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Preface

This book describes general procedures of estimation and hypothesis
testing for linear statistical models and shows their application for un-
balanced data (i.e., unequal-subclass-numbers data) to certain specific
models that often arise in research and survey work. In addition, three
chapters are devoted to methods and results for estimating variance
components, particularly from unbalanced data. Balanced data of the kind
usually arising from designed experiments are treated very briefly, as just
special cases of unbalanced data. Emphasis on unbalanced data is the
backbone of the book, designed to assist those whose data cannot satisfy
the strictures of carefully managed and well-designed experiments.

The title may suggest that this is an all-embracing treatment of linear
models. This is not the case, for there is no detailed discussion of designed
experiments. Moreover, the title i1s not An Introduction to . .., because the
book provides more than an introduction; nor is it ... with Applications,
because, although concerned with applications of general linear model theory
to specific models, few applications in the form of real-life data are used.
Similarly, ... for Unbalanced Data has also been excluded from the title
because the book is not devoted exclusively to such data. Consequently the
title Linear Models remains, and I believe it has brevity to recommend it.

My main objective is to describe linear model techniques for analyzing
unbalanced data. In this sense the book is self-contained, based on pre-
requisites of a semester of matrix algebra and a year of statistical methods.
The matrix algebra required is supplemented in Chapter 1, which deals with
generalized inverse matrices and allied topics. The reader who wishes to
pursue the mathematics in detail throughout the book should also have
some knowledge of statistical theory. The requirements in this regard are
supplemented by a summary review of distributions in Chapter 2, extending
to sections on the distribution of quadratic and bilinear forms and the singular
multinormal distribution. There is no attempt to make this introductory
material complete. It serves to provide the reader with foundations for
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vi PREFACE

developing results for the general linear model, and much of the detail of
this and other chapters can be omitted by the reader whose training in
mathematical statistics is sparse. However, he must know Theorems 1 through
3 of Chapter 2, for they are used extensively in succeeding chapters.
Chapter 3 deals with full-rank models. It begins with a simple explanation
of regression (based on an example) and proceeds to multiple regression,
giving a unified treatment for testing a general linear hypothesis. After
dealing with various aspects of this hypothesis and special cases of it, the
chapter ends with sections on reduced models and other related topics.
Chapter 4 introduces models not of full rank by discussing regression on
dummy (0, 1) variables and showing its equivalence to linear models. The
results are well known to most statisticians, but not to many users of re-
gression, especially those who are familiar with regression more in the form
of computer output than as a statistical procedure. The chapter ends with a
numerical example illustrating both the possibility of having many solutions
to normal equations and the idea of estimable and non-estimable functions.
Chapter 5 deals with the non-full-rank model, utilizing generalized inverse
matrices and giving a unified procedure for testing any testable linear hypoth-
esis. Chapters 6 through 8 deal with specific cases of this model, giving
many details for the analysis of unbalanced data. Within these chapters
there 1s detailed discussion of certain topics that other books tend to ignore:
restrictions on models and constraints on solutions (Sections 5.6 and 5.7);
singular covariance matrices of the error terms (Section 5.8); orthogonal
contrasts with unbalanced data (Section 5.5g); the hypotheses tested by F-
statistics in the analysis of variance of unbalanced data (Sections 6.4f, 7.1g,
and 7.2f); analysis of covariance for unbalanced data (Section 8.2); and
approximate analyses for data that are only slightly unbalanced (Section 8.3).
On these and other topics, 1 have tried to coordinate some 1deas and make
them readily accessible to students, rather than continuing to leave the liter-
ature relatively devoid of these topics or, at best, containing only scattered
references to them. Statisticians concerned with analyzing unbalanced data
on the basis of linear models have talked about the difficulties involved for
many years but, probably because the problems are not easily resolved,
little has been put in print about them. The time has arrived, I feel, for
trying to fill this void. Readers may not always agree with what is said,
indeed I may want to alter some things myself in due time but, mean-
while, if this book sets readers to thinking and writing further about these
matters, I will feel justified. For example, there may be criticism of the
discussion of F-statistics in parts of Chapters 6 through 8, where these
statistics are used, not so much to test hypotheses of interest (as described
in Chapter 5), but to specify what hypotheses are being tested by those
F-statistics available in analysis of variance tables for unbalanced data. I
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believe it is important to understand what these hypotheses are, because they
are not obvious analogs of the corresponding balanced data hypotheses and,
in many cases, are relatively useless.

The many numerical illustrations and exercises in Chapters 3 through 8
use hypothetical data, designed with easy arithmetic in mind. This is because I
agree with C. C. Li (1964) who points out that we do not learn to solve
quadratic equations by working with something like

68312522 + 1268.4071x — 213.69825 = 0

just because it occurs in real life. Learning to first solve 22 4+ 3z + 2 = 0
is far more instructive. Whereas real-life examples are certainly motivating,
they usually involve arithmetic that becomes as cumbersome and as difficult
to follow as is the algebra it is meant to illustrate. Furthermore, if one is
going to use real-life examples, they must come from a variety of sources
in order to appeal to a wide audience, but the changing from one example to
another as succeeding points of analysis are developed and illustrated brings
an inevitable loss of continuity. No apology is made, therefore, for the arti-
ficiality of the numerical examples used, nor for repeated use of the same
example in many places. The attributes of continuity and of relatively easy
arithmetic more than compensate for the lack of reality by assuring that
examples achieve their purpose. of illustrating the algebra.

Chapters 9 through 11 deal with variance components. The first part of
Chapter 9 describes random models, distinguishing them from fixed models
by a series of examples and using the concepts, rather than the details, of
the examples to make the distinction. The second part of the chapter is the
only occasion where balanced data are discussed in depth: not for specific
models (designs) but in terms of procedures applicable to balanced data
generally. Chapter 10 presents methods currently available for estimating
variance components from unbalanced data, their properties, procedures,
and difficulties. Parts of these two chapters draw heavily on Searle (1971).
Finally, Chapter 11 catalogs results derived by applying to specific models
some of the methods described in Chapter 10, gathering together the cumber-
some algebraic expressions for variance component estimators and their
variances in the l-way, 2-way nested, and 2-way crossed classifications
(random and mixed models), and others. Currently these results are scattered
throughout the literature. The algebraic expressions are themselves so lengthy
that there would be little advantage in giving numerical illustrations. Instead,
extra space has been taken to typeset the algebraic expressions in as readable
a manner as possible.

All chapters except the last have exercises, most of which are designed to
encourage the student to reread the text and to practice and become
thoroughly familiar with the techniques described. Statisticians, in their
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consulting capacity, are much like lawyers. They do not need to remember
every technique exactly, but must know where to locate it when needed and be
able to understand it once found. This is particularly so with the techniques
of unbalanced data analysis, and so the exercises are directed towards
impressing on the reader the methods and logic of establishing the techniques
rather than the details of the results themselves. These can always be found
when needed.

No computer programs are given. This would be an enormous task, with
no certainty that such programs would be optimal when written and even
less chance by the time they were published. While the need for good pro-
grams is obvious, I think that a statistics book is not the place yet for such
programs. Computer programs printed in books take on the aura of quality
and authority, which, even if valid initially, soon becomes outmoded in
today’s fast-moving computer world.

The chapters are long, but self-contained and liberally sign-posted with
sections, subsections, and sub-subsections-—all with titles (see Contents).

My sincere thanks go to many people for helping with the book: the
Institute of Statistics at Texas A. and M. University which provided me with
facilities during a sabbatical leave (1968-1969) to do most of the initial
writing; R. G. Cornell, N. R. Draper, and J. S. Hunter, the reviewers of the
first draft who made many helpful suggestions; and my colleagues at Cornell
who encouraged me to keep going. I also thank D. F. Cox, C. H. Goldsmith,
A. Hedayat, R. R. Hocking, J. W. Rudan, D. L. Solomon, N. S. Urquhart, and
D. L. Weeks for reading parts of the manuscript and suggesting valuable im-
provements. To John W. Rudan goes particular gratitude for generous help
with proof reading. Grateful thanks also go to secretarial help at both Texas
A. and M. and Cornell Universities, who eased the burden enormously.

S. R. SEARLE

Ithaca, New York
October, 1970
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Linear Models
by S. R. Searle
Copyright © 1971 John Wiley & Sons, Inc.

CHAPTER 1

GENERALIZED INVERSE MATRICES

1. INTRODUCTION

The application of generalized inverse matrices to linear statistical models
is of relatively recent occurrence. As a mathematical tool such matrices aid
in understanding certain aspects of the analysis procedures associated with
linear models, especially the analysis of unbalanced data, a topic to which
considerable attention is given in this book. An appropriate starting point is
therefore a summary of the features of generalized inverse matrices that are
important to linear models. Other ancillary results in matrix algebra are
also discussed.

a. Definition and existence
A generalized inverse of a matrix A is defined, in this book, as any matrix

G that satisfies the equation
AGA = A. (1)

The name ‘““generalized inverse” for matrices G defined by (1) is unfortunately
not universally accepted, although it is used quite widely. Names such as
““conditional inverse”, ‘“‘pseudo inverse” and “‘g-inverse’ are also to be found
in the literature, sometimes for matrices defined as is G of (1) and sometimes
for matrices defined as variants of G. However, throughout this book the
name “generalized inverse” of A is used exclusively for any matrix G satisfy-
ing (1).

Notice that (1) does not define G as ‘“‘the” generalized inverse of A but as
“a” generalized inverse. This is because G, for a given matrix A, is not unique.
As shown below, there is an infinite number of matrices G that satisfy (1)
and so we refer to the whole class of them as generalized inverses of A.

One way of illustrating the existence of G and its non-uniqueness starts
with the equivalent diagonal form of A. If A has order p X ¢ the reduction

[ 1]



2 GENERALIZED INVERSE MATRICES [1.1]

to this diagonal form can be written as

DTXT Orx(q—r)
P‘DXPADX(IQQXQ = Aqu = l:

o(n—T)Xr 0(p—r)><(q—r)

D, 0
PAQ=A=[ }

or, more simply, as

0 0

As usual, P and Q are products of elementary operators [see, for example,
Searle (1966), Sec. 5.7, r is the rank of A and D, is a diagonal matrix of
order r. In general, if d,, d,, . . ., d, are the diagonal elements of any diagonal
matrix D we will use the notation D{d;} for D,; i.e.,

d, 0 0]
0 d, 0
D, = " = diag {d;} = D{d;} for i=1,...,r. (2)
K 0 d, |

Furthermore, as in A, null matrices will be represented by the symbol 0,
with order being determined by context on each occasion.

Derivation of G comes easily from A. Analogous to A we define A~
(to be read as “A minus”) as

D' 0
A = )
0 0

G =QAP 3)

Then, as shown below,

satisfies (1). Hence G is a generalized inverse of A. Clearly G as given by (3)
is not unique, for neither P nor Q by their definition is unique; neither is A
nor A", and therefore G = QA P is not unique.

Before showing that G does satisfy (1), note from the definitions of A and

A given above that
AATA = A (4)

Hence, by the definition implied in (1), we can say that A" is a generalized
inverse of A, an unimportant result in itself but one which leads to G satisfy-
ing (1). To show this we use A to write

A =P1AQ, (3)



[1.1] INTRODUCTION 3

the inverses P~! and Q! existing because P and Q are products of elementary
operators and hence non-singular. Then (3), (4) and (5) give

AGA = P1AQ1QA™PP1AQ! = P-1AATAQ! = PIAQ! = A;

i.e., (1) is satisfied. Hence G is a generalized inverse of A.

Example. For

4 1 2
A=1}1 15
313
a diagonal form is obtained using
0 1 0 1 -1 1
P = 1 —4 0 and Q=10 1 —6],
-2 -1 1 0 0 1
so that
1 0 0 1 0 0
PAQ=A=|0 -3 0 and A =10 -} 0f.
0O o0 0 0O 0 0
Hence
1 —1 0
G=QAP=1% -1 4 0].
o o0 0

The reader should verify that AGA = A.

It is to be emphasized that generalized inverses exist for rectangular
matrices as well as for square ones. This is evident from the formulation of
A, .. However, for A of order p X ¢, we define A™ as having order g X p,
the null matrices therein being of appropriate order to make this so. As a
result G has order g X p.

Example. Consider

4 1 2 O
B=|1 1 5 15},
31 3 5

the same as A in the previous example except for an additional column.
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With P as given earlier and Q now taken as

1 -1 1 5

1 0 0 0
0 1 —6 —20
=1y o 1 o ™ Q 01,

o 0o o 1 0o 0 0 0

A" is then taken as

1 0 0 1 -1 0]
- 0o -1 0 1 4 0
A = s , sothat G=QA™P=| * ° .
0 0 O 0 0 0
0 0 0] L 0 0 Ol

b. An algorithm
Another way of computing G is based on knowing the rank of A. Suppose
it is r and that A can be partitioned in such a way that its leading r x r

minor is non-singular, i.e.,
A [All A12:l
X —
A21 A22

where A,; is ¥ X r of rank r. Then a generalized inverse of A is

A7 0
Gq><1) = 0 0 s

where the null matrices are of appropriate order to make G be ¢ X p. To
see that G is a generalized inverse of A, note that

AGA — All A12
B A21 A21A;11A12 ‘

Now, by the way in which A has been partitioned, [Ay;  Ase] = K[A;; Ay
for some matrix K. Therefore K = A, ATt and so A,, = KA, = Ay ATHA .
Hence AGA = A.

Example. A generalized inverse of

-
12 5 2 7 =2
A=|3 7 12 41, having rank 2, 1sG =

!

I

D
©c o o o
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There is no need for the non-singular minor of order r to be in the leading
position. Suppose it is not. Let R and S represent the elementary row and
column operations respectively to bring it to the leading position. Then R
and S are products of elementary operators with

B, B
RAS — B — [ 11 12]
BZI B22

where B,; is non-singular of order r. Then

J

is a generalized inverse of B and G,,, = SFR is a generalized inverse of A.
Now R and S are products of elementary operators that interchange rows
(or columns); i.e., R and S are products of matrices that are identity matrices
with rows (or columns) interchanged. Therefore R and S are identity matrices
with rows (or columns) in a different sequence from that found in I. Such
matrices are known as permutation matrices and are orthogonal; i.e.,

R = I with its rows in a different sequence
= permutation matrix
and RR =1 (6)
The same is true for S, and so from RAS = B we have

, , B, By ,
A=RBS'=R S
B, By

Clearly, so far as B,; is concerned, this product represents the operations of
returning the elements of By, to their original positions in A. Now consider

G: we have
(B)) 0
R’ S’
0 0

In this, analogous to the form of A = R’BS’, the product involving R’
and S’ in G’ represents putting the elements of (B}!) into the corresponding
positions (of G') that the elements of B,; occupied in A. Hence an algorithm
for finding a generalized inverse of A by this method is as follows.

’

G =SFR = (R'F'S) =

(i) In A, of rank r, find any non-singular minor of order r. Call it M
(using the symbol M in place of By,).
(ii) Invert M and transpose the inverse: (M%)
(iii) In A replace each element of M by the corresponding element of
(MYY; ie., if a;; = my,, the (s, £)th element of M, then replace a;; by m"s,
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the (¢, s)th element of M2, equivalent to the (s, #)th element of the trans-
pose of M1,

(1v) Replace all other elements of A by zero.

(v) Transpose the resulting matrix.

(vi) The result 1s G, a generalized inverse of A.

Note that this procedure is not equivalent, in (iii), to replacing elements of
M in A by the elements of M~ (and others by zero) and then in (v) transpos-
ing. It is if M 1s symmetric. Nor is it equivalent to replacing, in (i), elements
of M in A by elements of M~ (and others by zero) and then in (v) not trans-
posing (see Exercise 5). In general, the algorithm must be carried out exactly
as described.

One case where 1t can be simplified 1s when A 1s symmetric. Then any
principal minor of A i1s symmetric and the transposing in both (in) and (v)
can be ignored. The algorithm can then become as follows.

(1) In A, of rank r and symmetric, find any non-singular principal minor
of order r. Call 1t M.
(i1) Invert M.
(1) In A replace each element of M by the corresponding element of M.
(iv) Replace all other elements of A by zero.
(v) The result is G, a generalized inverse of A.

However, when A is symmetric and a non-symmetric non-principal minor is
used for M, then the general algorithm must be used.

Example. The matrix

4 1 2 0
A,=[1 1 515
31 3 5

has the following matrices, among others, as generalized inverses:

— -

-

0 0 O] 0 0 0 S0 0
0 -3 3 0 —F% 1% 0 0 O
and ,
0 i =3 0 0 0 0 0 O
0 0 0] 0 f5  —To | =% 0 7

derived from inverting the 2 X 2 minors

15 115 4 0 _
, and respectively.
1 3 15 35
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Similarly,

oo
N
[\®]
o
I
D
%)

as a generalized inverse.

These derivations of a matrix G that satisfies (1) are by no means the only
ways in which such a matrix can be computed. For matrices of small order
they can be satisfactory, but for those of large order other methods may be
preferred. Some of these are discussed subsequently. Most methods involve,
of course, the same kind of numerical problems as are incurred in calculafing
the regular inverse A~! of a non-singular matrix A. Despite this, the general-
ized inverse has importance because of its general application to non-square
matrices and to square, singular matrices. In the special case that A is non-
singular G = A~!, as one would expect, and in this case G is unique.

The fact that A has a generalized inverse even when it is singular or rec-
tangular has particular application in the problem of solving equations,
e.g., of solving Ax =y for x when A is singular or rectangular. In situations
of this nature the use of a generalized inverse G leads, as we shall see, very
directly to a solution. And this is of great importance in the study of linear
models, wherein such equations arise quite frequently. For example, when a
model can be written as y = Xb + e, the least squares procedure for estimat-

ing b often leads to equations X'Xb = X'y where the matrix X'X is singular.
Hence the solution cannot be written as (X'X)!X'y; but using a generalized
inverse of X'X a solution can be obtained directly and its properties studied.

Since the use of generalized inverse matrices in solving linear equations is
the application of prime interest so far as linear models are concerned, the
procedures involved are now outlined. Following this, some general prop-
erties of generalized inverses are discussed.

2. SOLVING LINEAR EQUATIONS

a. Consistent equations
A convenient starting point from which to develop the solution of linear

equations using a generalized inverse is the definition of consistent equations.

Definition. The linear equations Ax =y are defined as being consistent
if any linear relationships existing among the rows of A also exist among the
corresponding elements of y.
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As a simple example, the equations

o=l

are consistent: in the matrix on the left the second row is thrice the first,
and this is also true of the elements on the right. But the equations

1 2][= 7
3 6||x| |24
are not consistent. Further evidence of this is seen by writing them in full:

2, + 22, =17 and 3z, + 6x, = 24.

As a consequence of the first, 3z, + 6x, = 21, which cannot be true if the
second is to hold. The equations are therefore said to be inconsistent.

The formal definition of consistent equations does not demand that linear
relationships must exist among the rows of A, but if they do then the defi-
nition does require that the same relationships also exist among the corre-
sponding elements of y for the equations to be consistent. For example,
when A~! exists, the equations Ax = y are always consistent, for there are
no linear relationships among the rows of A and therefore none that the
elements of y must satisfy.

The importance of the concept of consistency lies in the following theorem:
linear equations can be solved if, and only if, they are consistent. Proof
can be established from the above definition of consistent equations [see,
for example, Searle (1966), Sec. 6.2, or Searle and Hausman (1970), Sec. 7.2].
Since it is only consistent equations that can be solved, discussion of a
procedure for solving linear equations is hereafter confined to equations
that are consistent. The procedure is described in a series of theorems.

b. Obtaining solutions
The link between a generalized inverse of the matrix A and consistent
equations AX =y is set out in the following theorem adapted from Rao

(1962).

Theorem 1. Consistent equations Ax = y have a solution x = Gy if and
only if AGA = A.

Proof. 1If the equations Ax =y are consistent and have x = Gy as a
solution, write a, for the jth column of A and consider the equations Ax = a;.
They have a solution: the null vector with its jth element set equal to unity.
Therefore the equations Ax = a; are consistent. Furthermore, since con-
sistent equations Ax = y have a solution x = Gy, it follows that consistent
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equations Ax = a; have a solution x = Ga,. Therefore AGa,; = a;; and this
1s true for all values of j, i.e., for all columns of A. Hence AGA = A.

Conversely, if AGA = A, then AGAx = Ax, and when Ax = y this gives
AGy =y, 1.e., A(Gy) = y. Hence x = Gy is a solution of Ax =y, and the
theorem is proved.

Theorem 1 indicates how a solution to consistent equations may be ob-
tained: find any matrix G satisfying AGA = A, i.e., find G as any generalized
inverse of A, and then Gy is a solution. However, as Theorem 2 shows, Gy
is not the only solution. There are, indeed, many solutions whenever A is
anything other than a square, non-singular matrix.

Theorem 2. If A has ¢ columns and if G is a generalized inverse of A,
then the consistent equations Ax = y have solution

X = Gy + (GA — D)z, (7)
where z 1s any arbitrary vector of order g.
Proof. AX = AGy + (AGA — A)z
= AGy, because AGA = A,
=y, by Theorem 1I;
i.e., X satisfies Ax = y and hence is a solution. The notation X emphasizes
that X is a solution, distinguishing it from the general vector of unknowns x.
Note that the solution X involves an element of arbitrariness because z
is an arbitrary vector: z can have any value at all and X will still be a solution
to Ax = y. No matter what value is given to z, the expression for X given in

(7) satisfies Ax = y. Furthermore, this will be so for whatever generalized
inverse of A is used for G.

Example. Consider the equations Ax =y as

5 3 1 —4|[x] [ 6]

8 5 2 31|z 8
= , (8)

21 13 5 2l 2

(3 2 1 T|m] |2

so defining A, x and y. It will be found that
5 =3

|
o0
v,
© ©o o o
o
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is a generalized inverse of A satisfying AGA = A, and the solution (7) is
X=Gy + (GA —I)z

6] ([t 0 —1 =29 \[z]
—8 0 1 2 47 2y
-1l -1
0 0O 0 0 0 2
Lo \e 0o 0 of Jla
[ 6 — 23 — 2924_1
—8 + 22, + 472,
= 9
—2,

L .

where 23 and z, are arbitrary. This means that (9) is a solution to (8) no
matter what values are given to z; and z,. For example, putting z; =0 = 2,
gives

X[=[6 —8 0 0] (10)
and putting z; = —1 and z, = 2 gives
X,=[-51 8 1 -2]. (11)

It will be found that both X; and X, satisfy (8). That (9) does satisfy (8) for
all values of z; and z4 can be seen by substitution. For example, the left-hand
side of the first equation is then

=30 — 24 + 23(—5 + 6 — 1) + 2,(—145 + 141 + 4)
=6
as it should be.

The G used earlier is not the only generalized inverse of the matrix A in
(8). Another is

0 0o o0 0]
oo =5 2 0
G =

0 13 —5 0

0 0 0 0

.
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for which (7) becomes
X =Gy + (GA — I)z

o] ([ o o o o] [z
4 2 1 0 —11 2y
= + ¢ —1)
—6 —1 0 1 29 24
| OJ U 0 0 0 OJ ) f;“_l
i —% ]
4 +22.:1 - 1].2-4
= (12)
"""6 - 2.1 +292"«4
! % |

for arbitrary values 2, and z,. This too, it will be found, satisfies (8).

¢. Properties of solutions

One might now ask about the relationship, if any, between the two solu-
tions (9) and (12) found by using the two generalized inverses G and G.
Both satisfy (8) for an infinite number of sets of values of z3, z, and 2,, 2,.
The basic question is: Do the two solutions generate, through allocating
different sets of values to the arbitrary values z; and 2z, in X and 2; and 2,
in X, the same series of vectors that satisfy Ax = y? The answer is “yes”.
This is so because, on putting 2, = —6 + 23 4+ 29z, and 2, = 2, the solution
in (12) becomes identical to that in (9). Hence (9) and (12) both generate the
same sets of solutions to (8)

The relationship between solutions using G and those using G is that,
on putting

z= (G — Gy + (I - GA),

X reduces to X.

A stronger result, which concerns generation of all solutions from X, is
contained in the following theorem.

Theorem 3. For the consistent equations Ax = y all solutions are, for any
specific G, generated by X = Gy + (GA — I)z, for arbitrary z.

Proof. Let x* be any solution to Ax = y. Choose z = (GA — I)x* and it
will be found that X reduces to x*. Thus, by appropriate choice of z, any
solution to Ax = y can be put in the form of X.

The importance of this theorem is that one need derive only one generalized
inverse of A in order to be able to generate all solutions to Ax = y. There
are no solutions other than those that can be generated from X.



12 GENERALIZED INVERSE MATRICES [1.2]

Having established a method for solving linear equations and shown that
they can have an infinite number of solutions, we ask two questions: What
relationships exist among the solutions and to what extent are the solutions
linearly independent (LIN)? Since each solution is a vector of order g there
can, of course, be no more than g LIN solutions. In fact there are fewer,
as Theorem 4 shows. But first, a lemma.

Lemma 1. Let H = GA where the rank of A, denoted by r(A), is r,
i.e., 7(A) =r; and A has ¢ columns. Then H is idempotent with rank r
and rf(I —H) =¢q —r.

Proof. H* = GAGA = GA = H, showing that H is idempotent. Further-
more, by the rule for the rank of a product matrix, r(H) = r(GA) < r(A).
Similarly, because AH = AGA = A, we have r(H) > r(A). Therefore
r(H) = r(A) = r. And since H 1s idempotent so is I — H, of order ¢, so that
rd—H=trfI-H)=g—trH)=q¢q—rH)=q —r.

Theorem 4. When A is a matrix of g columns and rank r, and when y is a
non-null vector, the number of LIN solutions to the consistent equations
Ax =yisqg —r + L.

Proof. Writing H = GA, the solutions to Ax =y are, from Theorem 2,
X=Gy+ (H—- Dz

Now because r(H — I) = ¢ — r, there are only (¢ — r) arbitrary elements in
(H — Iz for arbitrary z; the other r elements are linear combinations of
those g — r. Therefore there are only (¢ — r) LIN vectors (H — I)z and

using them in X gives (¢ — r) LIN solutions. For i=1,2,...,9 —r let
X, = Gy + (H — Dz, be these solutions. X = Gy i1s also a solution. Assume
it 1s linearly dependent on the X, so that for scalars 4;, i =1,2,...,9 —r,
not all of which are zero,

Gy = > A%, = > A[Gy + (H — Dz,]. (13)
Then Gy = Gy > A + > A[H — Dz,]. (14)

Now the left-hand side of (14) contains no z’s. Therefore, on the right-hand
side the second term must be null. But since the (H — I)z; are LIN this can
be true only if every A, is zero. This means (13) is no longer true for some
A; non-zero. Therefore Gy is independent of the X;; hence Gy and X; for
i=1,2,...,9 —r form a set of (¢ — r + 1) LIN solutions. When ¢ = r
there is but one solution, corresponding to the existence of A=, and that
solution 1s x = A-ly.

This theorem means that X = Gyand X = Gy + (H — Iz for(g¢ — r) LIN
vectors z are LIN solutions of Ax = y. All other solutions will be linear
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combinations of those forming a set of LIN solutions. A means of construct-
ing solutions as linear combinations of other solutions is contained in the
following theorem.

Theorem 5. If X,,X,, ..., X are any s solutions of consistent equations
Ax =y for which y # 0, then any linear combination of these solutions
x* = > A,X, is also a solution of the equations if, and only if, Sh=1,
the summation being fori =1,2,...,s.

Proof. Because
x* = Z liii’
AX* = A z )"iii = z Z“iAil"
And because X; is a solution, AX,; =y for all 7, so giving

Ax* =3 Ay =y 4). (15)

Now if x* is a solution of Ax =y then Ax* =y, and by comparison with
(15) this means, y being non-null, that > 4, = 1. Conversely, if > 4, = 1,
equation (15) implies that Ax* =y, namely that x* is a solution. So the
theorem is proved.

Notice that Theorem 5 is in terms of any s solutions. Hence for any number
of solutions, whether LIN or not, any linear combination of them is itself a
solution provided the coefficients in that combination sum to unity.

Corollary. When y = 0, Gy is null and there are only ¢ — r non-null
LIN solutions to Ax = 0; also, > 4,X, Is a solution of Ax = 0 for any values
of the A,’s.

Example (continued). 1t can be shown that the value of r(A) = r for A
defined in (8) is r = 2. Therefore there areq —r +1 =4 —2 4+ 1 = 3 LIN
solutions to (8). Two are shown in (10) and (11), with (10) being the solution
Gy when the value z = 0is used. Another solution, puttingz’ = [0 0 0 1]
in (9), 1s

X; =[—23 39 0 —1].
Thus X,, X, and X; are LIN solutions and any other solution will be a linear
combination of these three. For example, with 22 =[0 0 —1 0] the
solution (9) becomes
X, =1[7 —10 1 0]
and it can be seen that
X, = 2%, + X, — 2%,

the coefficients on the right-hand side, 2, 1 and —2, summing to unity in
accord with Theorem 5.
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A final theorem relates to an invariance property of the elements of a
solution. It i1s important in the study of linear models because of its rela-
tionship with what is known as estimability, discussed in Chapter 5. Without
worrying about details of estimability here, we give the theorem and refer to
it later as needed. The theorem is due to Rao (1962) and it concerns linear
combinations of the elements of a solution vector: certain combinations are
invariant to whatever solution is used.

Theorem 6. The value of k'X is invariant to whatever solution of Ax =y
1s used for X if and only if k'H = k' (where H = GA and AGA = A).

Proof. For a solution X given by Theorem 2
k'x = k'Gy + k'(H — I)z.

This is independent of the arbitrary z if Y'H = k’; and since any solution can
be put in the form X by appropriate choice of z, the value of k'X for any X
is k'Gy provided that KH = k'.

It may not be entirely clear that when k'H = k' the value of k'k = k'Gy
is Invariant to whichever of the many generalized inverses 1s used for the
matrix G. We therefore clarify this point. First, by Theorem 4 there are
(g —r + 1) LIN solutions of the form X = Gy + (H — I)z. Let these
solutions be X, for i=1,2,...,9 —r + 1. Suppose for some other
generalized inverse, G* say, we have a solution

x* = G*y + (H* — D)z*.

Then, since the X,’s are a LIN set of (9 — r + 1) solutions, x* must be a
linear combination of them; that is, there is a set of scalars 4,, for i =
1,2,...,9 —r + 1, such that

¢—r+1

x* = > A%,
&1

where not all the 1,’s are zero and for which, by Theorem 3, >2=1.
Proving the sufficiency part of the theorem demands showing that k'k
is the same for all solutions ¥ when k’'H = k’. Note that when kH = k',

‘'t = KHX = K'HGy + k'(H? — H)z = K'HGy = k'Gy.
Therefore k'X; = k’Gy for all /, and
Kx* =k 3 A% =3 2k'% = 3 2K Gy = KGy(¥ 2,) = KGy = k'
i.e., for any solution at all, k't = k'Gy if KH = k. To prove the necessity
part of the theorem choose z* = 0 in x*. Then
k'x* = K'Gy = k' D A%, =K' D> 4[Gy + (H — Dz,]
=kKGyQ 4) + K Z AH — Dz,
=KGy + k'S ,(H — D)z,
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Hence k' Y A,(H — I)z, = 0. But the 4; are not all zero and the (H — I)z,
are LIN. Therefore this last equation can be true only if K(H —I) =0,
ie., KH = k. Hence k'x* for any solution x* equals k'Gy if and only if
k'H = k'. This proves the theorem conclusively.

Example. In deriving (9),

—

1 0 -1 —29]

0 1 2 47
H = GA =
0 0 0 0
0 0 0 0]
and for K=[3 21 17 (16)

it will be found that k'H = k’. Therefore k’X is invariant to whatever solution
1s used for X. Thus from (10) and (11)

K'%, = 3(6) 4+ 2(—8) + 1(0) + 7(0) = 2
and K%, = 3(—51) + 2(84) + 1(1) + 7(—=2) = 2,

and in general, from (9),

k'K = 3(6 — 23 — 292,) 4+ 2(—8 + 22, + 472) + 1(—23) + T(—2z,)
=18 —16 +23(—3+4—1) + 2(—-87+ 94— 7)
=2,

So too does k'x have the same value for, from (12),

k'x = 3(—2) + 2(4 + 2z, — 112)) + 1(—6 — 2, + 29%)) + 7(—2,)
=8 —6+24(—3+4—1)+2(-22+29-17)
= 2.

There are, of course, many values of k' thai satisfy KH = k’. For each
of these, k’X is invariant to the choice of X; 1.e., for two such vectors k; and
k, say, kX and k,X are different but each has a value that is the same for all
values of X. Thus in the example k; = k/H, where

ki=[1 2 3 65]
1s different from (16); and

k%, = 1(6) + 2(—38) + 3(0) + 65(0) = —10

is different from k'x for k’ of (16). But k;X = —10 for every X.
The invariance of k’% to X holds for any k' for which k’'H = k', as shown in
Theorem 6. Two corollaries of the theorem follow.
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Corollary 1. k'K is invariant to X for k’ of the form k’ = w'H, for arbitrary
w’. (Idempotency of H ensures that k' = w'H satisfies KH = k'.)

Corollary 2. There are only r LIN vectors k' for which k’X is invariant to X.
[Because r(H) = r there are in k' = w'H of order ¢ exactly ¢ — r elements
that are linear combinations of the other r. Therefore for arbitrary vectors
w’ there are only r LIN vectors k' = w'H.] We return to this point when dis-
cussing estimable functions in Chapter 5.

The concept of a generalized inverse has now been defined and its use in
solving linear equations explained. We next briefly discuss the generalized
inverse itself, its various definitions and some of its properties. Extensive
review of generalized inverses and their applications is to be found in Boullion
and Odell (1968) and the approximately 350 references listed there.

3. THE PENROSE INVERSE

Penrose (1955), in extending the work of Moore (1920), shows that for
any matrix A there is a unique matrix K which satisfies the following four
conditions:

AKA = A (1)

KAK =K (1)

(KA) = KA (i)

(AK) = AK (iv).
We refer to these as Penrose’s conditions and to K as the (unique) Penrose
inverse; more correctly it is the Moore-Penrose inverse. Penrose’s proof of
the existence of K satisfying these conditions is lengthy but instructive. It

rests upon two lemmas relating to matrices having real (but not complex)
numbers as elements, lemmas that are used repeatedly in what follows.

(17

Lemma 2. X'X = 0 implies X = 0.
Lemma 3. PX'X = QX'X implies PX' = QX'.

The first of these is true because X'X = 0 implies that sums of squares of
elements of each row are zero and hence the elements themselves are zero.

Lemma 3 is proved by applying Lemma 2 to
(PX'X — QX'X)(P — Q) = (PX' — QX')(PX' — QX')’ = 0.

Proof of the existence and uniqueness of K starts by noting that (i) and
(iii) imply AA'’K’ = A. Conversely, if AA'’K' = A then KA(KA) = KA,
showing that KA is symmetric, namely that (iii) is true; and using this in
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AA’K’ = A leads to (i). Thus (i) and (iii) are true if and only if AA'’K’ = A,
equivalent to

KAA' = A'. (18)
Similarly, (ii) and (iv) are true if and only if
KK'A" =K. (19)

Hence any K satisfying (18) and (19) also satisfies the Penrose conditions.

Before showing how K can be derived we show that it is unique. For if it
i1s not, assume that some other matrix M satisfies the Penrose conditions.
Then from conditions (i) and (iv) in terms of M we would have

A'AM = A’ (20)
and (ii) and (iil) would lead to
A'M'M =M. (21)
Therefore, on substituting (20) into (19) and using (19) again we have
K = KK'A’" = KK'A’AM = KAM;
and on substituting (21) into this and using (18) and (21) we get
K = KAM = KAAM'M = AM'M =M.

Therefore K satisfying (18) and (19) is unique and satisfies the Penrose con-
ditions; we derive its form by assuming that

K = TA’ (22)
for some matrix T. Then (18) is satisfied if
TA'AA" = A, (23)
and since satisfaction of (18) also implies (i) we have AKA = A, i.e.,
AKA =A".
Therefore TA'K'A" = TA',
which is KK'A’ = K,

namely (19). Thus we have proved that if K = TA’ as in (22), with T being
any matrix satisfying (23), then K satisfies (18) and (19) and hence the
Penrose conditions.

There remains the derivation of a suitable T. This is done as follows.
Consider A’A: it is square and so are its powers. And for some integer ¢
there will be, as a consequence of the Cayley-Hamilton theorem [see, e.g.,
Searle (1966), Sec. 7.5¢], a series of scalars 4y, 4,, . . ., 4;, not all zero, such
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that
MA'A + 2,(A'AR + -+ 4+ J(A'A) = 0.

If 2, is the first 4 in this identity that is non-zero, then T is defined as
T = (—=1/2)2a] + 2, 5(A’A) + - -+ + 2(A’A)F"1). (24)
To show that this satisfies (23) note that, by direct multiplication,
TAAYH = (= 1A a(AAYH + 4, o(AAY -+ 4 1(A'A)]
= (—=1/2)[—4A'A — 1,(A'AP? — - - - — 1 (A'A)].

Since, by definition, 4, is the first non-zero 1 in the series 4,, 4,, . . . , the above
reduces to
T(A’A)+! = (A'A)", (25)

and repeated use of Lemma 3 reduces this to (23). Thus K = TA' with T
as defined in (24) satisfies (23) and hence is the umque generalized inverse
satisfying all four of the Penrose conditions.

Example. For

— -

1 0 2
3 2 4
0 —1 1
A= we have A'A=|2 5 —11.
—1 0 -2
4 —1 9
i 1 2 OJ

Then, by the Cayley-Hamilton theorem,
66(A'A) — 17(A'A)? + (A’A) =0

and so T is taken as

14 —2 —4
T = (—1/66)(—171 + A’A) = (1/66)| —2 12 1
—4 1 3

6 —2 —6 10

and K=TA =(1/66)] 0 —11 0 22

12 7 —12 =2

is the Penrose inverse of A satisfying (17).
An alternative procedure for deriving K has been suggested by Graybill
et al. (1966). Their method is to find X and Y such that

AA'X = A and A'AY = A’ (26)
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and then K = XAY. 27

Proof that K satisfies the four Penrose conditions depends upon using (26)
and Lemma 3 to show that AXA = A = AYA.

4. OTHER DEFINITIONS

It is clear that the Penrose inverse K is not easy to compute, especially when
A has many columns, because then the application of the Cayley-Hamilton
theorem to AA for obtaining T will be tedious. However, as has already been
shown, only the first Penrose condition needs to be satisfied in order to have a

TABLE 1.1. SUGGESTED NAMES FOR MATRICES SATISFYING
SOME OR ALL OF THE PENROSE CONDITIONS

Conditions
Satisfied (Eq. 17) Name of Matrix Symbol
i Generalized inverse A9
i and ii Reflexive generalized inverse A
i, ii and iii Normalized generalized inverse A
i, ii, 1ii and iv Penrose inverse AP

matrix useful for solving linear equations. And in pursuing the topic of linear
models it is found that this is the only condition really needed. It is for this
reason that a generalized inverse of A has been defined as any matrix G that
satisfies AGA = A, a definition that is retained throughout this book. Never-
theless, a variety of names are to be found in the literature, both for G and
for other matrices satisfying fewer than all four of the Penrose conditions.
A set of descriptive names is given in Table 1.1.

In the notation of Table 1.1 A = G, the generalized inverse already
defined and discussed, and A» = K, the Penrose inverse. This has also been
called the pseudo inverse and the p-inverse by various authors. The suggested
definition of a normalized generalized inverse in Table 1.1 is not universally
accepted. As given there, it is used by Urquhart (1968), whereas Goldman
and Zelen (1964) call it a ““weak’ generalized inverse. An example of such a
matrix is a left inverse L such that LA = I. The description “normalized”
has also been used by Rohde (1966) for a matrix satisfying conditions (i),
(ii) and (iv). An example of this kind of matrix is the right inverse R for
which AR = 1.

Using the symbols of Table 1.1 it can be seen that

A o AN o Al o A(P),
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namely that the set of matrices A includes all those that are reflexive,
A, which in turn includes all the normalized generalized inverses A‘™),
which includes the unique A’ = K. Relationships between the four can be
established as follows:

AN = AWAAWD
A = A'(AA')9 (28)
AP — A'(AA')‘”’A(A'A)“”A'.
That these expressions satisfy the appropriate conditions can be proved by
repeated use of Lemma 3 of Sec. 3 or by Theorem 7 of Sec. 5, which follows.

5. SYMMETRIC MATRICES

The study of linear models frequently leads to equations of the form

X'Xb = X'y that have to be solved for b. Special attention is therefore given
to properties of a generalized inverse of the symmetric matrix X'X.

a. Properties of a generalized inverse

Four useful properties of a generalized inverse of X'X are contained in the
following theorem.

Theorem 7. When G is a generalized inverse of XX, then

(1) G’ is also a generalized inverse of X'X;

(1) XGX'X = X; i.e., GX' is a generalized inverse of X;

(i) XGX' is invariant to G;

(iv) XGX' is symmetric, whether G is or not.

Proof. By definition, G satisfies

X'XGX'X = X'X. (29)

Transposing gives X'XG'X'X = X'X, and so (i) is established; and applying
Lemma 3 yields (ii). To substantiate (iii) suppose that F is some other
generalized inverse, different from G. Then (ii) gives XGX'X = XFX'X and
the use of Lemma 3 then yields XGX' = XFX'; i.e., XGX' is the same for all
generalized inverses of X'X. Finally, to prove (iv) consider S as a symmetric
generalized inverse of X'X. Then XSX' is symmetric. But XSX' = XGX’

and therefore XGX' is symmetric. Hence the theorem is proved.
Corollary. Applying part (i) of the theorem to its other parts shows that
XG'X'X =X, X'XGX' = X' and X'XG'X' = X';
XG'X' = XGX'; and XG'X' is symmetric.
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It is to be emphasized that not all generalized inverses of a symmetric
matrix are symmetric. This is evident from the general algorithm given at the
end of Sec. 1. For example, applying that algorithm to

2 2 6 2 -1 0
A,=1{2 3 8 gives 0 0 0
6 8 2 1 1 0

as a non-symmetric generalized inverse of the symmetric matrix A,. However,
Theorem 7 and its corollary very largely enable us to avoid difficulties that
this lack of symmetry of generalized inverses of X'X might otherwise appear
to involve. For example, if G is a generalized inverse of XX and P is some
other matrix,
(PXGX') = XG'X'P' = XGX'P'

not because G is symmetric (which, in general, it is not) but because XG'X' =
XGX'. An example of this, for A, shown above, is

2 2 6 I 1 ojrt 1 3
A,=12 3 8|=|1 1 1|/t 1 3]=xX
6 8 22 3 3 2f|0 1 2
Then XGX' =
11 3 2 —14 1 10
1 1 3 0 0 11 1] = XG'X’
0 1 2j[-1 ; 3 2 0 0 2

[T T
et It
Lol Jp——
[—

0

0

0
2 0 — 0
0 0 03 3 2

b. Two methods of derivation

In addition to the methods given in Sec. 1, two methods discussed by John
(1964) are sometimes pertinent to linear models. They depend on the regular
inverse of a non-singular matrix:

’ 11
gi_ | XX H|T _[By By } 30)
H 0 B, B,,=0
H used here, in keeping with John’s notation, is not the matrix GA used earlier.

Where X'X has order p and rank p — m (m > 0), the matrix H is any matrix
of order m X p that is of full row rank with its rows also LIN of those of
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X'X. {The existence of such a matrix is assured by considering m vectors of
order p that are LIN of any set of p — m LIN rows of X'X. Furthermore, if
these rows constitute H in such a way that the m LIN rows of H correspond
in S to the m rows of X'X that are linear combinations of that set of p — m
rows, then S~* of (30) exists.] With (30) existing the two matrices

B;; and (X’X + H'H)! are generalized inverses of X'X. (31)
Three useful lemmas help in proving these results.
Lemma 4. The matrix T = [I, U] has rank r for any matrix U, of r rows.

Proof. Elementary operations carried out on T to find its rank will operate
on I, none of whose rows (or columns) can be made null by such operations.
Therefore (T) << r and so r(T) = r.

Lemma 5. If X, , has rank p — m for m > 0, then there exists a matrix
D, such that XD = 0 and r(D) = m.

Proof. Let X = [X, X,] where X; is N X (p — m) of full column rank.
Then the columns of X, are linear combinations of those of X; and so, for
some matrix C, of order (p — m) X m, the sub-matrices of X satisfy X, =
X;C. Letting D’ = [-C" L], which by Lemma 4 has rank m, we then have
XD = 0 and (D) = m and the lemma is proved: a matrix D exists.

Lemma 6. For X and D of Lemma 5 and H of order m X p with full row
rank, HD has full rank if and only if the rows of H are LIN of those of X.

Proof. (1) Given r(HD) = m, assume that the rows of H depend on those
of X. Then H = KX for some K, and HD = KXD = 0. This cannot be so,
because r(HD) = m. Therefore the assumption is false and so the rows of H

are LIN of those of X. {X}

(ii) Given that the rows of H are LIN of those of X, the matrix -

of order (N + m) X p, has full column rank. Therefore it has a left inverse,
[U V] say [Searle (1966), Sec. 5.13], and so

UX + VH =1, le., UXD + VHD = D; or VHD = D,

using Lemma 5. But r(D,.,,) = m and therefore D has a left inverse, E say,
and so EVHD = ED = I,. Therefore r(HD) > m and so, because HD is
m X m, {(HD) = m, and the lemma is proved.

Proof of (31) can now be established. First, it is necessary to show that in
(30) By, = 0. In multiplying the two sides of (30) we get an identity matrix:

X,XBII + H’Bgl = I and X’XBlz + H’B22 = 0, (32)
HB, =0 and HB,=1L (33)
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Pre-multiplying (32) by D’ and using Lemmas 5 and 6 leads to
B,, = (D'H)'D’ and B,, = 0. (34)
Then, from (32) and (34)
X'XB,, =1 — H'(D'H')'D’ (35)

and post-multiplying this by XX shows, from Lemma 5, that B,, is a general-
ized inverse of X'X. Furthermore, making use of (33), (35) and Lemmas 5

and 6 gives
(X'’X + H'H)[B,; + D(D'H'HD)'D'] = 1.

Pre- and post-multiplying (X’X + H'H)? obtained from this by X'X then
shows that (X'X + H'H)™ is a generalized inverse of X'X.

It can also be shown that B,, satisfies the second of Penrose’s conditions,
(i) in (17), but (X'X + H'H)™! does nof; and neither generalized inverse in
(31) satisfies condition (iii) or (iv).

John (1964) refers to Graybill (1961, p. 292) and to Kempthorne (1952,
p- 79) in discussing B, and to Plackett (1960, p. 41) and Scheffé (1959,
p. 19) in discussing (X'X + H'H)~%, in terms of defining generalized inverses
of X'X as being matrices G for which b = GX'y is a solution of X'Xb = X'y.
By Theorem 1 they then satisfy condition (i), as has just been shown. Rayner
and Pringle (1967) also discuss these results, indicating that D of the preceding
discussion may be taken as (X'X + H'H)"'H'. This, as Chipman (1964)
shows (see Exercise 13), means that HD = I and so (35) becomes

X'XB,, = I — HHH(X'X + H'H)", (36)

a simplified form of Rayner and Pringle’s equation (7). The relationship
between the two generalized inverses of X'X shown in (31) is therefore that
indicated in (36). Note also that Lemma 6 is equivalent to Theorem 3 of
Scheffé (1959, p. 17).

6. ARBITRARINESS IN A GENERALIZED INVERSE

The existence of many generalized inverse matrices G that satisfy AGA =
A has been emphasized. We here examine the nature of the arbitrariness in
such generalized inverses, as discussed by Urquhart (1969a). Some lemmas
concerning rank are given first.

Lemma 7. A matrix of full row rank r can be written as a product of
matrices, one being of the form [I, S] for some matrix S, of r rows.

Proof. Suppose B,,, has full row rank r and contains an r X r non-
singular minor, M say. Then, for some matrix L and some permutation
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matrix Q [see (6)], we have BQ = [M L], so that
B=M[I MILIQ!'=M[I S]Q, for S = M'L.

Lemma 8. I + KK’ has full rank for any non-null matrix K.

Proof. Assume that I + KK’ does not have full rank. Then its columns
are not LIN and there exists a non-null vector u such that

(I + KK')u = 0, sothat  w(I + KK')u = v'u + vKW'K) = 0.

But uw'u and W' K(u'K)" are both sums of squares of real numbers. Hence their
sum is zero only if their elements are, i.e., only if u = 0. This contradicts the
assumption. Therefore I 4+ KK’ has full rank.

Lemma 9. When B has full row rank BB’ is non-singular.

Proof. As in Lemma 7, write B = M[I S]Q~! where M~ exists. Then,
because Q is a permutation matrix and thus orthogonal, BB’ = M(I + SS")M’
which, by Lemma 8 and because M~ exists, is non-singular.

Corollary. When B has full column rank BB is non-singular.

Consider now a matrix A, of rank r, less than both p and q. A contains at
least one non-singular minor of order r, which we will assume is the leading
minor. There is no loss of generality in this assumption because if it is not
true, the algorithm of Sec. 1b will always yield a generalized inverse of A
from a generalized inverse of B = RAS for permutation matrices R and S,
where B has its leading r X r minor non-singular. Discussion of generalized
inverses of A is therefore confined to A having its leading » X r minor non-
singular. Accordingly, A is partitioned as

A = { (All)rxr (Alz)rx(afr) :l (37)
(AZI)(p—T)Xr (AZZ)(v—r)X(a—r)

Then, with A}! existing, A can be written as

A [ ! ]A I AZIAL] (38)
- A21AI_11 11 11 £*12
I

= LAIIM’ With L =5 —1 and M — [I A;11A12]. (39)

A21A11

Since, from Lemma 4, L has full column rank and M has full row rank,
Lemma 9 shows that

(L'LY™ and (MM')~! exist. (40)
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The arbitrariness in a generalized inverse of A is investigated by means of
this partitioning. Thus, on substituting (39) into AGA = A we get

LA;MGLA, M = LA M.

Pre-multiplication by A7(L'L) 'L’ and post-multiplication by M'(MM')-1A}
then gives

MGL = A7/, (41)
Whatever the generalized inverse is, suppose it is partitioned as

Gll rXr G12 rX{p—r
G—l:( ) (Gi2)rx )]

(42)
(G2I)(Q—T)XT (G22)(q—r)><(p—r)

of order ¢ X p, conformable for multiplication with A. Then substituting
(42) and (39) into (41) gives

G, + A1_11A12G21 + G12A21Aﬁ1 + A;llAm(;zzAzlAﬁ1 = A;II (43)

This is true whatever the generalized inverse may be. Therefore, for any
matrices Gy, Gi,, Gy, and G, that satisfy (43), G as given in (42) will be a
generalized inverse of A. Therefore, on substituting from (43) for G,;, we have

Aﬁl - A;11A12G21 - G12A21A;11 - A;11A12G22A21AI11 G12
G = (44)
G21 Gzz

as a generalized inverse of A for any matrices G,,, G,; and G,, of appropriate

order. Thus is the arbitrariness of a generalized inverse characterized.
Certain consequences of (44) can be noted. One is that by making Gy,

ATl 0
11

0 0
when A is symmetric G is not necessarily symmetric. Only when G,, = G,
and G,, is symmetric will G be symmetric. And when p > ¢, G can have full
row rank g even if r < g; for example, if G, = —AA,Gs,, G, = 0 and
Gy has full row rank, then G also has full row rank; in general, then, the
rank of G can exceed that of A. In particular, this means that singular matrices
can have non-singular generalized inverses.

The arbitrariness evident in (44) prompts investigating the relationship
of one generalized inverse to another. It is simple: if G; is a generalized
inverse of A then so is

G,;, and G,, null, G = li }, a form discussed earlier. Another is that

G = G,AG, + (I — G,A)X + Y(I — AG)) (45)

for any X and Y. Pre- and post-multiplication of (45) by A shows that this
is so.
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The importance of (45) is that it provides a method for generating all
generalized inverses of A. They can all be put in the form of (45). To see this
we need only show for some other generalized inverse, G, say, different from
G,, that there exist values of X and Y giving G = G,. Putting X = G, and
Y = G;AG, achieves this.

The form of G in (45) is entirely compatible with the partitioned form
Al 0

given in (44). For, if we take G, = [ 0 O:I and partition X and Y in the

same manner as G, then (45) becomes

G = |jA-1-11 - AﬁlAszl - Y12A21AI11 —Aﬁl A12X22 + Y12} (46)
X1 — YarAp AT Xeo + Yo

This characterizes the arbitrariness even more specifically than does (44).
Thus for the four sub-matrices of G shown in (42) we have:

Sub-matrix Source of Arbitrariness
Gy, X, and Yy,
Gy, X,, and Y,
G, X,; and Y,,
G22 X22 and Y22

This means that, in the partitioning of

X — l:xll X12J and _ I:Yll Y12:|
X2l X22 Y21 Y22
implicit in (43), the first set of rows in the partitioning of X does not enter into
G, and neither does the first set of columns of Y.
It has been shown earlier (Theorem 3) that all solutions to Ax = y can be
generated from X = Gy + (GA — I)z, where z is the infinite set of arbitrary
vectors of order g. We now show that all solutions can also be generated

from X = Gy, where G is the infinite set of generalized inverses indicated in
(45). First, a lemma.

Lemma 10. If z,, is arbitrary and y,, is known and non-null, there
exists an arbitrary matrix X such that z = Xy.

Proof. Since y # 0 one element, y, say, will be non-zero. Writing z =
{z.} and X ={z,;} for i=1,...,q and j=1,...,p, let x; = z,/y, for
Jj = k and r;; = 0 otherwise. Then Xy = z and X is arbitrary.

Now we have the theorem on generating solutions.

Theorem 8. For all possible generalized inverses G of A, X = Gy generates
all solutions to the consistent equations Ax = y.
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Proof. For the generalized inverse G,, solutions to Ax =y are X =

G,y + (G,A — I)z, where z is arbitrary. Let z = —Xy for some arbitrary X.
Then

X = G,y — (G,A — DXy
= G,y — G,AG,y + G,AG,y + (I — G,A)Xy
= [G,AG, + (I — G,A)X + G((I — AG)ly

where G is exactly the form given in (45) using G, for Y.

7. OTHER RESULTS

Procedures for inverting partitioned matrices are well known [e.g., Searle
(1966), Sec. 8.7]. In particular, the inverse of the partitioned full rank sym-

metric matrix
M= | |x z1=|XX XZ| 1A B o 47)
YA Z’X Z'Z B D

W= (D — BAB)! = [Z'Z — ZXX'X)'X'Z],

be written as

can, for

Mot — | AT+ ATBWB'A —ATIBW
| —WBA! w
i ~1 — A1
AT 0 L -ATB At 1. (48)
0 0 I

The analogy of (48) for generalized inverses, when M is symmetric but
singular, has been derived by Rohde (1965). On defining A~ and Q as
generalized inverses of A and Q respectively, where Q = D — B’A™B, then
a generalized inverse of M is

M- A~ + A"BQ B'A” —A’BQ“]

| —QBA Q
—|A 0} + [‘"A_B} Q—BA™ I]. 49)
0 0 I

It is to be emphasized that the generalized inverses referred to here are just as
have been defined throughout, namely satisfying only the first of Penrose’s
four conditions. (In showing that MM M = M, considerable use is made of
Theorem 7.)
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The regular inverse of the product AB is B-A~! when A and B are non-
singular. But there is no analogous result for generalized inverses. When one
matrix is non-singular, B say, we have B-1A~ as a generalized inverse of
AB, as indicated by Rohde (1964). Greville (1966) considers the situation for
unique generalized inverses A'?) and B'® and gives five separate conditions
under which (AB)?) = B”A®); but one would hope for conditions less
complex than Greville’s in the case of generalized inverses A~ and B~ satisfy-
ing just the first of the Penrose conditions. What can be shown is that B"A™
is a generalized inverse of AB if and only if ATABB™ is idempotent. Also, if
the product AB is itself idempotent thenit has AB, AA™, B'B and B BAA™ as
generalized inverses. Other problems of possible interest are the generalized
inverse of A¥ in terms of that of A, for integer k, and the generalized inverse
of XX’ in terms of that of X'X.

8. EXERCISES

1. Reduce the matrices

1 2 3 -1
2 3 1 -1
4 5 6 2
A=15 8 0 1 and B =
7 8 10 7
1 2 =2 3
2 1 1 6]

to diagonal form and find a generalized inverse of each.

2. Find generalized inverses of A and B in Exercise 1 by inverting non-singular
minors.

3. Find a generalized inverse of each of the following matrices:
(a) PAQ when P and Q are nonsingular.
(b) GA when G is a generalized inverse of A.
(¢) kA, when k is a scalar.
(d) ABA, when ABA is idempotent.
(e) J, when J is square, with every element unity.

4. What kinds of matrices
(a) are their own generalized inverses ?
(b) have their transposes as a generalized inverse ?
(¢) have an identity matrix for a generalized inverse ?
(d) have every matrix of order p x ¢ for a generalized inverse?
(¢) have only non-singular generalized inverses?

5. Section 1b contains an algorithm for deriving a generalized inverse of any
matrix. Prove that in general neither, nor both, of the matrix transpositions in
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10.

11.

12.

13.

14.

15.

16.

29

steps (iii) and (v) of the algorithm can be omitted, but that when M = M’ the
transposition in (iii) can be. Illustrate these results using A, and A, given in
Sec. 1b. Also, find a generalized inverse of A, using a non-symmetric non-
principal minor for M.

EXERCISES

. Explain why equations (a) Ax = 0 and (b) X'Xb = X'y are always consistent.

For A and B of Exercise 1 find general solutions to
[ 147
23

-1
—-13
-11

Ax = and to Bx =

32

....S_J

.Ifz =(G — F)y + (I — FA)w, where G and F are generalized inverses of A,

show that the solution X = Gy + (GA — I)z to Ax = yreducesto X = Fy +
(FA — Dw.

. If Ax =y are consistent equations and F and G are both generalized inverses

of A find, in its simplest form, a solution for w to the equations
(I—-GAw = (F — G)y + (FA — Dz

If A has full column rank, show that its generalized inverses are also left
inverses satisfying the first three Penrose conditions.

Prove that equation (25) reduces to equation (23).

1 0 2
2 -1 5
Find the Penrose inverse of
0 1 -1
1 3 -1

Suppose X has order n X p and rank p — m (m > 0). If H, of order m x p
and full row rank, has its rows LIN of those of X, show for

D = (X'X + HH)'H'

that XD = 0 and HD = L. [Hint: Partition X' = X; X,] so that X; has full
row rank p — m, and then use the inverse of [X; H']. See Chipman (1964).
Equation (36) is a consequence.]

By direct multiplication show that AGA = A for A and G given in (37) and
(44) respectively.

Develop a non-singular generalized inverse of a singular matrix, proving that
it is both non-singular and a generalized inverse.

Show that the rank of a generalized inverse of A does not necessarily have the
same rank as A and that it is the same if and only if it is a reflexive inverse

[Rohde (1966)].
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17.
18.

19.
20.
21.

22.

23.

24,
25.
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Show that M~ of equation (49) is a generalized inverse of M in (47).

Prove that B"A™ is a generalized inverse of AB if and only if ATABB™ is
idempotent.

Why is X~y a solution for b to X'Xb = X'y?
If Py, and D,,,, have rank m, show that D~ = P(P'DP) P’

If G is a generalized inverse of A, , show that G + Z —~ GAZAG generates

(1) all generalized inverses of A, and

(i) all solutions to consistent equations Ax = y as Z ranges over all matrices
of order ¢ x p [Urquhart (1969)].

D o0 D1 X7 o
When PAQ = 0 o show that G = Q Y z P is a generalized inverse

of A. Under what conditions does GAG = G? Use G to answer Exercise 15.

Using AGA = A find a generalized inverse of AB when B is orthogonal and of
LA when L is non-singular.

What is the Penrose inverse of a symmetric idempotent matrix?

Use the idempotency of H = GA to prove Corollary 2 of Theorem 6.
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CHAPTER 2

DISTRIBUTIONS AND QUADRATIC FORMS

. INTRODUCTION

Analysis of variance techniques involve partitioning a total sum of squares
into component sums of squares whose ratios (under appropriate distri-
butional conditions) lead to F-statistics suitable for testing certain hypotheses.
When discussing linear models generally, especially where unbalanced data
(data having unequal subclass numbers) are concerned, it is convenient to
think of sums of squares involved in this process as quadratic forms in the
observations. In this context very general theorems can be established, of
which familiar analyses of variance and associated F-tests are then just special
cases. An introductory outline® of the general procedure is easily described.

Suppose ¥, is a vector of n observations. Then y'y = > #2 is the total

i=1
sum of squares of the observations which gets partitioned into component
sums of squares in an analysis of variance. Let P be an orthogonal matrix

PP =PP =1, 1)
and partition P row-wise into k sub-matrices P;, of order n; X n, for i =

k
1,2,...,k, with ¥ n, = n; ie.,

i=1

P=|" and P =[P, P, -+ P (2)

! Kindly brought to my notice by D. L. Weeks.

[ 37]
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Then .
yy =y'ly =yP'Py = _21 y'PPy. 3

In this way y'y is partitioned into k sums of squares

YPPy =2z, =524 for i=1,... k
j=1
where
z,: = Piy = {z”} fOI' J. = l, 2, PP ,I’li.

Each of these sums of squares corresponds to the lines in an analysis of
variance (with, as we shall see, degrees of freedom equal to the rank of P,),
having y'y as the total sum of squares. The general nature of results to be
developed in this chapter can be demonstrated for the £ terms y'P;P;y of
(3). First, for example, in Corollary 2.1 of Theorem 2 we show that if the
elements of the y vector are normally and independently distributed with
zero mean and variance o% then y'Ay/o?, where A has rank r, has a y*
distribution with r degrees of freedom if and only if A is idempotent. This is
just the property that the matrix P;P; has in (3): P;P,P/P; = P;(P.P))P, =
PIP; = PP, because P'P = I as in (1). Thus each P/P; in (3) is idempotent
and therefore each term y'P;P;y/o? in (3) has a y2-distribution. Second, in
Theorem 4 we prove that when the elements of y are normally distributed as
just described, then y'Ay and y'By are independent if and only if AB = 0.
This too is true for the terms in (3) for, with i % j, P,P; = 0 from (1) and (2)
and so
P.P.PP;, = 0.

Hence the terms in (3) are independent; and since they all have y*-distribu-
tions their ratios, suitably modified by degrees of freedom, can be F-distri-
butions. In this way tests of hypotheses are established.

Example. Corresponding to a vector of 4 observations consider

INCERRTN. SRR TN IR INC
2 —1y2 0 0 [ P} “
16  1,/6 —2//6 0

RINIVER NIV ERINIVAEXINIV

partitioned as shown. Then it is clear that P is orthogonal and that

Py = (]/\/Z)gl Y, = \/Z Y.

Hence in terms of (3)
q; = y'PPy = 47°,
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and 1t will be found that
4 4
G=YPPy =23y — 47" =2 (s~ 9"

Therefore, when the elements of y are normally and independently distrib-
uted with zero mean and unit variance, ¢, and ¢, each have y2-distributions,
as is well known. Furthermore, from the orthogonality of P it is obvious that
P;P, = 0 and so ¢, and ¢, are also distributed independently. In this way

4%

- (éyz — 452)/3

provides an F-test for the hypothesis that the mean of the y-variable is zero.
The matrix P in (4) is a fourth-order Helmert matrix. Its general character-
istics are as follows. Writing

h' l X n
ann =
Hyl (n—1)xmn

for a Helmert matrix of order n,
h' = first row of H,, = (1/\/n)1,,

where

L=0 1 - 1]
a vector of n ’s, and

H, = last (n — 1) rows of H,,,

with H, having its rth row as

0(n_r_1)><1i| for r = 1, 2, R (A 1.

i —r
______1’ —_—
[‘/r(r + 1) § Jr(r + 1)

It is clear that H,,, is orthogonal, that y’hh’y = n%® and, by induction, it is
readily shown that y'H¢Hgy = > y? — ny®. Further properties of Helmert
i=1

matrices are to be found in Lancaster (1965).

2. SYMMETRIC MATRICES

An expression of the form x’Ay is called a bilinear form. It is a homogeneous
second-degree function of the first degree in each of the z’s and y’s. For

example, 4 87y,
XAy = [z, =] 5 7
- Yo

= 4ryy; + 8xyys — 2x5y; + Ty
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When x is used in place of y the expression becomes x’Ax; it is then called
a quadratic form and is a quadratic function of the 2’s:

4 8|
x'Ax = [z, ar:z][_2 7} |:37J

= 42} + (8 — )z, 2, + T3
= 473% + (3 + Iz, + 7373

4 3|l
= [z, xz]li—; 7“;1:2:]'

In this way any quadratic form x’Ax can be written as x’Ax = x'Bx where
B = }(A + A’) is symmetric. Furthermore, whereas any quadratic form can
be written as x’Ax for an infinite number of matrices, each can be written
in only one way as x'Bx for B symmetric. For example,

4 3+aj|lx
4z} + 62,25 + T2 = [7, =] 3— g .

Ty

for any value of a, but only when a = 0 is the matrix involved symmetric.
This means that for any particular quadratic form there is only one, unique
matrix such that the quadratic form can be written as x’Ax with A being
symmetric. Because of the uniqueness of this symmetric matrix all further
discussion of quadratic forms x’Ax is confined to the case of A being sym-
metric.

3. POSITIVE DEFINITENESS

A property of some quadratic forms used repeatedly in what follows is
that of positive definiteness. A quadratic form x’Ax is said to be positive
definite if it is positive for all values of x except x = 0; i.e., if

x'Ax > 0 for all x, except x = 0,

then x'Ax is positive definite. And the corresponding (symmetric) matrix is
also described as positive definite.

Example.
3 5 1}z
X'Ax = [z, z, =z]|5 13 Off=
1 0 1]}z

= 3z} + 1323 + i + 10z,2, + 2z,2,
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can be rearranged as

X'Ax = (2, + 22,)" + (2, + 32,)" + (2, + 2,)°
which is positive for any (real) values of the «’s except 2, = 0 = z, = z,,
i.e., except for x = 0 (in which case x'Ax is always zero). Hence x’Ax is
positive definite (abbreviated p.d.).
A slight relaxation of the above definition concerns x’Ax when its value is
either positive or zero for all x # 0. We define an x’Ax of this nature as being
positive semi-definite (abbreviated p.s.d.) when

x'Ax > 0 for all x £ 0, with x’Ax = 0 for at least one x % 0.

Under these conditions x’Ax is a p.s.d. quadratic form and the correspond-
ing symmetric matrix A is a p.s.d. matrix. This definition is widely accepted
[e.g., Graybill (1961, p. 3) and Rao (1965, p. 31)], although not universally
so. For example, a definition used by Scheffé (1959, p. 398) is that A is a
p-s.d. matrix when x’Ax > 0 for all x # 0 without demanding that x'Ax = 0
for at least one non-null x. Hence this definition includes matrices that we
have defined as either p.d. or p.s.d. We will call such matrices non-negative
definite (n.n.d.) in keeping, for example, with Rao (1965, p. 31). Thus n.n.d.
matrices are either p.d. or p.s.d.

Example.
37 —2 —24]|[x,
X'Ax = [, =z, x]| —2 13 =3||=,
—-24 -3 17 || z,
= (62, — 47,)* + (7, — 22,)* + Bz, — x,)°

is zero when X’ = [2, 1, 3]. Hence x'Ax and A are positive semi-definite. On
the other hand,

yy=yly=3 F

is positive definite because it is zero only when y = 0. But

Yy —nf =y @ —n"3)y =3 y; — g,

where J,, is square a matrix of order n with every element equal to one, is a
positive semi-definite quadratic form because it is zero not only if y = 0
but also if every element of y is the same, i.e., if y = «l for any o.

Lemmas concerning positive (semi-)definite [abbreviated p.(s.)d.] matrices
that we will subsequently utilize are as follows.

Lemma 1. The symmetric matrix A is positive definite if and only if all its
principal leading minors have positive determinants.
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Proof. Proofs of this lemma are available in many texts. Most are lengthy
and contribute little to the mainstream of our work here, and so are omitted.
An elegant inductive proof by Seelye (1958) is commended to the interested
reader.

Corollary. Positive definite matrices are non-singular. (They are one of
their own principal leading minors and therefore have non-zero, indeed
positive, determinants.) Note that the converse of this corollary is not true:
non-singular matrices are not, in general, positive definite.

Lemma 2. For P non-singular, P'AP is or is not positive (semi-)definite
according as A is or is not p.(s.)d.

Proof. Let y =P 'x and consider x'Ax = y'P’APy. When x = 0,
y = 0 and x’Ax = y'P'APy = 0. And for x #2 0,y % 0 and yP’'APy > 0
according as x’Ax > 0. Hence P’AP is p.(s.)d. according as A is p.(s.)d.

Lemma 3. Latent roots of a positive (semi-)definite matrix are all positive
(non-negative, i.e., zero or positive).

Proof. Suppose A and u 5 0 are a latent root and vector respectively of A
with Au = Au. Then consider u’Au = u'Au = An'u for u % 0. When A is
p.d., w’Au > 0 and so Au'n > 0, i.e., 2 > 0; hence all latent roots of a p.d.
matrix are positive. When A is p.s.d., w'Au > 0 with uw’Au = O for at least one
us0,ie, A =0 for at least one u # 0; hence all latent roots of a p.s.d.
matrix are zero or positive. This proves the lemma.

Corollary. Positive semi-definite matrices are singular. (They have one or
more zero latent roots and therefore a zero determinant.) The converse is not
true: singular matrices are not, in general, positive semi-definite.

Lemma 4. A symmetric matrix is positive definite if and only if it can be
written as P’'P for a non-singular P.

Proof. If A = P'P for P non-singular, then A is symmetric and x'Ax =
x'P’Px, which is the sum of squares of the elements of Px. Hence x'Ax > 0
for all Px 5 0 and x’Ax = O for all Px = 0. But Px = 0 only when x = 0,
because P! exists. Hence x’Ax > 0 for all x % 0 and x’Ax = 0 only for
x = 0. Therefore A 1s p.d.

The necessary condition is established by noting that for A being sym-
metric there exists a matrix Q such that QAQ’ is a diagonal matrix with only
0’s and 1’s in its diagonal. But if A is positive definite it has full rank. There-
fore QAQ’ = I and so, because Q is non-singular, A = Q*Q~" which is of
the form P'P.

Lemma 5. A’A is positive definite when A has full column rank and it is
positive semi-definite otherwise.
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Proof. Consider x’A’Ax, equal to the sum of squares of elements of Ax.
When A has full column rank Ax = 0 only when x = 0, and so x’A’Ax > 0
for all x # 0; i.e., A'A is p.d. And when A has less than full column rank
Ax = 0 for some x 5 0, for which x’A’Ax will also be zero, and A’A is then

p.(s.)d.

Corollary. AA’ is positive definite when A has full row rank and it is
positive semi-definite otherwise.

Lemma 6. A sum of positive (semi-)definite matrices is positive (semi-)
definite.

Proof. Consideration of x’Ax = x'(} A,)x makes this clear.

Lemma 7. A symmetric matrix A, of order » and rank r, can be written as
LL’ where L is n X r of rank r; i.e., L has full column rank.

Proof.
PAP' = = [D, 0]
0 0 0

for some orthogonal P, where D2 is diagonal of order r. Hence
D,
A=P 0 [D, 0]p = LL'

where L' = [D, O]P of order r X n and full row rank; ie., L is
n X r of full column rank. Note also that although LL" = A, L'L = D2
Also, L' is real only when A is n.n.d., for only then are the non-zero elements
of D2 positive.

Lemma 8. A symmetric matrix having latent roots equal to 0 and 1 is
idempotent.

Proof. A symmetrix matrix X can always be expressed in canonical form
under orthogonal similarity U'XU = D where D is diagonal, with diagonal
elements being the latent roots of X [see, e.g., Searle (1966), Sec. 7.8]. When

these roots are O or 1
10
UXU =
00

from which it is trivial to show that X2 = X.

Lemma 9. If A and V are symmetric and V is positive definite, then AV
having latent roots 0 and 1 implies that AV is idempotent.
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Proof. |AV — Jl| = 0 has roots 0 and 1. By Lemma 4, V = P'P for some
non-singular matrix P. (JA| is the determinant of A.) Therefore

|IPAV — AL|PY =0 has roots 0 and 1;
Le., |IPAP’ — 21| =0 has roots 0 and 1.

Thus PAP’ has latent roots 0 and 1. But PAP’ is symmetric (because A is).
Therefore by Lemma 8, PAP’ is idempotent, i.e., PAP'PAP’ = PAP’.
Hence, because P is non-singular, AP'PAP'P = APP’; i.e., AVAV = AV,
showing the idempotency of AV.

4. DISTRIBUTIONS

For the sake of reference and establishing notation, certain salient features
of commonly used statistical distributions are now summarized. No attempt
is made at completeness or full rigor. Any number of texts [e.g., Graybill
(1961), Wilks (1962), Mood and Graybill (1963) and Hogg and Craig (1965)]
give the pertinent details with which, it is assumed, the reader will be familiar.
What follows will serve only to remind him of these things.

a. Multivariate density functions

In considering n random variables X;, X,, ..., X,, for which x;, z,, . . .,
x,, represents a set of realized values we write the cumulative density function
as

PrX; L2, X, L 29, ..., X, L) = F(zy, 2y, .. ., x,). (3

Then the density function is

an
Ty, Tgy o ooy ) = F(z,, z,,...,x,). 6)
f(l 2 ) axlaxzaxn (1 2 (
Conditions which f(zy, z,, . . . , ,) must satisfy are

f(xy, g, ..., 2,) >0 for —0 <z, < oo foralli
and

f --.j f(xl’x25---,xn)dxldxz...dxn=1.

The marginal density function for what might be called the “last n — k 2’s”
is f(xy, 3, . . . , x,) after integrating out the first k ’s, i.e., the marginal of

Lpiqs oo oy Xy 1S

g(xkﬂ,...,xn):j f S(@y ooy Ty Tyyys e o o5 T ATy Lo dxy. (T7)
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The conditional distribution, for the “first & 2’s” given the “last n — k x’s”
is the ratio of f(x,, %y, ..., %,) to the marginal for the “last n — k 2’s”;
1.e.,

density function of all n z's

f(xb"',xkx 1,...,1‘): .
I e """ marginal density of “last n — k z's”

=f(x13 xzs sy xn)
g(le—la = s ® 0y xn)

Use of the words “first” and “last” in these descriptions implies no rigid
sequencing of the variables; they are merely convenient aids to identification.

)

b. Moments
The kth moment about zero of the ith variable is E(x%), the expected value
of the kth power of z;:

) = E(at) = f rig(x) d,

-0

and on substituting from (7) for g(z,) this gives

ue =J f i f(xy, o, . .., x,) dx, dx, . . . dx,. 9)

In particular, when k = 1, the superscript (k) is usually omitted and u; is
written for u{").

The covariance between the ith and jth variables for i 7 j is
0y = E(z; — p)(%; — u;)
=" @ - wes — w)gta 5 ds

R R RSV CNENIER P IR E ()
and similarly the variance of the ith variable is

05 = of = E(z; — .“i)z

zf_w (x; — u)’g(x) dx;

[e 0] oD
---f J‘ (x; — w)’f(xy, Ty . .., &) dxy .. . drx,.  (11)
—® —
Variances of and covariances between the variables in the vector

X =[x, z, ... z,]
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are given in (10) and (11). Arraying these variances and covariances as the
elements of a matrix gives the variance-covariance matrix of the x’s as

var(x) =V ={0;;} for i,j=1,2,...,n

Diagonal elements of V are variances and off-diagonal elements are co-
variances.

Notation. The variance of a scalar random variable z will be written as

v(z), whereas the variance-covariance matrix of a vector of random variables
x will be denoted by var(x).

The vector of means corresponding to x’ is

E(x') = P-’ = ps - pu,)
and so, by the definition of variance and covariance,
var(x) = E[(x — p)(x — p)] = V. (12)

Furthermore, since the correlation between the ith and jth variables is
0;;/0:0;, the matrix of correlations is

R={GGZ}=D{1/G,-}VD{1/ai} for ij=1,....n  (I3)
0
where, using (2) of Sec. 1.1, the D’s are diagonal matrices with elements
ljo; fori=1,2,...,n Clearly the diagonal elements of R are all unity,
and R is symmetric. It is known as the correlation matrix.

The matrix V is non-negative definite. To see that this is so, consider

t'Vt for some non-null vector t. Then t'Vt = ZZtt,a“ = v(z tx;) =

v(t'x) which, by the definition of a variance, is posmve unless t'x |s identic-
ally zero in which case v(t'x) = t'Vt = 0. Hence V is a n.n.d. matrix. R is
also n.n.d., because in (13) all the ¢’s are positive.

¢. Linear transformations
When the variables x are transformed to variables y by the linear trans-
formation y = Tx, moments of y are easily derived; for example,

u, = Tu,  and var (y) = TVT'. (14)

When making a transformation of this nature that involves a non-singular
T, an integral involving the differentials dz,, dz,, . . ., dz, is transformed by
substituting for the z’s in terms of the y’s and by replacing the differentials
by | £l dy,dy, . . . dy,,where || £ | is the Jacobian of the z’s with respectto the
y’s. The Jacobian matrix is defined as £ = {0x,/0y,} fori,j = 1,2,...,nand
I £ is the absolute value of the determinant Ifl Because x = Ty, this
means £ = T~ and so {| £|| = 1/||T||. Hence when the transformation from
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X to y is y = Tx the product of differentials
dr, ... dz, is replaced by (dy, . . . dy,)/IT|. (15)

This is the procedure, for example, in deriving the density function of
y = Tx from that of x. First, substitute from x = T~'y for each z; in

S(xy, o, ..., x,). Suppose the resulting function of the %’s is written as
f(T'y). Then, because

f f f(ry, 25 ..., 2,)dey. .. de, =1

the transformation gives

f_w' | 'f_wf(T“y)(l/nTu) dys - dy, = 1.

But now suppose A(y,, ¥, . . ., ¥,) 1s the density function of the y’s. Then

f f h(ylast’yn)dyldyn:I

By comparison we therefore find

_f(Ty)

h(yy, Yo - - - > Yn)
v IT|

(16)
Example. If
' Y = 3z — 22,
Yo = Sz, — 4x,

is the transformation y = Tx, then ||T| = 2; and

h(yy, ¥2) = 3f[%, = 2y, — ya, 22 = 35y — 39,)].

d. Moment generating functions

Moments, and relationships between distributions, are often derived by
means of moment generating functions. In the univariate case the moment
generating function (abbreviated m.g.f.) of the random variable x, written
as a function of ¢, is, on omitting due attention to the definition of ¢ [see,
e.g2., Mood and Graybill (1963, p. 114)],

M., (t) = E(e")
=fw e’f(x) dx

— 0

=Jw(1 + tx + 122 4+ 22330 4+ .. ) f(z) dx (17)

— a0

= [1 4+ P + (2l + (@3HuP. . 1.
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o*M
Hence H;k) = ‘_atz—(t) (18)

i.e., the kth moment of z is the kth partial differential of the m.g.f. with re-
spect to ¢, evaluated at the point ¢ = 0. Likewise, for some function of =,
h(x) say, the m.g.f. of h(z) is

Mh(x)(t) — E(eth(m)) =f°°eth(a:)f(x) dx (19)

— 00

=0

and the kth moment about zero of the function is

w _ OMyn(1)

Mnzy = art o (20)
In multivariate situations similar results hold. The m.g.f. of the joint dis-
tribution of n variables utilizes a vector of parameterst’ = [t; #, ... 1,
Mx(t) —_ E(et1“’1+tz“z+“-+tnzn)
= FEe"'*

a0 [+ o}
=f . J e f(2y, 23, . . ., x,) dz, ...dx,. (21)

—0 —®

And the m.g.f. of a scalar function of the elements of x, the quadratic x'Ax
say, is
Moax(t) = E(e™*)

=f ; f etx’Axf(xls Loy o o oy xn) dxl et dxﬂ' (22)

As well as yielding the moments of a distribution the m.g.f. also has other
important uses, two of which shall be invoked repeatedly. First, if two random
variables have the same m.g.f. they have the same density function. This is
done under wide regularity conditions whose details are omitted here [see
Mood and Graybill (1963), for example]. Second, two random variables are
independent if their joint m.g.f. factorizes into the product of their two
separate m.g.f.’s. This means that if

M(zl,:cz)(tl’ t2) = Mxl(tl)sz(t2)

then z; and z, are independent.
Although not used in this book, the reader will elsewhere encounter
characteristic functions. They are derived formally by using (it) in place of ¢

in the m.g.f.’s, where i = v —1.
e. Univariate normal

When the random variable X has a normal distribution with mean u
and variance o2, we will write “z is N(u, 6%)”, or * ~ N(u, 0*). The density
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function of z is then

—4(x—p)%/0>
e‘l’”"", for —o0 <z < o0,

X)) = -
1) = =
wherein application of (9) and (11) will show that E(z) = u and E(x — u)? =
o®. And, in accord with (17), the m.g.f. of x is

M) = (1fo/2) | expltn — 4z — o] d
= (l/a\/Z_;)f_oo exp —H{[x — (u + to®)]* — Quto® + P6*)}/c® dx

= 4102 | expl—(z — o — 161207 do
— eat+§t202. ?

From (18) it is then easily established that u{ = u, and p® = ¢* 4+ u2,
so that E(x — u)® = ul® — u? = o

f. Multivariate normal

(i) Density function. When the random variablesinx’ = [z; 2, ... 2,]
have a multivariate normal distribution with vector of means @ and
variance-covariance matrix V, we write “x is N(@, V)" or “x ~ N(w, V)”.
When E(x;) = u for all i then o = u1; and if the z,’s are mutually independ-
ent, all with the same variance ¢ then V = ¢®I and we write ““x is N(u1, ¢*I)”.
This is equivalent to the more usual notation N/D(u, 6%), but by retaining
the matrix notation of N(ul, 6*I) we emphasize that this is just a special
case of the general multivariate normal N(w, V),

At this stage we confine ourselves to the case when V is positive definite.
The multivariate normal density function 1s then

g B VT )
2m)im v

(i) Aitken’s integral. A result in integral calculus that is particularly
applicable to any discussion of the multivariate normal distribution is
Aitken’s integral. It is as follows. For A being a positive definite symmetric
matrix of order »n

f(zg, 2y, ..., 2,) = (23)

f o f g I Ax dz, ...dz, = (27 (Al (24)

To establish this result, note that because A is positive definite there exists
a non-singular matrix P such that P’AP = I,.. Hence |[P’AP| = |P[?|A| = 1
and so [P| = |A|}; and letting x = Py gives x’Ax = y'P'APy = y'y and so,
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from (15),

[ I TR [Tt ay e
© [ 13,
=|P|f f exp(—EEyE)d%---dﬁln
— —o0 i==1

— IAl_%H {f e—%viZ dyi}
i=1 —

= (2m)i" AL

Direct application of this result to (23) shows that

L f flay 2y, 2,) doy L de, = Qob V(20 (VI = 1,

as one would expect.

(iii) Moment generating function. As n (21) the m.g.f. for the multivariate
normal distribution is

M) = Qmyin V| f - f explt’x — 3(x — w'VAx — wldx, ... d,.

On rearranging the exponent this becomes

My(t) = @m) " |VJ*'%fi~ . fi

expl—3(x — @ — VOV (x — . — Vt) + t'p + ' Vtlda, ... dz,

t’p.+%t’Vt
T emir v f f

exp[—3(x — g — V)V i(x — . — Vt)]dz, ... dx,.

Making the transformation y = x — @ — Vt from x to y, for which the
Jacobian is unity, the integral then reduces to Aitken’s integral with matrix
V-1, Hence

et’u+%t’Vt(2ﬂ_){yn IVﬁll_é  rmeleve

M) = = v

(25)

Differentiating this in the manner of (18) shows that the vector of means is
@ and the variance-covariance matrix 1s V.
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(iv) Marginal distributions. The definition of the marginal distribution of
%y, o, . . ., 2, Nnamely the first k& 2’s, is, in accord with (7),

g(zy, ..., xp) =f . f flxy, 2y, ..o, 2)d2y ... de,.
The m.g.f. of this distribution is, by (21),

M, .= - f et T gy L ) dey L da,

—aoC —oC

and on substituting for g(z,, . . ., ;) this becomes

o o«
M, . )= .. J RN W2y, .., z,)ydx, ... dx,

- —o0
=m.gf of x, 2, ..., 2, witht,,,=...=1t,=0
= 'V witht, , =... =1, = 0. (26)
To make the substitutions f,,, = ... =t, = 0 we partition x, @, V and t,
by defining
xp =[x, 2 o ] and s =1 0 2]
so that x' = [x; xi];

then, conformable with this,

W=l Wl t=[t t

q v Vi Vi
an =V, Vil

Now putting t, = 0 in (26) gives

— i1t Vit
xk(tl) = e .

.....

By analogy with (25) and (21) we therefore have the marginal density function
as

exp[—(x; — 1) Vi (x, — @)l

(@m)¥ [V '
On comparison with (23) we see that g(x,) is a multivariate normal distribu-
tion. Similarly, so is

gx)) = gy, ..., ) =

) = ) = exp[—3(X; — f-’-‘z)lvﬁl(xz ~ )]
g(xe) = gy, ... h 1) = (217)5(,1_1@ lvggl’} .

Thus we see that marginal densities of the multivariate normal distribution
are themselves multivariate normal.

(27)
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Since V is taken as being positive definite so are Vy; and V,,. Furthermore,
in these expressions use can be made of the partitioned form of V [see
equation (47), Sec. 1.7]. Thus if

vl [Vu Vm}—l_ |:W11 W12:l
[ Viz Ve 7| Wi Wy
then V1—11 =W, - W12W2_21W{2 and Vi = W, — WL WEIW,,.

(v) Conditional distributions. Let f(x) denote the density function of all
n x’s. Then equation (8) gives the conditional distribution of the first k «’s as

J (x| xp) = f(x)/g(x)
and on substituting from (23) and (27)
exp{—3[(x — wW'VI(x — ) — (Xo — o) Vi (%2 — )]}
1] X2) = 1 . (28
S| @mH(VI/IV.)? 9

Now, in terms of the partitioned form of V and its inverse given above, we
have

W11 = (V11 - V12Vz_21V£2)~_1 (29)
. W, ~Wy, ViV }
and Vv = —1yy/ —1 —1lyy/ —1 1
"sz Vi:Wiy Vo + sz V12W11V12V22

Therefore the exponent in (28) becomes

’ ’ W, - VV11V12V;21
[0 — )" O — )] —Vu VWi Var + VR VW,V Vs

(x; — @) R
X li(x‘.z . 5‘2):] — (Xa — M) Vo (Xs — Mo)

which simplifies to
, Al oy T
[(x; — P-1) (x, — y.g) ] _Vgglviz Wil —VYi2Va2 (x, — 51'2]

= [(x; — ) — V1oV (e ~ ) Wi [(%; — 1) — ViV (6 — )] (30)
Furthermore, using the result for the determinant of a partitioned matrix
[e.g., Searle (1966, p. 96)],

V] = |Vy| V11 — V12V;21V{2| = |V, |W1_11|, from (29).
Hence
IVI/IVy| = Wi (31)
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Substituting (30) and (31) in (28) gives

exp{_%[(xl — ) — V12V2_21(x2 — ) Wil(x; — )

— VoV (X; — )]}
T ) = ST A— - O

showing, on comparison with (23), that the conditional distribution is also
normal:

Xy | Xo ~ N[y + ViV (X, — @), Wil

(vi) Independence. Suppose that the vector x' =[x, z, ... z,] is
partitioned into p sub-vectors X' = [x; x, ... x/]. Then a necessary
and sufficient condition for the vectors to be mutually independent is, in the
corresponding partitioning of V. = {V } fori,j=1,2,. .., p, that V;; = 0,
fori # J.

Proof of this is established as follows. The m.g.f. of x is, by (25),

P p D
M(t) = etttV — exp (Z tis + 3 > t;'ViJ'tj)
=1 1

t=J)=

and if V;; = 0 for i # j this reduces to

P P
M(t) = exp Z (ti; + $t;V,;t) = H exp(t;p; + 3t;V,;t,).
i=1 im1

Invoking the property that the m.g.f. of the joint distribution of independent
sets of variables is the product of their several m.g.f.’s, we conclude that the
x,’s are independent. Conversely, if they are independent, each with its
variance-covariance K;; say, then the m.g.f. of the joint distribution is

4 4
IT exp(tie; + 3tK;t) = exp > (tip; + 3t;K;t) = exp(t'p + 3t'Vt)
=1 i=1

where V = diag{K,;, Ko, ..., K, }. Hence V;; = 0 for i # j.

g. Central ¢, F and t
When x is N(0, I) then D 2% has the central y*-distribution with n degrees

i=1

of freedom. Thus, when

xis N0, ) and u=Y2?=x'x then u~yi.

The density function is
uz}-n—le—ﬁt

fw) = PTG

where I'(n) is the gamma function with argument in. [For a positive
integer n, I'(n) = (n — 1)!]. The m.g.f. corresponding to (33) is

foru >0 (33)

M(t) = (1 — 217 F" (34)
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as can be obtained directly from (17) using (33) or as M, (t) using the
N(0, ) density function in (22). The mean and variance of u are n and 2n
respectively.

The commonest application of the y2-distribution is that when x is
N(p1, o®1) then Y (v, — Z)*[o? Is x%_,. This, as we shall see, is a special case

i=1

of Theorem 2. The same result can also be established using the transforma-
tion y = Hyx where H, is the lastn — | rows of the Helmert matrix discussed
in Sec. 1.

Two independent variables each having central y2-distributions form the
basis of the F-distribution. Thus if

. . u/n
Uy I8 Xil and Up 1S xiz then v = 1// 1 ~F
Uy Ny

ni.,ng?

the F-distribution with n; and n, degrees of freedom. The density function is
I'(3n, + %nz)nl%mnz%nzv%m_l
LEn)T(Gn)(n, + nyp)tririe
The mean of the distribution is n,/(n, — 2) and the variance is

Finally, the ratio of a normally distributed variable to one that has a
x2-distribution is the basis of Student’s 7-distribution. Thus when x is N(0, 1)
and u is x2, independent of z, then

fv) = for ©v>0. (35)

z = x/\/‘u_/-r; is distributed as 7,
the t-distribution with n degrees of freedom. Its density function is

I'Gn + %) ( z2)—%(n+1)
— 1+ , fo -0 <z <L o, 36
Jnm L(3n) n ' (36)

with zero mean and variance nf(n — 2).
A frequent application of this distribution is that if x is N(u1, ¢°I) then

f@) =

@ -

1/{/n

has the ¢,_; distribution.

The relationship between ¢, and F;, can also be demonstrated. For z

as described above constder
2 x*

28 = —

uln’

a? is clearly 42 and u is x2. Therefore 2% is F ,; i.e., when a variable is distri-
buted as ¢, its square is distributed as F ,,.
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h. Non-central x>

We have already seen that when x is N(0, I,) the distribution of x'x =
> «%is what is known as a central y-distribution. We now consider the distri-
bution of u = x'x when x is N(i, I). The sole difference is that the mean of x
is & and not 0. The resulting distribution of x'x is known as the non-central
x*. As with the central y?, the non-central 2 involves the degrees of freedom,
n. It also involves the parameter ' = 4 > u?, known as the non-centrality
parameter, for which the symbol 1 is used; i.e.,

= jw'p.

Reference to the distribution is by means of the symbol x*' (n, 1), the non-
central x* with n degrees of freedom and non-centrality parameter . When
i = 0, 4 = 0 and it reduces to the central y*-distribution.

The density function of the non-central y*-distribution x*(n, 1) is

f(u) _ e—l Iy _A_lf ll%n+k—le—1}u
o k! 28" (In + k)

(37)

We observe that this is an infinite weighted sum of density functions of
central x’s, because the term (ut"+ e 1)23" " * '(3n + k) in (37) is, by (33),
the density function of the x§n+k distribution.

The m.g.f. of 4*'(n, 2) can be derived using (37) in (17); because the
xi,h% density function occurs in (37) this procedure yields

M, (1) = e‘izo(lk/k!)(m.g.f. Ofxin-l-k)
R=
and on using (34) this is
M(t) = e ™3 (Bk!)(1 — 26y 4"
k=0

— 6—182(1—21)_1(1 _ 20-%7:
— (1 _ 21)—%%—1[1—(1—21)‘1]. (38)
The same result can also be obtained as M, (¢) using the N(w, I) density

function in (22). This proceeds as follows.

' n 2 . .
M, () = E(e"*™) = ET] ¢"**, because the z;s are independent
i=1

~TI f (2m)t explta? — 3z, — u)] das
=1

—0
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and on rearranging the exponent this is

M =TT [ @md exp ~b{lat - 20 — it — 207
+ w1l — (1 — 207"} du;
= exp K WAL — (1 — 207

ot

— e A--207] < 1 — 204
E( )
— (1 _ 2t)—:}ne—2[1—(1-—2t)‘1],
as in (38).
The mean and variance of the y?'(n, 1) distribution are n + 24 and 2n + 84

respectively. They may be derived from differentiating the m.g.f., or directly
from the independence of the x,’s. Thus, for summation over /,

EYa;=3E@a) =2, +u) =214+ 3pu=n+24

and v(Y 23) =Y v(a})
= > ol(x; — 1) + 2ux; — p) + 5]
=D vo(x — pw)* + 4 2 i v(z; — )
= D [E(z; — ﬂi)4 — {E(z; — ‘ui)z}z] + 4 Z:u?“i
= Y [3¢; — (07)"] + 81
= 2n + 8A4.

Notice that properties of the non-central y-distribution reduce to those of
the central y* when A = 0, as one would expect. A further property is also
to be noted: if variables having non-central y*-distributions are jointly
independent their sum also has a non-central x2. Thusif, fori=1,2,...,k,
the

u; are x*'(n;, A;) and independent

then S ougis x¥(Q ng, D A).

Proof of this is readily established through using moment generating func-
tions and the independence of the u;’s:

..... w(t) = TIM, (1) = TTE(e"*)
and on putting ¢, = ¢ for all / this becomes

M, (1) = IE(e™) = E(e™™) = My, (1),
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where the products and sums are over i = 1, 2, ..., k. Hence
Mzuf(t) = HMu;(t)
= [I(1 — 2¢) rigll-(1—207"]
=(1 — 2t)“%2”"e—“ [1_(1*21)-‘].
Comparison with (38) indicates that 3 u, ~ y¥(3 n;, 3 1,).

i. Non-central F

Just as there is a non-central analogy of the central y*-distribution so also
is there a non-central F-distribution. It is specified as follows. If ¥, and u,
are independent and

upis x¥(n;, ) and  wyis yi

u1/n1

Ug[n,

then v = is distributed as F'(ny, n,, 1),

the non-central F-distribution with n; and n, degrees of freedom and non-
centrality parameter A. Its density function is

PN (R U B
k! P(n + DGR (ny + n)t

When A = 0 this reduces to (35), the density function of the central F-
distribution (when 2 = 0, kK = 0). The mean and variance of the distribution

arc
E(v) = —2 2(1 + :_zg)

n2 - n1

and

variance of v is

2n? [ (n, + 22)° " n, + 42:‘
"f(”z — 2)L(ny = 2)(n, — 4) n, — 4
When 4 = 0 these reduce, of course, to the mean and variance of the central
F},, .n,-distribution.

Derivation of f(v) is established as follows. Since u; and u, are independent
their joint density function is the product of their individual densities:

fuy, uz) = f(uy)f(usy)
% e__}_lk u%n1+k—le—£u1 Llfnz—le —%uz

ko k! 2¥MFED(Ln, + k) 247 D(dny)

For the terms not involving u; and u, write

etk |

k! 2é-n1>#;_§-ylz+k11(?]:nl+ k)F(%ﬂz)’

Xy
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so that
[e o]
ni+k—1 4n2—1 —#ui+uz)
flug, up) = Doty frp it
k=0

Now make a transformation of variables from u, and u, to v and z where

Nyt

and  z=u, + u,.
nyu,

The Jacobian of this transformation is
Ov/Ou, Ov/du,
0z/0u, 0z/du,

ny/nyu, _"2111/"1“% _ nou; + uy)

1 1 nytly

IFH =

Then, after the transformation,

S (uy, up) duy du, becomes [ f(uy, u,)/ll £1] dv dz
and so

f(o) dv = f ", up)fll £11 dv d-.

Now the transformations are equivalent to

2
nyvz nyz X (nyv + ny)
u,=————— and u,=-—"——, andgive | f||=—"""""""
mv + n, nov + n, nnyz
and so
1 — Lo
i ©/( ppz gkl nez  \7l _1, (mny2)
f(v)=Z°<k —_— R
2
k=0 Jo \mp + n, nov + n, (nyw + ny)
@ in,+k—1 ©
— zakn1%n1+kn2%nz vt f z%n]+%n2+k—le—%z dz
k=0 (ny + ny)tmtint ),

which, on substituting for «; and evaluating the integral as
2 T ny + g + k),

becomes the form shown above.

Because of the relative complexity of the density function there would be
convenience in having an approximation to it. Consider, as above, v =
(ng14y)/(nyuy) where u, is 2, and u; is x*(ny, 4): the distribution of v is
F'(ny, ny, 1). Suppose some value c exists such that cu, is y2, for some value m;
i.e., cu, has a central y2-distribution. Then

v cnp  cuyfm

m/cn, m uy/n,
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would have a central F-distribution, F,, , . No values ¢ and m exist such that
this is true; but, as indicated in Scheffé (1959) and shown in Patnaik (1949),
approximation to it can be made by choosing ¢ and m so that cu,, where u,
is x*'(ny, A), has the same mean and variance as y2. This leads to

E(cu)) = c(n, + 22) = m

and v(cuy) = c®(2n, + 82) = 2m
giving =Tt + 24 and m = (my + 22
n, + 42 n, + 42

vith mfen, = (1 + 24/n,). Hence

v v
mfen, 1 4 2A/m,

is approximately distributed as F,,

j- Other non-central distributions

Two other distributions can be mentioned in the context of non-central
distributions: the non-central ¢-distribution and the doubly non-central F-
distribution. If z is N(u, 1) and if, independently of x, u is % then x/\/u/n
has the non-central t-distribution, ¢'(n, u), with n degrees of freedom and
non-centrality parameter . The density function is

nbt et 2 r(%n + ik + putobr’
L(in) (n + )it S ki(n + 3

() =

M

Its derivation is given in Rao (1965, p. 139).

The doubly non-central F-distribution is based on the ratio of two inde-
pendent non-centrally y2-distributed variables. Thus if u, is ¥*'(n,, 4,) and
Uy 1s x%'(ny, Ay) then v = nyu, [n,u, 1s distributed as F"(n,, ny, 4,, 45), the doubly
non-central F-distribution with degrees of freedom n, and n, and non-central-
ity parameters 4, and ;. Scheffé (1959, pp. 135, 415) discusses an application
of this distribution and a procedure for approximating it by a central F-
distribution. The density function is derived in exactly the same manner as
is that of the non-central F shown above, giving

2 lexp(—A — AT, + §ny + ky + kg Fngdnetfaghraia

/) _’flz" kytko!'D(3ny + k)(3ny + ko)(npo + ngybmitinatiotes

kc)f
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5. DISTRIBUTION OF QUADRATIC FORMS

We discuss here the distribution of a quadratic form x’Ax when x is
N(w, V). For the most part the discussion is confined to the case of V being
non-singular, although some results pertinent to singular V are also given.
In dealing with just the general case of x being N(w., V) we can readily
consider special cases of interest such as x being N(0,I) or N(ul,I) or
N(w., I). But theorems concerning just these alone are not needed. The main
results are presented in a series of five theorems. The first relates to cumulants
of quadratic forms, the second to the distribution of quadratic forms and the
Jast three to independence properties of quadratic forms.

In all the theorems considerable use i1s made of the trace of a matrix,
tr(A), the sum of the diagonal elements of A. We recall that tr(A) equals the
sum of the latent roots of A and that when A is idempotent tr(A) = r(A).
Furthermore, under the operation of taking the trace, matrix products are
cyclically commutative; e,g., tr(ABC) = tr(BCA) = tr(CAB). Also, since a
quadratic form is a scalar, it equals its own trace and hence

x'Ax = tr(x’Ax) = tr(Axx’).

These properties of the trace operation are used many times in what follows,
without explicit reference thereto. The reader is therefore warned to be
familiar with them.

All the theorems relate to x being N(w, V)-with one exception, the first
part of Theorem 1, which is true for x being (g, V), normal or otherwise.
In proving one result for the normal case use is made of the following
lemma.

Lemma 10. For any vector g and any positive definite symmetric matrix W

(27)2" [W|2ete™E = J f exp(—ix'Wx + g'’x)dz,...dz,. (39)

Proof. From the integral of a multivariate normal density N(u, W) we
have

(277)%71 lw|% =J‘_°0 . _J‘wexp[_%(x . EL)’WWI(X _ “‘)] dxl o d-’l?n

=J - f exp(—3xX'W'x + w'Wix — jp'Wn)dz, ... dz,.

— Q0 —o0

On writing g’ for p'W-1 this gives (39).
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a. Cumulants
Theorem 1. When x is N(p, V)
(i) E(x'Ax) = tr(AV) + p'Ap; (40)

(true also when x is non-normal);
(i1) the rth cumulant of x’Ax is

K, (x'Ax) = 27(r — ! [tr(AV)" + rp/A(VA)1p];
and (i1i) the covariance of x with x’Ax is
cov (x, x'Ax) = 2VAp..
Proof. (1) With E(x) = w and var (x) = V we have
E(xx') =V + pp'.
Hence E(x'Ax) = E tr(Axx") = tr[AE(xx)]
= tr(AV + App)
= tr(AV) + p'Ap

It is clear from the proof that this part of the theorem holds whether x is
normal or not.
(1) The m.g.f. of x’Ax is

Mayas(®) = (2) |V} f o f

exp[tx’'Ax — I{(x — p)'Vi(x — p)]dz, - - dzx,
and on rearranging the exponent this becomes

M) = 2;;:‘;# [N

exp[—3x'(1 — 2LAV)V'x + p'Vix] dx, ... dz,. (41)

Now in Lemma 10 put g = 'V and W =[I— 2tAV)V ]! =
V(I — 2tAV)~. The right-hand side of (39) then equals the multiple integral
in (41) and so (41) becomes

Moeax( = e YV — 20AV) P exp[Bw VIV — 20AV) Vg
which simplifies to
Mx'Ax(t) = ]I - 2tAV|_% exp{—%p.’[l — (I — 2tAV)—1]V_1p,}, (42)

The cumulant generating function is the logarithm of the m.g.f. Hence

2 K, t'jr! = log[Myax(1)]
r=1
= —}log |l — 2tAV| — 3wl — (I — 2AV) [V, (43)
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The two parts of this are evaluated as follows. Use ““4; of X’ to denote the
“ith latent root of X”. Then for sufficiently small |¢|

3

—3log [T — 2tAV] = —1 S log[4, of (I — 2tAV)]

hoj

S
Il
[

I
I
DO
M=

i
A

log[1 — 2t(4; of AV)]

— [2t(4; of AV)]'/r

Il
f
rop=
VR
M8

©
|
[
~
i
-

I
Ms

27 [r 3 (4; of AVY
s

1

Q™4 )tr(AVY".

1

I
Ms i

I

T

And, by direct binomial expansion, for sufficiently small |¢|
I—(I—2tAV) ' = — > 2'1"(AVY.
r=1

Making these substitutions in (43) and equating the coefficients of ¢7 gives
K.(x’Ax) = 21(r — 1)! [tr(AV)" 4 rp’A(VA) 1] (44)
(iti) Finally, the covariance between x and x'Ax is
cov(x, x'Ax) = E(x — p)[x'Ax — E(x'Ax)]
= E(x — p)[x'Ax — p’Ap. — tr(AV)]
= E(x — wI(x — p)A(x — @) + 2(x — @)'Ap. — tr(AV)]
=0+ 2VAp. — 0
because the first and third moments of (x — ) are zero. Hence
cov (x, x'Ax) = 2VAp
and the theorem is proved.
Corollary 1.1. When p. =0

E(x'AX) = tr(AV),
and under normality
K, (x'Ax) = 2"(r — 1)! tr(AV)"

and cov (x, x'Ax) = 0.

These are the results given by Lancaster (1954) and others.
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Corollary 1.2. An important application of the theorem is the value of its
second part when r = 2, for then it gives the variance of x'Ax:

v(x'Ax) = 2 tr(AV)? 4+ 4p’A(VA)
= 2 tr(AV)? 4 4u/AVAyp. (45)
Corollary 1.3. When x ~ N(0, V)
v(x'Ax) = 2 tr(AV)2
b. Distributions

Theorem 2. When x is N(u, V) then x’Ax is y%[r(A), j»’Ap] if and only
if AV is idempotent.

Proof (sufficiency). Given that AV is idempotent to show that x'Ax is

27 [r(A), 3’ Apl.
From (42) the m.g.f. of x"Ax is

Myax(®) = [T — 2tAV[Fexp{—4p/[I — (I — 2(AV) ']V}

= i{(l — 212, exp{—%p.’li—kg(h)"(AV)kj] V‘lp.}

where the 4;, for i = 1,2, ..., n, are the latent roots of AV. Now if AV is
idempotent and r is its rank, r values of the 4; are unity and n — r are zero;
and (AV)" = AV, so that

My = ]1(1 — 2t)‘% exp{ —%p.’[— Zl(Zt)’“}AVV"‘p.}
1= o=

= (1 =20 ¥ exp{—ip/[1 — (1 — 207" A}
= (1 — 20 ¥exp{—tp/Apl — (1 — 207"} (46)
By comparison with (38) we see that x’Ax is % (r, ;i»’Ap) where r = r(AV).
And, since V is non-singular, r(AV) = r(A). Hence x'Ax is y*'[r(A), s’ Apl.

Proof (necessity). Given that x'Ax is x*(r, 4i’Ap) to show that AV is
idempotent of rank r.

In this case, knowing the distribution of x’Ax we have the m.g.f. of x'Ax
as given in (46), and it is also the form shown in (42). These two forms must
be equal—and equal for all values of &, in particular for & = 0. Substituting
¢ = 0 into (42) and (46) and equating gives

(1 =204 = |T — 2AV| 2,
Writing u for 2 and rearranging gives

(1 —u) = |I — uAV]|.



58 DISTRIBUTIONS [2.5]

Letting 4,, 45, .. ., 4, be the latent roots of AV we then have

n

(1 —uy =TI(1 — ud).

i=1
This being an identity in u its right-hand side has no powers of u exceeding r.

Hence at least one 4, is zero. Repeated use of this argument shows that (n — r)
of the 4,’s are zero, and so we can write

(1 —u) =ﬁ(1 — uk,).

Taking logarithms of both sides and equating coefficients gives r equations
in the r unknown 4’s, namely, all sums of powers of the A’s equal r. These
have a solution 4, =1 fori=1,2,...,r. Thus n — r latent roots of AV
are zero and r of them are unity. Therefore, by Lemma 9, AV is idempotent
and the theorem is proved.

Operationally the most important part of this theorem is the sufficiency
condition, namely that if AV is idempotent then x’Ax has a non-central
x2-distribution. However, there are also occasions when the necessity con-
dition is useful.

The theorem does of course have an endless variety of corollaries, depend-
ing on the values of @ and V and choice of A. For example, consider
> (x; — %) = xX'HgHx, where H, is the last # — 1 rows of the n-order
i=1
Helmert matrix discussed in Sec. 1 and exemplified in equation (4) for n = 4.
Then HyHg = I and HgH, is idempotent. Hence, if X is N(u1, ¢®I), Theorem 2

tells us that > (x; — @)%/o%is x*'(n — 1, ul'HHg1u/o?), which is x*(n — 1,0)
i=1

because 1'HH 1 = 0. Certain more direct corollaries of special interest
can be stated as follows.

Corollary 2.1. If x is N(0, I), then x’Ax is %2 if and only if A is idempotent
of rank r.

Corollary 2.2. Ifxis N(0, V) then x’Ax is ¥Zif and only if AV is idempotent
of rank r.

Corollary 2.3. If x is N(., o®I) then x'x/0? is x2' (n, 3’ p[0?).

Corollary 2.4. If x is N(w, I), then x'Ax is ¥%'(r, 3’Ap) if and only if A is

idempotent of rank r.

Additional special cases are easily established.
The proof of Theorem 2 is based upon moment generating functions. The
expression for the cumulants of x’Ax is given in (44). It shows that when
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x'Ax has a non-central y2-distribution, i.e., when AV is idempotent of rank r,
the kth cumulant of x’Ax (with A being symmetric) is

Ki(x'AX) = 251k — 1)![r(A) + kp'Apl. (47)

¢. Independence

Under this heading we consider the independence of:: 1. a quadratic form
and a linear form, 2. two quadratic forms, and 3. sets of quadratic forms.
There is a theorem for each case. In considering independence let us remember
that when two random variables are distributed independently their covari-
ance 1s always zero. But the fact of two variables having a zero covariance
does not always imply independence; it does under normality assumptions.

Theorem 3. When x ~ N(w, V), then x’Ax and Bx are distributed inde-
pendently if and only if BVA = 0.

Two facets of the theorem are worth noting before proving it: x’Ax does
not have to have a non-central y2-distribution for the theorem to apply;
and the theorem does not involve AVB, a product that does not necessarily
exist.

Proof of sufficiency: that BVA = 0 implies independence.

From Lemma 7, because A is symmetric, we have that A = LL' for some L
of full column rank. Therefore, if BVA = 0, BVLL' = 0. Since L has full
column rank, (L'L)™! exists (Corollary to Lemma 9, Chapter 1) and so

BVLL' = 0 implies BVLL'L(L'L)! = 0, 1., BVL = 0.
Therefore cov(Bx, x'L) = BVYL = 0.

Hence, because x is a vector of normally distributed variables, Bx and x'L
are distributed independently. Consequently Bx and x’Ax = x'LL'x are
distributed independently.

Proof of necessity: that independence of x’Ax and Bx implies BVA = 0.

The independence property gives cov(Bx, x'Ax) = 0; and Theorem
1(iii) gives cov(Bx, x’Ax) = 2BVAp. Hence 2BVAp. = 0, and since this is
true for all w, BVA = 0, and so the proof is complete.

The next theorem, dealing with the independence of two quadratic forms,
is similar to Theorem 3 just considered and its proof follows the same pattern.

Theorem 4. When x ~ N(w, V), the quadratic forms x’Ax and x'Bx are
distributed independently ifand only if AVB = 0 (or, equivalently, BVA = 0).

Note that the form of the distributions of x'Ax and x’Bx is not specified
in this theorem. It applies no matter what distributions these quadratics
follow, provided only that x is a vector of normal variables. In practice, the
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theorem is usually applied in situations where the quadratic forms have
x*-distributions, as determined by Theorem 2, but this is not a prerequisite
of Theorem 4.

Proof. The condition AVB = 0 is equivalent to BVA = 0 because A,
B and V are symmetric. Each condition therefore implies the other.

Sufficiency: that AVB = 0 implies independence.

By Lemma 7 we can write A = LL’ and B = MM’, where each of L and
M have full column rank. Therefore, if AVB =0, LL'VMM’ = 0, and
because (L'L)~! and (M'M)! exist this means L'VM = 0. Therefore

cov (L'x, x’M) = L'VM = 0.

Hence, because x is a vector of normally distributed variables, L'x and x'M
are distributed independently. Consequently x'Ax = x’LL'x and. Bx =
x'MMx’ are distributed independently.!

Necessity: that independence implies AVB = 0.
When x’Ax and x'Bx are distributed independently, cov(x'Ax, x'Bx) = 0
so that
v(x'Ax + x'Bx) = v(x’Ax) + v(x'Bx),
1e., v[x'(A + B)x] = v(x’Ax) + v(x'Bx).

Applying equation (45) to all three terms in this result leads, after a little
simplification, to
tr(VAVB) + 2u'AVBp. = 0. (48)

This is true for all w, including g = 0, so that tr(VAVB) = 0 and on sub-
stituting back in (48) this gives 2u’AVBw = 0. This in turn is true for all
i, and so AVB = 0. Thus the theorem is proved.

Before turning to the final theorem concerning independence, Theorem 3,
recall that Theorems 3 and 4 are concerned with independence properties
only, and apply whether or not the quadratic forms have y*-distributions.
This is not the case with Theorem 5. It relates to the independence of quad-
ratic forms in a sum of quadratics and is concerned with conditions under
which such forms have non-central y2-distributions. As such it involves
idempotent matrices. The theorem follows; it is lengthy.

Theorem 5. Let the following be given:
x, order n x 1, distributed as N(w, V);
A,, n X n, symmetric, of rank k;, fori = 1,2,..., p;

1 For the proofs of sufficiency in Theorems 3 and 4, I am grateful for discussions with
D. L. Solomon and N. S. Urquhart. Proofs can also be established, very tediously, using
moment generating functions.
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and A= iAi, which is symmetric, with rank k.
Then ;'Aix is ¥ (k;, du'A,p),

and the x'A,x are pairwise independent
and x'Ax is y¥(k, L' Ap)

if and only if

[: any 2 of (@) A,V idempotent, for all /,
(b) A,VA; =0 forall i <},
(¢) AV idempotent,
are true;

or II: (¢) is true and (d), k = Y k;;
i=1

or 111: (c) is true and (e), A,V, ..., A(,_)V are idempotent and
A,V is non-negative definite.

Proof of this theorem in statistics rests upon a theorem in matrices, which
in turn depends upon a lemma. The matrix theorem, given below as Theorem
Sa, 1s an extension of Graybill (1961, Theorems 1.68 and 1.69). The proof
given by Graybill and Marsaglia (1957) is lengthy; that given here follows
the much shorter proof of Banerjee (1964) as improved by Loynes (1966),
based upon a lemma. Accordingly we first state and prove the lemma given
by Loynes.

Loynes’ Lemma. If B is symmetric and idempotent, if Q is symmetric and
non-negative definite, and if I — B — Q is non-negative definite, then BQ =
QB = 0.

Proof of Loynes’ Lemma. Let x be any vector and let y = Bx. Then

y'By = y'B*x = y'Bx =y'y,
and so yd —B — Q)y = —y'Qy.
Furthermore, because I — B — Q i1s n.n.d.,

yd—B—Q)y >0.
Hence, —y’'Qy > 0 and so, because Q is n.n.d. also, y'Qy = 0. In addition,
since Q is symmetric, Q = L'L for some L and therefore y'Qy = y’'L'Ly = 0
implies Ly = 0 and hence L'Ly = 0; i.e., Qy = QBx = 0. Since this is
true for any x, QB = 0 and so
(QB) = B'Q' = BQ = 0.

Thus is the lemma proved. The matrix theorem follows.
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Theorem Sa. Let the following be given:

X;, n X n, symmetric, rank k;, i = 1,2, ..., j2

D
X = in’ which is symmetric, with rank k.

=1

Then of the conditions (a) X, idempotent for all i,
(6) X, X; = 0fori# ],
(¢) X idempotent,

D
(d) k= Z k;,
it is true that =
I: any 2 of (a), (b) and (c) imply (a), (b), (¢) and (d);
II: (¢) and (d) imply (@) and (b);
and III: (¢) and X, X,, ..., X, ¢ being idempotent with X  being non-
negative definite, imply that X is idempotent also and hence (a);
and therefore (b) and (d).

The analogies between Theorems 5 and Sa are clear; once 5a is proved, the
proof of 5 is relatively brief. The part played by Theorem 5a is that it shows
that in situations in which any one of sections I, Il or III of Theorem 5 hold
true, then all of conditions (a), (b) and (c) in section I will hold. The conse-
quences of Theorem 5, the independence of quadratics and their y*-distri-
butions, then arise directly from Theorems 2 and 4.

Proof of Theorem 5a. We first prove section I, doing it in four parts.
I(i): Given (c¢), I — X is idempotent and hence n.n.d.; and X — X; —
X;= > X, is, given (a), n.n.d. Therefore T —X 4+ X =X, — X; =

r#EIFE

I — X, — X, is n.n.d. and so, by Loynes’ Lemma, X, X; = 0, which is (b).
Hence (a) and (c¢) imply (b).

1(ii): Let A be a latent root and u the corresponding latent vector of X;.
Then X,u = Zu, and for 2 # 0, u = X,u/A. Hence X,u = X, Xu/A for i # 1
is, given (b), 0; and therefore Xu = X,u = Au and so 1 is a latent root of X.
But, given (c¢), X is idempotent and hence A = 0 or 1. Therefore X is, by
Lemma 8, idempotent. Similarly the other X,’s are idempotent and thus (a)
is established. Hence (b) and (¢) imply (a).

I(iii): Given (b) and (a) X2 = D X2 = > X; = X, which is (c¢). Thus
(a) and (b) imply (¢).

I(iv): Given (c¢), n(X) = tr(X) and so

k = r(X) = tr(X) = tr(T X;) = D tr(X)),

and on being given (a) > tr(X;,) = X k,. Hence k = Y k,, which is (d).
Thus (a) and (¢) imply (d).
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(If): The proof of this section follows that of Loynes (1966). Given
(¢), I — Xis idempotent and therefore X — I has rank n — k;i.e., X — I has
n — k linearly independent (LIN) rows. Therefore

in (X — I)x = 0 there are n — k LIN equations;

and in Xox = 0 there are k, LIN equations;

and in X, x = 0 there are k, LIN equations.

However, these LIN sets of equations are not all mutually LIN; for example,
the k, LIN equations in X,x = 0 may not be LIN of the k, LIN equations in
X,x = 0. Therefore, in

X — 1
X,

x=20

L X,
the maximum number of LIN equations is, given (d),
n—k+ky+--+k,=n—k;

and the equations reduce to X;x = x. Thus the minimum number of LIN
solutions to X;x = xisn — (n — k;) = k;; that is, for at least k£, LIN vectors
X, X;x = x = 1x. Hence 1 is a latent root of X; with multiplicity at least
equal to k,. But r(X,) = k, and so X, has only k, non-zero latent roots and so,
by Lemma 8, is idempotent; similarly so are the other X,’s, and thus is (@)
established. Thus (c¢) and (d) imply (@) and hence, by I(i), (); and so II is
proved.

III: Given (¢), X is n.n.d. and then so is I — X. With X;, ..., X,_, being
idempotent and hence p.s.d., and X, n.n.d. also, then

P
> X,=X-X;—X;isn.nd.

rEi#j
Therefore

and so, by Loynes’ Lemma, X;X; = 0; i.e., (b) is true. Therefore (a) and (d)
are implied also, and both this section and the whole theorem are proved.

We now have to show how Theorem 5a leads to proving Theorem 5.
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Proof of Theorem 5. Since V is symmetric and positive definite, V = T'T
by Lemma 4, for some non-singular T. Then, since A; is symmetric, so is
TA,T' and r(A,) = r(TA,;T'); and A,V is idempotent if and only if TA,T’ is;
and A;VA; = 0if and only if TA;T'TA;T’ = 0. Hence Theorem 5a holds true
using TA, T’ in place of X, (and TAT’ in place of X). Then sections I, II and
IIT of Theorem 5a applied to TA, T’ and TAT’ show that when sections I, II
or III of Theorem 5 exist conditions (a), (b) and (c) always exist. But, by
Theorem 2, x'Ax is x*(k,, 1p’A,) if and only if (a) is true; also, x'Ax is
% (k, tu'Aw) if and only if (¢) is true. And by Theorem 4 x'A;x and x'A,x
are independent if and only if condition (b) is true. And so Theorem 5 is
proved.

Corollary 5.1. (Cochran’s Theorem). When x is N(0,I,) and A; is sym-

D
metric of rank r; for i =1,...,p with > A, =I,, then the x'A;x, are
i=1

D
distributed independently as 2 if and only if 3 r; = n.
t=1

Proof. Put . = 0and V=1, = A in Theorem 5. This is the well-known
theorem first proved by Cochran (1934).

6. BILINEAR FORMS

Knowing the distributional properties of quadratic forms of normal
variables enables us to discuss properties of bilinear forms. We consider the
general bilinear form x;A,;,X, where x; and x, are of order n, and n,, distri-
buted as N(w,, C,;) and as N(@,, Cy,) respectively, with the matrix of co-
variances between x; and x, being C,, of order n; X n,; 1.e.,

E(x; — p)(xe — @) = Cpa.

Properties of the bilinear form are readily derived from those of quadratic
forms because x;A X, can be expressed as a quadratic form:

0 A,llx ) ,
X1A Xy = 3x; xg] A 0 X with Ay = (Ag)".
21 2

Hence x;A X, = 3Y'By

0 Ay ‘ ,
where B=B = with A, = (Ap),
A,y 0
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. SN V) with H v [Cu cm]
an is , wi = ) =
y * " e Cy Gy

and Co = (Cp)".

Thus properties of x;A,,X, are equivalent to those of $(y'By) which, for some
purposes, is better viewed as y'(3B)y.

Similar to Theorem 1, we have the mean value of xjA;,X,: whether the
distribution of the 2’s is normal or not,

E(xjA1X5) = tr(A;;Co1) + 1AM, (49)

This is proved in the same manner as is part (i) of Theorem 1. Also, from
part (it) of that theorem we have the rth cumulant of x;jA;,x, as

K, (x;ApX,) = 3(r — D! [tr(BV) + rp/B(VB)Y 'u]. (50)

And from Theorem 2, x/A;,x, is x*[r(B), tw'Bp] if and only if BV is

idempotent. With
BV _ [A12C21 A12C22]
A21C11 AZICIZ ’

notice that, in general, idempotency of 4BV does not imply (nor is it implied
by) idempotency of BYV. In substituting BV into (50) use is made of (Ay)" =
A5 and (Cy)' = Cy; and also of the cyclic commutability of matrix products
under the trace operation. In this way

tr(As; Cro) = tr(CipAy;) = tr(A,Cy)" = tr(ACyy)- (51)
A special case of (50) 1s when r = 2:
v(x{A2X,) = [tr(BY)® 4+ 2u'BVBu].
Substituting for BV and w and using (51) reduces this to

v(X[A2X,) = tr(A12C21)2 + tr(A;2CyA,,Cyy)
+ A Co2An By + P2AL CrApPe + 201ALCoHALR,.  (52)

We now derive the covariance between two bilinear forms x;A,,X, and
X3A3,X,, based on procedures developed by Evans (1969). Let x,, x,, X; and
x, have order n,, ny, ny and n, respectively and be normally distributed with
respective means W, M, Mg and @, and covariance matrices C,;, of order
n; X n;, fori,j=1,2,3 and 4:

C;; = E(x; — p)(x; — ) = (C,)). (53)
Also define

! !

x =[x{ X3 X3 X¢] and @' =[w P P3 Wl (54)
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with C ={C;} for i,j=1,23,4 (59)
for C;; of (§3); 1.e., x ~ N(w, C). Then, with

(0 A, 0 0|

Ay 0 0 0
0 0 0 A,
0 0 Ay 0|

, (56)

X'Wx = XA ;pX, + X3A5,X,,
so that

2 coV(X1AypXy, X3AgXy) = 0(x'WX) — v(X{A1pX;) — 0(X3A44X,).  (57)
Corollary 1.2 applied to the first term of (57) gives
v(x'Wx) = 2 tr(WC)? + 4p’"'WCWy.,

for w, C and W of (54), (55) and (56) respectively; and using (52) for
v(x1A3X,) and its analogue for v(x;A4,x,) we then find that (57) reduces, after
repetitive use of properties illustrated in (51), to

COV(X{A1pXy,  X3A54X,) = tr(A,Co3A5,Cyy + ACryALCyy)

+ 1A LCAy + 1ALC AR,
+ oA CrsAsity + PoAnCraAgits. (58)
This result does, of course, yield results obtained earlier when used for special
cases. For example, to obtain var(x'Ax) put all A;;’s equal to A, all C;;’s

equal to V and all .,’s equal to g and so get the variance of a quadratic form
in X ~ N(w, V) as

v(x'Ax) = 2 tr(AV)? + 4p/AVAR
as in (45). Also, to obtain the covariance between two quadratic forms in the

same variables, x'Px and x'Qx say, put all the @’s in (58) equal to ., all the
C’sequal to V, and put A;, = A,; = P and Ay = Ay = Q to give

cov(x'Px, x'Qx) = 2 tr(PVQYV) + 4p.'PVQp..

7. THE SINGULAR NORMAL DISTRIBUTION

Up to this point we have assumed that V is non-singular when x is N(, V).
We now consider the situation when V is singular. A simple example of this is
the variance-covariance matrix of three random variables X, X, and X; — X,.
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If
2
I:X1} l:ol 012}
var = ’
2
X, 013 Oy
2 2
X, 0, Oys 01 — Oy
2
then V = var X, = 012 0 012 — 0'2
2 2 2 2
X, — X, 0] — O3 Oy — 0y 07 + 05 — 207,

with V being singular. For such variables being normally distributed we
emphasize the singularity of V by writing, in general, x ~ SN(, V).

Because V! does not exist, the density function of the SN(g, V) distribu-
tion cannot be written down. However, its characteristic function (m.g.f.
using i¢ in place of ¢) does exist; it is e*'* 3Vt Therefore, by the continuity
theorem for characteristic functions [see, for example, Cramer (1951, p. 312)
and Anderson (1958, p. 25)], we are guaranteed that the density function
exists, even though it cannot be written explicitly.

The general characterization of the SN(w, V) distribution given by Ander-
son (1958, p. 25) is useful. Suppose y is a vector having the N(0, I) distribu-
tion. Then variables obtained by the transformation x = @ + Ly have the
SN(w., LL') distribution, when LL’ is not of full rank. Situations arise in
linear models that are similar to this, when we develop equations X'Xb’ =
X'y that have a solution b® = GX'y where X'X is singular. Then, if y has a
normal distribution, b° will also, but its variance-covariance matrix will be
singular. Discussion of the singular normal distribution is therefore pertinent.
We consider five theorems, 1s-5s, analogues of those for non-singular V in
Sec. 5. Although they are stated as applying to the SN(w., V) distribution, we
henceforth take this to be either the singular or the non-singular normal
distribution; i.e., V is to be considered as being either singular or non-singular.
In the case that V is non-singular, Theorems 1s-5s reduce to Theorems 1-5
respectively.

Theorem 1s. When x is SN(, V)
(i) E(x'Ax) = tr(AV) + p'Ap

(true also when x is non-normal)
(ii) the rth cumulant of x'Ax is

K(xX'Ax) = 2 (r — D)![tr(AV) + ri’ A(VAY 1ps]; (59)
and (iii) the covariance of x with x'Ax is

cov(x, x'Ax) = 2VAp..
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The results in this theorem are identical to those of Theorem 1. Proofs of
parts (i) and (iii) are also the same. Proof of part (ii) proceeds as follows, as in
Rohde et al. (1966).

Proof of (if). When x is SN(w, V) with V singular, there is no loss of
generality in supposing that x = w + Ly where y is N(0,1,), and V = LL’
with L having full column rank k, as in Lemma 7. Then the m.g.f. of x'Ax is

Myax(t) = (277)#%'1 - J exp(ty'L'ALy — }y'y + 2tp/’ALy + tp/'Ap)

X dy, . ..dy,
and application of (39) reduces this to

M ax(t) = [T — 2tL’AL|# exp[tp’ Ape + 2£2p'AL(I — 2/L’AL)"'L'Ap].

Calling the logarithm of this K., (t) and using infinite sums for —% log
|l — 2¢tL’AL| and (I — 2tL’AL)"? similar to those used in deriving (44), we

get
KeaxD) = 3 (277'0)r) tr(L'ALY + tp/Ap. + 2030 AL S 271" (L'ALYL'AL

r=1 r=-0
= ([tr(L’AL) + p'Ap]
+ > 27 (W AL(L'ALY *L'Ap. + tr(L’AL)"/r]. (60)
r=2
Now V = LL' and so
tr(L’AL)" = tr(VA)" for all positive integers r; (61)

also, by induction, it can be shown that

AL(L'AL)"2L'A = A(VA)" L. (62)
Hence

Kyoax(t) = tlwAp + tr(AV)] + i 2" AC(VAY i + tr(VAYr]

= 3 2 WAVAY e + t(VAYr]

Hence the rth cumulant of x’Ax, the coefficient of ¢7/r! in K,.,,(?), is as given
in (59). Note that although the initial definition of the m.g.f. is in terms of
L, where V = LL/, the ultimate expression for the cumulant depends solely
on V and not at all on L, and it is identical to the result for non-singular V in
Theorem 1.

There has recently been a plethora of theorems in the literature on the
distribution of quadratic forms in singular normal variables [e.g., Rao (1962),
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Khatri (1963), Rayner and Livingstone (1965), Rao (1966), Khatri (1968),
Good (1969) and Styan (1969)]. Despite this we give only one here, that which
appears to be the most general. It relates to a non-homogeneous form.

Theorem 2s. When x is SN(w, V), the form x’Ax + m'x + 4 has a non-
central y*-distribution with degrees of freedom tr(AV) and non-centrality
parameter 3 (Ap + 3m) V(Ap + im) if and only if

(i) VAVAV = VAV,
(ii) (A + 3m)'V = (Ap + }m)'VAV
and (iii) wWAR 4+ m'p + d = (A + im)' V(Ap + im).

This theorem is taken from Rayner and Livingston (1965, Theorem 7.2),
who give its proof. Rao (1966) also discusses the topic. Of the many
corollaries that can be established we mention but three.

Corollary 2s.1 (m = 0 and 4 = 0.) When x is N(w, V), whether V be
singular or non-singular, x'Ax is ¥*[tr(AV), 4p.’Ap] if and only if

(i) VAVAV = VAV, (i) p'AV = p'AVAV
and (ii)) p'Ap = p'AVAp.
Corollary 2s.2. (m = 0,d = 0 and g = 0.) When x is N(0, V), whether
V be singular or non-singular, x'Ax is y;,(av, if and only if VAVAV = VAV.

Corollary 2s.3. (Theorem 2). When V is non-singular the conditions of
Corollary 2s.1 reduce to idempotency of AV.

Despite the condition of idempotency in Corollary 2s.3, when V is non-
singular, one must nof conclude in the theorem or in Corollaries 2s.1 and
2s.2 that AV is idempotent, for it is not necessarily so. With V being p.s.d.,
V = LL' by Lemma 7 and L'L is non-singular (by Lemma 9 in Sec. 1.6).
Hence on all occasions condition (i) implies, and is implied by, the idempo-
tency of L'AL, which in turnisequivalent to AV having all itslatent rootsequal
to 0 or 1. But, by Lemma 9, only when V is non-singular does this condition
imply the idempotency of AV. This is the source of the error in the necessary
condition given by Rao (1962), which he later corrected, (1966). The same
error occurs in Good (1969), and has been corrected by Styan (1969), who
indicates that Good (1969) misquotes Shanbhag (1968) on this point. An
example follows.

Example. If
2 0 -2 16 6 5
V= 0 2 =2 and A=(1/16)1 6 4 3|,
-2 =2 4 5 3 2
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then
22 6 6 22 6 6
VA = (1/16) 2 2 2| and (VA)? = (1/16) 0 0 0].
—24 -8 —38 -22 —-6 -6

Clearly, VA is not idempotent; but tr(VA)? = tr(VA) = 1 and the latent roots
of VA are 1, 0 and 0. Furthermore, condition (i) of Theorem 2s is satisfied,
for 1t will be found that

2 0 -2
VAVAV = 0 0 0| = VAV.
-2 0 2
The matrix V corresponds to x' = [z; x, —(z; + x,)] as a result of
which
X'Ax = (8z + 2x; + x5 + 62,2, + Sx,7, + 32,2,)/8 = 1a?,
because 3 = —(x; + z,). Thus x'Ax = }a} is clearly distributed as

x¥[1 = tr(VA), $u?] where the degrees of freedom are tr(VA); but VA is not
idempotent.

Theorems relating to independence properties of quadratic forms are
based on the work of Khatri (1963) and Good (1963). The one for the
independence of a quadratic and a linear form, paralleling Theorem 3, stems
from the following result given by Good [1963, Theorem 1C, parts (i) and
(111)]: when y is SN(0, W), then y'Py and q'y are independent if and only if
WPWq = 0, and p’y and q'y are independent if and only if p'Wq = 0.
From this comes

Theorem 3s. When x is SN(i., V) then x’Ax and Bx are independent if and
only if BVAV = 0 and BVAp. = 0.

Proof. Write x = u + Ly where y ~ N(0,I) and (as in Lemma 7) V =

LL’, and apply Good’s results to
x'Ax = y'L’ALy + 2p’ALy + p'Ap

and b'’x = b'Ly + b’
where b’ is any row of B. The necessary and sufficient condition for the inde-
pendence of (i) y'L’ALy and b'Ly, is IL’ALIL’b = 0, which is readily shown
to be equivalent to BYAV = 0; and of (ii) ’ALy and b'Ly, is #’ALIL'b = 0,
equivalent to BVAu = 0. Hence BVAV = 0 and BVAp = 0 are the neces-
sary and sufficient conditions for x’Ax and Bx to be independent.

Corollary. x’Ax and Bx are independent if BVA = 0.
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Concerning the independence of two quadratic forms, Khatri (1963)
proves a theorem pertaining to a Wishart distribution which, in our context,

takes the following form.

Theorem 4s. When x is SN(w, V), the quadratic forms x’Ax and x'Bx are
independent if and only if

VAVBYV = 0,
VAVBy = VBVAR = 0
and ' AVBu = 0.

Shanbhag (1966) points out that if A is non-negative definite these conditions
reduce to AVBY = 0 and AVBp. = 0, whereas if both A and B are non-
negative definite the sole condition is AVB = 0, the same as when V is non-
singular (Theorem 3, above). Good [1963, Theorem 1C, part (i)] considers
this situation when g = 0, erroneously reporting the condition as AVBV = 0
or a cyclic permutation thereof; Shanbhag (1966) points out the error, as
acknowledged by Good (1966). The correct condition is VAVBY = 0,
as shown above.

Proof. Application of Good’s theorem yields a proof to Theorem 4s in the
same manner as it does to Theorem 3s (see Exercise 15).

Theorem 5 of Sec. 5 is a generalization of Cochran’s theorem. A somewhat
similar generalization for the singular normal is given by Styan (1969).

Theorem Ss. Let the following be given:
X, order n X 1, ~SN(, V);

A,, n X n, symmetric, rank (VA,V) =r,i=1,..., p;
¥4
and A =3 A, rank VAV = r.
=1

If (i) V 1s non-singular, or if (ii) V is singular and g = 0 or if (in1) V 1s singular,
i is not necessarily null and A; is positive semi-definite for i = 1,2,. .., r,
then the four propositions

(@) X'Ax~x"(r, WA,
(b) the x’A,x mutually independent,
() x'Ax~ yx*(r, jp'Ap)

¥4

and (d) r=>r

=1

are implied by any two of (a), (b) and (¢) and by (@) and (d).
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lProof. Styan (1969) gives a proof. It follows closely the proof of Theorem
5 in Sec. 5. Because of its length, it is omitted here.

8. EXERCISES

l. Suppose the data for 5 observations in a row-by-column analysis are as follows.

Row Column
1 2
1 6 4
6, 42 12

The analogy for unbalanced data of the interaction sum of squares is

2

S St _$vh 2
i=14=1 n” i=1 Ny j=1 n,,- n..
Use the above data to show that this expression is not a positive definite form.
Why, then, can it not be described as a sum of squares?

2. Derive the moment generating function of the xfl-distribution: (1) from its
density function and (ii) using the density function of the N(0, 1) distribution.
Use your result to find the mean and variance of the y2-distribution.

3. Find the first two moments of 1/u when u is distributed as 2.

4. (a) Derive the mean and variance of the ¢,-distribution and the Fy ,n,-
distribution.
(b) If the random variable r is such that r/(nA + 1) has a central F-distribution
with @ — 1 and a(n — 1) degrees of freedom, show that

._1 : 2 |
l—’—llir( ~a(n—1)) B :|

is an unbiased estimator of A. [Note: In certain analysis of variance

situations r is a calculated F-statistic and 4 is a variance ratio.}
n

5. Using Helmert’s matrix of Sec. 1, show why Y (z; — £)*/o® has a x7_,-distri-
i=1

bution when x is N(u1, ¢2I).

6. From the given definition of the ¢,- and y2-distributions show why

I — n—1

VN S — a2

t'n—l

when x is N(ul, ¢°I).
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7.

11.

12.

13.

14.

15.

16.

17.

18.
19.

Show that the variance of a #,-distribution equals the mean of an F, ,-
distribution.

. Using the moment generating function of the x?'(n, 2)-distribution derive its

mean and variance.

. Derive the mean and variance of the F'(n, , n, , 2)-distribution.

10.

Derive the density function and mean of the doubly non-central F-distribution
F”(nl s Mg }'1 ’ )‘2)

When x ~ N(, V), derive the density function of Tx, proving that it is normal.
What conditions must be satisfied for your proof to hold? What is the distri-
bution of Tx when the conditions are not satisfied ? Discuss the case when V
is singular.

When x is N(@q, I) and y is N(g,, I) and the correlation matrix between x and
y is R, what are the mean and variance of x'Ay?

When x is N(, V) show, without using Theorem 2, that if X' Axis x*'(r, 1'Ap)
then (x — p)’A(x — p) is x2. Can the converse be proved without the use of
Theorem 27?

If y is N(Xb, V) with V~1 existing, under what conditions is b°’Qb° a y®-variable
when b° is a solution to X'Xb° = X'y, with X'X being singular?

In Sec. 7 the two salient features of a theorem from Good (1963) are given.
With their aid, prove Theorem 4s.

With x ~ N(w, V) what are the necessary and sufficient conditions for xX'Ax +
b;x + c; and X’Agx + byx + ¢, to be independent? What are these conditions
when V is non-singular?

(a) From (38) derive the rth cumulant of the x* (g, A)-distribution.
(b) By equating your result to (59) show that a necessary and sufficient con-
dition for x’Ax to be distributed as x*'(g, ) is

tr(VA)" + r’ A(VA) 1p =g + 2ri for all integers r.

(c) Show that this condition is equivalent to (i.e., implies and is implied by)
the two conditions

pAVA) p = wAp =22  and  tr(VA)" =tr(VA) =g¢q
for all integers r.
(d) Show further that these conditions are also a special case of Theorem 2s.
Explain exactly why Cochran’s theorem is a corollary of Theorem 5.

By writing x = @ + Ly where y ~ N(0, I), derive the cumulant generating
function of x’Ax starting from the density function of y.
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20.

21.

22,

23.
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The non-central y2-distribution is defined as the distribution of x'x when

X ~ N(w, I,). Using just this definition prove the sufficiency condition first of
Corollary 2.4 and then of Theorem 2.

A characterization of the multivariate normal distribution is that x ~ N(g., V)
if and only if A’x has a univariate normal distribution. Using this as a definition
of the multivariate normal distribution, derive its moment generating function
from that of the univariate normal. [Hint: Use M (t) = M (1).]

Suppose that z ~ F(n, , n,) and
Pr{z > F, . = .
Prove that F,,, . 1o = 1/Fu  nya-
If u and v have a bivariate normal distribution with zero means, show that

cov(u?, v?) = 2[cov(u, v)I%.
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CHAPTER 3

REGRESSION, OR THE FULL RANK MODEL

1. INTRODUCTION

a. The model

Regression analysis is designed for situations where a variable is thought to
be related to one or more other measurements made, usually, on the same
object. A purpose of the analysis is to use data (observed values of the
variables) to estimate the form of this relationship. An example would be to
use information on income and number of years of (formal) schooling to
estimate the extent to which a man’s annual income is related to his years of
schooling. One possibility would be that for a man who had had zero years
of school we would anticipate his annual income as being $a; and for every
year of schooling he had had we would expect his income to be larger by
$b. Thus for a man having x years of schooling we would expect his annual
income to be @ 4+ bx dollars. In saying that we “expect” him to have an
income of a + bx dollars we are thinking of the average of all men who have
had x years at school, and if from these men one was picked at random we
would expect his income to be a + bx. If y denotes income we write E(y)
for expected income and thus have

E(y) =a + bx. (1)

This attempted description of how we think one variable is related to
another is an example of what is called model building. The model here, that
a man’s income is expected to be a + bx where z is his number of years of
schooling is a linear model, linear because we envisage E(y) as being a
linear combination of the unknowns, which are called parameters, a and b.
There are, of course, endless other models, non-linear in @ and b, that might
be postulated, e.g., that E(y) is a function of 2% or (log x)* or perhaps b*.

[75]
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However, the linear model is the one that has received greatest attention
both in theory and in practice. From the theoretical point of view it is
mathematically tractable, and in practical applications of wide variety it has
shown itself to be of great value. Furthermore, many models that are appar-
ently non-linear can often be rearranged to be in a linear form. Moreover,
while computing demands of linear model analyses can be extensive they are
usually not prohibitively excessive, and today’s goliath computers are making
such analyses ever more readily attainable.

Equation (1) is the equation of our model, in this case the model of how
expected income and years of schooling are related. The equation is not the
whole model; its other parts have yet to be described. Since the model is
something being conjectured, a and b can never be known, and the best that
can be done is to obtain estimates of them from data, data which we assume
are a random sample from some population to which we conjecture our
equation applies. The model is often called a regression model and since its
equation is linear the regression is more correctly called linear regression.
The variable denoted by ¥ is usually called the dependent variable, and x
1s correspondingly called an independent variable.

b. Observations

In gathering data, the income of every man with = years of schooling will
not be exactly a + bx (with a and b being the same for all men). Indeed this
fact is already recognized in the writing of the equation of the model as
E(y) = a + bx rather than as y = a + bx. Thus if y; is the income for a man
with x; years of schooling we write

E(y,) = a + bx;, (2)

where E(y,) is not the same as y, . The difference, y; — E(y,), represents the
deviation of the observed y; from its expected value E(y,) and is written as

e, =Y — E@,) =y, —a— bx;. (3)
Hence Y, =a + bxi + e;, (4)

which we now take as the equation of the model.

The deviation e; defined in (3) represents the extent to which an observed
y, differs from its expected value E(y;) = a + bx; . And equations (2), (3)
and (4) apply to each of our N observations ¥y, ¥, ..., Yy . Thus the e’s
include all manner of discrepancies between observed y’s and their expected
values; for example, they include measurement errors in y; (its recorded
value might not be exactly what the man’s income is), and they include
deficiencies in the model itself—the extent to which a + bx; is, in fact, not
the man’s income (variables other than years of schooling might affect it,
the man’s age, for example). In this way the e’s are considered as random
variables, usually called random errors or random residuals.
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In order to complete the description of our model in terms of equation (4),
characteristics of the e’s must be specified. Customary specifications are that
the expected value of e; is zero and its variance is o2, for all i; and that co-
variances between any pairs of e’s are zero. Thus

E(e) =0 &)
as is obvious from the definition of ¢, in (3), and
v(e;) = Ele; — E(e;))? = E(e}) = o? for all i; (6)

and cov(ee;) = Ele; — E(e)lle; — Ele;)] = E(ee;) =0 forizj. (7)

Equations (2)-(7) now constitute the model. They form the basis of the
procedure used for estimating a and b.

c. Estimation

There are several well-recognized methods that can be used for estimating
a and b (see Sec. 3). The most frequently used is that known as least squares,
and it is the one we shall outline here. Its justification as a satisfactory estima-
tion procedure is given in many standard statistical texts.

Least squares estimation involves minimizing the sum of squares of devia-
tions of the observed y,’s from their expected values. In view of (3) this sum
of squares 1s

N N N
e'e = =21 e = gl[yz- — E(y))P = gl(yi — a — bx)* (8)

Although a and b are fixed (but unknown) values, let us for the moment
think of them as mathematical variables. Then those values of them which
minimize (8) are the least squares estimators of a and b. They will be denoted
by d and . Minimization of (8) is achieved in the usual manner: differentiate
(8) with respect to @ and b and equate the differentials to zero. The resulting
equations are written in terms of @ and b. Their solutions for d and 5 are the
least squares estimators. Thus from (8)

d(e’e)/da = -—22(% —a — bx) = —2(2 y;— Na —b Z ;) 9
and
d(e'e)/ob = =2 z(y; — a — bx) = =2Q %y, — a Sa,—bYx) (10)

where summations are over i, for i = 1,2, ..., N. Equating these to zero
and writing them in terms of @ and b gives

Né+bYz,=Yy, and Az, +b3al=3xy,. (1)

Using the dot notation
x.=3x and y. = z Y; (12)
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and the corresponding bar notation for observed means,

¥, =2/N and ¢ =y./N, (13)
the solution for (11) can be written in the following familiar forms:

_ 2@ =)y —§) _ ¥y — Nig
> (v, — &) > 2l — Na°
and d =y — bz. = (y. — bx)/N. (15)

(14)

d. Example

Suppose in a sample of 5 men that their incomes (in thousands of dollars)
and years of schooling are as follows.

i Y; Z;
(Man) (Income, $1,000)  (Years of Schooling)

1 10

2 20 12

3 17

4 12 8

5 11 9
N=S5 y.= 10 x. = 45

y.= 14 .= 9
> y2 = 1054 > a? = 425 > xy; = 665

From (11) the equations for obtaining @ and b are
54+ 456=70 and 454 + 425b = 665

and from (14) and (15) the solutions are

665 — 5(914 35
425 — 5(9%) 20
and d =14 — 9(1.75) = —1.75.

[ N
Il

Hence the estimated regression equation, corresponding to (2), is

PN .
E(y) = d + bx; = —1.75 + 1.754;,

where the large “hat” over E(y,) denotes “‘estimator of” E(y,) just as does
d of a.
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e. The general case of k z-variables

Suppose that n the study of annual income and years of schooling we also
considered the man’s age to be a factor affecting income. The model envisaged
in (1) is now extended to be

E(y) = a 4+ byx, + by,

where x, represents years of schooling and x, is age. Thus for the ith man in

our data, who has had =, years of schooling and whose age is z;, , equation
(4) could be

Y= a+ b,y + boxip + e .

A change in notation 1s now made: in place of a write b, , and then for b,
write b x, with all values of z,, being unity. This gives

Y, = boxyo + by + byxyy + e, (16)

fori=1,2,..., N, with z,, = 1 for all /.
Now define the following matrix and vectors:

(@10 Ty Typ | K8 ey ]
Zog Top o Ys €2 bo
X = ' ,oy=| |, e=|_ and b= |b|
by
| Tno Fn1 Ting LY~ ey ]
Then the complete set of equations represented by (16) is
y = Xb + e, with  E(y) = Xb. (17)

Extension to more than just 2 x-variables (or 3, including ) is clear. For k
variables

’”xm Ty 7 Ty N
Log Ty Loy 0
X = N b= * (18)
b
[ Ok |
[ Zxo N1 " x.\'kJ

and y and e defined as above are unchanged. Equation (17) is unchanged also,
and 1t represents the model no matter how many z-variables there are, k,
so long as they are fewer in number than the number of observations N,
i.e., k < N. This is the model we now study, dealing with some of its many
variations in this and subsequent chapters. (When k > N, values of the b, can
be derived so that y = Xb exactly, and there 1s no esttmation problem.)
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Complete specification of the model demands that distributional properties
of the vector e be defined. For the moment all that is needed are its expected
value and variance. These, in accord with (5), (6) and (7) are taken as

E(e)=0
and var(e) = E[e — E(e)][e — E(e)]’ = E(ee’) = o?I, . (19)

An exact form of the distribution of the elements of e will be specified later,
when hypothesis testing and confidence intervals are considered.

Derivation of the least squares estimator of b follows the same procedure as
that used in establishing (11), namely minimization of the sum of squares of
the observations from their expected values. Similar to (8) this sum of squares,
with E(e) = 0 of (19) and hence E(y) = Xb, is

e'e = [y — E(Y)]'[ly — E(y)] = (y — Xb)'(y — Xb)
=y — 2b'’X’y + b’X’Xb.

Choosing as the estimator b that value of b which minimizes e’e involves
differentiating e’e with respect to the elements of b [Searle (1966), Sec. 8.5,
for example]. Equating d(e’e)/0db to zero and writing the resulting equations in
terms of b, we find that these equations are

X'Xb = X'y. (20)

They are known as the normal equations. Provided (X’X)! exists they have

the unique solution for b,
b = (X’X)Xy. (21)

Here is where the description ““full rank model” applies. When X'X is of
full rank the solution of (20) for b can be written as in (21). On the other hand,
if (X’X)™? does not exist, a solution to (20) may be written in terms of a
generalized inverse of X'X. This is the case of models not of full rank, which

are taken up in Chapter 5.
By the nature of X shown in (I18) X'X is square of order k& + 1, with
elements that are sums of squares and products, summed over i for i =

1,2,...,N: 3
foo inoxil Zﬂ”io”%;1

Z Zi0%1 z 9351 T Z ZnZig

X'X = ' - . (22)

Z Zi0%;:k 2 TnZy °°° 2 xizk

o
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_2 xioyz'—

2 T Y;

_E xik?!i_
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(23)

Thus X'X is the matrix of sum of squares and products of the observed
2’s and X'y is the vector of sums of products of the observed «’s and y’s.
Furthermore, since z,, = 1 foralli = 1,2, ..., N, and because all summations
areoveri =1,2,...,N, X222 = N, Zx,xr,; = 2., and Zz,y; =y, . Hence

X

T.q

Z xizl Z L;1%;2
Z ;1 %0 Z x?z T z Ti2%ix

Z.g o o x'k

Z Ti1%ix Z Lol " 2 xa‘i

T Z Ty

(24)

f. Example (continued). Suppose in the previous example the ages of the
men supplying the data had also been available, as follows.

(Man)
i

AW N -

(Income,
$1000)

Y;

10

20
17
12
11

N=5 y= 170

= 14

S y2 = 1054

(Years of

Schooling) (Age)

Ly Lig

6 28

12 40

10 32

8 36

9 34

o= 45wy = 170

Z,= 9 z,= 34

a2 =425 DYzl = 5860

S @y, = 2430

> w2 = 1562
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Putting these values into (22) gives

1 6 28
1 12 40 5 45 170
X=|110 32| xx—_|45 45 156 (25)
1 8 36 170 1562 5860
1 9 34
| _

50656 1840 —1960
o 1
and X'X)'=——| 1840 400 —160]. (26)

2880
) —1960 —160 100
And with, from (23),

>y 70
X'y = {2 %y | =] 665], (27)

inzyi 2430
equation (21) gives
1 50656 1840 —1960 70
b= (XX)'Xy = —
X'X)" Xy Ssgo| 1840 400 —160]| 665

—1960 —160 100 | | 2430
56

L1 5 (28)

24 '
-5

Thus from these data the estimated form of the relationship between y and
x, and z, Is

SN
E(y) = 56/24 + (50/24)x, — (5/24)x, .

g. Intercept and no-intercept models

When all «’s are zero in the above models, E(y) = b, with estimator b, .
Thus for #;, = 0 = z, in the preceding example the estimated value of E(y)
is by = 56/24. Models of this nature are called intercept models; the intercept
is by , the value of E(y) when all «’s are zero.

Sometimes it is appropriate to have no term b, in the model, in which case
the model is called a no-intercept model. The matrix X then has no vector of
I’s in it, as does X of (25) for example, and X'X is then the matrix of sums
of squares and products of the observations, without the first row and column
of totals seen in (24).
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Example (continued).
For the no-intercept model

425 1562 665
XX = and Xy =
1562 5860 2430

for which solution to (20) is

b, 1 5860 —1562[ 665
b=| | =XX)Xy=——
b 50656 — 1562 425112430

2

1 25310

= . (29)
12664 —1495

The no-intercept model thus leads to E(y) being estimated from these data as

AN
E(y) = (25310/12664)x, — (1495/12664)x, = 1.1952, — 0.1182x, .

2. DEVIATIONS FROM MEANS

The matrix X'X and vector X'y shown in (22) and (23) have as elements the
sums of squares and products of the observations. But it is well known that
the regression coefficients b, , ..., b, can be estimated using a matrix and
vector that are just like X'X and X'y only involving sums of squares and prod-
ucts corrected for their means. Indeed, this is the customary manner in which
estimates are calculated. We now establish this formulation. To do so, some
additional notation is needed.

Putting x,o = 1 in (18) for all / makes the first column of X all I’s. There-

fore, in defining

1 Lip Tie L1k
1 Zoy Lo Lo

1= |" and X, = : : : , (30)
1 Tyr TNe " Tyg

X can be written as
X=[1 X, (31)
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where the order of 1 is N; and, as in (30), X, is the N X k matrix of the ob-
served «’s. In addition, define

X' =[Z, Zo ... Z,] (32)
as the vector of means of the observed z’s. These definitions imply
11\1‘\7 == N, I’y = Ng al’ld l,xl = Ni', (33)

where for convenience we write ¥ in place of 7. for the mean.
The solution b can now be expressed as

b = (X'X) X'y

v 1 X ‘11’
"[m} ! [m}y

[ N NX' Ny
= _ / ’ from (33).
| NX X(X, Xy

Using the procedure for inverting a partitioned symmetric matrix given in
equation (48) of Sec. 1.7, this becomes

[N +x87'% —x'SV|[Ng
b = 1z —1 / (34)
—S7X S X1y
where
S = X;X; — NXX" (35)
Then, on partitioning
by
b
1 bo
b=| | = ,
. ‘
by

(34) can be written as

51 [Tyn 0:' [—i} I [N?]
=1 oe ot 1 P IF Mixy

7 — XST(Xiy — Ngi)}
L s7(Xjy — N§®)
so that é = S X}y — Njx) (36)
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and by =9y — x4 37

Now consider S given in (35). First,

Z 9331 z Ll E 1%k
Z Li1%;2 Z x?z T Z ZioZsx

XiX, = , (38)

_Z Ty D Ty > 25, _

the matrix of sums of squares and products of the k observed xz-variables.
Second, by the nature of X in (32), the matrix NXX’' is

NXX' = {NZ.Z.,} for p,g=1,2,...,k.
Thus
S=1{>ua,r,— Nz,z, for p,g=1,2,...,k.

Defining

as the matrix of observed x’s expressed as deviations from their means, it is
then easily shown that S as just derived is
S=%Z'%, (40)

i.e., S in (36) is the matrix of corrected sums of squares and products of the
«’s. Similarly, the other term in (36) is

Xy — NixX = zxipyi—Ni.pg} for p=1,2,...,k,
=.%"y,

the vector of corrected sums of products of the «’s and y’s. Hence just as
b = (X’X)"'X'y in (21) we can now write, from (36),
b= (X'T)"Xy. 41)

This is the inverted matrix of corrected sums of squares and products of the
2’s pre-multiplying the vector of corrected sums of products of the #’s and

y’s. Then, as in (37), b, is given by

by =4 — £'%. (42)
These results, (41) and (42), are the familiar expressions for calculating
regression estimators using corrected sums of squares and products.
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Example (continued) From the data given earlier,

~_3 67
3 6
X = 1 -2 (43)
—1 2
425 — 5(92 1562 — 5(9)34 20 32
and XX = [ ( ) ( ) — ’
1562 — 5(9)34 5860 — 5(34)2 32 80
with
1] 20 -8
A= —
( ) 12 4[—8 5] (44)
and
665 — 5(14)9 35
'y = = X (45)
2430 — 5(14)34 50

Therefore, on substituting in (41),

j_ 1 [20 —8} [35} [50/24J
144 g s)lso] | —5/24
as in (28). And from (42)

9
by = 14 — [50/24 —5/24][ } = 56/24

34
as in (28).

Derivation of £ in this manner does not apply for the no-intercept model
which contains no b,-term. For then the partitioning of b’ as [, ¢£] does not
exist, b’ is itself the vector of the 4’s corresponding to the k z-variables and
b = (X’X)1X'y is based on uncorrected sums of squares and products as

exemplified in (24).
3. FOUR METHODS OF ESTIMATION

In deriving the estimator b = (X'X)~2X'y in the previous section we blithely
adopted the least squares procedure for doing so. This is a well-accepted
method of estimation and its rationale will not be discussed here. However,
for convenient reference we summarize four common methods of estimation
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which, although differing in basic concept, all lead to the same estimator
under certain frequently-used assumptions. All four procedures are sum-
marized in terms of the full rank model where, in y = Xb + e, X has full
column rank, E(y) = Xb and E(e) = 0. Reference to their use in models not
of full rank is made in Chapter 5.

a. Ordinary least squares

This involves choosing b as the value of b which minimizes the sum of
squares of deviations of the observations from their expected values; i.e.,

N
choose b as that b which minimizes >y, — E(w)]? = (y — Xb)'(y — Xb).
=1
The resulting estimator is, as we have seen,
b= (X'X)Xy.

b. Generalized least squares

On assuming that the variance-covariance matrix of e is var(e) = V, this
method involves minimizing (y — Xb)'V=}(y — Xb) with respect to b. This
leads to

b = (X'V-IX)-1X'V-y.

Clearly, when V = ¢’I, the generalized and the ordinary least squares esti-
mators are the same: b = b.

c. Maximum likelihood

With least squares estimation no assumption is made about the form of the
distribution of the random error terms in the model, the terms represented by
e. With maximum likelihood estimation some assumption is made about this
distribution (often that it is normal) and the likelihood of the sample of
observations represented by the data is then maximized. On assuming that the
e’s are normally distributed with zero mean and variance-covariance matrix
V, i.e., e ~ N(0, V), the likelihood is

L = 2m)~" [V|-+ exp {—}(y — Xb)'V-1(y — Xb)}.

Maximizing this with respect to b is equivalent to solving d(log, L)/db = 0.
The solution is the maximum likelihood e