full model involves somehow generalizing the structure already ob-
served in Y = Xβ + e. Section 6.6 discusses the rationale for several choices of
constructed full models. For example, the traditional lack of fit test for simple lin-
ear regression begins with the replication model yi j = β0 + β1xi + ei j, i = 1, . . . ,a,
j = 1, . . . ,Ni. It then assumes E(yi j) = f (xi) for some function f (·), in other words,
it assumes that the several observations associated with xi have the same expected
value. Making no additional assumptions leads to fitting the full model yi j = μi +ei j
and the traditional lack of fit test. Another way to think of this traditional test views
the reduced model relative to the one-way ANOVA as having only the linear contrast
important. The traditional lack of fit test statistic becomes

F =
SSTrts−SS(lin)

a−2

/
MSE, (2)
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where SS(lin) is the sum of squares for the linear contrast. If there is no lack of fit in
the reduced model, F should be near 1. If lack of fit exists because the more general
mean structure of the one-way ANOVA fits the data better than the simple linear
regression model, the F statistic tends to be larger than 1.

Unfortunately, if the lack of fit exists because of features that are not part of the
original model, generalizing the structure observed in Y = Xβ + e is often inappro-
priate. Suppose that the simple linear regression model is balanced, i.e., all Ni = N,
that for each i the data are taken in time order t1 < t2 < · · · < tN , and that the lack of
fit is due to the true model being

yi j = β0 +β1xi +δ t j + ei j, δ �= 0. (3)

Thus, depending on the sign of δ , the observations within each group are subject to
an increasing or decreasing trend. Note that in this model, for fixed i, the E(yi j)s are
not the same for all j, thus invalidating the assumption of the traditional test. In fact,
this causes the traditional lack of fit test to have a small F statistic. One way to see
this is to view the problem in terms of a balanced two-way ANOVA. The true model
(3) is a special case of the two-way ANOVA model yi j = μ +αi +η j + ei j in which
the only nonzero terms are the linear contrast in the αis and the linear contrast in the
η js. Under model (3), the numerator of the statistic (2) gives an unbiased estimate
of σ 2 because SSTrts in (2) is SS(α) for the two-way model and the only nonzero
α effect is being eliminated from the treatments. However, the mean squared error
in the denominator of (2) is a weighted average of the error mean square from the
two-way model and the mean square for the η js in the two-way model. The sum
of squares for the significant linear contrast in the η js from model (3) is included
in the error term of the lack of fit test (2), thus biasing the error term to estimate
something larger than σ 2. In particular, the denominator has an expected value of
σ 2 +δ 2a∑N

j=1(t j − t̄·)2/a(N −1). Thus, if the appropriate model is (3), the statistic
in (2) estimates σ 2/[σ 2 + δ 2a∑N

j=1(t j − t̄·)2/a(N − 1)] which is a number that is
less than 1. Values of F much smaller than 1, i.e., very near 0, are consistent with
a lack of fit that exists within the groups of the one-way ANOVA. Note that in this
balanced case, true models involving interaction terms, e.g., models like

yi j = β0 +β1xi +δ t j + γxit j + ei j,

also tend to make the F statistic small if either δ �= 0 or γ �= 0. Finally, if there exists
lack of fit both between the groups of observations and within the groups, if can be
very difficult to identify. For example, if β2 �= 0 and either δ �= 0 or γ �= 0 in the true
model

yi j = β0 +β1xi +β2x2
i +δ t j + γxit j + ei j,

there is both a traditional lack of fit between the groups (the significant β2x2
i term)

and lack of fit within the groups (δ t j + γxit j). In this case, neither the numerator nor
the denominator in (2) is an estimate of σ 2.

More generally, start with a model Y = Xβ + e. This is tested against a larger
model Y = X∗β∗+e with C(X)⊂C(X∗), regardless of where the larger model comes
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from. The F statistic is

F =
Y ′(M∗ −M)Y/r(M∗ −M)
Y ′(I −M∗)Y/r(I −M∗)

.

We assume that the true model is (1). The F statistic estimates 1 if the original
model Y = Xβ + e is correct. It estimates something greater than 1 if the larger
model Y = X∗β∗ + e is correct, i.e., if Wδ ∈C(X)⊥C(X∗). F estimates something less

than 1 if Wδ ∈C(X∗)⊥, i.e., if Wδ is actually in the error space of the larger model,
because then the numerator estimates σ2 but the denominator estimates

σ 2 +δ ′W ′(I −M∗)Wδ/r(I −M∗) = σ 2 +δ ′W ′Wδ/r(I −M∗).

If Wδ is in neither of C(X)⊥C(X∗) nor C(X∗)⊥, it is not clear how the test will behave
because neither the numerator nor the denominator estimates σ2. Christensen (1989,
1991) contains related discussion of these concepts.

The main point is that, when testing a full model Y = Xβ +e, E(e) = 0, Cov(e) =
σ 2I against a reduced model Y = X0γ + e, C(X0) ⊂C(X), if the F statistic is small,
it suggests that Y = X0γ +e may suffer from lack of fit in which the lack of fit exists
in the error space of Y = Xβ + e. We will see in the next section that other possible
explanations for a small F statistic are the existence of “negative correlation” in the
data or heteroscedasticity.

F.2 The Effect of Correlation and Heteroscedasticity on F
Statistics

The test of a reduced model assumes that the full model Y = Xβ + e, E(e) = 0,
Cov(e) = σ 2I holds and tests the adequacy of a reduced model Y = X0γ +e, E(e) =
0, Cov(e) = σ 2I, C(X0) ⊂ C(X). Rejecting the reduced model does not imply that
the full model is correct. The mean structure of the reduced model may be perfectly
valid, but the F statistic can become large or small because the assumed covariance
structure is incorrect.

We begin with a concrete example, one-way ANOVA. Let i = 1, . . . ,a, j =
1, . . . ,N, and n ≡ aN. Consider a reduced model yi j = μ +ei j which in matrix terms
we write Y = Jμ +e, and a full model yi j = μi + ei j, which we write Y = Zγ +e. In
matrix terms the usual one-way ANOVA F statistic is

F =
Y ′[MZ − (1/n)Jn

n ]Y/(a−1)
Y ′(I −MZ)Y/a(N −1)

. (1)

We now assume that the true model is Y = Jμ + e, E(e) = 0, Cov(e) = σ 2V and
examine the behavior of the F statistic (1).

For a homoscedastic balanced one-way ANOVA we want to characterize the con-
cepts of overall positive correlation, positive correlation within groups, and positive
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correlation for evaluating differences between groups. Consider first a simple exam-
ple with a = 2, N = 2. The first two observations are a group and the last two are a
group. Consider a covariance structure

V1 =

⎡⎢⎣
1 0.9 0.1 0.09

0.9 1 0.09 0.1
0.1 0.09 1 0.9

0.09 0.1 .9 1

⎤⎥⎦ .

There is an overall positive correlation, high positive correlation between the two
observations in each group, and weak positive correlation between the groups. A
second example,

V2 =

⎡⎢⎣
1 0.1 0.9 0.09

0.1 1 0.09 0.9
0.9 0.09 1 0.1

0.09 0.9 0.1 1

⎤⎥⎦ ,

has an overall positive correlation but weak positive correlation between the two ob-
servations in each group, with high positive correlation between some observations
in different groups.

We now make a series of definitions for homoscedastic balanced one-way ANOVA
based on the projection operators in (1) and V . Overall positive correlation is char-
acterized by Var(ȳ··) > σ 2/n, which in matrix terms is written

n
Var(ȳ··)

σ 2 = tr[(1/n)JJ′V ] >
1
n

tr(V )tr[(1/n)JJ′] =
1
n

tr(V ). (2)

Overall negative correlation is characterized by the reverse inequality. For ho-
moscedastic models the term tr(V )/n is 1. For heteroscedastic models the term on
the right is the average variance of the observations divided by σ 2.

Positive correlation within groups is characterized by ∑a
i=1 Var(ȳi·)/a > σ 2/N,

which in matrix terms is written

a

∑
i=1

N
Var(ȳi·)

σ 2 = tr[MZV ] >
1
n

tr(V )tr[MZ] =
a
n

tr(V ). (3)

Negative correlation within groups is characterized by the reverse inequality.
Positive correlation for evaluating differences between groups is characterized

by
∑a

i=1 Var(ȳi· − ȳ··)
a

>
a−1

a
σ 2

N
.

Note that equality obtains if V = I. In matrix terms, this is written

N
σ 2

a

∑
i=1

Var(ȳi· − ȳ··) = tr([MZ − (1/n)JJ′]V )

>
1
n

tr(V )tr[MZ − (1/n)JJ′] =
a−1

n
tr(V ) (4)
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and negative correlation for evaluating differences between groups is characterized
by the reverse inequality. If all the observations in different groups are uncorrelated,
there will be positive correlation for evaluating differences between groups if and
only if there is positive correlation within groups. This follows because having a
block diagonal covariance matrix σ 2V implies that tr(MZV ) = tr[(1/N)Z′V Z] =
atr[(1/n)J′V J] = atr[(1/n)JJ′V ].

For our example V1,

2.09 = (1/4)[4(2.09)] = tr[(1/n)Jn
nV1] >

1
n

tr(V1) = 4/4 = 1,

so there is an overall positive correlation,

3.8 = 2(1/2)[3.8] = tr[MZV1] >
a
n

tr(V1) = (2/4)4 = 2,

so there is positive correlation within groups, and

1.71 = 3.8−2.09 = tr([MZ − (1/n)Jn
n ]V1) >

a−1
n

tr(V1) = (1/4)4 = 1,

so there is positive correlation for evaluating differences between groups.
For the second example V2,

2.09 = (1/4)[4(2.09)] = tr[(1/n)Jn
nV2] >

1
n

tr(V2) = 4/4 = 1,

so there is an overall positive correlation,

2.2 = 2(1/2)[2.2] = tr[MZV2] >
a
n

tr(V2) = (2/4)4 = 2,

so there is positive correlation within groups, but

0.11 = 2.2−2.09 = tr([MZ − (1/n)Jn
n ]V2) <

a−1
n

tr(V2) = (1/4)4 = 1,

so positive correlation for evaluating differences between groups does not exist.
The existence of positive correlation within groups and positive correlation for

evaluating differences between groups causes the one-way ANOVA F statistic in (1)
to get large even when there are no differences in the group means. Assuming that
the correct model is Y = Jμ + e, E(e) = 0, Cov(e) = σ 2V , by Theorem 1.3.1, the
numerator of the F statistic estimates

E{Y ′[MZ − (1/n)Jn
n ]Y/(a−1)} = tr{[MZ − (1/n)Jn

n ]V}/(a−1)

>
a−1

n
tr(V )/(a−1) = tr(V )/n

and the denominator of the F statistic estimates



466 F Significantly Insignificant Tests

E{Y ′(I −MZ)Y/a(N −1)} = tr{[I −MZ ]V}/a(N −1)
= (tr{V}− tr{[MZ ]V})/a(N −1)

<
(

tr{V}− a
n

tr(V )
)

/a(N −1)

=
n−a

n
tr(V )/a(N −1) = tr(V )/n.

In (1), F is an estimate of

E{Y ′[MZ − (1/n)Jn
n ]Y/(a−1)}

E{Y ′(I −MZ)Y/a(N −1)} =
tr{[MZ − (1/n)Jn

n ]V}/(a−1)
tr{[I −MZ]V}/a(N −1)

>
tr(V )/n
tr(V )/n

= 1,

so having both positive correlation within groups and positive correlation for evalu-
ating differences between groups tends to make F statistics large. Exactly analogous
computations show that both negative correlation within groups and negative corre-
lation for evaluating differences between groups tends to make F statistics less than
1.

Another example elucidates some additional points. Suppose the observations
have the AR(1) correlation structure discussed in Subsection 13.3.1:

V3 =

⎡⎢⎣
1 ρ ρ2 ρ3

ρ 1 ρ ρ2

ρ2 ρ 1 ρ
ρ3 ρ2 ρ 1

⎤⎥⎦ .

Using the same grouping structure as before, when 0 < ρ < 1, we have overall
positive correlation because

1+
ρ
2

(3+2ρ +ρ2) = tr[(1/n)JJ′V3] > 1,

and we have positive correlation within groups because

2(1+ρ) = tr[MZV3] > 2.

If −1 < ρ < 0, the inequalities are reversed. Similarly, for −1 < ρ < 0 we have
negative correlation for evaluating differences between groups because

1+
ρ
2

(1−2ρ −ρ2)2 = tr([MZ − (1/n)JJ′]V3) < 1.

However, we only get positive correlation for evaluating differences between groups
when 0 < ρ <

√
2− 1. Thus, for negative ρ we tend to get small F statistics, for

0 < ρ <
√

2−1 we tend to get large F statistics, and for
√

2−1 < ρ < 1 the result
is not clear.
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To illustrate, suppose ρ = 1 and the observations all have the same mean, then
with probability 1, all the observations are equal and, in particular, ȳi· = ȳ·· with
probability 1. It follows that

0 = ∑a
i=1 Var(ȳi· − ȳ··)

a
<

a−1
a

σ 2

N

and no positive correlation exists for evaluating differences between groups. More
generally, for very strong positive correlations, both the numerator and the denom-
inator of the F statistic estimate numbers close to 0 and both are smaller than they
would be under V = I. On the other hand, it is not difficult to see that, for ρ = −1,
the F statistic is 0.

In the balanced heteroscedastic one-way ANOVA, V is diagonal. This gener-
ates equality between the left sides and right sides of (2), (3), and (4), so under
heteroscedasticity F still estimates the number 1. We now generalize the ideas of
within group correlation and correlation for evaluating differences between groups,
and see that heteroscedasticity can affect unbalanced one-way ANOVA.

In general, we test a full model Y = Xβ + e, E(e) = 0, Cov(e) = σ 2I against a
reduced model Y = X0γ + e, in which C(X0) ⊂ C(X). We examine the F statistic
when the true model is Y = X0γ + e, E(e) = 0, Cov(e) = σ 2V . Using arguments
similar to those for balanced one-way ANOVA, having

tr[MV ] >
1
n

tr(V )tr[M] =
r(X)

n
tr(V )

and

tr([M−M0]V ) >
1
n

tr(V )tr[M−M0] =
r(X)− r(X0)

n
tr(V )

causes large F statistics even when the mean structure of the reduced model is true,
and reversing the inequalities causes small F statistics. These are merely sufficient
conditions so that the tests intuitively behave certain ways. The actual behavior of
the tests under normal distributions can be determined numerically, cf. Christensen
and Bedrick (1997).

These covariance conditions can be caused by patterns of positive and negative
correlations as discussed earlier, but they can also be caused by heteroscedasticity.
For example, consider the behavior of the unbalanced one-way ANOVA F test when
the observations are uncorrelated but heteroscedastic. For concreteness, assume that
Var(yi j) = σ 2

i . Because the observations are uncorrelated, we need only check the
condition

tr[MV ] ≡ tr[MZV ] >
1
n

tr(V )tr[MZ ] =
a
n

tr(V ),

which amounts to
a

∑
i=1

σ 2
i
/

a >
a

∑
i=1

Ni

n
σ2

i .

Thus, when the groups’ means are equal, F statistics will get large if many obser-
vations are taken in groups with small variances and few observations are taken on
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groups with large variances. F statistics will get small if the reverse relationship
holds.

The general condition

tr[MV ] >
1
n

tr(V )tr[M] =
r(X)

n
tr(V )

is equivalent to
∑n

i=1 Var(x′iβ̂ )
r(X)

>
∑n

i=1 Var(yi)
n

.

So, under homoscedasticity, positive correlation in the full model amounts to having
an average variance for the predicted values (averaging over the rank of the covari-
ance matrix of the predicted values) that is larger than the common variance of the
observations. Negative correlation in the full model involves reversing the inequal-
ity. Similarly, having positive correlation for distinguishing the full model from the
reduced model means

∑n
i=1 Var(x′iβ̂ − x′0iγ̂)

r(X)− r(X0)
=

tr[(M−M0)V ]
r(M−M0)

>
tr(V )

n
=

∑n
i=1 Var(yi)

n
.



Appendix G

Randomization Theory Models

The division of labor in statistics has traditionally designated randomization the-
ory as an area of nonparametric statistics. Randomization theory is also of special
interest in the theory of experimental design because randomization has been used
to justify the analysis of designed experiments.

It can be argued that the linear models given in Chapter 8 are merely good ap-
proximations to more appropriate models based on randomization theory. One as-
pect of this argument is that the F tests based on the theory of normal errors are a
good approximation to randomization (permutation) tests. Investigating this is be-
yond the scope of a linear models book, cf. Hinkelmann and Kempthorne (1994)
and Puri and Sen (1971). Another aspect of the approximation argument is that
the BLUEs under randomization theory are precisely the least squares estimates. By
Theorem 10.4.5, to establish this we need to show that C(V X)⊂C(X) for the model

Y = Xβ + e, E(e) = 0, Cov(e) = V,

where V is the covariance matrix under randomization theory. This argument will
be examined here for two experimental design models: the model for a completely
randomized design and the model for a randomized complete block design. First,
we introduce the subject with a discussion of simple random sampling.

G.1 Simple Random Sampling

Randomization theory for a simple random sample assumes that observations yi are
picked at random (without replacement) from a larger finite population. Suppose

469
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the elements of the population are s1,s2, . . . , sN . We can define elementary sampling
random variables for i = 1, . . . ,n and j = 1, . . . ,N,

δ i
j =
{

1, if yi = s j
0, otherwise.

Under simple random sampling without replacement

E[δ i
j] = Pr[δ i

j = 1] =
1
N

.

E[δ i
jδ

i′
j′ ] = Pr[δ i

jδ
i′
j′ = 1] =

⎧⎨⎩1/N, if (i, j) = (i′, j′)
1/N(N −1), if i �= i′ and j �= j′
0, otherwise.

If we write μ = ∑N
j=1 s j/N and σ 2 = ∑N

j=1(s j −μ)2/N, then

yi =
N

∑
j=1

δ i
js j = μ +

N

∑
j=1

δ i
j(s j −μ).

Letting ei = ∑N
j=1 δ i

j(s j −μ) gives the linear model

yi = μ + ei.

The population mean μ is a fixed unknown constant. The eis have the properties

E[ei] = E

[
N

∑
j=1

δ i
j(s j −μ)

]
=

N

∑
j=1

E
[
δ i

j
]
(s j −μ) =

N

∑
j=1

(s j −μ)
/

N = 0,

Var(ei) = E[e2
i ] =

N

∑
j=1

N

∑
j′=1

(s j −μ)(s j′ −μ)E[δ i
jδ

i
j′ ] =

N

∑
j=1

(s j −μ)2/N = σ 2.

For i �= i′,

Cov(ei,ei′) = E[eiei′ ] =
N

∑
j=1

N

∑
j′=1

(s j −μ)(s j′ −μ)E[δ i
jδ

i′
j′ ]

= [N(N −1)]−1 ∑
j �= j′

(s j −μ)(s j′ −μ)

= [N(N −1)]−1

⎛⎝[ N

∑
j=1

(s j −μ)

]2

−
N

∑
j=1

(s j −μ)2

⎞⎠
= −σ 2/(N −1).

In matrix terms, the linear model can be written
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Y = Jμ + e, E(e) = 0, Cov(e) = σ2V,

where

V =

⎡⎢⎢⎢⎢⎣
1 −(N −1)−1 −(N −1)−1 · · · −(N −1)−1

−(N −1)−1 1 −(N −1)−1 · · · −(N −1)−1

−(N −1)−1 −(N −1)−1 1 · · · −(N −1)−1

...
...

...
. . .

...
−(N −1)−1 −(N −1)−1 −(N −1)−1 · · · 1

⎤⎥⎥⎥⎥⎦ .

Clearly V J = [(N −n)/(N −1)]J, so the BLUE of μ is ȳ· .

G.2 Completely Randomized Designs

Suppose that there are t treatments, each to be randomly assigned to N units out of a
collection of n = tN experimental units. A one-way ANOVA model for this design
is

yi j = μi + ei j, (1)

i = 1, . . . , t, j = 1, . . . ,N. Suppose further that the ith treatment has an effect τi and
that the experimental units without treatment effects would have readings s1, . . . ,sn.
The elementary sampling random variables are

δ i j
k =
{

1, if replication j of treatment i is assigned to unit k
0, otherwise.

With this restricted random sampling,

E[δ i j
k ] = Pr[δ i j

k = 1] =
1
n

E[δ i j
k δ i′ j′

k′ ] = Pr[δ i j
k δ i′ j′

k′ = 1] =

⎧⎨⎩1/n, if (i, j,k) = (i′, j′,k′)
1/n(n−1), if k �= k′ and (i, j) �= (i′, j)′
0, otherwise.

We can write

yi j = τi +
n

∑
k=1

δ i j
k sk.

Taking μ = ∑n
k=1 sk/n and μi = μ + τi gives

yi j = μi +
n

∑
k=1

δ i j
k (sk −μ).

To obtain the linear model (1), let ei j = ∑n
k=1 δ i j

k (sk − μ). Write σ2 = ∑n
k=1(sk −

μ)2/n. Then
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E[ei j] = E

[
n

∑
k=1

δ i j
k (sk −μ)

]
=

n

∑
k=1

E
[
δ i j

k

]
(sk −μ) =

n

∑
k=1

(sk −μ)
/

n = 0,

Var(ei j) = E[e2
i j] =

n

∑
k=1

n

∑
k′=1

(sk −μ)(sk′ −μ)E[δ i j
k δ i j

k′ ] =
n

∑
k=1

(sk −μ)2/n = σ 2.

For (i, j) �= (i′, j′),

Cov(ei j,ei′ j′) = E[ei jei′ j′ ] =
n

∑
k=1

n

∑
k′=1

(sk −μ)(sk′ −μ)E[δ i j
k δ i′ j′

k′ ]

= [n(n−1)]−1 ∑
k �=k′

(sk −μ)(sk′ −μ)

= [n(n−1)]−1

⎛⎝[ n

∑
k=1

(sk −μ)

]2

−
n

∑
k=1

(sk −μ)2

⎞⎠
= −σ 2/(n−1).

In matrix terms, writing Y = (y11,y12, . . . ,ytN)′, we get

Y = X

⎡⎢⎣μ1
...

μt

⎤⎥⎦+ e, E(e) = 0, Cov(e) = σ 2V,

where

V =

⎡⎢⎢⎢⎢⎣
1 −1/(n−1) −1/(n−1) · · · −1/(n−1)

−1/(n−1) 1 −1/(n−1) · · · −1/(n−1)
−1/(n−1) −1/(n−1) 1 · · · −1/(n−1)

...
...

...
. . .

...
−1/(n−1) −1/(n−1) −1/(n−1) · · · 1

⎤⎥⎥⎥⎥⎦
=

n
n−1

I − 1
n−1

Jn
n .

It follows that
V X =

n
n−1

X − 1
n−1

Jn
n X .

Since J ∈ C(X), C(V X) ⊂C(X), and least squares estimates are BLUEs. Standard
errors for estimable functions can be found as in Section 11.1 using the fact that this
model involves only one cluster.

Exercise G.1 Establish whether least squares estimates are BLUEs in a com-
pletely randomized design with unequal numbers of observations on the treatments.
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G.3 Randomized Complete Block Designs

Suppose there are a treatments and b blocks. The experimental units must be
grouped into b blocks, each of a units. Let the experimental unit effects be sk j,
k = 1, . . . ,a, j = 1, . . . ,b. Treatments are assigned at random to the a units in each
block. The elementary sampling random variables are

δ i
k j =
{

1, if treatment i is assigned to unit k in block j
0, otherwise.

E[δ i
k j] = Pr[δ i

k j = 1] =
1
a
.

E[δ i
k jδ

i′
k′ j′ ] = Pr[δ i

k jδ
i′
k′ j′ = 1] =

⎧⎪⎨⎪⎩
1/a, if (i, j,k) = (i′, j′,k′)
1/a2, if j �= j′
1/a(a−1), if j = j′, k �= k′, i �= i′
0, otherwise.

If αi is the additive effect of the ith treatment and β j ≡ s̄· j, then

yi j = αi +β j +
a

∑
k=1

δ i
k j(sk j −β j).

Letting ei j = ∑a
k=1 δ i

k j(sk j −β j) gives the linear model

yi j = αi +β j + ei j. (1)

The column space of the design matrix for this model is precisely that of the model
considered in Section 8.3. Let σ 2

j = ∑a
k=1(sk j −β j)2/a. Then

E[ei j] =
a

∑
k=1

(sk j −β j)
/

a = 0,

Var(ei j) =
a

∑
k=1

a

∑
k′=1

(sk j −β j)(sk′ j −β j)E[δ i
k jδ

i
k′ j]

=
a

∑
k=1

(sk j −β j)2/a = σ 2
j .

For j �= j′,

Cov(ei j,ei′ j′) =
a

∑
k=1

a

∑
k′=1

(sk j −β j)(sk′ j′ −β j′)E[δ i
k jδ

i′
k′ j′ ]

= a−2
a

∑
k=1

(sk j −β j)
a

∑
k′=1

(sk′ j′ −β j′)
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= 0.

For j = j′, i �= i′,

Cov(ei j,ei′ j′) =
a

∑
k=1

a

∑
k′=1

(sk j −β j)(sk′ j −β j)E[δ i
k jδ

i′
k′ j]

= ∑
k �=k′

(sk j −β j)(sk′ j −β j)
/

a(a−1)

= [a(a−1)]−1

⎛⎝[ a

∑
k=1

(sk j −β j)

]2

−
a

∑
k=1

(sk j −β j)2

⎞⎠
= −σ 2

j
/
(a−1).

Before proceeding, we show that although the terms β j are not known, the differ-
ences among these are known constants under randomization theory. For any unit k
in block j, some treatment is assigned, so ∑a

i=1 δ i
k j = 1.

ȳ· j =
1
a

[
a

∑
i=1

(
αi +β j +

a

∑
k=1

δ i
k j(sk j −β j)

)]

=
1
a

[
a

∑
i=1

αi +aβ j +
a

∑
k=1

(sk j −β j)
a

∑
i=1

δ i
k j

]

= ᾱ· +β j +
a

∑
k=1

(sk j −β j)

= ᾱ· +β j .

Therefore, ȳ· j − ȳ· j′ = β j − β j′ = s̄· j − s̄· j′ . Since these differences are fixed and
known, there is no basis for a test of H0 : β1 = · · · = βb. In fact, the linear model is
not just model (1) but model (1) subject to these estimable constraints on the β s.

To get best linear unbiased estimates we need to assume that σ2
1 = σ 2

2 = · · · =
σ 2

b = σ 2. We can now write the linear model in matrix form and establish that
least squares estimates of treatment means and contrasts in the αis are BLUEs. In
the discussion that follows, we use notation from Section 7.1. Model (1) can be
rewritten

Y = Xη + e, E(e) = 0, Cov(e) = V, (2)

where η = [μ,α1, . . . ,αa,β1, . . . ,βb]′. If we let X2 be the columns of X correspond-
ing to β1, . . . ,βb, then (cf. Section 11.1)

V = σ 2 [a/(a−1)]
[
I − (1/a)X2X ′

2
]
= σ 2 [a/(a−1)]

[
I −Mμ −Mβ

]
.

If model (2) were the appropriate model, checking that C(V X) ⊂ C(X) would
be trivial based on the fact that C(X2) ⊂ C(X). However, we must account for the
estimable constraints on the model discussed above. In particular, consider



G.3 Randomized Complete Block Designs 475

Mβ Xη = [ti j],

where
ti j = β j − β̄· = ȳ· j − ȳ·· = s̄· j − s̄·· .

This is a fixed known quantity. Proceeding as in Section 3.3, the model is subject to
the estimable constraint

Mβ Xη = MβY.

Normally a constraint has the form Λ ′β = d, where d is known. Here d = MβY ,
which appears to be random but, as discussed, MβY is not random; it is fixed and
upon observing Y it is known.

The equivalent reduced model involves X0 = (I −MMP)X = (I −Mβ )X and a
known vector Xb = MβY . Thus, the constrained model is equivalent to

(Y −MβY ) = (I −Mβ )Xγ + e. (3)

We want to show that least squares estimates of contrasts in the αs based on Y
are BLUEs with respect to this model. First we show that least squares estimates
from model (3) based on (Y −MβY ) = (I−Mβ )Y are BLUEs. We need to show that

C(V (I −Mβ )X) = C[(I −Mμ −Mβ )(I −Mβ )X ] ⊂C[(I −Mβ )X ].

Because (I −Mμ −Mβ )(I −Mβ ) = (I −Mμ −Mβ ), we have

C(V (I −Mβ )X) = C[(I −Mμ −Mβ )X ],

and because C(I −Mμ −Mβ ) ⊂C(I −Mβ ) we have

C[(I −Mμ −Mβ )X ] ⊂C[(I −Mβ )X ].

To finish the proof that least squares estimates based on Y are BLUEs, note that
the estimation space for model (3) is C[(I −Mβ )X ] = C(Mμ + Mα). BLUEs are
based on

(Mμ +Mα)(I −Mβ )Y = (Mμ +Mα)Y.

Thus, any linear parametric function in model (2) that generates a constraint on
C(Mμ +Mα) has a BLUE based on (Mμ +Mα)Y (cf. Exercise 3.9.5). In particular,
this is true for contrasts in the αs. Standard errors for estimable functions are found
in a manner analogous to Section 11.1. This is true even though model (3) is not
the form considered in Section 11.1 and is a result of the orthogonality relationships
that are present.

The assumption that σ 2
1 = σ 2

2 = · · · = σ2
b is a substantial one. Least squares es-

timates without this assumption are unbiased, but may be far from optimal. It is
important to choose blocks so that their variances are approximately equal.

Exercise G.2 Find the standard error for a contrast in the αis of model (1).
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mixed model equations, 297
MLE, 29
model matrix, 1
model selection, 381
models, 1

analysis of covariance, 215
analysis of variance

BIB, 225, 320
multifactor, 191
one-way, 91
three-way, 191
two-way, 163, 169, 179, 182, 184
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balanced incomplete block (BIB) design,
225, 320

cell means, 170, 187
cluster sampling, 268
completely randomized design (CRD), 204
estimable constraints, 89
experimental design, 203
fixed effects, 291
full, 52, 56
general Gauss–Markov, 237
generalized least squares, 33, 84
generalized split plot, 272
Graeco-Latin square, 208
Latin square, 205
mixed, 291
random effects, 291
randomization theory, 469
randomized complete block (RCB) design,

204, 272
reduced, 52, 56
split plot design, 281
subsampling, 284

multicollinearity, 391
multifactor structures, 191
multiple comparisons, 105
multiple correlation coefficient, 140
multiple range method, 114, 115
multiple regression, 123
multivariate distribution, 447
multivariate normal, 5

nested models, 313
Newman–Keuls multiple range test, 105, 114
Neyman–Pearson testing, 58, 118, 451, 459
noisy, 403
noncentral

F distribution, 444
t distribution, 444
chi-squared distribution, 443

noncentrality parameter, 56, 84, 443
nonestimable, 20
nonestimable constraints, 25
nonidentifiable, 19, 20
nonidentifiable constraints, 62, 63, 70, 71, 96,

102, 172
nonnegative definite matrix, 424
nonnormality, 334
nonparametric methods, 469
nonparametric regression, 128
nonsingular covariance matrix, 33, 84, 237
nonsingular distribution, 3
nonsingular matrix, 420
normal distribution, 5
normal equations, 37

normal plot, 346
normal score, 346
normality, test for, 350
null hypothesis, 451
null model, 58, 451, 460
null space, 420

oblique projection operator, 433
offset, 47, 59, 71
Ofversten’s tests, 316
OLS, 33
one sample, 32, 61
one-way analysis of variance (ANOVA), 91
optimal allocation of x values, 160
ordinary least squares, 33, 36, 256, 281
ordinary residual, 12, 222, 334
orthogonal, 139, 413, 434

basis, 413
complement, 414
constraints, 76, 77
contrasts, 80, 81, 101
distance regression, 406
matrix, 422
polynomials, 155, 180, 403
projection, 139, 414, 426, 434

orthonormal basis, 413–415, 422, 423, 427
outliers

in dependent variable, 370, 373
in the design space, 339, 373
in the estimation space, 339, 373

overfitting, 403

parameter, 1, 18, 451
parameterization, 18
partial correlation coefficient, 143, 161, 385
partial determination, coefficient of, 145
partially identifiable, 18
partitioned matrices, 420, 441
partitioned model, 215
penalized least squares, 402
penalized likelihood, 406
penalty function, 402
percentile, 443
perfect estimation, 259
perpendicular, 139, 413, 434

projection, 132, 137
projection operator (ppo), 139, 336, 426,

434
Poisson distribution, 12, 378
polynomial contrasts, 156, 180, 181
polynomial regression, 123, 155, 179
positive definite matrix, 424
power, 58, 457
power transformations, 377
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ppo, 336, 426, 434
predicted residual, 342, 370
predicted residual sum of squares, 370
predicted values, 26, 361
prediction, 130, 293

best linear predictor (BLP), 134, 293
best linear unbiased predictor (BLUP), 137,

292–294, 335
best predictor (BP), 132, 293

prediction interval, 46
predictor, 294
PRESS, 370
principal component regression, 399
probability distribution, 447
projection

oblique, 433
perpendicular, 132, 137, 139, 426

projection operator, 433
proportional numbers, 182, 192
proportions, 378
pure error, 146, 169

q-q plot, 346
quadratic forms, 8, 437

distribution, 9
expectation, 8
independence, 10, 11
variance, 310

quantile, 346
quantitative factors, 156, 179

random effects, 291
random effects model, 291
random matrix, 3
random vector, 3
randomization, 203
randomization theory, 469
randomized complete block design, 204, 272
range, 112
range space, 412
rank, 413
rankit plot, 346
RCB, 204, 272
reduced model, 52, 56, 460
reduction in sums of squares, 81
reference distribution, 451
reflexive generalized inverse, 429
regression analysis, 1, 121

in canonical form, 396
multiple regression, 123
nonparametric, 128
polynomial, 155, 179
simple linear regression, 122

rejection region, 58, 444, 453

REML, 304
reparameterization, 31, 50, 51, 60–62, 70, 122,

127, 222
residual maximum likelihood, 304
residual mean square, 382
residual plots, 334

heteroscedasticity, 361
lack of fit, 365
normality, 346
serial correlation, 355, 370

residual sum of squares, 382
residuals, 12, 26

deleted, 342, 370
predicted, 342, 370
standardized, 334
standardized deleted, 374
standardized predicted residuals, 374
Studentized, 334

response surface, 160
restricted maximum likelihood, 304
ridge regression, 399, 402, 403
ridge trace, 401
robust regression, 345
row structure, 147

sample partial correlation coefficient, 144
scaling the model matrix, 393
Scheffé’s method, 105, 106, 123
sequential fitting, 77, 81, 124
sequential sums of squares, 77, 81, 124
serial correlation, 355

test, 360
side conditions, 25, 62, 63, 70, 71, 96, 102, 172

estimation under, 69, 89
significance testing, 58, 118, 451, 452, 459,

460
simple least squares, 33
simple linear regression, 122
simultaneous confidence intervals, 109
simultaneous inference, 105, 123
singular covariance matrix, 237
singular distribution, 3
singular normal distribution, 303
singular value, 421
singular value decomposition, 396, 424
skew symmetric additive effects, 212
spanning set, 412
spanning space, 412
spatial data, 296
split plot designs, 267, 281

generalized, 272
split plot model, 88
square matrix, 419
squared predictive correlation, 142
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standard error, 451
standardized deleted residual, 374
standardized predicted residual, 374
standardized residuals, 334
stepwise regression, 385
stochastically larger, 445
Student’s t, 32, 40, 46, 444, 451
Studentized range, 112
Studentized residuals, 334, 374
subplot analysis, 267, 281
subplot error, 275
subsampling, 284
subspace, 411
sum of squares

contrast, 101
error, 27
for regressing, 77
reduction in, 81
regression, 125
total, 97
treatments, 97

summation convention, 437
supplemental observations, 220
sweep operator, 222
symmetric additive effects, 212
symmetric matrix, 419

tensor, 437
test space, 78
test statistic, 55, 58, 60, 65, 68, 71, 76, 77, 84,

86, 452, 459, 460
tests, 49, 452

α level, 57, 453, 460
Durbin–Watson, 360
generalized likelihood ratio, 58, 61, 89, 312
independence, 354
lack of fit, 146
Milliken and Graybill, 234
models

cluster sampling, 271
general Gauss-Markov, 247
generalized least squares, 84
generalized split plot, 279
standard, 52

multiple comparisons, 105
normality, 350
Ofversten’s, 316
one-parameter, 451
parametric functions

cluster sampling models, 271
generalized least squares models, 85
generalized split plot models, 275, 278
standard models, 61

serial correlation, 360

single degree of freedom, 32, 76
Tukey’s one degree of freedom, 234
variance components, 314
variances, 89
Wald, 314
Wilk–Shapiro, 350

three-way ANOVA, 191
thresholding, 406
tolerance, 386
trace, 425
transformations, 377

Box–Cox, 377
Grizzle, Starmer, Koch, 378
power, 377
variance stabilizing, 378

translation invariance, 307
transpose, 411, 419
Tukey’s HSD, 105, 112
Tukey’s one degree of freedom, 234
tuning parameter, 402
two independent samples, 32, 61
two-phase linear regression, 160
two-stage sampling, 268
two-way ANOVA, 163, 169, 179, 182, 184

UMPI test, 58
UMVU, 30, 33, 312
unbalanced ANOVA, 184, 194
unbiased estimate, 22, 26, 28, 30, 238, 248,

311
unbiased predictor, 294
unequal numbers, 184, 194
uniformly minimum variance unbiased

estimate, 30, 312
uniformly most powerful invariant test, 58
unreplicated experiments, 352
updating formulae, 370
usual constraints, 96

variable selection, 381, 382, 385, 387
variance component, 291, 292, 300
variance component models, 299, 304, 307,

310
variance estimation

Bayesian, 40, 45
general Gauss–Markov models, 247, 248
generalized least squares models, 35
standard models, 26, 29, 31
variance component models, 299, 304, 307,

310, 311
variance stabilizing transformations, 377, 378
variance-covariance matrix, 3
Vec operator, 420, 435
vector, 411
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vector space, 411

weak experimentwise error rate, 105
weighted least squares, 36
whole plot, 267
whole plot analysis, 272, 273, 278, 279, 281
whole plot error, 277

Wilk–Shapiro test, 350
WLS, 36
Working–Hotelling confidence bands, 123

Youden squares, 233

zero matrix, 411, 435
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