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Preface 

This book describes general procedures of estimation and hypothesis 
testing for linear statistical models and shows their application for un-
balanced data (i.e., unequal-subclass-numbers data) to certain specific 
models that often arise in research and survey work. In addition, three 
chapters are devoted to methods and results for estimating variance 
components, particularly from unbalanced data. Balanced data of the kind 
usually arising from designed experiments are treated very briefly, as just 
special cases of unbalanced data. Emphasis on unbalanced data is the 
backbone of the book, designed to assist those whose data cannot satisfy 
the strictures of carefully managed and well-designed experiments. 

The title may suggest that this is an all-embracing treatment of linear 
models. This is not the case, for there is no detailed discussion of designed 
experiments. Moreover, the title is not An Introduction to . . . , because the 
book provides more than an introduction; nor is it . . . with Applications, 
because, although concerned with applications of general linear model theory 
to specific models, few applications in the form of real-life data are used. 
Similarly, . . . for Unbalanced Data has also been excluded from the title 
because the book is not devoted exclusively to such data. Consequently the 
title Linear Models remains, and I believe it has brevity to recommend it. 

My main objective is to describe linear model techniques for analyzing 
unbalanced data. In this sense the book is self-contained, based on pre-
requisites of a semester of matrix algebra and a year of statistical methods. 
The matrix algebra required is supplemented in Chapter 1, which deals with 
generalized inverse matrices and allied topics. The reader who wishes to 
pursue the mathematics in detail throughout the book should also have 
some knowledge of statistical theory. The requirements in this regard are 
supplemented by a summary review of distributions in Chapter 2, extending 
to sections on the distribution of quadratic and bilinear forms and the singular 
multinormal distribution. There is no attempt to make this introductory 
material complete. It serves to provide the reader with foundations for 
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developing results for the general linear model, and much of the detail of 
this and other chapters can be omitted by the reader whose training in 
mathematical statistics is sparse. However, he must know Theorems 1 through 
3 of Chapter 2, for they are used extensively in succeeding chapters. 

Chapter 3 deals with full-rank models. It begins with a simple explanation 
of regression (based on an example) and proceeds to multiple regression, 
giving a unified treatment for testing a general linear hypothesis. After 
dealing with various aspects of this hypothesis and special cases of it, the 
chapter ends with sections on reduced models and other related topics. 
Chapter 4 introduces models not of full rank by discussing regression on 
dummy (0, 1) variables and showing its equivalence to linear models. The 
results are well known to most statisticians, but not to many users of re-
gression, especially those who are familiar with regression more in the form 
of computer output than as a statistical procedure. The chapter ends with a 
numerical example illustrating both the possibility of having many solutions 
to normal equations and the idea of estimable and non-estimable functions. 

Chapter 5 deals with the non-full-rank model, utilizing generalized inverse 
matrices and giving a unified procedure for testing any testable linear hypoth-
esis. Chapters 6 through 8 deal with specific cases of this model, giving 
many details for the analysis of unbalanced data. Within these chapters 
there is detailed discussion of certain topics that other books tend to ignore: 
restrictions on models and constraints on solutions (Sections 5.6 and 5.7); 
singular covariance matrices of the error terms (Section 5.8); orthogonal 
contrasts with unbalanced data (Section 5.5g); the hypotheses tested by F-
statistics in the analysis of variance of unbalanced data (Sections 6.4f, 7.1g, 
and 7.2f); analysis of covariance for unbalanced data (Section 8.2); and 
approximate analyses for data that are only slightly unbalanced (Section 8.3). 
On these and other topics, I have tried to coordinate some ideas and make 
them readily accessible to students, rather than continuing to leave the liter-
ature relatively devoid of these topics or, at best, containing only scattered 
references to them. Statisticians concerned with analyzing unbalanced data 
on the basis of linear models have talked about the difficulties involved for 
many years but, probably because the problems are not easily resolved, 
little has been put in print about them. The time has arrived, I feel, for 
trying to fill this void. Readers may not always agree with what is said, 
indeed I may want to alter some things myself in due time but, mean-
while, if this book sets readers to thinking and writing further about these 
matters, I will feel justified. For example, there may be criticism of the 
discussion of F-statistics in parts of Chapters 6 through 8, where these 
statistics are used, not so much to test hypotheses of interest (as described 
in Chapter 5), but to specify what hypotheses are being tested by those 
F-statistics available in analysis of variance tables for unbalanced data. I 
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believe it is important to understand what these hypotheses are, because they 
are not obvious analogs of the corresponding balanced data hypotheses and, 
in many cases, are relatively useless. 

The many numerical illustrations and exercises in Chapters 3 through 8 
use hypothetical data, designed with easy arithmetic in mind. This is because I 
agree with C. C. Li (1964) who points out that we do not learn to solve 
quadratic equations by working with something like 

683125a;2 + 1268.4071z - 213.69825 = 0 

just because it occurs in real life. Learning to first solve x2 + 3x + 2 = 0 
is far more instructive. Whereas real-life examples are certainly motivating, 
they usually involve arithmetic that becomes as cumbersome and as difficult 
to follow as is the algebra it is meant to illustrate. Furthermore, if one is 
going to use real-life examples, they must come from a variety of sources 
in order to appeal to a wide audience, but the changing from one example to 
another as succeeding points of analysis are developed and illustrated brings 
an inevitable loss of continuity. No apology is made, therefore, for the arti-
ficiality of the numerical examples used, nor for repeated use of the same 
example in many places. The attributes of continuity and of relatively easy 
arithmetic more than compensate for the lack of reality by assuring that 
examples achieve their purpose, of illustrating the algebra. 

Chapters 9 through 11 deal with variance components. The first part of 
Chapter 9 describes random models, distinguishing them from fixed models 
by a series of examples and using the concepts, rather than the details, of 
the examples to make the distinction. The second part of the chapter is the 
only occasion where balanced data are discussed in depth: not for specific 
models (designs) but in terms of procedures applicable to balanced data 
generally. Chapter 10 presents methods currently available for estimating 
variance components from unbalanced data, their properties, procedures, 
and difficulties. Parts of these two chapters draw heavily on Searle (1971). 
Finally, Chapter 11 catalogs results derived by applying to specific models 
some of the methods described in Chapter 10, gathering together the cumber-
some algebraic expressions for variance component estimators and their 
variances in the 1-way, 2-way nested, and 2-way crossed classifications 
(random and mixed models), and others. Currently these results are scattered 
throughout the literature. The algebraic expressions are themselves so lengthy 
that there would be little advantage in giving numerical illustrations. Instead, 
extra space has been taken to typeset the algebraic expressions in as readable 
a manner as possible. 

All chapters except the last have exercises, most of which are designed to 
encourage the student to reread the text and to practice and become 
thoroughly familiar with the techniques described. Statisticians, in their 
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consulting capacity, are much like lawyers. They do not need to remember 
every technique exactly, but must know where to locate it when needed and be 
able to understand it once found. This is particularly so with the techniques 
of unbalanced data analysis, and so the exercises are directed towards 
impressing on the reader the methods and logic of establishing the techniques 
rather than the details of the results themselves. These can always be found 
when needed. 

No computer programs are given. This would be an enormous task, with 
no certainty that such programs would be optimal when written and even 
less chance by the time they were published. While the need for good pro-
grams is obvious, I think that a statistics book is not the place yet for such 
programs. Computer programs printed in books take on the aura of quality 
and authority, which, even if valid initially, soon becomes outmoded in 
today's fast-moving computer world. 

The chapters are long, but self-contained and liberally sign-posted with 
sections, subsections, and sub-subsections—all with titles (see Contents). 

My sincere thanks go to many people for helping with the book: the 
Institute of Statistics at Texas A. and M. University which provided me with 
facilities during a sabbatical leave (1968-1969) to do most of the initial 
writing; R. G. Cornell, N. R. Draper, and J. S. Hunter, the reviewers of the 
first draft who made many helpful suggestions; and my colleagues at Cornell 
who encouraged me to keep going. I also thank D. F. Cox, C. H. Goldsmith, 
A. Hedayat, R. R. Hocking, J. W. Rudan, D. L. Solomon, N. S. Urquhart, and 
D. L. Weeks for reading parts of the manuscript and suggesting valuable im-
provements. To John W. Rudan goes particular gratitude for generous help 
with proof reading. Grateful thanks also go to secretarial help at both Texas 
A. and M. and Cornell Universities, who eased the burden enormously. 

S. R. SEARLE 
Ithaca, New York 
October, 1970 
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CHAPTER 1 

GENERALIZED INVERSE MATRICES 

1. INTRODUCTION 

The application of generalized inverse matrices to linear statistical models 
is of relatively recent occurrence. As a mathematical tool such matrices aid 
in understanding certain aspects of the analysis procedures associated with 
linear models, especially the analysis of unbalanced data, a topic to which 
considerable attention is given in this book. An appropriate starting point is 
therefore a summary of the features of generalized inverse matrices that are 
important to linear models. Other ancillary results in matrix algebra are 
also discussed. 

a. Definition and existence 
A generalized inverse of a matrix A is defined, in this book, as any matrix 

G that satisfies the equation 
AGA = A. (1) 

The name "generalized inverse" for matrices G defined by (1) is unfortunately 
not universally accepted, although it is used quite widely. Names such as 
"conditional inverse", "pseudo inverse" and "g-inverse" are also to be found 
in the literature, sometimes for matrices defined as is G of (1) and sometimes 
for matrices defined as variants of G. However, throughout this book the 
name "generalized inverse" of A is used exclusively for any matrix G satisfy-
ing (1). 

Notice that (1) does not define G as "the" generalized inverse of A but as 
"a" generalized inverse. This is because G, for a given matrix A, is not unique. 
As shown below, there is an infinite number of matrices G that satisfy (1) 
and so we refer to the whole class of them as generalized inverses of A. 

One way of illustrating the existence of G and its non-uniqueness starts 
with the equivalent diagonal form of A. If A has order p x q the reduction 

[ 1 ] 
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2 GENERALIZED INVERSE MATRICES [i.i] 

to this diagonal form can be written as 

*vXv^pXqQqXq ~~ **vXq — 

or, more simply, as 

PAQ = Δ = 

" D r X r 

_<>(*>-

| T > r 

Lo 

r)Xr 

0" 

0 

vrX(v-r) 

"(D-r)X(e-r)J 

As usual, P and Q are products of elementary operators [see, for example, 
Searle (1966), Sec. 5.7], r is the rank of A and Dr is a diagonal matrix of 
order r. In general, if du d2,. .. ,dr are the diagonal elements of any diagonal 
matrix D we will use the notation D ^ } for Dr; i.e., 

D = 

�di 0 

0 dt 

0 � � � 

� � � 0" 

� � 0 

0 d, 

= diag K ) = D R } for i = 1,. . . , r. (2) 

Furthermore, as in Δ, null matrices will be represented by the symbol 0, 
with order being determined by context on each occasion. 

Derivation of G comes easily from Δ. Analogous to Δ we define Δ~ 
(to be read as "Δ minus") as 

"D71 0" 

. 0 oj 
Δ " = 

Then, as shown below, 
G = QA-P (3) 

satisfies (1). Hence G is a generalized inverse of A. Clearly G as given by (3) 
is not unique, for neither P nor Q by their definition is unique; neither is Δ 
nor Δ~, and therefore G = QA~P is not unique. 

Before showing that G does satisfy (1), note from the definitions of Δ and 
Δ~ given above that 

ΔΔ~Δ = Δ. (4) 

Hence, by the definition implied in (1), we can say that Δ~ is a generalized 
inverse of Δ, an unimportant result in itself but one which leads to G satisfy-
ing (1). To show this we use Δ to write 

A = P - ^ Q 1 , (5) 
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the inverses P _ 1 and Q_ 1 existing because P and Q are products of elementary 
operators and hence non-singular. Then (3), (4) and (5) give 

AGA = P ^ A Q ^ Q Ä T P P ^ A Q 1 = P ^ � A � � Q 1 = P ^ A Q 1 = A; 

i.e., (1) is satisfied. Hence G is a generalized inverse of A. 

Example. For 

A = 

a diagonal form is obtained using 

P = 

" 0 1 0 " 

1 - 4 0 
_ 2 _ 1 1 _ 3 3 *_ 

"4 1 
1 1 

.3 1 

and 

so that 

PAQ = Δ = 

Hence 

"1 0 0" 
0 - 3 0 

.0 0 0_ 

G = Q A P = 

anc 

Γ 1 

�  
L 0 

2" 
5 
3_ 

Q = 

"1 

0 
_0 

Δ" = 

- 1 0Ί 
4 0 

0 OJ 

- 1 

1 

0 

Γ1 

0 

Lo 

• 

Γ 

- 6 

1_ 

0 
_ 1 3 

0 

J 

0" 
0 
0 

The reader should verify that AGA = A. 

It is to be emphasized that generalized inverses exist for rectangular 
matrices as well as for square ones. This is evident from the formulation of 
� � � � . However, for A of order p x q, we define Δ" as having order q x p, 
the null matrices therein being of appropriate order to make this so. As a 
result G has order q x p. 

Example. Consider 

B = 

4 1 2 0" 

1 1 5 15 

3 1 3 5 

the same as A in the previous example except for an additional column. 
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With P as given earlier and Q now taken as 

and PBQ = Δ = 

[1.1] 

Q = 

1 - 1 
0 1 -
0 0 
0 0 

Δ " is then taken as 

Δ = 

"1 0 

o - i 
0 0 

.0 0 

1 
- 6 

1 
0 

0" 

0 

0 
0. 

5 
- 2 0 

0 
1 

"1 

0 

0 

0 

- 3 

0 

0 

0 

0 

0" 

0 

0 

r i 
3 

_ 1 
3 

0 
_ 0 

- * 
4 
3 

0 
0 

0" 

0 

0 
0. 

so that G = Q A P 

b. An algorithm 
Another way of computing G is based on knowing the rank of A. Suppose 

it is r and that A can be partitioned in such a way that its leading r x r 
minor is non-singular, i.e., 

A — 
"An Ax 

*-22j 

where A n is r x r of rank r. Then a generalized inverse of A is 

ol An1 

" L 0 0. 

where the null matrices are of appropriate order to make G be q x p. To 
see that G is a generalized inverse of A, note that 

AGA 
A 2 i 

A12 

Α2ιΑη Α12 

Now, by the way in which A has been partitioned, [A21 A22] = K[AU A12] 
for some matrix K. Therefore K = A^A^i1 and so A22 = KA12 = Α2ιΑϊΊ1Α12. 
Hence AGA = A. 

Example. A generalizec 

= 

" 1 2 5 2" 

3 7 12 4 

0 1 - 3 - 2 

inverse of 

, having rank 2, isG = 

7 
- 3 

0 
0 

- 2 
1 
0 
0 

0 
0 
0 
0 
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There is no need for the non-singular minor of order r to be in the leading 
position. Suppose it is not. Let R and S represent the elementary row and 
column operations respectively to bring it to the leading position. Then R 
and S are products of elementary operators with 

RAS = B = 
B, 

B 21 

Bl2 

B22. 
where B n is non-singular of order r. Then 

F = 
Bn1 0 

. 0 Oj 
is a generalized inverse of B and GQXP = SFR is a generalized inverse of A. 
Now R and S are products of elementary operators that interchange rows 
(or columns); i.e., R and S are products of matrices that are identity matrices 
with rows (or columns) interchanged. Therefore R and S are identity matrices 
with rows (or columns) in a different sequence from that found in I. Such 
matrices are known as permutation matrices and are orthogonal; i.e., 

R = I with its rows in a different sequence 
= permutation matrix 

and R'R = I. 
The same is true for S, and so from RAS = B we have 

(6) 

A = R'BS' = R' 
B l l B 1 2 

Boi Bo 

Clearly, so far as B n is concerned, this product represents the operations of 
returning the elements of B n to their original positions in A. Now consider 
G: we have 

G = SFR = (R'F 'S')' R 
"(Bn1)' 
_ 0 

0" 

0. 
S' 

In this, analogous to the form of A = R'BS', the product involving R' 
and S' in G' represents putting the elements of (B"1)' into the corresponding 
positions (of G') that the elements of B n occupied in A. Hence an algorithm 
for finding a generalized inverse of A by this method is as follows. 

(i) In A, of rank r, find any non-singular minor of order r. Call it M 
(using the symbol M in place of Bn) . 

(ii) Invert M and transpose the inverse: (M-1)'. 
(iii) In A replace each element of M by the corresponding element of 

(M-1)'; i.e., if au = m8tt the (s, t)th element of M, then replace aiS by mUs, 
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the (/, s)th element of M~\ equivalent to the (s, t)th element of the trans-
pose of M_1. 

(iv) Replace all other elements of A by zero. 
(v) Transpose the resulting matrix. 

(vi) The result is G, a generalized inverse of A. 

Note that this procedure is not equivalent, in (iii), to replacing elements of 
M in A by the elements of M_ 1 (and others by zero) and then in (v) transpos-
ing. It is if M is symmetric. Nor is it equivalent to replacing, in (iii), elements 
of M in A by elements of M_ 1 (and others by zero) and then in (v) not trans-
posing (see Exercise 5). In general, the algorithm must be carried out exactly 
as described. 

One case where it can be simplified is when A is symmetric. Then any 
principal minor of A is symmetric and the transposing in both (iii) and (v) 
can be ignored. The algorithm can then become as follows. 

(i) In A, of rank r and symmetric, find any non-singular principal minor 
of order r. Call it M. 

(ii) Invert M. 
(iii) In A replace each element of M by the corresponding element of M_1. 
(iv) Replace all other elements of A by zero. 
(v) The result is G, a generalized inverse of A. 

However, when A is symmetric and a non-symmetric non-principal minor is 
used for M, then the general algorithm must be used. 

Example. The matrix 
1 0" 

Ax = I 1 1 5 15| 

L3 1 3 5J 

has the following matrices, among others, as generalized inverses: 

� ' 
1 5 
1 0 

0 

0 

0 

0 

0 
3 
2 

1 
2 

0 

0 
5 
2 

1 
2 

0 

> 

0 

0 

0 

0 

0 
5 

1 0 

0 
1 

1 0 

derived from inverting the 2 x 2 minors 

1 5" 

1 3 

1 15 

1 5 
and 

and 

~4 0" 

3 5 
res 

2 0 U 

0 0 

0 0 

2 0 V 

pectively. 

0 

0 

0 
4 

20 
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Similarly, 

"2 

2 

_6 

2 6" 

3 8 

8 22_ 

has 

"0 

0 

.0 

0 

11 

- 4 

01 

- 4 
3 
2 j 

as a generalized inverse. 
These derivations of a matrix G that satisfies (1) are by no means the only 

ways in which such a matrix can be computed. For matrices of small order 
they can be satisfactory, but for those of large order other methods may be 
preferred. Some of these are discussed subsequently. Most methods involve, 
of course, the same kind of numerical problems as are incurred in calculating 
the regular inverse A - 1 of a non-singular matrix A. Despite this, the general-
ized inverse has importance because of its general application to non-square 
matrices and to square, singular matrices. In the special case that A is non-
singular G = A-1, as one would expect, and in this case G is unique. 

The fact that A has a generalized inverse even when it is singular or rec-
tangular has particular application in the problem of solving equations, 
e.g., of solving Ax = y for x when A is singular or rectangular. In situations 
of this nature the use of a generalized inverse G leads, as we shall see, very 
directly to a solution. And this is of great importance in the study of linear 
models, wherein such equations arise quite frequently. For example, when a 
model can be written as y = Xb + e, the least squares procedure for estimat-
ing b often leads to equations X�Xb = X'y where the matrix X�X is singular. 
Hence the solution cannot be written as (X'X)_1X'y; but using a generalized 
inverse of X'X a solution can be obtained directly and its properties studied. 

Since the use of generalized inverse matrices in solving linear equations is 
the application of prime interest so far as linear models are concerned, the 
procedures involved are now outlined. Following this, some general prop-
erties of generalized inverses are discussed. 

2 . SOLVING LINEAR EQUATIONS 

a. Consistent equations 
A convenient starting point from which to develop the solution of linear 

equations using a generalized inverse is the definition of consistent equations. 

Definition. The linear equations Ax — y are defined as being consistent 
if any linear relationships existing among the rows of A also exist among the 
corresponding elements of y. 
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As a simple example, the equations 

[1.2] 

"1 2" 

3 6 Xo 

' r 
21 

are consistent: in the matrix on the left the second row is thrice the first, 
and this is also true of the elements on the right. But the equations 

7" "1 2" 

3 6 24 

are not consistent. Further evidence of this is seen by writing them in full: 

x�  + 2x2 = 7 and 3xx + 6x2 = 24. 

As a consequence of the first, 3x�  + 6x2 = 21, which cannot be true if the 
second is to hold. The equations are therefore said to be inconsistent. 

The formal definition of consistent equations does not demand that linear 
relationships must exist among the rows of A, but if they do then the defi-
nition does require that the same relationships also exist among the corre-
sponding elements of y for the equations to be consistent. For example, 
when A - 1 exists, the equations Ax = y are always consistent, for there are 
no linear relationships among the rows of A and therefore none that the 
elements of y must satisfy. 

The importance of the concept of consistency lies in the following theorem: 
linear equations can be solved if, and only if, they are consistent. Proof 
can be established from the above definition of consistent equations [see, 
for example, Searle (1966), Sec. 6.2, or Searle and Hausman (1970), Sec. 7.2]. 
Since it is only consistent equations that can be solved, discussion of a 
procedure for solving linear equations is hereafter confined to equations 
that are consistent. The procedure is described in a series of theorems. 

b. Obtaining solutions 
The link between a generalized inverse of the matrix A and consistent 

equations Ax = y is set out in the following theorem adapted from Rao 
(1962) 

Theorem 1. Consistent equations Ax = y have a solution x = Gy if and 
only if AGA = A. 

Proof. If the equations Ax = y are consistent and have x = Gy as a 
solution, write a, for theyth column of A and consider the equations Ax = a,·. 
They have a solution: the null vector with itsyth element set equal to unity. 
Therefore the equations Ax = a,· are consistent. Furthermore, since con-
sistent equations Ax = y have a solution x = Gy, it follows that consistent 
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equations Ax = a,� have a solution x = Ga,. Therefore AGa, = a,·; and this 
is true for all values ofy, i.e., for all columns of A. Hence AGA = A. 

Conversely, if AGA = A, then AGAx = Ax, and when Ax = y this gives 
AGy = y, i.e., A(Gy) = y. Hence x = Gy is a solution of Ax = y, and the 
theorem is proved. 

Theorem 1 indicates how a solution to consistent equations may be ob-
tained: find any matrix G satisfying AGA = A, i.e., find G as any generalized 
inverse of A, and then Gy is a solution. However, as Theorem 2 shows, Gy 
is not the only solution. There are, indeed, many solutions whenever A is 
anything other than a square, non-singular matrix. 

Theorem 2. If A has q columns and if G is a generalized inverse of A, 
then the consistent equations Ax = y have solution 

x = Gy + (GA - I)z, (7) 

where z is any arbitrary vector of order q. 

Proof. Ax = AGy + (AGA - A)z 
= AGy, because AGA = A, 
= y, by Theorem 1; 

i.e., x satisfies Ax = y and hence is a solution. The notation x emphasizes 
that x is a solution, distinguishing it from the general vector of unknowns x. 

Note that the solution x involves an element of arbitrariness because z 
is an arbitrary vector: z can have any value at all and x will still be a solution 
to Ax = y. No matter what value is given to z, the expression for x given in 
(7) satisfies Ax = y. Furthermore, this will be so for whatever generalized 
inverse of A is used for G. 

Example. Consider the equations Ax = y as 

5 

8 

21 

3 

3 

5 

13 

2 

1 

2 

5 

1 

- 4 

3 

2 

7 

so defining A, x and y. It will be found that 

G = 

\� �  

� <� 

# 3 

x^ 

� 6 

8 

22 

2 

(8) 

5 

8 

0 

0 

- 3 

5 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 
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is a generalized inverse of A satisfying AGA = A, and the solution (7) is 

x = Gy + (GA - I)z 

+ 

VL 

0 

1 

0 

0 

- 1 

2 

0 

0 

29" 

47 

0 

0 

| ) 

I 

) \ 

Γ*ι 

*2 

z3 

AI 
6 — z3 — 29z4 

- 8 + 2z3 + 47z4 

—zA 

(9) 

where z3 and z4 are arbitrary. This means that (9) is a solution to (8) no 
matter what values are given to z3 and z4. For example, putting z3 = 0 = z4 

gives 
x[ = [6 - 8 0 0] (10) 

and putting zs = — 1 and z4 = 2 gives 

x^ = [ -51 84 1 -2]. (ID 
It will be found that both xx and x2 satisfy (8). That (9) does satisfy (8) for 
all values of z3 and z4 can be seen by substitution. For example, the left-hand 
side of the first equation is then 

5(6 - z 3 - 29z4) + 3 ( - 8 + 2z3 + 47z4) + (-z3) - 4(-z4) 
= 30 - 24 + z3(~5 + 6 - 1) + z4(-145 + 141 + 4) 
= 6 

as it should be. 
The G used earlier is not the only generalized inverse of the matrix A in 

(8). Another is 

G = 

0 

0 

0 

0 

0 

- 5 

13 

0 

0 

2 

- 5 

0 

0 

0 

0 

0 
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for which (7) becomes 

x = Gy + (GA - I)z 

0 

4 

- 6 

0 

+ 

0 

2 

0 

1 

0 

0 

0 0 

0 - 1 1 

1 29 

0 0 

- I 

4 + 2zx - llz4 

-6 - � �  + 29z4 

— Zd 

(12) 

for arbitrary values zx and z4. This too, it will be found, satisfies (8). 

c. Properties of solutions 
One might now ask about the relationship, if any, between the two solu-

tions (9) and (12) found by using the two generalized inverses G and G. 
Both satisfy (8) for an infinite number of sets of values of z3, z4 and zl9 z4. 
The basic question is: Do the two solutions generate, through allocating 
different sets of values to the arbitrary values z3 and z4 in x and zx and z4 

in x, the same series of vectors that satisfy Ax = y? The answer is "yes". 
This is so because, on putting � �  = — 6 + z3 + 29z4 and z4 = z4, the solution 
in (12) becomes identical to that in (9). Hence (9) and (12) both generate the 
same sets of solutions to (8) 

The relationship between solutions using G and those using G is that, 
on putting 

z = (G - G)y + (I - GA)z, 
x reduces to x. 

A stronger result, which concerns generation of all solutions from x, is 
contained in the following theorem. 

Theorem 3. For the consistent equations Ax^=y all solutions are, for any 
specific G, generated by x = Gy + (GA — I)z, for arbitrary z. 

Proof. Let x* be any solution to Ax = y. Choose z = (GA — I)x* and it 
will be found that x reduces to x*. Thus, by appropriate choice of z, any 
solution to Ax = y can be put in the form of x. 

The importance of this theorem is that one need derive only one generalized 
inverse of A in order to be able to generate all solutions to Ax = y. There 
are no solutions other than those that can be generated from x. 
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Having established a method for solving linear equations and shown that 
they can have an infinite number of solutions, we ask two questions: What 
relationships exist among the solutions and to what extent are the solutions 
linearly independent (LIN) ? Since each solution is a vector of order q there 
can, of course, be no more than q LIN solutions. In fact there are fewer, 
as Theorem 4 shows. But first, a lemma. 

Lemma 1. Let H = GA where the rank of A, denoted by r(A), is r, 
i.e., r(A) — r; and A has q columns. Then H is idempotent with rank r 
and r(I — H) = q — r. 

Proof. H2 = GAGA = GA = H, showing that H is idempotent. Further-
more, by the rule for the rank of a product matrix, r(H) = r(GA) < r(A). 
Similarly, because AH = AGA = A, we have r(H) > r(A). Therefore 
r(H) = r(A) = r. And since H is idempotent so is I — H, of order q, so that 
r(I - H) = tr(I - H) = q - tr(H) = q - r(H) = q - r. 

Theorem 4. When A is a matrix of q columns and rank r, and when y is a 
non-null vector, the number of LIN solutions to the consistent equations 
Ax = y is ^ — r + 1. 

Proof. Writing H = GA, the solutions to Ax = y are, from Theorem 2, 

x = Gy + (H - I)z. 

Now because r(H — I) = q — r, there are only (q — r) arbitrary elements in 
(H — I)z for arbitrary z; the other r elements are linear combinations of 
those q — r. Therefore there are only (q — r) LIN vectors (H — I)z and 
using them in x gives (q — r) LIN solutions. For / = 1, 2, . . . , q — r let 
xz. = Gy + (H — I)z^ be these solutions, x = Gy is also a solution. Assume 
it is linearly dependent on the xi9 so that for scalars � �9 i = 1, 2, . . . , q — r, 
not all of which are zero, 

Gy = Σ * A = Σ *,-[Gy + (H - I)zJ. (13) 

Then Gy = Gy 2 K + �  ^[(H - I)z,]. (14) 

Now the left-hand side of (14) contains no z's. Therefore, on the right-hand 
side the second term must be null. But since the (H — I)z, are LIN this can 
be true only if every lt is zero. This means (13) is no longer true for some 
� � non-zero. Therefore Gy is independent of the x^; hence Gy and x, for 
i = 1, 2, . . . , q — r form a set of (q — r + 1) LIN solutions. When q = r 
there is but one solution, corresponding to the existence of A-1, and that 
solution is x = A_1y. 

This theorem means that x = Gy and x = Gy + (H — I)z for (q — r) LIN 
vectors z are LIN solutions of Ax = y. All other solutions will be linear 
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combinations of those forming a set of LIN solutions. A means of construct-
ing solutions as linear combinations of other solutions is contained in the 
following theorem. 

Theorem 5. If xl5 x2, . . . , xs are any s solutions of consistent equations 
Ax = y for which y �  0, then any linear combination of these solutions 
x* = 2 ^Λ *s a*so a s o m t ion of the equations if, and only if, ]£ Xt: = 1, 
the summation being for / = 1,2, . . . , s. 

Proof. Because 

� * = �  *A> 
Ax* = A 2 � {% = �  � ^*�� 

And because % is a solution, Ax^ = y for all /, so giving 

Ax* = 2Ajy = y(2Ai). (15) 

Now if x* is a solution of Ax = y then Ax* = y, and by comparison with 
(15) this means, y being non-null, that 2 K —' 1- Conversely, if 2 h = 1? 
equation (15) implies that Ax* = y, namely that x* is a solution. So the 
theorem is proved. 

Notice that Theorem 5 is in terms of any s solutions. Hence for any number 
of solutions, whether LIN or not, any linear combination of them is itself a 
solution provided the coefficients in that combination sum to unity. 

Corollary. When y — 0, Gy is null and there are only q — r non-null 
LIN solutions to Ax = 0; also, 2 ^ A is a solution of Ax = 0 for any values 
of the A/s. 

Example {continued). It can be shown that the value of r(A) = r for A 
defined in (8) is r = 2. Therefore there a r e # - r + l = 4 - 2 + l = 3 LIN 
solutions to (8). Two are shown in (10) and (11), with (10) being the solution 
Gy when the value z = 0 is used. Another solution, putting z' = [0 0 0 1] 
in (9), is 

x ^ = [ - 2 3 39 0 - 1 ] . 
Thus xl9 x2 and x3 are LIN solutions and any other solution will be a linear 
combination of these three. For example, with z' = [0 0 —1 0] the 
solution (9) becomes 

x i = [ 7 - 1 0 1 0] 
and it can be seen that 

x4 = 2xi + x2 — 2x3, 

the coefficients on the right-hand side, 2, 1 and —2, summing to unity in 
accord with Theorem 5. 
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A final theorem relates to an invariance property of the elements of a 
solution. It is important in the study of linear models because of its rela-
tionship with what is known as estimability, discussed in Chapter 5. Without 
worrying about details of estimability here, we give the theorem and refer to 
it later as needed. The theorem is due to Rao (1962) and it concerns linear 
combinations of the elements of a solution vector: certain combinations are 
invariant to whatever solution is used. 

Theorem 6. The value of k�x is invariant to whatever solution of Ax = y 
is used for x if and only if k�H = k' (where H = GA and AGA = A). 

Proof. For a solution x given by Theorem 2 
k�x = k�Gy + k'(H - I)z. 

This is independent of the arbitrary z if k�H = k'; and since any solution can 
be put in the form x by appropriate choice of z, the value of k�x for any x 
is k�Gy provided that k�H = k'. 

It may not be entirely clear that when k�H = k' the value of k�x = k�Gy 
is invariant to whichever of the many generalized inverses is used for the 
matrix G. We therefore clarify this point. First, by Theorem 4 there are 
(q — r + 1) LIN solutions of the form x = Gy + (H — I)z. Let these 
solutions be % for / = 1, 2, . . . , q — r + 1. Suppose for some other 
generalized inverse, G* say, we have a solution 

x* = G*y + (H* - I)z*. 
Then, since the x/s are a LIN set of (q — r + 1) solutions, x* must be a 
linear combination of them; that is, there is a set of scalars � �9 for / = 
1,2, . . . ,q - r + 1, suchthat 

Q-r+l 

X* = Σ λ Α 

where not all the � /s are zero and for which, by Theorem 5, 2 ^ = 1· 
Proving the sufficiency part of the theorem demands showing that k�x 

is the same for all solutions x when krH = k'. Note that when k�H = k�, 

k�x = k�Hx = k�HGy + k�(H2 - H)z = kHGy = k�Gy. 

Therefore k�x^ = k�Gy for all /, and 

k�x* = k� 2 k% = �  ^k% = �  ^k�Gy = k,Gy(2 K) = k�Gy = k�x-
i.e., for any solution at all, k�x = k�Gy if k�H = k'. To prove the necessity 
part of the theorem choose z* = 0 in x*. Then 

k'x* = k'Gy = k' Σ * A = k' Σ ^[Gy + (H - I)zJ 
= k ' G y £ « + k ^ ( H - I ) z , 
= k�Gy + k' Σ A,.(H - I)z,. 
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Hence k' £ ^(H - I)zf = 0. But the � { are not all zero and the (H - I)z, 
are LIN. Therefore this last equation can be true only if k'(H — I) = 0, 
i.e., k'H = k'. Hence k'x* for any solution x* equals k'Gy if and only if 
k'H = k'. This proves the theorem conclusively. 

Example. In deriving (9), 

H = GA = 

1 0 - 1 -29 

0 1 2 47 

0 0 0 0 

0 0 0 0 

and for k' = [3 2 1 7] (16) 
it will be found that k'H = k'. Therefore k'x is invariant to whatever solution 
is used for x. Thus from (10) and (11) 

k'Xl = 3(6) + 2(-8) + 1(0) + 7(0) = 2 
and k'x2 = 3(—51) + 2(84) + 1(1) + 7(-2) = 2, 
and in general, from (9), 

k'x = 3(6 - z3 - 29z4) + 2(-8 + 2z3 + 47z4) + l(-z3) + 7(-z4) 
= 18 - 16 + z3(-3 + 4 - 1) + z4(-87 + 9 4 - 7 ) 
= 2. 

So too does k'x have the same value for, from (12), 

k'x = 3(-zx) + 2(4 + 2έχ - 11z,) + l ( - 6 - ix + 29z4) + 7(-i4) 
= 8 - 6 + ^ ( - 3 + 4 - 1) + i4(-22 + 2 9 - 7 ) 
= 2. 

There are, of course, many values of k' that satisfy k'H = k'. For each 
of these, k'x is invariant to the choice of x; i.e., for two such vectors k̂  and 
k̂  say, kjX and k^x are different but each has a value that is the same for all 
values of x. Thus in the example kj = k(H, where 

ki = [1 2 3 65] 
is different from (16); and 

ki«! = 1(6) + 2(-8) + 3(0) + 65(0) = -10 
is different from k'x for k' of (16). But k(x = —10 for every X. 

The invariance of k'x to x holds for any k' for which k'H = k', as shown in 
Theorem 6. Two corollaries of the theorem follow. 
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Corollary 1. k�x is invariant to x for k' of the form k' — w'H, for arbitrary 
w'. (Idempotency of H ensures that k' = w'H satisfies k�H = k�.) 

Corollary 2. There are only r LIN vectors k' for which k'x is invariant to x. 
[Because r(H) = r there are in k' = w'H of order q exactly q — r elements 
that are linear combinations of the other r. Therefore for arbitrary vectors 
w' there are only r LIN vectors k' = w'H.] We return to this point when dis-
cussing estimable functions in Chapter 5. 

The concept of a generalized inverse has now been defined and its use in 
solving linear equations explained. We next briefly discuss the generalized 
inverse itself, its various definitions and some of its properties. Extensive 
review of generalized inverses and their applications is to be found in Boullion 
and Odell (1968) and the approximately 350 references listed there. 

3 . THE PENROSE INVERSE 

Penrose (1955), in extending the work of Moore (1920), shows that for 
any matrix A there is a unique matrix K which satisfies the following four 
conditions: 

AKA 

KAK 
(KA)' 
(AK)' 

We refer to these as Penrose's conditions and to K as the (unique) Penrose 
inverse; more correctly it is the Moore-Penrose inverse. Penrose's proof of 
the existence of K satisfying these conditions is lengthy but instructive. It 
rests upon two lemmas relating to matrices having real (but not complex) 
numbers as elements, lemmas that are used repeatedly in what follows. 

Lemma 2. X�X = 0 implies X = 0. 

Lemma 3. PX�X = QX�X implies PX� = QX'. 

The first of these is true because X�X = 0 implies that sums of squares of 
elements of each row are zero and hence the elements themselves are zero. 
Lemma 3 is proved by applying Lemma 2 to 

(PX'X - QX�X)(P - Q) = (PX� - QX�)(PX� - QX) = 0. 

Proof of the existence and uniqueness of K starts by noting that (i) and 
(iii) imply AA�K� = A. Conversely, if AA'K' = A then KA(KA)� = KA, 
showing that KA is symmetric, namely that (iii) is true; and using this in 

A 
K 
KA 

AK 

(i) 
(� ) 
(iii) 
(iv). 

(17) 
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AA'K' = A leads to (i). Thus (i) and (iii) are true if and only if AA'K' = A, 
equivalent to 

KAA' = A'. (18) 

Similarly, (ii) and (iv) are true if and only if 

KK'A' = K. (19) 

Hence any K satisfying (18) and (19) also satisfies the Penrose conditions. 
Before showing how K can be derived we show that it is unique. For if it 

is not, assume that some other matrix M satisfies the Penrose conditions. 
Then from conditions (i) and (iv) in terms of M we would have 

A'AM = A' (20) 

and (ii) and (iii) would lead to 

A'M'M = M. (21) 

Therefore, on substituting (20) into (19) and using (19) again we have 

K = KK'A' = KK'A'AM = KAM; 

and on substituting (21) into this and using (18) and (21) we get 

K = KAM = KAA'M'M = A'M'M = M. 

Therefore K satisfying (18) and (19) is unique and satisfies the Penrose con-
ditions ; we derive its form by assuming that 

K = TA' (22) 

for some matrix T. Then (18) is satisfied if 

TA'AA' ==A'; (23) 

and since satisfaction of (18) also implies (i) we have AKA = A, i.e., 

A K A = A'. 

Therefore TA'K'A' = TA', 

which is KK'A' = K, 

namely (19). Thus we have proved that if K = TA' as in (22), with T being 
any matrix satisfying (23), then K satisfies (18) and (19) and hence the 
Penrose conditions. 

There remains the derivation of a suitable T. This is done as follows. 
Consider A'A: it is square and so are its powers. And for some integer t 
there will be, as a consequence of the Cayley-Hamilton theorem [see, e.g., 
Searle (1966), Sec. 7.5e], a series of scalars � �9 � 2,. . . , lu not all zero, such 
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^ΑΆ + Λ2(ΑΆ)2 + · · · + A,(A'A)' = 0. 

If Kr is the first �  in this identity that is non-zero, then T is defined as 

T = ( - l /A r ) [Vi I + Ar+2(A'A) + · · · + Xt(A�Ay-r-i]. (24) 

To show that this satisfies (23) note that, by direct multiplication, 

T(A 'A)^ = ( - l / ^ X V ^ A ' A r 1 + � �+2(� � � +* + · · · + A,(A'A)1 
= ( - Ι / λ ,Η - ^ΑΆ - Λ2(ΑΆ)2 � � � �� � �  

Since, by definition, Xr is the first non-zero �  in the series � �9 � 2,. . . , the above 
reduces to 

T(A'A)^1 = (A'A)r, (25) 

and repeated use of Lemma 3 reduces this to (23). Thus K = TA' with T 
as defined in (24) satisfies (23) and hence is the unique generalized inverse 
satisfying all four of the Penrose conditions. 

ample. 

A = 

For 

1 

0 

- 1 

1 

0 

- 1 

0 

2 

2 

1 

- 2 

0 

we have ArA = 

4' 

- 1 

9 

Then, by the Cayley-Hamilton theorem, 

66(A'A) - 17(A'A)2 + (ArA)3 

and so T is taken as 

and K 

66)(-17I + A'A) = 

TA' = (1/66) 

' 6 

0 

12 

= (1/66) 

" 14 

- 2 
_ 4 

- 2 - 6 

- 1 1 0 

7 --12 

- 2 

12 

1 

10" 

22 

- 2 

- 4 ' 

1 

8. 

is the Penrose inverse of A satisfying (17). 
An alternative procedure for deriving K has been suggested by Graybill 

et al. (1966). Their method is to find X and Y such that 

AA'X = A and A7 AY = A' (26) 
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and then K = XAY. (27) 
Proof that K satisfies the four Penrose conditions depends upon using (26) 
and Lemma 3 to show that AXA = A = AYA. 

4 . OTHER DEFINITIONS 

It is clear that the Penrose inverse K is not easy to compute, especially when 
A has many columns, because then the application of the Cayley-Hamilton 
theorem to A'A for obtaining T will be tedious. However, as has already been 
shown, only the first Penrose condition needs to be satisfied in order to have a 

TABLE 1 . 1 . SUGGESTED NAMES FOR MATRICES SATISFYING 
SOME OR ALL OF THE PENROSE CONDITIONS 

Conditions 
Satisfied (Eq. 17) Name of Matrix Symbol 

i Generalized inverse A{a) 

i and ii Reflexive generalized inverse A(r) 

i, ii and iii Normalized generalized inverse Aiw) 

i, ii, iii and iv Penrose inverse A{p) 

matrix useful for solving linear equations. And in pursuing the topic of linear 
models it is found that this is the only condition really needed. It is for this 
reason that a generalized inverse of A has been defined as any matrix G that 
satisfies AGA = A, a definition that is retained throughout this book. Never-
theless, a variety of names are to be found in the literature, both for G and 
for other matrices satisfying fewer than all four of the Penrose conditions. 
A set of descriptive names is given in Table 1.1. 

In the notation of Table 1.1 A{9) = G, the generalized inverse already 
defined and discussed, and Aip) = K, the Penrose inverse. This has also been 
called the pseudo inverse and the /7-inverse by various authors. The suggested 
definition of a normalized generalized inverse in Table 1.1 is not universally 
accepted. As given there, it is used by Urquhart (1968), whereas Goldman 
and Zelen (1964) call it a "weak" generalized inverse. An example of such a 
matrix is a left inverse L such that LA = I. The description "normalized" 
has also been used by Rohde (1966) for a matrix satisfying conditions (i), 
(ii) and (iv). An example of this kind of matrix is the right inverse R for 
which AR = I. 

Using the symbols of Table 1.1 it can be seen that 
\(g) 3 A(r) =} A(n) =5 A(p\ 
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namely that the set of matrices Ai9) includes all those that are reflexive, 
A(r), which in turn includes all the normalized generalized inverses A(n), 
which includes the unique A(p) = K. Relationships between the four can be 
established as follows: 

A ( r ) = A{9)AA(9) 

A{n) = A�(AA�)(i» (28) 
A(*> = A�iAA�J^AiA�AJWA�. 

That these expressions satisfy the appropriate conditions can be proved by 
repeated use of Lemma 3 of Sec. 3 or by Theorem 7 of Sec. 5, which follows. 

5 . SYMMETRIC MATRICES 

The study of linear models frequently leads to equations of the form 
X�Xb = X�y that have to be solved for b. Special attention is therefore given 
to properties of a generalized inverse of the symmetric matrix X�X. 

a. Properties of a generalized inverse 
Four useful properties of a generalized inverse of X'X are contained in the 

following theorem. 

Theorem 7. When G is a generalized inverse of X'X, then 
(i) G' is also a generalized inverse of X�X; 

(ii) XGX�X = X; i.e., GX� is a generalized inverse of X; 
(iii) XGX� is invariant to G; 
(iv) XGX� is symmetric, whether G is or not. 

Proof. By definition, G satisfies 

X XGX X = X X (29) 

Transposing gives X�XG�X�X = X'X, and so (i) is established; and applying 
Lemma 3 yields (ii). To substantiate (iii) suppose that F is some other 
generalized inverse, different from G. Then (ii) gives XGX'X = XFX'X and 
the use of Lemma 3 then yields XGX� = XFX�; i.e., XGX� is the same for all 
generalized inverses of X'X. Finally, to prove (iv) consider S as a symmetric 
generalized inverse of X'X. Then XSX' is symmetric. But XSX' = XGX� 
and therefore XGX� is symmetric. Hence the theorem is proved. 

Corollary. Applying part (i) of the theorem to its other parts shows that 

XG X�X = X, X�XGX� = X and X XGX� = X�; 

XG�X� = XGX�; andXG�X� is symmetric. 
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It is to be emphasized that not all generalized inverses of a symmetric 
matrix are symmetric. This is evident from the general algorithm given at the 
end of Sec. 1. For example, applying that algorithm to 

A2 = 

as a non-symmetric generalized inverse of the symmetric matrix A2. However, 
Theorem 7 and its corollary very largely enable us to avoid difficulties that 
this lack of symmetry of generalized inverses of X'X might otherwise appear 
to involve. For example, if G is a generalized inverse of X'X and P is some 
other matrix, 

(PXGX)' = XG'X'P' = XGX'P' 

not because G is symmetric (which, in general, it is not) but because XG�X� = 
XGX�. An example of this, for A2 shown above, is 

A2 = 

Then XGX' = 

2 6" 

3 8 

8 22 
= 

"1 1 01 

1 1 1 

_3 3 2J 

Π 1 3" 

1 1 3 

[0 1 2_ 

X�X. 

"1 

1 

�  

1 

1 

1 

31 

3 

2J 

2 

0 

01 

0 

oj 

Π 1 0" 

1 1 1 

|_3 3 2_ 

_ 1 
— 2 

Ί 1 0" 

1 1 0 

0 0 2_ 

= XGX� 

Γ1 

1 

_0 

1 

1 

1 

31 

3 ; 

2J 

0 

0 

0 

b. Two methods of derivation 
In addition to the methods given in Sec. 1, two methods discussed by John 

(1964) are sometimes pertinent to linear models. They depend on the regular 
inverse of a non-singular matrix: 

s-1 = 
X'X H' 
H 0 B21 

B12 

B2ä = 0 
(30) 

H used here, in keeping with John's notation, is not the matrix GA used earlier. 
Where X'X has order p and rank p — m (m > 0), the matrix H is any matrix 
of order m x p that is of full row rank with its rows also LIN of those of 
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X'X. [The existence of such a matrix is assured by considering m vectors of 
order p that are LIN of any set of p — m LIN rows of X'X. Furthermore, if 
these rows constitute H in such a way that the m LIN rows of H correspond 
in S to the m rows of X'X that are linear combinations of that set of p — m 
rows, then S_ 1 of (30) exists.] With (30) existing the two matrices 

BX1 and (X'X + H'H)-1 are generalized inverses of X'X. (31) 

Three useful lemmas help in proving these results. 

Lemma 4. The matrix T = [Ir U] has rank r for any matrix U, of r rows. 

Proof. Elementary operations carried out on T to find its rank will operate 
on Ir, none of whose rows (or columns) can be made null by such operations. 
Therefore r(T) < r and so r(T) = r. 

Lemma 5. If XNxp has rank p — m for m > 0, then there exists a matrix 
OPXm such that XD = 0 and r(D) = m. 

Proof. Let X = [Xj X2] where Xx is TV x (/? — m) of full column rank. 
Then the columns of X2 are linear combinations of those of Xx and so, for 
some matrix C, of order (p — m) x m, the sub-matrices of X satisfy X2 = 
XiC. Letting D' = [—C Im], which by Lemma 4 has rank m, we then have 
XD = 0 and r(D) = m and the lemma is proved: a matrix D exists. 

Lemma 6. For X and D of Lemma 5 and H of order m x p with full row 
rank, HD has full rank if and only if the rows of H are LIN of those of X. 

Proof, (i) Given r(HD) = m, assume that the rows of H depend on those 
of X. Then H = KX for some K, and HD = KXD = 0. This cannot be so, 
because r(HD) = m. Therefore the assumption is false and so the rows of H 
are LIN of those of X. Γχ 

(ii) Given that the rows of H are LIN of those of X, the matrix 
|_H 

of order (N + m) x p, has full column rank. Therefore it has a left inverse, 
[U V] say [Searle (1966), Sec. 5.13], and so 

UX + VH = I, i.e., UXD + VHD = D; or VHD = D, 

using Lemma 5. But r(OPXm) = m and therefore D has a left inverse, E say, 
and so EVHD = ED = lm. Therefore r(HD) > m and so, because HD is 
m x m, r(HD) = m, and the lemma is proved. 

Proof of (31) can now be established. First, it is necessary to show that in 
(30) B22 == 0. In multiplying the two sides of (30) we get an identity matrix: 

X'XBn + H'B21 = I and X'XB12 + H'B22 = 0, (32) 
H B n = 0 and HB12 = I. (33) 
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Pre-multiplying (32) by D' and using Lemmas 5 and 6 leads to 

B21 = ( D ' H ' ^ D ' and B22 = 0. (34) 

Then, from (32) and (34) 

X�XBU = I - HXD� H^D� (35) 

and post-multiplying this by X�X shows, from Lemma 5, that B n is a general-
ized inverse of X'X. Furthermore, making use of (33), (35) and Lemmas 5 
and 6 gives 

(XX + H�H)[Bn + D(D/H,HD)1D] = I. 

Pre- and post-multiplying (X'X + ΗΉ ) 1 obtained from this by X�X then 
shows that (X'X + H'H) - 1 is a generalized inverse of X'X. 

It can also be shown that B n satisfies the second of Penrose's conditions, 
(ii) in (17), but (X'X + H ' H ) 1 does not; and neither generalized inverse in 
(31) satisfies condition (iii) or (iv). 

John (1964) refers to Graybill (1961, p. 292) and to Kempthorne (1952, 
p. 79) in discussing B n and to Plackett (1960, p. 41) and Scheffe (1959, 
p. 19) in discussing (X'X + H'H)- 1 , in terms of defining generalized inverses 
of X�X as being matrices G for which b = GX'y is a solution of X�Xb = X'y. 
By Theorem 1 they then satisfy condition (i), as has just been shown. Rayner 
and Pringle (1967) also discuss these results, indicating that D of the preceding 
discussion may be taken as (X'X + H'H)- 1H'. This, as Chipman (1964) 
shows (see Exercise 13), means that HD = I and so (35) becomes 

X�XBn = I - H�H(X�X + H�H)1, (36) 

a simplified form of Rayner and Pringle's equation (7). The relationship 
between the two generalized inverses of X�X shown in (31) is therefore that 
indicated in (36). Note also that Lemma 6 is equivalent to Theorem 3 of 
Scheffe (1959, p. 17). 

6 . ARBITRARINESS IN A GENERALIZED INVERSE 

The existence of many generalized inverse matrices G that satisfy AGA = 
A has been emphasized. We here examine the nature of the arbitrariness in 
such generalized inverses, as discussed by Urquhart (1969a). Some lemmas 
concerning rank are given first. 

Lemma 7. A matrix of full row rank r can be written as a product of 
matrices, one being of the form [Ir S] for some matrix S, of r rows. 

Proof. Suppose BrXe has full row rank r and contains a n r x r non-
singular minor, M say. Then, for some matrix L and some permutation 
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matrix Q [see (6)], we have BQ = [M L], so that 

B = M[I M XL]Q x = M[I S ] Q \ for S = M ^ L . 

Lemma 8. I + KK' has full rank for any non-null matrix K. 

Proof. Assume that I + KK' does not have full rank. Then its columns 
are not LIN and there exists a non-null vector u such that 

(I + K K > = 0, so that u'(I + K K > = u'u + u'K(u'K)' = 0. 

But u'u and u'K(u'K)' are both sums of squares of real numbers. Hence their 
sum is zero only if their elements are, i.e., only if u = 0. This contradicts the 
assumption. Therefore I + KK' has full rank. 

Lemma 9. When B has full row rank BB' is non-singular. 

Proof. As in Lemma 7, write B = M[I S]Q-1 where M_ 1 exists. Then, 
because Q is a permutation matrix and thus orthogonal, BB' = M(I + SS')M' 
which, by Lemma 8 and because M _ 1 exists, is non-singular. 

Corollary. When B has full column rank B'B is non-singular. 

Consider now a matrix A^^ of rank r, less than both/? and q. A contains at 
least one non-singular minor of order r, which we will assume is the leading 
minor. There is no loss of generality in this assumption because if it is not 
true, the algorithm of Sec. lb will always yield a generalized inverse of A 
from a generalized inverse of B = RAS for permutation matrices R and S, 
where B has its leading r x r minor non-singular. Discussion of generalized 
inverses of A is therefore confined to A having its leading r X r minor non-
singular. Accordingly, A is partitioned as 

A = 
( A n ) r X r (Al2)rx(a-r) 

UA21)(v-r)Xr \A>22)(v-r)x(q-r). 

Then, with A"1 existing, A can be written as 

(37) 

A = 
I 

A A- 1 An[I ΑΓίΑ12] 

= LAnM, with L = 
Aoi A-i-

and M = [I An A12J. 

(38) 

(39) 

Since, from Lemma 4, L has full column rank and M has full row rank, 
Lemma 9 shows that 

(L'L)-1 and (MM')-1 exist. (40) 
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The arbitrariness in a generalized inverse of A is investigated by means of 
this partitioning. Thus, on substituting (39) into AGA = A we get 

LAuMGLAnM = LAnM. 

Pre-multiplication by A ^ L X ) - 1 ! / and post-multiplication by M^MM')""1^1 

then gives 

MGL = Aü1. (41) 

Whatever the generalized inverse is, suppose it is partitioned as 

(Gn)rXr (Gi2)rX(3)_r) 

S^2l)(q-r)Xr (G22)(g-r)x(p-r). 

G = (42) 

of order q x p, conformable for multiplication with A. Then substituting 
(42) and (39) into (41) gives 

Gn + ArMxaGju + G^A^An1 + A^A^G^A^Au1 = A n \ (43) 

This is true whatever the generalized inverse may be. Therefore, for any 
matrices G n , G12, G2i and G22 that satisfy (43), G as given in (42) will be a 
generalized inverse of A. Therefore, on substituting from (43) for G n , we have 

G = 
An An Ai2G2t Gi2A21An A n A12G22A21An G12 

G2i G22 
(44) 

as a generalized inverse of A for any matrices G12, G21 and G22 of appropriate 
order. Thus is the arbitrariness of a generalized inverse characterized. 

Certain consequences of (44) can be noted. One is that by making G12, 

G2i and G22 null, G = 
'An1 0-

0 0 
, a form discussed earlier. Another is that 

when A is symmetric G is not necessarily symmetric. Only when Gi2 = G^ 
and G22 is symmetric will G be symmetric. And when/? > q, G can have full 
row rank q even if r < q\ for example, if G12 = — Ari1A12G22, G21 = 0 and 
G22 has full row rank, then G also has full row rank; in general, then, the 
rank of G can exceed that of A. In particular, this means that singular matrices 
can have non-singular generalized inverses. 

The arbitrariness evident in (44) prompts investigating the relationship 
of one generalized inverse to another. It is simple: if Gx is a generalized 
inverse of A then so is 

G = GiAGi + (I - GXA)X + Y(I - AGX) (45) 

for any X and Y. Pre- and post-multiplication of (45) by A shows that this 
is so. 
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The importance of (45) is that it provides a method for generating all 
generalized inverses of A. They can all be put in the form of (45). To see this 
we need only show for some other generalized inverse, G2 say, different from 
Gl9 that there exist values of X and Y giving G = G2. Putting X = G2 and 
Y = GiAGg achieves this. 

The form of G in (45) is entirely compatible with the partitioned form 
01 

given in (44). For, if we take Gx = 
A"1 

0 0 
same manner as G, then (45) becomes 

and partition X and Y in the 

G = 
A u —- A n A 1 2 X 2 i �  *12Ao 1 A 1 1 Al x A12X22 + Yi2 

X22 + Y22 
(46) 

X2I ~~ Y22^2lA n 

This characterizes the arbitrariness even more specifically than does (44) 
Thus for the four sub-matrices of G shown in (42) we have: 

Sub-matrix 

G11 
Gl2 
G21 

G22 

Source of Arbitrariness 

X21 and Y12 
X22 and Y12 

X21 and Y22 
X22 and Y22 

This means that, in the partitioning of 

X12 

X22. 
and Y = 

Y11 

� ,�  

Yl2 

Y 22J 

implicit in (45), the first set of rows in the partitioning of X does not enter into 
G, and neither does the first set of columns of Y. 

It has been shown earlier (Theorem 3) that all solutions to Ax = y can be 
generated from x = Gy + (GA — I)z, where z is the infinite set of arbitrary 
vectors of order q. We now show that all solutions can also be generated 
from x = Gy, where G is the infinite set of generalized inverses indicated in 
(45). First, a lemma. 

Lemma 10. If zqXl is arbitrary and ypX1 is known and non-null, there 
exists an arbitrary matrix X such that z = Xy. 

Proof. Since y ^ 0 one element, yk say, will be non-zero. Writing z = 
{zj and X = {xu} for / = 1, . . . , q and j= 1, . . . , /?, let xu = z{lyk for 
j = k and xio = 0 otherwise. Then Xy = z and X is arbitrary. 

Now we have the theorem on generating solutions. 

Theorem 8. For all possible generalized inverses G of A, x = Gy generates 
all solutions to the consistent equations Ax = y. 



[1.7] OTHER RESULTS 27 

Proof. For the generalized inverse Gl5 solutions to Ax = y are x = 
Giy + (GXA — I)z, where z is arbitrary. Let z = —Xy for some arbitrary X. 
Then 

x = Giy - (GjA - I)Xy 
= Giy - GxAGiy + G ^ y + (I - GxA)Xy 
= [GxAd + (I - GXA)X + Gj(I - AGJJy 
= Gy 

where G is exactly the form given in (45) using Gx for Y. 

OTHER RESULTS 

Procedures for inverting partitioned matrices are well known [e.g., Searle 
(1966), Sec. 8.7]. In particular, the inverse of the partitioned full rank sym-
metric matrix 

M = X� 

Z� 
[x z] = XX X�Z 

Z�X Z�Z 
= A 

B� 

B 

D 
, say, (47) 

can, for 

W = (D - B A - i ß ) 1 = [Z�Z - Z�XiX�X^X�Z]-1, 

be written as 

"A-1 + A^BWB�A1 - A ^ B W ] 

- W B � A 1 W 

- � �  I 

M-! = 

A 1 0 
0 0 

Wf-B�A"1 I]. (48) 

The analogy of (48) for generalized inverses, when M is symmetric but 
singular, has been derived by Rohde (1965). On defining A - and Q~ as 
generalized inverses of A and Q respectively, where Q = D — B�A~B, then 
a generalized inverse of M is 

� �  = 
A~ + A B Q B � A - - A B Q 

-Q~B�A~ Q~ 

A~ 0 
0 0 

- A B 

I 
Q l - B � A - I]. (49) 

It is to be emphasized that the generalized inverses referred to here are just as 
have been defined throughout, namely satisfying only the first of Penrose�s 
four conditions. (In showing that MM~M = M, considerable use is made of 
Theorem 7.) 
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The regular inverse of the product AB is B^A - 1 when A and B are non-
singular. But there is no analogous result for generalized inverses. When one 
matrix is non-singular, B say, we have B_1A~ as a generalized inverse of 
AB, as indicated by Rohde (1964). Greville (1966) considers the situation for 
unique generalized inverses ASP^ and B*3^ and gives five separate conditions 
under which (AB)(2,) = B(i))A(p); but one would hope for conditions less 
complex than Greville's in the case of generalized inverses A" and B~ satisfy-
ing just the first of the Penrose conditions. What can be shown is that B~A~ 
is a generalized inverse of AB if and only if A~ABB~ is idempotent. Also, if 
the product AB is itself idempotent then it has AB, AA~, B~B and B~BAA~ as 
generalized inverses. Other problems of possible interest are the generalized 
inverse of Ak in terms of that of A, for integer k, and the generalized inverse 
of XX' in terms of that of XX. 

8 . EXERCISES 

1. Reduce the matrices 

A = 

� 2 

5 

1 

3 

8 

2 

1 

0 

- 2 

-r 
1 

3 

and B = 

1 

4 

7 

2 

2 

5 

8 

1 

3 

6 

10 

1 

- �  

2 

7 

6 

to diagonal form and find a generalized inverse of each. 

2. Find generalized inverses of A and B in Exercise 1 by inverting non-singular 
minors. 

3. Find a generalized inverse of each of the following matrices: 
(a) PAQ when P and Q are nonsingular. 
(b) GA when G is a generalized inverse of A. 
(c) kA, when k is a scalar. 
(d) ABA, when ABA is idempotent. 
(e) J, when J is square, with every element unity. 

4. What kinds of matrices 
(a) are their own generalized inverses? 
(b) have their transposes as a generalized inverse? 
(c) have an identity matrix for a generalized inverse? 
(d) have every matrix of order/? x q for a generalized inverse? 
(e) have only non-singular generalized inverses ? 

5. Section lb contains an algorithm for deriving a generalized inverse of any 
matrix. Prove that in general neither, nor both, of the matrix transpositions in 
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steps (iii) and (v) of the algorithm can be omitted, but that when M = M ' the 
transposition in (iii) can be. Illustrate these results using Ax and A2 given in 
Sec. lb. Also, find a generalized inverse of A2 using a non-symmetric non-
principal minor for M. 

6. Explain why equations (a) Ax = 0 and (b) X�Xb = X'y are always consistent. 

7. For A and B of Exercise 1 find general solutions to 

141 

Ax 

- 1 " 

- 1 3 

- 1 1 

and to Bx -
23 

32 

- 5 

8. If z = (G — F)y + (I — FA)w, where G and F are generalized inverses of A, 
show that the solution x = Gy + (GA — I)z to Ax = y reduces to x = Fy 4-
(FA - I)w. 

9. If Ax = y are consistent equations and F and G are both generalized inverses 
of A find, in its simplest form, a solution for w to the equations 

(I - GA)w = (F - G)y + (FA - I)z. 

10. If A has full column rank, show that its generalized inverses are also left 
inverses satisfying the first three Penrose conditions. 

11. Prove that equation (25) reduces to equation (23). 

"1 0 21 

2 - 1 5 
12. Find the Penrose inverse of 

- 1 

- 1 

13. Suppose X has order n x p and rank p — m (m > 0). If H, of order m x p 
and full row rank, has its rows LIN of those of X, show for 

D = (XX + Η 'Η ^Η ' 

that XD = 0 and HD = I. [Hint: Partition X' = [X; X2] so that Xx has full 
row rank/? — m, and then use the inverse of [X{ H']. See Chipman (1964). 
Equation (36) is a consequence.] 

14. By direct multiplication show that AGA = A Jfor A and G given in (37) and 
(44) respectively. 

15. Develop a non-singular generalized inverse of a singular matrix, proving that 
it is both non-singular and a generalized inverse. 

16. Show that the rank of a generalized inverse of A does not necessarily have the 
same rank as A and that it is the same if and only if it is a reflexive inverse 
[Rohde (1966)]. 
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17. Show that M~ of equation (49) is a generalized inverse of M in (47). 

18. Prove that B~Ar is a generalized inverse of AB if and only if A~ABB~ is 
idempotent. 

19. Why is X y a solution for b to X�Xb = X'y ? 

20. If PmXQ and D w x m have rank m, show that D 1 = P(P'DP)~P'. 

21. If G is a generalized inverse of APXQ show that G + Z — GAZAG generates 
(i) all generalized inverses of A, and 

(ii) all solutions to consistent equations Ax = y as Z ranges over all matrices 
of order q x p [Urquhart (1969)]. 

TD-1 

show that G = Q 
D 0" 
0 0 

of A. Under what conditions does GAG 

22. When PAQ 
X" 

Y � �  

G? Use G to answer Exercise 15. 

P is a generalized inverse 

23. Using AGA = A find a generalized inverse of AB when B is orthogonal and of 
LA when L is non-singular. 

24. What is the Penrose inverse of a symmetric idempotent matrix ? 

25. Use the idempotency of H = GA to prove Corollary 2 of Theorem 6. 



CHAPTER 2 

DISTRIBUTIONS AND QUADRATIC FORMS 

1. INTRODUCTION 

Analysis of variance techniques involve partitioning a total sum of squares 
into component sums of squares whose ratios (under appropriate distri-
butional conditions) lead to .F-statistics suitable for testing certain hypotheses. 
When discussing linear models generally, especially where unbalanced data 
(data having unequal subclass numbers) are concerned, it is convenient to 
think of sums of squares involved in this process as quadratic forms in the 
observations. In this context very general theorems can be established, of 
which familiar analyses of variance and associated F-tests are then just special 
cases. An introductory outline1 of the general procedure is easily described. 

n 

Suppose yn x l is a vector of n observations. Then y'y = ]£ v\ is t n e t o t a l 

sum of squares of the observations which gets partitioned into component 
sums of squares in an analysis of variance. Let P be an orthogonal matrix 

PP ' = P'P = I, (1) 

and partition P row-wise into k sub-matrices Pt , of order ^ X n, for / = 
k 

1,2, ... ,k, with 2 H< = n\ i-e., 

P = 

Pi 

P 2 

and p = [ P i P; m (2) 

1 Kindly brought to my notice by D. L. Weeks. 

[ 31 } 

Linear Models 
by S. R. Searle 

Copyright © 1971 John Wiley & Sons, Inc. 
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Then 
y'y = y'ly = y'P'Py = I y ' P ^ y . (3) 

i=l 

In this way y'y is partitioned into k sums of squares 

y'P;.P,y = zfa = | 4 for i = 1, . . . , k 

where 
Z; = Fj = {%} for y = l , 2 , . . . , n^ 

Each of these sums of squares corresponds to the lines in an analysis of 
variance (with, as we shall see, degrees of freedom equal to the rank of P^), 
having y'y as the total sum of squares. The general nature of results to be 
developed in this chapter can be demonstrated for the k terms y'P4'Pfy of 
(3). First, for example, in Corollary 2.1 of Theorem 2 we show that if the 
elements of the y vector are normally and independently distributed with 
zero mean and variance <r2, then y'Ay/cr2, where A has rank r, has a � 2-
distribution with r degrees of freedom if and only if A is idempotent. This is 
just the property that the matrix P ^ has in (3): Ρ-Ρ,Ρ/Ρ* = P ^ P ^ P f = 
Ρ;Π\· = P;P* because P'P = I as in (1). Thus each P/P, in (3) is idempotent 
and therefore each term y 'P^y /σ 2 in (3) has a ^-distribution. Second, in 
Theorem 4 we prove that when the elements of y are normally distributed as 
just described, then y'Ay and y'By are independent if and only if AB = 0. 
This too is true for the terms in (3) for, with / ^ j , P ^ = 0 from (1) and (2) 
and so 

P 'P P 'P = 0 

Hence the terms in (3) are independent; and since they all have ^-distribu-
tions their ratios, suitably modified by degrees of freedom, can be F-distri-
butions. In this way tests of hypotheses are established. 

Example. Corresponding to a vector of 4 observations consider 

Γ 1/7* 1Λ / 4 _ J A / 4 1Λ/4 

1/V2 - 1 / V 2 0 0 

1/V6 1/V6 - 2 / V 6 0 

[l/y/U 1/7Ϊ2 1/^12 - 3 / V n 

partitioned as shown. Then it is clear that P is orthogonal and that 

Piy = ( 1 / 7 4 ) 2 ^ = 7 4 » . 
i = l 

Hence in terms of (3) 
<h = y 'PiPi y = 4f, 

Pi 
p 2 

(4) 
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and it will be found that 

q, = y'P;P2y = 2 V\ ~ 4y2 = ί (y, ~ y)\ 
i=l i=l 

Therefore, when the elements of y are normally and independently distrib-
uted with zero mean and unit variance, q1 and q2 each have ^-distributions, 
as is well known. Furthermore, from the orthogonality of P it is obvious that 
P{P2 = 0 and so q1 and q2 are also distributed independently. In this way 

4£2/l 
F = 

(i^-v) 
provides an F-test for the hypothesis that the mean of the ^/-variable is zero. 

The matrix P in (4) is a fourth-order Helmert matrix. Its general character-
istics are as follows. Writing 

1 X n 
HL 

h' 

Ho 
for a Helmert matrix of order n, 

h' = first row of H 
where 

i ; = [i i 

(n — 1) x n 

1], 
a vector � ��  l's, and 

H0 = last (n — 1) rows of Ηηχη 

with H0 having its rth row as 

1 . , -r 0( ( n - r - l ) X l for r — 1, 2, . . . , n — 1. 
.Jr(r + 1) r Jr(r + 1) 

It is clear that Ηηχ η is orthogonal, that y'hh'y = ny2 and, by induction, it is 
n 

readily shown that y'HoH0y = 2 v\ ~~ nV2- Further properties of Helmert 

matrices are to be found in Lancaster (1965). 

2 . SYMMETRIC MATRICES 

An expression of the form x'Ay is called a bilinear form. It is a homogeneous 
second-degree function of the first degree in each of the x�s and y�s. For 
example, r 

x'Ay = |>! x2]\ 
� 4 8" 

- 2 7 

Vi 

J/2. 

= 4^i?/i + 8x^2 - 2x2yx + lx2tj2. 
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When x is used in place of y the expression becomes x'Ax; it is then called 
a quadratic form and is a quadratic function of the z's: 

x�Ax = [xx x2] 
4 8 

- 2 1 

= 4x\ + (8 - 2)xxx2 + lx\ 

= 4x1 + (3 + 3)x� x2 + lx\ 

= [»i *2] 
4 3 
3 7 

In this way any quadratic form x�Ax can be written as x�Ax = x�Bx where 
B = J(A + A') is symmetric. Furthermore, whereas any quadratic form can 
be written as x�Ax for an infinite number of matrices, each can be written 
in only one way as x�Bx for B symmetric. For example, 

4x1 + ox^x2 -jr f%2 — L*̂ i x2\ 
4 

3 - a 

3 + a 

1 

for any value of a, but only when a = 0 is the matrix involved symmetric. 
This means that for any particular quadratic form there is only one, unique 
matrix such that the quadratic form can be written as x�Ax with A being 
symmetric. Because of the uniqueness of this symmetric matrix all further 
discussion of quadratic forms x�Ax is confined to the case of A being sym-
metric. 

POSITIVE DEFINITENESS 

A property of some quadratic forms used repeatedly in what follows is 
that of positive definiteness. A quadratic form x�Ax is said to be positive 
definite if it is positive for all values of x except x = 0; i.e., if 

x�Ax > 0 for all x, except x = 0, 

then x�Ax is positive definite. And the corresponding (symmetric) matrix is 
also described as positive definite. 

Example. 

"3 

x�Ax = [xx 
� �  

5 l l 

13 0 

0 lj 

� *��  
*^2 

|_^3 

= 3x1 + 13x1 + xl + lOâ ajg + 2xxxz 
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can be rearranged as 

x'Ax = (xx + 2x2f + (xx + 3x2)
2 + (xx + xzf 

which is positive for any (real) values of the z's except xx = 0 = x2 = x3, 
i.e., except for x = 0 (in which case x�Ax is always zero). Hence x�Ax is 
positive definite (abbreviated p.d.). 

A slight relaxation of the above definition concerns x�Ax when its value is 
either positive or zero for all x ^ 0. We define an x�Ax of this nature as being 
positive semi-definite (abbreviated p.s.d.) when 

x�Ax > 0 for all x ^ 0, with x�Ax = 0 for at least one x ^ 0. 

Under these conditions x�Ax is a p.s.d. quadratic form and the correspond-
ing symmetric matrix A is a p.s.d. matrix. This definition is widely accepted 
[e.g., Graybill (1961, p. 3) and Rao (1965, p. 31)], although not universally 
so. For example, a definition used by Scheffe (1959, p. 398) is that A is a 
p.s.d. matrix when x�Ax > 0 for all x ^ 0 without demanding that x'Ax = 0 
for at least one non-null x. Hence this definition includes matrices that we 
have defined as either p.d. or p.s.d. We will call such matrices non-negative 
definite (n.n.d.) in keeping, for example, with Rao (1965, p. 31). Thus n.n.d. 
matrices are either p.d. or p.s.d. 

Example. 
�  37 _2 - 2 4 l 

x'Ax = [xx x2 Xs]\ —2 13 —31 

[_24 - 3 17J 

= (6xx - 4x3f + (Xl - 2x2f + (3z2 - xzf 

is zero when x' = [2, 1, 3]. Hence x�Ax and A are positive semi-definite. On 
the other hand, 

y'y = y�ly = Σ v\ 

is positive definite because it is zero only when y = 0. But 
n 

y'y ~ nf = y'(I - n_1JJy = 2 y\ - ny\ 

where Jn is square a matrix of order n with every element equal to one, is a 
positive semi-definite quadratic form because it is zero not only if y = 0 
but also if every element of y is the same, i.e., if y = a l for any a. 

Lemmas concerning positive (semi-)definite [abbreviated p.(s.)d.] matrices 
that we will subsequently utilize are as follows. 

Lemma 1. The symmetric matrix A is positive definite if and only if all its 
principal leading minors have positive determinants. 

^ 3 j 
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Proof. Proofs of this lemma are available in many texts. Most are lengthy 
and contribute little to the mainstream of our work here, and so are omitted. 
An elegant inductive proof by Seelye (1958) is commended to the interested 
reader. 

Corollary. Positive definite matrices are non-singular. (They are one of 
their own principal leading minors and therefore have non-zero, indeed 
positive, determinants.) Note that the converse of this corollary is not true: 
non-singular matrices are not, in general, positive definite. 

Lemma 2. For P non-singular, P�AP is or is not positive (semi-) definite 
according as A is or is not p.(s.)d. 

Proof. Let y = P_1x and consider x'Ax = y'P'APy. When x = 0, 
y = 0 and x�Ax = y�P�APy = 0. And for x ^ 0, y ^ 0 and y�P�APy > 0 
according as x'Ax > 0. Hence P�AP is p.(s.)d. according as A is p.(s.)d. 

Lemma 3. Latent roots of a positive (semi-)definite matrix are all positive 
(non-negative, i.e., zero or positive). 

Proof. Suppose �  and u 5̂  0 are a latent root and vector respectively of A 
with Au = � � . Then consider u�Au = u'Au = Au'u for u ^ 0. When A is 
p.d., u�Au > 0 and so Au�u > 0, i.e., �  > 0; hence all latent roots of a p.d. 
matrix are positive. When A is p.s.d., u�Au > 0 with u�Au = 0 for at least one 
u ^ O , i.e., �  = 0 for at least one u ^ O ; hence all latent roots of a p.s.d. 
matrix are zero or positive. This proves the lemma. 

Corollary. Positive semi-definite matrices are singular. (They have one or 
more zero latent roots and therefore a zero determinant.) The converse is not 
true: singular matrices are not, in general, positive semi-definite. 

Lemma 4. A symmetric matrix is positive definite if and only if it can be 
written as P�P for a non-singular P. 

Proof. If A = P�P for P non-singular, then A is symmetric and x�Ax = 
x�P�Px, which is the sum of squares of the elements of Px. Hence x'Ax > 0 
for all Px 7* 0 and x'Ax = 0 for all Px = 0. But Px = 0 only when x = 0, 
because P _ 1 exists. Hence x'Ax > 0 for all x ^ 0 and x'Ax = 0 only for 
x = 0. Therefore A is p.d. 

The necessary condition is established by noting that for A being sym-
metric there exists a matrix Q such that QAQ� is a diagonal matrix with only 
0's and l's in its diagonal. But if A is positive definite it has full rank. There-
fore QAQ� = I and so, because Q is non-singular, A = Q ^ Q 1 ' which is of 
the form P�P. 

Lemma 5. A'A is positive definite when A has full column rank and it is 
positive semi-definite otherwise. 
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Proof. Consider x�A�Ax, equal to the sum of squares of elements of Ax. 
When A has full column rank Ax = 0 only when x = 0, and so x�A�Ax > 0 
for all x ^ 0; i.e., A�A is p.d. And when A has less than full column rank 
Ax = 0 for some x ^ O , for which x�A�Ax will also be zero, and A'A is then 
p.(s.)d. 

Corollary. AA� is positive definite when A has full row rank and it is 
positive semi-definite otherwise. 

Lemma 6. A sum of positive (semi-)definite matrices is positive (semi-) 
definite. 

Proof. Consideration of x�Ax = x'Q£ A*)x makes this clear. 
i 

Lemma 7. A symmetric matrix A, of order n and rank r, can be written as 
LL� where L is n x r of rank r; i.e., L has full column rank. 

PAP� 

A = P 

[Dr 0] 

Proof. 

� >1 oi 

.0 oj 
for some orthogonal P, where � * is diagonal of order r. Hence 

TV 
0 

[Dr 0]P = LL� 

where L' = [Dr 0]P of order r x n and full row rank; i.e., L is 
n X r of full column rank. Note also that although LL� = A, L�L = D2.. 
Also, L' is real only when A is n.n.d., for only then are the non-zero elements 
of D2 positive. 

Lemma 8. A symmetric matrix having latent roots equal to 0 and 1 is 
idempotent. 

Proof. A symmetrix matrix X can always be expressed in canonical form 
under orthogonal similarity U'XU = D where D is diagonal, with diagonal 
elements being the latent roots of X [see, e.g., Searle (1966), Sec. 7.8]. When 
these roots are 0 or 1 

U�XU = 
I 0 

0 0 

from which it is trivial to show that X2 = X. 

Lemma 9. If A and V are symmetric and V is positive definite, then AV 
having latent roots 0 and 1 implies that AV is idempotent. 
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Proof. |AV - � \\ = 0 has roots 0 and 1. By Lemma 4, V = P�P for some 
non-singular matrix P. (|A| is the determinant of A.) Therefore 

|P||AV - ΛΙΙΙΡ-1! = 0 has roots 0 and 1; 

i.e., |PAP� - � \\ = 0 has roots 0 and 1. 

Thus PAP� has latent roots 0 and 1. But PAP� is symmetric (because A is). 
Therefore by Lemma 8, PAP� is idempotent, i.e., PAP�PAP� = PAP�. 
Hence, because P is non-singular, AP�PAP�P = APP�; i.e., AVAV = AV, 
showing the idempotency of AV. 

4 . DISTRIBUTIONS 

For the sake of reference and establishing notation, certain salient features 
of commonly used statistical distributions are now summarized. No attempt 
is made at completeness or full rigor. Any number of texts [e.g., Graybill 
(1961), Wilks (1962), Mood and Graybill (1963) and Hogg and Craig (1965)] 
give the pertinent details with which, it is assumed, the reader will be familiar. 
What follows will serve only to remind him of these things. 

a. Multivariate density functions 
In considering n random variables Xl9 X2, . . . , Xn, for which xl9 x2,. . . , 

xn represents a set of realized values we write the cumulative density function 
as 

Pr(Xx < xl9 X2 < x2,. . . , Xn < xn) = F(xl9 x2,. . . , xn). (5) 

Then the density function is 

dn 

f(xl9 x29...9 xn) = - — — F(xl9 x29..., xn). (6) 
ax1 ox2... oxn 

Conditions which/ fo , x2, . . . , xn) must satisfy are 

f(xl9 x29. . . , xn) > 0 for — oo < xt < oo for all i 
/*00 /*00 

• · · f(xl9 x29 . . . , xn) dxx dx2 . . . dxn = 1. 
J �  oo J� oo 

and 

The marginal density function for what might be called the "last n — k a's" 
is/X^!, x2,. . . , xn) after integrating out the first k z's, i.e., the marginal of 

g( 
/*oo /Oo 

XJC+I, · · · > xn) = ' " f(xi, · · · > X*> xk+i> ...9xn)dx1... dxk. (7) 
J � oo J �  oo 
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The conditional distribution, for the "first k z's" given the "last n — k s 's" 
is the ratio of f(xl9 x2, . · . , xn) to the marginal for the "last n — k x's"; 
i.e., 

f( j . density function of all n x�s 

marginal density of "last n — k x's" 

Use of the words "first" and "last" in these descriptions implies no rigid 
sequencing of the variables; they are merely convenient aids to identification. 

b. Moments 
The kth moment about zero of the /th variable is £(&*), the expected value 

of the kth power of x{: 

J �  00 

and on substituting from (7) for g(x{) this gives 
Λοο /*οο 

� {� � = * � * «</ («! � *2, � � � , *») ^^1 ^ 2 � � � <*&„. (9) 
J — OO J—00 

In particular, when fc = 1, the superscript (fc) is usually omitted and � � is 
written for � {}\ 

The covariance between the /th and y'th variables for / 5̂  y is 

<r.. = E(Xi - � ^{� �  - � ,) 
� � �  /*oo 

= (*< - � � (� � - A^gfo, **) ^ · dxi 
j� aoj� oo 

� � �  � 00 

= ' ■ · (xi ~ Vt)(xi - / 0 / 0 i > x^ · · · > **) d»i . . . d«„, (10) 
J �  oo J �  oo 

and similarly the variance of the /th variable is 

� �  = � ?= £ ( ^ � - ^ ) 2 

� 00 

= (xi - /^ ) 2 g(0 dxi 
J �  oo 

� � �  � 00 

= ' · · (xi~ f*iff(xi> x2> · · · > xn) dxx... dxn. (11) 
J �  oo J �  oo 

Variances of and covariances between the variables in the vector 

x = [x�  � 2 . . . xn\ 
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are given in (10) and (11). Arraying these variances and co variances as the 
elements of a matrix gives the variance-covariance matrix of the x�s as 

var(x) = V = {au} for i,j = 1, 2 , . . . , n. 
Diagonal elements of V are variances and oif-diagonal elements are co-
variances. 

Notation. The variance of a scalar random variable x will be written as 
v(x), whereas the variance-covariance matrix of a vector of random variables 
x will be denoted by var(x). 

The vector of means corresponding to x' is 

E(x�) = µ' = [� � � 2 . . . � � ] 

and so, by the definition of variance and covariance, 

var(x) = E[(x - µ)(χ - µ)'] = V. (12) 

Furthermore, since the correlation between the /th and yth variables is 
aijiaiuji the matrix of correlations is 

-£L) = Dil/tfJVDil/cr,} for ι,; = 1 , . . . ,π (13) 

where, using (2) of Sec. 1.1, the D's are diagonal matrices with elements 
l/<rt· for / = 1 , 2 , . . . , « . Clearly the diagonal elements of R are all unity, 
and R is symmetric. It is known as the correlation matrix. 

The matrix V is non-negative definite. To see that this is so, consider 
t�Vt for some non-null vector t. Then t�Vt = ^ Σ titiaa = � (�  Uxi) — 

i j i 

^(t'x) which, by the definition of a variance, is positive, unless t'x is identic-
ally zero in which case *;(t'x) = t'Vt = 0. Hence V is a n.n.d. matrix. R is 
also n.n.d., because in (13) all the a's are positive. 
c. Linear transformations 

When the variables x are transformed to variables y by the linear trans-
formation y = Tx, moments of y are easily derived; for example, 

� �  = � � �  and var (y) = TVT'. (14) 

When making a transformation of this nature that involves a non-singular 
T, an integral involving the differentials dxl9 dxz,. . . , dxn is transformed by 
substituting for the z's in terms of the y�s and by replacing the differentials 
by || ̂ 11 dyxdy2. . . dyn, where \\#\\ is the Jacobian of the x�s with respectto the 
2/'s. The Jacobian matrix is defined as $ = {dxjdy^ for i,j = 1,2, . . . ,n and 
H,/1| is the absolute value of the determinant \jf\. Because x = T^y, this 
means # = T"1' and so \� \ = 1/||T||. Hence when the transformation from 
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x to y is y = Tx the product of differentials 

dx1... dxn is replaced by (dyx. . . dyn)j\\T\\. (15) 

This is the procedure, for example, in deriving the density function of 
y = Tx from that of x. First, substitute from x = T-1y for each xi in 
f(xi> ^2>. · · , xn)- Suppose the resulting function of the y's is written as 
f(T_1y). Then, because 

� � �  � � �  

�"] / O i , *2, · · · , xn) dxx... dxn = 1 
J �  oo J �  oo 

the transformation gives 

� � � � � / ( � - 1 7 ) (1 / | | � | | ) < � � 1 . . . < / � � =1 . 
J �  oo J �  oo 

But now suppose h(yl9 yz,. . . , yn) is the density function of the y�s. Then 
� � �  � � �  

* � * � (^1, 2/2, � . . , 2/n) ^ 1 � � � ^2/n = *� 
J —oo J �  oo 

By comparison we therefore find 

/YT~V) 
* (y i , y . , . . . , yJ = ^ j ^ p (16) 

Example. If 
2/i = 3a?i - 2 z 2 

y2 = 5x�  - 4x2 

is the transformation y = Tx, then ||T|| = 2 ; and 

KVu 2/2) = iflxi = 22/i - 2/2, *2 = i(5*/i - 3y2)]. 

d. Moment generating functions 
Moments, and relationships between distributions, are often derived by 

means of moment generating functions. In the univariate case the moment 
generating function (abbreviated m.g.f.) of the random variable x, written 
as a function of t, is, on omitting due attention to the definition of t [see, 
e.g., Mood and Graybill (1963, p. 114)], 

Mx(t) = E(etx) 

' etxf(x) dx � r 
= f °° (1 + tx + t2x2/2 + t3x3� ! + . . .)/(*) dx (17) 



42 DISTRIBUTIONS [2.4] 

Hence � �  - -^� - (18) 

i.e., the kth moment of x is the kth partial differential of the m.g.f. with re-
spect to t, evaluated at the point t = 0. Likewise, for some function of x, 
h(x) say, the m.g.f. of h(x) is 

MMx)(t) = E(eM*>) = �  ethMf(x) dx (19) 
J �  00 

and the kth moment about zero of the function is 

ik) dkMh{x)(t)\ 

or h=o 

In multivariate situations similar results hold. The m.g.f. of the joint dis-
tribution ofn variables utilizes a vector of parameters t' = [tx t% . . . tn]: 

Mx(t) = i?(e*iei+*A+� ��+*«*») 

= EeVx 

� � �  /*oo 

= � � � evxf(xl9 x2,. . . , xn) dxx... dxn 
J �  oo J �  oo 

(21) 

And the m.g.f. of a scalar function of the elements of x, the quadratic x�Ax 
say, is 

Mx-Ax(0 = E(e"x*) 
/•oo � � �  

= . . . e«�* 
J �  oo J �  oo 

*f(xi, *2, � � � , ^� ) ̂ � � � � dxn. (22) 

As well as yielding the moments of a distribution the m.g.f. also has other 
important uses, two of which shall be invoked repeatedly. First, if two random 
variables have the same m.g.f. they have the same density function. This is 
done under wide regularity conditions whose details are omitted here [see 
Mood and Gray bill (1963), for example]. Second, two random variables are 
independent if their joint m.g.f. factorizes into the product of their two 
separate m.g.f.'s. This means that if 

M{ai§Ut)(tl9 h) = M^M^Q 

then xx and x2 are independent. 
Although not used in this book, the reader will elsewhere encounter 

characteristic functions. They are derived formally by using (it) in place of t 
in the m.g.f.'s, where / = v — 1 . 

e. Univariate normal 
When the random variable X has a normal distribution with mean �  

and variance a2, we will write "# is � (� , <r2)", or x r^ � (� , � 2). The density 
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function of x is then 

/ (*) = —~ � -1{� -� )2/� \ for - oo < x < oo, 
��  

wherein application of (9) and (11) will show that E(x) = �  and E(x — � )2 = 
� 2. And, in accord with (17), the m.g.f. � � �  is 

Mx(t) = {llayß� ) f °°exp[to - \{x - � � /� 2] dx 
J� oo 

= ( l / t rV^ ) i°°exp -i{[x -(�  + to2)]2 - (2� �� * + iV)}/<r2 dx 
J� oo 

= e*i+i<v(l/ffV2^) f°°exp[-(a; - � - ίσ2)2/2σ2] dx 
J� oo 

From (18) it is then easily established that µ£° = � , and � {2) = σ2 + � 2, 
so that E(x - � )2 = � �  - � 2 = a2. 

f. Multivariate normal 
(/) Density function. When the random variables in x' = \� �  � 2 . . . xn] 

have a multivariate normal distribution with vector of means µ and 
variance-covariance matrix V, we write "x is � (� , V)" or "x >—' � (� , V)". 
When E{x^) = �  for all / then µ = � �; and if the x/s are mutually independ-
ent, all with the same variance σ2, then V = σ2Ι and we write "x is � (� 1, σ2Ι)". 
This is equivalent to the more usual notation � � � (� , σ2), but by retaining 
the matrix notation of � (� 19 � 2�) we emphasize that this is just a special 
case of the general multivariate normal � (� , V), 

At this stage we confine ourselves to the case when V is positive definite. 
The multivariate normal density function is then 

f(x1,x2,...,xn)= ( 2 f f ) i n | v | i (23) 

(//) Aitken�s integral. A result in integral calculus that is particularly 
applicable to any discussion of the multivariate normal distribution is 
Aitken's integral. It is as follows. For A being a positive definite symmetric 
matrix of order n 

f ��  � � � f ��  e~ix�Ax dxx... dxn = (2TT)*W | � � * . 
J �  oo J �  oo 

(24) 

To establish this result, note that because A is positive definite there exists 
a non-singular matrix P such that PAP = ln. Hence |P�AP| = |P|2|A| = 1 
and so |P| = |Α|~έ; and letting x = Py gives x'Ax = y'P'APy = y'y and so, 
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from (15), 

■·· e-**�A*dx1...dxn=\ · · · e-iy'y rf^ . . . J^/HP-1!! 
J —oo */ —oo J —oo J —oo 

/*oo /*oo / 1 w \ 

= |P| ··· exp - ^ W . . . ^ 
J —oo J — oo \ Z z � = l / 

, 7 2 / /*00 2 �  

= �� � �  (J _^_i,,i ^ 
= (277)*" |ΑΓ*. 

Direct application of this result to (23) shows that 

� � �  � � �  

• · · f(Xl, x2,..., xn) dxx... dxn = (277)*" | V - 1 ! - * / ^ ^ ) " |V|* = 1, 
J �  oo J —oo 

as one would expect. 

(///) Moment generating function. As in (21) the m.g.f. for the multivariate 
normal distribution is 

� � �  /*� �  

Mx(t) = (277)-*" |Vp* ' · · · expft'x - | (x - � )� -\�  - µ)] dxx... dxn. 
J �  oo J �  oo 

On rearranging the exponent this becomes 

� � �  � � �  

Mx(t) = (277)-*" |V|-* � � � 
J —oo J �  oo 

exp[-i(x - µ - Ytyy-\x - µ - Vt) + t > + it'Vt] ̂  ... J:rn 

^ t ^ + J t � V t � � �  � � �  

" ( 2 7 � ) * �  | V | * J - o o J - o o 

exp[ - i (x - µ - V t y V ^ x - µ - Vt)] dx�  . . . dxn. 

Making the transformation y = x — µ — Vt from x to y, for which the 
Jacobian is unity, the integral then reduces to Aitken's integral with matrix 
V-1. Hence 

^)B^fl^ = ̂ . (25) 
Differentiating this in the manner of (18) shows that the vector of means is 
µ and the variance-covariance matrix is V. 
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(iv) Marginal distributions. The definition of the marginal distribution of 
xl9 x29 . . . , xk9 namely the first k x�s9 is, in accord with (7), 

/»oo /»oo 

g(xl9 . . . , xk) = · · · f(xl9 x29. . . , zn) i / ^ + 1 . . . dxn. 
J �  oo J —oo 

The m.g.f. of this distribution is, by (21), 

� � �  � � �  

Μβ1 Xk(t) = \ �� � { Μ ^ ' Λ ^ , . . . , *,) ^ . . . dxk 
J �  00 J� CC 

and on substituting for £(#1? . . . , a )̂ this becomes 

M„ *(t) 
/*00 /*00 

�/ � 00 */ � 00 

+...+M '/(*!, ' · ' ? » J <ί*1 · · · ^ n 

= m.g.f. of xl9 x29 . . . , sn, with tk+1 = . . . = tn = 0 
= e t ' ^ t ' v t , w i t h ^ + 1 = . . . = in = 0. (26) 

To make the substitutions tk+1 = . . . = tn = 0 we partition x, µ, V and t, 
by defining 

x( = [xx x2 · · · xk] and x2 = [xk+1 · · · xtt] 

so that x' = [x{ x2]; 
then, conformable with this, 

� � = � 

and V = 

Now putting t2 = 0 in (26) g 

µι µ2], 

* 1 1 * 1 2 

_*12 V22 

;ives 

Μβ 1 „ ( O = e'i '^+i ' . 'vii . . . 

By analogy with (25) and (21) we therefore have the marginal density function 
as 

j-U 

g(Xi) = gOi> . . . , a*) = 
exp[ - | (x i ~ µΟ'Υπ^Χχ - µθ] 

(2ττ)** |Vn|* 
On comparison with (23) we see that g(x1) is a multivariate normal distribu-
tion. Similarly, so is 

r x / % _ exp[- | (x 2 - µ2)'ν22(χ2 - µ2)] 
g(X2) ~ g(**H, ' · ' > *n) ~ ( 2π)έ(»-*) | V „ | * (27) 

Thus we see that marginal densities of the multivariate normal distribution 
are themselves multivariate normal. 
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Since V is taken as being positive definite so are V n and V22. Furthermore, 
in these expressions use can be made of the partitioned form of V [see 
equation (47), Sec. 1.7]. Thus if 

y-1 = 
T 11 T12 

Vio Voo 

W n W12 

W 1 2 W 2 2 

then Vü1 = W n - W12W£Wi2 and V£ = W22 - Wi2WiiW12. 

(v) Conditional distributions. Let f(x) denote the density function of all 
n x9s. Then equation (8) gives the conditional distribution of the first k x�s as 

/(X l |x2)=/(x)/s(x2) 

and on substituting from (23) and (27) 

,, i Λ exp{--H(x - µ)/ν~1(χ - µ) - (χ2 - µ2)'ν2~21(χ2 - µ2)]} „ Q . 
fix, Xo) = n Ϊ . (28) 

Now, in terms of the partitioned form of V and its inverse given above, we 
have 

(29) -l\Tf \ - l W u — ( V n — V12V22V12) 

and v-x = 
r n "~ WnV12V22 

r22 V12V T11 * 2 2 + ▼ 2 2 V 1 2 W 1 1 V 1 2 V 2 2 

Therefore the exponent in (28) becomes 

Wr 

Voo V-10W-1 

[(xi - µθ ' (χ2 - µ2)Ί 

which simplifies to 

[ ( χ ι - µ ι ) 7 ( χ 2 - µ 2 ) Ί 

11 

■—V22 V1 2WU 

—WUV12V22 

22 � 1 2 ^ 1 1 � 1 2 � 2 2 V22 + V22V12W11V12V. 

(xi - µι) 
(χ2 - µ2) 

(x2 - µ2),ν22
1(χ2 - µ2) 

I 
WU[I - V U V 3 ] 

(xi - µθ 
(x2 - � 2]] 

= [(Xi - µθ - V^V^Cxa - µ2)]',ννι1[(χ1 - � ,) - V12V£(x2 - µ2)]· (30) 
Furthermore, using the result for the determinant of a partitioned matrix 
[e.g., Searle (1966, p. 96)], 

|V| = |VM| |VU - VM\7iVi, | = |VM| IWü1!, from (29). 

Hence 
|V|/|VM| = |Wri|. (31) 
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Substituting (30) and (31) in (28) gives 

exp{-M(*i - µι) - V1 2VM(X2 - µ2)]^11[(χ1 - µχ) 

/ ( X l | x 2 ) = r- - V ^ V ^ x , - µ2)]} 

showing, on comparison with (23), that the conditional distribution is also 
normal: 

Xi I Χ 2 ~Ν [ µ ι + νι2ν2-2
χ(χ2 - µ2), Wn1]. 

(vi) Independence. Suppose that the vector x' = [xx xz . . . xn] is 
partitioned into p sub-vectors x' = [x{ x^ . . . x^J. Then a necessary 
and sufficient condition for the vectors to be mutually independent is, in the 
corresponding partitioning of V = {Vfi} for i,j = 1, 2, . . . , /?, that \{j = 0, 
for / �  j . 

Proof of this is established as follows. The m.g.f. of x is, by (25), 

Mx(t) = e*'"·*·*™ = expfltX + | Ü W A ) 
\ t = l i=j=l J 

and if \{j = 0 for / ^ j this reduces to 

Mx(t) = exp i (tJpL, + i t ^ A ) = Π βχρβµ« + i t J V ^ . 

Invoking the property that the m.g.f. of the joint distribution of independent 
sets of variables is the product of their several m.g.f.'s, we conclude that the 
x/s are independent. Conversely, if they are independent, each with its 
variance-covariance Ku say, then the m.g.f. of the joint distribution is 

Π e x p ( t ^ + ΜΚ,Α) = exp £ ( t ^ + ^Κ ,Α ) = exp(t'µ + i f Vt) 
i=l i=l 

where V = diag{Ku, K22,. . . , Kpp}. Hence V ·̂ = 0 for i ^ j . 

g. Central χ2, F and t n 

When x is N(0,1) then 2 x\ n a s t n e central ^-distribution with n degrees 

of freedom. Thus, when 
n 

x is JV(0,1) and u = 2 A = X'X t n e n u ~ xl-

The density function is 
i = l 

f(u) = , for u > 0 (33) 
2*nr(in) 

where Γ(|«) is the gamma function with argument \n. [For a positive 
integer n, � (� ) = (n — 1)!]. The m.g.f. corresponding to (33) is 

Mu(t) = (1 - 2/)"*w (34) 
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as can be obtained directly from (17) using (33) or as Mx>x(t) using the 
N(0,1) density function in (22). The mean and variance of u are n and In 
respectively. 

The commonest application of the ^-distribution is that when x is 
n 

� (� 1, σ2Ι) then ]Γ (xi — %)2/(�2 is � \_�  This, as we shall see, is a special case 

of Theorem 2. The same result can also be established using the transforma-
tion y = H0x where H0 is the last n — 1 rows of the Helmert matrix discussed 
in Sec. 1. 

Two independent variables each having central ^-distributions form the 
basis of the jp-distribution. Thus if 

ux is x* and u2 is � 2 then v = i ^ ~ F 
2 u2jn2 

the F-distribution with nx and n2 degrees of freedom. The density function is 

f(v) = V2 1 2 2) 1 —T—— for v > 0. (35) 
Γ(Κ)Γ(4η2)(η2 + Λιϋ)*"ΐ+*»« 

The mean of the distribution is «2/(w2 — 2) and the variance is 

2«£[1 + («, - 2)/«J/(«2 - 2)2(«2 - 4). 

Finally, the ratio of a normally distributed variable to one that has a 
^-distribution is the basis of Student's ί-distribution. Thus when x is N(0, 1) 
and u is � 2, independent of x9 then 

z = x/y/u/n is distributed as tn, 

the /-distribution with n degrees of freedom. Its density function is 

/ ( ^ = /—τν ι Λ Γ" + / ' f o r - oo < ^ < oo, (36) 
y/nnr(in)\ nj 

with zero mean and variance n\{n — 2). 
A frequent application of this distribution is that if x is � (� 1, cr2I) then 

^ — � - / — - — has the tn_�  distribution. 

W Jit,-if 
The relationship between tn and F1>n can also be demonstrated. For z 

as described above consider 

u/n 

x2 is clearly � \ and u is � 2. Therefore z2 is F1>n; i.e., when a variable is distri-
buted as tn its square is distributed as F1>n. 
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h. Non-central � 2 

We have already seen that when x is N(0, In) the distribution of x'x = 
2 #f is what is known as a central ^-distribution. We now consider the distri-
bution of u = x'x when x is � (� , I). The sole difference is that the mean of x 
is µ and not 0. The resulting distribution of x'x is known as the non-central 
� 2. As with the central χ2, the non-central � 2 involves the degrees of freedom, 
n. It also involves the parameter ^µ'µ = \ 2 µ|, known as the non-centrality 
parameter, for which the symbol �  is used; i.e., 

�  = ΐµ 'µ . 

Reference to the distribution is by means of the symbol � 2� (� , � ), the non-
central � 2 with n degrees of freedom and non-centrality parameter � . When 
µ = 0, �  = 0 and it reduces to the central ^-distribution. 

The density function of the non-central ^-distribution � 2�(� , � ) is 

oo i k ,.λη+Λ—1Λ—Au 

/GO = � -�  �  - -� -—£J— · (37) 
aok\2in+kran + k) 

We observe that this is an infinite weighted sum of density functions of 
central f s, because the term (^ η+*-ν*Μ ) /2 ί η+*Γ (^ + k) in (37) is, by (33), 
the density function of the %ln+k distribution. 

The m.g.f. of � 2�(� , � ) can be derived using (37) in (17); because the 
xln+k density function occurs in (37) this procedure yields 

00 

Mu(t) = e-A2(A*//c!)(m.g.f. of x\n+k) 
fc=0 

and on using (34) this is 

00 

Mu(t) = e"A2(A*/fe!)(l - 2ty^n+k) 

k=0 

= e - V ( 1 - 2 t r l ( l - 2ί)~*η 

= (1 - 2t)-2ne-m-{1-2trl\ (38) 

The same result can also be obtained as � �>� (�) using the � (� , I) density 
function in (22). This proceeds as follows. 

n 2 

Mx>x(i) = E(etx�*) = EjletXi
9 because the x-s are independent 

n � � �  

= Π (2π)-* exp[iz? - *(*< - /$*] dxu 
i=l J — oo 
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and on rearranging the exponent this is 

Mrx(t) = Π ί°°(2π)-* exp - f fe(l " 20 ~ ^]2(1 - 20"1 
i = l %/ — o o 

+ � �[1 - (I - 2t)-1]} dx( 

= e x p -ΚΣ / « ? ) [ 1 - ( 1 - 2 * ) - 1 ] 

tS>^4^f^y, 
= (1 - 2i)-*ne-A[1-(1"2*rl], 

as in (38). 
The mean and variance of the � 2�(� , � ) distribution are n + 2�  and In + 8A 

respectively. They may be derived from differentiating the m.g.f., or directly 
from the independence of the x/s. Thus, for summation over /, 

� � ^ = � � &) = 2« + A) = 21 + 1A = n + 2� ; 

and <Σ>ί) = Σ»(*?) 
= �  "K*.� - t*if + W** - /*.�) + A\ 
= �  »(*< - AO2 + 4 �  � 2 »(*< - � ) 
= 2 [E(*i - ft)4 - {£(*, - A)2}2] + 4 2� *� *�  

= Σ [ 3 ^ - ( ^ ) 2 ] + 8Α 
= 2n + 8λ. 

Notice that properties of the non-central ^-distribution reduce to those of 
the central � 2 when �  = 0, as one would expect. A further property is also 
to be noted: if variables having non-central ^-distributions are jointly 
independent their sum also has a non-central � 2. Thus if, for / = 1 ,2 , . . . , / : , 
the 

u{ are � 2�(� �9 � {) and independent 

then 2 ui is X2�(2 n» 2 **)· 
Proof of this is readily established through using moment generating func-
tions and the independence of the w/s: 

M(U1 (l)(t) = UMUi(ti) = n£(e«'-«0 
and on putting t( = t for all / this becomes 

UMUi(t) = Π£(β'»0 = £(«**") = Wi.((0, 
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where the products and sums are over / = 1, 2, . . . , k. Hence 

ΜΣΜί(0 = ΠΜΜ{(0 
= Π(1 - 20-^V-A'[1-(1-2t)~1] 

== (I — 2� ~~%� � �� ~� �  t1-(1~2<) - 1 ] . 

Comparison with (38) indicates that 2 u% ~ � 2�(�  n%> Σ ^) · 

i. Non-central F 
Just as there is a non-central analogy of the central ^-distribution so also 

is there a non-central F-distribution. It is specified as follows. If ux and u2 

are independent and 

" i i s � 2�(� �> � ) and u2 is � 2
� 2 

then v = ——- is distributed as F'(n1? n2, A), 
u2/n2 

the non-central F-distribution with � �  and n2 degrees of freedom and non-
centrality parameter � . Its density function is 

f(v) = y t^L "^+*4� ,� (�  + In, + fe) ^ 1 ^ 1 

*ti /c! Γ(|πι + *)Γ(1π8) (n2 + n1i>)*ni+*n«+* 
When A = 0 this reduces to (35), the density function of the central F-
distribution (when �  = 0, k = 0). The mean and variance of the distribution 
are 

and 
n2 — 2 \ V 

variance of v is- 2n? • (Wl + 2A)2
 Wl + 4A" 

.(n2 - 2)(n2 - 4) « 2 - 4 . n1(/i2 — 2)L 
When A = 0 these reduce, of course, to the mean and variance of the central 
/^^-distribution. 

Derivation off(v) is established as follows. Since ux and u2 are independent 
their joint density function is the product of their individual densities: 

/ ( « ! , tt2) = / ( M I ) / ( M 2 ) 

~*To fc! 2*ηι+*Γ(4π1 + fc) 2*"« Γ(|η2) 
For the terms not involving wx and w2 write 

e�W 1 
a, = kl 2*ηι+*ηι+*Γ(£η1 + k)r( |w2) : 
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/ (Mi , u2) = 2 a f c w i "2 e 
fc=0 

Now make a transformation of variables from ux and t/2 to 1? and z where 

tf = and z = ux + w2. 
� � �/2 

The Jacobian of this transformation is 

11/11 = 
n2ln1u2 —n2ujnlu\ 

1 1 

! dv/du! dvjdu2 

dz/du1 dz/du2 

Then, after the transformation, 

f(ui, uz) dux du2 becomes [f(uu � 2)/\\� \\] dv dz 
and so 

/GO dv =|o°°[/("i5 u2)l\\f\\] dv dz. 

Now the transformations are equivalent to 

n2(ui + u2) 

" � "2 

Wi = 
� � � �  

nxv + n2 

and so 

and Wo = 
nxv + n2 

and give \\f\\ 

(r^t? + n2)2 *=o Jo χηχΐ? + n2f � � ^�  + n2J 

= y a , « ^ ^ 2
i n 2 : : zl«i+h+*-lg-J« rfz 

w (Hi» + n2)^+*w*+*Jo 

which, on substituting for afc and evaluating the integral as 

2tn1+f»H-* r ( i / f i + ^ + fc)> 

becomes the form shown above. 
Because of the relative complexity of the density function there would be 

convenience in having an approximation to it. Consider, as above, v = 
(n2ui)Kniu2) where u2 is � 2

� 2 and ux is � \� �9 � ): the distribution of v is 
F\nl9 w2, � ). Suppose some value c exists such that cux is %2

m for some value m; 
i.e., cux has a central ^-distribution. Then 

v cnxv cujm 
mjcn1 m u2\n2 
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would have a central F-distribution, Fmtn%. No values c and m exist such that 
this is true; but, as indicated in Scheffe (1959) and shown in Patnaik (1949), 
approximation to it can be made by choosing c and m so that cul9 where ux 
i s X2�(ni> *)> has the same mean and variance as x2

m. This leads to 

E{cux) = c(nx + 2� ) = m 

and v(cMi) = c\2nx + 8A) = 2m 

� �  + 2�  (� , + 2Xf 
giving c = — and m = — -

nx + � �  � 1 + 4�  
Nith m\cnx = (1 + � � /� ^. Hence 

m\cnx 1 + 2� /� � 

is approximately distributed as Fm r i 2 . 

j . Other non-central distributions 
Two other distributions can be mentioned in the context of non-central 

distributions: the non-central /-distribution and the doubly non-central F-
distribution. If x is � (� , 1) and if, independently of x, u is � \ then x\\ju\n 
has the non-central /-distribution, t�(n, � ), with n degrees of freedom and 
non-centrality parameter � . The density function is 

f(t) = J^L. e~^ y � (̂ �  + jk + JVi*2**r* 
Y(\n) (n + �� � +1)£�  k\(n + ��  

Its derivation is given in Rao (1965, p. 139). 
The doubly non-central F-distribution is based on the ratio of two inde-

pendent non-centrally ^-distributed variables. Thus if ux is x2�(ni9 � � ) and 
w2is � 2�(� 2, � 2) then v = «2

wi/^iw2 *s distributed as F"(nl9 n2, � �9 � 2), the doubly 
non-central F-distribution with degrees of freedom nx and n2 and non-central-
ity parameters � �  and � 2. Scheffe (1959, pp. 135, 415) discusses an application 
of this distribution and a procedure for approximating it by a central F-
distribution. The density function is derived in exactly the same manner as 
is that of the non-central F shown above, giving 

= * [exp(-A1 - � 2)\� � � ^� {\� �  + \n2 + /q + / c s K ^ + W ^ V ^ * 1 " 1 

*£o kx \h2\Y(\nx + � )� {\� 2 + fc2)(Wli> + na)*"i+*n»+*i+* 
k2=0 
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5 . DISTRIBUTION OF QUADRATIC FORMS 

We discuss here the distribution of a quadratic form x'Ax when x is 
� (� , V). For the most part the discussion is confined to the case of V being 
non-singular, although some results pertinent to singular V are also given. 
In dealing with just the general case of x being � (� , V) we can readily 
consider special cases of interest such as x being N(0,1) or � (� 1,1) or 
� (� , I). But theorems concerning just these alone are not needed. The main 
results are presented in a series of five theorems. The first relates to cumulants 
of quadratic forms, the second to the distribution of quadratic forms and the 
last three to independence properties of quadratic forms. 

In all the theorems considerable use is made of the trace of a matrix, 
tr(A), the sum of the diagonal elements of A. We recall that tr(A) equals the 
sum of the latent roots of A and that when A is idempotent tr(A) = r(A). 
Furthermore, under the operation of taking the trace, matrix products are 
cyclically commutative; e,g., tr(ABC) = tr(BCA) = tr(CAB). Also, since a 
quadratic form is a scalar, it equals its own trace and hence 

x'Ax = tr(x'Ax) = tr(Axx'). 

These properties of the trace operation are used many times in what follows, 
without explicit reference thereto. The reader is therefore warned to be 
familiar with them. 

All the theorems relate to x being � (� , V)-with one exception, the first 
part of Theorem 1, which is true for x being (µ, V), normal or otherwise. 
In proving one result for the normal case use is made of the following 
lemma. 

Lemma 10. For any vector g and any positive definite symmetric matrix W 

� � �  /*� �  

(2ir)*" |W|Mg�Wg = � � �  e x p t - i x ' W ^ x + g�x) dxx... dxn. (39) 
J �  oo J �  co 

Proof. From the integral of a multivariate normal density � (� , W) we 
have 

(2� � �  |W|* = Π · · · f°° exp[ -Kx - µ ) ^ - 1 ^ - � )] � � � .. . dxn 
J �  OO J 00 

/•� �  /*00 

= � � � expC-Jx'W^x + � �� � ^�  - i^W~V) dxi... dxn. 
J �  00 J — 00 

On writing g' for µ ^ _ 1 this gives (39). 
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a. Cumulants 

Theorem 1. When x is � (� , V) 

(i) £(x'Ax) = tr(AV) + µ'Αµ; (40) 

(true also when x is non-normal); 
(ii) the rth cumulant of x'Ax is 

Kr(x�Ax) = 2r-\r - 1)! [tr(AV)r + ^ 'A(VA) ' -y ] ; 

and (iii) the covariance of x with x'Ax is 

cov (x, x'Ax) = 2νΑµ. 

Proof, (i) With E(x) = µ and var (x) = V we have 

£(xx') = V + µµ'. 

Hence E(x�Ax) = E tr(Axx') = tr[A£(xx')] 
= tr(AV + Αµµ') 
= tr(AV) + µ'Αµ. 

It is clear from the proof that this part of the theorem holds whether x is 
normal or not. 

(ii) The m.g.f. of x'Ax is 

Mx,AX(o = ( 2 7 r r i w i v r i i 0 0 - - - i 0 0 
J �  00 J �  00 

exp[ix'Ax — J(x — µ)'ν_1(χ — µ)] dxx · · · dxn 

and on rearranging the exponent this becomes 

e 
J �  OO J �  

M x - A x ( f ) = , i 
(2� �  |V| ^-oo </-<» 

exp[-Jx ' (I - 2fAV)V~1x + � �� ^� ] dxx... dxn. (41) 

Now in Lemma 10 put g' = µΎ"1 and W = [(I - 2<AV)V"1]-1 = 
V(I — 2/AV)-1. The right-hand side of (39) then equals the multiple integral 
in (41) and so (41) becomes 

Mx-Ax(0 = β-*µ ' ν~1 µ |νΓ* |V(I - 2iAV)-1| iexp[^'V-1V(I - 2iAV)"1V-V] 
which simplifies to 

MxAx(i) = |I - 2 ίΑνΓ* «ρ{ - * µ ' [ Ι - (I - 2iAV)-1]V~V}· (42) 
The cumulant generating function is the logarithm of the m.g.f. Hence 

| Krt
rlr\ = log[Mx,Ax(<)] 

= - | log |I - 2iAV| - |µ ' [ Ι - (I - 2iAV)-1]V->. (43) 
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The two parts of this are evaluated as follows. Use "� { of X" to denote the 
"zth latent root of X". Then for sufficiently small \t\ 

- i log |I - 2tAY\ = - i 2 log[^· of (I - 2iAV)] 

= - i i l o g [ l - 2 i ( A j o f A V ) ] 

= - i I | - [ 2 i ( ^ o f A V ) r / r 

= i 2 r - V / r i ( A f o f A V ) r 

r = l i = l 

= f (2r-1ir/r)tr(AV)r. 

And, by direct binomial expansion, for sufficiently small |i | 

I - (I - 2iAV)-1 = - Σ 2rf (AV)r. 
r=X 

Making these substitutions in (43) and equating the coefficients of tr gives 

Kr(x�Ax) = 2r~\r - 1)! [tr(AV)r + r^A(YAy~^]. (44) 

(iii) Finally, the covariance between x and x'Ax is 

cov(x, x'Ax) = E(x — µ)[χ'Αχ — £(x'Ax)] 

= E(x - µ)[χ'Αχ - µ'Αµ - tr(AV)] 

= E(x - µ)[(χ - µ)Ά(χ - µ) + 2(x - µ)Άµ - tr(AV)] 

= 0 + 2νΑµ - 0 

because the first and third moments of (x — µ) are zero. Hence 

cov (x, x'Ax) = 2νΑµ 

and the theorem is proved. 

Corollary 1.1. When µ = 0 
£(x'Ax) = tr(AV), 

and under normality 
Kr(x�Ax) = 2r~\r - 1)! tr(AV)' 

and cov (x, x'Ax) = 0. 

These are the results given by Lancaster (1954) and others. 
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Corollary 1.2. An important application of the theorem is the value of its 
second part when r — 2, for then it gives the variance of x'Ax: 

t;(x'Ax) = 2 tr(AV)2 + 4µ'Α(νΑ)µ 

= 2 tr(AV)2 + 4µΆνΑµ. (45) 

Corollary 1.3. When x ~ ]V(0, V) 

v(x�Ax) = 2 tr(AV)2. 

b. Distributions 

Theorem 2. When x is � (� , V) then x'Ax is x2�[r(A), ^µ'Αµ] if and only 
if AV is idempotent. 

Proof (sufficiency). Given that AV is idempotent to show that x'Ax is 
f � K A ) , � � �� � ]. 

From (42) the m.g.f. of x'Ax is 

Mx-Ax(0 = |I - 2 iAV| -*exp{-^ ' [ I - (I - 2fAV)-1]V-V} 

Π(1-2^Γ* εχρ{- ΐµ' - £(2i)*(AV)* 
k=l 

v-\ 
where the At, for i = 1 , 2 , . . . , « , are the latent roots of AV. Now if AV is 
idempotent and r is its rank, r values of the A* are unity and n — r are zero; 
and (AV)r = AV, so that 

Μ χ . Α χ =Π ( 1 - 2 0 - * ε χ ρ ! - ΐ µ AVV-V) � (20* 

= (1 - 2 ίΓ*Γεχρ{- |µ ' [1 - (1 - 2ί)_1]Αµ} 

= (1 - 20-1Γ6χρ{-|µ 'Αµ[1 - (1 - 20"1]}. (46) 

By comparison with (38) we see that x'Ax is %v(r, ^� �� � ) where r = r(AV). 
And, since V is non-singular, r(AV) = r(A). Hence x'Ax is %2'[r(A), |� � � � ]. 

Proof (necessity). Given that x'Ax is %2�(r, |� � � � ) to show that AV is 
idempotent of rank r. 

In this case, knowing the distribution of x'Ax we have the m.g.f. of x�Ax 
as given in (46), and it is also the form shown in (42). These two forms must 
be equal—and equal for all values of µ, in particular for µ = 0. Substituting 
µ = 0 into (42) and (46) and equating gives 

(1 - 2t)-ir = |I - 2rAV|-*. 

Writing u for It and rearranging gives 

(1 - u)r = |I - wAV|. 
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Letting � �9 � 2,. . . , � �  be the latent roots of AV we then have 

( 1 _ ^ = � (1-� .) . 

This being an identity in u its right-hand side has no powers of u exceeding r. 
Hence at least one Xt is zero. Repeated use of this argument shows that (n — r) 
of the � /s are zero, and so we can write 

(1 - u)r =fl(l - � � ,). 

Taking logarithms of both sides and equating coefficients gives r equations 
in the r unknown A's, namely, all sums of powers of the A's equal r. These 
have a solution � � = 1 for i = 1, 2, . . . , r. Thus n — r latent roots of AV 
are zero and r of them are unity. Therefore, by Lemma 9, AV is idempotent 
and the theorem is proved. 

Operationally the most important part of this theorem is the sufficiency 
condition, namely that if AV is idempotent then x'Ax has a non-central 
^-distribution. However, there are also occasions when the necessity con-
dition is useful. 

The theorem does of course have an endless variety of corollaries, depend-
ing on the values of µ and V and choice of A. For example, consider 

n 

2 (Xi — xf = χ'ΗόΗοχ> where H0 is the last n — 1 rows of the «-order 

Helmert matrix discussed in Sec. 1 and exemplified in equation (4) for n = 4. 
Then H0Ho = I and HoH0 is idempotent. Hence, if x is � (� 1, σ2Ι), Theorem 2 

tells us that 2 (x, - � )2/� 2 is � 2�(�  - 1, ΐµΐΉ^ΗοΙµ/σ2), which is � \�  - 1,0) 

because 1Ή^Η01 = 0. Certain more direct corollaries of special interest 
can be stated as follows. 

Corollary 2.1. If x is N(0,1), then xrAx is � 2 if and only if A is idempotent 
of rank r. 

Corollary 2.2. If x is 7V(0, V) then x'Ax is � 2 if and only if AV is idempotent 
of rank r. 

Corollary 2.3. If x is � (� , � 2�) then x'x/tf2 is %2� (n, ^µ'µ/σ2). 

Corollary 2.4. If x is � (� , I), then x'Ax is χ2 '0, £µ'Αµ) if and only if A is 
idempotent of rank r. 

Additional special cases are easily established. 
The proof of Theorem 2 is based upon moment generating functions. The 

expression for the cumulants of x'Ax is given in (44). It shows that when 
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x�Ax has a non-central ^-distribution, i.e., when AV is idempotent of rank r, 
the kth cumulant of x'Ax (with A being symmetric) is 

Kk(x�Ax) = 2k~\k - l)![r(A) + &� �� � ]. (47) 

c. Independence 
Under this heading we consider the independence of: 1. a quadratic form 

and a linear form, 2. two quadratic forms, and 3. sets of quadratic forms. 
There is a theorem for each case. In considering independence let us remember 
that when two random variables are distributed independently their covari-
ance is always zero. But the fact of two variables having a zero covariance 
does not always imply independence; it does under normality assumptions. 

Theorem 3. When x ~ � (� , V), then x'Ax and Bx are distributed inde-
pendently if and only if BVA = 0. 

Two facets of the theorem are worth noting before proving it: x�Ax does 
not have to have a non-central ^-distribution for the theorem to apply; 
and the theorem does not involve AVB, a product that does not necessarily 
exist. 

Proof of sufficiency: that BVA = 0 implies independence. 
From Lemma 7, because A is symmetric, we have that A = LL� for some L 

of full column rank. Therefore, if BVA = 0, BVLL� = 0. Since L has full 
column rank, (L'L)-1 exists (Corollary to Lemma 9, Chapter 1) and so 

BVLL� = 0 implies BVLL�L(L�L) * = 0, i.e., BVL = 0. 

Therefore cov(Bx, x'L) = BVL = 0. 

Hence, because x is a vector of normally distributed variables, Bx and x'L 
are distributed independently. Consequently Bx and x�Ax = x�LL�x are 
distributed independently. 

Proof of necessity: that independence of x'Ax and Bx implies BVA = 0. 
The independence property gives cov(Bx, x'Ax) = 0; and Theorem 

l(iii) gives cov(Bx, x�Ax) = 2� � � � . Hence 2� � � �  = 0, and since this is 
true for all µ, BVA = 0, and so the proof is complete. 

The next theorem, dealing with the independence of two quadratic forms, 
is similar to Theorem 3 just considered and its proof follows the same pattern. 

Theorem 4. When x ~ 7ν(µ, V), the quadratic forms x'Ax and x�Bx are 
distributed independently if and only if AVB = 0 (or, equivalently, BVA = 0). 

Note that the form of the distributions of x'Ax and x�Bx is not specified 
in this theorem. It applies no matter what distributions these quadratics 
follow, provided only that x is a vector of normal variables. In practice, the 
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theorem is usually applied in situations where the quadratic forms have 
^-distributions, as determined by Theorem 2, but this is not a prerequisite 
of Theorem 4. 

Proof. The condition AVB = 0 is equivalent to BVA = 0 because A, 
B and V are symmetric. Each condition therefore implies the other. 

Sufficiency: that AVB = 0 implies independence. 
By Lemma 7 we can write A = LI / and B = MM', where each of L and 

M have full column rank. Therefore, if AVB = 0, LL'VMM' = 0, and 
because (L'L)-1 and (M'M)"1 exist this means L'VM = 0. Therefore 

cov (L'x, x'M) = L'VM = 0. 

Hence, because x is a vector of normally distributed variables, L'x and x'M 
are distributed independently. Consequently x'Ax = x'LL'x and. Bx = 
x'MMx' are distributed independently.1 

Necessity: that independence implies AVB = 0. 
When x'Ax and x'Bx are distributed independently, cov(x'Ax, x'Bx) = 0 

so that 
t?(x'Ax + x'Bx) = i?(x'Ax) + v(x�Bx), 

i.e., v[x�(A + B)x] = u(x'Ax) + v(x�Bx). 

Applying equation (45) to all three terms in this result leads, after a little 
simplification, to 

tr(VAVB) + 2µΆνΒµ = 0. (48) 

This is true for all µ, including µ = 0, so that tr(VAVB) = 0 and on sub-
stituting back in (48) this gives 2µΆνΒµ = 0. This in turn is true for all 
µ, and so AVB = 0. Thus the theorem is proved. 

Before turning to the final theorem concerning independence, Theorem 5, 
recall that Theorems 3 and 4 are concerned with independence properties 
only, and apply whether or not the quadratic forms have ^-distributions. 
This is not the case with Theorem 5. It relates to the independence of quad-
ratic forms in a sum of quadratics and is concerned with conditions under 
which such forms have non-central ^-distributions. As such it involves 
idempotent matrices. The theorem follows; it is lengthy. 

Theorem 5. Let the following be given: 

x, order « x l , distributed as � (� , V); 
Ai9 n x n, symmetric, of rank ki9 for / = 1,2, ... 9 p; 

1 For the proofs of sufficiency in Theorems 3 and 4, I am grateful for discussions with 
D. L. Solomon and N. S. Urquhart. Proofs can also be established, very tediously, using 
moment generating functions. 
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v 
and A = 2 At, which is symmetric, with rank k. 

Then x'A;X is χ2'(&;, 4� �� 4� ), 

and the x�A^x are pairwise independent 

and x'Ax is X
2�(k, *� �� � ) 

if and only if 

I: any 2 of (a) A{\ idempotent, for all /, 
(b) � ,� � , = 0 f o r a l l / < y , 
(c) AV idempotent, 

are true; 

or II: (c) is true and (d), k = 2 A:,·; 

ör III: (c) is true and (e), Αχν, . . . , A(p_1)V are idempotent and 
A^V is non-negative definite. 

Proof of this theorem in statistics rests upon a theorem in matrices, which 
in turn depends upon a lemma. The matrix theorem, given below as Theorem 
5a, is an extension of Graybill (1961, Theorems 1.68 and 1.69). The proof 
given by Graybill and Marsaglia (1957) is lengthy; that given here follows 
the much shorter proof of Banerjee (1964) as improved by Loynes (1966), 
based upon a lemma. Accordingly we first state and prove the lemma given 
by Loynes. 

Loynes� Lemma. If B is symmetric and idempotent, if Q is symmetric and 
non-negative definite, and if I — B — Q is non-negative definite, then BQ = 
QB = 0. 

Proof of Loynes� Lemma. Let x be any vector and let y = Bx. Then 

y�By = yB2x = y�Bx = y'y, 

and so y'(I — B — Q)y = — y'Qy. 

Furthermore, because I — B — Q is n.n.d., 
y'(I - B - Q)y > 0. 

Hence, —y'Qy > 0 and so, because Q is n.n.d. also, y�Qy = 0. In addition, 
since Q is symmetric, Q = L�L for some L and therefore y�Qy s y'LXy = 0 
implies Ly = 0 and hence LXy = 0; i.e., Qy = QBx = 0. Since this is 
true for any x, QB = 0 and so 

(QB)' = B Q ' = BQ = 0. 
Thus is the lemma proved. The matrix theorem follows. 
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Theorem 5a. Let the following be given: 

Xi9 n x n, symmetric, rank ki9 i = 1 ,2 , . . . , / ? . 

X = 2 X*> which is symmetric, with rank k. 

Then of the conditions (a) Xi9 idempotent for all /, 

(b) X{Xj = Ofor / i&j, 

(c) X idempotent, 

it is true that 
I: any 2 of (a), (b) and (c) imply (a), (6), (c) and (rf); 

II: (c) and (rf) imply (a) and (b); 
and III: (c) and Xl5 X2, . . . , X3)_t being idempotent with Xv being non-

negative definite, imply that X^ is idempotent also and hence (a); 
and therefore (b) and (d). 

The analogies between Theorems 5 and 5a are clear; once 5a is proved, the 
proof of 5 is relatively brief. The part played by Theorem 5a is that it shows 
that in situations in which any one of sections I, II or III of Theorem 5 hold 
true, then all of conditions (a), (b) and (c) in section I will hold. The conse-
quences of Theorem 5, the independence of quadratics and their ^-distri-
butions, then arise directly from Theorems 2 and 4. 

Proof of Theorem 5a. We first prove section I, doing it in four parts. 
I(i): Given (c), I — X is idempotent and hence n.n.d.; and X — Xt- — 

Xj = 2 Xr is, given (a), n.n.d. Therefore I — X + X — Χέ — X, = 

I — Xz — X,· is n.n.d. and so, by Loynes' Lemma, X̂ X̂  = 0, which is (b). 
Hence (a) and (c) imply (b). 

I(ii): Let �  be a latent root and u the corresponding latent vector of Xv 

Then Xxii = Au, and for �  ^ 0, u = Χ^/λ. Hence X û = X^u/�  for / ^ 1 
is, given (b), 0; and therefore Xu = Xxu = � �  and so �  is a latent root of X. 
But, given (c), X is idempotent and hence �  = 0 or 1. Therefore X�  is, by 
Lemma 8, idempotent. Similarly the other X/s are idempotent and thus (a) 
is established. Hence (b) and (c) imply (a). 

I(iii): Given (b) and (a) X2 = £ X ? = £X t · = X, which is (c). Thus 
(a) and (b) imply (c). 

I(iv): Given (c), r(X) = tr(X) and so 

k = r(X) = tr(X) = t r (2 X,) = £ tr(X,), 

and on being given (0) 2 t r(x*) = Σ ^ · Hence & = Σ h* which is (</). 
Thus (a) and (c) imply (d). 



[2.5] DISTRIBUTION OF QUADRATIC FORMS 63 

(II): The proof of this section follows that of Loynes (1966). Given 
(c), I — X is idempotent and therefore X — I has rank n — k; i.e., X — I has 
n — k linearly independent (LIN) rows. Therefore 

and 

in (X — I)x = 0 there are n — k LIN equations; 

in X2x = 0 there are fc2 LIN equations; 

and in Xpx = 0 there are kp LIN equations. 

However, these LIN sets of equations are not all mutually LIN; for example, 
the k2 LIN equations in X2x = 0 may not be LIN of the kv LIN equations in 
Xpx = 0. Therefore, in 

X - I 
x2 

x = 0 

the maximum number of LIN equations is, given (d), 

n — k + k2 + · · · + kp = n — k� ; 

and the equations reduce to Xxx = x. Thus the minimum number of LIN 
solutions to Xxx = x is n — (n — kx) = kx\ that is, for at least kx LIN vectors 
x, Xxx = x = lx. Hence 1 is a latent root of Xx with multiplicity at least 
equal to kv But r(Xx) = kx and so Xx has only kx non-zero latent roots and so, 
by Lemma 8, is idempotent; similarly so are the other Xf's, and thus is (a) 
established. Thus (c) and (d) imply (a) and hence, by I(i), (b); and so II is 
proved. 

I l l : Given (c), X is n.n.d. and then so is I — X. With Xl9. . 
idempotent and hence p.s.d., and Xp n.n.d. also, then 

*p-l being 

Therefore 

2 Xr = X - X, - X,· is n.n.d. 
r �  i �  j 

X + X - X{ - Xj = I - X, - X, is n.n.d. 

and so, by Loynes' Lemma, XtX, = 0; i.e., (b) is true. Therefore (a) and (d) 
are implied also, and both this section and the whole theorem are proved. 

We now have to show how Theorem 5a leads to proving Theorem 5. 
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Proof of Theorem 5. Since V is symmetric and positive definite, V = T�T 
by Lemma 4, for some non-singular T. Then, since At- is symmetric, so is 
� � /�  and r{Xt) = r(TA/T); and Â V is idempotent if and only if � � ,� � is; 
and A^VA,� = 0 if and only if � � /� � � /�  == 0. Hence Theorem 5a holds true 
using � � /�  in place of Xi (and TAT� in place of X). Then sections I, II and 
III of Theorem 5a applied to � � /�  and TAT� show that when sections I, II 
or III of Theorem 5 exist conditions (a), (b) and (c) always exist. But, by 
Theorem 2, x�A^x is x2�(ki9 � � �� ,� ) if and only if (a) is true; also, x�Ax is 
X2�(k, ^� �� � ) if and only if (c) is true. And by Theorem 4 χ'Α,-χ and χ'Α,χ 
are independent if and only if condition (b) is true. And so Theorem 5 is 
proved. 

Corollary 5.1. (Cochran's Theorem). When x is N(0, In) and Ai is sym-

metric of rank rt for / = 1, . . . ,p with 2 Â  = In, then the x'A^x, are 
v 

distributed independently as � *. if and only if 2 r* = «· 

Proof Put µ = 0 and V = ln = A in Theorem 5. This is the well-known 
theorem first proved by Cochran (1934). 

6 . BILINEAR FORMS 

Knowing the distributional properties of quadratic forms of normal 
variables enables us to discuss properties of bilinear forms. We consider the 
general bilinear form xiA12x2 where xx and xa are of order nx and nz, distri-
buted as � (� �9 C n ) and as � (� � , C22) respectively, with the matrix of co-
variances between xx and x2 being C12 of order � �  χ n%\ i.e., 

£(*i - µι)(χ2 - µ2)' = c i a . 

Properties of the bilinear form are readily derived from those of quadratic 
forms because x(A12x2 can be expressed as a quadratic form: 

xxA12x2 — 2[Χ]̂  x2J 
0 

.A-21 

A12 

0 

Hence 

where B = B� = 

xxA12x2 

' 0 A12� 

A21 0 . 

with A21 = (A12)�. 

ly�By 

with A21 = (A12)�, 
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and C21 = (Cia)'. 
Thus properties of xiA12x2 are equivalent to those of |(y'By) which, for some 
purposes, is better viewed as y'(JB)y. 

Similar to Theorem 1, we have the mean value of xiA12x2: whether the 
distribution of the x�s is normal or not, 

£(xiA12x2) = tr(A12C21) + µ(Α12µ2. (49) 
This is proved in the same manner as is part (i) of Theorem 1. Also, from 
part (ii) of that theorem we have the rth cumulant of x(A12x2 as 

Kr(x[A12x2) = i(r - l)![tr(BV)r + Γµ'Β(νΒΓιµ1· (50) 
And from Theorem 2, χ^Α12χ2 is x2�[r(B), ^µ'Βµ] if and only if JBV is 
idempotent. With 

BV = 
Ai2v>2i A 1 2 C 2 2 

_A21CU A21C12 

notice that, in general, idempotency of |BV does not imply (nor is it implied 
by) idempotency of BV. In substituting BV into (50) use is made of (A21)' = 
A12 and (C21)' = C12 and also of the cyclic commutability of matrix products 
under the trace operation. In this way 

tr(A21C12) = tr(C12A21) = tr(A12C21)' = tr(A12C21). (51) 

A special case of (50) is when r = 2: 

t>(xiAlA) = |[tr(BV)2 + 2µ'ΒΥΒµ]. 
Substituting for BV and µ and using (51) reduces this to 

t?(xiA12x2) = tr(A12C21)2 + tr(A12C22A21Cu) 
+ µιΑ12022Α21 µι + µ2Α21€11Α12µ2 + 2µίΑ ΐ2^2 ΐΑχ2µ2. (52) 

We now derive the covariance between two bilinear forms x(A12x2 and 
X3A34X4, based on procedures developed by Evans (1969). Let x1? x2, x3 and 
x4 have order nl9 n2, n3 and nA respectively and be normally distributed with 
respective means µΐ5 µ2, µ3 and µ4 and covariance matrices Cih of order 
«j X nh for i,j — 1, 2, 3 and 4: 

Also define 
C„ = E(x< - µ,)(χ, - µ,)' = (Ch)�. (53) 

[χί χ̂  Χ3* xi] and µ' = [µί µ̂  µ̂  µί] (54) 
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for C„ of (53); 
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C = {CH} for i, ; = i 

i.e., x ~ � (� , C). Then, with 

W = | 

0 A12 

A21 0 

0 0 

0 0 

0 

0 

0 

A43 

, 2, 3, 4 

0 

0 

A34 

0 

> 
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(55) 

(56) 

so that 
X W X — XJA-L2X2 ~T X3-A34X4, 

i;(x3A34x4). (57) 2 cov(xiA12x2, x3A34x4) = i;(x'Wx) - Ü(X;A12X2) 

Corollary 1.2 applied to the first term of (57) gives 

Kx'Wx) = 2 tr(WC)2 + 4µ ' \ν€ \¥µ, 

for µ, C and W of (54), (55) and (56) respectively; and using (52) for 
v(x{A12x2) and its analogue for i;(x3A34x4) we then find that (57) reduces, after 
repetitive use of properties illustrated in (51), to 

cov(xiA12x2, x3A34x4) = tr(A12C23A34C41 + A12C24A43C31) 
+ µιΑ12(^23Α34µ4 + µιΑ12024Α43µ3 

+ 1*2̂ 21 £13Α34µ4 + µ2Α21€14Α43µ3. (58) 

This result does, of course, yield results obtained earlier when used for special 
cases. For example, to obtain var(x'Ax) put all Af/s equal to A, all Q / s 
equal to V and all µ/s equal to µ and so get the variance of a quadratic form 
in x ~ Α (̂µ, V) as 

Kx'Ax) = 2 tr(AV)2 + 4µΆνΑµ 

as in (45). Also, to obtain the co variance between two quadratic forms in the 
same variables, x'Px and x'Qx say, put all the µ'8 in (58) equal to µ, all the 
C's equal to V, and put A12 = A21 = P and A34 = A43 = Q to give 

cov(x'Px, x'Qx) = 2 tr(PVQV) + 4 µΡΥ0 µ . 

7 . THE SINGULAR NORMAL DISTRIBUTION 

Up to this point we have assumed that V is non-singular when x is � (� , V). 
We now consider the situation when V is singular. A simple example of this is 
the variance-covariance matrix of three random variables Xu X2 and Xx — X2. 
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If 
"� � " 

_ * 2 _ 

~^2 _ 

_<7l2 * L 

then V = var x2 

\_� �  �  ^ 2 . 

o\ 

� 1 2 

� �2 #� �  cr1: 

0*15! — 0*2 

� � � "" � 12 � � 2 ~~ � 2 #1 + � 2 "" 2tf12J 

with V being singular. For such variables being normally distributed we 
emphasize the singularity of V by writing, in general, x ~ SN(p, V). 

Because V - 1 does not exist, the density function of the SN(p, V) distribu-
tion cannot be written down. However, its characteristic function (m.g.f. 
using it in place of t) does exist; it is ^>-έ*'ν*. Therefore, by the continuity 
theorem for characteristic functions [see, for example, Cramer (1951, p. 312) 
and Anderson (1958, p. 25)], we are guaranteed that the density function 
exists, even though it cannot be written explicitly. 

The general characterization of the SN(\L, V) distribution given by Ander-
son (1958, p. 25) is useful. Suppose y is a vector having the JV(0,1) distribu-
tion. Then variables obtained by the transformation x = µ + Ly have the 
� � (� , LI/) distribution, when LL' is not of full rank. Situations arise in 
linear models that are similar to this, when we develop equations X�Xb0 = 
X'y that have a solution b° = GX�y where X'X is singular. Then, if y has a 
normal distribution, b° will also, but its variance-covariance matrix will be 
singular. Discussion of the singular normal distribution is therefore pertinent. 
We consider five theorems, ls-5s, analogues of those for non-singular V in 
Sec. 5. Although they are stated as applying to the SN(p, V) distribution, we 
henceforth take this to be either the singular or the non-singular normal 
distribution; i.e., V is to be considered as being either singular or non-singular. 
In the case that V is non-singular, Theorems Is—5s reduce to Theorems 1-5 
respectively. 

Theorem Is. When x is SN(p, V) 

(0 £(x�Ax) = tr(AV) + � �� �  

(true also when x is non-normal) 
(ii) the rth cumulant of x�Ax is 

Kr(x�Ax) = 2T-\r - l)![tr(AV)r + ^ � A(VA)r-y]; 

and (iii) the covariance of x with x'Ax is 

cov(x, x�Ax) = 2� � � . 

(59) 
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The results in this theorem are identical to those of Theorem 1. Proofs of 
parts (i) and (iii) are also the same. Proof of part (ii) proceeds as follows, as in 
Rohdeetal . (1966). 

Proof of (ii). When x is 57ν(µ, V) with V singular, there is no loss of 
generality in supposing that x = µ + Ly where y is N(Q, Ifc), and V = LL' 
with L having full column rank k9 as in Lemma 7. Then the m.g.f. of x'Ax is 

Μχ,Αχ(0 = (2π)-** Γ · · · f °°exp(iy'L'ALy - iy'y + Itp�ALy + ίµ'Αµ) 
J �  oo J �  oo 

X dyx... dyk 
and application of (39) reduces this to 

Mx.jjt) = |I - 2iI/AL|-£ εχρ[ίµ'Αµ + 2/y 'AL(I - 2*Ι/ΑΙ,)-1Ι/Αµ]. 

Calling the logarithm of this Kx,Ax(t) and using infinite sums for — | log 
11 — 2iL'AL| and (I — 2iL'AL)~1 similar to those used in deriving (44), we 
get 

00 00 

ΚχΆχ(0 = �  (2r -V/r) tr(L'AL)r + ίµ'Αµ + 2ί2µ'AL £ 2� (L'AL)rL AL 
r=l r=0 

= i[tr(L'AL) + µ'Αµ] 
00 

+ 2 ^ ^ [ µ 'Αΐ χ ΐ /ΑΙ ,Γ - ^ 'Αµ + tr(L'AL)r/r]. (60) 

Now V = LL' and so 

tr(L'AL)r = tr(VA)r for all positive integers r; (61) 

also, by induction, it can be shown that 

AL(L'AL)' 2L'A = Α(νΑ)^1. (62) 
Hence 

00 

Kx-AxW = ί[µ'Αµ + tr(AV)] + £ f ^ V A C V A r V + tr(VA)r/r] 
r=2 

00 

= 2 i^VACVA^V + tr(VA)r/r]. 

Hence the rth cumulant of x'Ax, the coefficient of trjr\ in Kx<Ax(t), is as given 
in (59). Note that although the initial definition of the m.g.f. is in terms of 
L, where V = LL', the ultimate expression for the cumulant depends solely 
on V and not at all on L, and it is identical to the result for non-singular V in 
Theorem 1. 

There has recently been a plethora of theorems in the literature on the 
distribution of quadratic forms in singular normal variables [e.g., Rao (1962), 
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Khatri (1963), Rayner and Livingstone (1965), Rao (1966), Khatri (1968), 
Good (1969) and Styan (1969)]. Despite this we give only one here, that which 
appears to be the most general. It relates to a non-homogeneous form. 

Theorem 2s. When x is 57ν(µ, V), the form x'Ax + m'x -f d has a non-
central ^-distribution with degrees of freedom tr(AV) and non-centrality 
parameter ^(Αµ + £m)'ν(Αµ + |m) if and only if 

(i) VAVAV = VAV, 
(ii) (Αµ + im)'V = (Αµ + £m)'VAV 

and (iii) µ'Αµ + ιη'µ + d = (Αµ + £m)'ν(Αµ + £m). 

This theorem is taken from Rayner and Livingston (1965, Theorem 7.2), 
who give its proof. Rao (1966) also discusses the topic. Of the many 
corollaries that can be established we mention but three. 

Corollary 2s.l (m = 0 and d — 0.) When x is � (� , V), whether V be 
singular or non-singular, x'Ax is #2'[tr(AV), ^µ'Αµ] if and only if 

(i) VAVAV = VAV, (ii) µ'ΑΥ = µΆνΑν 
and (iii) µ'Αµ = µ'ΑνΑµ. 

Corollary 2s.2. (m = 0, d = 0 and µ = 0.) When x is N(0, V), whether 
V be singular or non-singular, x'Ax is /fr(Av) if an<^ o n ty if VAVAV = VAV. 

Corollary 2s.3. (Theorem 2). When V is non-singular the conditions of 
Corollary 2s. 1 reduce to idempotency of AV. 

Despite the condition of idempotency in Corollary 2s.3, when V is non-
singular, one must not conclude in the theorem or in Corollaries 2s. 1 and 
2s.2 that AV is idempotent, for it is not necessarily so. With V being p.s.d., 
V = LI / by Lemma 7 and L'L is non-singular (by Lemma 9 in Sec. 1.6). 
Hence on all occasions condition (i) implies, and is implied by, the idempo-
tency of L'AL, which in turn is equivalent to AV having all its latent roots equal 
to 0 or 1. But, by Lemma 9, only when V is non-singular does this condition 
imply the idempotency of AV. This is the source of the error in the necessary 
condition given by Rao (1962), which he later corrected, (1966). The same 
error occurs in Good (1969), and has been corrected by Styan (1969), who 
indicates that Good (1969) misquotes Shanbhag (1968) on this point. An 
example follows. 

Example. If 

V = 
2 
0 

2 

0 
2 

- 2 

- 2 
- 2 

4 

and A = (1/16) 
16 
6 

5 



70 DISTRIBUTIONS [2.7] 

then 

VA = (1/16) 
22 6 

2 2 

-24 - 8 

and (VA)2 = (1/16) 
22 

0 

- 2 2 

6 
0 

- 6 

6 
0 

- 6 

Clearly, VA is not idempotent; but tr(VA)2 = tr(VA) = 1 and the latent roots 
of VA are 1, 0 and 0. Furthermore, condition (i) of Theorem 2s is satisfied, 
for it will be found that 

2 0 - 2 1 

VAVAV = 0 0 0 

- 2 0 

= VAV. 

-(x1 + x2)] as a result of The matrix V corresponds to x' = [xx x2 

which 
x'Ax = (8x1 + 2x1 + x\ + 6xxx2 + 5� � � 3 + 3#2#3)/8 = \x\, 

because x3 = — (� �  + x2). Thus x'Ax = \x\ is clearly distributed as 
� � [\ == tr(VA), � � \] where the degrees of freedom are tr(VA); but VA is not 
idempotent. 

Theorems relating to independence properties of quadratic forms are 
based on the work of Khatri (1963) and Good (1963). The one for the 
independence of a quadratic and a linear form, paralleling Theorem 3, stems 
from the following result given by Good [1963, Theorem 1C, parts (ii) and 
(iii)]: when y is SN(0, W), then y'Py and q'y are independent if and only if 
WPWq = 0, and p�y and q�y are independent if and only if p�Wq = 0. 
From this comes 

Theorem 3s. When x is � � (� , V) then x'Ax and Bx are independent if and 
only if BVAV = 0 and BVAp. = 0. 

Proof. Write x = �  + Ly where y ^ JV(0,1) and (as in Lemma 7) V = 
LI / , and apply Good's results to 

x'Ax = y�L�ALy + 2µ'ALy + � �� �  

and b'x = b�Ly + 1>'µ 

where b' is any row of B. The necessary and sufficient condition for the inde-
pendence of (i) y�L�ALy and b�Ly, is IL�ALIL�b = 0, which is readily shown 
to be equivalent to BVAV = 0; and of (ii) � �ALy and b�Ly, is µ ^ Π , ^ = 0, 
equivalent to � � � �  = 0. Hence BVAV = 0 and � � � �  = 0 are the neces-
sary and sufficient conditions for x'Ax and Bx to be independent. 

Corollary. x'Ax and Bx are independent if BVA = 0. 
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Concerning the independence of two quadratic forms, Khatri (1963) 
proves a theorem pertaining to a Wishart distribution which, in our context, 
takes the following form. 

Theorem 4s. When x is SNfa, V), the quadratic forms x'Ax and x�Bx are 
independent if and only if 

VAVBV = 0, 

� � � � �  = � � � � �  = 0 

and � �� � � �  = 0. 

Shanbhag (1966) points out that if A is non-negative definite these conditions 
reduce to AVBV = 0 and � � � �  = 0, whereas if both A and B are non-
negative definite the sole condition is AVB = 0, the same as when V is non-
singular (Theorem 3, above). Good [1963, Theorem IC, part (i)] considers 
this situation when µ = 0, erroneously reporting the condition as AVBV = 0 
or a cyclic permutation thereof; Shanbhag (1966) points out the error, as 
acknowledged by Good (1966). The correct condition is VAVBV = 0, 
as shown above. 

Proof. Application of Good's theorem yields a proof to Theorem 4s in the 
same manner as it does to Theorem 3s (see Exercise 15). 

Theorem 5 of Sec. 5 is a generalization of Cochran's theorem. A somewhat 
similar generalization for the singular normal is given by Styan (1969). 

Theorem 5s. Let the following be given: 

x, order « x l , ~57ν(µ, V); 

A,·, n x n, symmetric, rank (VA^V) = ri9 i = 1, . . . , p; 

V 

and A = ]£ Ai9 rank VAV = r. 

If (i) V is non-singular, or if (ii) V is singular and µ = 0 or if (iii) V is singular, 
µ is not necessarily null and AÄ is positive semi-definite for / = 1, 2, . . . , r, 
then the four propositions 

(α) � �� ,�  — x2�(ri9 Ιµ'Α^µ), 

(b) the x'Atx mutually independent, 

(c) χΆ χ~ χ 2 ' (Γ , ΐµΆµ ) 

and (d) r = ]T rt 

are implied by any two of (a), (b) and (c) and by (a) and (d). 
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Proof. Styan (1969) gives a proof. It follows closely the proof of Theorem 
5 in Sec. 5. Because of its length, it is omitted here. 

8 . EXERCISES 

1. Suppose the data for 5 observations in a row-by-column analysis are as follows. 

Row Column 

1 

1 6 4 
2 6,42 12 

The analogy for unbalanced data of the interaction sum of squares is 
r c V2 r V2 C V2� V2 

i=lj=l nij i=l Hi- j=l nj n" 

Use the above data to show that this expression is not a positive definite form. 
Why, then, can it not be described as a sum of squares? 

2. Derive the moment generating function of the ^-distribution: (i) from its 
density function and (ii) using the density function of the 7V(0, 1) distribution. 
Use your result to find the mean and variance of the ^-distribution. 

3. Find the first two moments of \\u when u is distributed as � 2
� . 

4. (a) Derive the mean and variance of the ^-distribution and the 
distribution. 

(b) If the random variable r is such that � (� �  + l) has a central F-distribution 
with a — l and a(n — l) degrees of freedom, show that 

is an unbiased estimator of A. [Note: In certain analysis of variance 
situations r is a calculated F-statistic and A is a variance ratio.] 

n 

5. Using Helmert's matrix of Sec. I, show why ^ f e ~ ^)2 /^2 h a s a 4-rdistri" 
i = l 

bution when x is � (� 1, σ2Ι). 
6. From the given definition of the tn- and ^-distributtons show why 

x — �  / n �  l 

l/V«V £(** - ä)2 

when x is � (� \, <r2I). 
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7. Show that the variance of a redistribution equals the mean of an Fmn-
distribution. 

8. Using the moment generating function of the � 2�(� , ^-distribution derive its 
mean and variance. 

9. Derive the mean and variance of the F'O^ , n2 , /^-distribution. 

10. Derive the density function and mean of the doubly non-central F-distribution 

11. When x ~ � (� , V), derive the density function of Tx, proving that it is normal. 
What conditions must be satisfied for your proof to hold? What is the distri-
bution of Tx when the conditions are not satisfied ? Discuss the case when V 
is singular. 

12. When x is � (� �91) and y is ΛΓ(µ2,1) and the correlation matrix between x and 
y is R, what are the mean and variance of x'Ay ? 

13. When x is � (� , V) show, without using Theorem 2, that if x'Ax is � � (� , |µ'Αµ) 
then (x — µ)Ά(χ — µ) is � 2 . Can the converse be proved without the use of 
Theorem 2? 

14. If y is AT(Xb, V) with V- 1 existing, under what conditions is b°'Qb° a #2-variable 
when b° is a solution to X'Xb0 = X'y, with X'X being singular? 

15. In Sec. 7 the two salient features of a theorem from Good (1963) are given. 
With their aid, prove Theorem 4s. 

16. With x ~ � (� , V) what are the necessary and sufficient conditions for x'Axx 4-
b[x + cx and x'A2x + b�2x + c2 to be independent? What are these conditions 
when V is non-singular ? 

17. (a) From (38) derive the rth cumulant of the x2�(q, A)-distribution. 
(b) By equating your result to (59) show that a necessary and sufficient con-
dition for x'Ax to be distributed as x2�(q, A) is 

tr(VA)r + >VA(VA)r-V = q + 2rl for all integers r. 

(c) Show that this condition is equivalent to (i.e., implies and is implied by) 
the two conditions 

^A(VA)r-V = µ'Αµ = 2 A and tr(VA)r = tr(VA) = q 

for all integers r. 

(d) Show further that these conditions are also a special case of Theorem 2s. 

18. Explain exactly why Cochran's theorem is a corollary of Theorem 5. 

19. By writing x = µ + Ly where y — 7v~(0,1), derive the cumulant generating 
function of x'Ax starting from the density function of y. 
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20. The non-central ^-distribution is defined as the distribution of x'x when 
x ~ � (� , ln). Using just this definition prove the sufficiency condition first of 
Corollary 2.4 and then of Theorem 2. 

21. A characterization of the multivariate normal distribution is that x ~ � (� , V) 
if and only if λ'χ has a univariate normal distribution. Using this as a definition 
of the multivariate normal distribution, derive its moment generating function 
from that of the univariate normal. [Hint: Use Mx(t) = Mt'x(l).] 

22. Suppose that x ~ F{nx, n2) and 

� �  > Fni,n2J = a. 

Prove that Fna§n i f l_e = 1/Fni,nt§e. 

23. If u and v have a bivariate normal distribution with zero means, show that 

cov(w2, v2) — 2[cov(w, v)f. 



CHAPTER 3 

REGRESSION, OR THE FULL RANK MODEL 

1. INTRODUCTION 

a. The model 
Regression analysis is designed for situations where a variable is thought to 
be related to one or more other measurements made, usually, on the same 
object. A purpose of the analysis is to use data (observed values of the 
variables) to estimate the form of this relationship. An example would be to 
use information on income and number of years of (formal) schooling to 
estimate the extent to which a man's annual income is related to his years of 
schooling. One possibility would be that for a man who had had zero years 
of school we would anticipate his annual income as being $a; and for every 
year of schooling he had had we would expect his income to be larger by 
$b. Thus for a man having x years of schooling we would expect his annual 
income to be a + bx dollars. In saying that we "expect" him to have an 
income of a + bx dollars we are thinking of the average of all men who have 
had x years at school, and if from these men one was picked at random we 
would expect his income to be a + bx. If y denotes income we write E(y) 
for expected income and thus have 

E{y) = a + bx. (1) 

This attempted description of how we think one variable is related to 
another is an example of what is called model building. The model here, that 
a man's income is expected to be a + bx where x is his number of years of 
schooling is a linear model, linear because we envisage E(y) as being a 
linear combination of the unknowns, which are called parameters, a and b. 
There are, of course, endless other models, non-linear in a and b, that might 
be postulated, e.g., that E(y) is a function of xa or (log x)h or perhaps bx. 
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However, the linear model is the one that has received greatest attention 
both in theory and in practice. From the theoretical point of view it is 
mathematically tractable, and in practical applications of wide variety it has 
shown itself to be of great value. Furthermore, many models that are appar-
ently non-linear can often be rearranged to be in a linear form. Moreover, 
while computing demands of linear model analyses can be extensive they are 
usually not prohibitively excessive, and today's goliath computers are making 
such analyses ever more readily attainable. 

Equation (1) is the equation of our model, in this case the model of how 
expected income and years of schooling are related. The equation is not the 
whole model; its other parts have yet to be described. Since the model is 
something being conjectured, a and b can never be known, and the best that 
can be done is to obtain estimates of them from data, data which we assume 
are a random sample from some population to which we conjecture our 
equation applies. The model is often called a regression model and since its 
equation is linear the regression is more correctly called linear regression. 
The variable denoted by y is usually called the dependent variable, and x 
is correspondingly called an independent variable. 

b. Observations 
In gathering data, the income of every man with x years of schooling will 

not be exactly a + bx (with a and b being the same for all men). Indeed this 
fact is already recognized in the writing of the equation of the model as 
E(y) = a + bx rather than as y = a + bx. Thus if yi is the income for a man 
with xt years of schooling we write 

E(Vi) = a + bxi > (2) 
where E{y^ is not the same as yt. The difference, yt — E(y� ), represents the 
deviation of the observed y{ from its expected value E(yi) and is written as 

ei^yi- E{yt) = Vi - a - bx>. (3) 

Hence y{ = a + � � { + ei, (4) 
which we now take as the equation of the model. 

The deviation ^ defined in (3) represents the extent to which an observed 
y{ differs from its expected value E(y^) = a + tef. And equations (2), (3) 
and (4) apply to each of our N observations yx ,y2, . . . ,yN . Thus the e's 
include all manner of discrepancies between observed ι/'s and their expected 
values; for example, they include measurement errors in y{ (its recorded 
value might not be exactly what the man's income is), and they include 
deficiencies in the model itself—the extent to which a + bxi is, in fact, not 
the man's income (variables other than years of schooling might affect it, 
the man's age, for example). In this way the <?'s are considered as random 
variables, usually called random errors or random residuals. 
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In order to complete the description of our model in terms of equation (4), 
characteristics of the e's must be specified. Customary specifications are that 
the expected value of et is zero and its variance is σ2, for all /; and that co-
variances between any pairs of e's are zero. Thus 

E{et) = 0 (5) 

as is obvious from the definition of et in (3), and 

v{ez) = E[et - E(et)f = E(ef) = σ2 for all i; (6) 

and cov(^.) = E[et - � {� %)][� , - E(e,)] = E{e^ = 0 for i ^j. (7) 

Equations (2)-(7) now constitute the model. They form the basis of the 
procedure used for estimating a and b. 

c. Estimation 
There are several well-recognized methods that can be used for estimating 

a and b (see Sec. 3). The most frequently used is that known as least squares, 
and it is the one we shall outline here. Its justification as a satisfactory estima-
tion procedure is given in many standard statistical texts. 

Least squares estimation involves minimizing the sum of squares of devia-
tions of the observed y/s from their expected values. In view of (3) this sum 
of squares is 

e'e = �  $ = � \Vi ~ � � �  = �(� -� - bxt)\ (8) 
i=l i=\ i=l 

Although a and b are fixed (but unknown) values, let us for the moment 
think of them as mathematical variables. Then those values of them which 
minimize (8) are the least squares estimators of a and b. They will be denoted 
by �  and b. Minimization of (8) is achieved in the usual manner: differentiate 
(8) with respect to a and b and equate the differentials to zero. The resulting 
equations are written in terms of �  and h. Their solutions for �  and b are the 
least squares estimators. Thus from (8) 

d(e�e)lda = - 2 £ (& - * - bx<) = - 2 ( 2 Vi - Na - b �  *i) (9) 

and 

d(e�e)ldb = - 2 2 xlVi - a - bxt) = - 2 ( £ *,& - α Σ *< ~ * Σ *?) (10) 
where summations are over /, for / = 1, 2 , . . . , N. Equating these to zero 
and writing them in terms of �  and b gives 

Na + B2*i = lyi and *Σ** + ΑΣ * ? = Σ *Μ · (n) 
Using the dot notation 

#. = Σ xi a n d y - = Σ � % (12) 
i i 
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and the corresponding bar notation for observed means, 

x. = x.jN and y. = y./N, (13) 

the solution for (11) can be written in the following familiar forms: 

^ = �  (xi - *·)(& - y) = Σ xiVi - Nx~-y-

and �  = y.- bx. = (y. - Bx.)/N. (15) 

d. Example 
Suppose in a sample of 5 men that their incomes (in thousands of dollars) 

and years of schooling are as follows. 

(14) 

l 

(Man) 

1 
2 
3 
4 
5 

N=5 

(Income, $1,000) 

; 

10 
20 
17 
12 
11 

y.= 70 
y.= 14 

�  y\ =1054 

(Years 

�  

of 

X. 

X. 

*? 

Schooling) 

6 
12 
10 
8 
9 

= 45 
= ~9 

= 425 2 > # 4 = 665 

From (11) the equations for obtaining �  and b are 

S�  + 45b = 70 and 45a + 4255 = 665 

and from (14) and (15) the solutions are 

B = 665 - 5(9)14 = 35 = ^ 
425 - 5(92) 20 

and ά = 1 4 - 9 ( 1 . 7 5 ) = -1 .75 . 

Hence the estimated regression equation, corresponding to (2), is 

E(yt) = ά + £x< = -1 .75 + 1.75*,, 

where the large "hat" over E(yd denotes "estimator of" E(y^ just as does 
�  of a. 
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e. The general case of k ^-variables 
Suppose that in the study of annual income and years of schooling we also 

considered the man's age to be a factor affecting income. The model envisaged 
in (1) is now extended to be 

E(y) = a + hxi + b2x2 

where xx represents years of schooling and xz is age. Thus for the zth man in 
our data, who has had xa years of schooling and whose age is xi2, equation 
(4) could be 

ffi = a + bjXa + b2xi2 + ei · 

A change in notation is now made: in place of a write b0 , and then for b0 

write bQxi0 with all values of xi0 being unity. This gives 

y% = boxio + hxa + b2xi2 + e{, 

for / = 1, 2, . . . , N, with x.Q = 1 for all /. 
Now define the following matrix and vectors: 

(16) 

* � 0 

� 21 

VN2 UN. *N. 

and b = 

Then the complete set of equations represented by (16) is 

y = Xb + e, with E(y) = Xb. (17) 

Extension to more than just 2 ^-variables (or 3, including x0) is clear. For k 
variables 

X = 

L^iVO LNkJ 

b = 

'bö 

(18) 

and y and e defined as above are unchanged. Equation (17) is unchanged also, 
and it represents the model no matter how many x-variables there are, k, 
so long as they are fewer in number than the number of observations N, 
i.e., k < N. This is the model we now study, dealing with some of its many 
variations in this and subsequent chapters. (When k > N, values of the b{ can 
be derived so that y = Xb exactly, and there is no estimation problem.) 
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Complete specification of the model demands that distributional properties 
of the vector e be defined. For the moment all that is needed are its expected 
value and variance. These, in accord with (5), (6) and (7) are taken as 

and 
£(e) = 0 

var(e) = E[e - £(e)][e - E(e)]� = £(ee') = � %� . (19) 

An exact form of the distribution of the elements of e will be specified later, 
when hypothesis testing and confidence intervals are considered. 

Derivation of the least squares estimator of b follows the same procedure as 
that used in establishing (11), namely minimization of the sum of squares of 
the observations from their expected values. Similar to (8) this sum of squares, 
with E(e) = 0 of (19) and hence E(y) = Xb, is 

e'e = [y - £(y)]'[y - E(y)] = (y - Xb)'(y - Xb) 
= y'y - 2b'X'y + b'X'Xb. 

Choosing as the estimator b that value of b which minimizes e'e involves 
differentiating e'e with respect to the elements of b [Searle (1966), Sec. 8.5, 
for example]. Equating 3(e'e)/3b to zero and writing the resulting equations in 
terms of b, we find that these equations are 

X'Xb = X' (20) 

They are known as the normal equations. Provided (X'X)-1 exists they have 
the unique solution for f>, 

h = (X'X^X'y. (21) 

Here is where the description "full rank model" applies. When X'X is of 
full rank the solution of (20) for b can be written as in (21). On the other hand, 
if (X'X)-1 does not exist, a solution to (20) may be written in terms of a 
generalized inverse of X'X. This is the case of models not of full rank, which 
are taken up in Chapter 5. 

By the nature of X shown in (18) X'X is square of order k + 1, with 
elements that are sums of squares and products, summed over / for / = 
1 , 2 , . . . , TV: 

JL Xi0 Z, XiOXil � � * 2* XiOXik 

XX = 

2 , xioxn Z,[ 

Z* XiOXik 2* XilXik 

� � � �  

(22) 
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and x'y = 

Σ xiuVi 

(23) 

Thus X'X is the matrix of sum of squares and products of the observed 
x�s and X'y is the vector of sums of products of the observed x*s and yys. 
Furthermore, since xi0 = 1 for all / = 1,2, . . . , N, and because all summations 
are over / = 1, 2 , . . . , TV, � � £ = N, � � �0� �  — � �  and � � ^ = y, . Hence 

XX = 

N 
� �1 2i XH 2, XilXi2 � 2* XilXik 

X-2 2, XilXi2 Z,Xi2 � � � 2* XiZXik 

X-k 2, XilXik 2* � �  il^ik 

(24) 

f. Example (continued). Suppose in the previous example the ages of the 
men supplying the data had also been available, as follows. 

(Man) 

2 
3 
4 
5 

7V = 5 y. 

y. 

Iti 

(Income, 
$1000) 

y% 
10 
20 
17 
12 
11 

= 70 

= 14 

= 1054 1 

� �  

� .i 

x% 

(Years of 
Schooling) 

Xi\ 

6~ 
12 
10 
8 
9 

= 45 

= 9 

= 425 1 

X.2 

X.2 

XA 

(Age) 
xi% 

28 
40 
32 
36 
34 

= 170 

= 34 

= 5860 2* XilXiZ = 1562 

2 xilVi = 6 6 5 Σ Xi&i 2430 
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Putting these values into (22) gives 
[3.1] 

X = 

� �  6 

1 12 

1 10 

1 8 

1 9 

28~ 

40 

32 

36 1 

34 

XX = 

5 
45 

170 

45 
425 

1562 

170 
1562 
5860 

(25) 

and (X'X)-1 = 
2880 

And with, from (23), 

50656 

1840 

-1960 

1840 

400 

- 1 6 0 

-1960 

- 1 6 0 

100. 

(26) 

x'y = 

equation (21) gives 

b = (x�xy^x�y 

Γ Ivi 
Σ xaVi 

_Σ xt2Vi. 

= 

70Ί 

665 
_2430j 

(27) 

2880 

24 

50656 

1840 

-1960 

56l 

50 

-5. 

1840 
400 

-160 

-I960] 
-160 

lOOJ 

�  70" 

665 
[_2430j 

(28) 

Thus from these data the estimated form of the relationship between y and 
x1 and x2 is 

E(S) = 56/24 + (50/24)*! - (5/24)z2. 

g. Intercept and no-intercept models 
When all x's are zero in the above models, E(y) = b0 with estimator B0 . 

Thus for x�  — 0 = x2 in the preceding example the estimated value of E(y) 
is £0 = 56/24. Models of this nature are called intercept models�, the intercept 
is b0 , the value of E(y) when all x�s are zero. 

Sometimes it is appropriate to have no term b0 in the model, in which case 
the model is called a no-intercept model. The matrix X then has no vector of 
l's in it, as does X of (25) for example, and X'X is then the matrix of sums 
of squares and products of the observations, without the first row and column 
of totals seen in (24). 
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Example (continued). 
For the no-intercept model 

X X 
' 425 1562" 

1562 5860 

for which solution to (20) is 

b = = (X�X^X�y = 

and X 

1 
50656 

1 
12664 

5860 

.-1562 

" 25310" 

.-1495. 

�y = 
" 665" 

2430 

-1562] 

425J 

� 665 

L2430 

(29) 

The no-intercept model thus leads to E{y) being estimated from these data as 

E(y) = (25310/12664K - (1495/12664>2 = 1.195^ - 0.1182x2. 

2 . DEVIATIONS FROM MEANS 

The matrix X'X and vector X'y shown in (22) and (23) have as elements the 
sums of squares and products of the observations. But it is well known that 
the regression coefficients by,. . . , bk can be estimated using a matrix and 
vector that are just like X'X and X'y only involving sums of squares and prod-
ucts corrected for their means. Indeed, this is the customary manner in which 
estimates are calculated. We now establish this formulation. To do so, some 
additional notation is needed. 

Putting xi0 = 1 in (18) for all / makes the first column of X all l's. There-
fore, in defining 

l,v = and Xi = 

0C-% i %-t vlk 

XN1 XN2 � Nk 

(30) 

X can be written as 
X = [ l XJ, (31) 
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where the order of 1 is JV; and, as in (30), Xx is the N x k matrix of the ob-
served #'s. In addition, define 

as the vector of means of the observed ar's. These definitions imply 

Ik'iiv = JV» l'y = Ny and 1 % = Nx�, 
where for convenience we write y in place of y. for the mean. 

The solution b can now be expressed as 

b = (X'X)-iX'y 

(32) 

(33) 

T 

K 
[i x j 

1 

xij 
�N Nx�� 

Nx x ;x j . 

� Ny-
from (33). 

Using the procedure for inverting a partitioned symmetric matrix given in 
equation (48) of Sec. 1.7, this becomes 

b = 
where 

Then, on partitioning 

Ί/Ν + x'S-Jx -x'S"1" 
-s-1* s-1 

S = XiXi - � � � �. 

Ny 

xiy. 
(34) 

(35) 

b = 

(34) can be written as 

1/JV 0 
I o o + 

�  X' 

I s-x[-x i] 
Ny 

xiy. 

so that 

~y - x�SrWiy - Nyx) \ 

. S-x(Xiy - Nyx) 

i = s-HXiy - Nyx) (36) 
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and b0 = y — x!i. 

Now consider S given in (35). First, 

2* Xi\ 2« XilXi2 

85 

(37) 

X(Xi 

� � � �  

2, XilXik 2, Xi2Xik 

2, XilXik 

2* Xi2xik 

� 4 

(38) 

the matrix of sums of squares and products of the k observed ^-variables. 
Second, by the nature of x in (32), the matrix Nxx� is 

Thus 

Defining 

Nxx� = {Nx.px.Q} for p, q = 1, 2, . . . , k. 

s = Σ xivxia - NX�PX�Q\ f o r p, g = 1, 2, . . . , k. 

(39) 

as the matrix of observed x�s expressed as deviations from their means, it is 
then easily shown that S as just derived is 

— *A> *JL> , (40) 

i.e., S in (36) is the matrix of corrected sums of squares and products of the 
#'s. Similarly, the other term in (36) is 

Xiy - Nyx = 12 typt/t - Nx.py\ for p = 1, 2 , . . . , fc, 

= ar�y, 
the vector of corrected sums of products of the *'s and «/'s. Hence just as 
b = (X'X^X'y in (21) we can now write, from (36), 

S = (ß�vcywi. (41) 

This is the inverted matrix of corrected sums of squares and products of the 
x�s pre-multiplying the vector of corrected sums of products of the x�s and 
2/'s. Then, as in (37), b0 is given by 

£« = y — £�x. (42) 

These results, (41) and (42), are the familiar expressions for calculating 
regression estimators using corrected sums of squares and products. 
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Example {continued) From the data given earlier, 

X = 

[3.3] 

- 3 

3 

1 

- 1 

0 

- 6 ' 

6 

- 2 

2 

0 

(43) 

and 

with 

and 

«�« 
' 425 - 5(92) 1562 - 5(9)34" 

1562-5(9)34 5860 - 5(34)2 

'20 32" 

32 80 

(SC�SC)-1 == 
144 

20 

5j 

�y = 
665 - 5(14)9 

L2430 - 5(14)34. 

Therefore, on substituting in (41), 

35 

.50. 

(44) 

(45) 

144 

as in (28). And from (42) 

K = 14 �  

20 - f 35 

5J L.50J 

[50/24 -5/24] 

50/24 

L-5/24J 

9" 

34 
= 56/24 

as in (28). 
Derivation of $�  in this manner does not apply for the no-intercept model 

which contains no &0-term. For then the partitioning of b' as [b0 S�] does not 
exist, b' is itself the vector of the Z>'s corresponding to the k ^-variables and 
f> = (X/X)~1X/y is based on uncorrected sums of squares and products as 
exemplified in (24). 

3 . FOUR METHODS OF ESTIMATION 

In deriving the estimator h = (X'X)~1X/y in the previous section we blithely 
adopted the least squares procedure for doing so. This is a well-accepted 
method of estimation and its rationale will not be discussed here. However, 
for convenient reference we summarize four common methods of estimation 
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which, although differing in basic concept, all lead to the same estimator 
under certain frequently-used assumptions. All four procedures are sum-
marized in terms of the full rank model where, in y = Xb + e, X has full 
column rank, E(y) = Xb and E(e) = 0. Reference to their use in models not 
of full rank is made in Chapter 5. 

a. Ordinary least squares 
This involves choosing f> as the value of b which minimizes the sum of 

squares of deviations of the observations from their expected values; i.e., 
N 

choose h as that b which minimizes 2 {V% — E(yd]2 — (y — Xb)�(y ~ Xb). 
*=i 

The resulting estimator is, as we have seen, 
6 = (X�X)-iX�y. 

b. Generalized least squares 
On assuming that the variance-covariance matrix of e is var(e) = V, this 

method involves minimizing (y — Xb)'V~1(y — Xb) with respect to b. This 
leads to 

b = (x�v-^xy-ix�v-y 
Clearly, when V = � % the generalized and the ordinary least squares esti-
mators are the same: b = f>. 

c. Maximum likelihood 
With least squares estimation no assumption is made about the form of the 

distribution of the random error terms in the model, the terms represented by 
e. With maximum likelihood estimation some assumption is made about this 
distribution (often that it is normal) and the likelihood of the sample of 
observations represented by the data is then maximized. On assuming that the 
e's are normally distributed with zero mean and variance-co variance matrix 
V, i.e., e ~ 7V(0, V), the likelihood is 

L = (2� )~*�  \\\~h exp {-Ky - Xbyv-^y - Xb)}. 

Maximizing this with respect to b is equivalent to solving 9(loge L)/3b = 0. 
The solution is the maximum likelihood estimator of b and turns out to be 

b = (� � � -� ^� � � -�  
the same as the generalized least squares estimator. As before, when V = 
a% b simplifies to h. Only then, in thinking of b as the maximum likelihood 
estimator, we do so on the basis of assuming e ~ N(0, σ2Ι). 

Two well-known points are worth emphasizing about these estimators. 
First, least squares estimation does not pre-suppose any distributional prop-
erties of the e's other than finite (in our case zero) means and finite variances. 
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Second, maximum likelihood estimation under normality assumptions leads 
to the same estimator, b, as generalized least squares; and this reduces to the 
ordinary least squares estimator h when V = � 2� . 

d. The best linear unbiased estimator (b.l.u.e.) 
For any row vector t' conformable with b the scalar t�b is a linear function 

of the elements of the parameter vector b. A fourth estimation procedure 
derives a best, linear, unbiased estimator (b.l.u.e.) of t'b. 

The three characteristics of the estimator inherent in its definition lead to 
its derivation. 

(/) linearity: it is to be a linear function of the observations y. Let the 
estimator be X'y, where λ ' is a row vector of order N. Then �  is uniquely 
determined by the other two characteristics of the definition, as shall be 
shown. 

(//) unbiasedness: X'y is to be an unbiased estimator of t'b. Therefore 
E(k�y) must equal t'b; i.e., X�Xb = t'b. Since this is to be true for all b, 

λ'Χ = t'. (46) 

(///) a "best" estimator: "best" means that in the class of linear, unbiased 
estimators of t'b, the "best" is to be the one that has minimum variance. This 
is the criterion for deriving λ'. 

Suppose var(y) = V. Then v(Xy) = � � � , and for X'y to be "best" this 
variance must be a minimum; i.e., λ is chosen to minimize X�VX subject to 
the limitation that λ'Χ = t' derived in (46). Using 2�  as a vector of Lagrange 
multipliers we therefore minimize 

w = � � �  - 2� �(� ��  - t) 

with respect to the elements of λ ' and θ'. Clearly dw/dQ = 0 gives (46), and 
dwjd\ gives 

VX = ΧΘ or λ = � ^ � �  

since V"1 exists. Substitution in (46) gives t� = � ��  = � �� � ^�  and so 
� � = tXX'V^X)"1 and hence 

λ ' = � �� � -1 = t ' iX'V-iX^X'V-1. (47) 

Hence the b.l.u.e. of t'b is t ' iX 'V^X^X'V^y, and its variance is 

Kb.l.u.e. of t'b) = v(Xy) = � � �  = ί ' ίΧ 'ν^Χ)"1^ (48) 

on substituting for �  from (47). These results are quite general: from among 
all estimators of t�b that are both linear and unbiased the one having the 
smallest variance is t^X�V^X^X�V^y; and the value of this smallest vari-
ance is t'tX'V^X)-1!. 
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Since (47) is the sole solution to the problem of minimizing λΎλ subject to 
(46), the b.l.u.e. X'y of t'b is the unique estimator of t'b having the properties 
of linearity, unbiasedness and "bestness"—minimum variance of all linear 
unbiased estimators. Thus the b.l.u.e. of t'b is unique, X'y for λ ' given in (47). 
Furthermore, this result is true for any vector t \ Thus for some other vector, p' 
say, the b.l.u.e. of p'b is p ' iX 'V^X^X'V^y, and its variance is p ' iX'V^X)-^; 
and its covariance with the b.l.u.e. of t'b is ^(Xy^XyH, as may be readily 
shown. 

Suppose that t' takes the value u^, the /th row of lk . Then u^b is bt, the ith 
element of b, and the b.l.u.e. of b{ is uXX'V^X^X'V^y, the ith element of 
(X 'V^X^X'V^y ; and its variance is ^ (X 'V^X)- 1 ^ , the ith diagonal term 
of (Χ 'ν_1Χ)-1. Thus by letting t' be, in turn, each row of lk , the 

b.l.u.e. of b is b = (X 'V^X^X'V^y, 
with var(b) = (X'V^X)-1. (49) 

This expression for b is identical to that given earlier; i.e., the generalized 
least squares estimator, the maximum likelihood estimator under normality 
assumptions and the b.l.u.e. are all the same, b. 

It was shown above that h = (X'X^X'y is the b.l.u.e. of b when V = la2. 
More generally, McElroy (1967) has shown that h is the b.l.u.e. of b whenever 
V = [(1 - p)I + ll�p]a2 for 0 < p < 1. This form of V demands equality 
of variances of the e/s, and equality of all covariances between them, with the 
correlation between any two e/s being p; clearly p = 0 is the case V = Itf2. 

4 . CONSEQUENCES OF ESTIMATION 

Properties of h = (X'X)_1X'y and consequences thereof are now dis-
cussed. The topics dealt with in this section are based solely on the two 
properties so far attributed to e, that E(e) = 0 and var(e) = cr2I. In the next 
section we consider distributional properties, based upon the further 
assumption of normality of the e's; but this assumption is not made here. 
The general case of var(e) = V is left largely to the reader (see Sec. 5.8). 

a. Unbiasedness 
Since h is the b.l.u.e. of b for V = a% it is unbiased. This can also be 

shown directly: 
E(h) = ^ (X 'X^X'y = (X'X)~1X'Xb = b. (50) 

Thus the expected value of b is b and so f> is unbiased, implying, of course, 
that in h� = [b0 £�] the estimator S is also unbiased. 
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b. Variances 
With b = (X�X)_1X�y it is clear that the variance-covariance matrix of b is 

var(b) = E[h - E(h)][h - E(h)]� 

= E(X�XyiX�[y - E(y)][y� - E(y�)]X(X�X)-i 

= (X'X)-1X'£'(ee')X(X'X)-1 

= (X'X)-V2. (51) 

The inverse matrix used for obtaining h therefore also determines the vari-
ances and covariances of the elements of b. 

A similar result holds for / : using the partitioned form of (X'X)-1 shown 
in (34), with S = T3C, result (51) becomes 

var -Wary-1* (ar�ary1 

var(/) = (srary-w, Hence 

analogous to (51); and 

V0O) = a2jN + x' var(^)x = [1/JV + f'(Α·'3Γ)-ΐχ]ο· 

and cov(50 ,4�) = — x' var(#). 

(52) 

(53) 

(54) 

c. Estimating E(y) 
The estimator h can be used for estimating E(y). Analogous to the model 

we have 

E{y) = b0 + bxxx + · · · + bkxk 

E(y) = K + b&i + · ■ · + bkxk, 

as illustrated at the end of each of the examples in Sec. 1. If 

� 0 = [xQQ � 01 � 02 - � � x0k\ (55) 

is a set of ^-values (with x00 = 1) for which we wish to estimate the corre-
sponding value of E(y), that estimator is 

E(y0) = b0 + B1x01 + · · · + hkx0k = x�0h. (56) 
We call this the estimated expected value of y corresponding to the set of 
^-values x00, x01,. . . , x0k . When this set of x�s is one of those in the data, 
x�0 is a row of X in (18), in which case (56) is an element of Xh. Corresponding 
to E(y) = Xb of (17) we therefore have, as N special cases of (56), 

E(y) = Xh. (57) 
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These are the estimated expected values of y corresponding to the N ob-
served values of y in the data. They are sometimes called fitted y-values, 
or estimated y-values, names which can be misleading because (56) and 
(57) are both estimates of expected values of y. They correspond, in (56), 
to any set of predetermined x's in x^ of (55), and in (57) to the observed z's 
inX. 

Variances of the estimators (56) and (57) are readily obtained using var(6) 
of (51). Thus 

v[E(y0)] = x ^ X ' X r V (58) 
and 

var[£(y)] = ΧίΧ 'Χ^Χ 'σ2. (59) 
On substituting X = [1 Xx] from (31) and using ST of (39), this reduces to 

var[£(y)] = (a2lN)W + 3C � � (� )2�  

= (a2/N)W + SCiSe�SCyWa*. (60) 

Corresponding to χ^ , the expected y-value is E(y0), estimated by E(y0) of 
(56). In contrast, consider a future observation, yf say, corresponding to some 
vector of x-values, xf say. Then, by the model, yf = x�fb + ef where ef is a 
random error term which can be neither observed nor estimated. Hence the 
best available prediction of yf, which we shall call yf, is yf = x�fh. Thus 
x�fh can be used both as a prediction of a future observation corresponding to 
x^ as well as for its more customary use, that of an estimator of the expected 
value E(yf) corresponding to x�f. The first of these uses prompts inquiring 
how some future observation yf varies about its prediction, yf = x�fh. To do 
this we consider the deviation of any yf from yf: 

yf-yf = yf- x�fh = x;(b -h) + ef. 

The variance of this deviation is derived by noting that, because yf is thought 
of as an observation obtained independently of those used in deriving h, 
we have h and ef being independent and so cov(fe, ef) = 0. Hence 

v(yf - yt) = x>(6 - b)X/ + v(ef) = [x�f(X�XT% + l ]^2 . (61) 

Thus the estimated expected value of y corresponding to xf is E(yf) = 
x�fh9 as in (56), with variance χχχ ,Χ)-1χ /σ2 similar to (58); and the predicted 
value of an observation corresponding to xf is the same value, x�fh = yf, 
with the variance of deviations of y-values (corresponding to xf) from this 
prediction being [χ^Χ 'Χ)-^, + 1]σ2 of (61). These results are true for any 
value of xf. The variance of yf itself is, of course, � 2 at all times. 
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d. Residual error sum of squares ^ \ 
It is convenient to use the symbol y for E(y), the vector of estimated 

expected values of y corresponding to the vector of observations y; i.e., 

y = E(y) = Xb. (62) 

The vector of deviations of the observed y/s from their corresponding 
predicted values is therefore 

y - y = y - X b = y - Χ (χ 'χ ) - ι χ> = [I - X(X'X)-ix']y. (63) 

Note that the matrix involved here is idempotent, a fact that gets used 
repeatedly in the sequel: indeed, 

I — X(X'X)_1X' is symmetric and idempotent (64) 
and [I - XtX'X^X'JX = 0. (65) 

The sum of squares of the deviations of the observed y/s from their 
estimated expected values is usually known as the residual, or error sum of 
squares, for which the symbol SSE will be used. Thus 

SSE = f (9i - y(r = (y - y)'(y - y). (66) 

This will be referred to as the residual error sum of squares, combining the 
traditional name "error" with "residual", which is, perhaps, more appropri-
ately descriptive in view of the definition of et given in (3). 

Computing procedures for SSE are derived from substituting (63) into 
(66) and using (64) and (65). This gives 

SSE = y'[I - X(X'X)-iX']y (67) 
= y'y - y'X(X'X)"iX'y 

= y'y - b'X'y (68) 

because b' = y'X(X'X)-1. This is a convenient form for computing SSE; 
y'y in (68) is the total sum of squares of the observations, and b'X'y is the 
sum of products of the elements of the solution b with their corresponding 
elements of the right-hand side, X'y, of the equations from which f> is derived, 
namely X'Xb = X'y. Note, however, that in so describing (68) these right-
hand side elements must be exactly as they are in the normal equations. Thus 
if, when solving X'XD = X'y, some or all of the equations are amended by 
factorizing out some common factors, then it is not the right-hand sides of 
the equations so amended that are used in o'X'y of (68) but the X'y of the 
original normal equations. 
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An expression for SSE involving & and 9C�y can also be established. For 
(68) is equivalent to 

SSE = y'y - [y - S�x S�]\ 
LxiyJ 

= y'y - Ntf - S�(X[y - Nyx) (69) 

= ¥�¥ - 1�%�y, (70) 

where y y denotes the corrected sum of squares of the y9s. The form of (70) is 
clearly analogous to that of (68) and it is equally, if not more, useful for 
computing purposes: yt� y is the corrected sum of squares of the y�s, and 
S-�SF�y is the sum of products of elements of the solution with the corre-
sponding elements of the right-hand side, 5T'y, of the equations from which 
/ i s derived, namely %�Xl = SC�y. Note that £T'y = SC�y because SC�y = 
3£\y - y\) and, by (33) and (39), 3ΓΊ = 0. 

e. Estimating the residual error variance 
In (67) SSE is written as a quadratic form in y: 

SSE = y'[I - XtX'X^X'Jy. 

Therefore, with y being distributed (Xb, Ισ2) the expected value of SSE is, 
from Theorem 1 of Sec. 2.5, 

£[SSE] = tr[I - XiX'X^X'JIcr2 + b'X'[I - ΧίΧ 'Χ^Χ 'Ρ» 
= r[I - XiX'X^X'Ja2 

= [N - r(X)]a\ 

on utilizing (64) and (65) and the fact that the trace of an idempotent matrix 
equals its rank. Hence an unbiased estimator of a2 is 

„2 SSE SSE � 7�\ 

N - r(X) N - r 

using r for r(X), the rank of X. Even though, in this full model regression 
situation we know that 

r = r(X) = k + 1, 

the use of r will be retained, to emphasize that it is the rank of X and not just 
the number of #-variables plus one. It also makes for easier transition to the 
non-full rank case, where it is essential to use r(X). 

f. Partitioning the total sum of squares 
The total sum of squares, which we shall call SST, is 

S S T = y ' y = 2 > ; · 
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And the sum of squares of deviations of the observed y/s from their pre-
dicted values is 

SSE = y'y - fc'X'y = y'y - Ny2 - I�X�y 

as in (68) and (69). The difference 

SSR = SST - SSE = fc'X'y = fc'X'Xfc = Ny2 + S�X�y 

represents that portion of SST attributable to having fitted the regression, 
and so is called the sum of squares due to regression, SSR. It is also often called 
the reduction in sum of squares. This partitioning of SST can be summarized 
in a manner that serves as a foundation for developing the traditional analysis 
of variance table: 

SSR = fc'X'y (=&'X'Xfc) = Ny2 + l�X�y 
(72) 

SSE = y'y - fe'X'y = y'y - Ny2 - t�X�y 

SST = y'y = y'y 

Now suppose the model had had no ^-variables in it but had simply been 
y. = b0xi0 + ^ , i.e., 2/4 = b0 + et·. Then 50 would bey and SSR would become 
Ny2. This we recognize as the usual correction for the mean, which shall be 
written 

SSM = Ny2. 
Then in (72) we see that 

SSR = SSM + I�X�y 
and so we can call 

SSRm = SSR - SSM = t�X�y = i�X�Xt 

the regression sum of squares corrected for the mean. In this way (72) be-
comes 

SSM = Ny2 

SSRm = I�X�y = I�X�Xi (73) 
SSE = y�y-Ny2-SfX�y 

SST = y ' y 

Similar to SSRW we also have 

SSTm = SST - SSM = y'y - Ny2 = j ^ > (74) 
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as the corrected sum of squares of the y�s. With it, SSRTO and SSE of (73) 
can be summarized as 

SSRW = I�X�y = S�SC�y 
SSE = y ' y - I�X�y = y'y - Ny2 - t�X�y (75) 

SSTW = y ' y = y'y - Ny* 

This format is identical to that of (72); in the one case, (72), uncorrected 
sums of squares are used with total SST, and in the other, (75), corrected 
sums of squares are used with total SSTW . The error terms are the same in the 
two cases, however, namely SSE. 

The summary shown in (75) is the basis of the traditional analysis of vari-
ance table for fitting linear regression. Distributional properties of these 
sums of squares are considered in Sec. 5. 

g. Multiple correlation 
A measure of the goodness of fit of the regression is the multiple correla-

tion coefficient, estimated as the product moment correlation between the 
observed yfs and the predicted y/s. Denoted by R, it can be calculated as 

R2 = SSR/SST in the no-intercept model 
and as R2 = SSRw/SSTm in the intercept model. 

This we now show. 
In the no-intercept model the mean y is ignored, and the product moment 

correlation between the y/s and y/s is defined by 

R2 = (Σ ViVif = (y'y)2
 ( 7 7 ) 

(lit� &fi) yWy)' 
With y = Xb = XCX'X^X'y it can be shown (see Exercise 18) that (77) 
reduces to R2 = SSR/SST as in (76). 

In the intercept model the definition of R2 is 

2 = [�  (Vi - y&tii - ^)]2
 ί78Λ 

In simplifying this expression we use 

y = l'y/ΛΤ and l�XQCX)-1* = 1� (79) 

the latter arising from X'XiX'X)-^ ' = X' because the first row of X� is 1'. 
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These results, together with (74), lead (see Exercise 18) to (78) reducing to 
R2 = SSRySSTm(SSRJ = SSRJSSTm as in (76). 

Intuitively the ratio SSR/SST (or S S R J S S T J has appeal, since it repre-
sents that fraction of the total sum of squares which is accounted for by 
fitting the model—in this case fitting the regression. Thus, although R has 
traditionally been thought of and used as a multiple correlation coefficient 
in some sense, its more frequent use nowadays is in the form of R2, where it 
represents the fraction of the total sum of squares accounted for by fitting 
the model. 

Care must be taken in using these formulae for R2 for, although SSRm 

and SSTW in the intercept model have been defined as SSR — Ny2 and 
SST — Ny2, the value of SSR used in the intercept model is not the same 
as its value in the corresponding no-intercept model. This is brought out in 
the example. 

h. Example (continued) 
In (28) we found 

b = 
24 

and so the vector E(y) = y is 

56 

50 

- 5 . 

E(y) = y = Xb = 1 

1 

1 

1 

1 

1 

6 28~] 

12 40 

10 32 

8 36 

9 34_| 

� 56" 

50 

L-5. 
_ J_ 
~24 

~216~ 

456 

396 

276 

_336_ 

= 

~ 9 �  
19 

16* 

111 

_14 _ 

Hence from (59), using (X�X)-1 of (26), 

var[£(y)] = � � � � � ^� �� 2 

1 

1 

1 

1 

1 

6 28 

12 40 

10 32 

8 36 

9 34_ 

�2 

2880 

50656 

1840 

.-I960 

1840 

400 

-160 

-I960] 

-160 

looj 

� 1 1 1 1 � 

6 12 10 8 9 

L28 40 32 36 34J 
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Also, from (60), using 9C of (43) and {SC�ST)�1 of (44), 

var[£(y)] = Ιΐΐ 'σ2 + 3C{3C�dCy^ &�� 2 

- 3 - 6 

3 6 

1 - 2 

- 1 2 

. 0 0J 

97 

144 
20 - 8 - 3 

- 6 

1 
- 2 

- 1 
2 

0 

0J 

and on carrying out the arithmetic it will be found that both forms reduce to 

var[£(y)] 

" .7 

- . 3 

.2 

.2 

.2 

- . 3 

.7 

.2 

.2 

.2 

.2 

.2 

.7 

- . 3 

.2 

.2 

.2 

- . 3 

.7 

.2 
An estimate of this is obtained by replacing σ2 by σ2, derived below. 

From y and y we get 

(y - y) = 

and hence, from its definition, 
SSE = l« + l« + Q)« + (I)« + 32 = H i 

The alternative form for SSE, given in (68), is 

SSE = y'y - B'X'y 

~10~ 

20 

17 

12 

11 

— 

~ 9 ~ 

19 

161 

� * 

14 

= 

~ 1~ 

1 

* 
1 
2 

- 3 
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and with y'y = Σ y2 = 1,054 in the basic data, h� from (28) and X'y from 
(27), this gives 

70�  

SSE = 1,054 - (l/24)[56 50 - 5 ] 665 

2,430 

= 1,054 - l ,042i = l l | a s before. 

Likewise, using the form given in (70), 

SSE = 1,054 - 5(142) - (l/24)[50 - 5 ] 
"35" 

50 

Hence in (71) 
= 1,054 - 980 - 62£ = 11£ again. 

� 2 = 111/(5 - 3) = 5.75 . 

From the calculations for SSE the summaries in (72), (73) and (75) are as 
shown in Table 3.1. From the last of these R2 is S S R J S S T m = 62| /74 = .84, 

TABLE 3 . 1 . PARTITIONING OF SUM OF SQUARES: 
INTERCEPT MODEL 

Eqs. (72) 

SSR = 1,0424 
SSE = 114 

SST = 1,054 

Eqs. (73) 

SSM = 980 
SSRm = 624 
SSE = 114 

SST = 1,054 

Eqs. (75) 

SSRm = 624 
SSE = 1Π 

SSTm =74 

since the model being used is the intercept model. Were a no-intercept 
model to be used on these data the formal expression for R2 would be 
SSR/SST, although not with the SSR shown above, for that is the value of SSR 
with the intercept model. Thus for the no-intercept model for these data the 
normal equations for h and X'y are given in (29) and so 

SSR = fc'X'y = (1/12,664)[25,310 -1,495] 
" 665" 

2,430 
1,038.24, 

different from the value of SSR for the intercept model given under (72) in 
Table 3.1. The corresponding value of R2 is 1,038.24/1,054 = .98. 
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5 . DISTRIBUTIONAL PROPERTIES 

The normality assumption is now introduced. We assume that e is nor-
mally distributed: 

e ~ N(0, <r2I). 
Distributional properties of y and functions of y follow at once. In particular, 
the distributions of fe, of a2 and of various sums of squares are derived, using 
the results in Chapter 2. 

a. y is normal 
From y = Xb + e we have y — Xb = e and therefore 

y~N(Xb,anN). 
b. h is normal 

D is a linear function of y. Therefore (see Exercise 11 of Chapter 2), it is 
normally distributed: 

b = (X�X^X�y — N[b, (X'X)-1^]. 
Its mean and variance are as already derived in (50) and (51). The same reason-
ing shows that / i s also normally distributed, with mean and variance given in 
(50) and (52): 

l = (X�aTrWy ~ N[69 (9C�9Cyxa2\ 

c. b and a2 are independent 
We have 

b = (X'X^X'y 
and SSE = y'[I - XtX'X^X'Jy. 

But, by (65) 
(X'X^X'fl - XiX'X)-«'] = 0 

and, so by Theorem 3 of Sec. 2.5b, the statistics b and a2 are distributed 
independently. 

d. SSE/σ2 has a x2-distribution 
From (67), SSE is a quadratic in y: 

SSE = y'[I - X(X�X)-iX�]y = y'Py say, 
defining P a s P = I - Χ(Χ'Χ)-ιχ'. (80) 

Now SSE/cr2 = y'(l/<72)Py, and by (64) P is idempotent; and var(y) = 
<r2I. Therefore (l/a2)Ptf2I is idempotent and so, from Theorem 2 of Chapter 2, 

SSE/σ2 ~ %
2�{r[l - � � � � � ^� �], b�X�[I - Xpt�X^X�lXbßa2} 
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which, because of (64) and (65), reduces to 

SSE/σ2 ~ X
2
N_r, where r = r(X). 

Hence 

(JV-r)<rV~;ß_r. 
€. Non-central x2 's 

Having shown that SSE/σ*2 has a central ^-distribution, we now show that 
SSR, SSM and SSRm , the other terms in the partitioning of the total sum of 
squares in (72), (73) and (75), have non-central ^-distributions. Furthermore, 
these terms are independent of SSE. Thus we are led to F-statistics that have 
non-central F-distributions. And these in turn are central F-distributions 
under certain null hypotheses, and so tests of these hypotheses are estab-
lished. 

From (72) we have 
SSR = b'X'y = y'XiX'X^X'y. 

The matrix X(X'X)-1X' involved here is idempotent and its products with 
I - XtX'X)-^ ' are null. Therefore, by Theorem 4 of Chapter 2, SSR is 
independent of SSE and by Theorem 2 of the same chapter 

SSR/σ2 ~ ^2,{r[X(X,X)-1X/], b,X,X(X,X)"1X,Xb/2a2}, 
i.e., SSR/σ2 ~ f\r, b'X'Xb/2tf2). 

Similarly, in (73) 
SSM = Ny2 = y�N-ni�y 

where 7V_1H' is idempotent and its products with I — X(X'X)_1X' are null. 
Therefore SSM is distributed independently of SSE and 

SSM/(72 — x*[r(N-1U�)9 b'X'iV-iii'Xb/2a2], 
i.e., SSM/σ2 ~ � � [\9 (l'Xb)2/2Mx2]. 

Also, in (75) 
SSRTO = t�X�y = i�X�Xl 

Hence, because 6~N[£9 (X�XyW] 

S S R > 2 - � «[� (� �� )9 ��� �� � � *], 

i.e., SSRJo» - %2�[r - 1, ��� �� � � *]. 

Furthermore, SSRm can be expressed as y'Qy where not only is Q idempotent 
but its products with I — ΧίΧ 'Χ^Χ ' and N^ll� are null. Hence, by Theorem 
4 of Chapter 2, SSRm is independent of both SSE and SSM. 

Finally, of course, 
y'y/tf2 - Z a m b'X'Xb/2a2). 
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SSE/(iV -

SSM/1 
SSE/(N -

SSRm/(r -

r) 

r) 

- i ) 

f. F-distributions 
Applying the definition of the non-central ^-distribution to the foregoing 

results it is clear that the .F-statistic 

F(R) = ccna ~ F'(r' N ~ r ' b'X'Xb^a2). (81) 
Similarly, 

F ( M ) = „ ! ! ? ~ F�W> N - r> (l'Xb)a/2AT(^] (82) 
and 

F(RJ = ^~miy� ~ x� ~ F�[r -1,N -r, t�X�Xtßf]. (83) 
SSE/(N-r) 

Under certain null hypotheses the non-centrality parameters in (81)—(83) 
are zero, and these non-central F's then become central F�s, so providing us 
with statistics for testing those hypotheses. This is discussed subsequently. 

g. Analyses of variance 
Calculation of the above jp-statistics can be summarized in analyses of 

variance tables. An outline of such tables is given in (72), (73) and (75). For 
example, (72) and the calculation of (81) are summarized in Table 3.2. 

TABLE 3 . 2 . ANALYSIS OF VARIANCE FOR FITTING REGRESSION 

Source of 
Variation d.f.1 Sum of Squares Mean Square F-statistic 

MSR 
Regression r SSR = b'X'y MSR = SSR/r F(R) 

Residual error N -r SSE = yry - b'Xry MSE = 
SSE M S E 

N - r 

Total N SST = y'y 

r = r(X) = k 4- 1 when there are k regression variables (x�s). 

This table summarizes not only the sums of squares—already summarized in 
(72)—but also the degrees of freedom (d.f.) of the associated ^-distributions. 
In the mean squares, which are sums of squares divided by degrees of freedom, 
it also shows calculation of the numerator and denominator of F. And then 
the calculation of F itself is shown. Thus the analysis of variance table is 
simply a convenient summary of the steps involved in calculating an i7-
statistic. 
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TABLE 3 . 3 . ANALYSIS OF VARIANCE, SHOWING A TERM FOR THE MEAN 

Source of 
Variation1 d.f.2 

Sum of 
Squares 

Mean 
Square F-statistics 

Mean 1 SSM = Ny2 

Regression r - 1 SSRm = t�X�y MSRW = 

N-r SSE = y � y - ^ 2 M S E = 
(c.f.m.) 

Residual 
error 

MSM = SSM/1 F(M) = 

SSR 

- fX�y 

r - 1 
SSE 

N -r 

F(RJ = 

MSM 
MSE 
MSRm 

MSE 

Total N SST «y� y 

1 c.f.m. = corrected for the mean. 
2 r = r(X) = k + 1 when there are k regression variables (#�s). 

In a manner similar to Table 3.2, (73) and the jp-ratios of (82) and (83) 
are summarized in Table 3.3. 

And the abbreviated form of this, based on (75) and showing only the 
calculation of (83), is as shown in Table 3.4. 

Tables 3.2, 3.3 and 3.4 all are summarizing the same thing. They show 
development of the customary form of this analysis, namely Table 3.4. 
Although it is the form customarily seen it is not necessarily the most in-
formative. Credit on that account goes to Table 3.3 which shows how SSR 
of Table 3.2 (the basic form) is partitioned into SSM and SSRW the regression 

TABLE 3.4. ANALYSIS OF VARIANCE (CORRECTED FOR THE MEAN) 

Source of Sum of 
Variation1 d.f.2 Squares 

Mean 
Square F-statistic 

Regression r - 1 SSRm = l�3C�y 
(c.f.m.) 

Residual N - r SSE = y�y - Ny2 

error 

MSR„ 

/,tfw MSE = 
-6 3fy N -r 

SSRm F(Rm) = 
r - 1 
SSE 

MSRn 

MSE 

Total N - 1 SSTTO = y�y - Nf 
(c.f.m.) 

1 c.f.m. = corrected for the mean. 
2 r = r(X) = k + 1 when there are k regression variables (z�s). 
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sum of squares corrected for the mean (c.f.m.). Following that, Table 3.4 is 
simply an abbreviated version of Table 3.3, with SSM removed from the body 
of the table and subtracted from SST to give SSTW = SST - SSM = 
y'y — Ni/2, the corrected sum of squares of the ^/-observations. Thus, 
although Table 3.4 does not show F(M) = MSM/MSE, it is identical to 
Table 3.3 insofar as F(Rm) = MSRm/MSE is concerned. 

h. Pure error 
Data sometimes have the characteristic that the sets of x�s corresponding to 

several i/'s are the same. For example, in the case of a laboratory experiment 
involving temperature, the ^-observations (temperature in degrees Centi-
grade) for 9 different ^/-observations might be 62, 78, 69, 62, 69, 58, 78, 75 
and 62; i.e., 3 ^-observations of 62, 2 of 69, 2 of 78 and 1 each of 58 and 75. 
These are called repeated x�s. Their presence provides a partitioning of SSE 
into two terms, one of which represents "lack of fit" of the model and the 
other represents "pure error". Description is given in terms of simple re-
gression (involving one ^-variable); extension to several re's is straightforward. 

Suppose xx, x2, . . · , %v are the p distinct values of the x�s, where xi occurs 
in the data wf times, i.e., with nt. ^/-values, yi3- for j = 1, 2, . . . , n�  and for 
/ = 1 ,2 , . . . , / ? . For all /, «,· > 1, and we will write 

n- = �  ni = N -
Then 

SSE = i |^.-fc 'X'y 

= Σ Ivh - Ny2. -Hi � *«� <* - Nx..gX 
with N — r degrees of freedom, can be partitioned into 

with N — p degrees of freedom � � � - ni(yif 
.3=1 

SSPE = 2 
i=l 

and 
SSLF = SSE - SSPE with p - r degrees of freedom. 

In this form SSPE/(7V — /?), known as the mean square due to pure error, 
is an estimator of a2. SSLF/(/? — r) is a mean square due to the lack of fit 
of the model. It provides a test of the lack of fit by comparing 

SSLF/(/7 - r) 
F{h¥) = SSPE/(7V - p) 

against Fv_2tN_p . Significance indicates inadequacy of the model. Lack of 
significance indicates, as Draper and Smith (1966) so aptly put it, "that there 
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appears to be no reason for doubting the adequacy of the model", in which 
case SSE/(iV — 2) provides a pooled estimator of a2. Full discussion of pure 
error and lack of fit are to be found in Draper and Smith (1966). 

i. Tests of hypotheses 
Immediately after (81)-(83) the comment was made that those results 

provide us with statistics for testing hypotheses. This we now illustrate, 
prior to consideration of the general linear hypothesis in Sec. 6. 

In Table 3.2 the statistic F(R) is, as shown in (81), distributed as a non-
central F with non-centrality parameter b�X�Xb/2(72. This is zero under the 
null hypothesis H\ b = 0, when F(R) then has a central jp-distribution, 
FTiN_r, and can be compared to tabulated values thereof to test that 
hypothesis. When 

F(R) > tabulated FTtN_r at the 100a % level, 

we reject the null hypothesis H: b = 0; otherwise we do not reject it. Apropos 
assuming the model E(y) = Xb we might then say, borrowing a phrase from 
Williams (1959), that when F(R) is significant there is "concordance of the 
data with this assumption" of the model; i.e., the model accounts for a signifi-
cant portion of the variation in the ^/-variable. But this does not mean that 
this model, for the particular set of x�s used, is necessarily the most suitable 
model: there may be a subset of those x's which are as significant as the 
whole, or there may be further x*s which, when used alone, or in combination 
with some or all of the #'s already used, are significantly better than those 
already used; or there may be non-linear functions of these x�s that are at 
least as suitable as the x�s as used. None of these contingencies is inconsistent 
with F(R) being significant and the ensuing conclusion that the data are in 
concordance with the model E(y) = Xb. 

The non-centrality parameter of the jp-statistic F(M) of Table 3.3 is, as in 
(82), (l'Xb)2/2Mx2. For the numerator of this expression, 

l�Xb = l�£(y) = E(l�y) = E(Ny) = NE{y). 

Hence the non-centrality parameter in (82) is N[E(y)]2/2G2, which is zero under 
the hypothesis H: E(y) = 0. The statistic F(M) is then distributed 
and so can be used to test H: E(y) = 0; i.e., F(M) can be used to test the 
hypothesis that the expected value of the mean of the observed y�s is zero. 
This is an interpretation for the phrase "testing the mean" sometimes used for 
describing the test based on F(M). Equivalently, ^JF(M) has the /-distribu-
tion with N — r degrees of freedom, because 

F(M) = Ny2/a2 = [£/(tf/VÄÖ]2 

is the square of a /-variable. 
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Another way of looking at the test provided by F(M) is based on the model 
E(Vi) = ô · The reduction in sum of squares for fitting this model is SSM, 
and the non-centrality parameter in (82) is then Nbyia2. Hence F(M) can be 
used to test whether the model E{y^) = b0 accounts for variation in the 
y-variable. 

In using a test based on F(R) we are testing the hypothesis that all 6/s, 
including b0, are simultaneously zero. However, for the null hypothesis 
H: 6 = 0, i.e., that just the Z>'s corresponding to the ^-variables are zero, 
then the test is based on F(Rm) in Tables 3.3 and 3.4. This is so because, from 
(83), we see that the non-centrality parameter in the non-central F-distribution 
of F(Rm) is zero under the null hypothesis 6- = 0, in which case F(Rm) has a 
central F-distribution on r — 1 and N — r degrees of freedom. Thus F(Rm) 
provides a test of the hypothesis I = 0. If F(Rm) is significant the hypothesis 
is rejected. This is not to be taken as evidence that all elements of S- are non-
zero, but only that at least one of them may be. If F(M) has first been found 
significant then F(Rm) being significant indicates that a model with the x�s 
in it explains significantly more of the variation in the ^/-variable than does the 
model E(y) = b0 . 

Tests using F(M) and F(Rm) are based on numerators SSM and SSRW 
that are, as shown earlier in Sec. 3.5e, statistically independent. Therefore 
the significance or otherwise of F(M) and/or F(Rm) is independent of the 
numerator sum of squares of the other, although the F9s themselves are not 
independent because they have the same denominator mean square. Con-
sideration of significance levels for both F(M) and F(Rm) is therefore a case 
of simultaneous statistical inference, a topic beyond the scope of this book. 
It is dealt with most fully by Miller (1966). We continue to discuss the signi-
ficance of F(M), F(Rm) and extensions thereof, however, ignoring the simul-
taneity problem, having here tacitly acknowledged its existence. 

The case of both F(M) and F(Rm) being significant is discussed above; as a 
further possibility suppose F(M) is not significant and F(Rm) is.1 This would 
be evidence that even though E(y) might be zero, fitting the x�s does explain 
variation in the y-variable; a situation when this might occur is when the 
2/-variable can have both positive and negative values, such as weight gain in 
beef cattle, where some gains may in fact be losses, i.e., negative gains. 

j . Example (continued) 
Using the summaries shown in Table 3.1, the analyses of variance in Tables 

3.2, 3.3 and 3.4 are shown in Table 3.5. The first part of Table 3.5 shows 
F(R) = 60.4, with 3 and 2 degrees of freedom; and since the tabulated value 
of the ^-dis t r ibut ion is 19.15 at the 5% level, and F(R) = 60.4 > 19.15, 
we conclude that the model accounts for a significant (at the 5 % level) portion 

1 1 am grateful to N. S. Urquhart for emphasizing this possibility. 
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TABLE 3 . 5 . TABLES 3 . 2 , 3 . 3 AND 3 . 4 FOR THE EXAMPLE 

Source of 
Variation 

Regression 
Residual 

error 

Total 

d.f. 

Table 3.2 
3 
2 

5 

Sum of Mean 
Squares Square 

SSR = 1,042* 347.5 
SSE = H i 5.75 

SST = 1,054 

F-statistic 

F(R) =347.5/5.75 = 60.4 

Table 3.3 
Mean 1 SSM = 980 980 F(M) =980/5.75 = 170.5 
Regression 2 SSRm = 62* 31.25 F(Rm) = 31.25/5.75 = 5.6 

(c.f.m.) 
Residual 2 SSE = 11* 5.75 

error 

Total 5 SST = 1,054 

Table 3.4 
Regression 2 SSRm = 62* 31.25 F(Rm) = 31.25/5.75 = 5.6 

(c.f.m.) 
Residual 2 SSE = 11* 5.75 

error 

Total 4 SSTm = 74 

of the variation in the ^/-variable. Similarly F(M) of the Table 3.3 portion of 
Table 3.5 has 1 and 2 degrees of freedom; and since F(M) = 170.5 > 18.51, 
the tabulated value of the ,F1>2-distribution at the 5% level, we reject the 
hypothesis that E(y) is zero. And finally, since F(Rm) = 5.6 < 19.00, the 
tabulated value of the F22 distribution at the 5% level, we do not reject 
the hypothesis that bx = b2 = 0; this test provides evidence that the x�s are 
contributing little in terms of accounting for the variation in the y-variable. 
Most of it is accounted for by the mean, as is evident from the sums of 
squares values in the Table 3.3 section of Table 3.5. As is true generally, the 
Table 3.4 section is simply an abbreviated form of the Table 3.3 section, 
omitting the line for the mean. Just how much of the total sum of squares has 
been accounted for by the mean is, of course, not evident in the Table 3.4 
section. This is a disadvantage to Table 3.4, traditional though its usage is. 
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k. Confidence intervals 
On the basis of normality assumptions we have seen earlier, in Sec. 3.5b, 

that ί> has a normal distribution. From that, 

ht - bt 

V o V 
MO, 1) (84) 

for i = 0, 1, 2,. . . , or k where, in accord with (51), a" is the rth diagonal 
element of (X'X)-1; i.e., from the development of (52) and (53) 

� 00=1��  + � �^�&� 1*; (85) 
and for /' = 1,2,... ,k 

au = ith diagonal element of (3C�3Cyx. (86) 

With these values of a", and in (84) replacing σ2 by σ2 of (71), we also have 

Bi - bt , 
sfaW 

(87) 

where tN_r represents the ί-distribution on N — r degrees of freedom. 
Let us define tN-r,x,L and tN_T!tV as a pair of lower and upper limits re-

spectively of the ^^-distribution such that 

Pr{i < tN_r_x,L} + Pr{i > tN_r^u} = a 
and so 

MtN-r.«.L < t <, tN-r.l.u) = 1 ~ « 
for t ~ tN_r. Then by (87) 

(88) 

AtN-r.a.L < %= < ts-r... u}= 1 - « 

and rearrangement of this probability statement in the form 

Pr{£, - otN_rxU4^ < bt <bi- otN_rxL^} = 1 - a 
provides 

($i ~ &*_.«. 17>Ä &i ~ ttN-r,*,Jaii) (89) 
as a 100(1 — a) % confidence interval for b(. For this confidence interval to 
be symmetric with respect to b{, as is often required, we need 

-%-r.a.i = 'tf-,.«.P = tN-r.h w h e f e P r { ' ^ 'iV-r.iJ = *« (90) 

and the interval (89) becomes 

t>i ± � �� -� ,�.>/*"> (91> 
of width 2σ^_. iaVö" . 
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When the degrees of freedom are large (N — r > 100, say), the distribu-
tion in (87) is approximately 7V(0, 1) and on defining v L and va u such that 

p r K . £ ^ v ^ v«,u) = 1 - a for v ~ N(0, 1) (92) 

vaL and rapl7 can be used in (89) in place of tN_Tt(XtL and tN_rtCltU . In particular, 
for a symmetric confidence interval, 

V«.L = -^a .u = zia, where (2π)~* <?-**' � /# Ja, 

and the interval is 
ht ± � zh47\ (93) 

Tabulated values of zia for a variety of values of Ja are available in Table 1 
of the Appendix. 

Confidence intervals for any linear combination of the Z?'s, q'b say, can be 
established in like manner. The argument is unchanged, except that at all 
stages bi and B{ are replaced by q'b and q'f> respectively, and aua2 is replaced by 
q'(X'X)-1qcr2. Thus the symmetric confidence interval for q'b is, from (93), 

q'fc ± <JtN__r>iJq�(XfX)-iq (94) 

with ζια replacing tN_rt^a when N — r is large. 
In equation (56) we developed xoh as the estimator of E(y0) corresponding 

to the set of x�s in x^. Result (94) now provides a confidence interval on 
x^b, namely 

x$> ± � �� _�^� ^� �� )~\ · (95) 

In the case of simple regression involving only one ^-variable (where k = 1 
and r = 2 as in the footnote to Table 3.4), x^ = [1 x0] and (95) becomes 

y — hx 

L h . 
�  <7ijV_2,£it [1 *ol 

which simplifies to 

y + B(x0 - *) ± etN_2tia 

1 
[1 *„] 

"JV 

Nx 

/ l (�  

Nx � 
N 

i = l -1 

- * o ) 2 

- 1 "l] 
-^o-l 

- > 
JV � ^ - � * 2 (96) 

the familiar expression [e.g., Steel and Torrie (1960), p. 170] for the con-
fidence interval on E{y) in a simple regression model. Plotting the values of 
this interval for a series of values of x0 provides the customary confidence belt 
for the regression line y = b0 + bx. 
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A confidence interval on an estimated observation is sometimes called a 
tolerance interval. In keeping with the variance given in (61) the tolerance 
interval comes from using χ^(Χ,Χ)"1χ0 + 1 instead of X ^ X ' X ^ X Q in (95). 
In line with (95) it reduces for simple regression to 

x L i (�  �  � � )2 

y + b(x0-x)� 6tN_rM / l + - + 1 J »-� �  . 
y i=l 

1. Example (continued) 
Confidence intervals on bx will be calculated for the example used earlier, 

a non-symmetric interval from (89) and a symmetric interval from (91). 
For both we use 

Bx = 50/24 = 2.08 
from (28), 

5 = y/Jj5 = 2.40 and N-r = 2 

from Table 3.5, and 
a11 = 20/144 = 0.139 

from (86) and (44). Then in (89) a non-symmetric confidence interval for b�  

is 

2.08 - 2.40 t2ta.uy/o.l39 to 2.08 + 2.40 i2.«,zV0J39 
= 2.08 - 0.89 t2>ULiU to 2.08 + 0.89 t2t0LtL . (97) 

From tabulated values of the ^-distribution, [e.g., Vogler and Norton (1957)] 
we find that 

Pr(f < -3.6) = 0.04 and Pr(f > 7.1) = 0.01, 

so that by (88), for a = 0.05, 

hr05,L = —3.6 and t2t.05tu = 7-1 

and so in (97) the confidence interval becomes 

2.08 - 0.89(7.1) to 2.08 - 0.89(-3.6) = (-4.23, 5.08). (98) 

It is questionable, of course, as to what kind of situation would reasonably 
lead to needing a non-symmetric confidence interval with the /-distribution. 
The example illustrates, however, how such intervals can be calculated and 
doing so emphasizes the important fact that there are many such intervals— 
because there are many values tN_raL and tN-r a u t n a t satisfy (88). In 
contrast, there is only one symmetric confidence interval, the interval which 
has the optimal property that for given N — r and a it is the interval of 



110 REGRESSION [3.6] 

shortest length. This is the interval given in (91) for which, for the example, 
( 9 0 ) 1S Pr{* > 4.30} = 0.025 

for t ~ t2. Hence the symmetric interval on bx is, from (91), 

2.08 ± 2.40i2 i aVÖl39 = 2.08 ± 0.89/2,0.025 
= 2.08 ± 0.89(4.30) 
= (-1.75,5.91). 

The length of this interval is 1.75 + 5.91 = 7.66, shorter than the length of 
the non-symmetric interval in (98), namely 4.23 + 5.08 = 9.31. 

6 . THE GENERAL LINEAR HYPOTHESIS 

a. Testing linear hypotheses 
The literature of linear models abounds with discussions of different kinds 

of hypotheses that can be of interest in widely differing fields of application. 
Four hypotheses of particular interest are: (i) H: b = 0, the hypothesis 
that all elements of b are zero, (ii) H: b = b0 , the hypothesis that bt = bi0 

for / = 0, 1, 2, . . . , k, i.e., that each bt is equal to some specified value bi0 . 
(iii) H: X'b = m, that some linear combination of the elements of b equals a 
specified constant, (iv) H: bQ = 0, that some of the b/s, q of them where 
q < k, are zero. Although the calculations for the .F-statistic for these 
hypotheses and variants of them appear, on the surface, to differ markedly 
from one kind of hypothesis to another, we will show that all linear hypotheses 
can be handled by one universal procedure. Specific hypotheses such as those 
listed above are then just special cases of the general procedure. 

The general hypothesis we consider is 

H: Kb = m 

where b, of course, is the (k + l)-order vector of parameters of the model; 
K' is any matrix of s rows and k + 1 columns; and m is a vector, of order s, 
of specified constants. There is only one limitation on K': that it have full 
row rank, i.e., r(K') = s. This simply means that the linear functions of b 
which form the hypothesis must be linearly independent; that is, the hy-
pothesis must be made up of linearly independent functions of b and must con-
tain no functions which are linear combinations of others therein. This is 
quite reasonable because it means, for example, that if the hypothesis relates 
to bx — b2 and b2 — b3 then there is no point in having it also relate, ex-
plicitly, to bx — Z>3. Clearly, this condition on K' is not at all restrictive in 
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limiting the application of the hypothesis H: K'b = m to real problems. 
Furthermore, although it might seem necessary to also require that m be 
such that the equations K'b = m be consistent, this is automatically achieved 
by demanding that K' have full row rank, for the equations K'b = m are 
then consistent for any vector m. 

We now develop the F-statistic to test the hypothesis H: K'b = m. We 
already have the following: 

y — 7V(Xb, σ2Ι), 
b = (X'X^X'y 

and b ~ 7V[b, (X'X)-^2]. 

Therefore K'b - m ~ N[K�b - m, Κ 'ίΧ 'Χ^Κσ2]. 

Hence, by an application of Theorem 2 in Chapter 2, the following quadratic 
in K'b — m, using [KXX'X^K]- 1 as the matrix of the quadratic, has a 
^-distribution: if 

Q = (K'b - m)'[K'(X'X)-1K]-1(K'b - m) 

then β/σ2 ~ %v{s, (K'b - m)'[K'(X'X)-1K]"1(K'b - ιη)/2σ2}. (99) 

The independence of Q and SSE is now shown, using Theorem 4 of Chapter 
2. To do this we first express Q and SSE as quadratic forms of the same nor-
mally distributed random variable, noting initially that the inverse of 
K ' iX 'X)-^ used in (99) exists because K' has full row rank and X'X is 
symmetric. Then, on replacing b by (X'X)_1X'y, equation (99) for Q becomes 

Q = [K'tX'X^X'y - m]'[K'(X'X)-1K]-1[K'(X'X)-1X'y - m]. 

But because K' has full row rank, (K'K)-1 exists—see corollary of Lemma 5, 
Sec. 2.2. Therefore 

K'tX'X^X'y - m = K'iX'X^X'fy - ΧΚίΚ 'Κ)-^], 
and so 

Q = [y - XK(K'K)-1m]'X(X'X)-1K[K'(X'X)-1K]-1 

X K'CX'X^X'ty - XKQt'K)-1!!!]. 
Now consider the error sum of squares 

SSE = y'[I - XtX'X^X'Jy. 

Because the products X'[I - ΧίΧ 'Χ^Χ ' ] and [I - XiX'X^X'JX are both 
null, SSE can be rewritten as 

SSE = [y - ΧΚΟΚΊΟ^πιΠΐ - XtX'X^X'Hy - X ^ ' K ^ m ] . 

Both Q and SSE have now been expressed as quadratics in the vector 
y - XKtK'K)-1!!!. And although we already know that Q/cr2 Sind SSE/(T2 
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have ^'-distributions, this is further seen from their being quadratics in 
y — XK(K�K)_1m which is a normally distributed vector; and the matrix in 
each quadratic is idempotent. But, more importantly, the product of the 
two matrices is null: 

[I - X(X,X)-1X,]X(X,X)-1K[K,(X,X)-1K]-1K,(X,X)-1X, = 0. 

Therefore by Theorem 4 of Chapter 2, Q and SSE are distributed inde-
pendently. Hence 

F{H) = SSE/[N - r(X)] = QIS02 

~ F�{s, N - r(X), (Kb - m)'[K,(X,X)-1K]-1(K,b - m)/2a2} (100) 

and under the null hypothesis H: K'b = m 

F(H) ~ FStN_riX). 

Hence F(H) provides a test of the hypothesis H: K'b = m. Thus the F-
statistic for testing the hypothesis H: K'b = m is 

F(H) = 4 2 = V , — (101) 
so so 

with s and N — r degrees of freedom, s being the number of rows in K', 
it being of full row rank. 

The generality of this result merits emphasis: it applies for any linear 
hypothesis K'b = m, the only limitation being that K' have full row rank. 
Other than this, F(H) can be used to test any linear hypothesis whatever. No 
matter what the hypothesis is, it has only to be written in the form K'b = m 
and F{H) of (101) provides the test. Having once solved the normal equations 
for the model y = Xb + e and so obtained (X'X)"1, h = (X'X^X'y and 
σ2, the testing of H: K'b = m can be achieved by immediate application of 
F(H). The appeal of this result is illustrated below in subsection c, for the 
four hypotheses listed at the beginning of this section. Note that a2 is uni-
versal to every application of F(H). Thus, in considering different hypotheses 
the only term in F(H) that alters is Q/s. 

b. Estimation under the null hypothesis 
When considering the hypothesis H: K'b = m it is natural to ask, "What is 

the estimator of b under the null hypothesis?" This might be especially per-
tinent following non-rejection of the hypothesis by the preceding igtest. 
The desired estimator, b say, is readily obtainable using constrained least 
squares. Thus b is derived so as to minimize (y — Xb)�(y — Xb) subject to 
the constraint K'b = m. 
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With 2Θ' as a vector of Lagrange multipliers we minimize 

(y - Xb)�(y - Xb) + 2θ'(Κ'& - m) 

with respect to the elements of b and Θ. Differentiation with respect to these 
elements leads to the equations 

X Xb + ΚΘ = X�y 
(102) 

and K�b = m. 

These equations are solved as follows: from the first, 

b = (X� X^X� y - � � ) = h - (� ,� )"1� � , 

and in the second 

Kb = K�fc - � � � �� ^� �  = m. 

Hence �  = [K�iX�X^KJ-XK�b - m) 

and so b = h - ( X � X ^ K I K � i X � X ) - « ] - 1 ^ - m). (103) 

This expression and (101) apply directly to S- when the hypothesis is US = m 
(see Exercise 8). 

Having thus estimated b under the hypothesis we now show that the corre-
sponding residual sum of squares is SSE + Q where Q is the numerator sum 
of squares of F(H), the F-statistic used in testing the hypothesis in (101). 
The residual is 

(y - Xb)�(y - Xb) = [y - Xh + X(h - b)]'[y - Xh + X(h - b)] 

= (y - X&)�(y - Xb) + (& - b)�X�X(fc - b) (104) 

with the other terms vanishing because X'(y — Χί>) = 0. Now from (103) 

h - b = (X,X)-1K[K,(X,X)"1K]-1(K,b - m) 

and so on substituting in (104) 

(y - Xb)�(y - Xb) 

= SSE + (K�fe - m),[K,(X,X)-1K]-1K,(X,X)-1X,X(X,X)-1 

x K D K ' i X ' X ) - « ] - 1 ^ - m) 
= SSE + (K�fc - m),[K,(X,X)-1K]-1(K,fe - m) 
= SSE + Q (105) 

from (99). 

c. Four common hypotheses 
The preceding expressions for F(H) and b, namely (101) and (103), are 

here illustrated for four commonly occurring hypotheses. 
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(/) H: b = 0. Testing this hypothesis has already been considered earlier 
in the analysis of variance tables. However, it illustrates the reduction of 
F(H) to the j^-statistic of the analysis of variance tables. To apply F(H) the 
equations b = 0 have to be written as K'b = m: hence K' = I, s = k + 1 
and m = 0. Thus [K'CX'X)-*]-1 becomes XX and so 

w r T X b'X'Xfc SSR N-r 
F(H) = = 

(fc + l ) i 2 r SSE 
as before. Under the null hypothesis F(H) is FrN_r9 where r t= k + 1. 

The corresponding value of b is, of course, 

b = h - (X'X^KX'X)-1]-1^ = 0. 

(ii) H: b = b0, i.e., Ẑ  = biQ for all i. Rewriting b = b0 as K'b = m 
gives 

K' = I, s = k+l9 m = b0 and [ΚΧΧ 'Χ^Κ]"1 = XX 
and so . . 

f ( g ) = ( f e - b 0 ) T X ( - b o ) ( t 0 6 ) 

(k + 1)σ2 

The numerator can be expressed alternatively as 
(h - b0)'X'X(fc - b0) = (y - Xb0),X(X,X)-1X,X(X,X)-1X,(y - Xb0) 

= (y - Xb0),X(X,X)-1X,(y - Xb0), 

although the form shown in (106) is probably the most suitable for computing 
purposes. Under the null hypothesis F(H) is distributed as FTtN_r, where 
r = k+ 1. 

In this case the estimator of b under the hypothesis is 

b = h - (X'X^KX'X)- 1]- 1^ - b0) = b 0 . 

(»0 H: X'b = m. Here 

K' = λ', 5 = 1, m = m 

™ (X'b - mnWjX�Xr^Ck�b - m) 
F(H) = -

and because λ ' is a vector this can be rewritten as 

λχΧ 'Χ^λσ 2 

Under the null hypothesis F(H) has the i^ ^.^-distribution. Hence 

h — m 

. '(X'X)-^ � � � �� �� )-1? 
~ tN_r. 
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This is as one would expect, since X'fe is normally distributed with variance 
� � � �� ) - ^ 2 . 

For this hypothesis the value of b is 

b = b - (x'xy-^x'cx'xr^rxx'fc 
X ' b - m 

m) 

= 6 -
χχχ'ΧΓ^. 

(Χ'ΧΓ'λ. 

At this point it is appropriate to comment on the lack of emphasis being 
given to the /-test in hypothesis testing. This is because the equivalence of 
/-statistics with F-statistics that have 1 degree of freedom in the numerator 
term makes it unnecessary to consider /-tests. Whenever a /-test might be 
proposed, the hypothesis to be tested can be put in the form H: X'b = m 
and the F-statistic F(H) derived as here. If the /-statistic is insisted upon it is 
then obtained as \/F(H). No further discussion of using the /-test is therefore 
necessary. 

(iv) H: bQ = 0, i.e., bt = 0 for i = 0, 1, 2, . . . , q - I, for q < k. 
case 

K' = [lg 0] and m = 0 so that s = q. 

We write 

In this 

K = [fco &i 

and partition b, f> and (XrX)_1 accordingly: 

b = h = and 

V-ll 

(X'X)-1 = 

where p + q = the order of b = k + 1. Then in F(H) of (101) 

K b = b„ 
and 

giving 
[K'CX'X^K]-1 = T - \ 

(107) 

In the numerator we recognize the result [e.g., Searle (1966), Sec. 9.11] 
of "invert part of the inverse"; i.e., take the inverse of X'X and invert that 
part of it which corresponds to bQ of the hypothesis H: bq = 0. Although 
demonstrated here for a bQ that consists of the first q b�s in b, it clearly applies 
for any subset of q Vs. In particular, for just one b, it leads to the usual F-test 
on 1 degree of freedom, equivalent to a /-test (see Exercise 15). 
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The estimator of b under this hypothesis is 

= b - (X'X)-1 

= b -

— 

T 

T 

V 
_o_ "C(&, 

T^b = 
*qquq 

0 

-K -- T 
*-pq 

T" 
*-QQ V 

"V 
A-

- 0 ) 

— 
b* 

T T_1b 
u 2><Z <Z<Z Q-1 

i.e., the estimator of the b�s not in the hypothesis is bv — T^T^b^ . 
The expressions obtained for F(H) and b for these four hypotheses con-

cerning b are in terms of h. They also apply to similar hypotheses in terms of 6 
(see Exercise 7), as do analogous results for any hypothesis L�S- = m (see 
Exercise 8). 

d. Reduced models 

We now consider, in turn, the effect on the model y = Xb + e of the 
hypotheses K'b = m, K'b = 0 and bg = 0. 

(i) K'b = m. In estimating b subject to K'b = m it could be said that we 
are dealing with a model y = Xb + e on which has been imposed the 
limitation K'b = m. We refer to the model that we start with, y = Xb + e 
without the limitation, as the/w// model; and the model with the limitation 
imposed, y = Xb + e with K'b = m, is called the reduced model. For ex-
ample, if the full model is 

y. = b0 + bjXa + b2xi2 + *3*i3 + ei 

and the hypothesis is H: bx — b2, the reduced model is 

y. = bQ + bx{xiX + xi2) + bzxiZ + e{. 

The meaning of Q and of SSE + Q is now investigated in terms of sums of 
squares associated with the full and reduced models. To aid description we 
introduce the terms reduction(full-) and residual(full) for the reduction and 
residual sums of squares after fitting the full model: 

reduction(full) = SSR and residual(full) = SSE. 

Similarly S S E + g = residual(reduced), 

as established in (105). Hence 

ß = SSE + Q - SSE 
= residual(reduced) — residual(full) 

(108) 

(109) 
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and also 
Q = y'y - SSE - [y'y - (SSE + Q)] 

= SSR - [y'y - (SSE + Q)] 

= reduction(full) - [y'y - (SSE + ß)]. (110) 

Comparison of (110) with (109) tempts one to conclude that y'y - (SSE + Q) 
is reduction(reduced), the reduction in sum of squares due to fitting the re-
duced model. The temptation to do this is heightened by the fact that 
SSE + Q is residual(reduced) as in (108). However, we shall show that only 
in special cases is y'y — (SSE + Q) the reduction in sum of squares due to 
fitting the reduced model. It is not always so. The circumstances of these 
special cases are quite wide, as well as useful, but they are not universal. 
First we show that y'y — (SSE + Q) is not generally a sum of squares, since 
it can be negative: for, in 

y'y __ SSE ~ Q = SSR - Q 

= b'X'y - (Kb - m)'[K'(X'X)-1K]-1(K'b - m) (111) 

the second term is a positive semi-definite form. Therefore it is never negative, 
and if one or more of the elements of m are sufficiently large that term will 
exceed b'X'y and (111) will be negative. Hence y'y — (SSE + Q) is not a 
sum of squares. 

The reason that y'y — (SSE + Q) is not necessarily a reduction in sum of 
squares due to fitting the reduced model is that y'y is not always the total 
sum of squares for the reduced model. For example, if the full model is 

y. = b0 + bxxa + b2xi2 + et 

and the hypothesis is bx — b2 + 4, then the reduced model would be 

Vi = b0 + (b2 + 4)xa + b2xi2 + et\ 

i.e., yi - 4xa = b0 + b2(xa + xi2) + et. (112) 

The total sum of squares for this reduced model is (y — 4xx)'(y — 4xx) and 
not y'y, and so y'y — (SSE + Q) is not the reduction in sum of squares. 
Furthermore, (112) is not the only reduced model, because the hypothesis 
b1 = b2 + 4 could just as well be used to amend the model to be 

y. = b0 + bxxa + {bx - 4)xi2 + e^ 

i.e., Vi + 4xi2 = b0 + bx(xa + xi2) + e{. (113) 
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= X[P S] + e, 

The total sum of squares will now be (y + 4x2)'(y + 4x2). So in this case 
there are two reduced models, (112) and (113), and they are not identical. 
Hence neither are their total sums of squares, neither of which equal y'y. 
Therefore y'y — (SSE + Q) is not the reduction in sum of squares due to 
fitting the reduced model. Indeed, by the existence of (112) and (113) there is 
no unique reduced model. And yet, despite this, SSE + Q is the residual 
sum of squares for all possible reduced models—their total sums of squares 
and reductions in sums of squares differ from model to model but their 
residual sums of squares are all the same. 

The situation just described is true in general for the hypothesis K'b = 
ΓΚΊ 

m. Suppose V is such that R = has full rank and R- 1 = [P S] is its 
L J 

inverse. Then the model y = Xb + e can be written as 

y = XR-!Rb + e 

TK'b] 

L'bJ 

= XPm + XSL'b + e; 

i.e., y - XPm = XSL'b + e. (114) 

This is a model in the elements of L'b, which represents r — s LIN functions 
of the'elements of b. But since L' is arbitrary, chosen to make R non-singular, 
the model (114) is not unique. Despite this, it can be shown that the residual 
sum of squares after fitting any one of the models implicit in (114) is SSE + Q. 
And the corresponding value of the estimator of b is b given in (103) (see 
Exercise 10). 

(//) K'b = 0. One case in which y'y — (SSE + Q) is a reduction in sum 
of squares due to fitting the reduced model is when m = 0. For then (114) 
becomes VCT'U . 

y = XSL b + e 
and so the total sum of squares for the reduced model is y'y, the same as that 
of the full model. Hence in this case 

y'y - (SSE + ß ) = reduction(reduced). (115) 

That it is a sum of squares, i.e., is positive semi-definite, is seen from (111) 
wherein putting m == 0 gives 

y'y - (SSE + Q) = fc'X'y - fe'KfK'iX'X^K^K'fe 

= y ' W X ' X ^ X ' - XtX'X^KtK'iX'X)-*]-1 

X KXX'X^X'Jy. (116) 
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Since the matrix enclosed in curly brackets is idempotent it is positive semi-
definite. Therefore so is y'y — (SSE + Ö); i.e., it is a sum of squares. From 

Q = y'y — SSE — reduction(reduced). 

But y'y - SSE = SSR = reduction(full) 
and so Q = reduction(full) — reduction(reduced). 

Therefore, since the sole difference between the full and reduced models is 
just the hypothesis, it is logical to describe 

Q as the reduction in a sum of squares due to the hypothesis. 

With this description we insert the partitioning of SSR as the sum of Q and 
SSR — Q into the analysis of variance of Table 3.2 to yield Table 3.6. In 

TABLE 3 . 6 . ANALYSIS OF VARIANCE FOR 
TESTING THE HYPOTHESIS K 'b = 0 

Source of Variation 

Regression (full model) 
Hypothesis 
Reduced model 

Residual error 

Total 

Degrees of 
Freedom 

r 
s 

r �  s 
N -r 

N 

Sum of Squares 

SSR 
Q 
SSR - Q 

SSE 

SST 

doing so we utilize (99), that when m = 0, 

Q/a* ~ X*�{s, b�K[K�(X�X)-iK]-iK�bl2a*}. 

Then, because 
(y'y - SSE)/*2 - Z

2'{r, b'X'Xb/2cr2}, 

an application of Theorem 5 of Chapter 2 shows that 

(SSR - β)/σ2 - � � {�  - s, b'[X'X - Κ ί Κ χ Χ 'Χ ^Κ } - 1 ^ ^ 2 } 

and is independent of SSE/σ2. This, of course, can also be derived directly 
from (116). Furthermore, the non-centrality parameter in the distribution of 
SSR - Q can, in terms of (114), be shown to be equal to b'L(S'X'XS)L'b/2a2 

(see Exercise 11). Hence, under the null hypothesis, this non-centrality pa-
rameter is zero when L'b = 0. Thus SSR — Q forms the basis of an F-test 
for the sub-hypothesis L'b = 0 under the null hypothesis K'b = 0. 
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We now have the following F-tests: 

SSR/r 
SSE/(iV - r) 

Qls 

tests the full model, 

tests the hypothesis K'b = 0 

tests the sub-hypothesis L'b = 0. 

SSE/(7V - r) 

and, under the null hypothesis 

(SSR - Q)l(r - s) 
SSE/(7V - r) 

(Hi) bQ = 0. The most useful case of the reduced model when m = 0 is 
when K' = [lq 0] for some q < k. The null hypothesis K b = m is then 
bQ = 0, where b^ = [b0 bx · · · Z^J say, a subset of q of the b�s. This 
situation was discussed earlier where we found, in (107), 

F(H) = Qlqa\ with Q = ^ Τ ~ \ , 
involving the "invert part of the inverse" rule. Hence a special case of Table 
3.6 is the analysis of variance table for testing the hypothesis H: bQ = 0, 
shown in Table 3.7. 

TABLE 3 . 7 . ANALYSIS OF VARIANCE FOR 
TESTING THE HYPOTHESIS b^ = 0 

Degrees of 
Source of Variation Freedom Sum of Squares 

all model (b) 
Hypothesis: bQ = 0 
Reduced model (bp) 
esidual error 

r 

9 
r -q 

N -r 

SSR = b'X'y 

Q = � � �& 
SSR - Q 

SSE = SST - SSR 

Total TV SST = y'y 

Shown in Table 3.7 is the most direct way of computing its parts: 
SSR = b'X'y, Q = b^T"1^, SSR - Q by diiferencing, SST = y'y and 
SSE by differencing. Although SSR — Q is obtained most readily by differ-
encing it can also be expressed as b�pXvXjbv (see Exercise 12). The estimator 
bp is derived from (103) as 

bp = bp - � � � � -�  (117) 
using K'iX'X)"« = TM as in (107). 
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Example. For the following data 

y 

8 2 
10 - 1 
9 1 
6 2 

12 1 

1 
2 

- 3 
1 
4 

4 
1 
4 
2 
6 

(X�X)-1 = 

"11 3 

3 31 

21 20 

21" 

20 

73_ 

- 1 

= 

.2145 

.0231 

-.0680 -.0181 

39 

0231 -.0680" 

0417 -.0181 

.0382 

y'y = 425 and x'y = 55 

162 
We consider no-intercept models only. Then 

fe7 = [—1.39 0.27 2.54] 
and the analysis of variance is 

Degrees of Sum of 
Source Freedom Squares 

Full model 
Residual error 

SSR = 372.9 
SSE = 52.1 

Total SST = 425.0 

For testing the hypothesis H: bx — b2 + 4 the reduction Q is, from (99), 

Ö = (*i - «. - 4) [1 - 1 0](X'X) 

( - 1 . 3 9 - 0 . 2 7 - 4 . 0 ) 2 

1 

- 1 

OJ 

(-5.66)2 

{k - b2 - 4) 

= 152.55. 
.2145 + 0.417 - 2(.0231) .21 

Hence the F-statistic for testing the hypothesis is 152.2/(52.1/2) = 5.8. 
Were a reduced model to be derived by replacing bx by b2 + 4 it would be 

y — 4%i = b2(x1 + x2) + b3x3 + e (118) 



which the data are 

REGRESSION 

y - 4a?i 

0 
14 
5 

- 2 
8 

xx + #2 

3 
1 

- 2 
3 
5 

x3 

4 
1 
4 
2 
6 

[3.6] 

The total sum of squares is now 02 + 142 + 52 + 22 + 82 = 289; and the 
residual sum of squares, using SSE from the analysis of variance and Q 
from the jF-statistic, is 

SSE + Q = 52.1 + 152.2 = 204.3. 

Therefore the analysis of variance for the reduced model is 

Source 

Regression (reduced model) 
Residual error 

Total 

Degrees of 
Freedom 

2 
3 

5 

Sum of 
Squares 

84.7 
204.3 

289.0 

The value of 84.7 for the reduction in sum of squares for the reduced model 
can be verified by deriving the normal equations for the model (118) directly. 
From the data they are 

= (1/18 

"48 4 l l 

41 73j 

23) 
73 

- 4 1 

p; 
U3_ 

— 41�  

48J 

� 38" 

L78-

[38] 
= 

"-0.23 

1.20_ 
and hence 

Then the reduction in the sum of squares is 

"38" 
[-0.23 1.20] 

78 
= 93.6 - 8.9 = 84.7 

as in the analysis of variance. 
These calculations are, of course, shown here purely to illustrate the sum 

of squares in the analysis of variance. They are not needed specifically 
because for the reduced model the residual is always SSE + Q. And the 
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estimator of b can be found from (103) as 

b = 

123 

1.39 

0.27 

2.54. 

1.39" 

0.27 

2.54. 

- (X'X)-1 

+ 

1 

- 1 

. 0. 

— (-5.66) 
.21 

.2145 - .0231" 

.0231 - .0417 

. - .0680 + . 0181. 

(26.95) = 

3.77] 

-0 .23 

. 1.20. 

wherein bx — b2 = 4, of course, and b2 and bz are as before. 
For testing the hypothesis b�  = 0, Q = (—1.39)2/(.2145) = 8.9 and the 

analysis of variance of Table 3.6 is 

Source 
Degrees of 
Freedom Sum of Squares 

Full model 
Hypothesis 
Reduced model 

Residual error 

Total 

3 
1 
2 

2 

5 

372.9 

52.1 

425.0 

8.9 
364.0 

with 

b = 

~—1.39" 

.27 

2.54_ 

— 

" .2145" 

.0231 

_-.0680j 

(—1.39)/.2145 = 

' 0 " 

0.42 

2.10 

Again these results can be verified from the normal equations of the reduced 
model, in this case 

31 20 
.20 73j 

P IAJ 
55 

.I62J 
ley give 

= (1/1863) 
73 - 2 0 ] 

- 2 0 3lJ 
55 

|_162 
= 

0.42 
2.10 

above; and the reduction in sum of squares is 

[0.42 2.10] 
r31 

20 

20" 

73 

Γ0.4 

2.1 

� 

0 
364. 0. 
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7 . RELATED TOPICS 

It is appropriate to briefly mention certain topics related to the preceding 
development that are customarily associated with testing hypotheses. The 
treatment of these topics will do no more than act as an outline to the reader, 
showing him their application to the linear models situation. As with the 
discussion of distribution functions in Chapter 2, the reader will have to look 
elsewhere for a complete discussion of these topics. 

a. The likelihood ratio test 
Tests of linear hypotheses K'b = m have been developed from the starting 

point of the F-statistic. This, in turn, can be shown to stem from the likeli-
hood ratio test. 

For a sample of N observations y, where y is N(Xb, a2l) the likelihood 
function is 

L(b, � 2) = (2ττσ2Γ^ exp {-[(y - Xb)'(y - Xb)/2a2]}. 
The likelihood ratio test utilizes two values of L(b, a2): 

(i) Max(Lw), the maximum value of L(b, a2) maximized over the com-
plete range of parameters, namely 0 < a2 < oo, and — oo < bt < oo for 
all i. 

(ii) Max(LH), the maximum value of L(b, a2) maximized over the range of 
parameters limited (restricted or defined) by the hypothesis H. 

The likelihood ratio is the ratio of these two maxima: 

= rnax(L^) 
max(LJ 

Each maximum is found in the usual manner: differentiate L(b, a2) with 
respect to a2 and the elements of b, equate the differentials to zero, solve the 
resulting equations for b and a2 and use these solutions in the place of b and 
a2 in L(b, a2). In the case of max(LH) the maximization procedure is carried 
out within the limitations of the hypothesis. We demonstrate for the case of 
the hypothesis H: b = 0. First, 3L(b, a2)/db = 0 gives, as we have seen, 

h = (X'X^X'y; and 3L(b, a2) I da2 = 0 gives a2 = (y - Xb)r(y - Xb)/7V. 
Thus 

max(Lw) = L(b, σ2) = (2� � *)-^ exp {-[(y - Xb)�(y - ΧΒ)/2σ2]} 
e-i

NNJN 

" (2� )*� �[(�  - Xfe)�(y - Xb)p � 
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This is the denominator of L. The numerator comes from amending L by the 
hypothesis b = 0, so giving 

L(0, σ2) = (2ττσ2Γ^ exp -(y'y/2*2). 

Maximizing this with respect to a2 by using the equation 3L(0, or2)/3cr2 = 0 
gives σ2 = y�y/N and so 

max(LH) = L(0, � 2) = (2ττσ2)-^ exp -(y 'y/2 a2) 
e-$NN� N 

~ (27r)i%'y)iAr " 

With these values for the maxima, the likelihood ratio is 

_ max(Ljf) 

max(LJ 
'(y - x6)�(y - Xb) 

y�y 

\N 1 
Ll + SSR/SSE. 

� �  

Clearly L is a single-valued function of SSR/SSE, monotonic decreasing when 
SSR/SSE increases. Therefore SSR/SSE can be used as a test statistic in 
place of L. By the same reasoning so can (SSR/SSE)[(iV — r)/r] whose use 
as the jp-statistic has already been discussed. Thus is the use of the F-statistic 
established as an outcome of the likelihood ratio test. The basis of F(H) can 
be established similarly. 

b. Type I and II errors 
Under the null hypothesis H: K'b = m, F(H) = (N - r)QjsSSE has the 

Fs,N-r distribution. For a significance test at the 100a % level the rule of the 
test is to not reject H whenever F(H) < Fa StN-n t n e tabulated value of 
the FSiN_r distribution, at the 100a% point. This means Fa<SiN-r ^s defined as 
follows: if u is any variable having the FsN_r distribution then 

Pr{w > FasN_r} = a . 

The probability a is the (significance) level of the significance test. An oft-
used value for it is 0.05, but there is nothing sacrosanct about this; any value 
between 0 and 1 can be used for a. Other frequently used values are 0.01 and 
0.10. 

The rule of whether or not to reject the hypothesis H is to reject it whenever 
F(H) > FatStN_r and to not reject it whenever FfT/) < Fa s N_r. By the nature 
of the statistic F(H) we know that over repeated sampling F(H) will exceed 
F* S,N-T o n 100a % (5%, say) of the time; and when it does we will reject H. 
Therefore, in situations in which the null hypothesis H is actually true, this 
rejection will constitute an error of judgment. It is the error known as a Type 
I error, or rejection error. It consists of wrongly rejecting the null hypothesis 
H when it is true; the probability of its occurrence is a. 
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Now consider the situation when not H but some other hypothesis. 
Ha: K^b = ma, is true. Then, as in (100), 

F(H)~F�(s,N-r9X) (119) 
with non-centrality parameter 

�  = (K'b - m)/[K,(X/X)-1K]-1(K,b - m)/2<r2 

= *(K'b - my[v2Lr(K�h)]-XK�b - m) (120) 
using (51) for var(fe). Note that �  ̂  0 because K'b ^ m but K> a = ma. 
Suppose that, without our knowing it, this alternative hypothesis Ha had been 
true at the time the data were collected. And suppose that, with those data, 
the hypothesis H: K'b = m is tested using F(H) as already described. When 
F(H) < FasN_r, we do not reject H. But in doing this an error is made— 
an error of not rejecting H when (even though we did not know it) Ha was 
true and hence H was not true; i.e., we fail to reject H when it is false. This is 
called a Type II error, where we fail to reject the null hypothesis H when the 
alternative, Ha, is true. The probability of this, to be denoted by P(II), is 

P(II) = Pr{Type II error occurring} 
= Pr{not rejecting H when H is not true} (121) 
= ?r{F(H) < FaiStN_r where F(H) ~ F�(s, N - r, X)} 

which we shall write as 
P(II) = Pr{F'(s, N - r, � ) < Fa>StN_r} (122) 

from (119) and (120). By the right-hand side of (122) we mean the proba-
bility that a random variable distributed as F�(s, N — r, � ) is less than 
Fa,s,N-ri the 100a % point in the central jPsJV_r-distribution. The two types of 
errors are summarized in Table 3.8. 

TABLE 3 . 8 . TYPE I AND TYPE II ERRORS IN HYPOTHESIS TESTING 

Result of Test of Hypothesis 

F(H)iFat8tN_r F(H)>Fat8iN_r 

Conclusion 

Do not reject H Reject H 

True No error Type I error1 

False 
(Ha: Kab = ma is true) Type II error2 No error 

1 Pr{Type I error} = a = Pr{F(H) > Fa s N_r when H: K'b = m is true}. 
2 Pr{Type II error} = P(II) = Pr{F(#) <>a>s>iV_r when Ha: K> = ma is true}. 

Null Hypothesis 

(H: K'b = m) 
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The probability of a Type II error, P(II) of (122) using �  of (120), is not 
readily available from tables because tables of the non-central F-distribution 
are limited in extent. However, tabulations given by Tang (1938) circumvent 
this difficulty through considering a function E2, dependent on s, N — r 
and � , such that 

P(II) = Pr{F(*, N - r, A) < Fa,s>iv_r} 

of (122) is equivalent to 

P(II) = Pr {£*[*, N - r 9 ^/(s + 1)] < sFa>StN_rl(N - r + sFa,8iN_r)}. 

(123) 

For a = 0.05 and 0.01, Tang (1938) tabulates this probability for a variety of 
values of s, N — r and \j2Xj(s + 1), denoted more generally by fl9f2 and <p, 
respectively. Similar tables are also available in Kempthorne (1952) and 
Graybill (1961). 

Example. Consider testing the hypothesis H: b = 1 in the case of simple 
regression involving just a single ^-variable. Then s = 1 and r = 2, and, on 
supposing there are 22 observations, TV — r = 20. For a = 0.05, the tabulated 
value of Fa s N_r is -F0.o5,i,2o — 4.35. Therefore in (122) 

P(II) = Pr{F'(l, 20, A) < 4.35}. (124) 

Suppose that v(b) = TV and that the alternative hypothesis is Ha: b = ba �  1. 
Then from (120) 

�  = \{ba - \){tir\ba - 1) = %ba - If (125) 

for ba 9* 1. Substitution of (125) in (124) gives 

P(II) = Pr{F[l , 20, 9(ba - l)2] < 4.35} 
and so in (123) 

P(II) = Pr{£2[l, 20, Vl8(Z?a - l)2/2] < 4.35/(20 + 4.35)} 

= Pr{£2[l, 20, 3(Ae - 1)] < 0.179}. (126) 

From tables of this probability, e.g., Graybill (1961, p. 444), we find the 
following values of P(II) and 1 — P(II) for different values of ba: 

ba: 1* H If If 2 
P(II ) : .730 .477 .233 .081 .0191 = _ �  = 2Q 

l - P ( I I ) : .270 .523 .767 .919 .981) 

Note here that P(II) decreases as ba increases—and, correspondingly, 1 — P(II) 
increases. Further reference to the tables also shows that a larger (smaller) 
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value of N leads to smaller (larger) values of P(II), with correspondingly 
larger (smaller) values of 1 — P(II): e.g., for TV > 22, 

for N = 32, N - r = 30 

K : H 
P(II) : .722 

1 - P(II) : .278 

and for N < 22, 

n 
.463 
.537 

12 

.219 

.781 

1£ 
1 6 .072 

.928 

2 
.016 
.984 

for N=l2,N-r = 10. 
P(II) : .751 .517 .278 .111 .0321 

1 - P(II) : .259 .483 .722 .889 .968J 

In these cases the expressions analogous to (126) are 

P(II) = Pr{£2[l, 30, 3(ba - 1)] ^ 0.122} for N = 32, N - r = 30 

and 

P(II) = Pr{£2[l, 10, 3(ba- 1)] < 0.332} for N = 12, N - r = 10, 

corresponding respectively to iVos.i.so = 4.17 and ivos.i.io = 4.96. 
c. The power of a test 

Through the expression for �  in (120) it can be seen that P(II) of (122) 
depends upon K�a and ma of the alternative hypothesis Ha: K^b = ma. 
The probability 1 — P(II) is similarly dependent. It is known as the power of 
the test with respect to the alternative hypothesis Ha. From (121) it is 

Power = 1 - P(II) 
= 1 — Pr{not rejecting H when H is not true} 
= Pr{rejecting H when H is not true}. (127) 

Tests of hypotheses as described in this chapter are based on assigning a 
small value a to the probability of a Type I error—the probability of rejecting 
H when H is true. In addition, whatever the test procedure is, rejecting H 
when His not true is usually something we want a test to achieve with as high 
a probability as possible. In terms of (127) we therefore want the power of a 
test, for a given value of a, to be as large as possible. In the preceding example 
it can be seen that, for given values of a and ba, increasing the amount of 
data, i.e., increasing N, is one way of increasing the power, 1 — P(II). This 
kind of result is true fairly generally. Also, for given a and N, the alternative 
hypothesis for which �  is largest (in the example, the largest value of ba) 
is that which has the largest power. Extensive discussion of the power of a 
test and the part it plays in the theory of hypothesis testing in general is 
beyond the scope of this book. Scheffe (1959), Graybill (1961) and Rao (1965) 
are three of the many places where such discussion may be found. 
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d. Examining residuals 
The estimated error vector 

e = y - Xh 

is customarily referred to as the vector of residuals. In a variety of ways, its 
elements can be plotted and otherwise investigated to see if they suggest that 
assumptions inherent in the assumed model are not being upheld. The general 
problem entailed here—of examining residuals—is a large one; we do no 
more than hint at some of the available analyses and refer the reader elsewhere 
for more complete discussions. 

Several elementary, but important, properties of the residuals are worth 
noting. With P = I — X(X,X)-1X/ of (80), which is symmetric and idempo-
tent, as noted in (64), 

e = y - X & = y - X(X�X)-iX�y = [I - X(X�X)-iX�]y = Py 

where, from (65), PX = 0. A first property of the residuals is that they sum 
to zero: 

2 e, = l'e = l�Py = 0 

using l 'P = 0' given by (79). Second, their sum of squares is SSE—as is 
evident in (66): 

2 e\ = e'e = y'P'Py = y'Py = y'y - y'X(X'XrxX'y = SSE. 
i=l 

Concerning distributional properties of residuals, their expected values are 
zero and their variance-covariance matrix is Ρσ2: 

E(i) = E(Py) = PXb = 0 
and var(e) = var(Py) = P2cr2 = Ρσ2. 

Additional results are shown in Exercise 19. 
The properties just described hold true for the residuals of any intercept 

model. Consideration of the extent to which they satisfy other conditions is 
the means whereby assumptions of the model can be investigated. For ex-
ample, in assuming normality of the error terms in the model we have 
e ~ JV(0, Ρσ2). Plotting the values of ei to see if they appear normally 
distributed therefore provides a means of seeing if the assumption e ~ 
N(0, � 2�) might be wrong. In doing this we ignore the fact that because 
var(e) = Ρσ2 the e/s are correlated since, as Anscombe and Tukey (1963) 
indicate, for at least a two-way table with more than three rows and columns, 
"the effect of correlation [among residuals] upon graphical procedures is 
usually negligible". Draper and Smith (1966) provide further discussion of 
this point. 
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Other graphical procedures that may provide evidence of inappropriate 

assumptions in the model involve plotting the residuals against E(y) and 
against the observed #'s. The latter can be especially meaningful when the 
#'s are time—and even when this is not the case, if time has been a factor 
involved in collecting the data the plot of residuals against time may be quite 
revealing. Two conclusions that these kinds of plots might suggest are that 
the variance of the error terms may not be constant or that additional terms 
are needed in the model. Draper and Smith (1966) give a most readable 
account of using these procedures, including reference to appropriate re-
search papers. Three more recent publications are those of Theil (1968), 
Cox and Snell (1968) and Loynes (1969). 

8 . SUMMARY OF REGRESSION CALCULATIONS 

The more frequently used of the general expressions developed in this 
chapter for estimating the linear regression on k ^-variables are summarized 
and listed below. 

N: number of observations on each variable. 

k: number of rr-variables. 

y: N X 1 vector of observed y-values. 

Xx: N x k matrix of observed ^-values. 

X = [l XJ. 

y\ mean of the observed t/'s. 

x ' = {\jN)l�Xx : vector of means of observed #'s. 

: b0 is the intercept; 

: S- is vector of regression coefficients. 

3C= Xx — lx ' : matrix of observed x�s expressed as deviations from 
their means. 

9£�9C\ matrix of corrected sums of squares and products of observed #'s# 

9£�y: vector of corrected sums of products of observed x�s and y's. 

r = k + 1 : rank of X. 

b = 
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SSTm = y'y — Ny2 : total sum of squares (c.f.m.). 

I = (SC�SCy-^SC�y : estimated regression coefficients. 

SSE = SSTm — £�3£�y : error sum of squares. 

a2 = SSE/(7V — r) : estimated residual error variance. 

var(^) = {3C�3Cyxa2 : estimated covariance matrix of £. 

SSRm = S�SC�y : sum of squares due to fitting model over 

and above the mean. 

R2 = SSR/SST : coefficient of determination. 

Fr_ltN_r = SSRJO - \)a2 : F-statistic for testing H: 6 = 0. 

a« = ith diagonal element of {� &� 1. 

h = aj� y/a** .: /-statistic, on TV — r degrees of freedom, 
for testing hypothesis ^ = 0. 

#i ± �� -� ,\� >�� � � 2 : symmetric 100(1 — a) % confidence 

interval for b{. 

FQ,N-r = t�^Mw* : s t a t i s t i c for testing H: Sq = 0. 

50 = y — xY : estimated intercept. 
cov(b0,£) = —{� �3C)~Yx!e2 : estimated vector of covariances of b0 

with ^. 

0(£o) = [IIN + χ ' ί ί Τ ' ^ - ^ Ι σ 2 : estimated variance of hQ. 

t0 = b0l\Jd(b0) : /-statistic, on N — r degrees of freedom, 
for testing hypothesis b0 = 0. 

b0 ± tN_r ia-Jv(b0) : symmetric 100(1 — a)% confidence 
interval for Z?0. 

No-intercept model. Modify the above expressions as follows. 
Use Xx in place of 3C\ 

X(XX = matrix of uncorrected sums of squares and products of observed 
#'s. 

X^y = vector of uncorrected sums of products of observed x�s and y�s. 
Put r = k (instead of k + 1). 
Use SST = y'y (instead of SSTm = y'y - Ny2). 
Ignore b0 and b0. 
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E X E R C I S E S 

4 
18 
59 

5 
17 
60 

6 
20 
50 

7 
21 
52 

8 
40 
38 

9 
30 
42 

10 
24 
40 

1. For the following data 

/: 1 2 3 
Vi\ 12 32 36 
a?f: 65 43 44 

(a) Calculate the normal equations (11). 
A 

(b) Calculate b and �  as in (14) and (15). 

2. When k = 1 show that (41) and (42) are equivalent to (14) and (15) and also 
equivalent to (21). 

3. When y has variance-covariance matrix V, prove that the covariance of the 
b.l.u.e.'s of p'b and q'b is p ^ X ' V ^ X ) - ^ . 

4. Since SSM = y'7V-1ll'y, show that Λ ^ Ι Ι ' is idempotent and has null products 
with I — X(X'X)-1X'. What are the consequences of these properties of TV-1!!' ? 

5. Derive the matrix Q such that SSRW = y'Qy; show that Q is idempotent and 
has null products with I — X(X'X)-1X'. What are the consequences of these 
properties of Q? Show that SSRm and SSM are independent. 

6. Show that the non-centrality parameters of the non-central ^-distributions of 
SSM, SSRW and SSE add to that of SST. 

7. With the notation of this chapter, derive the F-statistics and values of b shown 
below. 

(0 
(ü) 

(iii) 

Hypothesis 

* = 0 

' =h 

XV = m 

F-statistic 

SSRJfc*2 

(i -S^�3C�%{1 -4>) /** 2 

(xV -/w)2/V(ar�� �)-^*2 

(iv) WiW 

b' = [y 0'] 

b' = [y - x% 4] 

~ t / X V - / n \ 

X 

- I 

b = 
y - K*v 

o 
tv — 6V JvqJQQ b^J 

In each case state the distribution of the F-statistic under the null hypothesis, 
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8. Show that the F-statistic for testing the hypothesis LV = m takes essentially 
the same form as F(H). Derive the estimator of 6 under the null hypothesis 
Us = m, showing that b0 = b0 + x�(6 —6). 

9. Suppose σ2 = 200 and b' = [3 5 2] where 

v(t>i) = 2 8 v(4) =24 v(4) = 18 
c o v ^ , b2) = - 1 6 cov(^ ,^3 ) = 14 cov(Z>2,4) = - 1 2 . 

Show that the F-statistic for testing the hypothesis bx = b2 + 4 = 63 + 7 has 
a value of 1.0. Calculate the estimate of b under the null hypothesis. 

10. By writing γ for I /b in equation (114) write down the estimator of γ and 
residual sum of squares for fitting that model. Show that the estimator of γ 
corresponds to the estimator b given in equation (103) and that the residual 
sum of squares is identical to SSE + Q. 

11. By using expression (116) prove directly that [y'y — (SSE + Q)]/a2has anon-
central ^-distribution, independent of SSE, when m = 0; and show that, 
under the null hypothesis, the non-centrality parameter is b'L(S'X'XS)L'b/2a2. 

12. Prove that in Table 3.7 SSR - Q = b�pX�pXpbp. [Hint: Use (117) and (X'X)"1 

defined before (107).] 

13. Show that if in the example of Sec. 6dthe reduced model is derived by replacing 
b2 by bx — 4 then the analysis of variance is as follows: 

Degrees of Sum of 
Source Freedom Squares 

Reduced model 2 1156.7 
Error 3 204.65 

Total 5 1361.0 

14. Show that Table 3.6 reduces to the customary analysis of variance table for 
testing the hypothesis b�  = 0 in the model E{yi) = a + bxxix + b2xi2; i.e., 
show that SSRm—Q reduces to the SSRmwhen fitting a + b2xi2. Use the 
intercept model. 

A 

15. If bk+1 is the estimated regression coefficient for the (k + l)th independent 
variable in a model having just k + 1 such variables, the corresponding /-

statistic for testing the hypothesis bk+1 = 0 is t = bk+1/Jvar(bk+1) where 

\ar(bk+1) is the estimated variance of bk+1. Prove that the F-statistic for testing 
the same hypothesis is identical to t2. 
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16. For � � and b of (48) and (49), t�b = X�y is the unique b.l.u.e. of t�b. Prove this 
by assuming that t�b + q�y is a b.l.u.e. of t�b different from t�b and showing 
that q� is null. 

17. Prove that � � = t�iX�V^X^X�V"1 of (47) minimizes rather than maximizes 
w = X�VX - 2� �(� ��  - t). 

18. Prove that the definitions in (77) and (78) are equivalent to the computing 
formulae given in (76). 

19. Prove the following results for e of an intercept model. What are the analogous 
results in a no-intercept model ? 

cov(e\ y) = � � 2 and cov(e, y) = 0NxN; 

cov(e\ b) = 0Nx{k+1), but cov(e, b) = � (� �� )"1 <r2; 
N N 

2 eiyi = SSE and 2 � � � β °* 



CHAPTER 4 

INTRODUCING LINEAR MODELS: 

REGRESSION ON DUMMY VARIABLES 

This chapter begins by describing, in terms of an example, a type of regression 
analysis that is not recommended. It highlights, however, the advantages of 
an alternative analysis known as regression on dummy (0, 1) variables. This 
in turn is a useful precursor to linear models that are not of full rank—the 
subject of the next chapter. 

1. REGRESSION ON ALLOCATED CODES 

a. Allocated Codes 
The Bureau of Labor Statistics' Consumer Survey 1960-61 reports detailed 

data about household expenditure habits and the characteristics of each house-
hold sampled. Of the many questions that could be asked of such data one is, 
"To what extent is a household's investment in consumer durables associated 
with the occupation of the head of household ?" Investment behavior is, of 
course, related to many factors other than occupation, but for purposes of 
illustration we consider this question just as it stands. 

The survey data contain figures on investment in consumer durables 
(hereafter referred to simply as investment) for some 9,000 families; and for 
each, the occupation of the head of the household is also recorded, in one of 
14 different classes. Suppose the 14 classes are further grouped into 4 cate-
gories : 

1. Laborer 3. Professional 

2. Artisan 4. Self-employed 

[ 135 ] 
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Also, suppose a regression analysis has been proposed, of investment on 
occupation, as a means of answering the question posed. A problem im-
mediately arises: how can occupation be measured? One possibility is to 
"measure" it by the code numbers 1, 2, 3 and 4 listed above. In some sense 
one might rationalize that these numbers correspond to a measure of occupa-
tional status, and how else, it might be asked, can one "measure" occupation 
recorded in this way in order to investigate the effect of occupation on in-
vestment ? Accepting these numbers 1, 2, 3 and 4, the procedure would be to 
carry out a regression analysis of y, investment, on x, which would be 1, 2, 
3 or 4 depending on which occupational category the head of the household 
belonged to. Details of the regression analysis would proceed in the usual 
fashion using a model _, λ , , , /1λ 

E(y,) = b0 + btfi (l) 
and a test of the hypothesis b�  = 0 could easily be made. 

b. Difficulties and criticism 
As an analysis procedure, what we have just described is permissible. An 

inherent difficulty, however, occurs with the definition of x, the independent 
variable occupational status. Although the 4 categories of occupation repre-
sent different kinds of occupation, allocation of the numbers l, 2, 3 and 4 to 
these categories as "measures" of occupational status may not accurately 
correspond to the underlying measure of whatever is meant by occupational 
status. The allocation of the numbers is, in this sense, quite arbitrary. For 
example, does a professional man have 3 times as much status as a laborer? 
If the answer is "no", and a different set of numbers is allocated to the 
categories, the same kind of criticism can be leveled: whatever the allocation 
may be it is essentially arbitrary. 

This criticism of allocating codes to the categories is not entirely justified so 
far as the suggested model, namely (l), is concerned. By giving a self-employed 
person an #-value of 4 we are not really saying he has twice as much status as 
an artisan (for whom x = 2). But, in terms of the model, what we are saying 

./^investment of a laborer) = b0 + bl9 

^(investment of an artisan) = b0 + 2b� , 

^(investment of a professional) = b0 + 3&1? 

and ^(investment of a self-employed) = b0 + 4b� . 

This means, for example, that 

^(investment of a self-employed) — ^(investment of an artisan) 
= ^(investment of a professsional) — ^(investment of a laborer) (2) 
= 2[£"(investment of a professional) — ^(investment of an artisan)] 
= 2bx. 
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This, in terms of the real world, may be quite unrealistic. And yet, even with-
out data, allocation of the numbers 1, 2, 3 and 4 forces this consequence on 
the analysis. The only estimation the analysis will yield will be that of bx 

(and b0). This will also be the case even if a set of numbers different from 
1, 2, 3 and 4 is allocated to the categories: relationships akin to (2) will still 
apply and, so far as they are concerned, estimation of bx will be the only 
achievement from a regression analysis. 

The inherent difficulty with the analysis suggested above is the allocation 
of codes to non-quantitative variables such as "occupation". Yet such vari-
ables are frequently of interest: religion and nationality in the behavioral 
sciences; species, fertilizer and soil type in agriculture; source of raw material, 
treatment and plant location in an industrial process; and so on. Allocating 
codes to these variables involves at least two difficulties: often it cannot be 
made a reasonable procedure (e.g., allocating codes to "measure" geographi-
cal regions of the United States), and in making any such allocation we auto-
matically impose value differences on the categories of the variables in the 
manner illustrated in equation (2). 

c. Grouped variables 
These same difficulties also arise with variables that are more measurable 

than those just considered. Education is an example. It can be measured as 
the number of years of formal education but then an immediate question is, 
When does formal education start ? Measurement difficulties of this nature 
can, of course, be avoided by defining education as a series of categories, 
such as high school incomplete, high school graduate, college graduate, and 
advanced degree. These are not unlike the categories of occupation discussed 
earlier although they do have a clear-cut sense of ordinality about them and 
hence some sense of "measure". However, this would disappear at once were 
a fifth category "foreign education" to be added. The matter is also further 
complicated by the subjectivity of decisions that have to be made in classify-
ing people within such categories. For example, how would a man with a 
foreign education but an American doctorate be classified; or what would 
be the classification of a college dropout who had subsequently passed the 
Institute of Flycatchers' examination? 

Many instances could be cited where variables are grouped into categories 
in a manner similar to the education example just given. Income is a common 
example, with such categories as high, medium, low and poor; city size is 
another, such as metropolis, large city, city, town and village; and so on. In 
all these cases it is possible but, for the reasons described, not very rational 
to impose codes on the categories of independent variables of this nature. 
This problem is avoided by using the technique of regression on dummy 
(0, 1) variables. As an analysis procedure it is also more informative than 
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regression on allocated codes because it leads to a larger multiple correlation 
coefficient (i?2, as defined in Sec. 3.4g; see also Exercise 9 of Chapter 6). 
Furthermore, it provides from the data estimated values to be associated with 
categories of the independent variables, rather than allocating codes arbi-
trarily, regardless of the data. [Illustration of these estimated values and of the 
larger i^-values can be found, for example, in Searle and Udell (1970) 
where regression on allocated codes and regression on dummy variables have 
both been carried out on the same set of data.] 

d. Unbalanced data 
Despite the limitations of using allocated codes, an investigator with data 

to analyze and who has limited training and experience in statistics might well 
be tempted to use these codes. Armed with a knowledge of regression and of 
analysis of variance as depicted from the point of view of carefully designed 
experiments (albeit a good knowledge of these topics), an investigator could 
easily feel that regression on allocated codes was an appropriate analysis. 
For example, for 100 people in a (pilot) survey designed to investigate the 
effect of both occupation and education on investment suppose that the 
number of people reporting data were distributed as in Table 4.1. Faced with 

TABLE 4 . 1 . NUMBER OF PEOPLE, CLASSIFIED ACCORDING TO 
OCCUPATION AND EDUCATION, WHO REPORTED IN VESTMENT DAT A 

Occupation 

Laborer 
Artisan 
Professional 
Self-employed 

High School 
Incomplete 

14 
10 

3 

Education 

High School 
Graduate 

8 

17 
9 

College 
Graduate 

7 

22 
10 

data from people so classified, the choice of an analysis procedure may not, 
for some investigators, be easy. A patent difficulty with such data is that the 
numbers of observations in the subclasses of the data are not all the same. 
Data where these numbers are the same are known as equal-numbers data 
or, more frequently, as balanced data. In contrast, those like Table 4.1 with 
unequal numbers of observations in the subclasses, including perhaps some 
that contain no observations at all (empty subclasses, or empty cells), are 
called unequal-numbers data or, more usually, unbalanced data, or sometimes 
"messy" data. 



[4.1] REGRESSION ON ALLOCATED CODES 139 

Traditional analysis of variance methods, in terms of well-designed experi-
ments, are generally applicable only to balanced data. (Exceptions are the 
specified patterns of Latin square designs, balanced incomplete block designs 
and derivatives thereof.) Hence for unbalanced data like those of Table 4.1, 
analysis of variance in its traditional framework is inapplicable. On the other 
hand, regression can be used with some degree of propriety by allocating 
codes to "education" and "occupation". Disadvantages implicit in doing 
this are incurred, as has just been described, but at least some analysis can be 
conducted, a computer can do the arithmetic and interpretation is straight-
forward. The possibility that regression on allocated codes may be used must 
therefore not be ignored. Indeed, in the presence of powerful computer pro-
grams for regression analysis, the possibility of its being used has greatly 
increased. 

The preferred analysis is regression on dummy (0, 1) variables. This is so 
not only because of the advantages already discussed but also because it is 
identical to established analysis of variance procedures that are available for 
unbalanced data. As well as being called regression on dummy variables, or 
analysis of variance for unbalanced data, it is also known as the method of 

fitting constants—fitting the constants, or terms, of a linear model. The calcu-
lations involved in this method of analysis are, for unbalanced data, usually 
more complicated than those of traditional analysis of variance for balanced 
data, so that prior to the present era of computers there has been limited 
demand for analyzing unbalanced data. Nowadays, however, in view of the 
availability of vast computer storage and editing of data we are witnessing a 
great increase in the demand for analysis of unbalanced data, analysis which 
cannot be made merely by means of minor adjustments to traditional analyses 
of variance of balanced data. Indeed, the situation is just the opposite: un-
balanced data have their own analysis of variance techniques, and those for 
balanced data are merely special cases of the techniques for unbalanced data. 
The position is that unbalanced data analyses can be couched in matrix 
expressions, many of which simplify very little in terms of summation 
formulas. In contrast, when the numbers of observations in the subclasses are 
all the same, these matrix expressions simplify considerably. They reduce, in 
fact, to the well-known summation formulae of traditional analysis of vari-
ance of designed experiments, such as randomized complete blocks, fac-
torial experiment designs and others. One can therefore think of such 
analyses simply as special cases of the more basic analyses of variance for 
unbalanced data. This is the attitude taken in this book. General analysis 
procedures are developed in Chapter 5 and applied to specific situations in 
Chapters 6, 7 and 8—but at all times for unbalanced data. Passing reference 
is made to simplification of the results in the case of balanced data, but there 
is little detailed discussion of such cases. 



140 I N T R O D U C T I O N TO LINEAR MODELS [4.2] 

The remainder of this chapter acts as a preface to the development of 
general linear model theory in the chapter that follows. Since regression on 
dummy variables is identical to a wide class of linear models, the one serves 
to introduce the other. Furthermore, although there is widespread use of 
regression on dummy variables in many fields of application, its equivalence 
with linear models is not always appreciated, and ramifications of linear model 
theory are not always adopted by the users of regression on dummy (0, 1) 
variables. We therefore discuss this first, demonstrate its equivalence to 
linear models, characterize the description of linear models and thereafter 
confine our attention to them. 

2 . REGRESSION ON DUMMY ( 0 , 1) VARIABLES 

a. Factors and levels 
Discussion of regression on dummy variables is enhanced by the notion of 

factors and levels, a descriptive terminology that can be usefully adapted from 
the literature of experimental design. 

In studying the effect of the variables "occupation" and "education" on 
investment behavior, as in Table 4.1, we are interested in the extent to which 
each category of each variable is associated with investment. Thus we are 
interested in seeing to what extent a person's being an artisan affects his 
investment and to what extent someone else's being self-employed affects 
his investment. More particularly, we are interested in investigating the 
difference between the effects of these two categories in the population of 
people of whom our data are considered to be a random sample. To acknowl-
edge the immeasurability of the variables and the associated arbitrariness or 
subjectivity in deciding on their categories (as discussed in the previous 
section), we introduce the terms "factor" and "level". The word factor 
denotes what has heretofore been called a variable. Thus occupation is one 
factor, and education is another. The categories into which each factor 
(variable) has been divided are called levels of that factor. Thus laborer is 
one level of the factor occupation, and professional is another level of that 
factor. This use of "factor" in place of "variable" emphasizes that what is 
being called a factor cannot be measured precisely by cardinal values: the 
word "variable" is reserved for that which can be so measured. Given this 
interpretation of "variable", investment is the only variable in our investiga-
tion. Other elements of the investigation are factors, each with a number of 
levels. The term "levels" emphasizes that the groupings of a factor are just 
arbitrary divisions with no imposition of allocated values. It is these that we 
seek to estimate from data. In this context the ordinal numbers 1, 2, 3 and 4 
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shown in the list of occupations are no longer values given to the categories 
of a variable but are used solely to identify levels of factors. For example, 
level 2 of the occupation factor is artisan. 

Thinking in terms of levels of factors rather than groupings of variables 
overcomes many difficulties inherent in using allocated codes. Even when 
groupings of a non-quantitative variable have no sense of ordinality, they 
can still be thought of as levels of a factor; and whenever value differences 
cannot be placed rationally on the groupings, the concept of levels enables us 
to estimate differences between the effects that the levels of a factor have on 
the variable being studied, without any a priori imposition of values. This 
estimation of differences is brought about by regression on dummy (0, 1) 
variables. 

b. The regression 
Our aim is to consider the effects of the levels of each factor on investment. 

We begin by estimating just the effect of education on investment, more 
particularly, the effect on investment of each of three levels of the factor 
education shown in Table 4.1. To do this we set up a regression on three 
independent variables xx, x2 and x3: 

y. = b0 + bxxa + b2xi2 + b3xi3 + ei. (3) 

In this context yi is investment and b0 and et are, respectively, the customary 
constant and error terms found in regression analysis. Corresponding to the 
x�s (the independent variables), which have yet to be defined, are the regression 
coefficients bx, b2 and b3. Through the manner in which the x�s will be defined 
these Z>'s turn out to be terms that lead to estimates of the differences between 
the effects on investment of the levels of the factor education. 

To define the x's, we note that each person falls into one and only one educa-
tional level. Whichever level he is in, let the corresponding x take the value 
unity and let all other x�s for that person have a value of zero. Thus a high 
school graduate is in level 2 of the education factor, and for him xi2 = 1, 
with xa = 0 and xi3 = 0. In this way numerical values (0's and l's) can be 
assigned to all three x9s for each person in the data. On these values a regres-
sion analysis is carried out. 

It is because each rvalue is unity when someone belongs to the corre-
sponding level of education, and zero otherwise, that the x�s are described as 
(0, 1) variables: and because they are not true variables in the sense previously 
defined they are often called "dummy" variables. Despite this, the formal 
procedures of regression can be carried out, with consequences of great 
interest. 

Example. We suppose that we have investment data on 3 people who did 
not complete high school, on 2 who did, and on 1 college graduate. These 
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TABLE 4 . 2 . I N V E S T M E N T 

Educational Status 

1. (High school incomplete) 
2. (High school graduate) 
3. (College graduate) 

I N D I C E S OF 6 P E O P L E 

Investment Index 

2/ll> 2/l2> 2/l3 

2/21» 2/22 

6 observations (investment indices) are shown in Table 4.2, where yi} is the 
observation on the y'th person in the /th level of educational status. Then, 
with ev = y{j — E(y{j) just as in regression (except for having two sub-
scripts rather than one), we write the observations in terms of (3) as follows: 

ylx = b0 + bj.0) + Z>2(0) + i,(0) + e u 

2/12 = bo + *i(l) + WO) + *»(0) + e12 

2/13 = *o + *i(l) + *.(0) + *»(0) + e13 

2/21 = Λ> + *i(0) + *,(1) + *»(0) + e21 

2/22 = b0 + fcx(O) + Z>2(1) + i,(0) + e22 

2/31 = 2>o + *i(0) + *,(0) + *,(1) + en. 

The l's and O's in parentheses are the values of the dummy (0, 1) variables. 
Their pattern can be seen more clearly when the equations are written as 

and, by writing 

y = 

"yiT 

2/12 

2/13 

2/21 

2/22 

_ J / 3 1 _ 

e 

~Vn~~ 

2/12 

2/13 

2/21 

2/22 

_ ^ 3 1 _ _ 
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1 

1 

1 

_1 

~*ιι~ 

*12 

*13 
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^22 

£ * 1 _ 
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0 

0 
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b = 

0 0 

0 0 

0 0 

1 0 

1 0 

0 1_ 

po" 

l�1 
[b3_ 

+ 

^11 

^12 

^13 

^21 

e 2 2 

_ e 3 1 _ 
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and X = 

"1 1 

1 1 

1 1 

1 0 

1 0 

1 0 

0 0Ί 

0 0 

0 0 

1 0 

1 0 

0 1_ 

(4) 

(5) 
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the equations become the familiar form 

y = Xb + e (6) 

that has been dealt with so fully in the preceding chapter. On defining the 
properties of the e-terms in (6) exactly as in regression, namely e ~ (0, σ2Ι), 
least squares applied to (6) yields the same normal equations as before, 
X�Xb = X'y. Now, however, X does not have full column rank—as seen in 
(5), the sum of its last 3 columns equals its first. Thus is a model described as 
a "model not of full rank". Its property is that X does not have full column 
rank, with the important consequence that (X'X)-1 does not exist and so 
X�Xb = X'y cannot be solved as h = (X'X^X'y. However, by using a 
generalized inverse of X�X solutions can be found; but before discussing them, 
in Chapter 5, we give another example and then describe other aspects of 
linear models. 

Example. Countless experiments are undertaken each year in agriculture 
and the plant sciences to investigate the effect on growth and yield of various 
fertilizer treatments applied to different varieties of a species. Suppose we 
have data from 6 plants, representing 3 varieties being tested in combination 
with 2 fertilizer treatments. Although the experiment would not necessarily 
be conducted by growing the plants in varietal rows, it is convenient to 
visualize the data as in Table 4.3. The entries in the table are such that y^ 

TABLE 4 . 3 . YIELDS OF 6 PLANTS 

Variety 

1 
2 
3 

Treatment 

1 2 

2 / l l l J 2 / l l2 2/l21 

2/211 2/221 

2/311 

represents the yield of the kth plant of variety / that received treatment j . 
We will now write these out, using 5 dummy (0, 1) variables and 5 regression 
coefficients corresponding to the 3 varieties and the 2 treatments. The re-
gression coefficients for the 3 varieties will be denoted by al5 a2 and a3 and 
those for the treatments will be � �  and � 2. Furthermore, the intercept term in 
the regression, previously denoted by b0, will now be written as � . Thus the 
vector of parameters b' will be 

b' = [�  αχ α2 α3 � �  � 2], 
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[This notation clearly distinguishes between regression coefficients for 
varieties (oc's) and those for treatments (/Ts) and, in contrast to using b�s 
as elements of b, avoids double subscripting which could then provide that 
clarity.] With this notation the regression equation for ym is 

Vijlc = l�1 + al%fc,l + α2^ι^,2 + a3%fc,3 + PlXiJk,l + H2Xijk,2 + eij 

where the x's and #*'s are dummy (0, 1) variables. Thus for the observation 
on variety 1 and treatment 2, x121tl = 1, x121 >2 = 0 and xl21jZ = 0; and 
^*2i i = ^ w ^ 1̂21.2 == 1· In this way the regression equations for the yields 
in Table 4.3 are 

2/iii = �  + *i(l) + *2(0) + a3(0) + ^(1) + &(0) + ein 

y112 = �  + a i ( l ) + a2(0) + a3(0) + ft(l) + &(0) + eU2 

2/121 = �  + *i(l) + *2(0) + a3(0) + &((>) + j92(l) + e121 

2/211 = �  + *i(0) + a2(l) + a3(0) + ßx(l) + ß2(0) + e. 

2/221 = µ + ax(0) + a2(l) + a,(0) + &(0) + ß2(l) + e 
2/311 = A* + *i(0) + a2(0) + a8(l) + ß1(l) + &(0) + ezll . 

Using y and e to denote the vectors of observations and error terms in the 
usual way, these equations become 

(8) 

(7) 
c 211 

^221 

write 
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and b = 

~ j " " 

<*1 

«2 

«3 

ßl 

JK 

(9) 

where X is not of full column rank: the sum of columns 2, 3 and 4 equals 
column 1, as does that of columns 5 and 6. With this proviso equations (8) 
are y = Xb + e just as before, the equation of a model that is not of full 
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rank. In general, the matrix X, having elements that are all 0 or 1, is called an 
incidence matrix, because the presence of the l's among its elements describes 
the incidence of the terms of the model (� , the a's and the ß's) in the data. 

3 . DESCRIBING LINEAR MODELS 

a. A 1-way classification 
Equations (4) and (8) in the above examples have been developed from the 

point of view of regression on dummy (0, 1) variables. Consider equations 
(4) again. They relate to investment indices of 6 people in 3 different levels 
of educational status, as shown in Table 4.2. Suppose that equations (4) are 
rewritten as 

Vu = �  + h + ell9 

y12 = �  + bx + e129 

Viz = �  + h + e13, (10) 
2/21 = �  + h + e21, 

2/22 = �  + b2 + e22, 
and y31 = �  + b3 + e31, 

where the x�s are no longer explicitly shown and �  is written for b0. Then we 
see that in each equation of (10) the subscript on the b corresponds exactly 
to the first subscript on the y; e.g., bx is found in yll9 y12 and y13 and b2 is in 
2/21 and y22. Hence each equation of (10) can be written as 

Va = �  + bi + ea ( n ) 
for the various values that / and j take in the data. In this case / = 1, 2, 3 
and the upper limit ony in the /th class is the number of observations in that 
/th class. Denoting this by «z we have/ = 1, 2, . . . , ni where nx = 3, n2 = 2 
and « 3 = 1 . Thus have we developed (11) as the equation of the general 
linear model for 3 classes; for a classes it applies for / = 1, 2, . . . , a. 

Although (11) is the general form of a linear model equation, its specific 
values are still as shown in (4), exactly as developed in the regression context. 
Now, however, there is no need to view the elements of b as regression co-
efficients, nor the O's and l's of X as dummy variables. The elements of b 
can be given meanings in their own rights, and the O's and l's of X relate to 
"absence" and "presence" of levels of factors. 

Since �  enters into every equation in (10) it is described as the general 
mean of the population of investment indices. It represents some overall 
mean regardless of educational status. 
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To give meaning to the b�s consider bx: in equations (10) [or (4), they are 
equivalent] bx occurs in only those equations pertaining to investment 
indices of people of educational status 1 (high school incomplete), namely 
2/n> 2/12 and y13. Similarly for b2: in (10) it occurs only in the equations for 
people of educational status 2, y21 and y22- Likewise b3 is in the equation for 
y31 and nowhere else. Thus bx gets described as the effect on investment of a 
person's being of educational status 1: similar descriptions apply to b2 and 
bs. In general, in terms of (11), bi is described as the effect on investment due 
to educational status z. 

Description of a linear model is incomplete without specifying distributional 
properties of the random error terms, the e^s evident in equations (4), 
(10) and (11). This is usually done by attributing to them the same kind of 
properties as in regression analysis [see equations (5), (6) and (7) in Sec. 
3.1b]. Thus ei�  is defined as e{j = yio — E{y^ and so E(e{j) = 0, giving 

E{yi0) = �  + bt:. 

The variance of each eio is defined as σ2 and so 

v{ei3) = E[e�  - E{ei3)f = E(e%) = a2 for all i and j . 

Furthermore, covariances between all pairs of different e's are taken to be 
zero, so that cov(eiy, ery) = 0 unless / = /' and j = f in which case the 
covariance becomes the variance a2. Thus 

var(e) = σ2Ι. 

The general description of the 1-way classification model can therefore be 
summarized as follows. For yu being theyth observation in the zth class, the 
equation of the model is (11): 

Va = �  + bt + e{j. 

�  is the general mean, bi is the effect on yi5 due to the /th class and ei5 is a 
random error term peculiar to y{j with 

e ~ (0, σ2Ι). 

For a classes, / = 1, 2, . . . , a and j = 1, 2 , . . . , w, for the /th class. The 
additional assumption of normality is made when hypothesis testing and 
confidence intervals are considered: i.e., we then assume 

e ~ N(0, cr2I). 
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b. A 2-way classification 
Suppose equations (7) are rewritten with the x's no longer explicitly shown, 

just as were equations (4) in the preceding example, in (10). Then (7) becomes 

2/iii = �  + <*i + ßi + eul 

2/112 = �  + <*! + � �  + e112 

2/121 = �  + <*� + � 2 + e121 

2/211 = �  + *2 + ßl + <?211 
2/221 = �  + α2 + � 2 + e221 

2/311 = �  + α3 + � �  + e3ii-

Here, in each equation, the subscripts on a and /? correspond respectively to 
the first two ony: ax and � �  are found in ylu and ?/112, and a2 and /?x are in 
2/211· Hence each equation in (12) can be written as 

Vm = �  + ai + � i�  + em- (13) 

The values taken by i,j and k in the data are, in this case, / = 1, 2, 3 and j = 
1, 2 with the upper limit of k being the number of observations of the /th 
variety receiving the yth treatment. Denoting this by nu we have k = 1, 
2, . . . , Hi, where Λη = 2, «i2 = 1, «2i = 1, «22 = 1> «31 = 1 and «32 = 0. 
Thus (13) is the equation of the general linear model involving varieties and 
treatments. 

As with the 1-way classification of the preceding section so here, the 
elements of b (in this case � , the a's and /Ts) do not need to be viewed as 
regression coefficients but can be given meanings in their own rights. First 
� : it is described as the mean of the whole population of yields, representing 
some overall mean yield regardless of variety or treatment. Second, the 
a's: in equations (12) [or (7), they are equivalent] ax occurs in only those 
equations pertaining to yields of variety 1, namely ylll9 y112 and y121. Similarly 
for a2: in (12) it occurs only in the equations of yields of variety 2, y211 and 
?/221. Likewise a3 is in the equation for y311 and nowhere else. Thus ax gets 
described as the effect on yield of a plant's being of variety 1; similar de-
scriptions apply to a2 and a3. In general, α̂  is described as the effect on yield 
due to variety L Likewise the /?'s: � �  occurs only in equations of yields that 
received treatment 1, yllx, y112, y211 and ysll; and � 2 is in only the equations 
pertaining to treatment 2, those for y121 and y221. Thus ßi is described as the 
effect on yield due to treatment j . Hence general description of the /Ts is 
similar to that of the a's; both are effects on yield, but whereas the a's are 
effects due to variety, the /Ts are effects due to treatment. 

The error terms in this model, the eijk, are assumed to have exactly the 
same properties as before: i.e., if e is the vector of the eijk9 then we assume that 
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e ~ (0, σ2Ι), with the additional assumption of normality for hypothesis 
testing and confidence intervals. 

Apart from �  and eijk, equation (13) has terms for just two factors, which 
can be referred to generally as an α-factor and a ^-factor. The model for which 
(13) is the equation could therefore be called a 2-factor model, although the 
name 2-way classification is more firmly established. Its general description 
is as follows. For ym being the kth observation on the /th level of the a-
factor and theyth level of the /^-factor the equation of the model is (13): 

Vuk = �  + «< + ßi + em. 
�  is the general mean, oct is the effect on ym due to the /th level of the a-
factor, ßj is the effect due to theyth level of the /ff-factor and eijk is a random 
error term peculiar to ym with 

e ~ (0, σ2Ι). 

When the α-factor has a levels, i = 1, 2, . . . , a; and for the ^-factor having b 
levels j = 1, 2, . . . , b\ and k = 1 , 2 , . . . , « ^ for % observations in the (/,y) 
cell or subclass—the "intersection" of the /th level of the α-factor and the 
yth level of the ^-factor. And, of course, for hypothesis testing and confidence 
intervals we further assume 

e ~ N(0, (72I). 

The example of this model described here is from agriculture, but the same 
kind of model can apply to other situations involving 2 factors. Thus for the 
example of Table 4.1 concerning the effect of occupation and education on 
investment, equation (13) could act equally as well as it could for the agricul-
tural example. OL{ would then be the effect on investment of the /th occupation 
category (the /th level of the occupation factor), and ßj would be the effect of 
theyth level of the education factor. 

Similarities between the above description of the 2-way classification and 
that of the 1-way classification at the end of the preceding section will be 
clearly apparent. They extend quite naturally to many-factored models. The 
following outline of a 3-way classification illustrates this. 

c. A 3-way classification 
Suppose that for the data of Table 4.1 the hometown region of the United 

States (Northeast, South, Midwest, Southwest, Rockies or West Coast) was 
also recorded for each person. Then a study of the effects on investment of 
occupation, education and region could be made using a model whose 
equation is 

Vnkh = P + ai + ßi + 7 k + enkh (14) 

where yijkh is the investment index of the hth person in the /th occupation and 
yth level of education living in the kth region, �  is the general mean, af is 
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the effect on investment due to the /th occupation, � �  is the effect due to the 
yth level of education and yk is the effect due to the kth region. As usual, 
eijkh is an error term peculiar to yijkh, and we assume e ~ (0 σ2Ι). If in the 
data there are a levels of occupation, then / = 1, 2, . . . , a; for 6 levels of 
education, j = 1, 2, . . . , b; and for c regions, k = 1, 2, . . . , c. And h = 
1 , 2 , . . . , niSk9 for nm observations in the subclass of the data represented by 
the /th occupation, the/th level of education and the kth region. 

Extension of models of this nature to 4-way and higher-ordered classifica-
tions is clear. 

d. Main effects and interactions 
(i) Main effects. The a's, /?'s and y's of the preceding examples each 

represent the effect on y of one level of one factor. Thus, in the 2-way classifica-
tion of Table 4.3, at- of equation (13) refers to the effect on yield of the /th 
level of the factor variety: i.e., of variety /. And ß5 in the same equation 
refers to the effect on yield of treatment/ Effects of this nature that pertain 
to a single level of a factor are called main effects. This is logical: the effects of 
variety and treatment on yield are the effects in which our main interest lies. 
Hence the elements of the model that correspond to them are called the main 
effects of the model. 

By its very nature, the equation of the model implies that the effect af is 
added to the effect ßi in conjecturing the expected value of yijk as being 

Eton*) = �  + «i + � s � (15) 

This means that the total effect of variety i and treatment/ on expected yield 
is considered as being the sum of the two individual effects az and ßj. For this 
reason the effects are described as being additive. The model also means that 
the effect of variety / on expected yield is considered as being the same, no 
matter what treatment is used on it. For all treatments the effect of variety / 
is assumed to be ai5 and the combined effect of variety / and treatment j 
(over and above � ) is taken to be arf + ßj. 

Suppose values of � , the α/s and /?/s are as follows: 

�  = 4, αχ = 1 and � �  = 4 
α2 = 3 � 2 = 7. (16) 
α3 = 2 

These are hypothetical values of the elements (� , the a's and ß�s) of the 
model (15), introduced for the sake of illustration. They are not observed 
values. Indeed, these elements can never be observed, and in practice they 
are never known, for they are population values which can only be estimated 
from available data. However, for purposes of illustrating certain aspects of 
linear models it is instructive to give arithmetic values to these elements so 
that consequences thereof may be portrayed graphically. For example, with 
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the assumed values of (16) 

£(2/iu) = µ + α1 + & = 4 + 1 + 4 = 9. (17) 
This is not an observed.value of E(yllk) or ofyllk itself: it is an assumed value 
of E(yltk) based on the assumed values of the parameters given in (16). 

First note that (15) for a given / and j is the same for all k. Since the 
subscript k is merely the identifier of individual observations in the (i,j) 
subclass (15) means that the expected value of every observation in that sub-
class is the same. Thus, by (17), the expected value of every observation in the 
(1, 1) cell is, in our hypothetical example, 9; i.e., for all k = 1 , 2 , . . . , nll9 

E(yiik) = 9. With this interpretation the expected values for other subclasses 
derived from (16) are those shown in Table 4.4 and plotted in Figure 4.1. 

TABLE 4 . 4 . E X P E C T E D VALUES OF A N O - I N T E R A C T I O N M O D E L . 
E Q U A T I O N S ( 1 6 ) S U B S T I T U T E D IN ( 1 5 ) . (SEE F I G U R E S 4 . 1 AND 4 . 3 . ) 

Treatment 

Variety 1 

1 E(yllk) = 4 + 1 + 4 = 9 
2 E(y21k) = 4 + 3 + 4 = 11 
3 E(y31k) = 4 + 2 + 4 = 10 

E(y12k) = 4 + 1 + 7 12 
E(y22k) = 4 + 3 + 7 = 14 
E(y32k) = 4 + 2 + 7 13 

E(yijk) 
I 

14 

12 

10 

8 

6 

� ^>+ 

No interaction 

I -L 
Variety 1 Variety 2 Variety 3 

Figure 4.1. Expected values of Table 4.4. 
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In Figure 4.1 it is to be noted that the "variable" of the abscissa, variety 
number, is not a continuous variable. Therefore lines joining values of 
E(yijk) in no way indicate a continuous change in E(yijk) from one variety to 
the next. The lines are shown merely to emphasize the trend in the change, and 
they are used in similar fashion in Figures 4.2, 4.3 and 4.4. Furthermore, the 
ordinates plotted in these figures are values of E(yijk) and not of actual ob-
servations yijk. With this in mind, it is clear from Figure 4.1 that in the hypo-
thetical example of the model given in (15) the effect of variety is the same 
regardless of treatment. For both treatments, variety 2 has an expected yield 
two units larger than does variety 1; and for both treatments variety 3 is one 
unit lower than variety 2. 

(//) Interactions. In some other hypothetical example suppose that the 
plots of expected yields are those shown in Figure 4.2. The difference between 

E(yijk) 
141 

12 I ^ \ . 

1 0 l � <d> 
8l � - IT 

6� ~ 

Interaction 

4 i 

2 r 

I | I I 
Variety 1 Variety 2 Variety 3 

Figure 4.2. Expected values for an interaction model (see Table 4.5). 

this and Figure 4.1 is obvious: the lines for the two treatments are not parallel. 
This indicates that the effect of variety is different foi the different treatments. 
With treatment 1, variety 2 is three units larger (in expected yield) than is 
variety 1 with the same treatment, but for treatment 2, variety 2 is four units 
smaller than variety 1. Thus in this second hypothetical example the varieties 
are acting differently according to which treatment is used. We say that 
varieties are "interacting" with treatments. The extent to which they are not 
acting in the same manner for each treatment is termed an "interaction". 
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This discussion can also be put another way. In Figure 4.1 the difference 
between treatments is the same for each variety; it does not change from 
variety to variety but is constant over all varieties. This is evidenced by 
parallelism of the lines in Figure 4.1. On the other hand, the lack of parallel-
ism in Figure 4.2 indicates that the differences between the treatments differ 
from variety to variety. Thus the difference "treatment 1 minus treatment 2" 
is —5, + 2 and —2 for the three varieties respectively, whereas in Figure 4.1 
it is —3 for every variety. This difference between the two hypothetical 
examples is well illustrated when they are plotted as in Figures 4.3 and 4.4. 

The parallel lines of Figure 4.3 (corresponding to those of Figure 4.1) 
illustrate, for the first hypothetical example (Table 4.4), the uniform differ-
ence between treatments of all varieties. But in Figure 4.4 the non-parallel 
lines illustrate, for the second hypothetical example, the lack of uniformity 
in the differences between treatments over all varieties. 

From this discussion it is evident that in Figures 4.1 and 4.3 (Table 4.4) 
the effect of variety on expected yield is the same for all treatments; and the 
effect of treatment is the same for all varieties. This is also clear from the form 
of equation (15), used as the basis of Table 4.4 and Figures 4.1 and 4.3. But 
in Figures 4.2 and 4.4, the effect of treatment is not the same for all varieties, 
and the effect of variety is not the same for all treatments. There are some 
additional effects accounting for the way in which treatments and varieties 
are interacting. The effects are called interaction effects and represent the 
manner in which each level of one main effect (variety) interacts with each 
level of the other main effect (treatment). These effects are taken into account 
in the equation of the model by the addition of another term. Thus if the 
interaction effect between the /th level of the α-effect and theyth level of the 
^-effect is � .. the equation of the model is 

Eiym) = �  + *� + � , + Yij (18) 

or, equivalent^, yijk = �  + a. + � , + yti + eiik . (19) 

All other elements have the same meaning as before. 
The second hypothetical example (plotted in Figures 4.2 and 4.4) is based 

on the same hypothetical values for µ, the a's and /Ps given in (16) together 
with the following hypothetical values for the interaction effects � ..: 

7i2 = 0 722 = —5 (20) 

7i3 = - 2 � 31 = —3. 

In this way the expected values derived from (18) are those shown in Table 
4.5 and plotted in Figures 4.2 and 4.4. 
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E(yijk) 
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Figure 4.3. Expected values of Table 4.4 (see also Figure 4.1). 
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Figure 4.4. Expected values for an interaction model (see Table 4.5 and also Figure 4.2). 
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TABLE 4 . 5 . EXPECTED VALUES OF AN INTERACTION MODEL. 
EQUATIONS ( 1 6 ) AND ( 2 0 ) SUBSTITUTED IN ( 1 8 ) . 

(SEE FIGURES 4 . 2 AND 4 . 4 . ) 

Variety 

1 
2 
3 

E(yllk) 

E(y2ik) 

E(yzlk) 

1 

= 4 + 1 + 4 - 1 
= 4 + 3 + 4 + 0 
= 4 + 2 + 4 - 2 

Treatment 

= 8 
= 11 
= 8 

E(y12k) 
E(y22k) 
E(y32k) 

2 

= 4 + 1 + 7 + 1 
= 4 + 3 + 7 - 5 
= 4 + 2 + 7 - 3 

= 13 
= 9 
= 10 

Notice that this description of interactions is entirely in terms of expected 
yields, i.e., in terms of models having interactions in them. Such models may 
be used whenever we think the data being dealt with behave in the manner 
illustrated. But the simple numbers used in the example refer not to data; 
they merely exemplify a model. 

Note that whenever n. = 1 for all cells then the model with interaction, 
to 

(19), becomes indistinguishable from the model without interaction, (13). 
The � {. and em terms of (19) get combined, yi$ + eifk = e.. say, and so (19) 
becomes . . �  , 

equivalent to (13). (There is now no need for the subscript k, since it is unity 
for all cells.) This means that when ni5 = 1 we can study only the no-inter-
action model and not the interaction model. 

Generalization of this brief discussion of interactions is clear. yi5 is an 
interaction between 2 factors, and is known as a first-order interaction. An 
interaction between 3 factors is called a second-order interaction. Third-, 
fourth- and higher-order interactions follow in like manner. The higher the 
order the more difficult becomes the interpretation. For example, a third-
order interaction (which involves the interaction between four main effects) 
can be interpreted as the interaction between a main effect and a second-order 
interaction or as the interaction between two first-order interactions. 

Notation. A frequently used notation that helps to clarify the interpretation 
of interactions is based on using the symbol (<xß){j in place of yir This 
indicates that (αβ)^. is the interaction effect between the /th level of the a-
factor and the;th level of the ^-factor. The symbol (*� )�  in no way indicates 
a product of any a with any � . Nor does it if it is written without parentheses, 
as tfir It is a combined symbol indicating more clearly than does y{j that it 
represents an interaction between levels of an α-factor and a ^-factor. By 
this means a high-order interaction, (oißyd)hijk for example, is readily 
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interpreted: as the interaction between αΛ and (ßy� )ijk, or as the interaction 
between (aß)hi and (y� )jk, or as one of many other interpretations. This 
notation also clarifies the writing of a model: e.g., 

Vmm = �  + a, + ßs + yk + ru + pik + 0Jk + <pijk + eijkm 

is not as readily comprehended as is 

Vmm = �  + a, + � , + yk + (aß)iS + (ay)t t + (ßy)jk + (*ßy)ijk + eijkm. 

Finally, even when a model has interactions its order is still described by 
the number of main effect factors it has. Thus (18) is an equation for a 2-way 
classification, just as is (13). But (18) includes interactions and (13) does not. 

e. Nested and crossed classifications 
In the example of Table 4.3 every treatment is applied to every variety. 

True, there are no observations on the use of treatment 2 with variety 3, but 
the feasibility of this combination is not precluded by the absence of data. 
A situation of this nature is described as a crossed classification. This means 
that every level of every factor could be used in combination with every level 
of every other factor: in this way the factors "cross" each other; their "inter-
sections" are the subclasses or cells of the situation, wherein data arise. 
Absence of data from a cell does not imply non-existence of that cell, only 
that it has no data. The total number of cells in a crossed classification is the 
product of the number of levels of the various factors; i.e., ab in a 2-way 
classification. Not all of these may have observations in them; suppose s 
of them do. Then the total number of observations is the sum of the num-
bers of observations in these s cells. 

Example. Suppose at a university a student survey is carried out to 
ascertain the reaction to instructors' usage of a new computing facility that 
provides typewriter terminals in the classroom. We suppose that all freshmen 
have to take English or Geology or Chemistry in their first semester (and 
one other of these courses in their second semester). All three courses in the 
first semester are large and are divided into sections, each section with a 
different instructor and not all sections necessarily having the same number of 
students. In the survey, the response provided by each student is opinion 
(measured on a scale of 1 through 10) of his instructor's use of the computer. 
Based on these data the questions of interest are, Do the instructors differ in 
their use and is the use of the computer affected by the subject matter being 
taught? 

A possible model for this situation would include a general mean �  and 
main effects a1? a2 and a3 for the three types of courses. It would also include 
terms for the sections of each course. Suppose for the moment there are 10 
sections for each course, and that we try to use a model yiik = �  + α2�  + 
ßj + enk f o r i = 1, 2, 3, ; = 1, 2, . . . , 10 and k = 1, 2, . . . , n{j where ?��  
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is the number of students in section/ of course i. Consider ß5. It represents the 
effect of section j : and for/ = 1 say, it would be the effect for section 1 of the 
English course, of the Geology course and of the Chemistry course. This is 
meaningless because these three sections, composed of different groups of 
students, have nothing in common other than that they are all numbered 1 in 
their respective courses. But, assuming students in all courses have been 
allocated randomly to their sections, this numbering is purely for identifica-
tion purposes; it indicates nothing in common about the three sections that 
are numbered 1. Neither is there anything in common about the three sec-
tions that are numbered 5, or 6, or any other number. They are not like the 
treatments in the agricultural example, where treatment 1 on variety 1 was the 
same as treatment 1 on variety 2 and on variety 3. The sections are not related 
in this way; they are identities within their own courses. Thus we refer to them 
as sections within courses, and describe them as being nested within courses. 
Thus sections is a nested factor, or a nested classification, sometimes also 
referred to as a hierarchical classification. 

The difference between a crossed classification and a nested classification 
is exemplified in Table 4.6, in terms of the variety and treatment example 
described earlier and the sections-within-courses example just discussed 

TABLE 4 . 6 . SCHEMATIC REPRESENTATION OF A CROSSED 
CLASSIFICATION AND A NESTED CLASSIFICATION 

A Crossed 
Classification 

Treatment 

Variety 1 2 English 

A Nested Classification 

Course 

Geology Chemistry 

1 Sec. 1 of English Sec. 1 of Geology Sec. 1 of Chemistry 

2 Sec. 2 of English Sec. 2 of Geology Sec. 2 of Chemistry 

3 Sec. 3 of English Sec. 3 of Chemistry 

Sec. 4 of Chemistry 

In the crossed classification variety 1 is used in combination with both treat-
ment 1 and treatment 2 and it is the same variety on both occasions. In the 
nested classification section 1 of English is in no way related to section 1 of 
Geology. The only thing in common between the two is the number 1, which 
is purely an identifier. In the crossed classification every level of the one factor 
is used in combination with every level of the other factor, but in the nested 
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classification the levels of the nested factor (sections) are unrelated to one 
another and are nested within a level of the other factor. Further, as seen 
here, there may be different numbers of levels of the nested factor within 
each level of the other factor (different numbers of sections in the different 
courses). 

The equation of the model accounts for the nesting of sections within 
courses by giving to the effect ßs for the;th section the subscript /, for couise, 
so that � �  is then the effect for the yth section nested within the /th course. 
This signifies that theyth section cannot be defined alone but only in the con-
text of which course it belongs to. Thus the model is 

Vm = µ + α* + ßa + em (21) 
where ym is the opinion of student k in the yth section of course /. The 
limits of k are k = 1, 2, . . . , nu where there are ni5 students in the yth 
section of the /th course, andy = 1 , 2 , . . . , ^ where there are bi sections in 
course /, and / = 1, 2, 3. Table 4.7 summarizes a situation of a total of 263 
students in 3 sections in English, 2 in Geology and 4 in Chemistry. 

TABLE 4 . 7 . A NESTED CLASSIFICATION 

English (/ = 1) Geology (/ = 2) Chemistry (i = 3) 
3 sections, bx = 3 2 sections, b2 = 2 4 sections, b3 = 4 

«2i =31 n31 = 27 
n22 = 29 «32 = 32 

«33 = 29 
nM = 30 

The situation illustrated in Table 4.7 is described as a 2-way nested classifi-
cation: sections within courses. Now consider asking a student his opinion 
on two different occasions. If yijkh is the Ath reply (A = 1 or 2) of the kth 
student in section j of course /, a suitable model might be 

Viikh = P + *i + ßa + Ym + emn · (22) 
Now we have not only sections nested within courses but also students nested 
within sections. For exactly the same reason that sections are nested within 
courses so also are students nested within sections. They cannot be a crossed 
classification. This is an example of a 3-way nested classification: students 
nested within sections within courses. In general there is no limit to the degree 
of nesting that can be handled: the extent of its use depends entirely on the 
data and the environment from which they came. 

/ i n = 28 
«i2 = 27 

«13 = 30 
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Notation. The meaning of the term yi3 in (19) might, at first sight, be 
confused with the meaning of ßiS in (21), although the context of each does 
make their meaning clear. By the presence of a, and � �  in (19), yi3- is clearly 
an interaction effect; and by the lack of a term with just ay-subscript from 
(21), it is clear that ßi3- is an effect for a nested factor. However, additional 
clarity can be brought to the situation by using the (aß)irnotation for 
interactions (as already described), for then ßi7� is clearly a main effect. 
Similar clarity is also gained by using ß{i)j instead of ßi3- for the nested effect. 
This makes it clear that ß(i)j is not an interaction effect like yi3-. Either (or 
both) of these notations can be used to insure against confusion. 

Interaction effects are effects peculiar to specific combinations of the 
factors involved. Thus (<� � )�3- is the interaction effect peculiar to the com-
bination of the ith level of the α-factor with the yth level of the /?-factor. 
Interactions between a factor and one nested within it cannot, therefore, 
exist. This is so because, for example, when sections are nested within 
courses they are defined only within that context—there is no such thing as a 
section factor in which the identically same level occurs in combination with 
the levels of the course factor; e.g., section 1 as defined for English never 
occurs in combination with Chemistry (which has its own section 1), and so 
there is no such thing as an interaction between course and sections nested 
within courses. The notation of (21) makes this quite clear: the interaction 
between a€ and ßi3- would be (onß)i3 which cannot be identified separately 
from ßi3. Therefore there is no interaction. 

Nested and crossed classifications are by no means mutually exclusive. 
Both can occur in the same model. For example, in using (22) as the model 
for the repeated surveying of the students we are ignoring the fact that the 
two surveys (assumed to be conducted with the same questionnaire) will 
have been made at different times. If the time element is to be included a 
suitable model could be 

Vim = �  + � �  + at + � a + 7 m + emn (23) 
where all terms are the same as previously, with the addition of dh, the effect 
of time h. The ό-factor (time) and the oc-factor (courses) are crossed factors; 
each level of the one occurs with every level of the other. And, as before, the 
^-factor (sections within courses) and the y-factor (students within sections) 
are nested factors. Interactions could be included in a model for this situa-
tion, too; thus the model 

Vim = �  + K + <*i + (*d)ih + � a + Ym + enkh C24) 
includes a term for the interaction between time and course. 

Clearly the variations that may be rung on the same theme are very 
numerous. Just exactly what goes into a model depends, of course, on the 
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nature of the data to be analyzed, the things of interest to the researcher and 
the assumptions he is prepared to make. For example, if time is to be ignored, 
either by assumption or because it is known to be of no importance, then (22) 
would be an acceptable model. Even so, it might be questioned whether or 
not we truly know that something is of no importance, and in this light maybe 
model (23) or (24) should be used. On the other hand, if the second student 
survey had been carried out following a major modification to the computer 
system designed to improve its efficiency and attractiveness to instructors, 
then there is no question that (22) would be an unsuitable model compared to 
(23) or (24). � �  and � 2 would then represent the effects of the two computer 
systems, unmodified and modified. On all occasions the environment in 
which the data were gathered determines the model. 

In conclusion it is to be emphasized that all these kinds of models can be 
written as y = Xb + e just as they were in equations (4) and (8). For all of 
them X will have O's and l's for its elements and not be of full column rank. 
But for all these models the estimation procedures of the previous chapter can 
be used to derive normal equations X'Xfe = X'y. In these, X'X does not have 
full rank, but the equations can be solved using a generalized inverse of X'X. 
This and its consequences are discussed in detail in the next chapter. As 
prelude we consider a numerical example to illustrate some points involved. 

4 . THE NORMAL EQUATIONS 

The equation of the general linear model is y = Xb + e, identical to that 
used for regression analysis in the preceding chapter. There, the normal 
equations for estimating b were written as X'Xfc = X'y, where h was the 
estimator of b. The same kind of normal equations can be used here. How-
ever, we now write them as X'Xb0 = X'y. This is done because, as will be 
shown, these equations have no single solution for b°. X'X is singular and so 
there are infinitely many solutions. No one of them is an estimator of b in 
the sense that h is in regression analysis, and so we introduce the symbol b°. 
It represents a solution to the normal equations, but it is not an estimator of 
b. This point is emphasized repeatedly in the next chapter and is illustrated 
here as introduction thereto. 

Suppose the values of the 6 observations in Table 4.2 are, in some ap-
propriate unit of measurement, 

y ' = [16 10 19 11 13 27]. 

Comparable to b in (5) we now use 

b' = [�  αχ α2 α8] 
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where �  is a general mean and the a's are effects due to educational status 
(see Table 4.2). Then, with X of (5), the normal equations are 

["6 3 2 1" 

3 3 0 0 

2 0 2 0 

[_1 0 0 1 
equivalent to 

6� �  + 3aJ + 2x� 2 + OL� Z = 96 
3� �  + 3α? = 45 
2� �  + 2α2° = 24 
� �  +<4 = 27. 

The next chapter discusses the derivation of equations such as these. All 
we note here is that the sum of the last three equals the first and hence they 
have infinitely many solutions. Four are shown in Table 4.8. 

TABLE 4 . 8 . FOUR SOLUTIONS, bj, b£, bg AND b£, 
TO EQUATIONS ( 2 5 ) 

Solution 
Element of 

Solution bj b� 2 b* b* 

14 27 -2982 
1 -12 2997 

-2 -15 2994 
13 0 3009 

The differences between the same elements of the four solutions shown in 
Table 4.8 make it crystal clear why no solution b° can be considered an esti-
mator of b. For this reason b° is always referred to as a solution of normal 
equations and never as an estimator. The notation b�  emphasizes this, 
distinguishing it from f> and b of equations (21) and (103) in the preceding 
chapter. 

An investigator having data to be analyzed will clearly have no use for any 
b° as it stands, whatever its numerical value. But what about linear functions 
of the elements of b°? Suppose, for example, there is interest in estimating the 
mean effect on investment of high school and of college education. (It will be 
remembered, see Table 4.2, that corresponding to a1? a2 and a3 in the model 
are the three levels of educational status, high school incomplete, high school 

r 
K 

KJ 

96 

45 

24 

27j 

16 
- 1 
- 4 
11 
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graduate and college graduate; and the ^-variable is investment in consumer 
durables.) Thus the question is: Even if b° is of no use in itself, what does it 
do for values such as \{<x\ + 0C3)—or for (� �  + aj + â  + a!|)/3 ? The answer 
is seen in Table 4.9. Exactly as with the elements of b° itself in Table 4.8, the 

TABLE 4 . 9 . VALUES OF £(α£ + ag) AND (� �  + aj + «° + α£)/3 

Linear Function 

(� � + «° + α° + α»)/3 

1»ί 
3* 
22/3 

Solution (See 

K 
5* 

26/3 

Table 4.8) 

b�  K 

- 7 i 3,0011 
0 2,006 

values of the functions in Table 4.9 vary greatly from solution to solution. 
However, this situation is not true of all linear functions. Consider those 

in Table 4.10. We see at once that the value of each of these expressions is 

TABLE 4 . 1 0 . ESTIMATES OF FOUR ESTIMABLE FUNCTIONS 

Solution (See Table 4.8) 

Linear Function 

a j - a » 
� �  + aj 
� �  + «a° + a») 
i(a° + a») - «J 

K 
3 

15 
19* 
4* 

K 
3 

15 
19* 
4* 

K 
3 

15 
19* 
4* 

K 
3 

15 
19* 
4* 

invariant to whatever solution b�  is used. Since this is so for all of the in-
finitely many solutions b°, these expressions are of value to the investigator 
whose data they are. And, by their nature, these expressions are often those 
of specific interest to the investigator for they can be described as follows: 

αί — ag : estimator of difference between effects of 2 levels. 
� �  + OL{ : estimator of general mean plus effect of a level. 
� �  + ΐ(α£ + α£): estimator of general mean plus mean effect of two levels. 
K0C2 + οφ — aj: estimator of superiority of mean effect of two levels over 

effect of another level. 

These are, of course, only four of the many such linear functions of ele-
ments of b° having the property demonstrated in Table 4.10. Others similar 
to them are, for example, 0C3 — α£, � �  + a£, � �  + | (a j + aj) and so on. 
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Functions such as these are known as estimators of estimable functions. 
They all have the property that they are invariant to whatever solution is 
obtained to the normal equations. Because of this invariance property they 
are the only functions that can be of interest, so far as estimation of the 
parameters of a linear model is concerned. Distinguishing this class of func-
tions from functions such as those illustrated in Table 4.9, which do not have 
the invariance property, is important—as is deriving their other properties. 
This is done in the next chapter. 

5 . EXERCISES 

Suppose an oil company gets its crude oil from 4 different sources, refines it in 3 
different refineries, using the same 2 processes in each refinery. In one part of the 
refining process a measurement of efficiency is taken as a percentage and recorded 
as an integer between 0 and 100. Table 4.11 shows the available measurements of 
efficiency for different samples of oil. 

TABLE 4 . 1 1 . RESULTS OF EFFICIENCY TESTS 

Refinery 

Galveston 

Newark 

Savannah 

Process 

1 
2 

1 
2 

1 
2 

31. 

Texas 

> 33, 44, 
37, 59 

— 
39 

42 
— 

36 

Source 

Oklahoma 

38 
42 

— 
36 

36 
42,46 

Gulf of Mexico 

26 
— 

42 
32,38 

— 
26 

Iran 

— 
— 

34, 42, 28 
— 

22 
37,43 

1. (a) For the 8 observations on Texas oil write out the equations for a regression 
on dummy variables for considering the effect of refinery and process on 
efficiency. 
(b) Rewrite the equations in terms of a linear model. 
(c) Write down the equation of the general linear model for this situation. 

2. Repeat Exercise 1 for the Oklahoma data. 

3. Repeat Exercise 1 for the Gulf of Mexico data. 

4. Repeat Exercise 1 for the Iran data. 

5. Repeat Exercises 1-4 with interactions between refinery and process included. 
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6. (a) For all 25 observations in Table 4.11 write down the equations of the 
linear model for considering the effect of source, refinery and process on 
efficiency. Do not include interactions. 
(b) Write down the equation of the general model for this situation. 
(c) Write down the normal equations. 

7. Repeat Exercise 6 with interactions between source and refinery and between 
refinery and process. 

8. Repeat Exercise 6 with all possible interactions included. 

9. In any of the above exercises derive two solutions of the normal equations 
and investigate functions of the elements of the solutions that might be invariant 
to whatever solution is used. 

10. Repeat the above exercises assuming that processes are nested within refineries, 
suitably modifying the interactions where necessary. 



CHAPTER 5 

MODELS NOT OF FULL RANK 

Chapter 3 discusses regression analysis in terms of a model having equation 
y = Xb + e where X has full column rank; Chapter 4 illustrates how the 
same equation can apply to linear models generally, where X does not have 
full column rank. Estimation and hypothesis testing for this case are now 
considered, following the same sequence of development as in Chapter 3. 
Discussion of estimable functions, demonstrated in a simple way at the end 
of Chapter 4, forms part of the chapter. 

1. THE NORMAL EQUATIONS 

The model we deal with is 
y = Xb + e 

where y is an N x 1 vector of observations yi, b is a p x 1 vector of param-
eters, X is an N x p matrix of known values (in most cases O's and l's) 
and e is a vector of random error terms. As before, e can be considered de-
fined as 

e = y - E(y) 

so that E(e) = 0 and E(y) = Xb. Every element in e is assumed to have 
variance a2 and zero covariance with every other element; i.e., 

var(e) = £(ee') = � 21� . 

Thus e ~ (0, cr2I) and y ~ (Xb, σ2Ι), 

with normality being introduced subsequently, when needed for hypothesis 
testing and derivation of confidence intervals. 

[ 164 ] 

Linear Models 
by S. R. Searle 

Copyright © 1971 John Wiley & Sons, Inc. 
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a. The equations 
Just as in Chapter 3, the normal equations corresponding to the model 

y = Xb + e can be derived by least squares. And, as before, for var(e) = σ2Ι 
they turn out to be 

X'Xb = X'y. (1) 

The more general cases where var(e) = V, whether V be non-singular or 
singular, are discussed in Sec. 8. 

Before solving equations (1) we look at their form, initially in terms of an 
example. 

b. Example 
Federer (1955) reports an analysis of rubber-producing plants called 

guayule, for which the plant weights were available for 54 plants of three 
different kinds, 27 of them normal, 15 off-types and 12 aberrants. We will 
consider just 6 plants for purposes of illustration, 3 normals, 2 off-types and 
1 aberrant, as shown in Table 5.1. 

TABLE 5 . 1 . WEIGHTS OF SIX PLANTS 

Type of Plant 

Normal 

101 
105 
94 

Totals 300 

Off-Type 

84 
88 

172 

Aberrant 

32 

32 

For the entries in this table let yio denote the weight of theyth plant of the 
/th type, / taking values 1, 2, 3 for normal, off-type and aberrant respectively, 
andy = 1, 2, . . . , n{, where n{ is the number of observations in the /th type. 
The problem is to estimate the effect of type of plant on weight of plant. To 
do this we assume that the observation yi5 is the sum of three parts 

y.. = �  + α i + eu , 

where �  represents the population mean of the weight of plant, af is the 
effect of type / on weight, and e{i is a random error term peculiar to the 
observation y{j. 
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To develop the normal equations we write down the 6 observations in 
terms of the equation of the model: 

101 = yu = �  + αχ 
105 = y12 = �  + αχ 
94 = yu = �  + αχ 
84 = 2/2ΐ = �  + α2 

88 = 2/22 = �  + α2 

32 = ΐ/31 = �  

+ *12 

+ 1̂3 

+ 2̂1 

+ e22 

+ α3 + e3i · 

They are easily rewritten in the form y = Xb + e as 

nor 
105 
94 

84 

88 

_ 32_ 

= 

~yxT 

2/12 

2/is 

2/21 

2/22 

_ 2 / 3 1 _ 

= 

1 1 
1 1 

1 1 

1 0 

1 0 

1 0 

0 
0 

0 

1 

1 

0 

0Ί 
0 
0 

0 
0 

lj 

r>~ 
« 1 

<*2 

L«3_ 

+ 

fen 
^12 

e 13 

e2l 

e22 

_^3lJ 

(2) 

where y is the vector of observations, X is the matrix of 0's and l's, b is 
the vector of parameters to be considered, 

�  = [�  <x3], 

and e is the vector of error terms. 
The vector b in y = Xb + e is the vector of parameters; it is the vector of 

all the elements of the model, in this case the elements � , α1? α2 and α3. 
And this is so in general; for example, if data can be arranged in rows and 
columns according to two different classifications, the vector b will have as 
its elements the term � , the terms representing row effects, those representing 
column effects and those representing interaction effects between rows and 
columns; for r rows and c columns it can have as many as 1 + r + c + re 
elements. 

The matrix X in y = Xb + e is called the incidence matrix, or sometimes 
the design matrix, because the location of the 0's and l's throughout its 
elements represents the incidence of terms of the model among the observa-
tions—and hence of the classifications in which the observations lie. This is 
particularly evident if one writes X as a 2-way table with the parameters as 
headings to the columns and the observations as labels for the rows, as 
illustrated in Table 5.2. 
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TABLE 5 . 2 . X AS A 2-WAY TABLE 
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Observations 

2/ii 
2/12 
2/13 

2/21 
2/22 
2/31 

µ 
1 
1 
1 
1 
1 
1 

Parameters of Model 
a l 

1 
1 
1 
0 
0 
0 

a 2 

0 
0 
0 
1 
1 
0 

a 3 

0 
0 
0 
0 
0 
1 

In Table 5.2, as in equations (2), it is clear that the sum of the last 3 columns 
equals the first column. (This is so because every yi}- observation contains �  
and so the first column of X is all l 's; and every yH also contains just one 
a and so the sum of the last 3 columns is also all l's.) Thus X is not of full 
column rank. 

Now consider the normal equations (1). They involve X'X, which is 
obviously square and symmetric. Its elements are the inner products of the 
columns of X with each other; e.g., 

"6 3 2 1" 

XX = 
3 3 
2 0 
1 0 

0 
2 
0 

0 
0 
1 

(3) 

Furthermore, because X does not have full column rank, X'X is not of full rank. 
The normal equations also involve the vector X'y; its elements are the 

inner products of the columns of X with the vector y, and since the only 
non-zero elements of X are ones, the elements of X'y are certain sums of 
elements of y; e.g., from (2) 

x'y = 

1 
1 

0 
.0 

1 
1 
0 
0 

1 
1 
0 
0 

1 
0 
1 
0 

1 
0 
1 
0 

it 
0 
0 
1J 

Π/ιΓ 
2/l2 

2/l3 

2/21 

2/22 

U / 3 1 _ 

"2/11 + 2/12 + 2/13 + 2/21 + 2/22 + 2/31 

2/ll + 2/12 + 2/l3 

2/21 + 2/22 

.2/31 

= 

~y.~ 

2/1. 

2/2. 

.2/3.. 

= 

"504" 
300 
172 

. 32J 

(4) 
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a vector of various sub-This is often the nature of X�y in linear models 
totals of the ^/-observations. 

Whenever X'X is not of full rank, as in (3), the normal equations (1) cannot 
be solved with one solitary solution b = (X�X^X�y as in Chapter 3. Many 
solutions are available. To emphasize this we write the normal equations 
as 

X�Xb0 = X'y, (5) 

using the symbol b° to distinguish the many solutions of (5) from the solitary 
solution that exists when X'X has full rank. We shall also use b° to denote a 
solution GX�y to (5), where G is a generalized inverse of X'X. 

The normal equations of the example are, from (3) and (4), 

'6 3 2 

3 3 0 

2 0 2 

1 0 0 

ll 

0 

0 

lj 

\� �  

K 
« 2 

o La3_ 

y.. 

Vi. 

2/2. 

_«/3.. 

504 

300 

172 

_32_ 

(6) 

By retaining the algebraic form of X'y as well as its arithmetic form, it can be 
seen that if X�X is written in a 2-way table the row headings of the table will 
be the totals in X�y and its column headings the parameters. Indeed, the 
elements of X�X are the numbers of times that a parameter of the model 
occurs in a total; for example, �  occurs 6 times in y,, and ax occurs 3 times; 
likewise a2 does not occur at all in ylt; and so on. Another way of looking at 
X�X is that its elements are the coefficients of the parameters of the model in 
the expected values of the totals in X'y. In this sense we might write the normal 

equations as E(X�y) = X�y replacing b implicit in the left-hand side by b°. 
However, the easiest way of deriving X�y and X�X other than carrying out the 
matrix products explicitly is to form X�y as the vector of all class and sub-
class totals of the observations (including the grand total), and to form 
X�X as the matrix of the number of times that each parameter arises in each 
total that occurs in X'y. 

c. Solutions 
Since X does not have full column rank, X�X has no inverse and the 

normal equations (5) have no unique solution. They have many solutions. 
To get any one of them we find any generalized inverse G of X�X and write 
the corresponding solution as 

b° = GX'y. (7) 

The ability to do this comes directly from Theorem 8 of Chapter 1. The 
results of that chapter are used repeatedly here, especially those of Sec. 1.5. 
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The notation b° in equation (7) for a solution to the normal equations (5) 
emphasizes that what is derived by solving (5) is only a solution to the equa-
tions and not an estimator of b. This point cannot be over-emphasized. In a 
general discussion of linear models that are not of full rank, it is essential to 
realize that what is obtained as a solution of the normal equations is just 
that, a solution and nothing more. It is misleading and in most cases quite 
wrong for b° to be termed an estimator, particularly an estimator of b. It is 
true that b° is, as shall be shown, an estimator of something, but not of b, 
and indeed the expression it estimates depends entirely upon which general-
ized inverse of X�X is used in obtaining b°. For this reason b° is always re-
ferred to as a solution and not an estimator. 

2 . CONSEQUENCES OF A SOLUTION 

b° is clearly a function of the observations y, even though it is not an esti-
mator of b. The expected value and variance and ensuing consequences of 
b° are therefore not identical to those of h of Chapter 3. 

a. Expected values 
For the generalized inverse G, 

E(b� ) = GX�E(y) = GX�Xb = Hb; (8) 
i.e., b° has expected value Hb where H = GX�X. Hence b° is an unbiased 
estimator of Hb, but not of b. 

b. Variances 
From (7) 

var(b°) = var(GX'y) 
= GX' var(y) XG� 

= GX�XGV2. (9) 
Although this is no analogue of its counterpart (Χ'Χ)-1σ2 in the full model, 

as would be Go*2, we shall see that the result (9) causes no difficulties in 
applications. Of course, by appropriate choice of G, (9) can be expressed as 
Gσ2. For, since X�X is symmetric, there exists an (orthogonal) permutation 
matrix P such that 

P�X�XP = 
A 12 

A� A 
/*12 ^22 . 

where A u is square, of full rank, equal to the rank of X'X. Then 

ΑΓχ1 0Ί 
G = P P ' 

L o oj 
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is a symmetric generalized inverse of XX with GX�XG� = G. Hence, with 
this G, var(b°) = Go2. There is, however, no particular advantage to this 
form. 
c. Estimating E(y) 

Corresponding to the vector of observations y we have the vector of estimated 
expected values £(y), just as in Sec. 3.4c: 

Eti) = y = Xb�  = XGX�y. (10) 

This vector is invariant to the choice of whatever generalized inverse of X�X 
is used for G, because XGX� is invariant, as in Theorem 7 of Sec. 1.5a. Hence 
(10) is the vector of estimated expected values corresponding to the vector of 
observations. This means that no matter what solution of the normal equa-
tions is used for b�  the vector y = XGX�y will always be the same. 

This result, and others of similar nature that will be developed, are of 
great importance. It means that we can get a solution to the normal equations 
in any way we please, call it b� , and no matter which solution it is, y = Xb�  
will be the correct value of y. 

d. Residual error sum of squares 
As before, the residual error sum of squares is defined as 

SSE = (y - Xb°)'(y - Xb°) 
= y�(I - XGX�)(I - XGX�)y (11) 
= y�(I - XGX�)y 

because I — XGX� is idempotent and, by Theorem 7 of Sec. 1.5a, it is sym-
metric. Further, because XGX� is invariant to G, so is SSE. Thus SSE is 
invariant to whatever solution of the normal equations is used for b°. This 
is another result invariant to the many solutions there are to the normal 
equations. 

A computing form for SSE can be derived exactly as in regression: 

SSE = y�(I - XGX�)y = y�y - y XGX y 
= y�y - b� �X�y. (12) 

This, we see, is exactly the same result as in the full rank case: y�y is the 
total sum of squares of the observed y�s; and b� �X�y is the sum of products of 
the solutions in b0' multiplied by the corresponding elements of the right-
hand sides of the equations X�Xb0 = X�y from which b° is derived. 

e. Estimating the residual error variance 
Since y is distributed with mean Xb and variance matrix � % equation 

(40) of Chapter 2 yields 
£(SSE) = £[y�(I - XGX�)y] = tr[(I - XGXr)I^2] + b�X�(I - XGX�)Xb. 
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Through the properties of XGX' in Theorem 7 of Sec. 1.5a this reduces to 

£(SSE) = a2r{\ - XGX') = [N - r(X)]a2. 

Hence an unbiased estimator of a2 is 

„a SSE 
� �  = . (13) 

N - r(X) 

Again we see a similarity with the full rank case: only now, the importance 
of using r(X) in the expectation is clear, because X is not of full column rank 
and its rank is therefore not equal to its number of columns. In fact, the 
rank of X depends on the nature of the data available. 

f. Partitioning the total sum of squares 
Partitioning the total sum of squares as shown in Sec. 3.4f for the full rank 

model occurs in exactly similar fashion for the model not of full rank. The 
only difference is that there is no utility in corrected sums of squares and 
products of the ^-variables. Matrices such as 3C�3£ do not arise, therefore. 
However, use is still made of SSTW = y'y — Ny2, the corrected sum of 
squares of the ^-observations. The three forms of partitioning the sums of 
squares are shown in Table 5.3. 

TABLE 5 . 3 . PARTITIONING SUMS OF SQUARES 

SSM = Ny2 = y�N-Hl�y 
SSR = y'XGXy SSRm = y'(XGX' - N�Hl^y SSRW = y'(XGX' - A ^ l l ^ y 
SSE = y'(I - XGX)y SSE = y'(I - XGX')y SSE = y'(I - XGX)y 

SST = y'y SST = y'y SSTW = y'y - Ny2 

The three columns in Table 5.3 correspond to the three partitionings shown 
in (72), (73) and (75) of Chapter 3. The first column shows 

SSR = SST - SSE = y'XGX'y = b°'X'y, (14) 

the sum of squares attributable to fitting the model y = Xb + e, similar to 
the sum of squares for regression of Chapter 3. In the second column, 

SSM = Ny2 (15) 

is the sum of squares due to fitting a general mean, and 

SSRm = SSR - SSM = SSR - Ny2 (16) 

is the sum of squares for fitting the model, corrected for the mean. The third 
column is identical to the second except that SSM has been deleted from the 
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body of the table and subtracted from SST to give 

SSTm = SST - SSM = I yf - Ny* (17) 

as the total sum of squares corrected for the mean. In all three columns the 
residual error sum of squares is the same, SSE of (12). 

Table 5.3 forms the basis of traditional analysis of variance tables, as is 
shown in Sec. 3. 

g. Coefficient of determination 
The estimated expected values of y corresponding to the observations y are 

the elements of y given in (10). The product-moment correlation between the 
observed y�s and the corresponding elements of y is, when squared, commonly 
referred to as the coefficient of determination. Since the usual linear model 
has a mean in it we define 

(18) 

R2 = coefficient of determination 

Kvi-yfliVi-^f 
In simplifying this we utilize X'XGX' = X' (Theorem 7, Sec. 1.5a) and so, 
because Γ is the first row of X', 

l�XGX� = 1'. (19) 

By this means we can show that y = y, and hence, as in equations (76) of 
Chapter 3, 

(SSRm) SSRm 
R* (20) 

S S T J S S R J SSTW 

h. Example (continued) 
The normal equations for the example of Sec. lb are given in (6). For 

X'X given there, a generalized inverse is 

(21) G = 

Then, from (7) 

"0 0 0 0n 

0 i 0 0 

0 0 \ 0 

0 0 0 1. 

with H = 

"0 0 0 0" 

1 1 0 0 

1 0 1 0 

1 0 0 l j 

(b0)' = (GX'y)' = [0 100 86 32] 

for which, from (10), 

{ff = (Xb0)' = [100 100 100 86 86 32] 

and SSR = b°'X'y = 100(300) + 86(172) + 32(32) = 45,816. 

(22) 

(23) 

(24) 
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Demonstration of the invariance of y and SSR to the choice of G is seen from 
taking the generalized inverse as 

Gi = 

1 - 1 

A 3 

with H1 = 

-1 

L 0 

1 

0 

0 

0 

H 
0 

0 1 

0 - 1 

1 - 1 

0 0. 

and K = 

32 

68 

54 

L 0. 
Then again 

y' = bJ'X' = [100 100 100 86 86 32] 

and SSR = bJ'X'y = 32(504) + 68(300) + 54(172) = 45, 816. 

The vector of observations is, from (2), 

y' = [101 105 94 84 88 32] 

and so SST = £ V2 = y'y = 45,886 

and SSM = Nf = 42,336. 

(25) 

(26) 

(27) 

Hence the partitioning of sums of squares shown in Table 5.3 is, for the 
example, as given in Table 5.4. 

TABLE 5 . 4 . PARTITIONING SUMS OF SQUARES. 
(DATA OF TABLE 5.1) 

SSR = 45,816 
SSE = 70 

SSM =42,336 
SSRm = 3,480 
SSE = 70 

SSRm = 3,480 
SSE = 70 

SST = 45,886 SST = 45,886 SSTm = 3,550 

The value of R2, calculated from (20), is R2 = 3480/3550 = 0.98. 
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3. DISTRIBUTIONAL PROPERTIES 

We now introduce normality for the error terms, 

e~N(0,a*lN), 

and derive distributional properties of y and functions of y in a manner 
similar to the full rank case (Sec. 3.5). 

a. y is normal 
Because y = Xb + e and E(y) = Xb we have y ~ N(Xb9 σ2Ι). 

b. b° is normal 
Since b° is a linear function of y it is also normally distributed, with mean 

and variance derived in (8) and (9): 

b° = GX'y ~ N(Hb, GX'XG'cr2). 

Notice that the variance-covariance matrix of b° is singular. 

c. b° and σ2 are independent 
In applying Theorem 3 of Sec. 2.5c to 

b° = GX'y and SSE = y'(I - XGX')y 
we see that 

GXT(T2(I - XGX') = G(X' - X'XGXO^2 = 0 

because X' = XXGX� (Theorem 7, Sec. 1.5a). Therefore b° and σ2 are inde-
pendent. 

d. SSE/σ2 is χ2 

SSE/σ2 = y'(I - XGX')y/a2, 

and in applying Theorem 2 of Sec. 2.5b we have 

Ισ2(Ι - XGXO/σ2 = I - XGX', 

which is idempotent. Therefore, by Theorem 2 of Chapter 2 

SSE/σ2 ~ X*�[r(I - XGX'), b�X�(I - XGX0Xb/2a2] 

which, because of properties of XGX� and with r(X) = r, reduces to 

S S E / σ 2 - ; ^ . (28) 
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e. Non-central x2's 
With SSE being %\_r we now show that the other terms in Table 5.3 have 

non-central ^-distributions independent of SSE. This leads to ^-statistics 
that have non-central ^-distributions which in turn are central ^distribu-
tions under certain null hypotheses. Thus are tests of hypotheses established. 

First, from (14), SSR = y'XGX'y, in which XGX' is idempotent and its 
products with I — XGX' are null. Therefore by Theorems 4 and 2 of Chapter 
2, SSR/σ2 is distributed independently of SSE, with 

SSR/σ2 ~ x2�[r(XGX�), b'X'XGX'Xb/2(72] 
— X2'(r, b'X'Xb/2<72). (29) 

Similarly 
SSM/σ2 = y�N-ni�y/a2 

where JV_1H' is idempotent; further, using (19) gives 

N-HI�XGX� = N-nr, (30) 

so that the products of Λ ^ ΐ Γ and (I - XGX') are null. Hence SSM is 
distributed independently of SSE and 

SSM/σ2 ~ x^lriN-Hl�), b�X�� ^�� �� � � � *] 

- ^ [ l , ( r X b ) 2 / 2 ^ 2 ] , (31) 

just as in the full rank case. 
Similar argument applies to 

SSRm = y'(XGX' - N-Hl�)y. 

XGX' — iV- 1ll ' is idempotent [using (30)] and has null products with both 
N-nV and (I - XGX'). Hence, by Theorems 2 and 4 of Chapter 2, SSRm 

is independent of SSM and SSE, and 

S S R j a ^ f K X G X ' ~ � -� �), b'X'(XGX - � ^� �^� � � � *] 
~ f{r - 1, b'X'(I - N-Hl^Xbßa*]. (32) 

Now, whatever X is, so long as its first column is 1 we can write X = [1 Xx] 
and then 

� �  <r �  � 0 � � �  
LO Xi(I - N^U^xJ "" L0 X�X] 

where 9C�2�  represents the same kind of matrix that it does in Chapter 3: the 
sums of squares and products of the deviations of the elements of the columns 
of X (other than the first column) from their means. Symbolically it is simpler 
than its equivalent form X{(I — 7V~1ll,)Xi but computationally it offers little 
advantage, in distinction to the full rank model where it is advantageous. 

X'(I - N ^ l l ' J X (33) 
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Nevertheless, writing 

b = 

[5.3] 

(34) 

just as in the full rank case, with b0 representing a general mean, we have from 
(32) and (33) 

S S R > 2 ~ X
2�[r - 1, S�X&l - � -���^� ,� � 2] 

(35) 
f. jF-distributions 

From the foregoing results the definition of the non-central F-distribution 
leads to the following F-statistics: 

F(R) = 

F(M) 

SSR/r 
SSE/(N - r) 

SSM/1 

�F�(r,N - r, b'X'Xb/2a2) (36) 

' ^ ' [1 , N - r, (l�Xb)*/2N<f] (37) 

- F�[r - 1, N - r, J�Xfi - Ν_111')Χ//2σ2] (38) 

SSE/(N - r) 
SSRm/(r - 1) 
SSE/(iV - r) "" 

— F\r - 1, N - r, t�Se�Setßa2) (39) 
Under certain null hypotheses these non-central F's become central F's, 
and so provide us with tests of those hypotheses. These are discussed sub-
sequently in subsection h, and again in Sec. 5. 

g. Analyses of variance 
Calculation of the above F-statistics can be summarized in analysis of 

variance tables just as is done in Tables 3.2, 3.3 and 3.4 of Sec. 3.5h. Similar 
tables are shown in Tables 5.5 and 5.6. The sums of squares are those of 
Table 5.3. 

TABLE 5 . 5 . ANALYSIS OF VARIANCE FOR 
FITTING THE MODEL y = Xb + e 

Source of 
Variation d.f. Sum of Squares Mean Square F-statistic 

Model 

Residual error 

r = r(X) SSR = b°'X'y MSR = SSR/r F(R) 
MSR 
MSE 

N - r SSE = y'y - b°'X'y MSE = SSE 
N - r 

Total N SST = y'y 
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Table 5.5 summarizes not only the sums of squares but also the degrees of 
freedom associated with the ^-distributions. It also shows, in the mean 
squares, the calculation of the numerator and denominator of F(R) of 
equation (36), as well as F(R) itself. The table is therefore a convenient 
summary of these calculations. 

TABLE 5 . 6 . ANALYSIS OF VARIANCE FOR FITTING THE MODEL 
y = Xb + e 

Table 5.6a. Complete form 

Source of 
Variation2 d.f.1 Sum of Squares Mean Square F-Statistics 

Mean 1 SSM =Ny2 

Model (a.f.m.) r-\ SSRw=b°'X'y-A^2 MSRW= 

Residual error N-r SSE = y'y-b°'X'y MSE = 

SSM MSM 
MSM = 1 

SSRm 

r-\ 

SSE 

1 V i M ; " M S E 

MSRm 
F ( i ? w ) = " M S E " 

N-r 

Total N SST = y'y 

Table 5.6b. Abbreviated form 

, , o SSRW MSR„ 
Model (a.f.m.) r-\ SSRm=b°'X'y-A^2 MSRm= f F(Rm)=-

Residual error N-r SSE ^y 'y-b^X'y MSE = 

r-\ 
SSE 
N-r 

MSE 

Total (a.f.m.) N-\ S S T w = y ' y - ^ 2 

1 r = r(X). 
2 a.f.m. = after fitting the mean. 

Table 5.6 shows the same thing for F(M) and F(RJ of (37) and (38). 
Table 5.6b shows the abbreviated form of the complete analysis of variance 
table shown in Table 5.6a. This abbreviated form is derived by removing 
SSM from the body of the table and subtracting it from SST to give SSTW, 
as in Table 5.3. Thus Table 5.6b does not contain F(M), but it is identical to 
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Table 5.6a insofar as F(Rm) = MSRW/MSE is concerned. Thus the two 
sections of Table 5.6 are similar to Tables 3.3 and 3.4 of Sec. 3.5h. 

Although Table 5.6b is the form in which this analysis of variance is most 
usually seen, it is not necessarily the most informative. Credit on that account 
goes to Table 5.6a, which shows how SSR of Table 5.4 gets partitioned into 
SSM and SSRW, so summarizing both F(M) and F(R J . 

h. Tests of hypotheses 
Following equations (36)-(39) we indicated that those results provide 

statistics suitable for testing certain hypotheses. This we now discuss, prior 
to considering the general linear hypothesis in Sec. 5. 

The F(R) statistic of (36), whose calculation is summarized in Table 5.5, 
has a non-central F-distribution with non-centrality parameter b�X�Xb/2a2, 
which is zero under the null hypothesis H: Xb = 0. F(R) then has a central 
F r jv_r-distribution and can be compared to tabulated values thereof to test 
that hypothesis. When F(R) is significant we might say, just as we did in 
Sec. 3.5i, that there is concordance of the data with the model E(y) = Xb; 
i.e., the model accounts for a significant portion of the variation in the 
^/-variable. This does not mean that the model used is necessarily the most 
suitable model: there may be a subset of the elements used that is as significant 
as the whole set; or there may be other elements (factors) which, when used 
alone, or in combination with some or all of those already used, are signifi-
cantly better than those used; or there may be non-linear models that are at 
least as suitable as the model used. None of these contingencies is inconsistent 
with F(R) being significant and the ensuing conclusion that the data are in 
concordance with the model E(y) = Xb. 

Notice, in contrast to the full model case in Sec. 3.5i, that the test based on 
F(R) cannot be described formally as testing H: b = 0 because, as shown 
in Sees. 4 and 5 that follow, b is not what is called an "estimable function" 
and this means H: b = 0 cannot be tested. However, H: Xb = 0 can be 
tested and F(R) is the appropriate statistic, as is soon discussed. 

The non-centrality parameter of F(M) in Table 5.6a is, by (37), (l'Xb)2/2Mr2 

and, just as in the full rank case (Sec. 3.5i), this parameter equals N[E(y)]2/2a2. 
It is zero under the hypothesis H: E(y) — 0 whereupon the statistic F(M) 
is then distributed as F1N_r, and hence F(M) provides a test of the hypothesis 
H: E(y) = 0. The test is based on comparing F(M) with tabulated values of 
the i7! jy^-distribution. An equivalent test is to compare VF(M) against tab-
ulations of the /-distribution having N — r degrees of freedom. This hypoth-
esis, H: E(y) = 0, is one interpretation of what is meant by "testing the 
mean". Another interpretation, just as in the full rank case, is that F(M) can 
be used to test whether the model E(yi}) = b0 accounts for variation in the 
y- variable. 
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Just as F(R) provides a test of the model E(y) = Xb, so does F(Rm) provide a 

test of the model over and above the mean. For the same reason that F(R) 
cannot be described as testing H: b = 0, so also F(Rm) cannot be described 
as testing H: £ = 0; £ is not, in general, what is called an "estimable func-
tion" and so H\ £ = 0 cannot be tested (see Sees. 4 and 5). In general, 
therefore, F(Rm) must be looked on as providing a test of the model E(y) = 
Xb over and above the model E(y) = b0. Since the latter can be considered as 
fitting a general mean we look upon F(Rm) as providing a test of the model 
E(y) = Xb over and above the mean. When F(Rm) is significant we conclude 
that the model satisfactorily accounts for variation in the ^-variable. This is 
not to be taken as evidence that all elements of £�  are non-zero, but only that 
at least one of them, or one linear combination of them, may be. If F{M) 
has first been found significant, then F(Rm) being significant indicates that a 
model with terms in it additional to a mean explains significantly more of the 
variation in the «/-variable than does the model E(y) = b0. 

Similar to regression, the tests using F(M) and F(Rm) are based on numer-
ators that are statistically independent although their denominators, the 
residual mean square, are identical. The F-statistics are therefore not inde-
pendent. 

TABLE 5.7. TABLES 5.5 AND 5.6 FOR THE EXAMPLE 

Source of 
Variation 

Table 5.5 
Model 
Residual error 

Total 

d.f. 

3 
3 

6 

Sum of Squares 

SSR = 45,816 
SSE = 70 

SST = 45,886 

Mean 
Square 

15,272 
23J 

F-Statistic 

F(R) = 654.51 

Table 5.6a 
Mean 1 SSM = 42,336 42,336 F(M) = 1814.4 
Model (a.f.m) 2 SSRm = 3,480 1,740 F(Rm) = 74.3 
Residual error 3 SSE = 70 23J 

Total 

Table 5.6b 
Model (a.f.m) 
Residual error 

6 

2 
3 

SST = 45,886 

SSRm = 3,480 
SSE = 70 

1,740 F(Rm) = 
23J 

74.3 

Total (a.f.m) 5 SSTm = 3,550 
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The case of both F(M) and F(Rm) being significant has just been discussed; 
a further possibility is that F(M) is not significant but F(Rm) is. This is 
evidence of the mean's being zero but that fitting the rest of the model ex-
plains variation in the ^/-variable. As in regression, a likely situation when this 
might occur is when the y-variable can have both positive and negative values. 

i. Example (continued) 
Using the sums of squares in Table 5.4, the analyses of variance of Tables 

5.5 and 5.6 are shown in Table 5.7. This is a case where all three F-statistics 
are significant, F(R), F(M) and F(Rm) indicating, respectively, that the model 
accounts for a significant portion of the variation in y, that the mean is un-
likely to be zero and that the model needs in it something more than the mean 
to explain variation in y. 

4 . ESTIMABLE FUNCTIONS 

The underlying idea of an estimable function was introduced at the end of 
Chapter 4. Basically it is a linear function of the parameters for which an 
estimator can be found from b° that is invariant to whatever solution of the 
normal equations is used for b°. We now discuss such functions in detail, 
confining ourselves to linear functions of the form q'b where q'is a row vector. 

a. Definition 
A (linear) function of the parameters is defined as estimable if it is identi-

cally equal to some linear function of the expected value of the vector of ob-
servations y. This means that q'b is estimable if q'b = t�E(y) for some vector 
t ' ; i.e., if there exists a vector t' such that t�E(y) = q'b then q'b is said to be 
estimable. Note that in no way is there any sense of uniqueness about t' 
for a given q'b; t' simply has to exist. Thus in the example of the preceding 
section 

E(yu) = �  + αχ and E(y2k) = �  + α2 . 

Hence E(ytj — y2k) = ax — a2 and therefore ax — a2 is an estimable function. 
In this case t' is a row vector of zeros except for + 1 and — 1 in the elements 
corresponding, respectively, to yu and y2k. 

The value of t' is not as important as its existence, and in this sense all that 
need be done to establish estimability of q'b is to be satisfied that there is at 
least one linear function of the expected values of the y% t'£(y), whose value 
is q'b. Since t'£(y) = E(t�y) this is equivalent to establishing some linear 
function of the t/'s, t'y, whose expected value is q'b. There are usually many 
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such functions of the y�s; establishing the existence of any one of them is 
sufficient for establishing estimability. 

b. Properties 
Five important properties arise from the definition of an estimable func-

tion. 
(i) The expected value of any observation is estimable. The definition of an 

estimable function is that q'b is estimable if q'b = t'£(y) for some vector t'. 
Consider a t' which has one element unity and the others zero: t�E(y) will be 
estimable and it will be an element of E(y); i.e., the expected value of an 
observation. Hence the expected value of any observation is estimable. In 
the example, E(y1}) = �  + OLX and so �  + at is estimable. 

(//) Linear combinations of estimable functions. Any linear combination of 
estimable functions is estimable. This is so because any (and every) estimable 
function is a linear combination of the elements of E(y). So, therefore, is a 
linear combination of estimable functions: and therefore it is estimable. 
Thus, if q^b and q�J) are estimable, then q^b = t^Eiy) and q^b = t ^ y ) for 
some tx and t2. Hence c ^ b + c2q2b = (c^ + c2t�2)E(y) and so it is estimable. 

(Hi) The form of an estimable function. If q'b is estimable, q'b = t'is(y) 
for some t', by definition, and so q'b = t�Xb. Since estimability is a concept 
that does not depend on the value of b, this last result must be true for all 
values of b. Therefore 

q' = t'X (40) 

for some vector t'. For any estimable function q'b it is not any specific value 
of t' that is so important; it is the existence of some t' that satisfies (40) that 
is important. In this context (40) gets used repeatedly; i.e., q'b is estimable 
whenever q' = t'X and, conversely, estimability of q'b implies q' = t'X 
for some t'. 

(iv) Invariance to the solution b°. When q'b is estimable, q'b0 is invariant 
to whatever solution of X�Xb0 = X'y is used for b°. This is so because, by 
(40), 

q'b0 = t�Xb0 = t�XGX�y 

and XGX� is invariant to G (Theorem 7, Sec. 1.5a). Therefore q'b0 is invariant 
to G and hence to b°, when q'b is estimable. This is the importance of estima-
bility. If q'b is estimable, q'b0 has the same value for all solutions b° to the 
normal equations. 

(v) The b.l.u.e. The b.l.u.e. of the estimable function q'b is q'b0; i.e., 

q̂ b = q'b0, (41) 

where by the "hat" notation we mean "b.l.u.e. of". 
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To prove (41) we demonstrate properties of linearity, unbiasedness and 
"bestness". First, q V is clearly a linear function of the observations, because 
q'b0 = q'GX'y. Second, q'b0 is an unbiased estimator of q'b because 

£(q'b°) = q'£(b°) = q'Hb = t'XHb = t'Xb = q'b, 

invoking both (40) and, from Theorem 7 of Sec. 1.5a, 

X = XH = XGX'X which also implies X' = X'XG'X'. (42) 

To demonstrate that q'b0 is a best estimator we need its variance: 

v(qfb� ) = q'GX'XGV2, from (9) 
= q'GX'XG'X'tcr2, from (40) 
= q'GX'tcr2, from (42) 
= q'Gqa2, from (40). (43) 

This illustrates the implication that the result var(b°) = GX�XG�a2 of (9), 
involving G and G', leads to no difficulties in application. Estimable functions 
q'b are the only ones of interest and their b.l.u.e.'s have variance q'Gqcr2 

even though GX'XG'a2 for the variance of b° is not an exact analogue of 
(X'X)-^2 of the full rank case. 

In the light of (43) we now show, following Rao (1962), that q'b0 has mini-
mum variance among all linear unbiased estimators of q'b and hence is best. 
Suppose k'y is some other linear unbiased estimator of q'b different from 
q'b0. Then, because k'y is unbiased £(k'y) = q'b and so k'X = q'. Therefore 

cov(q'b°, k'y) = cov(q'GX'y, k'y) = q'GX'ka2 = q'Gqcr2. 

Consequently 

i;(q'b° - k'y) = *;(q'b°) + t<k'y) - 2 cov(q'b°, k'y) 
= i;(k'y) - q'Gq<r2 

= i;(k'y) ~ <q'b°). (44) 
But tf(q'b° — k'y) is positive and so therefore, from (44), i?(k'y) exceeds 
i;(q'b°); i.e., q'b0 has a smaller variance than any other linear unbiased esti-
mator of q'b, and so is "best". 

The importance of this result must not be overlooked. If q'b is an estimable 
function its b.l.u.e. is q'b0 with variance q'Gq^2; and this is so for any solution 
b° to the normal equations using any generalized inverse G. Both the estima-
tor and its variance are invariant to the choice of G (and b°); but this is so 
only for estimable functions and not for non-estimable functions. 

The covariance between the b.l.u.e.'s of two estimable functions is derived 
in a manner similar to (43) : 

cov(qib0,q^b°)=qiGq2a2, (45) 
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and hence, if Q V represents the b.l.u.e.'s of several estimable functions, the 
variance-covariance matrix of those b.l.u.e.'s is 

var(QV) = Q'GQcr2. (46) 
c. Confidence intervals 

Since it is only estimable functions that have estimators (b.l.u.e.'s) that 
are invariant to the solution of the normal equations, they are the only 
functions for which establishing confidence intervals is valid. Similar to 
equation (94) of Sec. 3.5k we have, on the basis of normality, that the sym-
metric 100(1 — a)% confidence interval on the estimable function q'b is 

q'b0 ± a ^ . ^ V q ' G q (47) 

where tN_ria is defined by the probability statement Pr{7 > tN_ria} = \OL 
for t having the ^-distribution with N — r degrees of freedom. As before, 
when N — r is large (N — r > 100, say) � �  may be used in place of tN_ria 

where (2ΤΓ)-* Γ eri** dx = fa. 

d. Example (continued) 

When defining an estimable function we showed that ax — a2 is estimable; 
and 

α ι - a2 = [0 1 - 1 0]b = q'b 

has q' = [0 1 - 1 0]. 

Then, using b° of (22), the b.l.u.e. of ax — a2 is 

a i - a2 = q'b° = [0 1 - 1 0]b° = 100 - 86 = 14 

with variance 

ι<αι - a2) = q'Gqa2 = (£ + \)o* = for2. 

Using Gx and b° of (25) gives the same results: the b.l.u.e. of αχ — α2 is 

α ι - α 2 = [ 0 1 - 1 OK = 68 - 54 = 14, 
with 

� «� - *2) = q'Gxq = ( I + H - 2)� 2 = |� 2. 

The reader should verify that these same properties hold true for other 
estimable functions, such as a2 — a3, �  + K a i + a2)> a2 — 2ax + a3 and 
so on. 
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From these results, and using 62 = 23^ from Table 5.7, the symmetric 
100(1 — a)% confidence interval on ax — a2 is, from (47), 

1 4 ± V 2 3 J i 6 _ 3 , i a V i = 1 4 ± 4 . 4 1 / 3 , i a 

and with tzia = 3.18 for a = 0.05 this becomes 

14 �  4.41(3.18) = 14 ± 14 = 0 to 28. 

e. What functions are estimable? 

Whenever q' = t'X for some t, then q'b is estimable, with b.l.u.e. q'b° 
having variance q'Gqor2. Some special cases are now considered. 

Any linear function of Xb is estimable: m'Xb, say, for any vector m'. 
Its b.l.u.e. is 

m'Xb = m'Xb0 = m'XGX'y 
^ \ (48) 

with variance r(m'Xb) = m'XGX'ma2. 

Also estimable is any linear function of X'Xb: it is a linear function of Xb, 
s'X'Xb say. Replacing m' in (48) by s'X' gives 

s'X'Xb = s'X'y 
^ \ (49) 

and ^(s'X'Xb) = s�X�Xsa2. 

Since X'Xb is the same as the left-hand side of the normal equations with 
b° replaced by b and the b.l.u.e. of s'X'Xb is s'X'y where X'y is the right-hand 
side of the normal equations, we might in this sense say that the b.l.u.e. of 
any linear function of the left-hand sides of the normal equations is the same 
function of the right-hand sides. 

Linear functions of is(b0) are also estimable, because u'is(b0) = u'Hb = 
u'GX'Xb. Using u'G in place of s' in (49) shows that 

u '^b0) = u G X y = u'b° 
/ \ (50) 

and 4ur£(b0)] = !?(uV) = u'GX'XG'ua2 from (9). 

A special case of this result is when u' takes, in turn, the values of the rows 
of I: then b° is the b.l.u.e. of Hb. These results are summarized in Table 5.8. 

In view of the discussion of the F-statistics F(R) and F(Rm) in Sec. 3, 
it is worth emphasizing two vectors that are not estimable, namely b and its 
sub-vector S. They are not estimable because no value of q' = t'X can be 
found such that qrb reduces to an element of b; i.e., no individual element of 
b is estimable. Therefore neither b nor £�  is estimable. 
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TABLE 5 . 8 . ESTIMABLE FUNCTIONS AND THEIR B .L .U .E . ' s 

Estimable Function 

Description 

General case: q' = t'X 

Linear function of Xb 
(m' arbitrary) 

Linear function of 
X'Xb (s' arbitrary) 

Linear function of 
£ 0 ° ) (u arbitrary) 

Vector Hb having b° 

Function 

q'b 

m'Xb 

s'X'Xb 

uE(b� ) 

Hb 

b.l.u.e. 

q'b0 

m'Xb0 

s'X'Xb0 = s'X'y 

u'b° 

b° 

Variance of 
b.l.u.e. 

q'Gqa2 

m'XGX'm(T2 

s'X'Xsa2 

u'var(b°)u 

var(b°) = GX�XG�o 

f. Linearly independent estimable functions 
From Table 5.8 it is evident that there are infinitely many estimable func-

tions. If we ask "How many linearly independent estimable functions are 
there?" the answer is r, the rank of X; i.e., there are r(X) LIN estimable 
functions. 

Since q'b with q' = t�X is estimable for any t', let TNxN be a matrix of full 
rank. Then, with Q' = T'X, the functions Q'b are N estimable functions. 
But r(Q) = r(X). Therefore there are only r(X) LIN rows in Q' and hence 
only r(X) LIN terms in Q'b; i.e., only r(X) LIN estimable functions. Thus 
any set of estimable functions cannot contain more than r LIN such functions. 

g. Testing for estimability 
A given function q'b is estimable if some vector t' can be found such that 

t'X = q'. However, for q' known, derivation of a t' satisfying t�X = q' 
may not always be easy, especially when X has large dimensions. Alternative 
to deriving t', the estimability of q'b can be investigated by seeing whether 
q' is such that the equation q'H = q' is satisfied: q'b is estimable if and only 
if q�H = q'. This is easily proved: if q�b is estimable, q' = t'X and q�H = 
t'XH = t'X = q'; and if q�H = q', then q' = q'GX'X = t�X for t' = q'GX'. 

"Is q�b estimable?" is now easily answered. It is estimable if q' satisfies 
the equation q�H = q'. Otherwise it is not. Thus we have a direct procedure 
for testing the estimability of q'b: ascertain whether or not q�H equals q'. 
When q�H does equal q', not only is q�b estimable but, from the last line of 
Table 5.8, the b.l.u.e. of q�b = q�Hb is q'b0. This corresponds to the invari-
ance property of q'b0 for q�H = q' derived in Theorem 6 of Chapter 1. 
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h. General expressions 
In Table 5.8 and equations (48), m�Xb is estimable with b.l.u.e. m�Xb0 for 

any vector m' of order N. Thus, if we define x,· as the yth column of X, then 

X = [x1 x2 · · · x j 

and m�Xb = (m�x^i + (m'x2)Z>2 + · · · + (m�x9)bp (51) 

with b.l.u.e. 

m�Xb = m�Xb0 = (m�xjb{ + (m'x2)&° + · · · + (m'x^fc0. (52) 

For any values given to the m/s, the elements of m, those same values used in 
(51) yield an estimable function, and used in (52) they yield the b.l.u.e. of 
that estimable function. Hence (51) and (52) constitute general expressions 
for an estimable function and its b.l.u.e. 

Similar results hold for s�X�Xb of (49) where s' is any vector of order p, 
in distinction to m' of (51) and (52) which has order N. Defining zs as the yth 
column of X'X, 

X'X = [Z] z2 � � � z j , 

we have the estimable function 

s�X�Xb = ( s ' z ^ i + (s'z2)Z>2 + · · · + ( s ' z ^ (53) 
with b.l.u.e. 

s�X�Xb = s�X�Xb0 = (s'Zl)i0 + (s'z2)fe° + · · · + (s\)b� v. (54) 
These expressions hold for any elements in s' of order /?, just as (51) and (52) 
hold for any elements of m' in order N. 

From the last line of Table 5.8 we also have that w�Hb is estimable with 
b.l.u.e. w'b°. Thus if 

w' = [vvx w2 · · · wv] 

and H = [hx h2 · · · h j 

then an estimable function is 

w�Hb = (w�h^i + (w'h2)Z>2 + · · · + ( w ' h > p (55) 

and its b.l.u.e. is 

w�Hb = w'b° = wA° + w2b� 2 + · * · + w^ 0 . (56) 
Expressions (55) and (56) have advantages over (51) and (52) based on m�Xb 
because of fewer arbitrary elements, p instead of N; and over (53) and (54) 
because of greater simplicity. This is evident in (56), which is just a linear 
combination of the elements of b°, each element multiplied by a single 



[5.4] ESTIMABLE FUNCTIONS 187 

arbitrary w. And (55) often has a simple form also, because when X'X is a 
design matrix H often has p — r null rows [r = r(X)], with its other r rows 
having elements that are either 0, 1 or —1. The estimable function in (55) 
accordingly takes on a simple form and involves only r elements of w. 
Furthermore, b° in such cases can have only r non-zero elements too, and so 
the b.l.u.e. in (56) then involves only r terms. 

That H can often be obtained as a matrix of 0's, l's and — l's when X'X 
is a design matrix is established as follows. Suppose that 

X'X = 
A^-^l � 2^*�2. 

and G = � ( W 1 o" 
0 0 

where X^Xj has full rank, equal to r(X), and G is a generalized inverse of X'X. 
Since X = [Xx X2] where Xx has full column rank, X2 = X^A for some 
matrix M, and because all elements of X are 0 or 1, those of M can often be 
0, 1, or — 1. Hence 

H = GX�X = 
"i ( � � � � � � � ; 

.0 0 
= 

I M 

-0 0. 

and sop — r rows of H are null and elements in the r non-null rows are often 
0,1 or - 1 . 

i. Example (continued) 
From (2), (6), and (21) the values of X, X'X and H are 

X = 

1 1 0 0" 
1 1 0 0 
1 1 0 0 
1 0 1 0 
1 0 1 0 
1 0 0 1 

, X�X = 

"6 3 2 �  
3 3 0 0 
2 0 2 0 
1 0 0 1 

and H = 

b = 
> " 
«1 

a2 

- a 3 _ 

and b�  = 

" 0 " 
100 
86 
32 

"0 0 0 0" 
1 1 0 0 
1 0 1 0 
1 0 0 lj 

with 

from (22). With these values, m'Xb of (51) is 

m'Xb = (mx + m2 + m3 + ra4 + m5 + �� 6)�  + (mx + m2 + ^3)αχ 
+ (ra4 + m5)y.2 + w6a3 (57) 

with b.l.u.e., from (52), 

m'Xb = m'Xb0 = (mx + m2 + m3)100 + (m4 + m5)86 + m632. (58) 
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Thus for any values of ml9 . . . , m6, (57) is an estimable function and (58) is 
its b.l.u.e. Similarly, from (53) and (54) and using X�X 

s�X�Xb = (6$! + 3s2 + 2s3 + 54)µ + 3(5Χ + *2)at 

+ 2(Si + %)oc2 + (sx + 54)α3 (59) 
is estimable with b.l.u.e. 

s�X�Xb = s�X�Xb0 = 300(^ + s2) + 172fe + s3) + 32fa + j4). (60) 

These expressions hold for any values given to the arbitrary j ' s , of which 
there are only p = 4, compared to N = 6 arbitrary ra's in (57) and (58). 
Those with the fewer arbitrary values seem preferable. Likewise, from (55) 
and (56) and using H, an estimable function is 

w�Hb = (w2 + w3 + νν4)µ + νν2α! + w3a2 + w4a3 (61) 

having b.l.u.e. ^Η 1 > 0 = ^ 0 = 1 ( χ ) ^ + ^ + ^ ^ 

For any values of w2, w3 and w4, (61) is estimable and (62) is its b.l.u.e. 
Note that in using (55) and (56), of which (61) and (62) are examples, the 

H used in w�Hb of (55) must correspond to the b° used in w'b° of (56). In 
(55) one cannot use an H based on a generalized inverse that is different from 
the one used in deriving b° = GX'y. This point is obvious, but important. 
Of course, (55) and (56) apply for any b�  and its corresponding H. Thus for 
b° and Hx of (25), equations (55) and (56) indicate that 

w�Hjb = \� � �  + W12OLX + w13a2 + (wn — w12 — w13)a3 (63) 
is estimable with b.l.u.e. 

wiHxb = w^bj = 32wn + 68w12 + 54w13 , (64) 
these results holding for any values wn, w12 and w13. Clearly, (63) and (64) 
are not identical to (61) and (62) but for different sets of values of w2, w3 

and H'4 in (61) and (62) and of wn, W12 and w13 in (63) and (64), both pairs of 
expressions will generate the same set of estimable functions and their 
b.l.u.e.'s. For example, with w2 = 4, w3 = 0 and w4 = 4 equations (61) and 
(62) give �  + i(ai + a2) estimable with b.l.u.e. 100(4) + 86(0) + 32(4) = 
66; and with wn = 1, w12 = 4 and w13 = 0, equations (63) and (64) give 
�  + K«i + a2) as estimable with b.l.u.e. 32(1) + 68(4) + 54(0) = 66. 

5. THE GENERAL LINEAR HYPOTHESIS 

We here develop the theory for the general linear hypothesis written as 
H: K'b = m, just as in Sec. 3.6 for the full rank case. Before considering 
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a test of this hypothesis we first establish its "testability"; some hypotheses 
can be tested and others cannot. 

a. Testable hypotheses 
The definition that a testable hypothesis is one which can be tested tells 

us little. By it we mean that a testable hypothesis is a hypothesis that can 
be expressed in terms of estimable functions. Of itself this is not to say that 
hypotheses composed of non-estimable functions cannot be tested—although 
this is the case, as is proved in subsection d. Nevertheless, it seems reasonable 
that a testable hypothesis be one made up of estimable functions for the 
following reason: if K'b = m is to be tested, then results for the full rank case 
suggest that K'b0 — m will be part of the test statistic which, of course, will 
need to be invariant to b°. And it will be invariant only if K'b is estimable. 

A testable hypothesis H: K'b = m is therefore taken as one where 

K'b = {kjb} for / = 1,2, . . . , * 

such that k^b is estimable for all /. Hence k£ = tjX for some i\ and so 

K' = T'X (65) 

for some matrix (T)sXN. Furthermore, any hypothesis is considered only in 
terms of its linearly independent components, and so (K')sX3) is always of full 
row rank, s. 

Since K'b is taken to be a set of estimable functions their b.l.u.e.'s are 

ΚΊ£ = K V 

with £(K'b°) = Kb 

and var(K'b) = K' var(b°)K 
= K'GX'XG'Ktf2, from (9) 
= K'GX'XG'X'Tcr2, from (65) (68) 
= K'GKtf2, 

using Theorem 7 of Chapter 1, and (65) again. This matrix is non-singular, as 
is now shown. Because the functions K'b are estimable K' can be represented 
not only as T'X for some T but also as S'X'X for some S' of full row rank s. 
Then with 

K' = S'X'X, of orders x p, and r(K') = s 

where s < r, it is readily shown that 

S' and S'X' have full row rank s. 

(66) 
(67) 
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[For example, r(S') > r(K') and so r(S') > s; but S' is s x p and so r(S') < 
s; hence r(S') = s.] Furthermore 

K'GK = S'X'XGX'XS = S'X'XS 

and so r(K'GK) = r(S'X') = s = the order of K'GK. Hence K'GK is non-
singular. 

b. Testing testable hypotheses 
The test for the testable hypothesis H: K'b = m is developed just as in 

the full rank case (Sec. 3.6a). Normality of e is assumed and we have, from 
Sees. 3a and 3b, 

y~JV(Xb,tf2I), 
b° ~ N(GX�Xb, GX'XG'cr2) 

and K'b0 - m ~ JV(K'b - m, K'GKcr2) 

from (67) and (68). Therefore, using Theorem 2 of Chapter 2, the quadratic 
form 

Q = (K'b0 - nOXK'GKrXK'b0 - m) (69) 
is such that 

β/σ2 ~ x*�[s9 (K'b - nOXK'GKrXK'b - πι)/2σ2] 
Furthermore, 

Q = [y - XKiK'^-^J 'XG'KiK'GKr^ 'GX' ty - ΧΚίΚ 'Κ)"^], 

with (K'K)-1 existing because K' has full row rank, and 

ΚΌΧ'ΧΚίΚ'ΚΓΗη = T'XGX'XKiK'K)1!!! 

= Τ 'ΧΚίΚ 'Κ)-^ = Κ 'ΚίΚ 'Κ)"^ = m. 
Also, 

SSE = [y - ΧΚίΚ'Κ)-1«!]'^ - XGX')[y - ΧΚίΚ 'Κ)"^], 

this being so because X'(I —XGX') = 0. For the same reason, the matrices 
of the quadratic forms in these expressions have null products and so Q and 
SSE are distributed independently. Therefore 

F(H) = 2/5 ^ F�[S N __ r> (K'b - nO'iK'GKr^K'b - ιη)/2σ2] 
SSE/( iV-r ) 

and under the null hypothesis H: K'b = m, the non-centrality parameter is 
zero and so F(H)~ Fs N_r. Thus F(H) provides a test of the hypothesis 
H: K'b = m, with 

F(H) = (K'b0 - myiK'GK^HKV - m) /^ 2 (70) 

with s and N — r degrees of freedom. 
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Suppose we now seek a solution for b° under the hypothesis H: K'b = m. 
Denote it by b� H. Then it will come from minimizing (y — Xb#)'(y — Xb� H) 
subject to K�b� H = m. Using a Lagrange multiplier 2Θ' this leads, exactly as 
in equation (102) of Chapter 3, to 

X'Xb^ + ΚΘ = X'y 
and (71) 

K ' b ^ m . 

From the first of these a solution is 

b ^ = GX'y - GK6 = b° - GK6 

and substitution in the second leads, as in (103) of Chapter 3, to 

b ^ = b° - GKOK'GKr^K'b0 - m). (72) 

The error sum of squares after fitting this, to be denoted by SSEH, is 

SSEff = (y - Xb°H)'(y - Xb� H) 

= [y - Xb° + X(b° - b� H)Y[y - Xb° + X(b° - b� H)] 

= (y - Xb°)'(y - Xb°) + (b° - b^)'X'X(b° - b� H\ (73) 

the cross-product term vanishing because X'(y — Xb°) = 0. Substituting from 
(72) for b° - b ^ this gives 

SSE# = SSE + (K'b0 - m),(K,G,K)-1K,G,X,XGK(K,GKj-1(K'b° - m). 

Now K' = ΓΧ and so 

K'G'X'XGK(K'GK)1 = T'XG'X'XGK(K'GK) * = T'XGK(K'GK) * = I; 
and K'G'K = T'XG'X'T = T'XGX'T = K'GK. 
Hence SSEff = SSE + (K'b0 - m),(K,GK)-1(K,b° - m) 

= SSE + Q (74) 
for Q of (69). 

c. The hypothesis K b = 0 

Application of the above results to certain special cases, as was done for 
the full rank case in Sec. 3.6c, cannot be undertaken here because (74) is 
limited to cases where K'b is estimable. For example, the hypotheses 
H: b = b0 and H: bg = 0 cannot be tested because b and bq are not esti-
mable. Neither is £. This is why, as indicated in Sec. 3, tests based on F(R) and 
F(Rm) cannot be described as testing hypotheses of this nature. Nevertheless, 
as discussed in Sec. 6.2f(iii), the test based on F(Rm) can sometimes be 
thought of as appearing equivalent to testing S- = 0. 
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One special case of the general hypothesis K'b = m is when m is null. In 
this situation Q and b� H of (69) and (72) become 

Q = b°'K(K G K ^ K b 0 and b� H = b° - GKtK'GKr'K'b0 (75) 
with 

Q = SSR — reduction in sum of squares due to fitting the reduced model. 

Hence, corresponding to Table 3.6 we have the analysis of variance shown in 
Table 5.9. 

TABLE 5 . 9 . ANALYSIS OF VARIANCE FOR TESTING 
THE HYPOTHESIS K'b = 0 

Source of Variation 

Full model 
Hypothesis 
Reduced model 

Residual error 

Total 

N 

d.f.i 

r 
s 

r — s 
�  r 

N 

Sum of Squares 

SSR = b°'X'y 
Q = tf'KflK'GK^KV 
SSR - Q 

SSE 

SST = y'y 

1 r = r(X), and s = r(K'), with K7 having full row rank 

As before, we have three tests of hypotheses: 

SSR/r 
SSE/(iV - r) 

Qls 

tests the full model, 

tests the hypothesis H: K'b = 0 

tests the reduced model. 

SSE/(iV - r) 

and, under the null hypothesis, 

( S S R - Q ) / ( r - s ) 
SSE/(AT - r) 

The first and last of these tests are not to be construed as testing the fit of the 
models concerned but rather as testing their adequacy in terms of accounting 
for variation in the ^/-variable. 

Table 5.9 can, of course, be rewritten to make it in terms of "after fitting 
the mean" (a.f.m.). This is done by subtracting Ny2 from SSR and SST to 
get SSRm and SSTW, as shown in Table 5.10. 
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TABLE 5 . 1 0 . ANALYSIS OF VARIANCE FOR TESTING THE 
HYPOTHESIS K'b = 0 AFTER FITTING THE MEAN 

Source of Variation1 d.f.2 Sum of Squares 

Full model (a.f.m.) r - 1 SSRW = SSR - Nf 
Hypothesis s Q = b^KCK�GK^KV 
Reduced model (a.f.m.) r — s — 1 SSRm — Q 

Residual error N — r SSE 
Total (a.f.m.) N - 1 SSTm = y'y - Nf 

1 a.f.m. = after fitting the mean. 
2 r — r(X), and s — r(K'), with K' having full row rank. 

The tests of hypotheses are then 

SSRJ(r - 1) 
SSE/(N - r) 

Q/s 
SSE/(N - r) 

and, under the null hypothesis, 

tests the full model (a.f.m.), 

tests the hypothesis H: K�b = 0 

^ ^ ^ ί 1 D tests the reduced model (a.f.m.). 
SSE/(iV - r) 

As was stated below Table 5.9, the first and last of these tests relate to the 
adequacy of the models concerned in explaining variation in the ^/-variable. 

The analogy of all these results with the full rank case is clear. In the non-
full rank case G and b° are used in place of (X'X)-1 and h of the full rank case. 
In fact, of course, the full rank model is just a special case of the non-full rank 
model. For, when X'X is non-singular, G = (X'X)"1 and b° = h and all results 
for the full rank model follow from those of the non-full rank model. 

d. Non-testable hypotheses 
In stating earlier that a testable hypothesis is one composed of estimable 

functions we appealed to the intuitive need for having K'b0 invariant to b° in 
order to be able to test H\ Krb = m. We now show explicitly that if K�b is 
not estimable the corresponding value of SSEjy is SSE and so there is no test 
o f # : Κ^ = ιη. 

The equations that result from minimizing (y — Xb°)r(y — Xb°) subject to 
K'b0 = m are, just as in (71), 

X�Xh� H + ΚΘ = X'y and K�b� H = m, (76) 
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where 2Θ' is a vector of Lagrange multipliers. Consider the equations 

K ( H - I)Zl = m - K�GX�y (77) 

in zv As indicated in the proof of Theorem 4 of Sec. 1.2c, (H — I)zx con-
tains p — r arbitrary elements. Now because K�b is not estimable, K' ^ T�X 
for any T' and so, because X = XGX�X (Theorem 7, Chapter 1), K� ^ 
(T�XG)X�X for any T�; i.e., the rows of K' are LIN of those of X X But 
X�X has order p and rank r. Also, the rows of K' have order p and are to be 
LIN of each other. Therefore, if they are also to be LIN of the rows of X�X 
there can be no more than p — r of them; i.e., K' has no more than p — r 
rows. Hence (77) represents no more than p — r equations in the p — r 
unknowns of (H — I)zx and so always has at least one solution for zv Using 
it for z in 

b° = GX�y + (H - I)z (78) 
to obtain 

b� H = GX�y + (H - I)Zl, (79) 
we find that Θ = 0 and b� H of (79) satisfy (76). Consequently, because (79) is 
just a subset of the solutions (78) to X�Xb0 = X'y, 

SSE^ = (y - X b y (y - Xb^) = SSE 
and so there is no test of the hypothesis. Thus when K�b is not estimable, there 
is no test of the hypothesis H: K�b = m. 

In comparing equations (71) and (76) the sole difference between them is 
that K�b is estimable in (71) whereas in (76) it is not. In solving (71) it is the 
estimability condition (Κ' = T�X for some T') that leads to the solution (72). 
On the other hand, in solving (76) the solution for b� H is also a solution of 
X�Xb = X'y, as shown in (77) and (79). It is the lack of estimability of K�b 
that allows this. In contrast, in (71) where K'b is estimable, K' = S�X�X for 
some S� and so, for b° of (78), K�b0 = S�X�Xb^ = S�X�y for all values of z. 
Therefore no value of z in (78) can be found such that K'b0 = m, and so no 
value of (78) exists which satisfies (71). 

A further extension is that of trying to test a hypothesis which consists 
partly of estimable functions and partly of non-estimable functions. Suppose 
H\ K�b = m can be written as 

Kib 
_k'b_ -m2_ 

where K^b is estimable but k'b is not. Then, using two Lagrange multipliers, 
the same development as above will lead to the conclusion that testing (80) is 
indistinguishable from testing just H: K̂ b = mv Hence in carrying out 
the test of a hypothesis which consists partly of estimable functions and 
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partly of non-estimable functions, all we are doing is testing the hypothesis 
made up of just the estimable functions. (See Exercise 7.) 

e. Checking for testability 
The logic of deriving 

Q = (K'b° - m),(K,GK)-1(K,b° - m) 

depends upon K�b being estimable. Nevertheless, when K�b is not estimable Q 
can be calculated so long as K�GK is non-singular. This is so because estima-
bility of K�b is a sufficient condition for the existence of g, in particular for 
the existence of (K'GK)-1, but it is not a necessary condition. Hence when-
ever (K'GK)-1 exists Q can be calculated even if K�b is not estimable. Checking 
to see that K�b is estimable is therefore essential before calculating Q and 
F(H). This can be done by ascertaining the existence of some T' such that 
K' = T'X, or by seeing if K' satisfies Κ' = ΚΉ. 

Suppose, however, that checking the estimability of K�b in this manner is 
overlooked and Q is calculated. Then, if in fact K�b is not estimable, what 
hypothesis, if any, is F(H) testing ? The answer is H: K�Hb = m. We show 
this as follows. Since H: K�Hb = m is always testable the value of Q for 
testing this hypothesis (call it ßi) is, from (69), 

ß i = (K�Hb0 - m)�(K�HGH�K) ̂ (K�Hb0 - m). (81) 

In this expression 

K�Hb0 = KGX�XGX y = K�GX�XG�X�y = K�G^�y 

because XGX� = XG�X� (Theorem 7, Sec. 1.5a), and where 

Gx = GXXGr 

is a generalized inverse of X'X. Therefore 

KHb�  = K GXX y = Kb? 
where 

K = GXX y 
is a solution of X�Xb0 = X'y. Also, 

KHGHK = KGXXGXXGK = KGXXGK = K�GJL 

and so in (81) 
ßx = (K�b? - m)XK,G1K)-1(K,b1�  - m). 

Thus Q�  is identical to the numerator sum of squares that would be calculated 
from (69) for testing the non-testable hypothesis K'b = m using the solution 
b? = GiX'y. Hence the calculations that might be made when trying to test 
the non-testable hypothesis K�b = m are indistinguishable from those entailed 
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in testing the testable hypothesis K�Hb = m; i.e., if F(If) of (70) is calculated 
for a hypothesis K�b = m that is non-testable, the hypothesis actually being 
tested is K�Hb = m. 

f. Example (continued) 
From (21) and (22) 

G = 

0 0 0 0 

0 | 0 0 

0 0 | 0 

0 0 0 1 

, H = 

0 0 0 0 

1 1 0 0 

1 0 1 0 

1 0 0 1 

and b" = 

0 
100 

86 

32 

(82) 

with (24), (26) and (27) being 

SSR = 45,816, SST = y'y = 45,886 and SSM = 42,336, (83) 

and hence 
σ2 = (45,886 - 45,816)/3 = 70/3. (84) 

Consider H: ax = a2 + 10. It can be written as [0 1 —1 0]b = 10 
where k'H = k' = [0 1 — 1 0]. Therefore it is a testable hypothesis and 
the f-statistic for testing it, (70), is derived as follows: 

k'b0 m = 100 - 86 - 10 = 4, 
k'Gk = i + 

and F(H) = 
4(5/6)^4 3(6)16 

5(70) 
144 
175 

(85) 

1(70/3) 

Or again, consider H: �  + oci = �  + α2 = 90, written as 

K�b = 0 0 
1 0 

b = 
90 
90 

where K�H = K'. Hence the hypothesis is testable and 

Kb" - m = 

K�GK = 

100 

86 
� 

90 

90 
= 10 

-4 

� H ol 
.0 0 \ OJ 

�� �" 
1 0 

0 1 
� * � 1 
-� i 
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and 

F(fl) = 
[10 - 4 ] 

10 

- -4J 
2(70/3) 

This same hypothesis could also be written as 

for which 

332(3) 
2(70) 

249 
35 

K'b = 

Kb0 - m = 

1 1 

.0 1 

1 loo 
L14. 

0 

- 1 

— 

0" 

oJ 
90 

. 0 . 

b = 

= 

[90" 
LoJ 
to 1 

-14j 

and K'GK = 
0 

-i 

|~1 
1 

P 
[p 

0 

1 
- 1 

0. 

= 
"i *1 

1 5. 
_ 3 6 J 

[10 14]6 
Hence F(H) = 

500 - 560 + 392 _ 249 
"" 35 : 2(70/3) 2(70/3) 

the same result as before. 
To test the hypothesis H: ai = a2, it is written as [0 1 — 1 0]b = 0. 

and is seen to be testable. As in (85), k'Gk = f, and now k'b° — m = 14. 
Hence Q = M^f)-1 = 235.2. Table 5.9 then has the values shown in Table 
5.11. If fitting the mean is to be taken into account, as in Table 5.10, SSM = 
42,336 is subtracted from SSR and SST to get SSRW and SSTW, as shown in 
Table 5.12. 

As an example of a non-testable hypothesis consider H: ax + a2 = 220 
which written as k'b = m gives k' = [0 1 1 0]. Equation (77) is then 

[0 1 1 0 ] 

giving 2zx = 220 — 

0 
0 
0 
0 

0 
0 
0 
0 

0" 
0 
0 
0 

zx = 220 - [0 1 1 0] 

0" 
100 
86 
32 

86, i.e., zx = 17. Therefore in (79) 

b� H = 

Γ 0" 
100 
86 

L 32. 

+ 

" - Γ 
1 
1 

. 1. 

17 = 

"—171 
117 
103 
49j 
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TABLE 5 . 1 1 . EXAMPLE OF TABLE 5 .9 

[5.5] 

Source 

Full model 
Hypothesis 
Reduced model 

Residual error 

Total 

TABLE 5 . 1 2 

Source 

Full model (a.f.m.) 
Hypothesis 
Reduced model (a.f.m.) 

Residual error 

Total (a.f.m.) 

d.f. 

3 
1 
2 

3 

6 

. EXAMPLE 

d.f. 

2 
1 
1 

3 

5 

Sum of 
Squares 

SSR = 45,816 
Q = 235.2 

SSR - Q = 45,580.8 
SSE = 70 

SST = 45,886 

OF TABLE 5 . 1 0 

Sum of 
Squares 

SSRm = 3480 
Q = 235.2 

SSRm - Q = 3244.8 
SSE = 70 

SSTm = 3550 

and the error sum of squares after fitting this is, by (12), 

SSEtf = 45,886 - [-17(504) + 117(300) + 103(172) + 49(32)] 

= 45,886 - 45,816 = 70 

identical to SSE. Hence there is no test for H: ai + oc2 = 220. 
Suppose the testability had not been checked. The formula for Q could 

nevertheless be calculated: 

k'b° - m = 186 - 220 = - 3 4 and k�Gk = 5/6 
so that 

F(H) = (-34)(5/6)~1(~34)/(70/3) = (18)342/350 = 10,404/175. 

We show that this is the same as testing H: k�Hb = 220, namely 

H: [0 1 1 0] 

�  0 0 01 

1 1 0 0 

1 0 1 0 

1 0 0 l j 

l�"" a i 

� �  
La3j 

= 220 
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which is H: 2�  + αχ + α2 = 220. For this, k' = [2 1 1 0], k'H = k', 
k'b0 - m = - 3 4 and k�Gk = 5/6, and so 

F(H)= (-34)(5/6)-1(~34)/(70/3) = 18(342)/350 = 10,404/175. 

g. Independent and orthogonal contrasts 
The numerator sum of squares for testing H: K�b = 0 is, as in (75), 

Q = b^KCK�GK^K�b0. (86) 

For K�b being estimable, K' = S'X'X for some S', as discussed following 
equation (68), and so with b° = GX'y 

Q = y'XG'X'XSiS'X'XGX'XS^S'X'XGX'y 
= y'XSiS'X'XS^S'X'y, 

on using Theorem 7 of Sec. 1.5a. Furthermore, K' has full row rank s, and 
when s = r = r(X), it can be shown that XS = � � � � (�  where X1? a sub-
matrix of X, is TV X r of full column rank, with P and X^XX both non-singu-
lar. This leads to S(S'X'XS)-1S' being a generalized inverse of X'X (see 
Exercise 4) and so 

Q = y'XGX'y = SSR when s = r = r(X). (87) 

Now r = r(X) is the maximum number of LIN estimable functions (see 
Sec. 4f). Hence (87) shows that the sum of squares SSR due to fitting the 
model is(y) = Xb is exactly equivalent to the numerator sum of squares for 
testing the hypothesis K'b = 0 when K'b represents the maximum number of 
LIN estimable functions, namely r = r(X). This means7 that if kt' is a row of 
K', then the numerator sum of squares for simultaneously testing k^b = 0 
for i = 1, 2, . . . , r equals SSR. But it does not necessarily mean that for 
testing the r hypotheses kt'b = 0 individually the sums of squares add up to 
SSR. This will be so only in certain cases, which are now discussed. 

Suppose that kt' and k̂ ' are two rows of K'. Then 

qi = tf'k/^Gkrtb0 = y 'XG'k/k i -Gkr tGX'y 
and q, = b^k/k^Gk,·)"^^0 = y 'XG'k/k ' .Gk.r^GX'y (88) 
are the numerator sums of squares for testing the hypotheses kt'b = 0 and 
k;'b = 0 respectively. By Theorem 4 of Chapter 2 these sums of squares, 
viewed as quadratics in y which we are assuming has the JV(Xb, σ2Ι) distribu-
tion, will be independent when 

XG ki(k;Gki)-1k;GX,XG'k/k;Gkir1k;GX' = 0. 

A necessary and sufficient condition for this is 

kj�GX�XG�k, = 0. 
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Since k̂ .b is estimable, k5' = t̂ 'X for some t�p and so the condition becomes 

k^GX'XG'X't, = k^GX't, = k;Gk; = 0. (89) 
Thus (89) is a condition that makes qi and qs of (88) independent. It also 

(K'GK)"1 = d i ag^Gk , ) - 1 } for i = 1, 2 , . . . , r 
and so (86) becomes 

ö = ib°'kj(k;GkJr1kx 
i=l 

, , 2 r (90) 

a kJGk, h 
Condition (89) is also, by (45), the condition that k^b" and kjb" are inde-

pendent. Hence when K'b consists of r = r(X) LIN functions k^b for i = 
1,2, ...,r, and when the k^b0 are distributed independently, then the 
numerator sum of squares Q for testing K'b = 0 not only equals SSR by 
(87) but also equals, in (90), the sum of the numerator sums of squares q( 

for testing the hypotheses k,'b = 0 for i = 1, 2 , . . . , r. This can be summa-
rized as follows. When, for i = 1, 2, . . . , r, 

K = k^H, (91) 

kJGk,· = 0 for i^j (92) 
the kj are LIN, (93) 

then F(H) = Q/ra2 tests H: K b = 0 

and F{Ht) = qila
i tests Ht: k^b = 0 

and ß = SSR = 2 q{, (94) 

and the q/s are mutually independent, with 

(k;b°)2 

q __ 
k^Gk, 

Under their respective null hypotheses, F(H) is distributed as FrN_r and 
F(H^ as FliN_r, the latter being equivalent to /-tests with N — r degrees of 
freedom using 

k'b0 

� 2 Vk;Gk,a2 

as the /-statistic to test H{. 
In the case of balanced data these conditions lead to sets of values for the 

k�{ such that the k^b are often called orthogonal contrasts; "orthogonal" 
because G is then such that (92) reduces to k^ky = 0 and "contrasts" because 
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the k^b can be expressed as sums of differences between elements of b. The 
name "orthogonal contrasts" is retained here (for unbalanced data), meaning 
orthogonal in the sense of (92). Examples are given below and in Chapter 6. 
h. Example (continued) 

In the example, r(X) = r = 3. Illustration of (87) is given by considering 
the hypothesis H: K b = 0 for 

'3 1 1 Γ 

K ' = | 0 2 - 1 - 1 

0 0 1 - 1 _ 
The rows of K' are LIN and, because ΚΉ = K', the elements of K'b are 
estimable. Using b° and G of (82) the numerator sum of squares for testing 
the hypothesis is, from (86), 

" 11 - 5 - 3 ] ΡΓ218' 

- 5 17 3 82 

L-3 3 9J I L 54. 

Q = [218 82 54] 

8 

2 

2 

2 

5 

- 1 

2] 
- 1 

*1 

Γ218" 

82 

L 54. 

= [218 82 5 4 ] ^ 

= [8(2182) + 5(822) + 9(542) + 2(2)218(82) 
+ 2(2)218(54) - 2(1)82(54)]/12 

= 45,816 = SSR in Table 5.11. 
Thus simultaneous testing of 

Hx: 3�  + αχ + α2 + α3 = 0, 
� 2: 2αχ — α2 — α3 = 0 

and � � : α2 — α3 = 0 
utilizes a numerator sum of squares equal to SSR. But adding the numerator 
sums of squares for testing these hypotheses individually does not give SSR: 

Hypothesis Numerator Sum of Squares 

3�  + αχ + α2 + α3 = 0 
2αχ — α2 — α3 = 0 

α2 — α3 = 0 

2182/(11/6) = 
822/(17/6) = 
54·/( 9/6) = 

25,922.2 
2,373.2 
1,944.0 

Total 30,239.4 ^ 45,816 
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With balanced data, the individual hypotheses of K'b = 0 given above 
would be considered orthogonal contrasts. Not so with unbalanced data, 
however, for the b.l.u.e.'s of the estimable functions involved in the hypotheses 
are not distributed independently. This is so because the co variance matrix of 
the b.l.u.e.'s [see (46)], 

11 - 5 - 3 " 

var (K'b0) = K'GK*2 = \ - 5 

- 3 

17 

3 

does not have its off-diagonal elements zero. With balanced data K'GK 
would be diagonal, so giving rise to independence. 

To derive a set of orthogonal contrasts in the manner of (92) we need K' 
such that its rows satisfy (91)-(93). Suppose one contrast of interest is 
ax — a3, and in seeking two others orthogonal to it we take K' to have the 
form 

K' = 

Then (91), using H of (82), demands that 

b + c + d = a 

and (92), using G of (82), requires that 

1 6 - ^ = 0, i / - A = 0 and 

Solutions to these two sets of equations are 

�a 

0 

.0 

nan 

b 

1 

/ 

ds that 

and 

c d~ 

0 - 1 

g K 

, 

f+g + A = 0; 

ia = ib = hc = d and 

W+hcg + dh = Q. 

\f=-lg = h 

for any values of d and h. For example, putting d = 1 and h = 1 gives 

Γ6 3 2 Γ 

K' = 

for which 

K'b° = 

' 504' 

68 

- 1 2 

0 1 0 - 1 

0 3 - 4 1 

and K�GK = 

"6 

0 

0 

0 
4 
3 

0 

0� 

0 

12 
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the latter having its off-diagonal elements zero, in accord with having chosen 
K so as to satisfy (92). Furthermore, it is readily seen that the rows of K' 
are LIN and so satisfy (93). The hypothesis K'b = 0 is then tested using, 
from (86), 

Thus the contrasts 

and 

[504 68 -12] 
"1 o on 
0 | 0 

.0 0 ^ J 
5042/6 + 682(f) + (-12)2/12 
42,336 + 3,468 + 12 
45,816 = SSR of Table 5.11. 

6/i + 3a! + 2a2 + a: 

« l - «a 

3a t — 4a2 + as 

�  5 0 4 1 
68 

L-12J 

l> 

which are estimable and LIN are also orthogonal in the manner of (92), and 
the numerator sums of squares for testing the hypotheses that each of them 
is zero add to that for testing them simultaneously, namely SSR. Thus is 
(94) illustrated. 

Notice that for testing H: 6�  + 3αχ + 2α2 + α3 = 0 the numerator sum 
of squares is 5042/6 = 42,336 = Ny2 = SSM; and the sums of squares for 
the contrasts orthogonal to this, 3468 and 12, sum to 3480, SSRW, the sum of 
squares due to fitting the model, after correcting for the mean (see Table 5.12). 
In general, consider any contrast k'b that is to be orthogonal to � �  + 
3αχ + 2α2 + α3. By (91), with H of (82) the form of k' must be 

K = [K2 i ^3 T ^4 k2 ^3 k^\. 

And (92) requires that k' must satisfy 

k'G = k' 

Ό o o οΊ 
o i o o 
0 0 \ 0 
0 0 0 lj 

� 6 

3 
2 

[l 

= k' 

"o" 
1 
1 

ll 

= 0. 

By the form of k' this means that k2 + k3 + fc4 = 0, so that 

k' = [0 k2 kz k,] 

with k2 + k3 + &4 = 0. Thus any contrast k'b having k2 + k3 + k^ = 0 
satisfies (91) and (92), is orthogonal in the manner of (92) to 6�  + 3αχ + 
2α2 + α3 and, because the first term of k' is zero, does not involve � . 
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2ax — a2 — a3 is one such contrast. Any r — 1 such contrasts orthogonal to 
each other will have numerator sums of squares that sum to SSRm. For 
example, for 

ro 2 - l - r 
K' = 

0 

K'b will be a pair of orthogonal contrasts, orthogonal to each other and to 
6�  + 3at + 2a2 + a3 if 

a + b 

and [0 2 - 1 -1 ]G 

+ < 
"(Γ 

: = 0 

= I« — i* — c = 

Solutions to these equations are 

3 — 1 0 �  — C 

for any c. Thus for c = 7 

K = 
"0 2 - 1 - f 

_0 3 - 1 0 7_ 
for which 

Kb° = 
82" 

_-336_ 
and K'GK = 

"17/6 

_ 0 

0 

10 
so that in (86) 

β = 822(6)/17 + 3362/102 = 2,373T
3
y + 1,106-H-

= 3,480 = SSRm of Table 5.12. 

These few examples illustrate the several ways in which (91)-(94) can be 
used for establishing independent and orthogonal contrasts for unbalanced 
data and testing hypotheses about them. Other examples are shown in 
Chapter 6. 

6. RESTRICTED MODELS 

Reference has been made to the fact that sometimes a linear model may 
include restrictions on the elements of the parameter vector. Such restrictions 
are quite different from the "usual constraints" frequently introduced for 
the sole purpose of getting a solution to the normal equations. These are 
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discussed in Sec. 7. In contrast, the restrictions envisaged here are considered 
to be an integral part of the model and as such must be taken into account in 
the estimation and testing processes. 

The discussion so far has been in terms of models whose parameters have 
been very loosely defined. Indeed, no formal definition has been made. In 
writing the equation of the model as y = Xb + e we simply described b as 
being the vector of the "parameters of the model" and left it at that; thus in 
the example, �  is described simply as a general mean and a1? a2 and a3 as 
effects on yield arising from three different plant varieties. No further defi-
nition is implied. Sometimes, however, more explicit definitions inherent in 
the model result in relationships (or restrictions) existing among the param-
eters of the model. These are considered part and parcel of the model. For 
example, the situation may be such that the parameters of the model satisfy 
the relation ax + a2 + a3 = 0; that is, we take this not as a hypothesis to be 
tested but as a fact, without question. Relationships of this nature, existing 
as an integral part of a model, will be called restrictions on the model. Their 
origin and concept is not the same as that of relationships that sometimes get 
imposed on the solutions of normal equations in order to simplify obtaining 
those solutions; those relationships will be called constraints on the solutions. 
They are discussed in Sec. 7. But here we are concerned with an aspect of the 
model, that it includes relationships among its parameters. A simple example 
might be a model involving the three angles of a triangle; or one involving a 
total weight and its components, such as fat, bone, muscle and lean in a 
dressed beef carcass. 

The models already discussed, those that contain no restrictions of the kind 
just referred to, will be referred to as unrestricted models. And models that 
do include restrictions of this nature will be called restricted models. The 
question then arises as to how the estimation and hypothesis testing processes 
developed for unrestricted models apply to restricted models. In general, we 
consider the set of restrictions 

P'b = δ (95) 
as part of the model, where P ' has full row rank q. The restricted model is 
then y = Xb + e restricted by P'b = δ. Fitting this restricted model leads, 
just as in (71), to Λ 
J X'Xb° + Pe = X'y 
and (96) 

P'b; = δ 
where 2Θ is a vector of Lagrange multipliers, and the subscript r on b� r de-
notes that b� r is a solution to the normal equations of the restricted model. To 
solve (96) distinction must be made as to whether, in the unrestricted model, 
P'b is estimable or not estimable, because the solution is not the same in the 
two cases. We first consider the case of P'b being estimable. 
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a. Restrictions involving estimable functions 
When P'b is estimable we have, by analogy with (72), that a solution to 

(96) is 
b° = b° - G P i P ' G P r ^ P V - δ). (97) 

Its expected value is 

E(b� r) = Hb - GPiP 'GPr^P 'Hb - δ) = Hb, 

using E(b� ) = Hb of (8), ΡΉ = P' because P'b is estimable, and (95). 
Similarly the variance of b° is, after a little simplification, 

var(b*) = var{[I - GPtP 'GPr^ ' lb 0 } = G[X X - P(P G P y ^ H G σ2. 
The error sum of squares after fitting this restricted model is 

SSEr = (y - Xb°)'(y - Xb») 
and from (73) and (74) this is seen to be 

SSEr = SSE + (P'b0 - δ) (P 'GPy^P'b0 - δ) (98) 
with 

£(SSEr) = (N - τ)σ2 + £b°'P(P G P ^ P ' b 0 - δ (Ρ G P ) 1 δ. 

On applying Theorem 1 of Chapter 2 to the middle term and using (8) and 
(95) again, this reduces to 

E(SSEr) = (N - r + q)a\ 

Hence, in the restricted model, an unbiased estimator of the error variance is 

2 = SSEr 

N - r + q 

(There should be no confusion over the letter r used as the rank of X and as a 
subscript to denote "restricted".) 

b� r and SSEr of (97) and (98) not being the same as b° and SSE indicates 
that estimable restrictions on the parameters of a model affect the estima-
tion process. However, this does not affect the estimability of any function 
that is estimable in the unrestricted model. Thus if k'b is estimable in the 
unrestricted model it is still estimable in the restricted model. The condition 
for estimability—that for some t', £(t'y) = k'b—remains unaltered. How-
ever, although the function is still estimable, it is a function of the parameters 
and is therefore subject to the restrictions P'b = δ. These may change the 
form of k'b. Thus, in the example, the function k'b = �  -f |(αχ + α2) is 
estimable, but in a restricted model having ax — a2 = 0 as a restriction 
k'b becomes �  + α1? or equivalently �  + α2. 
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In general, the estimable function k'b is changed to k'b + X�(P�b — δ) 
where, in order that this be just a function of the 6's, λ ' must be such that 
λ 'δ = 0. (When δ is null λ ' can be any vector.) Then k'b becomes k'b + 
X�P�b = (k' + X'P')b. This, of course, is also estimable under the un-
restricted model because both k'b and P'b are. 

In the restricted model the hypothesis H: K'b = m can be considered 
only if it is consistent with P'b = δ; for example, if P�b = δ is ax — a2 = 0 
one cannot consider the hypothesis OLX — a2 = 4. Within this limitation of 
consistency the hypothesis K'b = m is tested in the restricted model by 
considering the unrestricted model y = Xb + e subject to both the re-
strictions P'b = δ and the testable hypothesis K'b = m. The restricted model 
reduced by the hypothesis K'b = m can be called the reduced restricted 
model. On writing 

δ 
and �  = Q' = 

P' 

K' m 

we minimize (y — Xb)�(y — Xb) subject to 

Q�b = � . 

Since both P' and K' have full row rank and their rows are mutually LIN, 
Q' has full row rank and Q�b is estimable. The minimization, leading to the 
solution br)H, therefore gives in accord with (72) 

b� rM = b� - GQtQ�GQr^Q�b0 - 0 . 

The corresponding residual error sum of squares is 

SSEr,ff = SSE + (Q�b0 - O�CQ�GQr^QV - 0 
and the test of the hypothesis K'b = m is based on 

F(Hr) = (SSEr.H - SSEr)/s a2
r (100) 

where a\ = SSEr/(JV - r + q) as in (99). 
Just as with estimable functions, a hypothesis that is testable in the un-

restricted model is also testable in the restricted model. Modification of the 
hypothesis by the restrictions may change the form of the hypothesis, but 
its modified form will be testable not only under the restricted model but also 
in the unrestricted model. 

Example. The hypothesis H: �  + Και + α2) = 20 is testable in the 
unrestricted model. In a restricted model having ax — a2 = 4 as a restriction 
the hypothesis is modified to be if: �  + α2 = 18 or, equivalently, 
H: �  + αχ = 22. These are testable in the restricted model: they are also 
testable in the unrestricted model. 
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In general, if K'b = m is testable in the unrestricted model then, for 
LSXg being any matrix, (K' + LP�)b = m + L8 will be testable in the re-
stricted model: it will also be testable in the unrestricted model. 

b. Restrictions involving non-estimable functions 
When the restrictions are P�b = 8 and P�b is not estimable, the solutions 

to (96) are, similar to (79), 

b� r = b�  + (H - I)zx (101) 
where, following (77), Zj satisfies 

P'(H - I)zx = 8 - P'GX y. (102) 

Hence b� r is just one of the solutions to the normal equations X�Xb = X'y. 
Therefore, in this case SSEr = SSE; i.e., the restrictions do not affect the 
residual error sum of squares. 

Just as before, the inclusion of restrictions in the model does not alter the 
estimability of a function that is estimable in the unrestricted model. It is 
still estimable in the restricted model. But, because of the restrictions it will 
be amended; and since the restrictions do not involve estimable functions 
the amended form of an estimable function may be a function which, 
although estimable in the restricted model, is not estimable in the un-
restricted model. For example, the function �  + -Κο̂  + a2) is estimable in 
the unrestricted model, but in a restricted model that includes the restriction 
aL = 0, it is amended to be �  + ^α2, and this, although estimable in the 
restricted model, would not be estimable in the unrestricted model. 

Thus it is that functions which are not estimable in unrestricted models 
may be estimable in restricted models. In general, if k'b is estimable in the 
unrestricted model then k'b + X�(P�b — 8) is estimable in the restricted 
model; to eliminate 8 when it is non-null, λ ' must be such that λ 'δ = 0; 
and the function k'b -f X�P�b is then estimable in the restricted model. 

Just as SSEr = SSE when the restrictions involve non-estimable functions 
so too, when testing the hypothesis K'b = m, will SSEr H = SSE^. Hence the 
F-statistic for testing the hypothesis is identical to that of the unrestricted 
model. Thus, so far as calculation of the /"-statistic is concerned, the im-
position of restrictions involving non-estimable functions makes no difference 
at all. SSE and SSE# are calculated in the usual manner. Thus the F-statistic 
is calculated just as in (70). 

However, although calculation of the .F-statistic is not affected by the model 
having restrictions on its parameters—restrictions involving non-estimable 
functions—these restrictions do apply to the hypotheses being tested, just 
as they do to estimable functions, discussed above. Thus hypotheses that are 
testable in the unrestricted model are also testable in the restricted model; 
but application of the restrictions may change their form so that although 
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they are testable in the restricted model they may not be testable in the un-
restricted model. For example, H: ax — 2a2 + a3 = 17 is testable in the 
unrestricted model, but in a restricted model having the restriction ax + 
a2 = 3 the hypothesis becomes H: 3ax + a3 = 23; this is testable in the 
restricted model, but would not be testable in the unrestricted model. 

In general, if K'b = m is testable in the unrestricted model then, for 
LsXa being any matrix, (K' + LP')b = m + L8 is testable in the restricted 
model; it would not be testable in the unrestricted model. 

Table 5.13 summarizes the results of this section so far as estimable func-
tions and tests of hypotheses are concerned. 

THE USUAL CONSTRAINTS 

The source of difficulties with the model not of full rank is that the normal 
equations X'Xb0 = X'y have no unique solution. Our discussions have 
skirted this situation by using a generalized inverse of X'X. Other presen-
tations impose "the usual constraints" or the "usual restrictions". By this is 
meant, for example, solving normal equations such as 

6� �  + 2α? + 2α°2 + 2α° = y.. 

2� �  + 2α? = yx. 

2� �  +2α°2 = y2.
 ( 1 ° 3 ) 

2� �  + 2*% = y8. 
by imposing the "usual constraint" of aj + a2 + a3 = 0. This leads to a 
solution immediately. 

The use of these "usual constraints" is described in many ways. For 
example, Kempthorne (1952, p. 80) writes, "To obtain a unique solution we 
may impose any condition, the simplest one (generally) being 2 ^ = 0"; 
and Federer (1955, p. 159) has, "Now in order to obtain a unique solution 
the following restrictions are necessary: ^ri = 1LCJ = Σ*Λ — 0"; while in 
Steel and Torrie (1960, p. 115) we find, " . . . impose a restriction that 
2 T; = 0 where f, is our estimate of τ,; in the population either 2 T? = ° 
(fixed effects) or, � �  = 0 (random effects). . . . In our illustration άχ + 
2ά2 = 0 · · ·". Constraints (as we shall call them) of this kind can be per-
fectly permissible, so long as the implications of their use are well understood 
by the user. The above quotations illustrate the difficulties a student might 
have in comprehending the "usual constraints", for each of them errs in a 
manner all too commonly found. First, these constraints cannot be "any" 
conditions. Second, in situations of unbalanced data those of the form 
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2 ocj = 0 are generally not the simplest. Third, such constraints are not 
necessary for solving normal equations; they are only sufficient. Any con-
straints that lead to a solution suffice. Fourth, they can be used whether or not 
a similar relationship holds for the elements of the model; and only if it 
does, with enough such relationships in the model to make it a full rank model, 
will the solutions of the normal equations then be estimates of the parameters 
of the model. These points we now expand on. 

We have seen that with any solution b° to the normal equations we can 
derive most things of interest in linear model estimation: SSE = y�y — 
b� �X�y, the analysis of variance, the error variance estimate cr2 = SSE/(N — r), 
and the b.l.u.e. of any estimable function k'b as k'b = k'b0. These things can 
be obtained provided we have a solution b� , no matter how it has been 
derived. However, for some things, the generalized inverse of X'X that yielded 
b°is needed.* For example, to ascertain the estimability of a function or to test 
a testable hypothesis the generalized inverse is, if not absolutely necessary, 
certainly very useful. Yet applying constraints to the solutions is, as will be 
shown, probably the easiest way of getting a solution to the normal equations; 
but if we also want the generalized inverse corresponding to that solution, the 
constraints must be imposed in a way that readily yields the generalized 
inverse, and the implications of doing this must be recognized. 

a. Limitations on constraints 
First, the constraints need apply only to the elements of the solution vector 

b�. They are imposed solely for deriving a solution and need have nothing 
to do with the model. They do not apply to parameters of the model. Second, 
if the constraints are of the form C�b�  = γ , we know from (71) that mini-
mizing (y — Xb� )�(y — Xb�) subject to C�b�  = γ leads to the equations 

and 

equivalent to 

X�Xb" -f CX = x�y 
C�b�  = � , 

X�X C~] 

c oj 
[V 
[_� _ 

-� �  

. Y . 
(104) 

where λ is a vector of Lagrange multipliers. For these equations to have but 
one solitary solution for b�  (and λ) it is clear that C must have full row rank of 

"X'X C~| 
non-singular; and by applying Lemma 6 to 

(30) in Chapter 1, the rows of C must be LIN of those of X; i.e., C cannot be 
of the form C = L'X. Thus we see that the constraints C�b�  = γ must be such 
that C�b is not estimable, They cannot, therefore, be "any" constraints. They 
*Use of "the" generalized inverse is correct here because it refers to the particular generalized 
inverse used to get a particular solution b°. 

sufficient rows to make 
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must be constraints for which C'b is non-estimable, and there must be p — r 
of them where X has p columns and rank r. Under these conditions the 
inverse given in Sec. 1.5b can be used to obtain the unique solution to (104), 
and this can be shown to be equivalent to the solution obtainable by the 
methods of (101) and (102) (see Exercise 11). 

b. Constraints of the form b\ = 0 
In balanced data that lead to normal equations like (103), for example, 

constraints of the type 2 a? = 0 are indeed the easiest to use. But they are 
not the easiest for unbalanced data. The constraints easiest to use with un-
balanced data are the simple ones of putting p — r elements of b° equal to 
zero. They cannot be any p — r elements, of course, for they must be 

"XX C" 
judiciously chosen so as to make non-singular. Ways of doing 

e oj 
this are discussed in the chapters on applications (Chapters 6 and 7). 

Using constraints that make some of the elements of b° be zero is equivalent 
to putting those elements equal to zero in the normal equations or, more 
exactly, in (y — Xb°)'(y — Xb°) which is minimized subject to such constraints. 
This has the effect of eliminating from the normal equations all those terms 
involving the zeroed b� �s, and also the equations corresponding to the same 
Z^'s. And this, in turn, is equivalent to eliminating from X'X the rows and 
columns corresponding to those b^s and eliminating from X'y the corre-
sponding elements. What remains of X'X is a symmetric matrix of order r 
that is non-singular. Hence these "modified" equations—modified by the 
constraints of putting some b� 9s zero—can be solved. The solutions, together 
with the zeroed Z>̂ 's of the constraints, then constitute b°, a solution to the 
normal equations. Details of this procedure are now described, including 
derivation of the corresponding generalized inverse of X'X. 

Putting (p — r) b� �s equal to zero is equivalent to C'b0 = 0 with C having 
p — r rows each of which is null except for a single unity element. Suppose 
that R is a permutation matrix [equation (6), Sec. 1.1b] of order/? such that 

C'R = [0 (p-r)Xr V,]� (105) 

Then, remembering that R is orthogonal, the equations to be solved, (104), 
can be rewritten as 

~R� 

0 

01 

l | 

� � ��  

1 c 
C] 
0 

|~R 01 

L�  i j 
f~R' 
o 

01 

1 
rv~ 
�  

R� 

0 

01 

l | 
rx�y] 
1 Y 

which reduce to 
X�XR 

C'R 

R'CI 

0 J 
("R'b°~ 

L �  . 
"RXy 

0 
(106) 
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Partitioning R'X'XR, R'b° and R'X'y to conform with C'R in (105), namely, 

R'XXR = 
-^21 

R'b° = and R'X'y = 
(X'y)i 

( X » 2 

we then have 
Z u , of full rank, = (X'X)W, 

the X'X matrix modified by deletion of rows and columns, 

bj = solutions of modified equations 
and b2 = zeroed bf s. 

Then equations (106) become 

(107) 

(108) 

Z21 

. 0 
with the solution 

Z12 

Z22 

I 

7 - i 

0] 
I 

oj 

("bf 

\K 
Lx. 

= 
"(X�y)x1 

(X'y). 

_ o J 

0 

�  7^7 � 

I 

0 . 

(X'y)i 

(X'y)· 

. o . 
(109) 

L—Z21ZU I 
The important part of this solution is 

bi = ZRX�jh. (110) 
It is easily derived: the inverse of the modified X'X matrix post-multiplied by 
the modified X'y vector. Then bj and the ij's zeroed by the constraints con-
stitute a complete solution b°. 

The generalized inverse of X'X corresponding to the solution (110) is 
derived as follows. From (109) 

ZU1 o 
0 0 

(x'y)i 

(X'y). 

Zu1 0 

0 0 
R'X'y 

from (107); and using the orthogonality of R and (107) again this gives 

VI 
b° = R(R'b°) = R 

= R 
Zu1 0 

0 0 
R'X'y. 

( I l l ) 

(112) 
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But, from Sec. Lib with the definition of Z n given in (108), 

G = R 
Zu1 0' 

. 0 0J 
R' (113) 

is a generalized inverse of X'X. And so, from (112), G of (113) is the general-
ized inverse of X'X corresponding to the solution b° found by using (110) and 
(111). We therefore have the following procedure. 

c. Procedure for deriving b° and G 

1. For X�X of order p, find its rank; call it r. 
2. Delete p — r rows and corresponding columns from X'X, to leave a 

symmetric sub-matrix of full rank r. Call that modified matrix (X'X)m. 
3. Corresponding to the rows deleted from X'X delete elements from X'y. 

Call the modified vector (X'y)m. 
4. Calculate b� n = [(X'X)w]-KX'y)m. 
5. In b°, all elements corresponding to rows deleted from X'X are zero; 

other elements are those of b� m, in sequence. 
6. In X'X replace all elements of (X'X)m by those of its inverse; and put 

all other elements zero. The resulting matrix is G, the generalized inverse 
corresponding to the solution b� . Its derivation is in line with the algorithm 
(for symmetric matrices) of Sec. 1.1b. 

d. Restrictions on the model 
Throughout the preceding discussion of constraints no mention has been 

made of restrictions on the parameters of the model corresponding to con-
straints imposed on a solution. This is because constraints on the solution 
are used solely for obtaining a solution and need have no bearing on the 
model whatever. But if the model is such that there are restrictions on its 
parameters, these same restrictions can be used as constraints on the solu-
tions, provided they relate to non-estimable functions, i.e., if restrictions 
P'b = δ have P'b not estimable. If P' were of full row rank, p — r, then the 
solutions would be given by 

X'X 

P' 
(114) 

and the solution would in fact be the b.l.u.e. of b. Of course, the solution to 
(114) could also be obtained by using the solution derived from simple 
constraints of the form b\ = 0 discussed in the preceding section, namely 
(112). This can be amended in accord with (101) and (102) to give a solution 
satisfying (114). It will be, from 101, 

b» 0 = b°0 + (H - I)zl5 (115) 
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using b° of (111) as bj, G of (113) and H = GX'X, in the usual way. From 
(102), the zx of (115) will be such that 

P'(H - I K = δ - P'GX'y (116) 
as in (102). This procedure will be especially useful when the restrictions in 
the model, P'b = δ, involve P' of less than p — r rows. 

The important thing about restrictions in the model is their effect on esti-
mable functions and testable hypotheses, as has already been pointed out. 
Equally as important is the fact that constraints on the solutions do not 
necessarily imply restrictions in the model and therefore constraints do not 
affect estimable functions or testable hypotheses. Furthermore, since con-
straints are only a means to obtaining a solution b�  they do not affect sums of 
squares. Confusion on these points often arises because of certain kinds of 
restrictions that often occur; these same restrictions applied as constraints 
to the solution also greatly aid in obtaining a solution. For example, the 
model equation yi5 = µ + at + ei3- is often written as yu = � � + eis with �  

c 

and a,· defined as �  = 2 l*>i\c a n d OL{ = � � — �  respectively. In this way a 
c 

restriction in the model is 2 a* = 0. Suppose for c = 3 the normal equations 

were, for such a model, 

2� �  + 2aJ = yv 

2� �  + 2OL� 2 = y2. 

2� �  + 2aS = ys. 

Because ax + a2 + a3 = 0 in the model and in order to help in solving the 
equations, we impose the constraint 

a? + a°2 + a£ = 0. (117) 

But suppose the normal equations were 

6� �  + 3α? + 2α°2 + α£ = y.. 

3� �  + 3α? = yv { m ) 

2� �  + 2OL� 2 = y2. 

� �  + α^ = y3. 

Then the constraint (117) is of no particular help in solving equations (118). 
On the other hand, 

3a? + 2α°2 + α? = 0 (119) 

is of help. But this is no reason at all for making 3a2 + 2a2 + a3 = 0 be 
part of the model. Not only might it be quite inappropriate but there is no 
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need for it. Suppose in fact that ax + a2 + a3 = 0 is a meaningful restriction 
in the model. Then (119) could still be used for solving equations (118) and, 
provided the corresponding generalized inverse of X'X was found, the solu-
tion could be amended to satisfy (117) by using (115) and (116). Thus if 
bo is the solution satisfying (119) then that satisfying (117) is (115) with (116) 
using P ' = [0 1 1 1], δ = 0 and G corresponding to bj. 

e. Example (continued) 
The normal equations are, from (6): 

6� �  + 3aJ + 2OL� 2 + OL� 3 = 504 

3� �  + 3a? = 300 
2� �  + 2OL� 2 = 172 

� �  + a° = 32. 

The procedure described in subsection c goes as follows: 

Step 1: p — 4 and r = 3. 

"6 

Steps 2 and 3: (X'X)m = I 3 

2 

Γ 1 - 1 - i 

Step 4: b� m = - 1 I 1 

L - l 1 

Step 5: b 0 / = [32 68 54 0] 

1 - 1 - 1 

- 1 I 1 

and (X'y)m = 

504 

300 

.172. 

1*. 

� 504" 

300 

Ll72_ 

= 

~32~ 

68 

-54. 

(120) 

Step 6: G = 
- 1 

L 0 

1 

0 

o-
0 

0 

0J 

These results, it will be noted, are identical to those shown in (25). Another 
way of carrying out the same procedure would be as follows: 

Steps 2 and 3: (X'X)m = 

"6 2 

2 2 

L1 �  

11 

0 

1_ 

and (X'y)„ 

"504' 

172 

32 
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Step 4: b� m = (1/6) 

2 - 2 - 2 ] 

- 2 5 2 

. - 2 2 8_| 

� 504 

172 

L 32. 
= 

100 

- 1 4 

. - 6 8 . 

Step5:b� � = [100 0 - 1 4 - 6 8 ] . 

Step 6: G = (1/6) 

2 0 - 2 -2 

0 0 0 0 

- 2 0 5 2 

•2 0 2 8 

• 

One check on this result is 

SSR = b� �X�y = 100(504) - 14(172) - 68(32) = 45,816 

as before. 
Suppose now that restrictions on the model are � ^ + � 2 + � 3 = 0. Then 

equations (114) are 

(121) 

The solution is 

6 3 2 1 

3 3 0 0 

2 0 2 0 

1 0 0 1 

O l l i 

� �  
1 

1 

1 

oj 

\� � ~ 

< 

Us 
«3�  

� _� _ 

= 

~504~ 

300 

172 

32 

_ OJ 

VI 
LAJ 

= 

..0 

�  
� � 

a2 

0 

�  
_� _ 

= (1/54) 

11 

- 5 

- 2 

7 

-18 

- 5 

17 

- 4 

- 1 3 

18 

- 2 

- 4 

20 

- 1 6 

18 

7 

- 1 3 

- 1 6 

29 

18 

- 1 8 

18 

18 

18 

0_ 

so that b" is 

504 

300 

172 

32 

. 0. 

b0� = [� �  a? a.% a�  = [72| 27J 13* - 4 0 | ] . (122) 

The alternative way of getting this solution is that of (115); use a solution 
based on the constraint aj| = 0 and amend it to satisfy <*.{ + tx.% + ot.� 3 = 0. 
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To do this we use b� � = [32 68 54 0] of (120), where the corresponding 
H-matrix is 

1 0 

H = GX�X = 

0 1 
1 

0 

0 

0 - 1 

1 - 1 

0 0 

Hence, as in (115), the solution to (121) is 

� 32 

168 

54 
br.n = 

for which (116) is 
0 

+ 

0 0 0 1 

0 0 0 - 1 

0 0 0 - 1 

0 0 0 - 1 

[0 1 1 1 ] 

Therefore 
and substitution in (123) gives 

0 0 0 1 

0 0 0 - 1 

0 0 0 - 1 

0 0 0 - 1 

zi = [z, 

zx = - [ 0 1 1 1] 

40f] 

[~32 

68 

54 

0 

+ 40f 

1 

- 1 

- 1 

- 1 

= 

72f" 

27J 

1H 
-40fJ 

(123) 

Ko = 

as in (122). 
Finally, suppose we use 3aJ + 2a�  + a!J = 0 to solve the equations. The 

solution is b� � = [84 16 2 -52], (124) 
and the generalized inverse of X�X corresponding to this is 

G = i 

1 

- 1 

- 1 

- 1 

0 0 

2 0 

0 3 

0 0 

0 

0 

0 

6 

and H = 

6 

0 

0 

0 

3 

3 

- 3 

- 3 

2 

- 2 

4 

- 2 

1 

- 1 

- 1 

5 
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Then, to amend this solution to satisfy OL[ + a£ + a£ = 0 we solve (116), 
namely 

[0 1 1 

i.e., 

and then, using (124) for b* in (115) the solution satisfying aj + a* + a* = 0 
is 

Hi 

- ( � �  

0 3 2 1 

0 - 3 - 2 - 1 

0 - 3 - 2 - 1 

0 - 3 - 2 - 1 

?z2 + 2z3 + 24) = -

Zl = - [ 0 1 1 1] 

2(18 - 52) = 68 

84 

16 

2 

- 5 2 

84 

16 

2 

-52 

as in (122). 

+ i 

3 

- 3 

- 3 

- 3 

2 

- 2 

- 2 

- 2 

l] 
- 1 

- 1 

- l j 

U 
Us 
U 
L\ 

= 

r 84" 

16 

2 

- 5 2 

+ i 

" - 6 8 " 

68 

68 

68 

= 

72f" 

27i 

13i, 

-40 |J 

GENERALIZATIONS 

We have now discussed both the full rank model (Chapter 3) and the model 
not of full rank. The latter is, if course, just a generalization of the former. 
More specifically, the full rank model is a special case of the non-full rank 
model with G and b° taking the forms (X'X)-1 and b respectively. In general, 
therefore, the non-full rank model covers all cases. 

Estimability and testability, however, enter into only the non-full rank 
model. All linear functions are estimable and all linear hypotheses are test-
able in the full rank case. There is therefore merit in dealing with the two 
models separately, as has been done. But in both models only one special 
case has been considered, namely that where the error terms have var(e) = 
σ2Ι. We now briefly discuss the general case of var(e) = c;2V, both where V 
is non-singular and where it is singular. 

a. Non-singular V 
When var(e) = � 2�  with V non-singular the normal equations are, as 

indicated in Sec. 3.3, 
X'V^Xb0 = X'V-V· (125) 
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For the full rank model this has the single solution 

Ϊ, = (X'V-iXJrix'v^y (126) 

as given in Sec. 3.3. With the non-full rank model a generalized inverse of 
X�V_1X must be used to solve (125). Denoting this by F gives 

b° = FX'V-1y with X�V^XFX�V^X = X�V-% (127) 

of which (126) is a special case. Thus we see that estimation in the model 
having var(e) = a2V for non-singular V is identical to that when var(e) = � % 
except for using a generalized inverse of X'V^X; and X'V_1y is used in place 
ofX'y. 

Furthermore, since V is a symmetric positive definite matrix V"1 = LI / 
for some non-singular L. Putting x = L'y transforms the model y = Xb + e 
into x = L�Xb + e where e = L'e and var(e) = � 2� . Estimating b from this 
model for x gives b or b° of (126) or (127) respectively, and the corresponding 
error sum of squares is 

x x - b°'X'Lx = y'V-^y - tf'X'V^y (128) 

using b for b° in the full-rank case. Thus the weighted sum of squares, 
y'V-1y, is used in place of y'y in the corresponding analyses of variance. 

b. Singular V 
At least two conditions among data can lead to var(y) = V being singular: 

if any elements of y are linear functions of other elements or if any elements of 
y are a constant plus a linear function of other elements. For example, if 
v(Vi) = v(y2) = σ2 and cov(i/1? y2) = 0 then 

var 

and for any constant �  

Vi 

2/2 

J/l + 2/2. 

= 

Ί 0 11 

0 1 1 

1 1 2_ 

(129) 

var 

Vi 

2/2 

b/i + e. 

= 

"1 0 11 

0 1 0 

i o r 
(130) 

Suppose we write wr for the vector \yx y2], and let the equation of the 
model for w be 

w = Γ
1 

b/2J 
= Tb + €. (131) 
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Then the equation for 

of (129) can be written as 

y = 
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�  01 

0 1 

[l lj 
p/�  
U/2-

= 

"1 0" 

0 1 

.1 1. 

w = 

"1 -0" 

0 1 

.1 1_ 

(Tb + €), 

i.e., as y = Mw for some matrix M. On the other hand the equation for 

Γ Vi 

y = y2 

k + 
of (130) cannot be written in the form y = Mw for w of (131). Of these two 
possible ways in which a vector of observations y can have a singular variance-
covariance matrix we consider only the first, like (129), in which y can be 
written as y = Mw. The more general case, where var(y) = V is singular but 
y cannot necessarily be written as y = Mw, is considered by Zyskind and 
Martin (1969). The situation of y = Mw is a special case of the results given 
there. However, because it represents the way in which a singular V does 
frequently arise, brief discussion is given to it here. It is also the case for which 
the normal equations, their solution and ensuing results are most easily 
described. 

Whenever some elements of y can be expressed as linear functions of other 
elements, y can be written as 

y = Mw (132) 

where no element of w is a linear function of the others. Thus M has full 
column rank. Furthermore, on taking the equation of the model for w as being 

w = Tb + e (133) 

we have y = Mw = MTb + Me 

so that if the model for y is 

y = Xb + e 

we can take X = MT (134) 

and e = Me. Furthermore, if var(e) = � % and var(y) = Va2 we have 

Va2 = var(y) = var(e) = var(Me) = MM'cr2 
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so that V = MM'. (135) 

Now from (131), the normal equations for b° are 

T'Tb0 = T'w. (136) 

But with M having full column rank it can be readily shown that M(M'M)_2M' 
is the unique Penrose generalized inverse (see Sec. 1.3) of V of (135). Further-
more, by Theorem 7 of Sec. 1.5a, M'(MM')~M is unique for all generalized 
inverses V = (MM')~ of V = MM', and using the Penrose inverse for this 
shows that 

M ' V M = M'(MM')~M = M'M(M'M)-2M'M = I. (137) 

Therefore (136), which is χ ' π ν _. χ τ 

becomes T'M'VMTb0 = T 'M'VMw 

which, with (132) and (134), is equivalent to 

X'VXb0 = X'V~y. (138) 

Hence b° = (X'VX)~X'Vy 

where (Χ 'VX)~ is any generalized inverse of X 'VX and V is any general-
ized inverse of V. These results for the normal equations and their solution 
are identical to those for non-singular V, (125) and (126), only with a 
generalized inverse V - of V used in place of V-1. 

The residual error sum of squares in the singular case is, from fitting (133), 

SSE = w'w - b°'T'w (139) 

and with the aid of (132), (134) and (137) this reduces, in the same way that 
(138) was derived, to 

SSE = y 'Vy - b°'X'Vy. 

This is the same result as (128) using V in place of V"1. Its expected value 
from (139), is 

£(SSE) = £(w'w - b°'T'w) 

= [(number of elements in w) — ΚΤ)]σ2 

= [r(M) - r(T)]a2 

and because of (135) and (134) and M having full column rank this is equiva-
l e n t t 0 £(SSE) = [r(V) - r(X)](x2. 

Hence an unbiased estimator of � 2 is 

„2 __ SSE y ' V y - b°'X'Vy 
�  " KV) - r(X) ~ r(V) - r(X) 



224 MODELS NOT OF FULL RANK [5.10] 

SUMMARY 

The basic results of this chapter are summarized at the beginning of the 
next, prior to using them on applications in that and succeeding chapters. 
Additional summaries are to be found as follows: 

Procedure for deriving G 
Analysis of variance for 

fitting model 
Estimable functions 
Analysis of variance 

for testing hypothesis K'b 
Restricted models 

0: 

Sec. 5.7c 

Tables 5.5 and 5.6, Sec. 5.3g 
Table 5.8, Sec. 5.4e 

Tables 5.9 and 5.10, Sec. 5.5c 
Tables 5.13, Sec. 5.6 

1 0 . EXERCISES 

1. Use part or all of the data from the Exercise of Chapter 4 to fit a model and 
establish analyses of variance such as those in Table 5.7. Derive estimable 
functions and orthogonal contrasts, find their estimators and test hypotheses 
about them. 

2. Rework the example of this chapter using Gl9 Hx and b? of equation (25). 

3. Show that R2 of equation (18) reduces to (20). 

4. For X of order N x p and rank r, and S' and S'X' of full row rank r, show that 
StS'X'XS)-^' is a generalized inverse of X'X. 

5. If T has full row rank prove that T(T'T)T' = I. 

6. Using 

X X 

K� 

K~ 

0_ 

- 1 "Bu 

_B21 

B 1 2 

0 _ 

given in Sec. 1.5b show that the resulting solutions of equations (76) are 
Θ = 0 and b� H of (79) as obtained in this chapter. [H of Sec. 1.5b is now repre-
sented by K' of the non-testable hypothesis K'b = m with K' of full row rank 
p — r; and m of Sec. 1.5b is p — r here.] 
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7. (a) Suppose S'b is estimable and q'b is not. Prove that testing the hypothesis 

H: 
S'b" m 

m9 

is indistinguishable from testing the hypothesis H\ S'b = m^ 
(b) In terms of the example of Sec. 5f, demonstrate (a) for the hypothesis 

H: ax = a2 = 110. 

8. For the example of this chapter derive the contrasts specified below and find 
the numerator sums of squares for testing the hypotheses that these contrasts 
are zero. 
(a) A contrast orthogonal to both 6�  + 3αχ + 2α2 + α3 and αχ — 2α2 + α3. 
(b) Two contrasts orthogonal to one another and to ax — a2. Relate the 
results in (b) to Table 5.11. [Define "orthogonal" as in (92).] 

9. Show, formally, that testing the hypothesis AK'b = 0 is identical to testing 
K'b = 0, for �  being a scalar. 

10. Suppose a model can be expressed as 

Vij k = a i · � ijk 

where yijk is an observation and / = 1, . . . , c, j = 1, . . . , Ni9 and k = 1, . . . , 
riij. The vector of observations can be written as 

y = [?/lll 2/ll2 2/llnn ' ' ' 2/ΐΛΊΙ ' ' ' yi,Ni,n1Jfl 

yc.Nc,i ��� yc,Ne,nc,N) 

where the observations are ordered by k, within/ within /. If V is the variance-
covariance matrix of y, it is a diagonal matrix of matrices Aijf for / = 1, . . . , c 
a n d / = 1, . . . , Ni9 where Afi· = eln + bJn.., and \�n.. is a vector of niSVs 
and J n = ln In . The normal equations for estimating a , the vector of the 
a /s , are then 

X 'V^Xa = X 'V^y 
where (X'V^X)-1 exists. 
(a) For c = 2, with nxl = 2, n12 = 3 , «21 = 4, «22 = 1 and «23 = 2 write down 

y' and V in full. 
(b) For the general case, write down X and V. 
(c) Solve the normal equations for a , showing that 

Ni ol.. 

�  jtx b + eftij. 
a,· = ■ 

11. The solution to (104) can be obtained in two different ways: either in the 
manner of (101) and (102), or using equation (30) and the ensuing results in 
Sec. 1.5b. Show the equivalence of the two solutions. 



CHAPTER 6 

TWO ELEMENTARY MODELS 

The methods of the preceding chapter are now demonstrated for specific 
applications. Only unbalanced data are considered in detail, with but passing 
reference to the simpler cases of balanced data. The applications discussed 
do by no means exhaust the great variety available, but they cover a suffi-
ciently wide spectrum for the reader to gain an adequate understanding of 
the methodology, so that he can then apply it to other situations. 

Throughout this chapter and the next two it is assumed that the individual 
error terms have zero mean and variance � 2 and are pairwise uncorrelated; 
i.e., it is assumed that E(e) = 0 and var(e) = σ2Ι. These are the only assump-
tions made for purposes of point estimation whereas, for hypothesis testing 
and confidence interval estimation, normality of error terms is additionally 
assumed. Thus for point estimation e ~ (0, � 2�) is assumed, and for hypoth-
esis testing and confidence intervals e ~ N(0, σ2Ι) is assumed. A more 
general assumption would be var(e) = Va2 for V symmetric and positive 
definite (or perhaps positive semi-definite). Although there is brief discussion 
of this in Sec. 5.8, examples of it are postponed to Chapters 9 and 10, under 
the heading of "mixed models". 

Numerical illustrations continue to be based on hypothetical data, using 
numbers that have been chosen with an eye to simplifying the arithmetic. The 
implausibility of such numbers as real data is, it is felt, more than compen-
sated for by improved readability of the ensuing arithmetic. Bearing in mind 
that the raison d�etre of the arithmetic is to illustrate techniques, emphasis on 
readability seems more to be desired than mimicry of real life. The latter 
inevitably involves numbers that become as difficult to follow as the algebra 
they purport to illustrate. 
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1. SUMMARY OF GENERAL RESULTS 

It is appropriate to summarize the main results of Chapter 5 that are used 
in this and the next two chapters. 

The equation of the model is 

with normal equations 

whose solution is 

y = Xb + e, (1) 

X�Xb0 = X'y, (2) 

b° = GX�y (3) 

where G is a generalized inverse of X'X, meaning that it satisfies X�XGX�X = 
XX. 

Development of the general theory in Chapter 5 has, as its starting point, 
the finding of a matrix G. However, Sec. 5.7b describes a procedure for 
solving the normal equations by putting some elements of b° equal to zero 
and then finding the G that corresponds to this solution. In certain cases this 
is an easy procedure because putting some elements of b° equal to zero so 
greatly simplifies the normal equations that their solution becomes "obvious", 
and the corresponding G (by the methods of Sec. 5.7c) equally so. The 
basis of this procedure when X�X has order p and rank r is to 

set p — r elements of b° equal to zero (4) 

and to strike out corresponding equations from the normal equations, 
leaving a set of r equations of full rank. Details are given in Sec. 5.7. 

Having obtained a value for b° the predicted value of y corresponding to 
its observed value is 

y = XGX'y (5) 

and the residual sum of squares is 

SSE = y�y - b0,X�y 

with the estimated error variance being 

a2 = MSE = SSE/(iV - r), where r = r(X). (6) 

The sum of squares due to fitting the mean is 

SSM = Ny2 (7) 

where y is the mean of all observations; and the sum of squares due to 
fitting the model is S S R = b<"X'y, (8) 



228 TWO ELEMENTARY MODELS [6.1] 

while the total sum of squares is 

SST = y'y = 22/ 2 (9) 
where 2 V2 represents the sum of squares of the individual observations. 
Hence 

SSE = SST - SSR. (10) 

Furthermore, SSR and SST both corrected for the mean are 

SSRm = S S R - S S M (11) 

and SSTW = SST - SSM (12) 

with MSRm = SSRw/(r - 1). 
Analysis of variance tables summarizing these calculations are Tables 5.5 

and 5.6 of Sec. 5.3. From them comes the coefficient of determination 
R* = SSRJSSTW. (13) 

Also, on the basis of normality, 
F(RJ = MSRJMSE (14) 

compared to tabulated values of the iv_lfiv_r-distribution tests whether the 
model E(y) = Xb, over and above a general mean, accounts for variation in 
the ^-variable. Similarly 

F(M) = SSM/MSE = Ny2/a2 (15) 

compared to tabulated values of F1N_r tests the hypothesis H: E{y) = 0. 
Comparing \IF{M) against the /^^-distribution is an identical test. 

As indicated in Sec. 5.4, the expected value of any observation is estim-
able: i.e., any (and every) element of Xb is estimable, and its corresponding 
b.l.u.e. (best linear unbiased estimator) is the same element of Xb°; and any 
linear combination of elements of Xb is estimable with its b.l.u.e. being the 
same linear combination of elements of Xb°. More generally, 

q'b is estimable when q' = t'X for any t', (16) 
and then 

q'b = q'b0 is the b.l.u.e. of q'b (17) 

with v(ib) = q'Gqa2; (18) 
and the 100(1 — a)% symmetric confidence interval on q'b is 

q�b" �  atN_raMG^. (19) 

Table 5.7 in Sec. 5.4c shows a variety of special cases of estimable functions. 
A test of the general linear hypothesis 

H: K'b = m, for K'b estimable and K' having full row rank s (20) 
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is to compare = 

(21) 
in which Q = (K'b° - m),(K,GK)-1(K,b° - m), 

against tabulated values of the FSJV_r-distribution. The solution of the 
normal equations under the null hypothesis is then, if needed, 

b^ = b�  - GKCK�GKr^KV - m). 

Particular interest attaches to hypotheses of the form K�b = 0 in which m 
of the general case (20) is null. These are discussed in Sec. 5.5c, with the 
analysis of variance shown in Table 5.9 therein, and appropriate F-tests 
following it. Section 5.5g deals with orthogonal contrasts k̂ b among the 
elements of b. These contrasts are such that 

k^Gk, = 0 for i ^ j . (22) 
When (22) is true for i,j = 1, 2 , . . . , r, the test of the hypothesis H: K b = 
0 has a numerator sum of squares which not only equals SSR but also equals 
the sum of the numerator sums of squares for testing the r hypotheses 
Hii k̂ b = 0 where K' = {k^} for i = 1, 2, . . . , r. 

Models that include restrictions on the parameters are also dealt with in 
Chapter 5. Their analyses are summarized in Table 5.13 of Sec. 5.6. 

2 . THE 1-WAY CLASSIFICATION 

Chapter 4 contains discussion of data concerning the investment on 
consumer durables of people with different levels of education. Assuming that 
investment is measured by an index number, suppose that available data 
consist of values of this index for 7 people, as shown in Table 6.1. It is a very 
small example but adequate for illustrative purposes. 

a. Model 
A suitable model for these data suggested in Sec. 4.3a is 

Vij = �  + *i + ei5 (23) 

T A B L E 6 . 1 . I N V E S T M E N T I N D I C E S OF 7 P E O P L E 

Level of Education No. of People Indices Total 

1 (High school incomplete) 
2 (High school graduate) 
3 (College graduate) 

3 
2 
2 

74, 68, 77 219 
76, 80 156 
85, 93 178 

Totals 7 553 
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where ytj is the investment index of they'th person in the /th education level, 
�  is a general mean, ô  is the eifect on investment of the /th level of education 
and ei5 is the random error term peculiar to yi§. For the data of Table 6.1 
there are 3 education levels, and i takes values / = 1, 2, 3; and for a given /, 
subscript; takes values j = 1, 2, . . . , /i< where n{ is the number of observa-
tions in the /th education level: nx = 3, n2 = 2 and «3 = 2 in Table 6.1. 

The model (23) is the model for the 1-way classification. In general, the 
groupings such as education levels are called classes and in (23) yu is the 
response of the/th observation in the /th class, �  is a general mean, a£ is 
the effect on the response of the /th class and e{j is the error term. When the 
number of classes in the data is a, i = 1, 2, . . . , a, withy = 1, 2, . . . , ni. 
Although described here in terms of investment as the response and levels 
of education as the classes, this is a model that can apply to many situations. 
For example, the classes may be varieties of a plant, makes of a machine, or 
different levels of income in a community. Analysis of this model has already 
been used as an illustration in Chapter 5, interspersed with the development 
of the general methods in that chapter; we give a further example here and 
indicate some results that apply to the model generally. 

The normal equations come from writing the data of Table 6.1 in terms of 
equation (23): 

74 

68 

77 

76 

80 

85 

93 

= 

2/n 

Viz 

2/i3 

2/21 

2/22 

2/si 

2/32 

= 

~ �  + αχ + en~ 

�  + αχ + e12 

�  + αχ + e13 

�  + «2 + e2i 

�  + α2 + e22 

�  + α3 + e31 

�  + α3 + e32_ 

(24) 

i.e., 
"74" 

68 

77 

76 

80 

85 

93 

1 1 

1 1 

1 1 

1 0 

1 0 

1 0 

1 0 

0 

0 

0 

1 

1 

0 

0 

� �  
0 

0 

0 

0 

1 

lj 

\ �  

« 1 

α2 

[� 3_ 

+ 

en 

e12 

e 1 3 

e i i 

e22 

«31 

_ e 3 2 j 

= Xb + e. 



(25) 

[6.2] THE 1-WAY CLASSIFICATION 231 

Thus 

" 1 1 0 0" 

1 1 0 0 

1 1 0 0 

X = I 1 0 1 0 I and b == 

1 0 1 0 

1 0 0 1 

1 0 0 1_ 

with y being the vector of observations and e the vector of corresponding 
error terms. 

General formulation of the model (1) for the 1-way classification is 
achieved by writing the vector of responses as 

y� = [2/ii 2/12 � � � Vini � � � Va Vi% 

and the vector of parameters as 

b' = [�  ax α2 · 

in which case the matrix X has order N X (a + 1), where 

Vint 

Pal Vai 

J. 

�� y«J (26) 

(27) 

N = n. = 2 "i 

and the symbols N and n. are used interchangeably. 
The form of X in (25) is typical of its general form. Its first column is 

i-l i 

1N and of its other columns the i'th one has 1 in its ( 2 nk + l)th to ( 2 %)th 
Jfc = l 

rows, and zeros elsewhere. Thus in these a columns the ln.-vectors lie down 
the "diagonal", as in (25), and so can be written as a direct sum, using the 
following notation. 

Notation. The direct sum of three matrices Al5 A2 and A3 is defined 
[e.g., Searle (1966, Sec. 8.9)] as 

IX 0 O" 
i + A , = 0 A2 0 

0 0 A, 
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The symbol Σ + for a direct sum is introduced here for subsequent conven-
ience. Using Σ+ , the form of X in the general 1-way classification is, as in (25), 

i jv TK (28) 

b. Normal equations 
The normal equations X'Xb0 = X'y of (2) are, from (26) and (28), 

X'Xb = 

n. � �  � 2 nz 

nx nx 0 0 

n2 0 n2 0 

"a 

0 

0 

0 

j[V 
< 

<4 
«3�  

U� _! 

= 

� ,.�  
Vi-

y* 

y3-

Ja-} 

= x�y- (29) 0 0 n, 

0 0 0 

It can be seen that X'X has n. = N as its leading element and the rest of its 
first row (and column) consists of the n/s, which are also the remaining 
elements of the diagonal. X'y is the vector of the response totals, totals of the 
2/t/s: the first is the grand total and the others are the class totals. This is 
evident in the normal equations for the example, which from (24) and (25) are 

(30) 

These clearly have the form of (29), with the right-hand vector X'y having as 
elements the totals shown in Table 6.1. 

c. Solving the normal equations 
Solving the normal equations (29) by means of (4) demands ascertaining 

the rank of X (or equivalent^ of X'X). In both (25) and (28) it is clear that 
in X the first column equals the sum of the others, as in X'X also, of (29) and 
(30). Therefore with/? = a + 1, the order of X, we have r = r(X) = a + 1 -
1 = a, and so p — r = 1. Hence by (4) we can solve the normal equations 
by putting one element of b° equal to zero, and crossing out one equation. 
In (29) and (30) the obvious element to equate to zero is � � , deleting the first 

7 3 2 

3 3 0 

2 0 2 

2 0 0 

2 1 
0 

0 

2J 

K 
K 

k�  
K 

y.. 

Vi� 

2/2-

. % � . 

� 553 

219 

156 

_178J 
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equation in so doing. As a result, the solution of (29) is 
233 

b° = 

> " 

� � 

«s 

-<-

— 

0 

y-i-

y* 

-2/a-J 

(31) 

i.e., the solutions to the normal equations are � �  = 0 and oc° = yu for 
i = 1, 2 , . . . , a. The corresponding generalized inverse of X'X is 

G = 
0 0 ' 
.0 DO/«,}. 

where D{l/nJ is the diagonal matrix of elements 1/Wj for i = 1,2, 
and 

0 
H = GX'X = 

1„ 

0� 

on multiplying (32) and X'X of (29). 
For the example, b° of (31) is 

b° = 

�  �  
219/3 

156/2 

178/2 

" o" 
73 

78 

89j 
and from (32) 

G = 

and H = 

ro 
0 

0 

0 

~0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

* 
0 

0 

0 

0 

ol 
0 

0 

*J 
ol 
0 

0 

*J 

� 7 

3 

2 

[2 

3 

3 

0 

0 0 0 

2 2 

0 0 

2 0 

0 2 

= 

0 

1 

1 

1 

0 

1 

0 

0 

0 

0 

1 

0 

0 

0 

0 

1 

(32) 

,a, 

(33) 

(34) 

(35) 

(36) 
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d. Analysis of variance 
In all cases, SSM and SST of (7) and (9) are easily computed. The other 

term basic to the analysis of variance is SSR of (8), and by (29) and (31) 
this is 

SSR = b°'X'y = 2 y{.yi. = f yl/n,. (37) 

With the data of Table 6.1, calculation of these terms proceeds as follows. 

SSM = Ny* = 7(553/7)2 = 43,687, (38) 

SST = 2 y* = 742 + 682 + 772 + 762 + 802 + 852 + 932 = 44,079 (39) 
and, from (37), 

SSR = 2192/3 + 1562/2 + 1782/2 = 43,997. (40) 
Hence from (10) 

SSE = SST - SSR 

= �  y* - �  y?./»i = 44,079 - 43,997 = 82, 

and from (11) and (12) 
SSRm = SSR - SSM = 43,997 - 43,687 = 310 

and SSTm = SST - SSM = 44,079 - 43,687 = 392. 
From these values, the analysis of variance (based on Table 5.6b of Sec. 
5.3g) is that shown in Table 6.2. From this, as in (6), the estimated error 

TABLE 6 . 2 . ANALYSIS OF VARIANCE OF DATA IN TABLE 6.1 

Term 

Model 
(after mean) 

Residual error 
Total 

(after mean) 

Degrees of 
Freedom 

a - 1 = 2 

N -a = 4 

TV- 1 = 6 

Sum of 
Squares 

SSRW = 310 

SSE = 82 

SSTW = 392 

Mean 
Square F-statistic 

MSRW = 155 F(RJ = 7.56 

MSE = 20.5 

variance is 
d·2 = MSE = 20.5 (41) 

and the coefficient of determination, as in (13), is 
R2 = SSRW/SSTW = 310/392 = 0.79; 

i.e., fitting the model y^ = �  + α̂  + efj accounts for 79% of the total sum 
of squares. 
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The statistic F(R J of (14) is 

F(RJ = MSRJMSE = 155/20.5 = 7.56 

with r — 1 = 2 and N — r = 4 degrees of freedom. On the basis of normality, 
comparison of this with tabulated values of the /^-distribution provides a 
test of whether the model, over and above a mean, accounts for the variation 
in y. Since the 5% critical value of the i^.rdistribution is 6.94 and this is 
exceeded by F(Rm) = 7.56, we conclude that the model does account for 
variation in y. Equivalently, we could conclude that the α-eifects in the 
model contribute significantly to the interpretive value of the model over 
and above � . Similarly, calculating (15) from (38) and (41) gives 

F(M) = 43,687/20.5 = 2131.1. 

Since the 5% critical point of the F1 ̂ -distribution is 7.71 we reject the 
hypothesis H: E(y) = 0. This can also be construed as rejecting the 
hypothesis H: �  = 0 when ignoring the a's. 

e. Estimable functions 
The expected value of any observation is estimable: thus �  + α̂  is estim-

able and, correspondingly, 

the b.l.u.e. of �  + a* is �  + a j . 

Using A over an expression to denote the b.l.u.e. of that expression, and 
noting the values of � �  and a? from (31), gives 

�  + af = � �  + a? = yf. . (42) 

The variance of the b.l.u.e. of an estimable function comes from expressing 
that function as q'b: q'b° is its b.l.u.e. and q'Gqa2 is the variance of the 
b.l.u.e. For example, with b' of (27) 

�  + � � = [1 1 0 · · · 0]b 
and so with 
^ ^ q' = [1 1 0 · · · 0] (43) 
�  + a1of(42)isq ,b°: ^ - \ 

/* + <*! = & . = q V 
and hence ^ \ 

� (�  + α ι) = v{yx) = � � � �  = q'Gqa*. (44) 

The equality q'Gq = 1/«χ for q' of (43) is easily verified, using G of (32). 
The basic result concerning estimable functions is (42). It provides 

b.I.u.e.'s of all other estimable functions. Any linear combination of the 
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�  + cLt is estimable and its b.l.u.e. is the same linear combination of b.l.u.e.'s 
of the �  -f 0Li9 i.e. of the yim . Thus for scalars � { 

a a 

2 � (�  + α̂ ) is estimable, with b.l.u.e. ^ λ ^ · . ; (45) 

L e � � � ^ + Ki) = IAi( / t i+^.) = f � ^ . . (46) 
i= l i = l i = l 

Furthermore, although the variance of this b.l.u.e. can be obtained as 
q'Gqcr2 by expressing the estimable function as q'b, it is clear from (46) that 
the variance depends solely on variances and covariances of the yim. These are 

v(yim) = σ2/^· and cov(y,·., yk.) = 0 for i ^ k9 

and so from (46) 

� [�� ^� ^)] = <Σ « = (Σ ̂ /">2> (47) 
where summation is over / = 1, 2 , . . . , a. From this, the 100(1 — a)% 
symmetric confidence interval on 2 ^ ( µ + αί) ^s> fr°m (19), 

2 i i o T T o ? ) �  ^� -� .^�  <� lni = �  «<&�  �  � tN-r.idl, 1*lni � ( 4 8> 

For example, 
α ι — a2 = O + a i ) — (f* + a2> (49) 

is estimable, with Ax = 1 and � 2 = — 1 and A3 = 0 in (45). Hence using (34) 
in (46) 

ax — α2 = (µ + αχ) — (µ + α2) = yx. — y2. = 73 - 78 = —5; 

and in (47) 

*(α ι - α2) = [P/3 + (-1)2/2]σ2 = 5<r2/6; 

and from (48) the 100(1 — oc)% symmetric confidence interval on αχ — α2 is 

- 5 ± ir4i ieV5/6 = - 5 ± i4(|aV205/12, 

using σ2 = 20.5 from (41). Similarly 

3ax + 2a2 - 5a3 = 3(�  + a j + 2(µ + a3) - 5(µ + a3) (50) 
is estimable, with � �  = 3, � �  = 2 and A3 = —5, and so 

3αχ + 2a2 - 5a3 = 3(µ + ax) + 2(µ + a2) - 5(�  + a3) 

= 3(73) + 2(78) - 5(89) 

= - 7 0 
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and from (47) 

V(3OL1 + 2a2 - 5a3) = (32/3 + 22/2 + 52/2)σ2 = 17|σ2. 

With estimates of variances of this nature being obtained by replacing σ2 

by <72[=20.5 in (41)], the 100(1 — a)% symmetric confidence interval on 
3ax + 2a2 — 5a3 is 

- 7 0 ± V2Ö5 h^VJl = - 7 0 ± /4>iaV358i 

Certain implications of (45), which can be written as 

2 � £�  + at.) = � �  � � + �  � �� �is estimable, (51) 

are worth noting. First, observe that r(X) = a and so, from Sec. 5.4f, the 
maximum number of LIN estimable functions is a. Since there are a functions 
�  + ai9 which are estimable, they therefore constitute a LIN set of estimable 
functions. Hence all other estimable functions are linear combinations of the 
�  + αί? i.e., are of the form (51). Specific results follow from this. 

0) �  is not estimable. Proof: Suppose that �  is estimable. Then for some 
set of ^-values (51) must reduce to � , and for these Xi we would then have 

µ = µ Σ ^ + Σ ^i&i, identically. 

For this to be so the � � must satisfy two conditions: 

2 � �· = 1 and 2 «̂αί = 0 f°r a^ a* · 
The second of these conditions can be true only if A, = 0 for all /, in which 
case 2 ^ ϊ 5* * anc* ^ e ^ r s t *s n o t t m e · Hence no � � exist such that (51) 
reduces to � ; i.e., �  is not estimable. Q.E.D. 

(//) a, is not estimable. Proof: Suppose cck is estimable for some subscript 
k. Then in the second term of (51) we must have Xk = 1 and � � = 0 for all 
/ ^ k. But then (51) becomes �  + ock . Hence cak is not estimable. Q.E.D. 

(Hi) ( J � ^�  + 2 K<*-i �  estimable for any Xi. This is simply a restatement 
of (51), made for purposes of emphasizing the estimabihty of any linear 
combination of �  and the α/s in which the coefficient of �  is the sum of the 
coefficients of the a .̂ From (46) its b.l.u.e. is 

(Σ � �)�  + Σ � ^� = Σ hVi- · 
For example, 13.7// + 6.8^ + 2.3a2 + 4.6a3 is estimable and its b.l.u.e. is 
6.8^. + 2.3y2. + 4.6^3.. Two others, of more likely interest are 

µ + - Σ η Λ with b.l.u.e. y.. (52) 

and 

�  + - �  � < w i t h b-i-u.e. �  yJa � (53) 
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These are (45)—or, equivalently, (51)—and (46) with � � = njn. in (52) and 
Xi = \\a in (53). For balanced data n{ = n for all / and then (52) and (53) are 
the same. 

0V) Σ ^i*i for 2 K = 0 w estimable. This is just a special case of (51) in 
which 2 A,· == 0, so eliminating the term in �  from (51). Thus is demonstrated 
the estimability of any linear combination of the ô  in which the sum of the 
coefficients is zero. From (46) its b.l.u.e. is 

�  k*i = Σ � � �. with Σ ^ = o. (54) 
3.6a! + 2.7a2 — 6.3a3 with b.l.u.e. 3.6^. + 2.7£2. — 6.3i/3. is an example; 
another is ax + a2 — 2a3, or \� � �  + Ja2 — a3 . 

(v) arf — oik for i ^ k is estimable. This arises as a special case of the 
preceding result: putting � { = 1 and Xk = — 1 and all other A's zero shows 
that 

a, — ak is estimable for every i ?�  k; (55) 

i.e., the difference between any pair of a's is estimable. Its estimator, by (46), 
is 

« < - « * = Vi. �  Vk. 

with ι;(α< - <xÄ) = (1/n* + � � )� 2 

and the 100(1 — α)% symmetric confidence interval on α̂  — afc is 

The differences â  — afc are frequently called contrasts (see subsection g that 
follows); they, and all linear combinations of them, often called contrasts 
also, are estimable, in accord with the principles of (46), (47) and (48); e.g., 
α ι + α2 ~ 2a3 = ax — a3 + a2 — a3 is estimable, as above. 

Estimability of the above functions could, of course, be established from 
the basic property common to all estimable functions, that they are functions 
of expected values of observations; e.g., 

ax - a2 = E{yl3) - E(y2r) = (�  + ax) - (�  + oc2). 

But the detailed derivations show how particular cases are all part of the 
general result (42) to which estimable functions belong. 

f. Tests of linear hypotheses 
(0 General hypotheses. The only hypotheses that can be tested are those 

that involve estimable functions, various forms of which have just been 
discussed. In all cases they are tested in accord with (21) of Sec 6.1. 
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For example, a2 — ax and 2a3 — αχ — a2 are estimable and, for example, the 
hypothesis 

a2 — ax = 9 
H: 

2a3 — a! — a2 = 30 

equivalent to 

is tested by using 

0" 

2J 
b = 

" 9" 

[_3oJ 

K' = 

and (K'GK)-1 = 

Γ0 - 1 1 

Lo - 1 - 1 
�  5 l -

6 6 

1 1 7 
_~6" -8� . 

- 1 

0" 

2_ 

1 
1 4 

? 

Ί 7 

_ 1 

K'b° = 

Γ 

5_ 

" 5" 

_27_ 

(56) 

" 5" 

27 
— 

" 9" 

30 
= 

~-4~ 

- 3 

17 
L 1 

= 341/14. 

Then Kb0 - m 

so that Q of (21) is 

Q = [-4 -3]TV 

Then, using s = r(K') = 2, and £2 = 20.5 of (41) 

F(H) = (341/14)/2(20.5) = 341/574 < 1. 

Comparison with tabulated values of the .F2^-distribution indicates non-
rejection of the hypothesis. (The 5% value of the F2^-distribution is 6.94.) 

(ii) The test based on F(M). The hypothesis H: E(y) = 0 tested by using 
F(M) of (15) is identical to H: � �  + 2 « A — 0 because, from the model 
(23), NE(y) = � �  + 2 ^ A · That H: � �  + 2 « A = 0 is a testable hypoth-
esis is readily evident by rewriting it as 

H: X�b = 0 with λ ' = [TV nx n2 · · · na]. (57) 

Clearly X�b is estimable, as in (52). To show that (21) reduces to SSM for (57) 
we use (31) and (32) to derive 

Vb° = 2 ntfi. = Ny�  , X'G = [0 1'] and X�GX = £ nx. = TV. 

Hence the numerator sum of squares for testing H is, from (21), 

Q = b^X�GX^X�b0 = Nyl = SSM. 

Furthermore, in (21) s is defined as s = r(K') and so here s = r(X') = 1 and 

so (21) is F ^ = QIS&2 = S S M ^ 2 = SSM/MSE = F(M) 
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of (15). Hence the igtest using F(M) does test H: � ,�  + ^� ^ = 0 or, 
equivalently, H: �  + 2 ni0iiln. = 0. («. = iV) 

Example. To test H: 1 �  + 3αχ + 2α2 + 2α3 = 0 in our example, 

Vb° = [7 3 2 2] = 553 and X'GX = [0 1 1 1] 

so that 

Hence 

Q = 553(7"1)553 = 5532/7 = 43,687 = SSM of (38). 

F(H) = Q/sa2 = 43,687/20.5 = 2131.1 = F(M) 

calculated earlier. 
(Hi) The test based on F(Rm). The test based on F(Rm) shown in (14) is 

equivalent (for the 1-way classification) to testing 

H: all a's equal, 

and this in turn appears equivalent to testing that all the a's are zero. 
First consider the example, where there are only three a's. Then the above 

hypothesis H: ax = a2 — a3 is identical to H: ax — a2 = a! — a3 = 0 
which can be written as 

(58) H: 
"0 1 - 1 

0 1 0 

Writing this as K'b = 0 we have 

K' = 
�  1 - 1 0" 

.0 1 0 - 1 _ 
Kb" = 

0] 
lj 

[' �  
Ul 

«2 

[«3 

"0" 

0_ 

- 5 

L—16. 

and (K'GK)-
6 3 

L3 6. 

J_ 
10 - 4 

.-4 loj 
using b° and G of (34) and (35). Hence in (21), where s = r(K�) = 2, 

β = [ - 5 - 1 6 ] \ 
10 - 4 

- 4 10. 

- 5 

-16J 
= 2170/7 = 310 = SSR„ 
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of Table 6.2. Therefore 
F{H) = Q\so2 = 310/2Ä2 = 155/20.5 = 7.56 = F(Rm) 

of Table 6.2. 
Generalization of this result follows. The hypothesis of equality of all 

the a's can be written as 
H: K'b = 0 with Κ ' ^ Ο Ι ^ 1� _, -Ια_ χ] (59) 

where K' has full row rank s = a — 1. It can then be shown (see Exercise 7) 
that Q of (21) reduces to 

6 = Σ "til - Nf = SSR - SSM = SSRm, 
using SSR defined in (37). Thus, 

F(H) = Q/sa2 = SSRJ(a - 1)MSE = MSRJMSE = F(RJ 

as illustrated above; i.e., the test statistic F(Rm) provides a test of the hy-
pothesis H: all a's equal. 

The apparent equivalence of the preceding hypothesis to one in which all 
α/s are zero is now considered. First we note that because ô  is not estimable 
the hypothesis H: a* = 0 cannot be tested. Therefore H: all α/s = 0 
cannot, formally, be tested. However, it can be shown that there is apparent 
equivalence of the two hypotheses. Consider ß , the numerator sum of 
squares for testing H: K'b = 0. The identity 

Q = SSR - (SSR - Q) 

is, from Tables 3.8 and 5.9, equivalent to 

Q = SSR — sum of squares due to fitting the reduced model. 

Now for the 1-way classification based on 

Va = �  + «.·■+*«> (6°) 
we have just seen that the hypothesis H: all α/s equal can be expressed in 
the form H: K;b = 0 and tested. In carrying out this test the underlying 
reduced model is derived by putting all oc/s equal (to a say) in (60) and so 
getting 

Va = �  + α + ea = � � + eij 

as the reduced model (with �  = �  + α). The sum of squares for fitting this 
model is clearly the same as that for fitting 

y.. = �  + eis 

derived from putting af = 0 in (60). Thus the reduced model for H: all a/s 
equal appears indistinguishable from that for H: all α/s zero. Hence the 
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test based on F(Rm) sometimes gets referred to as testing H: all α/s zero. 
More correctly it is testing H: all α/s equal. 

g. Independent and orthogonal contrasts 
The general form of a contrast among effects a, is a linear combination 

2 &Λ such that 2 &* == 0- It c a n t>e written as 

2 M< = k ' b with k' = [0 *! · · · jfcj and 2 *< = 0. (61) 

All such contrasts are orthogonal to � �  + 2 w A considered in (57) because 
(22) is then satisfied: i.e., with λ ' of (57), G of (32) and 2 K of (61), equation 
(22) is satisfied: 

X'Gk = [0 l']k = 2 ki = 0. (62) 

Furthermore, when testing a hypothesis that (a — I) LIN such contrasts are 
zero, Q = SSRm. For example, in testing 

H: 
[0 - 1 

[0 - 1 

the values in (56) give Q of (21) as 

b = 0 

Q = [5 27] I T 
17 

1 

5 

L27J 
= 4340/14 = 310 = SSR„ 

of Table 6.2. 
Differences between pairs of α/s are the simplest forms of contrast. Such 

differences are the basis of the hypotheses considered in (58) and (59), 
which also satisfy (62). Hence the numerators of F(M) and F(Rm) are inde-
pendent—as already established in Sec. 5.3 for the general case. 

Although, for example, ax — a2 and ax — a3 are both orthogonal to � �  + 
3αχ + 2α2 + 2α3 they are not orthogonal to each other. To find a contrast 
%kiai orthogonal to ax — a2 it is necessary that (22) be satisfied for � ^� � 

and ax — a2, i.e., that 

[0 kx k2 k3]G 

0 

1 

- 1 

0 

= Jfci/3 - K\2 = 0 

as well as having 
2 ^ = o. 

Any fc's of the form kx = — 0.6fc3, k2 = — 0Akz and k3 = k3 will suffice. For 
example, k' = [0 —3 —2 5] gives k'b = — 3ax — 2a2 + 5a3 which is 
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orthogonal to ax — a2 and, of course, to 7�  + 3αχ + 2α2 + 2α3. Testing 

;�  l - 1 ο" 
0 - 3 - 2 5 

b = 0 

then involves 

KV = 
- 5 " 

70 
and (K'GK)-1 = 

"I 0" 

.0 17i 

- 1 

= 
"i 0Ί 

.0 A. 
and so Q of (21) is 

β = [ -5 70] 
0 -2-
" 35. 

- 5 " 

70 
= 30 + 280 = 310 = SSRm. 

The terms that make up this sum, namely 30 and 280, are the numerator 
sums of squares for testing OL1 — a2 = 0 and — 3ax — 2a2 +5a 3 = 0 respec-
tively, as can be easily verified. Evidence that this is so is seen in the zero off-
diagonal elements of K�GK, showing the independence of the elements of K�b� . 

h. Models that include restrictions 
It has been emphasized in Sec. 5.6 that linear models do not need to 

include restrictions on their elements. But if they do, estimable functions and 
testable hypotheses may take different forms from those they have in the 
unrestricted model. In particular, functions of interest that are not estimable 
in the unrestricted model may be estimable in the restricted model—the 
model that includes restrictions. 

In considering restrictions we confine ourselves to those relating to non-
estimable functions. This is because restrictions relating to estimable func-
tions do not alter the form of estimable functions and testable hypotheses 
available in the unrestricted model. This is shown in Table 5.13 where we 
also see that the only changes from an unrestricted model incurred by having 
a restricted model are those wrought in estimable functions by the restriction 
that is part of the restricted model These are particularly interesting in the 
1-way classification, some of which we now illustrate. 

Suppose the restricted model has the restriction � � ^ = 0. Then the 
function �  + � � ^� ,, which is estimable in the unrestricted model [as in 
(52)], becomes �  in the restricted model, with its b.l.u.e. by (52) being y�  . 
Thus in the model having � � ^ = 0 as a restriction, �  is estimable with 
b.l.u.e. y.. . Furthermore, the hypothesis considered in (57) and tested by 
means of F(M) then becomes H\ �  = 0; i.e., under the restriction � � ^ = 0 
the F-statistic F(M) can be used to test the hypothesis H: �  = 0. 

Suppose the model included the restriction Σα^ = 0. In the unrestricted 
model �  + � ^/�  is estimable with b.l.u.e. Σ^./α—as in (53). In the restric-
ted model with Σα,- = 0 this means �  i* estimable with b.l.u.e. � ^�%/� , In this 
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case the hypothesis �  = 0 is tested by the F-statistic derived in the un-
restricted model for testing H: �  + Σο^/α = 0. This is H: k'b = 0 for 
k' = [1 a-n�l for which k'b0 = Zyja and k'Gk = a~2 Σ(1//!,). Hence the 
jF-statistic for testing H: �  = 0 in this restricted model is 

F(H) = (Σ&.)«/(* � � � 1). 

The preceding two paragraphs illustrate how different restrictions can lead 
to the same parameter being estimable in different restricted models even 
though that parameter may not be estimable in the unrestricted model. 
Furthermore, even though it is formally the same parameter in the different 
restricted models (i.e., the same symbol), its b.l.u.e. in those models may not 
be the same. Its b.l.u.e. is the b.l.u.e. of the estimable function in the un-
restricted model from which the estimable function in the restricted model has 
been derived by application of the restriction. Thus in a model having ΣΗ,-OC,· = 
0 the b.l.u.e. of �  is y�  , the b.l.u.e. of �  + � � ^/� , in the unrestricted 
model; but in a model having Σα^ = 0 the b.l.u.e. of �  is Σ^./tf, the b.l.u.e. 
of �  + Σο^/α in the unrestricted model. A third example is that, in a model 
having Σνν^ = 0 for some weights wi9 �  is estimable with b.l.u.e. Σ Η ^ . / Σ Η ^ , 
this being the b.l.u.e. of �  + Σ^α,/Σνν,- in the unrestricted model. Here 
the ^-statistic for testing H: �  = 0 comes from testing 

H: k'b = 0 with k' = [1 wjw. · · · wjw.] 

for w. = Σ w{. Thus 

k V = Xw� Jw. and k'Gk = (XwJ/zi^/w? 

and so the jF-statistic for testing H: �  = 0 is 

These three cases are summarized in Table 6.3. The first two rows of 
Table 6.3 are, of course, just special cases of the last row: wt = n{ for the 
first row, and w{ = 1 for the second. In all three rows �  is estimable, and 
because �  + af is estimable too (anything estimable in the unrestricted model 
is estimable in a restricted model) it follows that, in the restricted models, <x{ 

is estimable with its b.l.u.e. being yi% minus the b.l.u.e. of � . 
The choice of what model to use, the unrestricted model, one of those in 

Table 6.3 or some other, depends upon the nature of one's data. For un-
balanced data we often find Σ^α , = 0 used. Having the same restrictions 
on the solutions, Σ^α? = 0, leads to an easy procedure for solving the 
normal equations, as is evident from (29): � �  = y�  and a? = yu — y,, . 



[6.2] THE 1-WAY CLASSIFICATION 245 

TABLE 6 . 3 . ESTIMATORS OF � , A N D F - S T A T I S T I C S FOR TESTING 

Hi �  = 0 , IN THREE DIFFERENT RESTRICTED MODELS 

b.l.u.e. of �  in 
Estimable function restricted model 

in unrestricted ( = b.l.u.e. of 
Restriction model which function in pre- F-statistic 

on reduces to �  in ceding column in for testing 
model restricted model unrestricted model) H: �  = 0 

Σ/ι,-α̂  = 0 �  + � � ^/� , y�  F(M) — njj2� jo2 

Σα. = 0 �  + � � ,/�  Xyja (Σ&,)2/(<τ2 � � � ^) 
Σνν^· = 0 �  + ΣΗ^ . /W. ΣΗ>^·./Η>. (Σνν^·.)2/(σ2 ΣΗ>2/Ι~1) 

This is perfectly permissible for finding a solution b°, it being of course the 
oft-referred-to method of applying the "usual constraints" as discussed in 
Sec. 5.7. But although Σλζ,α? = 0 provides an easy solution for b°, the same 
restriction applied to parameters of the model, � � ^ = 0, may not always 
be appropriate. For example, suppose an experiment to estimate the efficacy 
of a feed additive for dairy cows was made on 7 Holsteins, 5 Jerseys and 2 
Guernseys; the "constraint" 1CL� X + 5a^ + 2a^ = 0 would lead very easily to 
solutions for � � , OL� V OL� 2 and <x� z. But if the proportions of these three breeds in 
the whole population of dairy cows (assumed to consist of just these three 
breeds and no others) was 6:2:2 it would be more meaningful to use 6ax + 
2a2 + 2a3 = 0 rather than 7ax + 5a2 + 2a3 = 0, if any such restriction was 
desired. In this case we would use the third row of Table 6.3 rather than the 
first. 

i. Balanced data 
With balanced data n{ = n for all /, and the first two rows of Table 6.3 are 

then equal. Σα^ = 0 as a "constraint" provides an easy solution to the normal 
equations, � �  = y�  and a? = yim — y.., familiarly found in the literature. Apart 
from this, all other results stand fast: for example, �  + <xt and α̂  — afc are 
estimable, with b.l.u.e.'s yu and yim — yk. respectively; and SSE = � y2 — 
� y\.\n as usual. 

Sometimes the restriction Σα, = 0 is also used as part of the model. This 
is in accord with the "constraint" Σα? = 0 useful for solving the normal 
equations. As a restriction it can also be opportunely rationalized in terms of 
defining the α/s as deviations from their mean, and hence having their mean 
be zero, i.e., Σα^ = 0. The effect of the restriction is to make �  and af 
estimable with b.l.u.e.'s fi = y.m and a, = yit — y.., and hypotheses about 
individual values of �  and ai are then testable. 
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3 . REDUCTIONS IN SUMS OF SQUARES 

a. The R( ) notation 
Consideration of models more complex than that for the 1-way classifica-

tion will lead us to comparing the adequacy of different models for the same 
set of data. Since in the identity SSE = SST - SSR we have SSR as the 
reduction in total sum of squares due to fitting any particular model it, SSR, 
is a measure of the variation in y accounted for by that model. Comparison 
of different models in terms of a given set of data can therefore be made by 
comparing the different values of SSR that result from fitting the different 
models. To facilitate discussion of these comparisons we refer, as previously, 
to SSR as a reduction in sum of squares, and now denote it by R{ ), with the 
contents of the brackets indicating the model fitted. For example, in fitting 
Va = �  + a i + eij the reduction in sum of squares is � (� , a), the �  and a 
indicating a model that has parameters �  and those of an α-factor. Similarly, 
� (� , α, � ) is the reduction in sum of squares for fitting yijk = �  + ae- + 
ßj + � ijk ��> a n d � (� , α, � : a) is the reduction due to fitting the nested model 
Vm = �  + a t + ßu + ei3k> the symbol ß:a in � (� , a, β:α) indicating that 
the ß-factor is nested within the α-factor. Extension to more complex models 
is clear, and at all times the letter R is mnemonic for "reduction" in sum of 
squares and not for "residual", as used by some writers. In this book R( ) 
is always a reduction in the sum of squares. 

The model y{ = �  + e{ has the normal equation � �  = y,, and the corre-
sponding reduction in sum of squares, R^), is readily found to be Ny2. 
But Ny2 is, for all models, SSM. Therefore 

R(JJI) = Ny2 = SSM. 

With the 1-way classification model ytj = µ + a, + etj9 the reduction in 
sum of squares, which we now write as R^, a) is, by (37), 

SSR ΞΞ ÄO, a) = 2 yl/n,. 
Therefore, from (11) 

SSRW = SSR - SSM = R^, a) - R^). (63) 

Thus for the 1-way classification SSRm is the difference between the reduc-
tions in sums of squares due to fitting two different models, one containing �  
and an α-factor and the other containing just � . SSRm of (63) can therefore 
be viewed as the additional reduction in sum of squares due to fitting a model 
containing �  and an α-factor over and above fitting one containing just � . 
Hence R^, a) — R(� ) is the additional reduction due to fitting �  and a, over 
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and above fitting just � ; or, more succinctly, it is the reduction due to fitting 
a over and above � . An equivalent interpretation is that, having once fitted � , 
the difference 11(� , α) — � (� ) represents the reduction in sum of squares due 
to fitting an α-factor additional to � . In this way � (� , a) — �1(� ) is the 
reduction due to fitting "a, having already fitted � \ or to fitting "a after µ". 
In view of this we use the symbol R(OL | � ) for (63) and write 

R(OL | � ) = � (� , α) - � (� ). (64) 

This notation readily admits of extension. For example, 

R(x \� ,� ) = 11(� 9 α, � ) - � (� 9 � ) 

is the reduction in sum of squares due to fitting "a, after �  and /?"; i.e., the 
reduction due to fitting a model containing � , an α-factor and a jö-factor 
having already fitted one having �  and a ^-factor. It is a measure of the 
extent to which a model can explain more of the variation in y by having in it, 
in a specified manner, something more than just �  and a /?-factor. 

Every R( )-term is, by definition, the SSR of some model. Its form is 
therefore y'X(X'X)~X'y for X appropriate to that model, and with X(X'X)~X' 
idempotent. Therefore, for y ~ � (� , � 2�) for any vector µ, the distribution of 
R( )/<72 is a non-central � 2 independent of SSE. Suppose R(bl9 b2) is the 
reduction for fitting y = Xbj + Zb2 + e, and R(bx) is the reduction for 
fitting y = Xbx + e. Then it can be shown (see Exercise 12) that R(b21 bj/σ2 

has a non-central ^-distribution, independent of R(bx) and of SSE. Hence 
whenever the reduction in sum of squares R(bl9 b2) for fitting a model is 
partitioned as R(bl9 b2) = R(b21 bx) + i^(bi), we know that both R(b2 \ bx) 
and i?(bj) have non-central ^-distributions and that they are independent of 
each other and of SSE. 

The succinctness of the R( ) notation and its identifiability with its 
corresponding model are readily apparent. This and the distributional prop-
erties just discussed provide great convenience for considering the effective-
ness of different models. As such it is used extensively in what follows. 

b. Analyses of variance 
Table 6.2 is an example of the analysis of variance given in Table 5.6b of 

Sec. 5.3g. Its underlying sums of squares can be expressed in terms of the 
R( ) notation as follows : 

SSM = � (� ) = 43,687, SSR = R^, a) = 43,997, 
SSRm = J?(a | � ) = 310, SSE = SST - � (� , a) = 82. 

These are summarized in Table 6.4 where the aptness of the R( ) notation 
for highlighting the meaning of sums of squares is evident: i?(//) is the 
reduction due to fitting the mean � ; R(OL | � ) is that due to fitting the a-factor 
after � ; and with Rfa a) being the reduction due to fitting the model, which 
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consists of an α-factor and µ, SSE = SST — R(� , a) is the attendant residual 
sum of squares. JR(//, a), of course, equals 11(� ) + R(OL | � ) as in (64). 

The clarity provided by the R( ) notation is even more evident for models 
that involve several factors. The notation is therefore used universally in all 
analysis of variance tables that follow. Also, all such tables have a format 
similar to that of Table 6.4: they show a line for the mean, R^), and a total 

TABLE 6 . 4 . ANALYSIS OF VARIANCE USING R( ) NOTATION. 
(SEE ALSO TABLES 6 .2 AND 5 . 5 ) 

Source of Mean i7-
Variation d.f. Sum of Squares Square statistic 

Mean 1 = 1 RQ*) = 43,687 43,687 2131.1 
α-factor after a - 1 = 2 R(a | � ) = 310 155 7.56 

mean 
Residual TV - a = 4 SSE = SST - Rfr, a) = 82 20£ 

error 

Total N = 7 SST = 44,079 

sum of squares SST = 2 V2> n o t corrected for the mean. The only term which 
such a table does not yield at a glance is the coefficient of determination 
R2 = SSRm/SSTm, of equation (13). However, since this can always be 
expressed as 

R2 = 1 ^ (65) 
SST - RQJL) 

it too can then be readily derived from analysis of variance tables such as 
Table 6.4. 

c. Tests of hypotheses 
In Sec. 2f(iii) we saw how F(M) is a suitable statistic for testing 

H: � ,�  + 2 "Λ == 0· B u t 

F(M) = SSM/MSE = i*(//)/<72 

and so we see that R(� ) is the numerator sum of squares for testing 
H: � ,�  + 2 ΛΛ = 0 as well as being the reduction in sum of squares due to 
fitting the model yiS = �  + eiS. This dual interpretation of R^) should 
be noted. 

Section 2f(iii) describes why F(Rm) is referred to as testing H: all at's 
equal. But , , x 

4 MSRm SSRm « ( « / « ) 
MSE (a - 1)MSE (a - \�  
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and so we see that R(OL | � ) is the numerator sum of squares for testing 
H: all α/s equal, as well as being the reduction in sum of squares due to 
fitting a after � . These two interpretations of R(OL | � ) should be borne in 
mind. The association of R(OL \ � ) = #(µ, α) — R^) with the effective 
testing of H: all α/s zero is particularly convenient: in the symbol R^, a), 
putting a = 0 reduces the symbol to � (� ) and the difference between these 
two, i?(//, a) — i?(/4 is the required numerator sum of squares. 

In terms of R(x | � ) being the numerator sum of squares folr testing the 
hypothesis H: all α/s equal, Table 6.4 is an application of Table 5.9. 
Writing H: all α/s equal in the form H: K b = 0, as in (59), we see in 
Table 5.9 that R(a | � ) is the numerator sum of squares for testing H: K'b = 
0, and R^) is the sum of squares for the reduced model yu = �  + α + e� if = 
�  + e{j. 

4 . THE 2 -WAY NESTED CLASSIFICATION 

Chapter 4 describes a student opinion poll of instructors' classroom use of 
a computing facility in courses in English, Geology and Chemistry. Partial 
data from such a poll are shown in Table 6.5. These are data from a 2-way 
nested classification, the analysis of which is now described. 

TABLE 6 . 5 . STUDENT OPINION POLL OF INSTRUCTORS' 
CLASSROOM USE OF COMPUTER FACILITY 

Course 

English 

Geology 

Section of 
Course 

1 
2 

1 
2 
3 

Individual 

5 
8, 10, 9 

8, 10 
6, 2 , 1 , 3 
3, 7 

Gra 

Observations 

Total 

5 
27 

Total 32 

18 
12 
10 

Total 40 

nd total 72 

Number1 

(1) 
(3) 

(4) 

(2) 
(4) 
(2) 

(8) 

(12) 

Mean 

5 
9 

8 

9 
3 
5 

5 

6 

1 For clarity, number of observations are in parenthesis. 
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a. Model 

As suggested in Chapter 4, a suitable model is 

Vuk = �  + α* + ßu + eijk (66) 

where yijk is the kth observation in the yth section of the /th course, �  is a 
general mean, α< is the effect due to the /th course, /ifi is the effect due to the 
yth section in the /th course and eiJk is the usual error term. Having a levels of 
the α-factor (courses), / = 1, 2, . . . , a with a = 2 in the data of Table 6.5. 
For £f levels of the ^-factor nested within the α-factor (sections nested within 
courses)/ = 1, 2, . . . , bi9 with bx = 2 and Z>2 = 3 in the example. And for «i; 
observations in the yth section of the /th course, k = 1, 2,. . . , nio\ values of 
the ni5 in Table 5 are those in the penultimate column thereof. Shown there 

bt a 

also are values of nim = 2 % aiK* n.. — ^ni.l e-g-> nu = 1> "12 = 3 and 
i = l t = l 

«j. = 4; and n.. = 12. Corresponding totals and means of the yi3fc's are also 
shown in the table. 

b. Normal equations 
For the 12 observations of Table 6.5 the equations of the model (66) are 

5 

8 
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8 

10 

6 
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1 

3 

3 
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= 

2/111 

2/121 
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1 1 

1 1 

1 0 

1 0 

1 0 

1 0 

1 0 

1 0 
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0 
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1 

1 

1 

1 

1 

1 

1 

1 

0 

0 

0 

0 

0 

0 

0 
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0 
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0 

0 

0 

1 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

1 

1 

0 

0 

0�  

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

l j 

� > 
« 1 

a 2 

� n 

Ai 

£22 

L&3_ 

+ 

^111 

^121 

^122 

fi123 

^211 

^212 

^221 

^222 

^223 

^224 

^231 

__^232. 

(67) 

Writing X for the 12 x 8 matrix of 0's and l's it is readily evident that the 
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normal equations X�Xb0 = X'y are 
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|~12 j 4 8 

4 | 4 · 

8 - 8 

1 1 · 

3 i 3 · 

2 | · 2 

1 4 | · 4 
_ 2 j · 2 ; 

1 

1 

1 

3 

3 

3 

2 4 

2 4 

2 · 

• 4 

• · 

2 | 

2 

d 

1"� 

Ä1 

A3 

# 1 

Ä» 
L^»J 

72 

32 

40 

5 

27 

18 

12 

_ioJ 

y... 

2/1-

y«.. 

Vn-

2/12. 

^ 2 1 -

y22. 

_2/23-J 
where periods represent zeros. The general form of these equations is 

Γη.. 

«1� 

«2� 

«11 

«12 

«21 

«22 

_ « 2 3 

! nv n2. 

«1- � 

• «2. 

«11 * 

«12 * 

* «21 

* «22 

«23 , 

«11 «12 

«11 «12 

«11 � 

«12 

«21 «22 «23 

«21 «22 «23 

«21 * 

* «22 � 

* «23J 

� �  

a? 

« 1 

Ä. 

« 1 

ft.. 

2/2.. 

2/12. 

(68) 

(69) 

2/21. 

#22-

#23�. 

The partitioning shown in (69) suggests how more levels of the factors would 
be incorporated in the normal equations. 

c. Solving the normal equations 
X�X in equations (68) and (69) has order 8 and rank 5: rows 2 and 3 sum to 

the first row, rows 4 and 5 sum to row 2 and rows 6, 7 and 8 sum to row 3. 
Hence r(X�X) = 8 — 3 = 5. For the general 2-way nested classification X�X 
has rank b., the number of subclasses. This is so because its order p is, for a 
levels of the main classification (courses in our example), p = 1 + a + b,; 
but the rows corresponding to the α-equations add to that of the /^-equation 
(1 dependency) and the rows corresponding to the /?-equations in each a-level 
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add to the row for that "öc-equation (a dependencies, linearly independent 
of the first one). Therefore r = r(X'X) = 1 + a + b. - (1 + a) = b. . 
Heace by (4) the normal equations can be solved by putting p — r = 1 + a 
elements of b° equal to zero. From the nature of (68) and (69) it is clear that 
the easiest 1 + a elements of b° to set equal to zero are � �  and a", a*,. . . , a*. 
Doing this gives the other elements of b�  as 

ß� u = Va- f o r all ί and j (70) 
s ° t h a t b0' = [0ίχα+β ) y'] (71) 
where y' is the row vector of cell means. In the case of the example, we see 
from Table 6.5 that 

y' = [5 9 9 3 5] 
and so b0/ = [0 0 0 5 9 9 3 5]. (72) 
The corresponding generalized inverse of X'X is 

Γ0 0 Ί 
G = for i = l , . . . , a , ; = 1,2, . . . , bt (73) 

LO D(1/^,)J 
where D(l/«^·) for the example is diagonal, with non-zero elements 1, £, i , J 
and ·|. 
d. Analysis of variance 

Sums of squares for the analysis of variance of this model, with their 
calculated values for the example of Table 6.5, are as follows. 

RQji) = SSM = n..yl = 12(62) = 432; 

� {� 9 a, /?:«) = SSR = b°'X'y = | £ Vu-fau 

= 52/l + 272/3 + 182/2 + 122/4 + 102/2 = 516; 
Ä(a,/J:a|/iO = ÄG», a, ß:<x.) - RQi) = 516 - 432 = 84; 

SST = I 2 f yfa = 52 + 82 + · · · + 32 + 72 = 542; 
i = l 3 = 1 fc=l 

SSE = SST - Α(µ, a, � :� ) = 542 - 516 = 26. 

TABLE 6.6. ANALYSIS OF VARIANCE FOR THE DATA OF TABLE 6.5 

Source of 
Variation 

Mean 
Model, after mean 
Residual 

Total 

b, 
N 

d.f. 

1 = 1 
- 1 = 4 
-b.= l 

N = 12 

Mean 
Sum of Squares Square F-statistic 

R^) = 4 3 2 432 F(M) = 116.3 
R(OL, � :*\� )= 84 21 F(Rm) = 5.7 

SSE = 26 3-f-

SST = 542 
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Hence the analysis of variance table, in the style of Table 6.4, is that shown in 
Table 6.6. From F(M) = 116.3 we reject the hypothesis H: E{y) = 0, 
because F(M) exceeds the 5% value of the Flf7-distribution, namely 5.59. 
Also, comparing F(RJ = 5.7 with the 5% value of the /^-distribution, 
4.12, we reject the hypothesis (at the 5% significance level) that the model 
EiVnk) = /* + <*,· + ßtj of (66) does not account for more variation in the 
2/-variable than does the model E(yijk) = � . 

Suppose to the data of Table 6.5 we fit the 1-way classification model 

Vnk = �  + a* + em . 

Then, as in (37) and (63) the reduction for fitting this model is 

Rfa, α) = I yl/rii. = 322/4 + 402/8 = 456. 
Hence 

R(ß:oL | � , a) = £(µ, a, � :� ) - � {� , a) = 516 - 456 = 60, 
and 

R(<x. I � ) = R^, a) - R^) = 456 - 432 = 24. 

In this way R(OL, � : α | � ) of Table 6.6 can be divided into two portions: 

84 = R(OL, � :<� .\� ) = #(µ, a, ß:at) - � (� ) 

= R^, *,� :� )- R^, a) + Rfa, a) - � (� ) 

= R(ß:(x.\� , α) + Λ(α | / ι) 
= 60 + 24. 

The result of doing this is seen in Table 6.7. There, the ^-statistic 

f ("i">=r^-6� ! (74) 

(a — 1)MSE 
TABLE 6 . 7 . ANALYSIS OF VARIANCE FOR DATA OF TABLE 6.5 

(2-WAY NESTED CLASSIFICATION) 

Source of 
Variation 

Mean, �  

a after �  
� :oL after �  and a 

Residual 

a 
b. 

N �  

d.f. 

1 = 1 

- 1 = 1 
- a = 3 

- b. = 7 

Sum of Squares 

� 1(� ) = 432 

� ( � | � ) = 24 
� (� :� \� 9 � ) = 60 

SSE = 26 

Mean 
Square 

432 

24 
20 

3-5-

F-
statistic 

116.3 

6.5 
5.4 

Total N = 12 SST = 542 
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tests the significance of fitting a after � ; and 

(b. — a)MSE 
tests the significance of fitting ß\<x after �  and a. The 5% critical values of 
the JF1I7- and i^-distributions are 5.59 and 4.35 respectively, and are exceeded 
by (74) and (75). Hence we conclude that fitting a after �  as well as � : α after 
�  and a accounts for variation in the ^-variable. 

e. Estimable functions 
Applying the general theory of estimability to any design models involves 

many of the points detailed in Sec. 2e for the 1-way classification. These 
details are not repeated in what follows. 

The expected value of any observation is estimable, and so �  + af + ß{j is 
estimable, with b.l.u.e. / + < + ß% = yijm from (70) and (72). This result 
and linear combinations thereof are shown in Table 6.8. An example of one 

TABLE 6 . 8 . ESTIMABLE F U N C T I O N S IN T HE 2 - W A Y NESTED 
C L A S S I F I C A T I O N y{j = �  + ο ^ + ß{j + eijk 

Estimable Function 

/* + ar + ßii 

� ij- � i3�>iOTj*j� 
bi bi 

�  + at- + 2 wiiß� > f o r Σ WH = X 

3=1 3=1 

bi V 
a i - «ί' + 2 Wijßi3 - Σ "Vjft'i > 

i = l ,-=1 

for 2 ^ · = i = 2w<#i 
2 = 1 3=1 

b.l.u.e. 

Va. 

Vii. - Vif. 
bi 

2 wnya. 
3=1 

2 w<^«. ~ �  w* � ^�� . 

Variance of b.l.u.e. 

<?K 
a\\\nii + 1/iv) 

«2(� *) 

V = l 3=1 I 

of them is, using (72), 
/ C ^ Ä a = 5 - 9 = - 4 

with ^ ^ — ^ ^ 
ΚΑχ - � 12) = σ · ( | + J) = 4(7^/3, 

an unbiased estimate of this variance being, from Table 6.6, 4σ2/3 = 
4(MSE)/3 = 104/21. Values typically used for w{j in the last two rows of 
Table 6.8 are either 1/Ẑ  or nulnim . With the former and using (72) again we 
have, for example 

*i - a2 + J(/?u + � � ) - £(Asi + Aa + fts) (76) 

has b.l.u.e. # 5 + 9) _ j(9 + 3 + 5) = H 
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and the variance of this b.l.u.e. is 

*2[(4)2(1 + i) + ω2(έ + i + *)] = 35σ2/72. 
It is to be noted in Table 6.8 that �  is not estimable; neither is �  + a i , 

nor is a , . 

f. Tests of hypotheses 
The estimable functions of Table 6.8 form the basis of testable hypotheses. 

The F-statistic for testing the null hypothesis that any one of the functions in 
Table 6.8 is zero is the square of its b.l.u.e. divided by that b.l.u.e.'s variance 
with a2 replacing σ2. Such a statistic has the Fx y^.-distribution under the 
null hypothesis and its square root has the tN_b. distribution; e.g., 

F = (Vu 
σ2(1/η„ + l/n„0 

or, equivalently can be used to test the hypothesis that ß{j = ßir . 
The hypothesis H: ßa = ßi2 = · · · = ßih. for all / is of especial interest. 

It is the hypothesis of equal ß�s within each α-level. By writing it in the form 
H: K'b = 0 it can be shown that the resulting ^-statistic of (21) is F(ß:v. | 
� , α) given in (75) and used in Table 6.8. Thus, whereas in (75) F(ß:<x | � , α) 
is described as being used for testing the significance of fitting � : α after �  and 
a, we now see that, equivalently, F(ß:<x | � , α) can also be used for testing the 
hypothesis of equality of the ß�s within each a-level. 

Example. Carrying out this tect for the data of Table 6.5 involves 

Γ0 0 0 1 - 1 0 0 01 

Kr = 0 0 0 0 0 1 - 1 0 

[0 0 0 0 0 1 0 - l j 

for which, using b0' of (72) and G implicit in (73), gives 

(77) 

K�b�  = 

"-4Ί 

6 

4j 
so that Q of (21) is 

and (K'GK)-

1 o o" 
o I i 

_o έ i. 

- 1 

= 

0 

2 

1 

0" 

- 1 
.3 

β = [-4 6 4] 

0 

2 

- 1 

0" 

- 1 

- 4 " 

6 

4 
= 60 = R(ß:<x I � , α) of Table 6.7. 

Thus the F-value is 60/3σ2 = 20/3-f- = 5.4 as in (75) and Table 6.7. 
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Consider the hypothesis 

H: k�b = 0 fork� = [0 1 - 1 i I - | - f —|l· (78) 

Here we have 

k'b = α ι - a, + (j8u + 3j812)/4 - (2� �  + 4ß22 + 2&3)/8 

which is the estimable function typified in the last line of Table 6.8, with 
w.. = n..\nu . From (78), (72) and (73) 

k'b0 = 3 and k�Gk = f 

so that by (21) the numerator sum of squares for testing the hypothesis in 
(78) is 

Q = 32(|) = 24 = R(a | � ) of Table 6.7. (79) 

This is no accident. Although R(<x | � ) is, as indicated in (74), the numerator 
sum of squares for testing the fit of a after µ, it is also the numerator sum of 
squares for testing 

bi hi� 

H: a, +2,niAjlni- = a*' +2"rAA·'· f o r a11 Ϊ ^ i". (80) 

Furthermore, this hypothesis is orthogonal to 

H: ßi5 = ßir for j y£j\ within each /, (81) 

orthogonal in the sense of (62); e.g., kr of (78) and K' of (77) are examples of 
(80) and (81) respectively, and k' and every row of K' satisfy (62). And, in 
testing (80) by using (21) it will be found that F(H) given there reduces to 
F(OL | µ), as exemplified in (79). Hence F(OL | � ) tests (80), the numerator sum of 
squares being R(a | � ); and F(ß:<x | � , α) tests (81), its numerator being 
R(ß:cn | � , α). The two numerator sums of squares R(oc | � ) and R(ß:cn | /i, a) 
are statistically independent, as can be established by expressing each of them 
as quadratics in y and applying Theorem 4 of Chapter 2 (see Exercise 9). 

The equivalence of the ^-statistic for testing (80) and F(OL | � ) can also be 
appreciated by noting in (80) that if the ßtj did not exist then (80) would rep-
resent 

H: all a's equal (in the absence of ß's) 

which is indeed the context of earlier interpreting F(<x | � ) as testing a after � . 

g. Models that include restrictions 
The general effect of having restrictions as part of the model has been 

discussed in Sec. 5.6 and illustrated in detail in Sec. 2h of this chapter. 
The points made there apply equally as well here: restrictions that involve 
non-estimable functions of the parameters affect the form of functions that 
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are estimable and hypotheses that are testable. Of particular interest here are 

restrictions 2 wnßn = 0 with 2 w0 = 1 for all i, because then from Table 

6.8 we see that �  + ocf and ocf — a^ are estimable, and hypotheses about 
them are testable. If, further, the w{j of the restrictions are � ^� � ^ , so that the 

restrictions are 2 w*,-/Sfi = 0 for all /, then (80) becomes H: all α/s equal and 
;=1 

(80) is, as we have just shown, tested by F{OL | � ), which is independent of 
F(ß:oi | µ, α) that tests H: all 0's equal within each α-level. However, if the 

w{j of the restrictions are not n^jn^ , but some other form satisfying 2 wa = 1 
3 = 1 

for all /, e.g., w{j = 1/A,, the hypothesis H: all α/s equal can still be tested, 
but the F-statistic will not equal F(OL | � ), nor will its numerator be 
independent ofthat of F(ß:a. | µ, α). 

h. Balanced data 
The position with balanced data {n{j = n for all / and/, and bt = b for all 

/) is akin to that of the 1-way classification, discussed in Sec. 2i earlier. 
bi a 

"Constraints" 2 ß% = 0 f ° r aU * a n d 2 a* = 0 o n ^ e solutions applied to 
3 i=l 

the normal equations lead to easy solutions thereof: � �  = y.,,, a? = yim. — 
y.�  and � % = yijm — yit., as found in many texts. Other results are unaffected 
e.g., the estimable functions and their b.l.u.e's of Table 6.8 are unaltered. 

When restrictions paralleling the constraints are taken as part of the model, 
a b£ 

2 &i = 0 and 2 ßij = 0 for all /, the effect is to make µ, a, and ßtj individu-
a l j=l 
ally estimable with b.l.u.e.'s fl = y� ,, at- = yi%% — y,�  , and/??J = yijm — yit,. 
And, as in the 1-way classification, rationalization of such restrictions is 
opportune: the α/s are defined as deviations from their mean as are the 
ßi/s from their within a-level means. 

5 . NORMAL EQUATIONS FOR DESIGN MODELS 

Models of the nature described here and in Chapter 4 are sometimes called 
design models [e.g., Graybill (1961, Chapters 11-15)]. Several general prop-
erties of the normal equations X�Xb0 = X'y of such models will now be 
characterized, using (68) for illustration. 

First, there is one equation corresponding to each effect of a model. 
Second, the right-hand side of any equation (the element of X'y) is the sum of 
all observations that contain, in their model, a specific effect; e.g., the right-
hand side of the first equation in (68) is the sum of all observations that 
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contain � . Third, the left-hand side of each equation is the expected value of 
its right-hand side with b replaced by b°. Thus the first equation in (68) corre-
sponds to � : its right-hand side is ?/... and its left-hand side is E(y.� ) with b 
therein replaced by b°. Hence the equation is, as implied in (68), 

12/ιβ + 4αί + 8α£ + ß� u + 3� � 12 + 2� � 21 + � 22 + 2� � 23 = y . . . = 72. (82) 

Similarly, the second equation of (68) relates to a!: its right-hand side is the 
sum of all observations that have ax in their model, namely yv.; and its left-
hand side is E(yv.) with b replaced by b°. Thus the equation is 

V + 4αί + � � �  + 3� � 12 = yv. = 32. (83) 

Suppose in a design model that � { is the effect (parameter) for the ith level 
of the 0-factor. Let ye be the total of the observations in this level of this 
factor. Then the normal equations are 

[E(ydi.) with b replaced by b°] = yB.. , (84) 

with / ranging over all levels of all factors 0, including the solitary level of 
the //-factor. 

The coefficient of each term in (82) is the number of times that its corre-
sponding parameter occurs in ?/...; e.g., the coefficient of � �  is 12 because �  
occurs 12 times in y,,,; that of aj is 4 because αχ occurs 4 times; and so on. 
Similarly, the term in � � ��  in (83) is � � � 1 because ßlx occurs once in yv.; and 
the term in � � 12 is 3� {2 because � 12 occurs thrice in ylm.. In general the coeffi-
cients of the terms in the normal equations (i.e., the elements of X'X) are 
the wf/s of the data, determined as follows. 

Equation (84) may be called the 0requation, not only because of its form 
as shown there but also because of its derivation from the least squares 
procedure when differentiating with respect to 0,. The coefficient of � ] 
(corresponding to the parameter � 0) in (84) is as follows: 

~, . M r n , (no. of observations in the 
coefficient of <ps \ L u �  �  r ^u a c + 
� th ß t I = I 0-factor 

* " � (andyth level of the φ-factor 

e.g., (83) is the adequation and the coefficient of � � 12 is � (� 12, αχ) = n12 = 3 
as shown. These «'s are the elements of X'X. The property 

arising from the definition of «(0Z, <p,) just given, accords with the symmetry of 
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X'X. The fact that ~ u 
no. of observations 

� (� , Ö,·) = τζ(θ4·, � ) = «(0,·, � � ) = � � . = in the zth level 
of the 0-factor 

is what leads to X'X having in its first row, in its first column and in its 
diagonal all the «'s (and their various sums) of the data. This is evident in 
(68) and will be further apparent in subsequent examples. In addition, 
partitioning of the form shown in (68) helps to identify the location of the «'s 
and their sums in X'X; e.g., the /^-equation is first, followed by the two a-
equations and then by the sets of 2 and of 3 β-equations corresponding to the 
level of the ^-factor within each level of the α-factor. Partitioning X'X in this 
manner is always of assistance in identifying its elements. 

6 . EXERCISES 

1. In the model y^ = � � + e^ prove that � � is estimable and find its b.l.u.e. 
2. Suppose the population of a community consists of 12% who did not complete 

high school and 68% who did, with the remainder having graduated from 
college. With the data of Table 6.1, find 
(a) the estimated population average index; 
(b) the estimated variance of the estimator in (a); 
(c) the 95% symmetric confidence interval on the population average; 
(d) the F-statistic for testing the hypothesis H: �  + αχ = 70andax = a3 — 15; 
and 
(e) a contrast that is orthogonal to 4ax — 3a2 — a3 ; test the hypothesis that 
it and 4ax — 3a2 — a3 are zero. 

3. An opinion poll yields the scores of four laborers as 37, 25, 42 and 28 for some 
attribute; those of two artisans are 23 and 29; of three professionals 38, 30 
and 25 and two self-employed people score 23 and 29. If in the population from 
which these people come the percentages in these four groups are respectively 
10%, 20%, 40% and 30%, what are the estimates and estimated variances of 
(a) the population score ? 
(b) the difference in score between professionals and an average of the other 
three groups ? 
(c) the difference between a self-employed and a professional ? 

4. (Exercise 3 continued) Test the hypothesis that a laborer's score equals an 
artisan's score equals the arithmetic average of a professional's and a self-
employed's scores equals the weighted population average of a laborer's and a 
professional's scores. 

5. (Exercise 3 continued) Find two mutually orthogonal contrasts (one not in-
volving self-employed people) that are orthogonal to the difference between a 
laborer's and an artisan's score, and test the joint hypothesis that all three 
contrasts are zero. 
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6. Suppose that in Exercise 3 it is found that the score of 23 recorded as that of 
an artisan is in fact that of a laborer. What are now the answers to Exercises 
3, 4 and 5? 

7. In the 1-way classification prove that for the hypothesis H: all a's equal F(H) 
reduces to F(Rm). [Hint: Use K' of Sec. 6.2f(iii), and derive, explicitly, the 
inverse of D{aJ + M l ' for any b, and any at for / = 1, 2, . . . , a.] 

8. Derive the expression for a non-symmetric (1 — a)% confidence interval for 
the contrast J K^i of the 1-way classification. 

9. If in a 1-way classification the a classes are allocated codes 1 through a in some 
manner, show that regression of the response variable y on the allocated codes 
gives rise to a reduction in sum of squares that is less than that arising from 
fitting the 1-way classification model. [Hint: Make use of Lagrange's identity: 

1*11% - (I«AT = i l l («A� - a^n 
�� �� 

How might this result be generalized to many-factor models? 

10. Using Theorems 2 and 4 of Chapter 2 prove that R(a. \ � )/� 2 and R(ß: α | a, � )/� 2 

of Table 6.7 are independently distributed as non-central ^-variables. 

11. Suppose the data of a student opinion poll, similar to that of Section 4 of the 
chapter, are as shown below. (Each column represents a section of a course.) 

English Geology Chemistry 
2 
5 
2 

7 
9 

8 
4 
3 
6 
4 

2 
6 

10 
8 
9 

8 6 
2 
3 
1 

1 
3 
2 

8 
6 

(a) Write down the normal equations and a solution of them. 
(b) Calculate an analysis of variance table similar to Table 6.7. 
(c) Test the following hypotheses (one at a time): 

(i) Sections within courses have the same opinions. 
(ii) Courses, ignoring sections, have similar opinions. 

(d) Specify a set of restrictions in the model which enables you to test the 
following hypotheses (one at a time) independently of the test in (i) of (c) 
above. 
(i) All courses have the same opinion. 

(ii) Geology's opinion is the mean of that of English and Chemistry, and 
and English's opinion equals Chemistry. 

(e) Repeat (d) without the independence property. 

12. Suppose y = Xbx + Zb2 + e, with y ~ ΛΓ(Χ^ + Zb2, σ2Ι), and that Rifo, b2) 
is the reduction in sum of squares for fitting this model. Prove that R(b2 \ bx)/a2 

has a non-central ^-distribution independent of ^Oh) and of SSE. 



CHAPTER 7 

THE 2-WAY CROSSED CLASSIFICATION 

This chapter continues with applications of Chapter 5, as started in Chapter 
6, dealing at length with the 2-way crossed classification (with and without 
interactions). 

1 . THE 2 -WAY CLASSIFICATION WITHOUT INTERACTION 

A sophomore course in Home Economics might include in its laboratory 
exercises an experiment to illustrate the cooking speed of 3 makes of 
pan used with 4 brands of stove. Using pans of uniform diameter, but made 
by different manufacturers, the students collect data on the number of 
seconds (beyond 3 minutes) that it takes to bring 2 quarts of water to the boil. 
Although the experiment is designed to use each of the 3 makes of pan with 
each of the 4 stoves, one student carelessly fails to record 3 of her times. Her 
resulting data are shown in Table 7.1. The totals for each brand of stove and 
make of pan are also shown, as well as the number of readings for each and 
their mean time. As before, the number of readings are shown in parentheses 
to distinguish them from the readings themselves. 

The foregoing description implies that the observations which the student 
failed to record are, in some sense, "missing observations". This is true, and 
we could, if we wished, analyze the data using one of the many available 
"missing observations" techniques [see, for example, Federer (1955, p. 133)]. 
Most of these techniques involve estimating the missing observations in some 
manner, putting these estimates into the data and then proceeding more or 
less as if the data were balanced, except for minor adjustments in the degrees 
of freedom. Although such procedures can be recommended on many occa-
sions (see Sec. 8.2) they are of greatest use when only very few observations 

[ 261 ] 

Linear Models 
by S. R. Searle 

Copyright © 1971 John Wiley & Sons, Inc. 



262 2-WAY CROSSED CLASSIFICATION [7.1] 

are missing. This might be considered the case with Table 7.1 (although it is 
25 % of the designed experiment that has been lost), but these data serve 
merely to illustrate techniques involved in situations for which the "missing 
observation" concept is wholly inappropriate—situations in which large 
numbers of cells may be empty, not because observations have been lost 
but because none were obtainable. Data of this nature occur quite frequently 
(e.g., Table 4.1) and it is to their exact analysis that we turn our attention, 
using Table 7.1 as illustration. 

The data of Table 7.1 are described as coming from a 2-way crossed classi-
fication—two factors, with every level of one occurring in combination with 

TABLE 7 . 1 . NUMBER OF SECONDS (BEYOND 3 MINUTES) 
TAKEN TO BOIL 2 QUARTS OF WATER 

Brand 
of Stove 

X 
Y 

z 
w 

Total 

Make of Pan 

A 

18 
— 

3 
6 

27 

B 

12 
— 
— 

3 

15 

C 

24 
9 

15 
18 

66 

Total 

54 
9 

18 
27 

108 

No of 
Observations 

(3) 
0) 
(2) 
(3) 

Mean 

18 
9 
9 
9 

No. of observations (3) (2) (4) (9) 
Mean 9 1\ 16£ 12 

every level of the other. Models for such data are discussed in Sec. 4.3, where 
particular attention is paid to describing the inclusion of interaction effects 
in such models. However, it is also pointed out there that, when there is only 
one observation per cell, the usual model with interactions cannot be used. 
This is also true of the data in Table 7.1 where some cells have not even one 
observation but are empty. 

a. Model 
A suitable equation of the model for analyzing the data of Table 7.1 is 

therefore 
yu = �  + a, + ßj + eu (1) 

where yu is the observation in the ith row (brand of stove) and yth column 
(make of pan), �  is a mean, a< is the effect of the ith row, ßt is the effect of 
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the yth column, and e^ is an error term. Outside the context of rows and 
columns (which is a useful one) af is equivalently the effect due to the /th 
level of the α-factor and � �  is the effect due to the /th level of the /9-factor. 
In general we have a levels of the α-factor with i = 1,2, . . . , a and b levels 
of the /^-factor withy = 1, 2, . . . , b\ in the example a = 4 and b = 3. 

With balanced data every one of the ab cells of a table like Table 7.1 would 
have one (or ri) observations, and n(> 1) would be the only symbol needed to 
describe the number of observations in each cell. In Table 7.1, however, some 
cells have zero observations and some have one. We therefore need ni5 as the 
number of observations in the /th row andyth column. Then, in Table 7.1, 
all niS = 0 or 1, and the numbers of observations shown in that table are then 
the values of 

b a a b 

nim = 2 nu, n.,· = 2 nu and iV = n.. = 2 2 nu. 
3=1 i=l i=l j=l 

Corresponding totals and means of the observations are shown also. This 
«^-notation, convenient here, is also identical to that used for data in which 
there are none, one or many observations per cell, as discussed in the next 
section. 

For the observations in Table 7.1 the equations y = Xb + e of the model 
are as shown in equation (2). As well as having the elements of b, namely µ, 
αχ , . . . , α4 , � � , � 2 and � 3 shown in a vector in the usual manner they are also 
shown as headings to columns of the matrix X. This is purely for convenience 
in reading the equations: it clarifies the incidence of the elements of the model 
in the data, as does the partitioning of the matrix according to the different 
factors µ, α and � . For the same reason dots are used to represent O's in the 
X-matrix. Thus the model equations for the data of Table 7.1 are 

�  QLX α2 α 3 α4 � �  � 2 � �  

18 

12 

24 

9 

3 

15 

6 

3 

18 

= 

2/11 

Vl2 

Viz 

2/23 

2/31 

2/33 

2/41 

2/42 

.^43 

1 · · 

1 · · 

1 · · 

• 1 · 

• · 1 

• · 1 

1 

1 

1 

1 

1 

1 

1 · 

• 1 

. 1 

• 1 

1 · 

• 1 

a2 

a3 

a4 + 

en 

^12 

^13 

^23 

^31 

^33 

*41 

^42 

_^43 

(2) 
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b. Normal equations 

Equations (2) are y = Xb + e. The corresponding normal equations, 
X�Xb0 = X'y, written in a manner similar to (2), are 

� �  � � � � «3�  < � { � l � � 3 

� 9 

3 

1 

2 

3 

3 

2 

4 

3 1 2 3 3 2 

3 � � - 1 1 1 

• 1 · · · · 

• · 2 · 1 · 

• · · 3 j 1 1 

1 � 1 1 1 3 � 

1 1 - 2 

1 1 1 1 I · · 

4 1 

1 

1 

1 

1 

4 | 

< 

α3° 

\< 

� l 

\� l 
\� i 

V-

Vv 

Vi-

y* 

yt. 

y-i 

y-t 

y-s 

108 

54 

9 

18 

27 

27 

15 

6oJ 

(3) 

Properties of such equations, described in general in Sec. 6.4, are further 
evident here. In this case the first row and column and the diagonal of X'X 
have n.., the %'s and the n./s in them. The only other non-zero off-diagonal 
elements are those in an a x b matrix of l's and 0's (and its transpose) corre-
sponding to the pattern of observations. The partitioning indicated in (3) 
highlights the form of X'X and suggests how more levels of the factors would 
be accommodated. 

c. Solving the normal equations 
In the examples of Sees. 6.2 and 6.4 solutions of the normal equations were 

easily derived by the procedure indicated in equation (4) of Chapter 6. Now, 
however, even after making use of that procedure, there is no neat, explicit 
solution. Numerically, a solution can be readily obtained, but algebraically 
it cannot be expressed succinctly. 

In (3) the sum of the a rows of X'X immediately after the first (the a-
equations) equals the first row; and the sum of the last b rows (the /^-equations) 
also equals the first row. Hence, with X'X having order q = 1 + a + Z>, 
its rank is r = r(X�X) = 1 + f l i - i - 2 = fl + i - l . Thus p - r = 2, 
and we solve (3) by setting an appropriate two elements of b° to zero and 
deleting the corresponding equations. One of the easiest ways to do this is to 
put � �  = 0 and either aj = 0 or ß� b = 0, according to whether a < b or a > b 
(when a = b it is immaterial); i.e., when there are fewer α-levels than ß-
levels put aj = 0, but when there are fewer /?-levels than α-levels put ß� b = 0. 
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The latter is the case in our example and so with � �  = 0 = � � �  we get from (3) 

1 1 

• 1 

1 *�  
1 �  

� 1 1 \ 
3 � 

• 2 1 

< 

< 

< 

«4 

� l 

� l 

Vi-

2/2� 

y>-

2/4� 

y-i 

y�» 

54 

9 

18 

27 

27 

15 1 

(4) 

Written in full these equations are 

and 

3«° + ß{+ ßl = SA 
α°2 = 9 

2α£ + ßl =18 
3α» + £? + # = 27 

α° + α£ + α° + 3 ^ =27 
<4 + < +2/9° = 15. 

(5) 

(6) 

From (5) the a°'s are expressed in terms of the ß� �s and substitution in (6) 
then leads to solutions for the /f's. Thus (5) gives 

«J = 54/3 - Ußl + ßt) = 18 
α°2= 9/1 = 9 
α° = 18/2-§£ ϊ = 9 
oj = 27/3 - KÄ + 0S) = 9 

H1(/SD + 1 ( 0 
}[0(ßl) + 0(f� ] 

MK/SD + o(#)] 
i[l(Ä) + « ] · 

(7) 

[The reason for including the coefficients 1 and 0 in the right-hand sides of 
(7) becomes clear when considering the generalization of this procedure (see 
below). For this reason they are retained.] Substituting (7) into (6) gives 

{3 - [l(l)/3 + 0(0)/l + l(l)/2 + l(l)/3]}# 
- [l(l)/3 + 0(0)/l + l(0)/2 + l(l)/3]# 

= 27 - [1(18) + 0(9) + 1(9) + 1(9)] (8) 
-[l(l)/3 + 0(0)/l + 0(1)12 + l(W]ßl 

+ {2 - [l(l)/3 + 0(0)/l + 0(0)/2 + l(l)/3]}# 
= 15 - [1(18) + 0(9) + 0(9) + 1(9)] 
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which reduce to 

[7.1] 

(ll/6)ff -
with solutions 

Hence in (7) 
0 

«1 = 

" (4/6)# 

= 26, 

= - 9 and (-4 

r = 

«2 = 9, 

"A 

a 

= 

0 
3 � — 

" - 1 0 

. - 1 4 . 

14 

( _ 4 / 6 K + ( 8 / 6 ) ^ = - 1 2 (9) 

(10) 

and 
so that the solution to the normal equations is 

a4° = 17 

b0' = [0 26 9 14 17 - 1 0 - 1 4 0]. 01) 
d. Absorbing equations 

Development of (11) as a solution to (3) illustrates what is sometimes called 
the absorption process: in going from (4) to (8) the α-equations of (5) are 
"absorbed" into the /^-equations of (6). Here we see the reason given earlier 
for the rule about deciding whether to put aj = 0 or ß� b = 0: the object is 
for (8) to have as few equations as possible. Hence, if there are fewer /Mevels 
than α-levels we put ß� b = 0, absorb the α-equations and have equations (8) 
in terms of (b — 1) /?°'s. But if a < b, we put aj = 0, absorb the ^-equations 
and have equations like (8) in terms of (a — 1) a0,s. It is of no consequence in 
using the ultimate solution which one is obtained; the important thing is the 
number of equations in (8), either a — 1 or b — 1, whichever is less. In 
many instances the number of equations is, in fact, of little importance 
because, even if one of a and b is much larger than the other, the solving of 
(8) will undoubtedly be a computer operation. However, in Chapter 9 we 
discuss situations in which one of a and b is considerably larger than the other 
(a = 10 and b = 2,000, say), and then the method of obtaining (8) is of 
material importance. 

We now describe the absorption process in general terms. Akin to (3) the 
normal equations are 

n.. 

" l -

1 na. 
� �  

\_n-b 

nv · · · na. 

*1�. o 

0 
"a-

{"iii 

} � �  - - n . f t | 

| {*«} 

I " � 1 � o 
0 

\� �  
αϊ 

<\ 

� l 

IAJ 

Vi-

y-x 

yb 

(12) 
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and, in putting � " = 0 and � \ = 0 these reduce, similar to (4), to 

267 

nv 

0 

i n * 

Lni.&-i * 

0 

na-

" "al 

na,b-l 

n n · 

• 
" a l ' 

« 1 

0 

• · " l . b - i 

n a .&- l 

0 

*�&-! J 

«a 

"--£-■ 

2/�,-� 

(13) 

Solving the first a equations of (13) gives 

1 
«Z = to. - - l»nfi f o r i = l , 2 , . . . , e , (14) 

H- j=l 

as in (7); and substitution of these values in the last b — 1 equations of (13) 
gives 

Ui -�� )� �-�(�  ^ W = v.* -1 ni}y, (15) 
\ i=lni./ j�*j\i=l ni> J i=l 

for j9j� = 1,2,. . . , 6 - 1, 

as illustrated in (8). Written in vector form these are 

C ß ^ 1 = r with solution β ^ = C_1r (16) 

where C = {cjr} and r = {rd) for j; = 1, . . . , b — 1 

with 
�  � 2 

c.. = n �  ~y�  c�v = - y - 1 2 - for j*j� (17) 

and ri = V.i - Σ "«&· f o r j = 1,�� -,b - I. (18) 

A check on these calculations is provided by also calculating cbb, cjb and rb 

and confirming that 

2 cjr = 0 for all j , and 2 r i = ^ 
3 " = 1 

�  
3=1 

The solution pj_x in (16) is subscripted to emphasize that it has b — 1 and 
not b elements. 
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To express the solutions a? in matrix form we write 
[7.1] 

a" = y« 

and Da = O{nim}, for / = 1, 2 , . . . , a, 

a diagonal matrix (see Sec. 1.1) of order a, of the ^-.-values. We also define 

nn " - n, 

N, aX(b-l) 

'1.&-1 

M, ■ox(b-l) = D ^ N = {njn,.} for i = 1, . . . , a and ; = 1, . . . , b - 1, 

and ya 

Then from (13) 

lVy« = {&·.} for * = 1, . . . , a . (19) 

a0 = Da-Va - Mß°&_x = ya - Mß&° 

Thus b° = 

o �  

a0 

iU 
0 

0 
ya - MC^r 

r�r 
0 

(20) 

Section 4 of this chapter deals with the condition of "connectedness" of 
unbalanced data. Although most modestly sized sets of data are usually 
connected, large sets of survey-style data are sometimes not connected. The 
condition is important because only when data are connected do C - 1 and the 
solution in (20) exist. Further discussion therefore relates solely to data that 
are connected, a condition that must be satisfied before this analysis can be 
undertaken. Section 4 indicates how to ascertain if data are connected. 

Corresponding to the solution (20), the generalized inverse of X'X of (12) 
is 

� 0 0 0 01 

0 D"1 + MC^M� - M C 1 0 

0 -CT1»! ' C 1 0 

.0 0 0 0. 

(21) 
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The non-null part of this matrix is, of course, the (regular) inverse of the 
matrix of coefficients in equations (13). Thus G is in accord with Sec. 5.7. 

Example {continued). From (9) 

c-1^ 
and from (4) 

11/6 

. -4 /6 

D„ = 

"3 0 0 0' 

0 1 0 0 

0 0 2 

.0 0 0 

-4/6 

8/6J 12 
4 

11. 

and 

Therefore, for use in G, 

N = 

"1 
0 

1 
„1 

Γ 
0 

0 
lj 

so that M = D"2N = 

� �  
0 
1 
2 

1 
i_3 

1" 
3 , 

0 
0 
1 
3J 

M C 1 = -
12 

Γ4 

0 

4 
L4 

and so in (21) 

12 

~0 

0 

0 

0 

0 

0 

0 

_0 

5" 

0 

2 
5. 

0 

7 

0 

2 

3 

4 

5 

0 

and 

0 

0 

12 

0 

0 

0 

0 

0 

MC^M 

0 

2 

0 

8 

2 

- 4 

- 2 

0 

0 

3 -

0 

2 -

7 -

- 4 

- 5 

0 

= 

0 

-4 

0 

-4 

- 4 

8 

4 

0 

12 

"3 
0 
2 

.3 

0 

- 5 

0 

- 2 

- 5 

4 

11 

0 

0 2 
0 0 
0 2 

0 2 

0~ 

0 

0 

0 

0 

0 

0 

0_ 

3' 
0 
2 

3. 

Post-multiplication of this by the right-hand side of equation (3) gives the 
solution GX�y = b�  shown in (11). 
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e. Analyses of variance 
(/) Basic calculations. The reduction of sum of squares due to fitting the 

model is i?(//, a, ß) = b0/X'y. In preceding examples b°'X'y simplified, but 
it does not do so here because of the manner in which b° has been derived. 
However, on defining 

y* = [y.i - · · y..b-i] (22) 
it will be found from (20) that 

Λ(/ι, α, � ) = (ya - M C T 1 ^ + « r ^ ' y , . 

Also, because in (18) 
r = y, - M'ya , 

there is further simplification to 

RQJL, α, � ) = � � � �  + r 'C-Y (23) 
As usual we have 

Rfa) = n..f. = ylln.. (24) 
and, in line with Sec. 6.3a, 

&(� , <*) = Σ ni.yl = Σ ylfai. 
t = l 1=1 

= � � � , from (19). 
Hence in (23) 

R(p, a, � ) = RQA, a) + r 'C^r 

(25) 

= 2 M £ + P"* (26) 
with the terms of xC~lx = ß°'r defined as in (16), (17) and (18). 

Calculation of these terms for the data of Table 7.1 is as follows. 

� (� ) = 1082/9 = 1,296 (27) 

�1(� 9 α) = 542/3 + 92/l + 182/2 + 272/3 = 1,458 (28) 

Rfa a, � ) = 1,458 + ( - 1 0 ) ( - 9 ) + (—14)(—12) = 1,716, (29) 

using (10) and (9) for β0' and r in (26). 
(//) Fitting the model. The first analysis of variance to be considered is 

that for fitting the model (1). This partitions � (� , α, /?), the sum of squares for 
fitting the model, into two parts: � (� ) for fitting the mean and R(OL, �  \ � ) 
for fitting the a- and β-factors after the mean. The latter is 

β(α, � \� ) = R&, α, � ) - R(p) 

^Intji + T�CTh-Ny?. (30) 
i=l 
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from (24) and (26). We note what is obvious here: that the sum of the two 
terms concerned is � (� , α, � ), namely 

� (� ) + R(OL, � \� ) = � (� , α, � ) 

by the definition of R(OL, �  | � ). 

The values of the terms for the example are JR(^) = 1,296 from (27) and 

R(^ß\� ) = 1,716- 1,296 = 420 

from (27) and (29). These and the other terms of the analysis, 
SST = � �  y\i = is2 + · · · + is2 = 1,728 

i j 

and SSE = SST - #(µ, α, � ) = 1,728 - 1,716 = 12 
using (29), are shown in Table 7.2a. The corresponding ^-statistics (based on 
normality of the e's) are also shown, F(M) = 324 and F(Rm) = 21. Clearly 
they are significant at the 5% level. (Tabulated values of the F1Z- and F5^-
distributions are 10.13 and 9.01 respectively, at the 5% level.) Therefore we 
reject the hypothesis that E(y) is zero, and we further conclude that the model 
needs in it something more than just �  in order to satisfactorily explain varia-
tion in the ^/-variable. 

(Hi) Fitting rows before columns. The significance of the statistic F(Rm) 
in Table 7.2a leads us to enquire if it is the a's (rows, or brands of stove) or 
the /?'s (columns, or makes of pan) or both that are contributing to this 
significance. First consider the a's, in terms of fitting the model 

y{j = �  + af + eio . 
Since this is just the model for a 1-way classification the sum of squares for 
fitting it is 7?(µ, α) as given in (25). Therefore the sum of squares attributable 
to fitting a after �  is 

R(� \� ) = R(� ,*)-R(� ) 
a W ^ j 

= Σ ni.yl - n»t-

from (24) and (25). Furthermore, the sum of squares attributable to fitting the 
/?'s after �  and the a's is 

R(ß | � , a) = R(� , a, � ) — R(� , a) 
= β0,Γ = r�Ch 

from (26). These two sums of squares are shown in Table 7.2b. They are, of 
course, a partitioning of R(OL, �  | � ) shown in Table 7.2a, since 

7ί(α | � ) + R(ß I � , α) = R^, α) - R^) + � (� , α, � ) - 11(� 9 α) 
= R^, α, � ) - 11(� ) 

= 11(*9� \� ). (33) 
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TABLE 7 . 2 . ANALYSES OF VARIANCE FOR 2-WAY CLASSIFICATION, 
NO INTERACTION (DATA OF TABLE 7 . 1 ) 

Source of Degrees of Mean 

Variation Freedom1 Sum of Squares Square F-statistic 

Table 7.2 a: For fitting � , and a and �  after �  

Mean 1 = 1 R^) = 1 , 2 9 6 1,296 F(M) = 3 2 4 
a and �  after �  a+b-2 = 5 £(α , � \� ) = 420 84 F(RJ = 21 
Residual error N� = 3 SSE = 1 2 4 

Total N = 9 SST = 1 , 7 2 8 

Table 7.2b: For fitting � , �  after � , and �  after �  and a 

Mean 1 = 1 RQ*) = 1,296 1,296 F(M) 

a after �  a — 1 = 3 R(OL | � ) = 162 54 F(OL | � ) 

�  after �  and a Z > - 1 = 2 J?(0 j µ, a) = 258 129 � (� \� ,� ) 

Residual error N� = 3 SSE = 1 2 4 

Total tf = 9 SST = 1 , 7 2 8 

Table 7.2c: For fitting � , �  after � , and a after �  and �  

Mean 1 = 1 Λ(^) = 1,296 1,296 F(M) 

�  after �  b - 1 = 2 R(ß \ � ) = 148i 74J F(0 | � ) 

a after µ and �  « - 1 = 3 Λ(α | µ, � ) = 271J 90i F(a j � , � ) 

Residual error iV = 3 SSE = 1 2 4 

Total N = 9 SST = 1 , 7 2 8 

1N� = N-a — b + 1. 

And, similarly, all three R�s shown in Table 7.2b sum to 7?(µ, α, � ) because 

R^) + R(a | � ) + R(ß I � , α) = Α(µ) + Λ(α, �  \ � ) = Ä(/i, α, j8). (34) 

Calculation of R(OL \ � ) and /?(/? | µ, a) for Table 7.2b is as follows. Sub-
stituting in (31) from (27) and (28) yields 

R(oL\� ) = 1,458 - 1,296 = 162; 

and in (32) using (9) and (10) gives 

R(ß | � 9 α) = - 9 ( - 1 0 ) - 12C—14) = 258. (35) 

= 324 
= 13* 
= 32-1 

= 324 
= 1 8 * 
= 22f 
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The validity of (33) is evident: 

R(K I � ) + R(ß I � , α) = 162 + 258 = 420 = i?(a, �  \ � ) 

of Table 7.2a. 
jp-statistics corresponding to the R�s are also shown in Table 7.2b. Com-

paring F(K | � ) = 13J an<3 F(ß \ � 9 OL) = 32J to tabulated values of the F3f3-
and F2^-distributions respectively, namely 9.28 and 9.55 at the 5% level, 
we conclude that having both a- and /?-effects in the model adds significantly 
to its adequacy in terms of explaining variation in y. 

(iv) Fitting columns before rows. Table 7.2b is for fitting µ, then �  and a 
and then � , OL and � . But we could just as well consider the a's and /Ts in 
reverse order and contemplate fitting � , �  and �  and then � , α and � . To do 
this we would first fit the model yio = �  + ßj + ei5, which leads to 

b 

� (� ,� )=2� .^ (36) 
3=1 

similar to (25). Then, analogous to (31) we have 

R(ß\M) = Rfr,ß)-Rfa) 

= � � £ - « . . £ � (37) 
3=1 

Also, similar to the first part of (32), we have 

J?(a \� ,� ) = � (� , a, � ) - R^, � ) (38) 

for the sum of squares due to fitting the a after fitting �  and � . Now, however, 
we do not have an expression for R{OL | � , � ) analogous to ß0/r of (32), the 
only term that presents a little difficulty to calculate. However, by means of 
(34) such an expression can be avoided, because using (34) in (38) gives 

R(OL \� ,� ) = RQA, a) + R(ß \ � , a) - R(ß, ß) 
a b (39) 

= Ini.yl + r�C-1r-2n.jy
2
j 

i=l j=l 

on substituting from (25), (32) and (36) respectively. Hence, having once 
obtained r,C~1r, we have R(a | � , � ) directly available without further ado. 
Analogues of (33) and (34) are, of course, true also: 

R{ß I � ) + Λ(α \ � , � ) = Ä(a, ß \ � ) 

and R^) + R(ß \ � ) + R(<x \ � , ß) = 7?(µ, α, � ). 

With the data of Table 7.1, equation (36) is 

Rfa ß) = 272/3 + 152/2 + 662/4 = 1,444|. (41) 
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Using this and (27) in (37) gives 

R(ß \� ) = 1,444J - 1 , 2 9 6 = 148*. 
Then in (39) 

R(OL \� ,� ) = 1,458 + 258 - 1,444* = 271* 

from (28), (35) and (41) respectively. We note, as indicated in (40), that 

R(ß | � ) + Ria \� 9� ) = 148* + 271* = 420 = Λ(α, �  | � ) 

shown in Table 7.2a. 
The ^-statistics corresponding to Riß | � ) and i?(a | � , � ) in Table 7.2c 

are both significant at the 5% level. [The tabulated values are 9.55 and 9.28 
for comparing Fiß | � ) and F(a | � , � ) respectively.] We therefore conclude 
that including both /?-effects and α-effects in the model adds significantly to 
the model's interpretive value. 

Table 7.2 shows the analyses of variance for the data of Table 7.1. In 
contrast, Table 7.3 shows the analysis of variance (excluding mean squares 
and F-statistics) for the general case, and it also shows the equations from 
which the expressions for the sums of squares have been dervied. 

iv) Ignoring and/or adjusting for effects. In Tables 7.2b and 7.3b the 
sums of squares have been described as 

R(� ): due to fitting a mean � 9 

Ri<x | � ): due to fitting a after � , 

and Riß | � , α): due to fitting �  after fitting �  and a. 

This description carries with it a sequential concept, of first fitting � , then 
�  and a and then � , α and ß. An alternative description, similar to that used 
by some writers, is 

Ri� ): due to fitting � , ignoring a and � , 

jR(a | � ): due to fitting a, adjusted for �  and ignoring � , 

and Riß | � , α): due to fitting � , adjusted for �  and a. 

On many occasions, of course, Table 7.2 and 7.3 are shown without the 
Ri� ) line, and with the SST line reduced by Ri� ) so that it has N — 1 degrees 
of freedom and sum of squares SSTm = yry — Nyl. In that case the mention 
of �  in the descriptions of i?(a | � ) and Riß | � , α) is then often overlooked 
entirely and they get described as 

jR(a | � ): due to fitting a, ignoring � , 

and Riß | � , α): due to fitting � , adjusted for a. 
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TABLE 7 . 3 . ANALYSES OF VARIANCE FOR 2-WAY CLASSIFICATION, 
NO INTERACTION 

Source of Degrees of 
Variation Freedom1 Sum of Squares2 Equation 

Table 7.3a: For fitting � , and OL and �  after �  

Mean, �  1 � � ) = n..y* (24) 

a and �  after �  a + b - 2 R(OL, �  \ � ) = J n. ^ + r � c - i r _ nj2 ( 3 0 ) 
i 

Residual error3 N� SSE = �  �  ^ ~ �  M ? . "" r C ~ l r 

Total N SST 
i i 

Mean, �  

a after �  

�  after �  and a 

Residual error 

Table 7.3b: For fitting � , �  after � , and �  after �  and a 

1 � 1(� ) = nJl 

a �  1 R(ot \� ) = J ni$% — w..£.2. 

(24) 

(31) 

b - \ R(�  | � , a) = r�C^r (32) 

ΛΓ' SSE =lly%-lni.yl-r�c-lr 

Total /V SST -� � »� 

Mean, �  

�  after �  

Table 7.3c: For fitting � , �  after � , and a a/iter �  and �  

1 

� - 1 

: n..y}. (24) 

(37) Riß \� ) = Σ ". ,£?, - "..£.2 

i 
a after �  and �  �  - 1 i?(a | � , 0) = £ nJl + r C _ l r ~ �  n . i ^ ( 3 9 ) 

Residual error N� SSE = �  � ^ " � n J l ~ ^ C ^ 

Total N SST = � � ^ 
* 3 

1 N = n.. and N� = N - a - b + 1. 
2 r�C-1r is obtained from equations (16)—(18). 
3 Summations are for i = 1, 2, . . . , a andy = 1, 2, . . . , 6. 
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The omission of �  from descriptions such as these arises from a desire for 
verbal convenience. The omission is made with the convention that �  is not 
being ignored, even though it is" not being mentioned. However, inclusion of 
�  in the descriptions is somewhat safer, for then there is no fear of its being 
overlooked. Furthermore, although in describing R(OL | � ) the phrase "ignor-
ing � " is clear and appropriate, the phrase "adjusted for a" in describing 
R(ß | � , a) is not appealing because it may conjure up the idea of adjusting 
or amending the data in some manner. Since the concept involved is clearly 
that of fitting �  over and above having fitted �  and a, the description �  
after �  and a" seems more appropriate. However, the relationship of such 
descriptions to those involving "ignoring a" and "adjusted for � " should be 
borne in mind when encountering them in other texts. For example, just as 
R(OL | � ) of Tables 7.2b and 7.3b could be described as the sum of squares for 
fitting a, adjusted for �  and ignoring ß, so also could R(ß | � ) of Tables 7.2c 
and 7.3c be called the sum of squares for fitting /?, adjusted for �  and ignor-
ing a. But the description of fitting �  after �  is preferred. 

(vi) Interpretation of results. From the preceding discussion it should be 
clear that F(OL | � ) and F{OL | � , � ) are not used for the same purpose [neither 
are F(ß | � ) and F(ß | � , α)]. Distinguishing between these two F�s is of 
paramount importance because it is a distinction that occurs repeatedly in 
fitting other models. Furthermore, the distinction does not exist with the 
familiar balanced data situation because, as we shall see subsequently. 
jp(a | � ) and F(OL | � , � ) are then identical. It occurs only with unbalanced data, 
and always with such data. That is, the test based on the statistic F(a | � ) 
is testing the effectiveness (in terms of explaining variation in y) of adding 
α-effects to the model, over and above � , whereas F(CL | � , � ) tests the effective-
ness of adding oc-effects to the model over and above having �  and /̂ -effects 
in it. These tests are not the same, and neither of them should be described, 
albeit loosely, as "testing α-effects". The tests must be described more com-
pletely, the one as "testing a after � " and the other as "testing a after �  and 
� ". Similarly F(ß \ � ) and F(ß | � 9 α) are not the same. The former tests 
"/? after � " and the latter "/? after �  and a". Further distinction between 
F-statistics of this nature will become evident when we consider tests of 
linear hypotheses to which they relate. 

In Table 7.2 all the F-statistics are, at the 5 % level, judged significant. From 
this we conclude that both the α-effects and the /S-effects add materially to 
the explanatory power of the model. However, with other data, conclusions 
are not always as easily drawn as is this one. For example, suppose in some 
set of data that, analogous to Table 7.2b, F(OL \ � ) and F(ß | � , α) were both 
significant but that, analogous to Table 7.2c, neither F(ß \ � ) nor F(a | µ, � ) 
were. Admittedly this may happen with only very few sets of data, but since 
computed F-statistics are just that, namely just functions of data, it is 
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certainly possible for such an apparent inconsistency to occur. There then 
arises the problem of trying to draw conclusions from such a result. To do so 
is not always easy, and in this regard the ensuing discussion of possible con-
clusions might by no means meet with universal approval. The problems of 
interpretation discussed here receive scant mention in most texts for the 
very reason, one suspects, that they are not definitive and are subject perhaps 
to personal judgment and certainly to knowledge of the data being analyzed. 
Also, they are not amenable to exact mathematical treatment. Nevertheless, 
since they are problems of interpretation they arise, in one way or another, on 
almost any occasion where data are analyzed and for this reason it seems 
worthwhile to try to reflect on what conclusions might be appropriate in 
different situations. In attempting to do so, I am all too well aware of leaving 
myself wide open for criticism. However, at the very worst, exposition of the 
problems might be of some assistance. 

The general problem we consider is what conclusions can be drawn from 
the various combinations of results that can arise vis �  vis the significance or 
non-significance of F(VL | µ), F(ß | � , α), F(ß | � ) and F(OL | � , ß) implicit in 
Tables 7.3b and 7.3c and illustrated in Tables 7.2b and 7.2c. First, these 
/"-statistics should be considered only if F(Rm) = F(a, �  | � ) of Table 7.3a 
is significant. This is so because it is only the significance of F(Rrn) which 
suggests that simultaneous fitting of a and �  has explanatory value for the 
variation in y. However, it does not necessarily mean that both a and �  are 
needed in the model. It is the investigation of this aspect of the model that 
arises from looking at F(OL | µ), F(ß | µ, α), F(ß | � ) and F(ß | µ, � ). There are 
16 different situations to consider, as shown in Table 7.4. For F{<x | � ) and 
F(ß | α, � ) there are 4 possible outcomes: both F�s significant, F(OL | � ) 
non-significant and F(ß | � , α) significant, the converse of this, and both F�s 
non-significant. These are shown as row headings in Table 7.4. With each of 
these outcomes a similar 4 outcomes can also occur for F(ß | � ) and F(a \� ,� ); 
they are shown as column headings in Table 7.4. For each of the 16 resulting 
outcomes, the conclusion to be drawn is shown in the body of the table. 

We now indulge in the verbal convenience of omitting �  from our dis-
cussion, to use phrases like "a being significant alone" for F{<x | � ) being 
significant, and "a being significant after fitting /?" for F(a | � , � ) being 
significant. We do not, however, use phrases like "a being significant" which 
does not distinguish between F(a | � ) and F(a | � , � ) being significant. 

The first entry in Table 7.4 corresponds to the case dealt with in Table 7.2: 
both a and �  are significant when fitted either alone or after the other, so the 
conclusion is to fit both. The second entries in the first row and column are 
cases of both a and �  being significant when fitted after each other, with one 
of them being significant when fitted alone, and the other not; the conclusion 
is to fit both. For the second diagonal entry, neither a nor �  is significant 
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TABLE 7 . 4 . SUGGESTED CONCLUSIONS ACCORDING TO 
SIGNIFICANCE ( S i g ) AND NON-SIGNIFICANCE ( N S ) OF 
F-STATISTICS IN FITTING A MODEL WITH TWO MAIN 

EFFECTS ( a ' s AND 0 ' s ) — SEE TABLE 7 .3 

Fitting a 
and then 
ß after a 

F(« | /') 
F(ß 1 � , a) 

F(a | � ) 

Fiß 1 � , a) 

F(a | � ) 
F(ß 1 µ, a) 

F(a 1 µ) 
F(/? j � , a) 

F ( a | � ,� ): 

Sig 
Sig 

NS 

S>g 

Sig 
NS 

NS 
: NS 

Fitting �  and then a 

Sig NS 
Sig Sig 

after 0 

NS 

Effects to be included in 

a and �  α and �  

a and �  α and �  

a a 

Impossible a and �  

ß 

ß 

a and �  

ß 

NS 
NS 

model 

Impossible 

a and �  

α 

neither 
α nor �  

alone but each is significant when fitted after the other; hence we fit both. 
Similarly, the first entries in the third row and column are cases where one 
factor (ß in the third row and a in the third column) is significant only when 
fitted alone, but the other is significant when fitted either alone or after the 
first; hence that other factor—a in the third row (first column) and ß in the 
third column (first row)—is the factor to fit. The second entries in the third 
row and column are cases where one factor is not significant on its own or 
after the other, but that other factor is significant on both occasions: it is 
therefore the factor fitted. Likewise, the last entries in the third row and 
column are cases where the only significance is of one factor fitted on its 
own: it is therefore the factor to fit. The diagonal entry in the third row is 
when both factors (a and � ) are significant on their own but neither of them 
are when fitted after the other. In this case the conclusion is to use both of 
them. (In some circumstances this choice might be overridden; for example, 
if determining levels of the α-factor was very costly one might be prepared to 
use just the ^-factor. This, of course, is a consideration that might arise with 
other entries in Table 7.4, too.) The first two entries in the last row and 
column of the table are difficult to visualize. Both pairs of entries are situa-
tions when fitting the factors in one sequence gives neither F-statistic signifi-
cant but fitting them in the other sequence gives the ^-statistic for fitting the 
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second factor significant. Intuitively one feels that this kind of thing should 
happen somewhat infrequently. When it does, a reasonable conclusion seems 
to be to fit both factors, as shown. Finally, the last entry in the table, that in 
the lower right-hand corner, is when none of the F-statistics are significant, 
leading to the conclusion to fit neither a nor ß.1 

f. Estimable functions 
The basic estimable function for the model (1) is 

E{yi0) = �  + � � + ft (42) 

and its b.l.u.e. is 

Η Ϊ Γ ? , · = � �  + < + � � j · (43) 

Note from this that although individual a's and /?'s are not estimable, 
differences between pairs of a's and between pairs of /?'s are estimable, as 
are linear functions of these differences. Thus 

α4· — 0Lh is estimable with b.l.u.e. a, — αΛ = a* — a£, 

and � , - ßk is estimable with b.l.u.e. ßj - ßk = ß�  - ß� k . ( 4 4 ) 

The variances of these b.l.u.e.'s are found from the general result for an 
estimable function q'b, that the variance of its b.l.u.e. is i;(q'b°) = q�Gqa2. 
Hence if gu and ghh are the diagonal elements of G corresponding to af and 
oih respectively, and gih is the element at the intersection of the row and 
column corresponding to a,· and cnh then 

K«< - αΑ) = <α° - <xj) = (gu + ghh - 2gi7>2. (45) 
A similar result holds for � {� �  — � %). Furthermore, any linear combination 
of the estimable functions in (44) is estimable, having for its b.l.u.e. the same 
linear combination of the b.l.u.e.'s shown in (44). Variances of such b.l.u.e.'s 
are found in a manner similar to (45). 

More generally, if b = {bs} for s = 1, 2, . . . , a + b + 1 and G = {gStt} 
for s, t = 1, 2, . . . , a + b + 1 then, provided bs — bt is estimable (i.e., 
is a difference between two a's or two ß�s), 

C^bt = b� s - b� t9 with v(bs - bt) = (gss + gtt - 2 g > 2 . (46) 

Example (continued). In (11) we have aj = 26 and a£ = 14, so from (44) 

«T-^ae = aj - α̂  = 26 - 14 = 12. 
1 Grateful thanks go to N. S. Urquhart for lengthy discussions on this topic. 
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And since we earlier derived 

[7.1] 

G = 
12 

0 
0 
0 
0 
0 
0 
0 
.0 

0 
7 
0 
2 
3 

- 4 
- 5 

0 

0 
0 

12 
0 
0 
0 
0 
0 

0 
2 
0 
8 
2 

- 4 
- 2 

0 

0 
3 
0 
2 
7 

- 4 
- 5 

0 

0 
- 4 

0 
- 4 
- 4 

8 
4 
0 

0 
- 5 

0 
- 2 
- 5 

4 
11 
0 

0 
0 
0 
0 
0 
0 
0 
0. 

(47) 

then V{OLX - a3) = ^ [ 7 + 8 - 2(2)]<r2 = j > 2 . 

With σ2 estimated as cr2 = 4 = MSE in Table 7.2, the estimated variance is 

Kb = 0 is 

H*i - *3) = ii(4) = 2f. 
g. Tests of hypotheses 

As usual, the F-statistic for testing testable hypotheses H: 

F(H) = Q/sa2 = (K�bJiK�GKyiK�WIsa2 

where Q = (K�bTCK�GK^K�b0, 

using (21) for G, s being the rank and number of rows of K'. 
Previous sections have dealt at length with the meaning of the sums of 

squares in Tables 7.2 and 7.3, interpreting them in terms of reductions in 
sums of squares due to fitting different models. Their meaning in terms of 
testing hypotheses is now considered. In this context there is no question of 
dealing with different models; we are testing hypotheses about the elements 
of the model (1). First, we show that F(ß | � , a) of Table 7.2b is the F-statistic 
for testing the hypothesis that all ß's are equal. Stated as � 5 — ßb = 0 for 
j = 1, 2, . . . , b — 1, the hypothesis can be written as 

H: K'b = 0 with Κ ' = [01 0 I W - l ^ J , 

wherein K' is partitioned conformably for the product K'G. Then, with G of 
(21) 

K G = [0 - C ^ M ' C1 0] 

and 

Also, 

K'GK = cr1. 
K'b° = K'GXy = (-C^M'Va + C " ^ ) 

where ya is, as in (19), the vector of totals for the a levels of the a-factor; 
and y^ = {y.j} for/ = 1, . . . , b — 1 is the vector of totals for the first b — 1 
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levels of the � -�actor, as in (22). Then the numerator sum of squares of 
F(H) is 

Q = (K'bO'OK'GKJ^KV 

= ( -C- 1 M'y a + C r V i C - y ^ - C - t a ' y , , + C " ^ ) 
= (y, - N 'D^yJCT' iy , - N'Da-Va) 
= r'C_1r, by the definition of r in (18) 
= |Tr, by (16) 
= R(ß | � , a) by (32). 

Example (continued). The hypothesis of equality of the ß�s in the example 
can be written as 

H: ßt-ß3 = 0 

ß*-ßz = 0, 
i.e., as 

K'b = 
[0 0 0 

^0 0 0 

With b° of (11) and (G) of (47) 

and 

0 

0 

1 

0 

0 - 1 

1 - 1 
b = 0. 

K'b" = 

K�G = T2 

: GK = 1 
12 

-10" 

-14. 

"0 - 4 
_0 - 5 

"8 4] 
llj 

0 - 4 - 4 

0 - 2 - 5 

and (K'GK)-1 = 

so that 

Hence the numerator sum of squares of F(H) is 

(K 'b^K 'GKr 'K 'b 0 = [-10 -14 ] | 

= [1100 + 8(196) - 20(14)4]/6 
= 258 = R(ß | � , α) of Table 7.2b. 

Of course the hypothesis does not have to be stated in exactly the above form 
to demonstrate this result. For example, stating it as 

8 4 0 
4 11 0_ 

_! 1 
~ 6 

" 11 -4 

_ - 4 8 

11 - 4 ] 
- 4 si 

Γ-ιο' 
— 14 

ßi - ßi 0 

ßi-ß3 = 0, 
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we have 

K' = 
"0 0 

_0 0 
and hence 

K'b° = 

K'GK = 

4 

1 
12 

"11 
4 

> 

4" 

8 

CROSSED 

0 

0 

0 

0 

and 

CLASSIFICATION 

0 1 - 1 0 

0 1 0 - 1 

(K'GK)"1 = | 
8 

- 4 

[7.1] 

- 4 

11 

Then the numerator sum of squares of F(H) is 

1 
[4 - 1 0 ] 

- 4 

11 

4 

-10 
[16(8) + 1100 + 8(-10)(-4)]/6 = 258 

as before. 
Thus R(ß | � , α) is the numerator sum of squares for the ^-statistic for 

testing H: all 0's equal. Similarly R(OL | � , � ) is the numerator sum of squares 
for the F-statistic for testing H: all a's equal. 

It can similarly be proved (see Exercise 6) that R(ß | � ) is the numerator 
sum of squares for testing 

H: equality of ^, + - f - i « , , a , for all j = 1, 2, . . . , b. (48) 

For example, with the data of Table 7.1 this hypothesis can be conveniently 
stated as 

H: ft. + i(«i + α3 + α4) - [03 + £(oci + a2 + a3 + a4)] = 0 
02 + «* i + a4) - [03 + i(«i + ^2 + a3 + a4)] = 0, 

i o - r 
i.e. as K b = 

"0 

_0 

1 
1 2 

1 
4 

1 
4 

1 
4 

1 
1 2 

1 
4 

1 
1 2 

1 
4 0 

With b° of (11) and G of (47) we have 

Kb0 = 
. 7 1 � 2 

-9 

and (K'GK)1 = | 

K'GK = 

9 -
-3 

12 

1 - 1 

7 3 
3 9 

0. 
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Hence 
9 - 3 ] 

-3 71 

= Ι(έ)[9(152) + 7(182) - 2(15)18(3)] 

= 148| = R(ß | � ) of Table 7.2c. 

Hence F(ß \ � ) = R(ß \ � )�(�  - 1)σ2 is the .F-statistic for testing (48). The 
F-statistic having R(OL | � ) of Table 7.2b as its numerator sum of squares tests 
an analogous hypothesis, namely, 

1 b 

F(OL | � ) tests H: af + — 2 n u f t e c l u a l f° r a ^ *· 
ni� 3=1 

The importance of these results is that F{OL | � ) is not a statistic for testing 
equality of the a's; F(OL | � , ft) is. The hypothesis that is tested by F(<x | µ) is 
equality of the a's plus averages of the fts, weighted averages using the n^ 
as weights. Similarly, F(ß | � ) tests not equality of the fts but equality of the 
fts plus weighted averages of the a's, as in (48). 

h. Models that include restrictions a 

Since �  + α̂  + ft is estimable, so is �  + - 2 a*: + ft·. Therefore, if the 

model includes the restriction that J at- = 0, then �  + ft is estimable with 

b.l.u.e. µ° + - 2 a° + ft , the same as the b.l.u.e. of �  + - 2 α* + ft i n t h e 

t�=l a *=1 

unrestricted model. Whether the restriction 2 a* = 0 is part of the model or 
i=l 

not, the estimable functions and their b.l.u.e.'s given in (44) still apply; i.e., 
a? - a� h is still the b.l.u.e. of a, - αΛ , and ft - ß� k is the b.l.u.e. of ft - ft . 

b 

Similar results hold if the model includes the restriction ^ ft = 0· 
j a i = l 

The hypothesis of equality of ft H 2 nn0Li for ally = 1, 2, . . . , 6 dis-

cussed in the previous section might hint at the possibility of using a model 
that included the restriction 

2 n , , a , = 0 for all j = 1, 2, . . . , b. (49) 
i=l 

Any value to this suggestion is lost whenever b > a, for then equations (49) 
can be solved for the a's (certainly as a, = 0 for all /), regardless of the data. 
When b < a, equations (49) could be used as restrictions in the model, but 
then only a — b linear functions of the a's would be estimable from the data; 
furthermore, since equations (49) are data-dependent, in that they are based 
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on the rtij, they suffer from the same deficiencies as do all such restrictions, 
as explained at the end of Sec. 6.2h. 

i. Balanced data 
The preceding discussion uses nio as the number of observations in the ith 

row (level of the α-factor) and theyth column (level of the � -�actor), with all 
nu = 0 or 1. Although we will show subsequently that much ofthat discussion 
applies in toto to situations in which the n^ can be any non-negative integers 
(and hence to nu = n for all i and/)> we here consider just the simplest case 
of balanced data, n^ = 1 for all / and/; i.e., for data like Table 7.1 only with-
out any missing observations. 

As is to be expected, there is great simplification of the foregoing results 
when ni} = 1 for all / and j and, of course, the simplifications lead exactly 
to the familiar calculations in this case [e.g., Kempthorne (1952), p. 72]. A 
variety of solutions to the normal equations are easily obtainable under these 
conditions. Those derived from the procedure given above for unbalanced 
data (see Exercise 7) are 

� �  = 0, and aj = yi% - y.. + y.b for all i; 
and 

ß� b = 0, and /?; = £ , - £ > for j = 1, 2, . . . , b - 1. 
Another set of solutions, obtained by use of the "usual constraints" 

is � �  = y.., 

«< = &. - £ . f o r a11 Ϊ 

and ß� i = y.j — 5.. for ally. 

In either case the b.l.u.e.'s of differences between a's and ß�s are 

a» - aÄ = jji. - yh., with v(a{ - aÄ) = 2a2lb 

and ßj ~ ßk = ymi - y.k , with v{ßj - ßk) = 2� 2/�  . 

Differences of this nature are always estimable; if the model includes restric-
a b 

tions J a* == 0 = 2 ßj paralleling the "usual constraints", then � , the a, 

and ßj are also estimable, with ß = y,,, ά̂  = yit — y.. and pmj = y.;- — y... 
The most noteworthy consequence of balanced data (all n^ = 1) is that 

Tables 7.3b and 7.3c become identical for all data. This is a most important 
outcome of balanced data. It means that the distinction between R(a. | � ) and 
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R(OL I � , � ) made in Tables 7.2 and 7.3 no longer occurs, because these two 
terms both simplify to be the same. So do R(ß | � , α) and R(ß | � ) in those 
tables: they too simplify to be identically equal. Thus when all n^ = 1 

Ä(a | � ) = R(a | � , fi) = b | j£ - abyl = | £ ( & . ~ V-f 

» „ 6 (50) 
and *(/? | Λ> «) = *(/? I � ) = fl 2 y* - flfry* = 2 Σ (y-y - £··)2, 

3 = 1 1=1 3=1 

and the analysis of variance becomes as shown in Table 7.5. The sums of 
squares shown there, namely (50), are familiar expressions. Furthermore, they 
each have a simple form, are easily calculated and do not involve any matrix 
manipulations such as those previously described for unbalanced data [e.g., 
(32) for R(ß | � , α)]. In addition, because there is no longer any distinction 
between, for example, R(<x | � ) and R(OL | � , � ), there is no need to distinguish 
between fitting "a after µ" and "a after �  and β". We are concerned solely 
with fitting "a after � " and similarly "�  after µ". There is but one analysis of 
variance table, that shown in Table 7.5, in which R(OL | � ) measures the 
efficacy of having the α-effects in the model and, independently, R(ß | � ) 
measures the efficacy of having the ^-effects in it. 

The convenience of a single analysis of variance (Table 7.5) compared to 
having two analyses (Tables 7.3b and 7.3c) is obvious: for example, Table 
7.4 is no longer pertinent. However, this convenience that occurs with 

TABLE 7 . 5 . ANALYSIS OF VARIANCE FOR A 2-WAY 
CLASSIFICATION WITH NO INTERACTION, WITH BALANCED 

DATA, ALL l\i}; = 1 . (TABLES 7 . 3 b AND 7 . 3 c BOTH SIMPLIFY 
TO THIS FORM WHEN ALL nu = 1) 

Source of Degrees of 
Variation Freedom Sum of Squares 

Mean 1 R^) = /?(//) = aby2 

oc after �  a - \ R(*\� ) = j?(a \ � , ß) = 2 2 (&. ~ £··)2 

i � 

�  after �  b - \ R(ß \ � , α) = R(ß \� ) = 2 X (S-j - y-)2 

i j 

Residual (a - \)(b - 1) SSE = SSE = 2 2 (ya-Vi-S-i + V-^ 
error * 3 

Total ab SST = SST = 2 2 V-2 

i 3 
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balanced data can easily result in a misunderstanding of the analysis of un-
balanced data. Students usually encounter balanced data analyses first, such 
as that in Table 7.5. Explanation in terms of sums of squares of means yim 

(and y.j) about the general mean ?/.. has much intuitive appeal but, unfortu-
nately, it does not carry over to analyses of unbalanced data. It provides, for 
example, no explanation as to why there are two analyses of variance for 
unbalanced data of a 2-way classification, analyses that have different mean-
ings and are calculated differently (vide Tables 7.3b and 7.3c). Furthermore, 
the calculations are quite different from those for balanced data, and the 
manner of interpreting results is different too; fitting "a after �  and /?" in 
one analysis and "a after //" in the other. Small wonder that a student may 
experience disquiet when he views this state of affairs in the light of what has 
been arduously learned about balanced data. The changes to be made in the 
analysis and its interpretation appear so large in relation to the cause of it 
all—having unbalanced instead of balanced data—that the relationship of the 
analysis for unbalanced data to that for balanced data might, at least initially, 
not seem at all clear. The relationship is that balanced data are a special case 
of unbalanced data, and not vice versa. 

2 . THE 2-WAY CLASSIFICATION 
WITH INTERACTION 

Suppose a plant breeder carries out a series of experiments with three 
different fertilizer treatments on each of four varieties of grain. For each 
treatment-by-variety combination he plants several 4' x 4' plots. At harvest 
time he finds that many of the plots have been lost due to being wrongly 
ploughed up, and all he is left with are the data of Table 7.6. With four of the 
treatment-variety combinations there are no data at all, and with the others 
there are varying numbers of plots, ranging from 1 to 4, with a total of 18 
plots in all. Table 7.6 shows the yield of each plot, the total yields, the num-
ber of plots in each total and the corresponding mean, for each treatment-
variety combination having data. Totals, numbers of observations (plots) 
and means are also shown for the three treatments, the four varieties and for 
all 18 plots. The symbols for the entries in the table, in terms of the model 
(see below), are also shown. 

a. Model 
The equation of a suitable linear model for analyzing data of the nature of 

Table 7.6 is, as discussed in Chapter 4, 

Vaic = �  + *i + ßi + Ya + euk (51) 
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TABLE 7 . 6 . WEIGHT1 OF GRAIN (OUNCES) FROM 4' X 4 ' TRIAL PLOTS 

Trpat 
ment 

1 

2 

3 

Totals 

1 

8 
13 
9 

30 (3) 10 2 

2/ιι.("ιι)?7ιι· 
6 

12 
18 (2) 9 

2/21.(«2l)^21. 

48 (5) 9.6 

y.i.(n.i)y.i. 

2 

12 
14 
26 (2) 

2/22·(Λ2ί 

9 
7 

16 (2) 

^32·(Λ32 

42 (4) 

y.2.(".2 

13 

^ 2 2 -

8 

#32· 

10 | 

)y.2. 

Variety 

3 

12 

12 (1) 

14 
16 

30 (2) 

2/33 (n33 

42 (3) 

3/.3.(».3 

12 

^ 1 3 . 

15 

;)^33-

14 

4 

7 
11 

Ϊ 8 (2) 9 

2/ΐ4.(Λ14^14. 

10 
14 
11 
13 
48 (4) 12 

2/34· («34^34-

66 (6) 11 

2/.4.(«.4^·4. 

Totals 

60 (6) 10 

! / i . . (« iÄ. · 

44 (4) 11 

y2.-(n2.)y2.. 

94 (8) 1 1 | 

2/3·(%)2/3·· 

198(18)11 

y..A"..)y... 

1 The basic entries in the table are weights from individual plots. 
2 In each triplet of numbers the first is a total weight, the second (in parentheses) is the 
number of plots in the total and the third is the mean. 

foryijk as the kth observation in the zth treatment andyth variety. In (51) �  
is a mean, α̂  is the effect of the /th treatment, � 5 is the effect oftheyth variety, 
yi5 is the interaction effect for the /th treatment andyth variety and eijk is the 
error term. In general we have oct· as the effect due to the /th level of the a-
factor, ßj is the effect due to theyth level of the ^-factor and � ��  is the inter-
action effect due to the /th level of the α-factor and the /th level of the 
ß-factor. 

/ 

1 
2 
3 

TABLE 

7 = 1 

3 
2 
0 

7, . 6a . nir 

7 = 2 

0 
2 
2 

VALUES OF 

7 = 3 

1 
0 
2 

TABLE 7 . 

7 = 4 

2 
0 
4 

.6 

Tota l s : 

6 
4 
8 

Λ.·. 

Totals: /i., 5 4 3 6 «.. = 18 
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In the general case there are a levels of the α-factor with / = 1, . . . , a, 
and b levels of the ß-factor, withy = 1, . . . , b\ in the example a = 3 and 
Z> = 4. 

With balanced data every one of the ab cells of a table such as Table 7.6 
would have n observations; furthermore, there would then be ab levels of the 
y-factor (the interaction factor) in the data. However, with unbalanced data, 
when some cells have no observations, as is the case in Table 7.6, there are 
only as many y-levels in the data as there are non-empty cells. Let the num-
ber of such cells be s; in Table 7.6, s = 8. Then, if ni3- is the number of 
observations in the (/,y)th cell (treatment i and variety y), s is the number of 
cells in which nu ^ 0; i.e., in which niS > 0, in fact, ni3- > 1. For these cells, 

7lij 

Vij� — Σ Viik 
k=l 

is the total yield in the (/,y)th cell, and 

is the corresponding mean. Similarly 

b & 

%.. =� &*. and %=2nu 
are the total yield and number of observations in the /th treatment. Kindred 
values for theyth variety are 

a a 

y.i.^liyil� a n d «.ί = Σ««5 

a b a b a b na 

and y... = 2 &.. = 2>�*. = �  � ^> = �  �  � %** 
i=l j=l i=l j=l i=l 3=1 fc=l 

is the total yield for all plots, the number of observations (plots) therein 
b e i n s 

».. = �  «.�� = � � �> = �  � � �  �  
�=1 3=1 « = 1 3=1 

Examples of these symbols are shown in Table 7.6. The � �5 notation used 
here is entirely parallel with that of the previous section except that there 
ni3 = 1 or 0; here � �3- > 1 or nu = 0. 

The model equations y = Xb + e for the data of Table 7.6 are given in (52). 
The headings to the X-matrix, and the dots and partitioning therein, are 
all in the same style as the model equations in (2) of the preceding section. 

b. Normal equations 
The normal equations X'Xb0 = X'y corresponding to y = Xb + e of (52) 

are shown in (53). 
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Properties of normal equations described in Section 6.4 are evident here. 
The first row of X'X, corresponding to the µ-equation, has n,, and the nir, 
n.r and nirvalues as does the first column and the diagonal. The remaining 
elements of X'X, other than zeros, are the «^-values; and the elements of 
X'y on the righthand side are all the totals y... ,yim. , y.j. and y^. shown in 
Table 7.6. As before, the partitioning of X'X highlights its form. 

c. Solving the normal equations 
In contrast to the preceding section, but similar to the examples of Sees. 

6.2 and 6.4, the normal equations typified by (53) are easily solved. The num-
ber of equations is p = l + a + o + s = l + 3 + 4 + 8 = 16, in (53). But, 
as is evident in (53), the sum of the α-equations (the three after the first) is 
identical to the ^-equation; so is the sum of the ß-equations. The consequences 
of this are 2 linear relationships among the rows of X'X. Also, in the � -
equations the sum of those pertaining to � ��  summed overy equals the ad-
equation; e.g., the yn-, y13- and y14-equations sum to the adequation. This 
is true for all /' = 1, 2, . . . , a, representing further linear relationships, 
a of them, among rows of X'X. Similarly, in summing the yiT-equations over 
/ the /^-equation is obtained, for a l l / = 1, . . . , b. However, of the b rela-
tionships represented here, only b — 1 of them are linearly independent of 
those already described, so that the total number of linearly independent 
relationships i s l + 1 + a + Ä— I = I + a + b. Hence the rank of X'X is 
r = 1 + a + b + s — (1 + a + b) = s. Therefore, in terms of solving the 
normal equations by the procedure described in (4) of Chapter 6, we set 
p — r = l+a + b + s — s = I + a + b elements of b° equal to zero. 
The easiest elements for this purpose are � � , all aj (a of them) and all � �  
(b of them). Setting these equal to zero leaves, from (53), the s = 8 equations 

3 7 ι \ = 30, 2� � 22 = 26 
� � 13 = 12, 2� � 32 = 16 

2y� u = 18, 273°3 = 30 
2� � 21 = 18, 4� � �  = 48. 

In general these reduced equations are 

with solution 

for the (/,y)-cells for which nu ^ 0, all s of them. This then, (54), is a solution 
for b°: every element is zero except y% , which takes the value yijm, the cell 
mean. Clearly the solution is simple: 

b" = [<WHH-5> 3Π (55> 
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where (y')ixs = a vector of all yijm�s for which n{j ^ 0. 

In our example 

b0' = [0 0 0 0 0 0 0 0 yn. ylz. yu. y21. y22. yZ2. £33. yM.] (56) 

= [0 0 0 0 0 0 0 0 10 12 9 9 13 8 15 12] 

from Table 7.6. 
The simplicity of this solution means that it is virtually unnecessary to 

derive the generalized inverse of X'X that corresponds to b°. That generalized 
inverse is, as is evident from (55) and the normal equations (53), 

G = 
0(1+α+&)χ(1+α+&) 0 ( 1 + a + & ) X s 

(57) 
0sX(i+a+b) D{l//!i;.}_ 

where D{l/wfi·} is a diagonal matrix of order s of the values \\� ^ for the non-
zero ni5. 

d. Analysis of variance 
(/) Basic calculations. The analysis of variance for the 2-way classifica-

tion model with interaction is similar to that for the 2-way classification 
without interaction, discussed in the preceding section. Indeed, the analysis 
of variance tables are just like those of Tables 7.2 and 7.3, except for the 
inclusion of an interaction line corresponding to the sum of squares 
R(y | � , α, � ). Calculation of � (� ), �1(� , α), �1(� , � ) and � (� , α, � ) is the same, 
except for using y� . , yu, , y.r and yijm , respectively, in place of t/.. , yu , ymj 

and ytj used in the no-interaction model. Thus, similar to (24), (25) and (36) 

* 0 0 = n..yl = ylln.. , (58) 
a a 

R(M, «) = Σ ni-vl- = Σ yll"i-. (59) 
j = l i=l 

and Rfr, � )=� »;&,. = Σ»·>·* · (60) 
3=1 i = l 

The model (51) involves the terms � , α,, ßt and yu . The sum of squares for 
fitting it is therefore denoted by Α(µ, α, � , � ) and its value is, as usual, 
b°'X'y. With X'y and b0' of (53) and (55), respectively, this gives 

RQ*,*,ß,Y) = b0�X�y 
= y'(column vector of yijm totals) 

a b 

= �  � � � -� � . 

=i i««»«. = i i »«./««� (6i) 
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In the second expression of (61) the terms y\y\n^ are defined only for non-
zero values of nu in the data. 

The other term needed for the analysis is � {� , α, � ), the sum of squares due 
to fitting 

Vm = �  + *i + ßjr + em . 

where 

with 

(62) 

(63) 

(64) 

This is derived exactly as in equation (26). Thus 

R(M, *,ß) = 2 Wl. + r�C-�r 
i=l 

C = {<-,} for j,j� = l,2,...,b-l 
a 

- �  4M��> 
a 

Cjy = ~ �  nunirlni. f o r j ^ �  

and r = {r,} = y.,. - £ n^yA for y = 1, 2, . . . , b - 1. (65) 

These are the same calculations as in (16)—(18), using yimm and ytj, in place of 
&. a n d y.y. 

Example. Calculation of (58)—(61) for the data of Table 7.6 is as follows: 

R(ß) = 1982/18 = 2,178 
� (� , a) = 602/6 + 442/4 + 942/8 = 2,188.5 
� (� 9 � ) = 482/5 + 422/4 + 422/3 + 662/6 = 2,215.8 ( 6 6 ) 

� (� , a, � , � ) = 302/3 + 122/1 + · · · + 302/2 + 482/4 = 2,260; 

and the total sum of squares is, as usual, 
a b njj 

I y2 = Σ Σ IvL� = s2 + i32 + · · · + ii2 + i32 = 2,316. (6?) 
i = l j = l fc=l 

To facilitate calculation of � (� , α, � ) we use the table of nf/s shown in 
Table 7.6a. From this, C of (64) is 

"5 - (32/6 + 22/4) -2(2)/4 - l (3) /6 

-2(2)/4 4 - (22/4 + 22/8) -2(2)/8 

- l (3) /6 -2(2)/8 3 - (l2/6 + 22/8). 

15 - 6 - 3 " 

-6 15 - 3 

L-3 - 3 14. 

C = 
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with C x = 
126 

67 31 21 

31 67 21 

L21 21 63. 
And from Table 7.6 and (65) 

Γ4 8 - 3 ( 1 0 ) - 2 ( 1 1 ) 

r = 4 2 - 2 ( 1 1 ) - 2 ( 1 If) 

[ 4 2 - 1(10) -2(1 If) 

Therefore (63), using � (� , α) from (66), gives 

- 3 * 

Κ(µ, a, � ) = 2188.5 + [ - 4 -3�  
->2 

*�] J_ 
126 

'67 
31 

.21 

31 
67 
21 

21"] 

21 
6 3 J 

� -4 �  

- 3 * 
L 8*J 

= 2,188.5 + 1(1/126)[67(64 + 49) + 63(289) + 62(56) + 42(—15)17] 
= 2,188i + 36Ü 
= 2,225f. (68) 

If, quite generally, one wishes to fit the model (62) ab initio to data of the 
nature illustrated in Table 7.6, the procedure just outlined yields the sum of 
squares for so doing, namely i?(//, α, � ). Thus the procedure as described in 
the preceding section for calculating jR(/i, α, � ) for the no-interaction model 
with n{j = 0 or 1 is also the basis for calculating � (� , α, � ) whenever data 
are unbalanced, either when � (� , α, � ) is needed as part of the analysis of 
variance for the interaction model (51) or when prime interest lies in 11(� , α, � ) 
itself as the reduction in sum of squares due to fitting the no-interaction 
model (64). 

(//) Fitting different models. Analyses of variance derived from the sums 
of squares in (66), (67) and (68) are shown in Table 7.7. Their form is similar 
to that of Table 7.2. Table 7.7a shows the partitioning of the sum of squares 
� (� , α, � , � ) into two parts: � (� ) for fitting only a mean and R(OL, � , �  | � ) 
for fitting the α-, � - and y-factors after the mean. For this, � (� ) is as shown 
in (66), which yields 

i?(a, � ,� \� ) = �1(� , a, � , � ) - 11(� ) = 2,260 - 2,178 = 82. 

Also, the residual error sum of squares is, in the usual manner, 
SSE = Σ y2 - ]1(� , α, � , � ) = 2,316 - 2,260 = 56. 

These are the terms shown in Table 7.7a. The corresponding F-statistics are 
also shown. F(M) = 388.9 is significant because it exceeds 4.96, the 5% 
value of the /^jo-distribution. Hence we reject the hypothesis H: E{y) = 0. 
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On the other hand, F(Rm) = 2.1 is less than the 5% value of the i^o-distri-
bution, namely 3.14, and so we conclude that the α-, � - and /-factors in the 
model are not effective in explaining variation in the */'s over and above 
that explained by fitting a mean. 

The data in Table 7.6 are hypothetical, and in the Table 7.7a analysis of 
variance F(Rm) = 2.1 is not significant. Calculation of the analyses of vari-
ance shown in Tables 7.7b and 7.7c is therefore not necessary. Nevertheless, 
it is instructive to examine the format of these analyses, to see how similar 
they are to Tables 7.2b and 7.2c. Were F(RJ of Table 7.7a significant, we 
would be led to examine whether it was the α-factor, the /3-factor, the y-
factor or some combination thereof that was contributing to this significance. 
After fitting � , this could be done in one of two ways: either fit �  and a, and 
then � , a and /?, or fit �  and � , and then � , a, and � . Either way, y would be 
fitted after having fitted � , α and � . Therefore choice lies in first fitting, after 
� , either a or � . This is exactly the situation discussed when describing 
Table 7.2. Tables 7.7b and 7.7c are therefore similar in format to Tables 7.2b 
and 7.2c. 

Table 7.7b shows the partitioning of � (� , α, � , � ) for fitting � , then a, then 
�  and then y, with lines in the analysis of variance for µ, α after � , �  after �  
and a, and finally �  after � , α and � . The sole difference of this from Table 
7.2b is the line for the sum of squares due to fitting �  after µ, α and � . This 
corresponds, of course, to the /-factor being additional in the interaction 
model to the a- and ^-factors that are in both the interaction and the no-
interaction models. The sums of squares for Table 7.7b are, using (66) and 
(68), 

ÄO0 = i?(/i) = 2,178 = 2,178, 
R(OL I � ) = £(µ, α) - £(µ) = 2,188| - 2,178 = 10i, 

R(ß I � , α) = Λ(µ, α, � ) - R(� , α) = 2,225f - 2,188£ = 3 6 ^ , 
and 

R(y I � , α, � ) = *(µ, α, � , � ) - *(µ, α, � ) = 2,260 - 2,225f = 34* 

Clearly, these sums of squares add to 7?(µ, α, � , � ) = 2,260, and are thus a 
partitioning of this sum of squares. These results are shown in Table 7.7b, 
with a denominator of 70 for the rational fractions in order to have con-
formity with Table 7.7c. Naturally, R^) = 2,m and SSE = Σ y2 -
Λ(µ, α, � , � ) = 56 are the same throughout Table 7.7. Also, the middle 
three entries of Table 7.7b add to i?(a, � ,� \� ) = 82, the middle entry of 
7.7a, as do the middle three entries of Table 7.7c. In this way Tables 7.7b and 
7.7c are partitionings not only of R^, a, /?, � ) but also of R(a, � , �  \ µ), 
the sum of squares due to fitting the model over and above the mean. 

The analogy between Tables 7.7b and 7.2b is repeated in Tables 7.7c and 
7.2c, corresponding to fitting � , then � , then a and then � . Thus Table 7.7c 
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has lines in the analysis of variance for � , (�  | µ), (a | µ, � ) and (�  | � , α, � ). 
The only difference from Table 7.7b is that R(OL | � ) and R(ß \ � 9 α) in Table 
7.7b are replaced by R(ß \ � ) and R(OL \ � , � ) in Table 7.7c: 

R{ß | � ) = R^, � ) - � {� ) = 2,215.8 - 2,178 = 37ff 
and R(* \� ,� ) = R^, α, � ) - R^y � ) = 2,225f - 2,215.8 = 9%. 
The sum of these is, of course, the same as the sum of R(OL | � ) and .#(/? | � , α) 
in Table 7.7b: 

J?05 | � ) + *(α | /i, j8) = *(µ, a, 0) - *(µ) = R(oc \ � ) + R(ß \ � , a); 
i.e., 37M + m = 2,225f - 2,178 = 10ff + 36ff = 47f-, 
this sum being 

Rfa, a, 0) - *(µ) = *(a, £ | µ). 
(/«) Computational alternatives. Equation (63) for R^, α, /?) is based 

upon solving the normal equations for the model (62) by "absorbing" the 
α-equations and solving for (b — 1) /Ts. This is the procedure described in 
detail for the no-interaction model in Sec. Id. As mentioned there, without 
explicit presentation of details, Rfa α, � ) can also be calculated by solving the 
normal equations through "absorbing" the ^-equations and solving for 
(a — 1) a's. The calculation of R^, α, � ) is then as follows. 

RQ*> α, � ) = Σ n.,y?,. + u'T"1!! (69) 
3=1 

where T = {/<f,} for z, Γ = 1, 2, . . . , a - 1 

with ff< = η,. — Jw?,/«., , 
3=1 

b 

tw = -� � � � �� /� >* f o r * ^ *" (7°) 
i=l 

and u = {wj = Jy,... — j j ^ y . J for i = 1, 2, . . . , a - 1. 

Table 7.6 involves 3 a's and 4 /?'s. For these data it is therefore compu-
tationally easier to use (69) instead of (63) for calculating i?(//, α, � ) because, 
in (69), T has order 2 whereas in (63) C has order 3. The difference in effort is 
negligible here, but were there to be many more ß's than a's the choice of 
procedure might be crucial. [This (see Chapter 10) can be the case in variance 
components analysis, where there may be, say, 2,000 ß's and only 12 a's. 
Then (69), requiring inversion of a matrix of order 11, is clearly preferable to 
(63), which demands inverting a matrix of order 1,999!] 

The two alternative procedures for calculating i?(//, α, � ) provide identical 
numerical results, but different symbolic expressions for certain of the sums 
of squares in Table 7.7. These expressions are shown in Table 7.8 under the 
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headings "Absorbing oc's" and "Absorbing ß's", which describe the method for 
solving the normal equations implicit in the procedures. Only one of these 
procedures need be used on any given set of data (although the other always 
provides a check on the arithmetic involved). The choice of which to use 
depends on whether there are more or fewer oc's than /Ts. Indeed, even this 
choice is avoided if we always denote by a the factor which has the larger 
number of effects. The "Absorbing a's" procedure will then be the one to use. 
Nevertheless, it is of interest to have the two sets of expressions laid out as 
they are in Table 7.8. 

(iv) Interpretation of results. The F-statistics in Tables 7.7b and 7.7c, 
other than F(M), are not significant, as would be expected from the non-
significance of F(Rm) in Table 7.7a (see end of Sec. le). In general, inter-
pretation of the test statistics F(OL | � ), F(ß | µ, α), F(ß | � ) and F(OL | � , � ) 
in Tables 7.7b and 7.7c is exactly as given in Table 7.4. The possibilities so 
far as significance and non-significance of the F�s is concerned are the same 
here as there, and interpretation is therefore the same. In addition, Tables 
7.7b and 7.7c both have the statistic F(y | � , α, � ), which provides a test of 
the effectiveness (in terms of accounting for variation in y) of fitting the model 
(51) compared to fitting the model (1). As the difference between the two 
models is the inclusion of the interaction effects yio in (51) the test is often 
referred to as a test of interaction after fitting main effects. However, as in 
Table 7.2, so in Table 7.7: interpretation of the jF-statistics can be thought 
of in two ways. The first, already considered, is that of testing the effective-
ness of fitting different models, while the second is that of testing linear 
hypotheses about elements of the model. It is in this latter context that we are 
better able to consider the meaning of the tests provided by the F's in Table 
7.7. First, however, we deal with a limitation on the R( ) notation and then, 
in order to discuss tests of hypotheses, consider estimable functions. 

(v) Fitting main effects before interaction. Notation of the form R(OL | � ) = 
7?(µ, α) — R^) has been defined and freely used in the foregoing. Formally, 
then, it might seem plausible to define 

R(ß | � , α, � ) = � (� , a, � , � ) - Rfa a, � ). 

However, before trying to do this a careful look must be taken at the meaning 
of the interaction y-factor, for in doing so it will be found that R(ß | µ, α, � ) 
as formally defined by the notation is identically equal to zero. Evidence of 
this comes from the models (and corresponding sums of squares) implied in 
the notation JR(//, a, /?, � ) - i?(//, a, � ). For £(µ, a, � , � ) the model is (51) 
and 

a b 

i=l 3=1 

as in (61). Similarly, in the context of the a's and fs of (51), the implied model 



[7.2] WITH INTERACTION 301 

for i?(//, oc, y) is ym = �  + α̂  + y0· + ^fc. But this is exactly the model 
of the 2-way nested classification discussed in Sec. 6.4. Hence the corre-
sponding reduction in sum of squares is 

*(� >*,� ) = � � � „&., (71) 
t = l j=l 

and so R(ß | µ, a, y) = � (� , oc, /?, y) — #(µ, a, y) = 0. 

Similarly Rfr, � 9� ) = � �  "nvl = *G", � ) (72) 
i = l ;=1 

and so we also have 
Ä(oc | µ, jff, y) = 0 = Ä(a, /ff | µ, y). 

From (61), (71) and (72) we see that the reduction in sums of squares due to 
a b 

fitting any model that contains the interaction y-factor is �  �  naylj. · More 
i = l 3 = 1 

particularly, in (71) and (72) the reduction due to fitting any model which, 
compared to (51), lacks either oc, or /?, or both, is equal to R^, oc, ß, y) = 

a b 

�  �  ni3V%. · Indeed, as in (72), fitting just (�  and) the y-factor alone leads to 
i=lj=l 

the same reduction in sum of squares. We return to this fact later. Meanwhile, 
the emphasis here is that in the R( ) notation there is no such thing as 
R(ß | � , α, y) when y is the interaction factor between the a- and /?-factors. 
This is the underlying reason for there being only two subsections of Table 
7.7 after 7.7a. There, in 7.7b, we have � (� ), R(OL | � ), R(ß \ � , α) and 
R{y | � , α, � ) based on fitting � , α, �  and y in that order, and in 7.7c we have 
R^), R(ß | � ), R(OL | � , � ) and R{y | � , OL, � ) for fitting � , � , α and y in that 
order. Notationally, one might be tempted from this to consider other 
sequences such as � , α, y and � , for example, which would give rise nota-
tionally to i?(//), R(OL | � ), i?(a, y | � ) and R(ß | � , α, y). But since the latter 
symbol is, as we have seen, identically equal to zero, it is not a sum of squares. 
As a result, in the fitting of α-, � - and y-factors, with y representing a-by-ß 
interactions, we can fit y only in combination with both oc and ß. We cannot 
fit y unless both a and ß are in the model. This is true generally, that in the 
context of the kind of models being considered here interaction factors can 
only be fitted when all their corresponding main effects are in the model too. 
Moreover, only R( ) symbols adhering to this policy have meaning. 

e. Estimable functions 
The basic estimable function for the 2-way classification model with 

interaction is 
Euan) = A* + α ΐ+ ßj + � �  · 
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Because we frequently refer to this expression we give it a symbol, � �� : 

Pa = �  + *� + � �  + ya · (73) 
Its b.l.u.e. is ^ ^ ^ ^ ^ 

fin =�  + ^ + � �  + yu = � �  + A + � ) + � � �� , 
and since the only non-zero elements in b° of (55) are the y% equal to yio , 

fin = Sa. · (74) 
Also � (� � ) = � 2/� ^ 

and cov(/J^ , � ��>) = 0 unless i = �  andy = / . (75) 

These results are fundamental to the ensuing discussion. 
It is clear that � �� , by its definition in (73), corresponds to the cell in row 

/ and columny of the grid of rows and columns in which the data may be dis-
played (e.g., Table 7.6). Therefore � �5 is estimable only if the corresponding 
(/,/)-cell contains observations. This is also clear from (74) wherein fitj, the 
b.l.u.e. of � �� , exists only for those cells which have data, i.e., for which there 
is a i/^.-value. In saying that /% is estimable we therefore implicitly refer 
only to those /^/s corresponding to the cells that have data. The other µ,./s 
are not estimable. 

Any linear function of the estimable /^/s is estimable. However, because of 
the presence of y{j in � �5, differences between rows (oc's) or columns (/Ts) are 
not estimable. For example, in Table 7.6, ylv and y2l. exist and so � �  and 
� 21 are estimable. Therefore 

Pl\ - Hi = � 1 ~ a2 + 7ll - 721 

is estimable. But ax — a2 is not. Similarly, αχ — α3 + � 13 — y33 and � �  — 
ßz + 7ιι — 7i3 a r e estimable but αχ — α3 and � 1 — � 3 are not. In general, 

b b 

a* - a*' + Σ kitfi + � � ) ~ 1 kt�i(ßi + Vi�i) (76> 
3=1 3=1 

for i� ?L� i� is estimable so long as 

i/c,, = l=i^, (77) 
3=1 3=1 

with ki3- = 0 when � �  = 0 and kVj = 0 when � ��  = 0. 

b b 

Then the b.l.u.e. of (76) is � � #� . ~lki�^3� (� ) 
3=1 3=1 

b 

with variance ^(kijlni3 + ^� /� �� )�
2. 

3 = 1 
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A similar result holds for the ß's: 

ßi - ßr + Σ Kfai + Yu) - �  ha>(«i + Y<r) (79) 
t = l i=l 

for/ 5 ^ / is estimable so long as 

i hiS = i = i hti. (so) 
z = l * = 1 

where h{j = 0 when ni5 = 0 and A4-r = 0 when nir = 0, 

and the b.l.u.e. of (79) is f Ä„y„. - | A„,y„,. . (81) 
i = l i= l 

It is not possible to derive from the µ^-'s an estimable function which is 
solely a function of either the a's or the ß�s. The y's will always be involved. 
On the other hand, it is possible to derive an estimable function that is a 
function of only the y's. Provided the (//), (i�j) (if) and (if) cells have data in 
them 

"ii.i�j� = ftij fti�i ftii� * fti�j� /ooN 

= Ya - Yi�j - Yir + Yvr 
is estimable, with b.l.u.e. 

Qij.i�j� = Vii. ~ &'*. - Vii�. + Vi�V- (83) 
and v(6ijA,r) = (1//ι„ + l//i„ + \\nir + 1//ι<τ)σ* · 

Expressions (76), (79) and (82) are the nearest we can come to obtaining 
estimable functions of intuitively practical value. Differences between row 
effects cannot be estimated (are not estimable) devoid of interaction effects; 
they can be estimated only in the presence of average column and interaction 
effects. For example, with kiS = \\miy where mi is the number of filled cells 
in the /th row (i.e., nu ^ 0 for mi values ofy = 1, 2, . . . , b), (11) is satisfied 
and 

«< - <v + Σ (ß> + Yu)lmi - Σ (ßi + Yvi)\mi� 
j f or 3 for 

is estimable, with b.l.u.e. 

Σ vuMi - Σ Si�jJmi� · 
jfor jfor 

Similarly, because ki5 = n^jn^ also satisfies (77) 
b b 

<** - *v +� � � (� � + Ya)lni> -� � ��(� � + � � )� � (84) 
3=1 0=1 
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is also estimable with b.l.u.e. 

�  � � 9� � . - �  HnSi�iM�� = &.. - ft-.. 
3 i 

Analogous functions involving 0,· — ßr can be derived from (79). 

Examples. Table 7.6 provides the following examples. From (76)-(78) 

«i - a2 + (0i + 7n) - (ft + 72i) = ax - a2 + y u - y2i (85) 

is estimable with b.l.u.e. 

yn. - y2i. = io - 9 = i. 

Similarly CLX - a2 + (0X + y n ) - K0i + 02 + y2i + 722) 

is estimable with b.l.u.e. 

Vu. - Kfci. + y22.) = 10 - K9 + 13) = - 1 . 

So far as ax — a2 is concerned these two estimable functions are the same, 
but of course they involve different functions of the 0's and y's. In the first, 
(85), there are no 0's due to the fact that for both of rows (treatments) 1 
and 2 there are observations in column (variety) 1 (See Table 7.6). An example 
of (84) is that 

αι - a3 + [3(0! + y n ) + (03 + y18) + 2(04 + y14)]/6 
- [2(jff2 + y32) + 2(^3 + y33) + 4(04 + y44)]/8 

is estimable with b.l.u.e. 

^ι.. - ^3.. = io - i i f = - i f . 

Certain other estimable functions deserve mention since they arise in 
discussing tests of hypotheses corresponding to the F-statistics of Table 7.7. 
The first is � � defined as 

+ � U, - � \� « - 2 ( i ^ W i � (86) 
j=l\ n�i! i�*i \i=l n-i l 

That this is estimable is evident from the fact that 

<Pi = �  \^(�  + «, + 0,� + y«) - � ^ 0* + � * + & + y«) 
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A similar expression in terms of ß's and y's is also estimable: 

»,= (».,-|$)� -2,(|^�  

For Qijti>r defined in (82), functions of estimable ö's are also estimable, 
naturally. But certain functions of non-estimable ö's are estimable too. For 
example, with the data of Table 7.6 

� ll,22 = /^ll ~~ � *21 "~ ^12 + /̂ 22 a n d � 12>33 = � 1 2 — /� 32 — /̂ 13 + /*33 

are not estimable, because � 12 is not. But the sum of these two Ö's does not 
involve � 12 and is estimable; i.e., 

* = = "ll,22 + � 12f33 = f^ll ~~ fal + /̂ 22 ~~ /̂ 32 "~ /̂ 13 + /̂ 33 

= � � 1 — � ��  �  � 2� + � 22 �  � 32 + � 33 (88) 

is estimable. In general, if each of two non-estimable* ö's involves only a single 
non-estimable � ��  which is common to both ö's, then the sum (or difference) 
of those ö's will not involve that � ^ and will be estimable. (88) is an example. 

f. Tests of hypotheses 
(/) The general hypothesis. As has already been well established, the F-

statistic for testing H: K'b = 0 is, for K' of full row rank s*9 

F = Q/s*a2 with Q = (K'bYiK'GK^K'b0. (89) 

Furthermore, hypotheses are testable only when they can be expressed in 
terms of estimable functions—in this case, in terms of the µ^/s. Thus any 
testable hypotheses concerning K'b will involve linear functions of the / ^ / s ; 
and, by the nature of � �  no matter what functions of the a's and /Ts are 
involved in K'b the functions of the y^-'s will be the same as those of the 
/ ^ / s . Thus if 

µ = {^} and γ = {Yii}9 for niS * 0, (90) 

then when K'b = Ι / µ that part of K'b which involves γ is L'y. 
In (55), the only non-zero elements of b° are 

Y° = {y?,} = y = {&,.} f o r "«*<>■ (91> 
Similarly, in (57) the only non-null sub-matrix in G is the diagonal matrix 
D{l//itf} corresponding to γ°. Therefore, to test the hypothesis 

H: K b = 0 equivalent to Ι / µ = 0, (92) 
Q of (89) becomes 

Q = y X f L O O / ^ L r i / y . (93) 
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Writing D = � {1/� ^} to simplify notation gives 

Example. For Table 7.6 

Y = [?�  7ΐ3 7u Vzi r22 y32 733 73J (94) 
and y' = [ylv yu, yu, yn, y^ y^ y^ yM] 

= [10 12 9 9 13 8 15 12]. (95) 

In (85), ax — a2 + 7n — 721 is estimable, for which Ι /γ = � ��  — � 21 has 

L' = [1 0 0 - 1 0 0 0 0]. 
Also, from (53) 

D = D{1/«,,} = diagfi 1 Π U U I (96) 
so that L'D = [i 0 0 - \ 0 0 0 0] 
and L'DL = {\ + %) = | . 

Therefore for testing the hypothesis ax — a2 + y n — y2i = 0 we have 

Q = (10 - 9)(5/6)-1(10 - 9) = 1.2. 

In this way we need look at only the yu elements of a hypothesis in order to 
derive L' and so calculate Q of (89). 

(//) The hypothesis for F(M). In earlier discussing Table 7.7 we inter-
preted the sums of squares therein as reductions in sums of squares due to 
fitting different models. Their meaning in terms of testing hypotheses is now 
considered. In this context we deal not with different models but with 
hypotheses about just the 2-way classification interaction model, (51). In 
particular we establish the linear hypotheses corresponding to each of the six 
different F-statistics in Tables 7.7b and 7.7c, the first of which is F(M). 

Results for the general case [e.g., equation (15) of Chapter 6] indicate that 
F(M) can be used to test the hypothesis H: E(y) = 0. In the present case 
this is equivalent to 

H: Σ Σ « Λ · = 0 for n�  * 0 (97) 

which, in terms of (92), can be expressed as Ι /µ = 0 for L' being the vector 

L' = [nn - · · nab] for those niS 5* 0. (98) 

Hence L'D = 1' with I/DL = N. (99) 

It is then easily shown for (93) that L'y = y... and so (93) becomes 
Q = Λ(µ), confirming the numerator of F(M). 
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(Hi) Hypotheses for F(OL | � ) and F(ß | � ). We will show that R(OL | � ) 
is the numerator sum of squares for testing 

H: — 2 � � �  equal for all i, 

a hypothesis which can also be stated as 

H: a< + — 2 ni0J + � � ) equal for all i. (100) 

Expressing this as a — 1 independent differences 

H �  nufhi - - �  nul*ii f o r i = 2, 3, . . . , a, 
w l � � "*� i 

it can be seen that for (93) the (/ — l)th row of L' is, for / = 2, 3, . . 

4-i = [wn/»i. * * * "i&K. 0' -ηα/πί# njn,. 0']. 

a, 

(101) 
corresponding to 

»u * 0 
corresponding to 

»« * 0 
From this it can be shown that the (/' — l)th element of L'y is yv. — y{.. 
and L'DL = (l/«lg)J + D{wt.} for i = 2, 3,. . . , a. Algebraic simplification 
based on results in Exercise 6 leads to Q of (93) reducing to R(OL | � ). Hence 
(100) is the hypothesis tested by F(a. | � ). 

Example. For the data of Table 7.6 consider 

H: Oi + UXßi + Yn) + (ß, + YiJ + 2(/34 + Yu)] 

~ {«2 + � Xßi + y21) + 20?, + y22)]} = 0 

«i + W i + yn) + 0̂ 8 + /is) + 2((S4 + y14)] 

- {«3 + i[2(/32 + y32) + 2(^3 + y33) + 4(̂ 4 + y34)]} = 0, 
from which 

L' = 

L'y = 

L�D = 

"3 
6 

3 
_6 

Jl-

Jv 
"�  

6 

1 
_ 6 

1 
6 

1 
6 

— 

. ~ 
1 
6 

"6 

2 
6 

2 
6 

ftl·. 
^ 3 � . . 

1 
6 

1 
6 

2 
4 

0 

= 

1 
4 

0 

2 
4 

0 

" 1 0 -

. 1 0 -
1 
4 

0 

0 
2 
8 

11 " 

Hi. 

0 
1 
8 

0 
2 
8 

( 
1 
� 

�1 
4 
8J 

"-1 1 
1 3 � 

_ A 4 j 

) 0^ 
1 

i 8 J 

(102) 

(103) 
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and L'DL = 
A 4 . A A 
β Τ 4 6 

A A - L A + 
with (L'DL)-1 = £ 

7 - 4 

. - 4 10. 

Hence ß = [ - 1 - I f ] 9 
7 - 4 

-4 10 
- 1 

= ί (Α ) (16 + 7 0 - 3 2 ) 

= 10J = K(oc I µ) of Table 7.7b. 

Analogous to the above, R(ß | µ) is the numerator sum of squares for testing 

H: � � + ~�  %(<** + y«) e<iual f o r a11 J-

Exercise 13 provides an example. 
(iv) Hypotheses for F(a | µ, � ) and F(ß \ � , <� ). The hypotheses tested by 

these F-statistics are, respectively, 

H: � � = 0 for all / and H: ^ = 0 for ally 
a 

where � { and � � are given by (86) and (87). First note that Σ 9^ = ^ : 

a a 

� �̂ = � � * 
i=l i=l 

"i- -

a b 

+1 Ir» 
i=l j=l 

a 

= � � < 
i=l 

nt. -

b a b 

� � ��� � ��-�  � � � � �� /� �� 
j=l � � �3=1 

i�� % 

b b 

� � 1/� .> -� � �� � �� - na)l 
7 = 1 3=1 

n •3 

+ Σ � � � �� �  - nlln-J " ni£n-i - ni�i)ln�3-] 
i=l 3=1 

= 0. 

Therefore the hypotheses in H: � � = 0 for all i are not independent; stated 
as a set of independent hypotheses they are 

H: <pt = 0 for i = 1, 2 , . . . , a - 1. (104) 

Writing this in the form L/µ = 0 the ith row of V is, for i = 1, . . . , a — 1, 
given by 

*:� = 

�{-n^njn.j} for7 = 1, . . . , fe and k = 1, . . . , i - 1 and nw 7ε 0"| 

K* - w?i/w-i} f o r · / = 1, . . · , 6 and % ?ί 0 

{-%n7cAi} for j = 1, . . . , fe and fc = i + 1, . . . , a and nfci 5* 0J 
(105) 
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It is then readily shown that, for (93), the /th element of L'y is 

k^i j 3 3 

and so L'y = |yt... —� � � $-�  f o r * = 1, · · · , 0 - 1. 

Similarly it can be shown that diagonal elements of L'DL are 

b 
ni- - �  nijln-3 f o r i = 1, 2, . . . , a - 1 

i = l 

and off-diagonal elements of L'DL are 
b 

— �  nijni�iln-3 f ° r ' 5^ i' = 1, 2, . . . , α — 1. 
i = l 

By analogy, for testing 

H: WJ = 0 for y = 1, . . . , b - 1 

we have L'y = y.j. - �  %&.· f o r 7 = 1, 2, . . . , 6 - 1, 

with diagonal elements of L'DL being 
a 

n-3 - �  nlilni- f o r y = i, 2 , . . . , 6 - l 

and off-diagonal elements of L'DL being 
a 

- �  ni3nij�lni- f o r 7 ^ / = 1, 2, . . . , b - 1. 
i = l 

But in this case we see from (65) that 

L'y = r, and L'DL = C 

from (64). Therefore in (93) 

Q = r 'C^r = R(ß | � , α) 

from (63). Hence F(ß | µ, a) of Table 7.7b tests H: � � = 0, i.e., 

H: (n.j-�  "ll"i)ßi ~ �  [�  nunu�lni\ßy 

+ � (� �  - nijlni-)ya - �  � (� �3� �3>� � �)� � � = o 
i = l j � ^ j i=l 

for ; = 1, 2 , . . . , b - 1, 
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equivalent to the same hypothesis for j = 1, 2, . . . , b. Correspondingly 
F(K I � , � ) of Table 7.7c tests H: � � = 0, i.e., 

b \ a / b 

H: in,. - 2 4/«., I a, - �  � � � /«.�)«,�� 
b a b 

+ � ("�  - nuln-j)Ya ~ �  � (� � � � �^�)���  = ° 
3=1 � � �]=1 

(107) 

for i = 1, 2, . . . , a — 1, 
equivalent to the same hypothesis for / = 1 , 2 , . . . , « . Note that in (106) the 
coefficients of the ßJs are the elements cjr of C in (64); and the coefficients of 
the y's, if summed over /, are also the Cj/s. Analogous properties hold for 
the coefficients of the oc's and y's in (107). 

Example. In accord with (92) the V matrix for the hypothesis in (107) is 
obtained from the coefficients of the y's, whose terms are 

b a b 

� (� �  - � � � � ��)?�� ~ �  � ^� � � � � � �3)���
 f o r i = 1, 2, . . . , α - 1. 

For the data of Tables 7.6 and 7.6a, the value of L' for the hypothesis (107) is 
therefore 

L = 
3 - 3 2 / 5 1 - l2/3 2 - 2 2 / 6 -3(2)/5 0(2)/4 0(2)/4 ~l(2) /3 -2(4) /6 

-2(3) /5 0 0 2 - 22/5 2 - 22/4 - 2 2 / 4 0 0 

18 10 20 - 1 8 0 0 - 1 0 - 2 0 ^ 

18 0 0 18 15 - 1 5 0 0 

6 10 10 - 9 0 0 
Thus L D �  

15 

so that LOL = 

Also L'y = 

9 � \ -� \ 

with (L'DL)-

- 5 -- 5 " 

0 0 

L 1 
28 

"11 

. 6 

6~ 

16_ 

- 6 0 0 

16 - 6 l 

L - 6 11J 

Γ 180 + 120 + 180 - 162 - 150 - 240" 

[ - 1 8 0 + 1 6 2 + 195 - 120 

-24" 

(108) 

(109) 

L 19J 
Therefore in (93) 

Q = ^M-24 19] 
11 6 

. 6 16. 

- 2 4 

. 19J 
_i^(396 + 361 - 342) 

Q 3 4 

= R(OL I � , � ) of Table 7.7c. 
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(v) Hypotheses for F(y | � , a, /?). The hypothesis tested by F(y | µ, a, /?) 
is of the following form, where s — a — b+lis the degrees of freedom of 
R(y | µ, a, � ). 

fAny column vector consisting of s — a — b + V 
linearly independent functions of the 

H: l � � ,� � = yis - � ��  - yiy + yvy , where such } = 0. (110) 
[ functions are either estimable 0's or estimable I 
^sums or differences of 0's. 

0ijA.r as used here is as defined in (82), and the estimable sums or differences 
of 0's are those defined in (88). Writing the hypothesis as 

Ι /γ = 0 

where V has order s — a — b + I by s and rank s — a — b + 1, it is clear 
from the nature of the 0's that L'l = 0. Furthermore, the equations Ι /γ = 0 
have a solution y{j = y for all / and j for which n{j ^ 0. The reduced model 
corresponding to the hypothesis is therefore E(yijk) = (�  + y) + af + ßj, 
for which the reduction in sum of squares is �1(� , α, � ). Therefore, in 
accord with Sec. 3.6d(//), 

Q = 11(� 9 α, � , y) - � (� , a, � ) = R(y \ � , a, � ); 

and so F(y | � , α, � ) tests the hypothesis in (110). 

Example. For the data of Table 7.6 we can test the hypothesis 

jr. i/^lS """" /^33 — /^14 + /^34 = 0 ( 1 1 1 \ 

\� �  - � 21 - � 12 + � 22 + (� 12 - � 32 - � 13 + //33) = 0. 
The first of these is 013>34 = 0, in keeping with (82), and the second is 01112 + 

H: (112) 

0 as in (88). In terms of the elements of the model this hypothesis is 

7l3 - 733 - ?U + 7 3 4 = 0 
7 l l - �21 + 722 - VlZ - 732 + 733 = 0, 

where the second function of y's is (88). Writing this hypothesis as Ι /γ = 0 
gives 

" 0 1 - 1 0 0 
L' = 

for which L'y = 

and L D = 

Li - l o - i l 

12 - 9 - 1 5 + 12 

10 - 12 - 9 + 13 -

1 - \ 0 0 

- 1 0 - * * 

0 

0 --1 

- 1 1 

+ 15. 

0 - \ 
_ _ 1 

2 
1 
2 

f 
0_ 

"�1 
_9J 

4 

oj 

(113) 

(114) 
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so that L'DL = 12 
27 ~18l 

and 
- 1 8 

Hence in (93) 

ß = [0 9] 1 40 

L18 

40j 

18 

(L D L ) 1 = 63 
40 

_18 

18 

27J 

27. 
= 81(27)/63 = 243/7 '63[ 

= 34#-
= R(y | � , α, � ) 

of Tables 7.7b and 7.7c. Hence (111) is the hypothesis tested by F(y | µ, α, � ). 
Note that hypotheses of this nature involve not only functions of the form 

Ou.i�j�= Pa — Pi-i — Vir + Pi�r = 7a ~ 7��  ~ 7ir + 7rr > a s i s t h e first 

in (111), but also sums and differences of such functions, as is the second of 
(111). As has already been explained in the description of �  in (88), these 
sums and differences are chosen to eliminate a � ��  that is not estimable 
because its n{j = 0. Thus in going from (111) to (112) the non-estimable 
� 12 drops out. Furthermore, note that these expressions can often be derived 
in more than one way. Thus the second function in (111) is not only 

7ll - 721 + 722 - 7l3 - 732 + ?33 

= A^ll /^21 f*12 H~ /^22 T" \� � 2 /^32 

which eliminates the non-estimable µ12, but it is also 

/*ia + µ33), (115) 

Yll - 721 + 722 - 7l3 - 732 + ?33 

: = /^22 ~" /^32 ~~ ^ 2 3 + /^33 ~" ( ^ 2 1 ~~ f*ll ~~ ^ 2 3 + /^is) ( H 6 ) 

which eliminates the non-estimable µ23. The exact form of these functions 
corresponding to any particular R(y | � , α, ß) also depends entirely on the 
available data. The pattern of non-empty cells is the determining factor in 
establishing which functions of the y's make up the hypotheses tested by 
F(y | µ, α, � ) and which do not. For example, for Table 7.6 one function which 
is not estimable is 

Z^ll ~~ ^ 3 1 "~ /^13 + ^ 3 3 ~~ ( / % ~~ /^31 ~" /^24 + / W 

= � � 1 /Ζ1 3 + � � �  ~~ ^ 2 1 + /^24 /^34 

which eliminates the non-estimable � 31 but still retains the non-estimable 
� 24 · 

(vi) Reduction to the no-interaction model. We show here that the hypoth-
eses tested by F(OL | � ) and F(/? | � , α) in the interaction model reduce to 
those tested by the same statistics in the no-interaction model—a result 
which is, of course, to be anticipated. 
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In the interaction model, F (a | � ) tests the hypothesis (100): 

H: a, 4- — 2 � � (� �  + � �3) equal for all i. 

Putting all yw = 0 converts the interaction model into the no-interaction 
model, and transforms the above hypothesis into 

H: at- + 2 nijßjlni� e Q u a ' f° r all *· 
i 

This is identical to that tested by F(OL | � ) in the no-interaction model, as 
discussed after the example that follows (48). 

Similarly, in the interaction model, the hypothesis tested by F(ß | � , α) 
is that given in (106). Putting all yi3- = 0 in (106) reduces that hypothesis to 

(n.j - Σ "hl*i)ßi - Σ ( lnanirl"i)ßr = ° f o r a11^'· 

This represents b — 1 linearly independent equations in b parameters � � , 
� 2, . . . , ßb, the equations being of such a nature that they hold only when the 
ß/s are all equal, i.e., the hypothesis in (106) reduces to H: equality of 
all /?/s, the hypothesis tested by F(ß | � , α) in the no-interaction model, 
as indicated in Sec. 7.1g. 

(vii) Independence properties. As indicated in Sec. 5.5g, the sums of 
squares for testing hypotheses k^b = 0 and k^b = 0 are, on the basis of 
underlying normality assumptions, independent if k^Gk; = 0. This property 
can be used to show that the sums of squares in Table 7.7a are independent, 
as are those of Table 7.7b and of 7.7c also. To see this, consider ^-D^/Svhere 
�[ is a row of L' for one sum of squares, and � f is a row of LTor some other 
sum of squares in the same section of Table 7.7. For example, from (99), 
/Zu of Λ(µ) is 1' and from (102) an � f of R(a \ � ) is 

# ' = [!- i �  " I ~ f 0 0 0]. 

Hence ^D*f*= 1'^*= 0. 

The same result will be found true for the other row of L' in (102), and we 
conclude that ]�(� ) and R(a | � ) are independently distributed. In this way 
the independence of the R( )'s in Table 7.7b is readily established, and 
similarly for those of Tables 7.7a and 7.7c. Expressions for L/D are given in 
equations (99), (103), (109) and (114) and for L� in (98), (102), (108) and (113). 

g. Models that include restrictions 
Since, as in (76), 

b b 

«< - °V +� �� � (� � + 7a) -likn(ßj + 7�� ) 
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is estimable, for the &'s satisfying (77), it is clear that α,- — α^ is estimable if 
the model includes restrictions 

I 2 M Ä + y«) = 0 for all f, for nu * 0. (117) 

A particular case of this might be when ki5 = � ^/� ^ , as in (84), in which case 
(117) becomes 

b 

l*itfj + Yi,) = 0 for all/ , for n,y * 0, (118) 

and the corresponding b.l.u.e. of α̂  — ocr is then ^ . . — yv�  . However, there 
seems to be little merit in having either (117) or (118) as part of a model, for 
both of them are data-dependent. Both depend on which nu are non-zero, 
and (118) is a direct function of the «^-values. The same thing applies to 
restrictions that reduce the hypotheses tested by the ^-statistics of Table 7.7 
to hypotheses that have meaningful interpretation (e.g., a hypothesis of 
equality of the a's). As inherent parts of a model, these restrictions suffer 
from the same deficiencies as do all such restrictions, as discussed in Sees. 7.1h 
and 6.2h. 

h. All cells filled 
For data having empty cells, such as those of Table 7.6, the nature of which 

functions are estimable depends entirely on which %'s are not zero. For 
example, with the Table 7.6 data, α2 + � 22 — (<*3 + 732) is estimable but 
αι + V12 ~~ (a3 + 732) is n o t · I n contrast, when all cells are filled, i.e., when 
there are no empty cells, 

is estimable for all / �  1 . This is a special case of (76), with ki5 = krj = 1/& 
and with b.l.u.e. 

«* - «r + (in* -Irr) 1/b = (i/o·· -h*��)/b� <120> 
Hypotheses about (119) can also be tested. Thus 

is tested by F = 
£(1/� „ + �/� �� )�

2 

3=1 
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with 1 and s — a — b + 1 degrees of freedom. Furthermore, the joint 
hypothesis 

b 

H: α,- + %Yalb a11 equal, for i = 1,.. . , a (121) 

a \ � � � ) I a iLVil� 

can also be tested. The ^-statistic for doing so is (see Exercise 17) 

ft \2 / ft \2 

F = ί=1 ^ 2 _ £Ξ! . (122) 
(a - 1)σ2 

a 
If the model includes the restriction �  7 a = 0 for all / = 1, 2 , . . . , a, then 

(119) reduces to af — af, and is estimable, with b.l.u.e. given by (120); and 
the hypothesis (121) becomes H: equality of all oc/s, which is then tested 
by (122). 

Results paralleling (119) through (122) for fts can be obtained in similar 
fashion. 

i. Balanced data 
There is great simplification of the preceding results when ni5 = n for all 

/ and/, just as in the no-interaction case. The calculations become those of the 
familiar 2-factor analysis with replication [e.g., Scheife (1959, p. 110)]. 
Solutions to the normal equations remain as � � �  = yio. as the only non-zero 

a b a 

elements of b°. If the model includes restrictions ]Γ α̂  = 0, �  ßi = 0> Σ 7 a ~ �  
b i=l j=l i=l 

for ally and J yu = 0 for all i then a,· — OLV and ft — ft, are both estimable, 
3=1 

with b.l.u.e.'s 

a< - α^ = ft.. - yr.. and ft - ft, = y.,. - y . r . , 

with variances 2a2/bn and 2o2jan, respectively. 
The analysis of variance tables of Tables 7.7 and 7.8 also simplify, just 

as did Tables 7.2 and 7.3 in the no-interaction case. Thus, R(OL | � ) and 
R(<x | � , � ) of Table 7.8 become identical: 

� (a | � ) = R(* \� ,� ) = bn J) (&. - y..f 

? (i23) 
and R(ß | � , α) = Λ(/8 | µ) = an £(y. , . - ft..)2 
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just as in (50). The resulting, and familiar, analysis of variance is shown in 
Table 7.9. Its similarity to Table 7.5 is obvious. As there, so now, distinction 
between fitting "a after µ" and "a after �  and /Γ is no longer necessary; 
they are both "a after µ", with reduction in some of squares R(<x \� ) as 
shown in Table 7.9. 

In the case of balanced data the numerator of (122) also reduces to 
R(<x. \� ) of (123), as is to be expected. 

TABLE 7 . 9 . ANALYSIS OF VARIANCE FOR A 2-WAY CLASSIFICATION 
WITH INTERACTION, WITH BALANCED DATA (ALL � ^ = n). 

( B O T H P A R T S OF TABLE 7.8 S IMPLIFY TO THIS W H E N n^ = n) 

Source of Degrees of 
Variation Freedom Sum of Squares 

Mean 1 � (� ) = abny^ 

a after �  a - 1 R(oc | � ) = i?(a | � , � ) = bn 2 (yimt - y.J2 

i 

�  after �  b - \ R(ß | � , α) = R(ß | ,«) = an J (y.,. - y..f 
3 

�  after 
� , a and �  (a - \)(b - 1) R(y \ � 9 α, � ) = * £ £ Gfo. - ft.. - £.;. + £...)2 

* 3 

Residual 
error ab(n - 1) SSE = Σ Σ Σ (2/«* ~ Va? 

i j k 

Total abn SST = Σ Σ Σ 4 * 
t i k 

INTERPRETATION OF HYPOTHESES 

None of the hypotheses (97), (100), (106), (107) or (110) are particularly 
appealing so far as interpretability is concerned. All of them involve the data 
themselves—not their magnitudes but the numbers of them, the values of the 
% . For example, (100) is 

H: a, + — 2 � � (� � + Yii) equal for all /; (124) 
n4. i� 3=1 
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and the corresponding hypothesis in the no-interaction case is 

1 b 

H: a,· + — %nijßi e c l u a l f o r a11 *> (125) 

analogous to (48). In these, the hypotheses involve the w .̂'s not only in terms 
of the weight with which ßj9 for example, enters into the hypotheses, but also 
in relation to whether some of the ß/s enter the hypotheses at all. Thus in 
(124), if nip = 0, ßp will not occur in the expression containing oct-. In this way, 
the pattern of the data (the pattern of which nu are zero and which are not) 
governs the form of the hypotheses being tested by the ^-statistics in Tables 
7.2 and 7.7. In Table 7.2, F(z | � , � ) and F(ß | � , a) test, respectively, differ-
ences between a's and differences between ß's, but otherwise all hypotheses 
tested by the F�s in Tables 7.2 and 7.7 involve the data through the values of 
the n{j. In F(M) of both tables, the hypothesis is H: E{y) = 0, which is 

H: � �  "� (�  + «< + ßi + 7ij)lN = °> 
i J 

involving weighted means of the elements of the model as they occur in y. 
With F(OL | � ), the hypothesis involves the a's in the presence of a weighted 
mean of those /Ts (and y's) with which the a's occur in the data; and in 
F(ß | � ) the same is true of ß9s in the presence of weighted means of a's (and 
y's). For F(a. | � , � ) and F(ß | � , α) of Table 7.7, the hypotheses involve the 
%'s in the (somewhat complex) manner shown in (106) and (107). For Table 
7.7, only in the hypothesis (110) for F(y | � , α, � ) are the «,/s not involved 
explicitly, but even here their effect is implicit, because their being zero or 
non-zero determines which functions of the y's make up the hypothesis. 

This dependence of hypotheses on the structure of available data throws 
doubt on the validity of such hypotheses. Usually an experimenter wishes to 
test hypotheses that arise from the context of his work and not hypotheses 
that depend on the pattern of «t-/s in his data. In general, the F-statistics of 
the analyses in Tables 7.2, 7.3 and 7.7 do, however, rely on the %-values of 
the data. Only if the w,-/s (as they occur in the data) are in direct proportion 
to the occurrence of the elements of the model in the population might some 
of the hypotheses corresponding to the analysis of variance F-statistics be 
valid. This is the case with proportionate subclass numbers, in which case, for 
example, (125) becomes 

b 

H: af + ^Pjßi eQual f° r a ^ i> 
3=1 

equivalent to H: ai equal for all /. 
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A feature of the hypotheses (110) tested by F(y \ � , α, � ) warrants attention. 
It involves 

� � ,�� � = Vu ~ Vx�i - Vir + Vi�y 
= � �5 - � ��  - � ^ + � �� , 
= E(g� .) - E(yn.) - E{yir) + £(§� ..) 

which is a measure of the extent to which the difference between the expected 
value of the zth and j 'th treatments (in terms of Table 7.6) when used on 
variety j differs from their difference when used on variety /'. This is just the 
definition of interaction discussed in Sec. 4.3d(ii). Hence we can say that 
F(y | � , α, � ) tests interactions. However, consider what is meant by this; 
it does not necessarily mean that we are testing the hypothesis that inter-
actions are zero. It would, if the hypothesis were 0 < M T = 0 for sets of various 
values of i,j, �  a n d / . But this is not always so. For example, in (111), part 
of the hypothesis is 0U 22 + 012 33 = 0 or equivalently, from (116), θ22 33 — 
021.13 = 0. As hypotheses, these two statements are clearly not equivalent to 
hypotheses of 0's being zero. This fact is important. It means, for example, 
that in testing 022 33 — 02113 = 0 each of 02233 and 02113 could be non-zero 
(nay, even non-zero and very large but equal) with the hypothesis still being 
true. The important of this is that F{y | � , α, � ) is not, with unbalanced data, 
testing that interactions are zero. Some interactions can be non-zero, although 
equal in magnitude (of the same or opposite sign), with the hypothesis tested 
by F{y | � , α, � ) still being true. 

4 . CONNECTEDNESS 

Suppose available data occur as indicated in Table 7.10. If each cell 
that contains data has only a single observation, the normal equations 

TABLE 7 . 1 0 . PRESENCE OR ABSENCE OF DATA 
FOR DISCUSSING CONNECTEDNESS 

(X INDICATES ONE OR MORE OBSERVATIONS; 
— INDICATES NO OBSERVATIONS) 

Level of ^-factor 
Level of 
a-factor 1 2 3 4 

1 x x — — 
2 x x — — 
3 — — x x 
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«3�  
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Subtracting the fourth equation from the first changes (126) to 

,.0 O O O DO DO DO DO 

�  <*! �2 �3 � �  � 2 � 3 04 

~4 2 

2 2 

2 �  

2 �  

2 1 

2 1 

1 · 

1 · 

2 

2 

1 

1 

2 

1 

1 

2 

1 

1 

2 

• 

2 

1 

1 

2 

1 

1 

1 

• 

1 

V" 
«ι° 

«2�  

0 

α3 

� l 
� l 
� l 

JL 

2/ι· + 2/2 

2/ι· 

2/2� 

2/3� 

2/·ι 

2/2 

2/�3 

2/�4 

which can be rewritten as 

4 2 2 

2 2 · 

2 · 2 

2 1 1 

2 1 1 

2 2 

1 1 

1 1 

2 · 

• 2 

µ0 

oj 

α2 

�  

�  

= 

2/ι· + 2/2-

2/ι· 

2/2· 

2/·ι 

2/� 2 

(126) 

(127) 
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w 
«3 

\fil 

�  

= 

�Vs�\ 

y.3 

j / . 4 _ 

Thus, although the normal equations for the data pattern of Table 7.10 are 
(126), they can be separated into two sets of equations which, apart from 
� , involve quite separate parameters: αχ , a2 , ft and ß2 in (127) and α3, 
� �  and ßi in (128). Furthermore, the data involved in the two sets of equa-
tions are also separate: yn , y12, y21 and y22 in (127) and y33 and yu in (128). 
This separation of the normal equations is brought about by the nature of the 
data, by the manner in which certain of the cells of the 2-way classification 
have data and others do not. When it occurs, we say the data are not con-
nected, or disconnected; otherwise they are connected. When data are dis-
connected the separate sets of data corresponding to the separate sets of 
normal equations, such as (127) and (128), will be called disconnected sets of 
data. Thus data in the pattern of Table 7.10 are 1-sconnected and there are 
two disconnected sets of data: one is yn , y12, y21 and y22 and the other is 
2/33 and yM . 

The underlying characteristic of disconnected data is that each of its dis-
connected sets of data can be analyzed separately from the other such sets; 
each has its own normal equations that can be solved without reference to 
those of other sets. This is evident in (127) and (128). Certainly each contains 
� � : but since each group of normal equations is less than full rank, they can 
all be solved with a common � �  if desired (� �  = 0 is one possibility). 

Disconnectedness of data means not only that each disconnected set of 
data can be analyzed separately but that all the data cannot be analyzed as a 
single group of data. For example, as mentioned in Sec. Id, in the "absorp-
tion process" for obtaining ]1(� , α, � ), the matrix C_ 1 does not exist for 
disconnected data. Further evidence of the inability to analyze such data as a 
single set of data comes from the degrees of freedom of what would otherwise 
be the analysis. For example, data in the pattern of Table 7.10 would give 
degrees of freedom for R(y \ � , α, � ) as s — a — 6 + 1 = 6 — 3 — 4 + 1 = 0 . 
With some patterns of data this value can be negative; thus, were there to be 
no data in the (1, l)-cell of Table 7.10, s - a - b + 1 would be 5 - 3 -
4 + 1 = —1, which is clearly meaningless. 

Disconnected data have to be analyzed on a within-set basis. This is so 
whether there is one observation per filled cell or one or more observations. 
Within each disconnected set of data the appropriate analysis (Table 7.3 
or Table 7.8) can be made. From these analyses a pooled analysis can be 
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established. However, in view of the complexity of some of the hypotheses 
tested by the F-statistics implicit in Tables 7.3 and 7.8, such pooling may be of 
little practical value. Nevertheless, it is instructive to demonstrate the 
degrees of freedom for these analyses, as distinct from those that would be 
given by analyzing the complete data without taking their disconnectedness 
into account. This pooling is shown in Table 7.11. It is assumed that there are 
d disconnected sets of data, for the rth of which there are Nt observations, 
at rows, bt columns and st filled cells, with corresponding sums of squares 
also subscripted by t. The nature of disconnectedness ensures that 

N = �  Nt, a = �  at > b = �  bt and s = 2 st 
t t t 

where summation over t is for t = 1, 2, . . . , d. In Table 7.11 we also write 

P = * "" a - b + 1 and pt = st - at-bt + l9 

with Ρ = Σ Λ ~ < ' + 1 · 
t 

Table 7.11 is based on Table 7.8, for fitting α | �  and �  | µ, α. A similar table, 
for fitting �  | �  and α | � , � , can also be constructed. 

In Table 7.11 the residual sum of squares for the pooled analysis provides 
an estimator of σ2 as 

� 2 t=l 

a = 

which can be used in tests of hypotheses. Also, the first line of the pooled 
analysis, that for the means, can be partitioned into two terms. Letting 

m = mean of all data 

t � t 

the partitioning of 2 RAH) w i t r i d degrees of freedom is 
t 

m2 2 Nt with 1 degree of freedom 
t 

and 
2 &�(� ) — m2y£Nt with d — 1 degrees of freedom. 
t t 

The latter, divided by (d — 1)σ2, can be used to test the hypothesis of equality 
of the E(yYs corresponding to the disconnected sets of data. An example of 
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TABLE 7 . 1 2 . DEGREES OF FREEDOM IN ANALYSIS OF VARIANCE 
FOR DATA PATTERN OF TABLE 7 . 1 0 

Source of 
Variation 

�  
a | �  
�  1 � , a 
y \ � , � , �  
Residual 

Total 

Deg 

Analyzed as 

;rees of freedom 

disconnected data 

2 disconnected sets 

Set 1 
Cells 11, 12,21,22 

1 
1 
1 
1 

Nj_ - 4 

^ 1 

Set 2 
Cells 33 and 34 

1 
0 
1 
0 

N2 - 2 

N2 

Pooled 
analysis 

2 
1 
2 
1 

N -6 

N 

Analyzed, 
wrongly, as one 

set of data, 
ignoring dis-

connectedness 

1 
2 
3 
0 

N - 6 

TV 

Table 7.11, showing degrees of freedom only, for the data pattern of Table 
7.10, is given in Table 7.12. 

Estimability of certain functions is greatly affected by disconnectedness. 
For example, in the case of the no-interaction model of equations (127) and 
(128) derived from Table 7.10, ft — ft is not estimable. This is so because 
ft is a parameter in one disconnected set of data and ft is a parameter in the 
other set. In general, functions of parameters that involve parameters relating 
to different disconnected sets of data are not estimable, whereas functions 
involving parameters relating to any single set of data can be estimable. For 
example, in Table 7.10 ß2 — ft is not estimable but ft — ft and ft — ft are. 
This is for the no-interaction model. For the interaction model, � �5 of (73) 
is estimable for all � ��  ^ 0. But functions of � �3- that involve µ,/s from different 
disconnected sets of data are not estimable. 

With connected data the rank of X or, equivalently, of X'X in the normal 
equations, is a + b — 1 in the no-interaction case. Thus, if data correspond-
ing to Table 7.10 were connected, the rank of X'X in (126) would be 3 + 
4 — 1 = 6 . But because the data are not connected, the rank is a + b — 
1 — (d — 1) = 5 where d is the number of disconnected sets of data. Equa-
tions (127) and (128) illustrate this, their ranks being 2 + 2 — 1 = 3 and 
1 + 2 — 1 = 2 respectively, summing to 5, the rank of (126). This accounts 

d 

for the relationship p = ^Pt ~ (4 ~" 0 shown in (129) and in Table 7.11. 
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It is clear that for a complete set of data to be analyzed by the methods of 
Table 7.3 or 7.8 (whichever is appropriate) connectedness must be a property 
of the data. Weeks and Williams (1964) discuss this property for the general 
fc-way classification without interaction and give a procedure for investigating 
whether or not data are connected. This is given in the next chapter. For data 
in a 2-way classification it simplifies to the following. Take any cell contain-
ing data—the (p, </)th-cell, say. From that cell move along the pth row (in 
either direction), or up or down the qth column until another filled cell is 
encountered. Proceed from that cell in the same manner. If, by moving in this 
fashion, all filled cells can be encountered, then the data are connected; 
otherwise they are disconnected. If data are disconnected this process will 
isolate the disconnected set of data containing the original (/?, </)th-cell. 
Restarting the process in some cell not in that set will generate another dis-
connected set. Continued repetition in this manner yields all the disconnected 
sets. 

Example. In the following array of dots and x 's a dot represents an empty 
cell and an x represents a filled cell. The lines joining the x 's isolate the 3 
disconnected sets of data. 

x x 

x I x x : 
| I 
I ' I 

X .' X X i 

x . . 1 
I I 
I I 

X .' X 

X X 

5 . ^ - M O D E L S 

In discussing estimable functions in both the no-interaction and the 
interaction models of Sees. 1 and 2, great play was made of the fact that 
�  + α . + � . and � �  = �  + af + � , + yti respectively were estimable. In both 
cases all other estimable functions were linear combinations of these, and in 
neither case were µ, the α*, nor the ßj individually estimable—nor the � �  
in the interaction case. In special cases of restricted models, usually with 
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balanced data, these individual elements can become estimable (as discussed 
in Sees, lh and 2g) but in general they are not. However, on writing 
Pa = f* + a i + ßj m the no-interaction model, we can say that in each 
model the basic underlying estimable function is � �3 (appropriately defined) 
for ni3 ^ 0. This fact gives rise to considering what may be called µ^-models. 

A µ^-model consists of simply writing (in the interaction case) 

where the eijk�s have the same distributional properties as before. Then � �3� 
for ni3- y£ 0 is estimable, with b.l.u.e. yijt and v(/ui3) = o2/ni3. Any linear 
function of the estimable µ,/s is estimable, ^ µ for example, with b.l.u.e. 
k'y and variance k'D{l/^}k(r2; and any hypothesis relating to linear functions 
of the /j's is testable. Also, the reduction in sum of squares for fitting the 
model is 11(� �3) = 2 Σ � �$%. > the same reduction as that in fitting any of the 

i J 

models containing yi3—see equations (71) and (72). 
The simplicity of such a model is readily apparent. There is no confusion 

over which functions are estimable, what their b.l.u.e.'s are and what 
hypotheses can be tested. This results from the fact that the µ^-model is 
always of full rank with the corresponding value of X'X being O{ni3} for 
ni3- ?£ 0. The normal equations are therefore quite straightforward with 
simple solutions µ = y, where µ is the vector of //'s and y the corresponding 
vector of observed cell means. 

The /^-models have the property that the number of parameters in a model 
exactly equals the number of filled cells, thus giving rise to the full rank 
nature of the normal equations. The reason is that the model so specified 
is not over-specified as it is in using the customary //, α/s and ß/s. For ex-
ample, in the no-interaction model there are, with a rows and b columns, 
1 + a + b parameters, but only a + b — 1 linearly independent means 
from which to try to estimate them. With the interaction model there are, 
for s filled cells, 1 + a + b + s parameters but only s linearly independent 
means. In both cases, therefore, there are more parameters in the model than 
there are linearly independent means in the estimation process. Hence it is 
impossible to estimate every parameter individually. The µ^-model is 
therefore conceptually much easier: there are exactly as many µ^-'s to be 
estimated as there are observed (cell) means, with a one-to-one correspond-
ence. 

From the sampling viewpoint this is appropriate, because to the person 
whose data are being analyzed the important thing is the s populations corre-
sponding to the s observed sample means yi}. . Each of these is an estimator of 
the mean of the population from which the yijk�s are deemed to be a random 
sample. These populations are the factor of underlying interest, and therefore 
the yijm% the sample means, as the estimators (b.l.u.e.'s) of the population 
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means, are the foundation of the estimation procedure. So far as estimating 
functions of these population means and testing hypotheses about them is 
concerned, it is up to the person whose data they are (aided, presumably, by 
a statistician) to specify in terms of the µ,/s the functions and hypotheses 
that are of interest to him. This, of course, is done within the context of the 
data and what they represent. In short, the situation is no more than that of 
estimating population means and functions of them and testing hypotheses 
about them. Just which functions and which hypotheses is determined by the 
contextual situation of the data. Speed (1969) gives a very complete discus-
sion of this whole topic, and Urquhart et al. (1970), in considering certain 
aspects of it, trace the historical development of linear models as we use them 
today. 

As an example, the experimenter, or person it is whose data are being 
analyzed, can define row effects as 

b 

3=1 

by giving to ti3- any value he pleases. Then the 
b 

b.l.u.e. of f t i s ßi = Σ *·*&*· 
with 

v(ßi) = #2 2 ί>«. 
3 

The hypothesis H: all p{ equal can then be tested using 

� � �� � � -
i 

2 ßi/v(ßi) */i imßd] 
(a-I) 

as given by Henderson (1968). Proof of this result is established in the same 
manner as is that of equation (122)—see Exercise 17. 

Novel as this simplistic approach might seem, it is in essence not at all 
new, for it long preceded the analysis of variance itself. Urquhart et al 
(1970) have outlined how Fisher's early development of analysis of variance 
stemmed from ideas on intra-class correlation. Establishment of models with 
elements µ, α,-, ßs and so on, such as are currently familiar, followed the 
analysis of variance and did not precede it. Prior to it there is a plentiful 
literature on least squares (354 titles in a bibliography dated 1877—loc. cit.), 
based essentially on the estimation of cell means. Any current or future 
adoption of this handling of linear models would therefore represent no new 
basic concept. Success in doing this does, however, demand of today's readers 
a thorough understanding of current procedures. 
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E X E R C I S E S 

1. For the data of Table 7.1 obtain b° such that � �  = aj = 0, and check the values 
of R(oc | � , � ) and � (� 9 α, � ) in so doing. 

2. Define 
n� = [ifi. � � � na.]9 m�a = [n1( nab^ 

� �  = 

y �  

y.b-i 

and DÄ = 

r ' .&-i 

With these definitions and those given in (19), and using Λ.., Λ.&, ymm and y,b: 
(a) /Rewrite the normal equations (12). 
(b) Express b° of (20) as GX'y and so derive G of (21). 
(c) Show that X'XGX'X = X'X. 

3. In Table 7.1 change the observation for stove W and pan A from 6 to 12 and 
repeat the analyses of Table 7.2. What conclusions do you draw? 

4. In Table 7.1 change the observation for stove W and pan A from 6 to 15 and 
repeat the analyses of Table 7.2. What conclusions do you draw? 

5. Repeat Exercise 1 for the data of Exercises 3 and 4. 

6. (a) Derive the inverse of 

A = xJ + O{yt} 

� � � ={� � } for i = l , 2 , ...,n 

1 x 
as 

with y% 
y-(i +x%x�y) 

and 
Wi-y +sJEl/2/fl 

for i j* i . 

(b) With xim = 2 Xij/rii and x�  = ]Γ Σ xaln� s n o w t n a t 

a a a 

�  (*i. - 5<.)2(Λ.· - *?/*.) - Σ Σ (*ι. - **·.κ*ι. " *i�>>ini�ln� 
i=2 i^i�^l 

a 

= 2«i(^�. - * . ) 2 � 
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(c) For the hypothesis 
a 

H: equality of ßs + £ � ^� ^ for all j 

in the no-interaction 2-way classification model, show that the F-statistic 
reduces, as in Table 7.3c, to 

F(�  | � ) = ( J > , � ^ - *.i?.)/(A - IM2 

7. When /i^· = 1 for all i and y, show that the method of solving the normal 
equations for the no-interaction model by solving equations (14) and (15) 
leads to solutions 

a? = Vi. ~ V.. + ymb for all i 

and �  = gmj - ymb for j = 1, 2 , . . . , b - 1, 

with µ° = 0 = ß� h. 
8. Suppose the lost observations of Table 7.1 are found to be 13 and 5 for pans A 

and B, respectively, on stove Y and 12 for pan B on stove Z. Solve the normal 
equations for the complete set of (now balanced) data by the same procedures 
as used in equations (3)-(ll). In doing so, verify the results of Exercise 7. 

9. Show that when all nio = 1, the equation Cß° = r in (16) has 

C = al — (a/b)J and r = a(yß — yml) 

and hence ß° = C- 1r = yß - £&1, 

as obtained in Exercise 7. From this show that (32) becomes 

R(ß | α, � ) = ß*'r = a J V% - abyl = | Σ ($., - V.f 

of Table 7.5. Thence show that when nu = 1 for all / andy, Tables 7.3b and 
7.3c simplify to Table 7.5. (Note: All matrices and vectors are of order b — 1; 
J has all elements unity; and y�ß = [y.x · · · y.f,^].) 

10. Four men and four women play a series of bridge games. At one point in their 
playing their scores are as shown below. 

Bridge Scores (100's) 

Men 

Women 

P 
Q 
R 
S 

A 

8 
13 
— 
12 

B 

— 
— 

6 
14 

C 

9 
— 
14 
10 

D 

10 
— 
— 
24 
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The blanks are scores which were lost by the scorekeepers. Carry out an analysis 
of variance procedure to investigate differences between players of the same 
sex. 

11. Use equation (69) and Table 7.8 to confirm Table 7.7. 

12. For the data of Table 7.6 establish which of the following functions are 
estimable and find their b.l.u.e.'s. 

(a) a2 - a3 + � �  + � 21 - \{� �  + & + r33 + Vzd 

� ) h ~ ßs + i (a 2 - αχ) + i(y22 + y32 - y13 - y33) 
(c) ax - a2 + J ( ^ - ß2) + l ( y n - y12) 
(</) & - ft, + £(y22 + y32) - 4(y18 + 2y33) 
(«0 r n ~ 7i2 - y2i + r22 

( / ) y n - ri4 - y2i + ^22 - r32 + ^ 4 
13. Set up a linear hypothesis which is tested by F(ß | � ) in Table 7.7c and show 

that its numerator sum of squares, is 37-f-£. 

14. Set up a linear hypothesis which is tested by F(ß | � , α) in Table 7.7b and show 
that its numerator sum of squares is 36-f-j*-. 

15. For the second function of y's in (111), find an equivalent function of µ^-'s 
different from those given in (115) and (116). 

16. Formulate a hypothesis, different from that in (111), to be tested by 
F(y I � , α, � ) of Table 7.7. 

17. Derive equations (122) and (130), and show that when ni3- = n for all i a n d / 
a 

they both reduce to 2 £«(&.. — y...)2l(a — l)^2· 

18. An illustration of unbalanced data used by Elston and Bush (1964) is the 
following. 

Level of ^-factor 
Level of 
α-factor l 2 3 Total 

Observations 
1 2 ,4 3 ,5 2 ,3 19 
2 5 ,7 — 3,1 16 

Total 18 8 9 35 

Calculate Table 7.8 for these data. An "analysis of variance" given by Elston 
and Bush shows the following sums of squares. 

A 3.125 
B 12.208 
Interaction 6.125 
Error 8.500 
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Show that the sum of squares designated A is R(OL | µ, � ) and that denoted by 
B is R(ß | � , α). Write down hypotheses tested by the F-statistics available 
from your calculations and verify their numerator sums of squares. 

19. Calculate analyses of variance (Table 7.8) for the following data. 

ß-factor 

α-factor Level 1 Level 2 Level 3 

Observations 
Level 1 13, 9, 8, 14 9, 7 — 
Level 2 1 ,5 ,6 13,11 6 ,12 ,7 ,1 1 

Establish the hypothesis tested by F(y | /<, α, � ). 

20. Suppose a 2-way classification has only 2 rows and 2 columns. Prove that 

R(<x | � ) = nlmn2.(Slmm - S2..)2/«.. , 

� Riß | /'> °0 = (.V.l. - *11#1.. - "2l£2..)2/Kl"12/>!1. + >hln22l"2.) 

and 

&(V | � , α , ß) = ( in . ~ 5i2. ~ ^2i. + %2)2/(l/«n + l//i12 + 1/II21 + 1/Λ22). 

Write down analogous expressions for R(ß | /<) and Λ(α | //, )?). Illustrate 
these results by calculating analyses of variance (Table 7.8) for the following 
data in a 2 x 2 experiment. 

ß-factor 

α-factor Level 1 Level 2 

Observations 
Level 1 9, 10, 14 2, 4, 2, 3, 4 
Level 2 63 10, 12, 15, 14, 15, 18 

21. In Table 7.1, Table 7.6, Exercises 10, 18 and 19, show that the data are 
connected. 

22. Suppose that data occur in the following cells of a 2-way classification: 

(1,1), (2, 3), (2,6), (3,4), (3,7), (4,1), 
(4, 5), (5, 2), (5, 4), (5, 7), (6, 5) and (7, 6). 
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Establish which sets of data are connected. Write down the degrees of freedom 
for an analysis of variance of each set of data and for a pooled analysis. What 
would the degrees of freedom be for wrongly analyzing such data ignoring 
their disconnectedness ? Give examples of estimable and non-estimable functions 
(assuming a no-interaction model). 

23. In the 2-way classification no-interaction model, use the hypotheses tested by 
F(OL | � ) and F(OL | µ, � ) to explain the conclusions suggested in the first two 
columns of the last row of Table 7.4. 



CHAPTER 8 

SOME OTHER ANALYSES 

Chapters 6 and 7 illustrate applications of the general results of Chapter 5 
(models not of full rank) to specific models that often arise in the analysis of 
unbalanced data. The present chapter briefly discusses three additional 
topics: the analysis of large-scale survey-type data, the analysis of co variance 
and some approximate analyses for unbalanced data. In no sense is there an 
attempt at completeness in the discussion of these topics. They are included 
for the sake of referring the reader to some of the other analyses available in 
the literature, with the object of providing him with a connecting link 
between those expositions and the procedures that have been developed in the 
earlier chapters of this book. 

1. LARGE-SCALE SURVEY-TYPE DATA 

Behavioral scientists of many different disciplines often undertake surveys 
involving the personal interviewing of individuals, heads of households and 
others. The data collected from such surveys are frequently very extensive. 
Not only may many people have been interviewed but each of them may have 
been asked numerous questions, so that the resulting data consist of observa-
tions on numerous variables and factors for a large number of people. Some 
of the problems of analyzing such data by the procedures of Chapter 5 are 
now discussed. The following example serves as illustration. 

a. Example 
The Bureau of Labor Statistics Survey of Consumer Expenditures, 1960-

61, provides an opportunity for studying patterns of family investment, such 
as expenditures on equities, durables and human components of the nature 

[332 ] 

Linear Models 
by S. R. Searle 

Copyright © 1971 John Wiley & Sons, Inc. 



[8.1] LARGE-SCALE SURVEY-TYPE DATA 333 

TABLE 8 . 1 . SOME OF THE FACTORS AVAILABLE ON THE 
DESCRIPTION OF A HOUSEHOLD IN THE BUREAU OF 

LABOR STATISTICS SURVEY OF CONSUMER EXPENDITURES, 
1960-61 

Factor 

1. Occupational class of head of household 
2. Income 
3. Education of head of household 
4. Race of head of household 
5. Number of full-time earners in household 
6. Family status (just married, 1 child, etc.) 
7. Family size 
8. Degree of urbanization 
9. Geographical region 

Total number of levels in 9 factors 

Number of 
Levels 

12 
11 
4 
3 
4 
6 
6 
6 
4 

56 

of medical expenses, education and so on. The survey gathered data on 
many characteristics of each household interviewed. Som^ of those char-
acteristics, coded as factors with different numbers of levJs and used by 
Brown (1968), are shown in Table 8.1. The basic survey, based on a stratified 
sampling plan, included some 13,728 family units, of whom 8,577 were 
deemed by Brown (1968) to be suitable for studying patterns of family 
investment. (Exclusions were made of those family units not having a male 
as head of the family, or having only one person in the family, and so on.) 
Of the many questions of interest in such a study one of particular concern 
was, "To what extent is expenditure on durables affected by the factors 
listed in Table 8.1 ?" One way of attempting to answer this question might be 
by fitting a linear model to the variable "expenditure on durables". 

b. Fitting a linear model 
Data of the nature just described should, of course, be subjected to careful 

preliminary examination before any attempt is made to fit a model involving 
as many as nine factors, like those of Table 8.1. Various frequency counts and 
plots of the data, for example, could be included in such examination. Sup-
pose, however, that this examination was made and a linear model, along 
the lines of Chapters 5-7, was fitted to take account of the factors shown in 
Table 8.1. Some of the difficulties involved in trying to fit such a model are 
now discussed. 

A model that would have main effects for each of the nine factors of Table 
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8.1 could also include all possible interactions among those factors. These 
would include 1,353 first-order interactions, 18,538 second-order interactions, 
• · · and 5,474,304 ( = 12 x 1 1 x 4 x 3 x 4 x 6 x 6 x 6 x 4 ) eighth-
order interactions [interactions between a level of each of the nine factors-
see Sec. 4.3d(iii)]. Two questions are immediately apparent: What is the 
meaning of a high-order interaction such as one of order 8, and how can we 
handle large numbers of interactions of this nature? 

The answer to the second of these questions allows us to avoid, in large 
measure, answering the first. Only if the data consist of at least one observa-
tion in every sub-most cell of the data, in this case in every one of the 
5,474,304 sub-most cells—only then can we handle all the interactions. Since 
there are only 8,577 observations in the data, the interactions cannot all be 
considered. This state of affairs is likely to prevail with multi-factor survey 
data generally, because the number of sub-most cells in the model equals 
the product of the numbers of levels of all the factors. Furthermore, having 
data in every sub-most cell requires having data in certain cells that are 
either empty by definition or, by the nature of the factors, are almost certain 
to be empty, even in the population. For example, if "just married" of factor 
6 in Table 8.1 excludes second marriages and other complications, those 
households characterized as "just married" cannot have more than 2 full-time 
workers (factor 5). Similarly, it seems unlikely that, for example, a household 
of 8 persons (factor 7), with 1 full-time earner (factor 5), where the head of the 
household did not finish high school (factor 3) and is in the lowest socio-
economic occupational class (factor 1)—it seems unlikely that such a house-
hold would be in the highest income group (factor 2). Consideration of all 
possible interactions is therefore rarely feasible. 

Even when all cells are filled, and the data could be analyzed using a model 
that included all interactions, the interpretation of high-order interactions 
is usually difficult. For example, can we give a reasonable description in 
terms of the source of our data of what we mean by an eighth-order inter-
action? 1 doubt it. Indeed, it is probably fair to say that we would have 
difficulty in meaningfully describing interactions of order greater than 1, 
certainly of order greater than 2. First-order interactions can be described 
and understood reasonably well (see Sec. 4.3d), but interpretation of higher 
order interactions can present some difficulty. We therefore suffer no great 
loss if the paucity of data prevents including such interactions in our model. 
Fortunately, whereas survey data seldom enable all interactions to be 
included in a model, they are oft-times numerous enough to provide con-
sideration of first-order interactions, which are the interactions we can most 
readily interpret. This is the case with the data of 8,577 observations in 
Brown (1968). They are sufficiently numerous to consider the 56 main effects 
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of Table 8.1, together with the corresponding 1,353 first-order interactions— 
but not the 18,538 second-order interactions. 

Even when data are sufficient in number to consider first-order interactions 
we may not want to include them all in the model. For example, with the 9 
factors of Table 8.1 there are 36 different kinds of first-order interactions 
[!«(« — 1) kinds for n factors]. The choice of which to include in a model is 
always that of the person whose data are being analyzed. It is he who should 
know his data well enough to decide which of the interactions should be 
considered and which should not. Even with just first-order interactions it is 
a choice which may not always be easy. Moreover, we will see that multi-
factor models without any interactions present difficulty enough in interpreta-
tion, difficulty that is only further compounded by having interactions. 

c. Main-effects-only models 
The quandry of which interactions to include in a model can be avoided by 

omitting them all. The model then involves just the main effects—effects for 
each of the 56 levels of the 9 factors in Table 8.1. Clearly such a model is a 
great deal easier, conceptually, than one involving numerous interactions, 
the choice of which for inclusion in the model may be a matter of question. 
However, easier though this model appears, it too has some difficulties. The 
first is an extension of the duality apparent in Tables 7.2b and 7.2c. There, for 
the 2-way classification, we could consider reductions in sums of squares 
R(OL | � ) and R(ß | � , a) or R(ß | � ) and R(oi | � , � ): there are 2 sequences in 
which the main effects can be fitted, either oc and then �  or �  and then a. 
But with the 9 factors of Table 8.1 there are 9! = 362,880 sequences in which 
the main effects can be fitted. The choice of which sequence to use in the 2-way 
classification of Chapter 7 may be immaterial because there are only two 
sequences and it is relatively easy to look at both, but with 362,880 sequences 
in the 9-way classification it is essential to decide which few of them are 
going to be considered. This is a decision for the person whose data are being 
analyzed—and, again, it is often a decision that is not easy to make. An «-way 
classification has n! sequences in which the main effects of the n factors can be 
fitted. Table 8.2 shows the 3! = 6 sets of reductions in sums of squares that 
could be calculated for a 3-way classification. 

Reductions in sums of squares such as are shown in Table 8.2 are sometimes 
said to "add up"—they add up to SST = y'y, the total uncorrected sums of 
squares of the observations. Often, of course, the 7?(µ) term is not shown in 
the body of the table but is subtracted from SST to have the other reductions 
in sums of squares adding up to SSTm = SST — R(� ) = Σ y2 — Ny2. 

.F-statistics implicit in any of the sets of reductions of sums of squares 
illustrated in Table 8.2 can be used in either of two ways, as they are in 
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TABLE 8 . 2 . SETS OF REDUCTIONS IN SUMS OF SQUARES FOR A 
3-WAY CLASSIFICATION, MAIN-EFFECTS-ONLY MODEL, 

WITH MAIN EFFECTS α , �  AND �  

� (� ) 
*(a | � ) 

Riß\ � ,� ) 

� (� \� ,*,� ) 
SSE1 

SST1 

*(� ) 
�(� | � ) 

RiV \ � , �) 

� (� \� ,*,� ) 

SSE 

SST 

*(� ) 

Riß | � ) 

*(� \� ,� ) 

*(� \� 9&,� ) 
SSE 

SST 

� (� ) 

Riß | � ) 

*(� \� ,� ) 
� (� \� ,� ,� ) 

SSE 

SST 

*(� ) 

Riy 1 � ) 
R(a | � , � ) 

Riß | � , �, � ) 
SSE 

SST 

*(� ) 

*{� \� ) 

*(� \� .� ) 
� (� \� ,� ,� ) 

SSE 

SST 

1 SSE = y�y - Ri� , � , � , � ) and SST = y�y = �  y* 

Chapter 7 for the 2-way classification. There, as discussed in Sec. 7.1e(vi), 
they are used for testing the effectiveness—in terms of explaining variation in 
y—of having certain main effect factors in the model. However, just as in 
Table 7.2 there are 2 possible ways of testing the explanatory power of having 
a in the model (a before �  and a after ß), so in Table 8.2 there are, for the 
3-way classification, 4 ways of testing the effectiveness of a: based on i?(a | � ), 
jR(a | � , � ), R(OL | � , � ) or R(OL | � , � , � ). For the «-way classification there 
are 2n~x ways of testing the effectiveness of a factor in this manner; e.g., 
28 = 256 for the 9-way classification of Table 8.1. This is a direct outcome of 
there being n\ sequences in which n main effect factors can be fitted; i.e., n\ 
sets of reductions in sums of squares of the nature illustrated in Table 8.2. The 
tests of the explanatory power of having any particular main effect in the 
model therefore depend, very naturally, on the sequence chosen for fitting 
the main effects. 

The F-statistics can also be used, as in Sec. 7.1g, for testing hypotheses 
about the elements of a main-effects-only model. Here, however, just as in 
Sec. 7.1g, the only hypotheses that relate to these elements in a clear and 
simple fashion are those based on fitting one factor after fitting all the others. 
The hypothesis tested is that the effects of all levels of that factor are equal. 
For example, in Table 8.2 the hypothesis tested by F(K \ � , � , � ), based on 
R(OL | � , � , y), is H: a's all equal; similarly F(ß \ � , α, � ) tests H: ß�s all 
equal. This is true in general: F(a | � , � , � , � ,. . . , θ) tests H: a's all equal, 
where � , � , � , . . . , �  represents all the other main effect factors of a model. 
The other F-statistics that can be calculated provide tests of hypotheses 
that involve a complex mixture of the effects in the model, just as (Rß | � ) 
tests the hypothesis of (48) given in Sec. 7.1g. For example, F(a | � , � ) from 
Table 8.2 will test a hypothesis that involves ß�s and y's as well as a's. 

Difficulties involved in testing hypotheses by means of reductions in sums 
of squares that "add up" have just been highlighted: choice of sequence for 
fitting the factors, and the complex nature of the hypotheses tested by the 
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F-statistics other than F(OL \� ,� , � , � , . . . , 0). However, this in no way affects 
the use of the general formula 

F(H) = (K'b0 - m),(K,GK)-1(K,b° - m) /^ 2 

for testing any testable hypothesis K'b = m [see equation (70) of Sec. 5.5b]. 
It is as applicable to situations like that of Table 8.1 as it is to anything 
discussed in Chapters 5, 6 and 7. As always, of course, one must first ascertain 
the estimability of K'b. But within the confines of estimability F(H) can 
always be used, and its use is not necessarily related to any set of sums of 
squares that "add up" to SST. 

d. Stepwise fitting 
When using multiple regression there may, on occasion, be serious doubt 

about which #-variates from a large available set of #'s should be used in the 
regression model. This difficulty has led to the development of several pro-
cedures for letting the data select a "good" set of a>variates, good in the sense 
of accounting for variation in y in some manner. The various procedures 
available differ solely in the criterion that each uses for selecting a "good" 
set. For example, one procedure fits one x-variate, then includes another, and 
then another and so on. At each step an ^-variate is selected, from those not 
already chosen, which leads to the greatest reduction in the residual sum of 
squares. A lucid description of this and most of the other procedures is given 
in Draper and Smith (1966, Chapter 6), with interesting extensions in LaMotte 
and Hocking (1970) and the references shown there. We give no details of 
these selection procedures here, but simply point out their application to the 
fitting of multi-factor models. Instead of applying any one of these selection 
procedures to single x-variates it can be applied to the sets of dummy (0, 1) 
variables corresponding to each factor in a model. Then, rather than our 
having to decide, a priori, in which sequence the factors should be fitted, we 
could use what might be called "stepwise fitting of factors". This would 
determine, from the data, a sequential fitting of the factors which, in some 
sense, ranked the factors in decreasing order of importance insofar as account-
ing for variation in y is concerned. In this way, for example, rather than our 
selecting one of the sequences implicit in Table 8.2, the data would be used to 
select one for us. As a result of the stepwise regression technique, the basis 
of the selection would be using reductions in sums of squares, R( )-terms, 
as indicators of the extent to which different models account for variation in y. 

e. Connectedness 
It may sometimes be taken for granted that the difference between the 

effects of every pair of levels of the same factor is estimable in a main-
effects-only model. Indeed this is often so, but it is not universally the case. 
Sufficient conditions for such differences to be estimable are those set out by 



338 OTHER ANALYSES [8.1] 

Weeks and Williams (1964) for data to be connected. Suppose there are p 
factors (and no interactions) in a model, and that the levels of those factors 
for an observation are denoted by the vector 

i' = [/Ί i2 · · · ij. 

Then two such vectors i are defined as being nearly identical if they are equal 
in all except one element. Then data sets in which the i-vector of each observa-
tion is nearly identical to that of at least one other observation form connected 
sets of data. A procedure for establishing such sets is given by Weeks and 
Williams (1964). It is an extension ofthat given in Sec. 7.4 for the 2-factor 
model. 

As Weeks and Williams (1964) point out in their errata (1965), their 
conditions for data to be connected are sufficient but not necessary. Data can 
be connected (in the sense of intra-factor differences between main effects 
being estimable) without being nearly identical in the manner just described. 
Fractional factorial experiments are a case in point. For example, suppose 
for the model , , 0 , 

Vm = �  + *i + Pi + 7k + eijk 

with i,j and k = 1, 2 we have the data y112, y211, 2/121 and y222. No pair of 
these 4 observations is nearly identical, and yet 

£K2/l l2 - 2/211 + 2/121 - 2/222) = 0^ - 0C2 . 

Similarly � �  — � 2 and � �  — � 2 are also estimable and thus all intra-factor 
differences between main effects are estimable. In that sense the data (which 
represent a ^-replicate of a 23 factorial experiment) are connected, although 
they have no property of being nearly identical. This exemplifies why the 
general problem of finding necessary conditions for main effect differences 
to be estimable remains as yet unsolved. 

f. /^-models 
What has been said about the difficulties of using a main-effects-only model 

for analyzing large-scale survey-type data applies even more to the analysis of 
such data using models that include interactions. The sequences in which the 
factors can be fitted, using reductions in sums of squares that add up to SST, 
are then more numerous; the hypotheses tested by the resulting F-statistics 
are more complicated (e.g., see Sec. 7.2f); and the problem of connectedness, 
in terms of the definition given in Sec. 7.4, is more acute. The example of 
Table 8.1 illustrates this. There we have 5,474,304 cells in the data, i.e., 
5,474,304 different ways in which a household in the survey could be de-
scribed by the 9 factors of Table 8.1. Yet the total number of households in 
the survey is only 13,728. Such data will almost assuredly not be connected. 

In view of these difficulties with models that include interactions the main-
effects-only models appear more feasible, despite their own difficulties, 
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discussed in subsection c. They also have one further problem: that of 
complete neglect of interactions. In practice this may be a grave omission, 
because in situations involving many factors, as in Table 8.1, one frequently 
feels that interactions between the factors do, most assuredly, exist. This being 
so, it is not very appropriate to ignore them and proceed to make an analysis 
as if they did not exist. One way out of this predicament is to use the � ��  

model concept discussed in Sec. 7.5. In this we look at the means of the sub-
most cells of the data. By "sub-most cells" we mean those cells of the data 
defined by one level of each of the factors. In the two-way classification of 
Chapter 7 a sub-most cell is the cell defined by a row and a column; in the 
9-way classification of Table 8.1 a sub-most cell is that cell defined by one 
level of occupational class, one level of income, one level of education of 
head and so on. The total number of possible sub-most cells is the product 
of the numbers of levels in the classes—5,474,304 in Table 8.1. The number of 
sub-most cells in the data is the number of the possible sub-most cells that 
have data in them. Call this number s. Then, no matter how many factors 
there are or how many levels each has, the mean of the observations in each 
sub-most cell is the b.l.u.e. of the population mean for that cell. Thus if yr 

is the mean of the nr observations in the rth sub-most cell, for r = 1,2,. . . , s, 
then yr is the b.l.u.e. of � �, the population mean of that cell. Furthermore, 

s s s 

the b.l.u.e. of any linear function ]£ \<��� � is 2 KVr w i t n variance σ2 ^ Klnr · 
r=l r=l r=l 

Also, any hypothesis concerning a linear function of the µ/s is testable. Thus 

H: ikrAir = m (1) 
can be tested by comparing 

( Σ ^ Γ - m ) 
F(H) = ^� �— �- (2) 

o2lkllnr 
r=l 

against the F-distribution with 1 and (n, — s) degrees of freedom. The estima-
tor of σ2 in this expression is the simple within sub-most cell mean square, 
namely 

s nr 

*2 = � � ( ^ - & ) > � - * ) � (3) 
r=l i=l 

The numerator here is, of course, identical to the SSE that would be derived 
by fitting a model that had in it all possible interactions. 

F(H) of (2) provides a means of testing a hypothesis about any linear 
function of the population sub-most cell means. Just what hypotheses get so 
tested is the prerogative of the person whose data they are. All he need do is 
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formulate his hypotheses of interest in terms of the sub-most cell means. 
Whilst this may be no easy task in many cases, it is at least uncomplicated by 
the confusions of estimability and interactions. Furthermore, hypotheses 
about sub-most cell population means can be tested simultaneously by a 
natural extension of the standard results for testing K'b = m in Chapters 
3 and 5. Thus if µ is the vector of sub-most cell population means and y the 
corresponding vector of observed means, then 

H: Κ 'µ = πι, (4) 

consisting of s LIN functions Κ'µ, is tested by using 

F(H) = (K'y - m)/[K'D{l/«r}K]-1(K> - m) /^ 2 (5) 

where D{l/«r} is the diagonal matrix of the reciprocals of the numbers of 
observations in the sub-most cells containing data. 

Repeated use of (2) and/or (5) does not provide tests whose F-statistics have 
numerator sums of squares that are independent, as is the case when using 
sums of squares that "add up", in the manner of Table 8.2. However, as we 
have seen, hypotheses tested by use of the latter do not involve simple 
functions of the parameters of the model. In contrast, the hypotheses in (1) 
and (4), which are tested by means of (2) and (5), are in terms of straight-
forward linear functions of sub-most cell population means. Further dis-
cussion of these procedures can be found in Speed (1969) and Urquhart 
et al. (1970). 

2 . COVARIANCE 

The elements of X in the equation y = Xb + e used in the regression model 
(Chapter 3) are observed values of #'s corresponding to the vector of observa-
tions y. In Chapter 4 we saw how the same equation can be used for linear 
models involving factors and interactions by using for x�s dummy variables 
that take the values 0 or 1; Chapter 5 gives the general theory and Chapters 
6 and 7 contain examples of this. We now consider the case where some of the 
elements of X are observed x�s and others are dummy (0, 1) variables. Such a 
situation represents a combining, into one model, of both regression and 
linear models involving factors and interactions. It is generally referred to as 
covariance analysis. The basic analysis is that of the factors-and-interactions 
part of the model suitably amended by the presence of the x-variates—the 
co variables of the analysis. 

General treatment of the model y = Xb + e is given for X of full column 
rank in Chapter 3 and for X not of full column rank in Chapter 5. These two 
chapters cover regression and what we may call the factors-and-interactions 
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models. With X having full column rank being just a special case of X not 
having full column rank, the procedures of Chapter 5 apply in general for all 
kinds of X-matrices. In particular they are applicable to the analysis of 
covariance. Conceptually there is no distinction between the analysis of 
covariance and what we have already considered. The sole difference is in 
the form of the elements of X. In regression (Chapter 3) the elements of X 
(apart from the column 1 corresponding to � ) are observed x�s; in factors-
and-interactions models (Chapters 5, 6 and 7) the elements of X are 0 or 1 
corresponding to dummy variables. With analysis of covariance, some of the 
elements of X are dummy variable O's and l's and some are observed values 
of x-variables. Thus, conceptually, there is nothing new in the analysis of 
covariance. It involves fitting a model y = Xb + e where some elements of b 
are effects corresponding to levels of factors and interactions, in the manner 
of Chapters 5-7, and some are regression-style coefficients of z-variates, in 
the manner of Chapter 3. Within this context, the procedures for solving 
normal equations, establishing estimable functions and their b.l.u.e.'s, 
testing hypotheses and calculating reductions in sums of squares all follow 
the same pattern established in Chapter 5 and summarized at the beginning 
of Chapter 6. No additional concepts are involved. Furthermore, the "recipes" 
for covariance analysis for balanced data that are to be found in many texts 
[e.g., Federer (1955, Chapter XVI) and Steel and Torrie (1960, Chapter 15)] are 
just the consequence of simplifying the general results for unbalanced data. 

a. A general formulation 
(0 The model. Distinguishing between the two kinds of parameters that 

occur in b when using the model y = Xb -f e for covariance analysis will be 
achieved by partitioning b into two parts: a for the general mean �  and the 
effects corresponding to levels of factors and their interactions, and b for the 
regression-style coefficients of the covariates. The corresponding incidence 
matrices will be X for the dummy (0, 1) variables and Z for the values of the 
covariates. In this way the model is written as 

y = Xa + Zb + e (6) 
where e = y — E(y), with E(e) = 0 and var(e) = � 21 in the customary 
manner. In this formulation X does not necessarily have full column rank 
but we will assume, as is usually the case, that Z does. Thus X'X has no 
inverse, where (Z'Z)- 1 exists. Furthermore, we make the customary and 
realistic assumption that the columns of Z are linearly independent of those 
of X. 

(ii) Solving the normal equations. The normal equations for a0 and b° are, 

� � ��  � �� �  

Z�X Z�zJ 
= 

"X�y" 

Z�y_ 
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Suppose (X'X)~ is a generalized inverse of X'X. Then the first equation of (7) 
gives 

a0 = (X'X)-(X'y - X�Zb0) 
= (X'X)-X'y - (X'X)-X'Zb0 

= a* - (X'X)-X'Zb0 (8) 
where a* = (X'X)~X'y 

is the solution of the normal equations for the model without covariate. 
Substituting for a0 into (7) gives the solution for b°: 

b° = {Z'[I - Χ(Χ'Χ)-Χ']ΖΓΖ'[Ι - X(X'X)-X']y (9) 

where again the superscript minus sign designates a generalized inverse. 
Substitution of (9) into (8) then gives a0 explicitly. Solutions (8) and (9) are 
exactly the same results as would be obtained by using the expression for a 
generalized inverse of a partitioned matrix given in Sec. 1.7. 

Several features of (9) should be noted. First, although (X'X)- is not 
unique, it enters into b° only in the form X(X'X)~X', which is invariant to 
whatever generalized inverse of X'X is used for (X'X)-. Thus the non-full rank 
property of X does not of itself lead to manifold solutions for b°. Suppose we 
use P for 

P = I - X(X'X)-X' (10) 

which, by Theorem 7 of Sec. 1.5a, is both symmetric and idempotent. Then (9) 
can be written as b° = (Z�PZ)~Z�Py. Symmetry and idempotency of P 
ensure that Z'PZ and PZ have the same rank. Furthermore, the properties 
of X and Z given below (6) guarantee that PZ has full column rank, and 
hence Z�PZ is non-singular (see Exercise 4). Therefore b° is the sole solution 

b° = b = (Z�PZ) ̂ Z P y . (11) 

(///) Estimability. Consideration of the expected value of h of (11) and of 
a0 of (8) show that b is estimable and that X'a is estimable when λ ' = t'X for 
some t'; i.e., b is always estimable and X'a is estimable whenever it is estimable 
in the model that has no covariates (See Exercise 4). 

(iv) A model for handling the covariates. The estimator h shown in (11) 
is the b.l.u.e. of b in the model (6). By the nature of (11) it is also the b.l.u.e. 
of b in the model having equation 

y = PZb + e. (12) 

This, we shall see, provides a convenient method for estimating b. 
Recall that in fitting a model of the form y = Xa + e the vector of esti-

mated expected values y corresponding to the vector of observed values y is 
y = X(X�X)~X�y [equation (10), Sec. 5.2c]. Therefore the vector of residuals, 
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i.e., the vector of deviations of the observed values from their corresponding 
estimated values, is y — y = y — X(X'X)~X'y. This, using P of (10), gives 

y - y = Py. 

Thus Py is the vector of y-residuals after fitting the model y = Xa + e. 
Similarly, if theyth column of Z is zj, theyth column of PZ in (12) is Pz; , the 
vector of zrresiduals after fitting the model1 z; = Xa + e. Thus with 

Z = {z,} for y = 1,2 9 

we write R2 for PZ and have Rz as the matrix of residuals : 

R2 = PZ = {Pz,} = {z, - z,} = {z, - X(X'X)~X'z,}. (13) 

Hence the model (12) is equivalent to the model 

y = R2b + e, (14) 
and h of (11) is 

b = ( R . R ^ R . y . 
Rz is a matrix of the same order as Z with its columns being columns of 
residuals as given in (13); R2R2 is a matrix of sums of squares and products of 
z-residuals; and R2y is a vector of sums of products of z-residuals and the 
^/-observations. 

(v) Analyses of variance. The reduction in sum of squares for fitting a 
linear model is the inner product of a solution vector and the vector of 
right-hand sides of the normal equations [e.g., equation (14) of Sec. 5.2f]. 
Hence the reduction in sum of squares for fitting the model (6) is, from (7), 
(8) and (11), 

Ä(a,b) = ae'X'y + fc'Z'y. 

[b in the notation 7?(a, b) emphasizes the fitting of a vector of coefficients 
pertaining to the covariates, and a represents the factors-and-interactions 
part of the model, including � .] On substituting for a0 and b from(8) and (11) 
and making use of (10), i?(a, b) reduces to 

i?(a, b) = y'X(X'X)-X'y + y 'PZiZ 'PZ^Z'Py 
= y'X(X'X)-X'y + y'Rz(RzR2)-iR2y. 

This is clearly the sum of two reductions: 

R(a) = y'X(X'X)-X'y = a*'X'y, 
and 

SSRB = y ' R . i R i R J - ^ y = b'R^y, 
i.e., 

JR(a, b) = R(a) + SSRB 

1 I am grateful for discussions with N. S. Urquhart. 

due to fitting y = Xa + e, 

due to fitting y = R2b + e; 
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and so 

R(b | a) = i?(a, b) - J?(a) = SSRB = fc'R^y. 
Thus SSRB is the reduction in sum of squares attributable to fitting the 
covariates, having already fitted the factors-and-interactions part of the 
model. 

Distributional properties of R(a) and R(b | a), based on the usual normality 
assumptions, come from Theorems 2 and 3 of Sec. 2.5. The idempotency of 
X(X'X)-X' and of R / R J R J ^ R ; give 

*(a)/a2~flr(X),AJ 
with � �  = Ma'X'Xa + 2a'X'Zb + b'Z'X(X'X)-X'Zb]/<r2; 
and R(b | a)/a2 ~ � *[r(Z), ^ b R ^ b / a 2 ] . 
Also, i?(a) and R(b | a) are distributed independently because 

x(x'x) -X'R,(R;R,)-IR2 = o, 
since Rz = PZ and X'P = 0 by the definition of P in (10); i?(a) and R(b | a) 
are also independent of 

SSE = y'y - j?(a, b) = y'y - i?(a) - SSRB 
(see Exercise 4), which has a ^-distribution: 

SSE/(72 ~ y2 

These sums of squares are summarized in Table 8.3a. Mean squares and 
F-statistics follow in the usual manner. 

TABLE 8 . 3 a . ANALYSIS OF VARIANCE FOR FITTING COVARIATES 
( b ) AFTER FACTORS AND INTERACTIONS (a) IN THE 

COVARIANCE MODEL y = Xa + Z b + e 

Source of 
Variation d.f. Sum of Squares1 

Factors and interactions 
Mean 
Factors and interactions 

(after the mean) 
Covariates (after factors 

and interactions) 
Residual error N 

KX) 
1 

KX) - 1 

r(Z) 

- KX) - KZ) 

R(a) = y'X(X'X)-X'y 

RW = M/2 

R(JBL | � ) = *(a) ~ *(/«) 

R(b | a) = SSRB 

SSE = y'y - i*(a) - SSR 

Total TV SST = y'y 
1 Rz is the matrix of residuals in (13). 
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The unbiased estimator of σ2 derived from Table 8.3a is 

<i2 = SSE/[7V - r(X) - r(Z)]. 

An alternative to the analysis of variance shown in Table 8.3a is to fit 
the covariates not after the factors and interactions but before them. This 
necessitates calculating R(b | � ) = �1(� , b) — �1(� )9 for which we need 
� (� 9 b), the reduction in sum of squares due to fitting the model 

y = � � + Zb + e. 

This, of course, is simply an intercept regression model, for which 

b = (Jf ' iT)-1 X�y and fi = y - b'z 

as in (41) and (42) of Sec. 3.2. In b, 3t�3£ is the matrix of corrected sums of 
squares and products of the observed z's, and 2£�y is the vector of corrected 
sums of products of the z's and the y�s. Then R(b | � ) that we need here is 
SSRm of (73) in Sec. 3.4f, so that 

R(b | � ) = y'«2f(i2f'^f)-1 Jf'y. 

This reduction in sum of squares is for fitting the covariates after the mean. 

TABLE 8 . 3 b . ANALYSIS OF VARIANCE FOR FITTING FACTORS AND 
INTERACTIONS (a) AFTER COVARTATES (b ) IN THE COVARIANCE 

MODEL y = Xa + Zb + e 

Source of Variation d.f. Sum of Squares1 

Mean 1 R^) = Ny2 

Covariates (after r(Z) R(b | � ) = y�&W&yi&�y 
mean) 

Factors and r(X) - 1 R(a \ � , b) = R(a. \ � ) + SSRB - R(b \ � ) 
interactions (after 
mean and 
covariates) 

Residual error N - r(X) - r(Z) SSE = y'y - R(a) - SSRB 

Total TV SST = y'y 

1 R(a | � ) and SSRB are given in Table 8.3a. 

In addition we need that for fitting the factors and interactions after the mean 
and covariates: 

R(a | � , b) = i?(a, b) - R^, b), 

remembering that a in this notation includes � . On using R(a) + SSRB for 
7?(a, b) as derived in establishing Table 8.3a, and R(b | � ) + 7?(//) = i?(//, b), 
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we have 
R(n | � 9 b) = i?(a) + SSRB - R(b \ � ) - R^) 

= R(a | µ) + SSRB - Ä(b | /i). 

These calculations are summarized in Table 8.3b. 
In both Tables 8.3a and 8.3b the terms � (� ) and R(a | � ) are those famili-

arly calculated in the no-covariate model y = Xa + e. The additional terms 
needed are clearly evident. 

(vf) Tests of hypotheses. The distributional properties of R(b | a) and SSE 
indicate, from (14), that in Table 8.3a 

F(b I a) = 
K(b|a)/r(Z) 

SSE/[N - r(X) - r(Z)] 
tests the hypothesis H: b = 0. 

The hypothesis H: K'a = m is testable provided K'a is estimable, in 
which case the hypothesis can be tested in the usual manner by means of 
F(H) given in equation (70) of Sec. 5.5b. Using that equation with the solu-
tions a0 and b° given in (8) and (9) necessitates having, for the partitioned 
matrix shown in (7), the generalized inverse G that corresponds to those 
solutions, namely 

G = xx x�zn 
Z'X Z Z 

"(X'X)- 0" 

0 0 

+ 
"-(X'X)-X'Z" 

I 
( Z ' P Z ^ t - Z ' X t X ' X r I]· (15) 

This is obtained from (49) of Sec. 1.7. Writing the hypothesis H: K'a = m 
as 

fal 
H: [K' 0] = m 

|_bj 

it will be found that the numerator of F(H) then reduces to 

Q = (K'a0 - m)'[K'(X'X)~K 
+ K,(X'X)-X'Z(Z'PZ)-1Z'X(X'X)-K]-1(K'a° - m). 

We now show that testing H: K'a = 0 in the no-covariance model has the 
same numerator sum of squares as does testing H: K'[a + (X'X)~X'Zb] = 0 
in the covariance model. The solution vector for a in the no-covariance 
model is a* = (X'X)"X'y. From Q of Table 5.9 the numerator sum of squares 
for testing H: K'a = 0 in the no-covariance model is therefore 

Q = a^KtK'iX'XrKJ^K'a*. (16) 
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In the covariance model consider the hypothesis 

H: K�[a + (X�X)-X�Zb] = 0 

which can be written as 

347 

(17) 

H: K�[I (X�X)-X�Z] = 0 or as M� = 0 

with M� = K�[I (X�X)-X�Z]. (18) 

This hypothesis can be tested by an jp-statistic having numerator sum of 
squares (see Table 5.9) 

ß c = [a0' &1M(M'GM)-1M' 

But from (15) and (18), M�GM = K�(X�X)~K, and [a0� fc�JM = a*�K using 
(8), so that Qc becomes 

Qc = (K�a^�tKXX�XrK^K�a* 

= ßof(16) . 

Hence the numerator sum of squares for testing H: K�a = 0 in the no-
covariance model is also the numerator sum of squares for testing 

H: K�[a + (X�X)-X�Zb] = 0 

in the covariance model. This hypothesis appears to be dependent on (X'X)~~. 
It is not, because K' = T'X for some T, since H: K�a = 0 is assumed to be 
testable. 

(vii) Summary. The preceding development of the analysis of covariance 
model 

y = Xa + Zb + e 

can be summarized as follows. First fit 

y = Xa + e 
and calculate 

a* = (X'xrX'y and i?(a) = a*'X'y. (19) 

Then for each column of Z, z,· say, fit 

Zj = Xa + e 

and calculate the ζ,-residual vector 
z. - l, = z. - X(X'X)-X'z,. 
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and the matrix of these residuals 
R2 = {z3- - z,·} for y = l ,2 , 

Rzb + e 

>?� 

Fit 
and calculate 

b = ( R i R ^ R i y 
and R(b | a) = h�R�j. 

The solution vector for the covariance model is then 
a* - (X'X)-X'Zb" 

b 

(20) 

(21) 

(22) 

(23) 

From (15) the variance matrices of these solutions are 

var(a°) = [(X'X)~ + (X,XrX'Z(R32)-1Z,X(X/X)-]a2, 
var(fc) = ( R X ) - V (24) 

and cov(a°, h) = - ( X ' X r X ' Z ( R X ) - V . 

It is clear that, in contrast to fitting an ordinary factors-and-interactions 
model, the clue to the calculations for a covariance model is the derivation of 
Rz. Furthermore, calculation of each column of Rz from the corresponding 
column of Z depends solely on the particular factors-and-interactions 
model being used. No matter what the nature of the covariates, X is the same 
for any specific factors-and-interactions model and this determines the 
derivation of Rz from Z. When considering the same covariates in different 
ways for the same factors-and-interactions model the corresponding Z-
matrices will be different, but the mode of calculating Rz on each occasion is 
always the same. The columns of Rz are always the vectors of residuals 
obtained after fitting the no-covariates model to each column of Z. This is 
illustrated in the examples that follow. 

b. The 1-way classification 
(/) A single regression. A simple adaption of equation (23) in Sec. 6.2a 

gives the equation for a covariance model in the 1-way classification as 
y.. = �  + a, + bziS + eiS (25) 

for / = 1,2, ... ,c andy = 1, 2, . . . , « , . In this model �  and the α/s are the 
elements of a of (6), the scalar b is the sole element of b of (6) and Z of (6) 
is a vector z of the observed values zu of the covariate, with 

Z = [�11 ^12 � Z\nx � � � Zil Zi2 � � � � �� { 

� - zcl Zc2 � " Zcncl (26) 

corresponding to the vector of ^/-observations defined in (26) of Sec. 6.2a. 
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Fitting the no-covariate form of (25) amounts to fitting the 1-way classifi-
cation model yit = �  + a.( + eu discussed in Sec. 6.2. There, in equation 
(31), we see that a solution vector for a* of (19) is 

and from (37) of Sec. 6.2d 

0 
for i = 1, . . . , c, 

i=l 

Also, the residual corresponding to yi3 is 

Vu - Vu = Vu - V* ~ a? = Vu - &. 
so that the vector of residuals is 

(27) 

(28) 

/ r - _ - i \ 

Vn ~ Vi-

Va - Vi-
y - y = {y* - &.i»J = 

Jjim Vi-

} for i = 1, . . . , c. (29) 

In fitting (25), Z of the general model (6) is z of (26) and so Rz of (20) 
is a vector and is, analogous to (29), 

R, = z - z = {z, - zimln) for / = 1, 2, . . . , c. 

Therefore for h of (22) 

and 

so that 

c m c i ni \ 

KK = 2 I(% - %)2 = I � 4 - nd) 
i=X 3=1 i=l \j=l / 

c rii c f ni \ 

Ky = �  � (% - Wvu = �  � � � *�  - *.�&.*,�.) 
i=l j=l i=l \j=l / 

c / rii > 
Σ � ViPu - niVi*i> 
i=l \j=l / 

c / m \ 

�  � 4 - � � �) 
i=l \j=l / 

h = 

(30) 

(31) 

With this value of b, a" is calculated from (23) as 

a0 = a* - 6(X'X)-X'z; 
i.e., 

0 

{Vi. ~ % 
� �  

U<1 
0 

Im. 
- f> 

0 

� *�-)\ 
for i = 1, . . . , c. (32) 
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The solution a° = yim — hzu is often referred to as an adjusted mean—it is 
the class mean yim adjusted by the class mean of the covariate, using the 
estimate b to make the adjustment. 

Examination of (31) and (32) reveals the relationship of these results to 
ordinary regression analysis. In (31) the numerator of b is a sum of terms, 
each of which is the numerator for estimating the within-class regression of y 
on z; likewise the denominator of b is the sum of the denominators of those 
within-class regression estimators. Thus b is usually referred to as the pooled 
within-class regression estimator. Also, each element in (32)—other than the 
initial zero—is the within-class intercept estimator using b of (31). 

The basic calculations for the analysis of variance for fitting the model 
E(y) = Xa in the case of a 1-way classification are, as in Sec. 6.2d, 

SSR,, = f "til, SSE,, = SSTy2/ - SSRW , and SSTW = J f y*,. 

We can also calculate 

SSM,, = Ny\ SSRWt2/2/ = SSR,, - SSMW , 

and SSTWi1/1/ = SSTwy - SSMW . 

The subscript yy in these expressions emphasizes that they are functions of 
squares of the ^/-observations. Similar functions of the ^-observations, and 
of cross-products of the y�s and z's, can also be calculated: 

c c m 

SSR„, and SST,, = £ Σ Vifiu 

, = S S R „ - S S M y s , 

J 2 - S S M , 2 . 

(We do not show explicit expressions for the z's because they are of exactly 
the same form as those of the y�s.) We find these expressions useful in what 
follows. 

First i?(a), which for (25) is the reduction due to fitting �  and the oc's, 
is from (28) 

&(� , α) = i?(a) = SSRW . 
Second, from (31), 

b = SSEye/SSE„ (33) 
so that, from (22) and (30), 

R(b \� , α) = R(b | a) = (SSE„)2/SSEZ2 . (34) 

Hence the analysis of variance of Table 8.3a becomes as shown in Table 8.4a. 

SSRyj8 

and 

and 

SSMy2 

^SE^2 — 

= Nyz, 

SSTm., 

O O l y j , 

SSRT O p l 

� �  = SST, 
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TABLE 8 . 4 a . ANALYSIS OF VARIANCE FOR FITTING THE COVARIATE 
AFTER THE CLASS EFFECTS IN THE 1-WAY CLASSIFICATION 

COVARIANCE MODEL yio = �  + 0L{ + bz{j + e{j 

Source of Variation d.f. Sum of Squares 

vv 
Mean 1 R^) = SSM, 
α-classes (after mean) c - 1 R(oc \ � ) = SSRWtl/1/ 

Covariate (pooled within-class 1 R(b \ � , α) = (SSE,,2)2/SSE0Z 
regression) 

Residual error N - c - 1 SSE = SSEyy - R(b \ � , α) 

Total N SSTyy 

In Table 8.4a the estimated residual variance is 

σ2 = SSE/(N- c - 1); 

the hypothesis H: b = 0, that the regression slope is zero, is tested using 

F(b) = R(b | � 9 α)/ί2, (35) 

an .F-statistic with 1 and N — c — 1 degrees of freedom. The F-statistic 
having jR(a | � ) in its numerator does, in the no-covariate model, test the 
hypothesis H: all a's equal [Sec. 6.2f(iii)]. The corresponding statistic in 
Table 8.4a tests, from (17), the hypothesis 

H: oii + bz{. equal for all /, (36) 

the bzim being derived from (X,X)"X,Zb of (17) in the same way that a0 of (32) 
was derived. This hypothesis represents equality of the a's adjusted for the 
observed z's. 

To derive the equivalent of Table 8.3b for the 1-way classification co-
variance model, notice first that whenever there is only a single vector as Z, 
then in Table 8.3b 

y'Jf = SSTW>1/, and 2£�2£ = SSTm>22. 

Hence R(b \ � ) = (SSTm>yzYISSTm,zz 

and so Table 8.3b simplifies to Table 8.4b. 
The F-statistic for testing 

H: oii equal for all i 
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TABLE 8 . 4 b . A N A L Y S I S OF V A R I A N C E FOR F I T T I N G THE CLASS 
E F F E C T S AFTER THE C O V A R I A T E IN THE 1 - W A Y C L A S S I F I C A T I O N 

C O V A R I A N C E MODEL yio = �  + αζ· + bz{j + etj 

Source of Variation d.f. Sum of Squares 

Mean 1 
Covariate (after mean) 1 
α-classes (after mean c — 1 

and covariates) 
Residual error N — c — 1 

&(� ) 

R(b | � ) 
R(OL | � % b) 

SSE 

= SSM„ 
= (SSTm,yz)2/SSTmi2Z 

= SSRm,w + (SSESZ)2/SSE; 
- (SSTm,vz)2/SST 

m.zz 
= SSE„„ - R(b I � , α) 

Total TV SST^ 

could be derived by writing the hypothesis as K'a = 0 and using the general 
result for Q given below (15). A possible value for K' would be K' = 
[01 1 —I] of c — 1 rows, similar to (59) of Sec. 6.2f(iii). An easier develop-
ment is to consider the reduced model arising from the hypothesis itself, 
namely 

Va = O + °0 + bziJ + ea · (37) 

This is a model for simple regression, for which the estimator of b is, from 
equation (14) of Sec. 3.1c, 

5 = �-1�-1 
% ivifn- Nvz SST 

c m Q<sT 

The reduction in sum of squares for fitting (37) is therefore, using Table 3.3 
of Sec. 3.5g, 

� (� , b) = Ny2 + bSSTm>yz 

= ssuyy + (ssrm,yzyissTm>zz. (38) 
The full model is (25), with the reduction in sum of squares being, from Table 
8.4a 

Ä(/i, a, b) = SSMW + SSR m ^ + R(b \ � , a); (39) 

and the F-statistic for testing H: all a's equal in the model (25) has numera-
tor 

Q = � (� 9 α, b) - � (� , b). (40) 
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Using (34), (38) and (39) this becomes Q = R(OL \ � , b) of Table 8.4b. 
Tables similar to 8.4a and 8.4b are to be found in many places; e.g., Federer 
(1955, p. 485) and Graybill (1961, pp. 385 and 393). 

(if) Example. Suppose that in the example of Sec. 6.1 the number of 
children in each family is to be taken into account in studying investment and 
education. Consider the hypothetical data shown in Table 8.5, the y-values 
(investment index) being the same as in Table 6.1. 

The following basic sums of squares and sums of products can be readily 
calculated from Table 8.5, those for the ^-observations being the same as in 
Sec. 6.1: 

8 8 ^ = 43,997, SSR2Z = 95, 

SSEVV = 82, SSE2Z = 6, 

SSTyy = 44,079, SSTZZ = 101, 

and SSM„ = 43,687, SSM2Z = 89f, SSMyz = 1975. 

These are used in the ensuing calculations. 
The pooled regression estimate h comes from (33): 

h = t = i (42) 

Then for a0 of (32) we need a* of (27) which comes from (34) of Sec. 6.2c: 

a*� = [0 73 78 89]. (43) 

TABLE 8 . 5 . INVESTMENT INDEX AND NUMBER OF 

CHILDREN FOR 7 MEN 

High School High School College 
Incomplete Graduate Graduate 

Index, ylf Children, � �  Index, y2j Children, z2j Index, y3j Children, z3i 

74 3 76 2 85 4 
68 4 80 4 93 6 
77 2 

219 9 156 6 178 10 

SSRVZ = 2015, 

SSEVZ = 3, 

SSTV2 = 2018, 
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Hence from (32) and Table 8.5 

[8.2] 

" 0" 
73 
78 

89 

- * 

"0" 
3 
3 

5 

= 

" 0 Ί 

71* 1 
76£ 

86* 

2L = 

The analysis of variance in Table 8.4a uses: 

� {� ) = SSMW = 43,687, 

� (� , α) = SSR^ = 43,997, 

and R(b I /*, a) = SSRB = 32/6 = 1£ 

(44) 

(45) 

from (34). Hence Table 8.4a becomes as shown in Table 8.6a. It can be 
readily checked that R(a, b) of the general case, which is R^9 a, b) here, is 

� {� 9 a, b) = R(a, b) = a°'X'y + bZ�y 

= 71K219) + 76K156) + 86J(178) + J(2018) 

= 43,998| 

= 43,687 + 310 + 1£, of Table 8.6a 

= SSMW + SSRm>2/2/ + SSRB, of Table 8.4a 

as should be the case. 
F-statistics available in Table 8.6a can be used for testing hypotheses as 

follows: from (35) 

Fl f 3 = ^ / ^ = .06 tests tf: b = 0; 

TABLE 8.6a. EXAMPLE OF TABLE 8.4a: DATA OF TABLE 8.5 

Source of Variation 

Mean 
α-classes (after mean) 
Covariate (pooled within-class regression) 
Residual error 

Total 

d.f. 

1 
2 
1 
3 

7 

Sum of Squares 

i?00 = 43,687 
i?(a | � ) = 310 

R(b | � , a) = 1 | 
SSE = 80J 

SSTyy = 44,079 
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TABLE 8 . 6 b . EXAMPLE OF TABLE 8 . 4 b : DATA OF TABLE 8.5 

Source of Variation d.f. Sum of Squares 

Mean 
Covariate (after mean) 
α-classes (after mean and covariate) 
Residual error 

1 
1 
2 
3 

Rfr) = 43,687 
R(b\� )= 157.8 

R(OL | � 9 b) = 153.7 

SSE = 80.5 

Total 7 SST = 44,079 

and from (36) 

F2i3 = — / — = 5.8 tests H: α2 + 3b = a2 + 3b = a3 + 5b. 

Since neither of these lvalues exceeds the corresponding 5 % critical values 
of 10.13 and 9.55 respectively, both hypotheses are not rejected. 

To calculate Table 8.4b we get, using (41), 

R(b | � ) = (2018 - 1975)2/(101 - 89f) = 43 2 / l l | = 157.8. 

Hence, by subtraction from the sum of two terms of Table 8.6a, 

Α(α \� 9� ) = 310 + H - 157.8 = 153.7, 

and Table 8.4b becomes as shown in Table 8.6b. Since 

�  = R(*\frb) = 153.7(3) = 2 ^ 
2,3 2(80.5/3) 161 

is less than the corresponding 5% critical value of 9.55 the hypothesis 
H: % = a2 = a3 in the covariate model is not rejected. 

(Hi) The intra-class regression model 
In (25) we applied the general procedure for covariance analysis to the 

1-way classification with a solitary covariate and a single regression coeffi-
cient b. We now show how the general procedure applies when the covariate 
occurs in the model in some fashion other than the simple case of (25). One 
alternative (an easy one) is considered here and two others are contemplated 
in Exercise 8. In all three cases a* and R(a) are the same as for the model (25). 

The model based on (25) assumes the same regression slope for all classes. 
This need not necessarily be the case. An obvious alternative is the model 

yiS = �  + a, + bfr, + e{j (46) 
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in which there is a different regression for each class. It can be called an 
intra-class regression model. 

The general procedure proceeds quite straightforwardly for this model. 
Compared to (25), a* and i?(a) remain the same, but b and Z are changed. 
b is now a vector of the regression slopes and Z is an N x c matrix: 

Z = 

zx 0 

0 z2 

0 0 

= D{zJ=2+z,, (47) 

for zt· being the vector of n{ observed z's in the ith class. 
Applying to each column of Z in (47) the derivation of the corresponding 

vector of residuals shown in (29) for y, it is clear that R2 of (20) is 
z i � " zv*m 0 

Zc zc*nc. 

= T {*< - M«,·}· (48) 

Hence for h of (22), R̂ R̂  is the diagonal matrix 

R;RZ = D{(Zi - M J ' t e - M«,)} 

= D{f,4-"^} for i = l,2,...,c. 
Similarly, 

R*y = {(^ -Mn,) 'yJ 

= 2%Äy - »<&·«*·} f o r Ϊ = 1, 2, . . . , 
On defining 

c. 

(SSE„), =� � 1 -n?l a n d ( S S E ^ = 2 ^ % - " . & · * < · (49) 
J � = l 3 = 1 

we then have 

so that 

i.e., 

R;R, = D{(SSE„)(} and R ŷ = {(SSE,,),} 

h = (R;R,rxR;y = K ^ · » ^ 

(SSJvX-
* , = (SSEJ, ' 

1(SSEJ/ 

for i = 1, 2, . . . , c. 

(50) 

(51) 
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Then with a* of (27) we get a0 from (23) as 

LK). 
o 

, , _ r.x\ for i = l , 2 , . . . , c . (52) 

Thus, from (51), we see that bi is the within-class regression estimator of 
y on z within the /th class, and a° in (52) is the corresponding intercept 
estimator for that class. Notice, too, from the definitions in (49) and the result 
in (51), that the sums of the numerators and denominators of the b{ are, 
respectively, the numerator and denominator of the pooled within-class 
estimator of (33). 

For the model (46) we have 

RQi, a) = *(*) = �  yfPi = SSR„ 
as before, in (28); and from (22) 

Ä(b|/,,a) = fc^y, = i ^ | 4 ? ^ 
from (50) and (51). These are the reductions to be used in the analysis of 
variance for fitting (46), along the lines of Table 8.3a. However, it is more 
instructive to also incorporate Table 8.4a and establish a test of the hy-
pothesis H: all Z>/s equal, for the model (46). This is readily achieved by 
subtracting R(b | µ, α) of Table 8.4a from R(b | � , α) of (53); i.e., 

R(b | � , a) - R(b \ � , a) 
is the numerator for testing the hypothesis H: all b/s equal, in the model 
(46). The complete analysis is shown in Table 8.7. 

TABLE 8 . 7 . ANALYSIS OF VARIANCE FOR FITTING THE MODEL 
Vij = P + αζ: + biZtf + eio FOR THE 1-WAY CLASSIFICATION 

Source of Variation d.f. Sum of Squares 

yy Mean 1 R^) = SSM 
α-classes (after mean) c — 1 R(<x | � ) = SSRm>1/1/ 

. (SSE,,)» 
Covariate (within-class) c R(b \ µ, a) 

Pooled 

Difference (H: 6/s equal) 
Residual error N -

1 

c - 1 
-2c 

r (SSEJ* 
(SSEJ2 

-�yz� 

/?(b | � , α) - R(b | � , a) 
SSE = SSEW - RQ> I � , a) 

Total TV SST„ 
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With σ 2 = S S E 

N -2c 

RQ>\frCL)^R(b\fr*) 

(c - 1)σ2 

can be used to test H: all b/s equal. Non-rejection of this hypothesis can 
lead to estimating the pooled b as in (33). The F-statistic based on (40) then 
provides a test, under the assumption of equal 6/s, of the hypothesis that the 
α/s are equal. The statistic 

F = R(b | � , α)/σ2 (55) 

is also available for testing the hypothesis that this pooled b is zero. Of 
course, using it conditionally in this manner, conditional on (54) being non-
significant, changes the nominal probability level of any critical value used 
for (55) from that customarily associated with it. 

When the hypothesis H: b/s all equal is rejected, a test of the hypothesis 
H: α/s all equal can be developed, although interpretation of equal a's and 
unequal i 's , i.e., of equal intercept and unequal slopes, is often not easy. It 
implies a model in the form of a pencil of regression lines through the 
common intercept. Development of the test is left to the reader (see Exercise 
9). In this case (17) takes the form (see Exercise 10) 

H: a< + bjzit equal for all i 

which can be tested by R(cc | � )/(�  — 1)σ2. 
(iv) Example (continued). The Table 8.5 data readily yield estimates of 

the within-class regression slopes from (51) as 

*i = —I = - 4 J , b2 = \ = 2 and 53 = f = 4, 

so that from (53) 

^ ( b | / . , a ) = i ^ + ^ + | = 80|. 

Hence SSE = SSEyl/ - R(b | � , a) = 82 - 80£ = 1*. 

Table 8.7 therefore becomes as shown in Table 8.8 (based on Table 8.6a). 
The residual error sum of squares is very small in this example because two 
of the classes for which within-class regressions have been estimated have 
only two sets of observations (see Table 8.5) and so the estimation for those 
classes is a perfect fit. The only contribution to the residual error is from the 
one class having three observations. Table 8.5 is, of course, a trivial example 
but is intended solely for illustrating derivation of the analysis and not for 
any intrinsic value; this is true of all the examples. 
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TABLE 8 . 8 . EXAMPLE OF TABLE 8 . 7 : DATA OF TABLE 8.5 
(SEE TABLE 8.6a ALSO) 

359 

Source of 
Variation d.f. Sum of Squares 

Mean 
α-classes (after mean) 
Covariate (within-class) 

Pooled 
Difference 

Residual error 

1 
2 
3 

1 

1 
2 

� (� ) = 43,687 
Ä(a|ju) = 310 

Ä(b 1 � , α) = 80± 
R(b \� , � ) = 11 
Difference = 79 

SSE = l j 

Total SST = 44,079 

(v) Another example.1 Consider the case of just 2 classes in a 1-way 
classification. Then R(<x | � ) reduces to nxn%(yx. — y2-)

2ln., and the hypoth-
esis tested by R(OL | � ) in Table 8.7 is H: otj. + bxzx = a2 + b2z2. Suppose 
that the observed means in the two classes are the same, yx. = y2. , or nearly 
so. Then R(a. | � ) = 0 and the hypothesis is not rejected. The conclusion 
must not be drawn from this, however, that there is no significant difference 
between the classes at other values of z. Differences between ax + bxz and 
a2 + b2z may be very real for certain values of z. Suppose, for example, 
that the estimated regression lines have the appearance of Figure 8.1. For 
certain values of z greater than z0 the adjusted value of y for class 2 might be 
significantly greater than that for class 1; and similarly for certain values of z 

Figure 8.1. Estimated regression lines of y on z for two classes. 
1 1 am grateful to E. C. Townsend for bringing this to my notice. 
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a* = 
0 

_y. 
and 

c b 

m = llylrln{j, i = l j=l 

less than z0 the mean adjusted ^/-response for class 2 may be significantly less 
than class 1. A numerical illustration of this is provided in Exercise 11. 

c. The 2-way classification (with interaction) 
The purpose of this section is to indicate very briefly how the general 

results of the preceding subsections a and b can be applied to the 2-way 
classification (with interaction) in the same way that they have been applied 
to the 1-way classification in subsection b. 

We take as the starting point a* and i?(a) for the no-covariate 2-way 
classification (with interaction) model, the model discussed in Sec. 7.2. From 
equations (55) and (61) of Sees. 7.2c and 7.2d(i) respectively 

(56) 

where y is the vector of cell means, yiU . We also have 

Vm " Vm = Vm - Vij. (57) 
as a typical element in the vector of residuals for fitting the no-covariate 
model. It defines the basis for deriving Rz , whose columns are vectors of 
residuals obtained from the columns of Z. 

A frequently-seen model for covariance in the 2-way classification is 
Vm = �  + α, + � , + � �  + bzijk + em . (58) 

Often just the no-interaction case is considered, with yu omitted, and some-
times the term in the covariate is in the form b(z{j — z...) rather than bzijk 

[see, for example, Federer (1955, p. 487) and Steel and Torrie (1960, p. 309)]. 
The form bzm seems preferable because then the equation of the model does 
not involve a sample (i.e., observed) mean, this being appropriate since 
models should be in terms of population parameters and not observed 
samples. Also, the form bzm is more tractable for the general procedure 
described earlier, especially when models more complex than (58) are 
considered. 

Although (58) is the most commonly occurring model for handling a 
covariate in the 2-way classification, other models can also be considered. 
Thus, whereas (58) assumes the same regression slope for all cells, the model 

Vm = �  + *� + ßj + Ya + biZijk + em (59) 
assumes different slopes for each level of the α-factor. Similarly, 

Vm = �  + *� + ßj + 7a + bjzijk + eijk (60) 
assumes a different slope for each level of the ß-factor; and both 

Vm = �  + at + ßi + � �  + (*< + b,)ziih + eijk (61) 
and ym = �  + α< + � ,- + � �}� + buzijk + eijk (62) 
assume different slopes for each (/,y)-cell. 
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Each of these five models, (58)-(62), can be handled by the general method 
based on a* and R(a) of (56), and on deriving each column of R2 from the 
procedure indicated in (57). The exact form of Z in the general model (6) is 
determined by the form of the ^-coefficients in (58)-(62). For example, in (58), 
Z is an N x 1 vector, of all the observed z's; in (59), for c levels of the a-
factor, it is an TV x c matrix, of the same form as (48); and so on. Whichever 
of the models (58)-(62) is fitted, the analyses of variance of Tables 8.3a and 
8.3b can be used. 

Furthermore, fitting successive ones of the models (58)-(62) can also be 
accommodated, in the same way that Table 8.4a was utilized in developing 
Table 8.7 when fitting yfj = �  + ο̂  + b-z^ + eii after having fitted yu = 
�  + a.i+ bzi5 + e{j. For each of (58)-(62), R(a) of Table 8.3a is calculated 
as in (56) and represents i?(//, a, ß, y), which can be partitioned in either of 
the two ways indicated in Table 7.8. The hypotheses corresponding to those 
partitionings are derived by means of (17), from the hypotheses tested in the 
no-covariate model, discussed in Sees. 7.2f(ii)-(v). [In no-interaction analogues 
of (58)-(62), R(a) of Table 8.3a is � (� , α, � ) of (26) in Sec. 7.1e(i), and can be 
partitioned as indicated in Table 7.3.] Details, although lengthy, are quite 
straightforward. A numerical example is provided in Exercise 12. 

Covariance procedures for multiple covariates are simple extensions of the 
methods for one covariate and follow the general procedures discussed above. 

3 . DATA HAVING ALL CELLS FILLED 

Analysis of unbalanced data is more difficult than that of balanced data, 
for the very reason that they are unbalanced. Interpretation of the analysis 
is often more difficult also. These difficulties can sometimes be avoided for 
data which, although unbalanced, are not too far removed from being 
balanced. In such cases it is sometimes possible to make minor modifications to 
the data so as to be able to use a balanced data analysis. The decision as to 
whether to do this or not is, of course, a matter very much open to question, 
namely, When are unbalanced data "not too far removed" from being 
balanced? It seems unlikely that this can ever be resolved satisfactorily. 
Nevertheless, the advantages of using balanced data analyses are so great 
that one would like to use them whenever feasible: they are easily carried 
out and usually easy to interpret—especially in comparison to analogous 
unbalanced data analyses. 

The disadvantage of modifying unbalanced data so as to be able to use a 
balanced data analysis is that doing so introduces a measure of approxima-
tion into the analyses—its degree depending on the extent to which the 
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unbalanced data have been modified in order to permit the balanced analysis. 
However, with the advantages of balanced data analyses being so attractive 
they may, on occasion, outweigh the disadvantage of some degree of approxi-
mation, particularly when the latter might well be deemed small. Instances in 
which this might be so are outlined below. To simplify presentation they are 
given in terms of examples of the 2-way crossed classification. 

a. Estimating missing observations 
If all /la's except a few are the same, it is often reasonable to estimate 

missing observations. For example, suppose with 2 rows and 3 columns that 
the numbers of observations are as shown in Table 8.9. Data of this nature 
often arise from what set out to be a planned experiment (in Table 8.9, of 6 
observations per cell) and ended up with a few observations missing. Such 
data are unbalanced, but so slightly as to render the temptation of modifying 
them to make them balanced irresistible. This can be done by estimating the 
missing observations, in this case one observation for the cell in the first row 
and third column. One procedure for doing this is to suppose that observation 
is w, say, and choose u so as to minimize the residual sum of squares. Had nlz 

been 6 and not 5 this residual, on the basis of an interactions model [see 
equation (61) of Sec. 7.2d(i)], would have been 

i=l j=l k=l i=l j=l 

As it is, we now take the residual as 

SSE = i i iyfik+i»i„+ivi* + »2 
i=l j=l k=l k=l k=l 

2 2 

2� � �  + 2/23- + («/is- + "): 
1=1 3=1 

- 0/6) 

Solution of d(SSE)/du = 0 leads to 

5 

fc=l 

and so the missing observation in the (1, 3)-cell is estimated by the mean of 
the observations that are there. 

TABLE 8 .9 . «^-VALUES 

6 6 5 
6 6 6 
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Of course the form of the results arising from such a process depends on the 
model used, since this determines the residual sum of squares. Had the model 
for the data of Table 8.9 been that of no interaction the error sum of squares 
would have been (see Sec. 7.1) 

I i IvL +lvL� +lvL� + u2 - (l/18)[(2/1.. + uf + yU 
i=l ; = 1 fc=l fc=l k=l 

- ( 1 /12 )^ . + y\. + (y.3. + uf] + (l/36)(</... + uf. 

Minimization of this with respect to u leads, in the general case of a rows, b 
columns and n observations per cell in all cells except one, the (/, y)th-cell, to 

ui4 = 
axim. + bx.j. — x.. 

ab(n - 1) + (a - 1)(6 - 1) 
(63) 

This is equivalent to the result given by Federer (1955, p. 134, equation V-52) 
for n = 1, who also gives results for more than one missing observation when 
n = 1. (These are the procedures referred to at the beginning of Sec. 7.1.) 

Reference can be made to Bartlett (1937) for a generalization of the 
above procedure which depends on a covariance technique. In the model 
y = Xa + Zb + e this involves the following: 

(i) in y include each missing observation as an observation of zero, 
(ii) in b include, negatively, a parameter for each missing observation, 

(iii) in Z have one column for each parameter mentioned in (ii), all entries 
being zero except for a single unity corresponding to the y-value of 
zero specified in (i). 

It will be found that the normal equations of this covariance model are 
satisfied by the estimated missing observations derived by minimizing 
residual error sums of squares as described earlier. For example, for the data 
of Table 8.9 this covariance model (without row-by-column interactions) 
has the following normal equations: 

36 18 18 12 12 12 1 

6 6 1 

6 6 · 

18 

18 

12 

12 

12 

1 

18 

6 

6 

6 

1 

18 

6 

6 

6 

6 

6 

12 

12 

12 1 

1 1J 

� � 0 " 
i � � 

α ' 
� l 
� l 
� l 

L-«� _ 

= 

y.� 

Vi-

y*. 

y-i-

y-2-

y-3. 

-0 J 

(64) 
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It can be shown (see Exercise 13) that the appropriate form of (63) is a 
solution to (64). Although this procedure leads to the same results as mini-
mizing residual sums of squares it is often computationally much easier, 
because it can be applied directly by means of the analysis of covariance 
procedures (see Sec. 2). 

Estimates of missing observations are used just as if they were data. The 
only change to be made in the balanced data analysis of the combined data 
(observed and missing) is in the degrees of freedom for the residual error 
sum of squares. They are calculated as for balanced data and then reduced by 
the number of missing observations that have been estimated. Thus in an 
interaction analysis of data like those of Table 8.9 the residual error sum of 
squares for 6 observations in every cell would be 6(5) = 30, but with one 
estimated missing observation it is reduced to 29. 

b. Setting data aside 
If the numbers of observations in the sub-most cells differ from each other 

by only a few, it might not be unreasonable to randomly set aside data from 
appropriate cells in order to reduce all cells to having the same number of 
observations in each. A balanced data analysis is then readily available on the 
data so reduced. For example, in data having the %-values of Table 8.10 it 
might be reasonable to randomly set aside observations in order to reduce 
each cell to 11 observations. Disadvantages in this method are all too clear. 
The first is the inevitable indecisiveness implicit in the suggestion of doing this 
only when the ni} differ "by only a few". It begs the question "What is a few ?", 
to which there is no clear-cut answer. All one can say is that the method might 
be tolerable for /^-values like those of Table 8.10 but not for some like those 
of Table 8.11. Too much data would have to be set aside. Of course it can be 
strongly argued that no data should ever be ignored. That is so, except that all 
good rules do have their exceptions. Accepting the fact that balanced data 
analyses are preferred over those for unbalanced data, it appears to this 
writer that randomly setting aside data in cases having «^-values like those of 
Table 8.10 is probably not unreasonable—especially if the within-cell varia-
tion is small. Although a clear definition of when to do this and when not to 
cannot be given, there will surely be occasions when it seems reasonably safe 
to do so, and at least on these occasions it would seem to be an acceptable 

TABLE 8 . 1 0 . W^-VALUES TABLE 8 . 1 1 . «^-VALUES 

14 11 13 10 17 21 
11 13 15 19 22 9 



[8.3] DATA HAVING ALL CELLS FILLED 365 

procedure. After all, for the person whose data they are, the ease of interpreta-
tion of a balanced data analysis is surely worthwhile. 

The method does not involve discarding of data—nor is it described as 
such—only setting it aside. The implication is that after setting data aside and 
making a balanced data analysis those data can be returned and the process 
repeated. Random selection of data for setting aside can be made again and 
another analysis calculated. It will, of course, not be statistically independent 
of the first analysis and if the conclusions stemming from it are not in agree-
ment with those of the first analysis, then the second analysis has brought 
confusion and not enlightenment. If further analyses in this manner bring 
additionally different conclusions then confusion is compounded. However, 
in cases where only "a few" observations are being set aside, and especially 
where within-cell variance is small, this confusion would seem unlikely to 
arise very often. Indeed, if such confusion does occur, one might be suspicious 
that some of the observations that had been set aside are outliers and per-
haps should be treated as such. Indeed, outliers should probably be set 
aside, permanently, in the first place. Nevertheless, the method must be used 
with caution. At worst one can always retreat to the unbalanced data 
analysis. 

c. Analyses of means 
(/) Unweighted means analysis. An easily calculated analysis when all 

sub-most cells are filled is to treat the means of those cells as observations and 
subject them to a balanced data analysis, as suggested by Yates (1934). 
This is, of course, only an approximate analysis with, as usual, the degree of 
approximation depending on the extent to which the unbalanced data are not 
balanced. The calculations for the analysis are straightforward. It is known as 
the unweighted means analysis and proceeds as follows. 

Suppose the model for ym is, as in equation (51) of Sec. 7.2a, 

ym = �  + *i + ßj + Vxi + enk · 

For each cell calculate the mean 

Xij — Viv = JL Viok\nii � 
k=l 

Then the unweighted means analysis is as shown in Table 8.12. 
Several facets of Table 8.12 are worth noting. First, the means of the x^s 

b 

are calculated in the usual manner: e.g., xt. = 2 % / Ä . Second, the residual 

error sum of squares, SSE, is exactly as calculated in the model for ym of 
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TABLE 8 . 1 2 . U N W E I G H T E D MEANS ANALYSIS FOR A 2 - W A Y CROSSED 
C L A S S I F I C A T I O N 

Source of Mean 
Variation d.f. Sum of Squares Square 

Rows a - 1 SSAU = b JT (xim - ^ . ) 2 MSAM 

Columns b - 1 SSB„ = a £ (*; - 0 2 MSBM 
J = l 

a b 

Interaction (a - \)(b - 1) SSAB(i = j � ^ ~ *>�� ~ *-i + *··)2 M S A B u 
Residual 

error N - ab S S E = Σ Σ Σ ^m ~ ?λν.)2 M S E 

i j k 

Sec. 7.2. Third, the sums of squares do not add up to SST = Σ y2; the first 
three, SSAM, SSBM and SSABM add to ΣΣ *?, - x*Jab, but all four do not 
add to SST. Fourth, the sums of squares SSAM and SSBM do not have χ2-
distributions, nor are they independent of SSE. Expected values of the mean 
squares are as follows. 

JE(MSAM) = -� — 1 [at- + % - (ä. + y..)]2 + nha
2

e a — i i = 1 

a b 

(65) 
£(MSBJ = —-� [� , + � .�  - (� . + y..)]2 + nhal 

£(MSABW) = {a_y){h_ i ) i i f r - y* - y- + y~)2 + w* 

£(MSE) = � 2, 
I a & j 

with l/wA = - τ Σ Σ ~~ > 

ΛΛ being the harmonic mean of all ab /7t-/s. 
Since the mean squares of (65) do not have ^-distributions their ratios 

do not provide F-statistics for testing hypotheses. However, Gosslee and 
Lucas (1965) suggest that they provide reasonably satisfactory F-statistics 
using amended degrees of freedom for the numerator mean squares. For 
example, the numerator degrees of freedom suggested for MSAJMSE is 
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1 b 1 
where h,. = - Y — 

1 b jti nti 

with 11h^ being the harmonic mean of the nf/s of the cells of the /th 
row. The origin of (66) in Gosslee and Lucas (1965) is that of equating the 
first two moments of MSAtt to the first two moments of a ^-distribution, in 
the manner of Sec. 2.4i. Although these amended degrees of freedom modify 
MSAJMSE to be an approximate .F-statistic, we see from (65) that the 
hypothesis it tests is equality of αΑ + � {. for all /. This is not equivalent to 
H: equality of all α,, unless we assume as a restriction on the model that 
fim = 0 for all /. Alternatively, and indeed very reasonably, we can interpret 
the test as testing equality of the row effects in the presence of their average 
interaction effects, a hypothesis that may often be of interest. 

The question attaching to any approximate analysis suggested as a sub-
stitute for the exact unbalanced data analysis remains: When can the un-
weighted means analysis be used? As usual, there is no decisive answer 
(apart from requiring, trivially, that all ntj > 0). Since the unweighted means 
analysis uses cell means as if they were observations with uniform sampling 
error, a criterion for using the analysis is to require that these sampling 
errors be approximately the same. This demands, since the sampling error of 
a cell mean is proportional to l /v«^, that the values of l / v « ^ b e approxi-
mately equal. What is meant by "equal" in this context is necessarily vague. 
For example, the values of l / v % are approximately equal for the cells of 
Table 8.11 and for those of Table 8.13, but not for Table 8.14. Unweighted 
means analyses would therefore seem appropriate for data having the nir 

values of Table 8.11 or 8.13 but not for those of Table 8.14, wherein 1/V9 is 
more than four times as large as 1/V2ÖÖ. Maybe a ratio of 2:1 could be 
tolerated in the values of 1/V«^ , for using the unweighted means analysis, 
but probably not a ratio as large as 4:1 . The appropriate analysis for Table 
8.14 is the unbalanced data analysis. 

(ii) Example. Suppose data for 2 rows and 3 columns are as shown in 
Table 8.15. The layout of data follows the same style as Table 7.6: each triplet 
of numbers represents a total of observations, the number of observations in 
that total (in parentheses) and the corresponding mean. 

TABLE 8 . 1 3 . � ^-VALUES TABLE 8 . 1 4 . «^-VALUES 

192 250 175 10 17 200 
320 168 270 130 22 9 
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TABLE 8 . 1 5 . AN EXAMPLE OF 2 ROWS AND 3 COLUMNS 

Column 
Total 

Row 

7 2 3 
11 4 9 

6 

18(2)9 12(3)4 12(2)6 42(7)6 

11 
14 
17 

15 
16 
19 
22 

38 
46 

42(3)14 72(4)18 84(2)42 198(9)22 

Total 60(5)12 84(7)12 96(4)24 240(16)15 

The unweighted analysis of means of these data is based on the cell means, 
summarized in Table 8.16. Fitting the model 

x.. = �  + � . + � j + e.. 

to the values of Table 8.16 gives 

Rfa) = 932/6 = 1,441! 

� (� , a) = (192 + 742)/3 = l,945f 

R^ � ) = (232 + 222 + 482)/2 = 1,658* 

and � (� , α, � ) = 92 + 42 + · · · + 422 = 2,417 . 

TABLE 8 . 1 6 . CELL 

Row 1 

1 9 
2 14 

MEANS 

Column 

2 

4 
18 

OF 

3 

6 
42 

TABLE 8 .15 

Total 

19 
74 

Total 23 22 48 93 
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TABLE 8 . 1 7 . EXAMPLE OF TABLE 8 . 1 2 UNWEIGHTED MEANS 
ANALYSIS OF DATA OF TABLE 8 .15 

Source of 
Variation d.f. Sum of Squares 

Rows 1 SSAW = 1,945| - l,44l£ = 504^ 
Columns 2 SSBW = 1,658£ - l,44l£ = 217 
Interaction 2 SSABW = 2,417 - l,945f - 1,658* + l,44l£ = 254J 
Residual error 10 SSE =114 

From these the first three terms of Table 8.12 are calculated as shown in 
Table 8.17. The last term, SSE, comes directly from the data of Table 8.15 as 

SSE = (72 + l l 2 - 182/2) + · · · + (382 + 462 - 842/2) = 114, 

the sum of the within-cell sums of squares. 
F-statistics can be calculated in the usual fashion. By (66) the amended 

degrees of freedom for MSAJMSE are /ά = *> because (66) simplifies to 
unity when a = 2. To illustrate the calculation of (66) we derive the com-
parable expression forf�b as follows. 

1 1 1 
i — 2V"2 "Γ Z) — 1 2 , , — 2V3 "Γ 4 7 — 2 4 , ^ — 2V2 ^ 2J ~ 2> 

£l//z2. = (100 + 49 + 144)/242 = 293/242; 
3=1 

21//T., = (10 + 7 + 12)/24 = 29/24; 
3 = 1 

f = (3 - l)2(29/24)2
 = 3 2 3 6 4 = 1 % 

b (29/24)2 + (3 - 2)3(293/242) 1,720 

(in) Weighted squares of means. An alternative analysis of means is that 
known as the weighted squares of means, devised by Yates (1934), who also 
suggested the unweighted analysis just discussed. The advantage of the 
weighted analysis is that it provides mean squares that do have ^-distribu-
tions. Hence F-statistics are available for hypothesis testing. 

The analysis is based on sums of squares of the means % = yijt defined 
earlier, weighting the terms in those sums of squares in inverse proportion 
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to the variance of the term concerned. Thus instead of 

SSAu = bf(xt. -x..f 

of Table 8.12, we use 
a 

SSAW = 2 *><(*,. - xL1]f 
i=l 

where w{ is � 21� (� {,) and x[� ] is the weighted mean of the #{.'s weighted by 
the w{. Details are shown in Table 8.18. The sums of squares in this table do 
not add up to SST = Σ y2, just as the ones in Table 8.12 do not. When 
divided by o2 they do have ^-distributions and so the F-statistics MSAJMSE, 
MSB^/MSE and MSAB^/MSE provide exact tests of hypotheses concerning 
the a's, ß's and y's. The exact form of the hypotheses is ascertained by con-
sidering expected values of the mean squares. They are 

1 a 

a �  1i=i 

1 b f 
ar»H � � � /fCR "l V *i ana i ^ M ö ü ^ j — �  ZVJ 

�  �  wfa + 7i.)l
2 . 

a< + � � > ^ + � �  
L 2, Wi J 

p.· + y-i + ae 
Σ i;, J 

Hence F= M S A J M S E 

tests the hypothesis 

(67) 

H: (a, + ft.) all equal. (68) 

As with the unweighted analysis of means [Table 8.12 and expected values 
(65)] so here, the hypothesis (68) involves the ft.'s. If, as a restriction on the 
model we assume ft. = 0 for all /, the hypothesis is then one of testing 
equality of the α/s, where the weights are the vv/s. Alternatively, without any 
restriction, it is a hypothesis of testing equality of the row effects in the 
presence of their average interaction effects. The important difference from 
the unweighted analysis is, though, that the .F-statistics of Table 8.18 have 
exact ^-distributions whereas those of Table 8.12 have only approximate 
F-distributions. 

We return to Tables 8.12 and 8.18 when discussing variance components in 
Chapter 10. 

(iv) Example (continued). Calculation of Table 8.18 for the data of 
Tables 8.15 and 8.16 is as follows. 

ΜΊ = [i(* + έ + i ) ]"1 = ¥ and w2 = m + � + i)]"1 = W ; 
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TABLE 8 . 1 9 . EXAMPLE OF TABLE 8 . 1 8 WEIGHTED SQUARES 
OF MEANS ANALYSIS OF DATA OF TABLE 8 . 1 5 

Source of 
Variation d.f. Sum of Squares 

Rows 1 SSAW = 1,251 f i 
Columns 2 SSB^ = 488^6

y 
Interaction 2 SSAB^ = 254J = SSABW of Table 8.17 
Residual error 10 SSE = 114 

and 3̂ = [έα + έ)]-1 = 4; 

[1] 27 1 108 9Q 
4 ^ 13 A y 

CCA 27/19 477\2 _j_ 108/74 477\2 1 0^1 

z>z/\w — j t g - ~ ^) -T j^y^ — ̂ ) — i , ^ i 

f(f) + ¥(¥) + 4(f) 1,983 

21. 
29' 

t [ 2 ] 
5 + f + 4 137 

OCR 24/23 1,983^2 1 48/22 1,983^2 
aaDw — TVj ��� ) "Γ 7V2- — T3TJ 

1 ,1/48 1,983\2 66,882 A QQ 26 
+ 4 ^ ~ TIT-) ~ "Ί37- - 4 8 * W 

Table 8.18 therefore becomes as shown in Table 8.19. 

d. Separate analyses 
Suppose data had the /^-values shown in Table 8.20. For purposes of 

discussion dashed lines divide the cells into four sets, A, B, C and D. The only 
appropriate way of analyzing the complete set of data represented by the 
nif values of Table 8.20 would be to use an unbalanced data analysis. This is 
clear from the empty cells and widely disparate values of the non-zero wt-/s. 
Such an analysis, using the interaction model of Sec. 7.2, would provide no 
testable hypothesis concerning row (or column) effects unencumbered by 

TABLE 8 . 2 0 . Wi rVALUES 

(A) 27 
11 

3 2 ! 
12 S 

0 
2 

3 
0 

1 
2 

(B) 

(C) 1 0 j 27 16 24 (D) 
0 8 ! 15 21 22 
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interactions. Bearing this in mind, notice that in the four cells labeled A and 
in the six labeled D, all cells are filled. Also, in B and C there are few data and 
several empty cells. This prompts the suggestion of making two separate 
analyses, one of the cells A and the other of cells D, using an analysis of 
means in both cases. In analyzing A, comparison between rows 1 and 2 and 
between columns 1 and 2 could be made, and from analyzing D comparisons 
among rows 3 and 4, and among columns 3, 4 and 5 could be made. Of 
course, comparisons that cut across these groups of rows and columns are 
precluded by such an analysis, but then the only alternative, an unbalanced 
data analysis, provides no satisfactory information on such comparisons 
anyway, in the interaction model. Therefore little would seem to be lost by 
analysing just A and D. 

When data of the nature alluded to in Table 8.20 occur, one might imme-
diately question the process by which «^-values of such disparate sizes and 
groupings have arisen. Be that as it may, in analyzing large-scale survey data 
such as are discussed in Sec. 1, the suggestion has sometimes been made of 
analyzing just the all-cells-filled subsets of cells that occur throughout the 
data. Whilst such a suggestion may be open to criticism, it might not be 
unreasonable in a small situation like that envisaged in Table 8.20—should 
it ever arise. It amounts to analyzing sets of data that are what might be 
called "weakly connected". In Table 8.20 cells labeled B and C do have data 
in them, but very small amounts compared to the A and D. Were B and C to 
contain no data at all then the sets A and D would be disconnected sets of 
data and they would have to be analyzed separately. As it is, analyzing A 
and D separately and ignoring B and C would be easy both to compute and 
to interpret, and for these reasons it may be preferable to analyzing the 
complete data as one analysis. 

4 . EXERCISES 

1. Fit different models to the data given in the exercises of Chapter 4, using them 
to illustrate aspects of Sec. 1 of this chapter. 

2. (a) Use equation (22) to confirm (42). 
(b) Write down the normal equations for the data of Table 8.5 using (25) as 
the model. Derive the solution given by (42) and (44). 

3. Derive the distributions of R(a) and SSRB shown in Table 8.3a, and show 
that i?(a), SSRB and y'y - i?(a) - SSRB are pair-wise independent. 

4. For the general covariance model of Sec. 2a(i), prove that Z'PZ is non-singular, 
for P of equation (10), and hence show that b is estimable. Show also that 
X'a is estimable under the same conditions that it is estimable in the model 
without covariates. 
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5. Use equation (70) of Sec. 5.5b to confirm the F-statistic, based on (40), for 
testing H: all ot̂ 's equal. 

6. Find the means of a0 and b of (8) and (11) and also their variances and 
covariance, and show the relationship of these to (15). 

7. Graybill (1961, p. 392) gives the F-statistic for testing H: all a's equal in the 
1-way classification, with one covariate as (in our notation) 

' (SS» + S S E „ < S S R - " + S S E · ·»" SSE. ( S S E » ) ' -"av SSE. (c - 1)** I m��  ^ ™ SSRm 2Z + SSE22 

Show the equivalence of this to R(a | � 9 b) of Table 8.4b. 
8. For the data of Table 8.5 fit each of the following models and calculate the 

analyses of variance of Tables 8.4a and 8.4b. Suggest appropriate hypotheses 
and test them. 
(a) The covariate affects y linearly, in the same manner for all high school 

graduates as it does college graduates, but differently for those who did 
not complete high school. 

(b) The covariate affects y in both a linear and a quadratic manner, the same 
for everyone. 

9. For the model (46) develop a test of the hypothesis H: all α/s equal and 
illustrate it with the data of Table 8.5 [Urquhart (1969b)]. 

10. Show that in Table 8.7 the hypothesis H: a, + bfa equal for all / is tested 
by Λ(α | � )�(�  - \)a\ 

11. Townsend (1969) gives data concerning an experiment designed to determine 
if the usual lecture-type classroom presentation could be replaced by a pro-
grammed text. A class of 62 sophomore students was divided randomly into 
two groups, with one group receiving the usual lectures while the other was 
given a programmed textbook for independent study. At the end of the 
semester both groups were given the same examination. In addition to final 
examination score (� ^, a measurement of I.Q. (x2) was recorded for each 
student. (Other educational studies indicate that performance may be linearly 
related to I.Q.) Using the basic calculations shown in Table 8.21, carry out a 
covariance analysis testing any hypotheses you think suitable. 

TABLE 8 . 2 1 . TWO GROUPS OF STUDENTS 

Totals Received Lecture Received Programmed Text 

31 
2,149 
3,100 

157,655 
319,920 
224,070 

n 
Σ#ι 
� � 2 

� � 2
�  

� � \ 

Σ^1^2 

31 
2,139 
3,100 

148,601 
318,990 
216,910 
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12. The following table shows milligrams of seed planted, corresponding to the 
yield data in Table 7.6. 

Variety 

Treatment 

1 

2 

3 

1 

2 
4 
3 

5 
3 

— 

2 

— 

6 
4 

6 
2 

3 

7 

— 

6 
8 

4 

3 
5 

— 

4 
6 
5 
7 

Use these data to fit covariance models (58)-(62) to the data of Table 7.6. 
13. Solve equations (64) for solutions that satisfy aj + a° = 0 and ß{ + ß�  + 

/?3 = 0, showing that the resulting solution for � �  is the form given in (63). 
14. Show that SSAtt, of Table 8.18 has a ^-distribution independent ofthat of SSE. 
15. Calculate the exact unbalanced data analyses for the data of Table 8.15 and 

compare them with Tables 8.17 and 8.19. 
16. Derive R(OL | � , b) of Table 8.4b as the numerator sum of squares for testing 

H: K'a = 0 using K' = [01 1 - I ] of c - 1 columns. 
17. Derive an expression for SSE of Tables 8.3a and 8.3b which suggests that it is 

the residual error sum of squares for fitting a linear model to Py. Describe 
the model. 

18. Show that the error sum of squares in Tables 8.4a and 8.4b is the same as that 
for fitting the model y — bz = Xa + e for b of (33) and that the solution a0 is 
that given before equation (32). 



CHAPTER 9 

INTRODUCTION TO VARIANCE 

COMPONENTS 

Interest in the models of Chapters 5-8 lies mainly in estimating (and testing 
hypotheses about) linear functions of the effects in the models. These effects 
are what we call fixed effects, and the models are correspondingly called fixed 
effects models. There are, however, situations where we have no interest in 
linear functions of effects but where, by the nature of the data and their 
derivation, the things of prime interest concerning the effects are variances. 
Effects of this nature are called random effects, and certain of the models 
involving them are called random effects models. Other models, involving 
a mixture of fixed effects and random effects, are called mixed models. 

Distinguishing between fixed effects and random effects is the first major 
topic of this chapter. It is undertaken by means of examples designed to 
illustrate differences between the two kinds of effects. Discussion of these 
examples emphasizes the meaning and use of different models in different 
situations, rather than mathematical details. 

The variances associated with random effects are called variance com-
ponents. The estimation of variance components from balanced data is the 
chapter's second major topic. Succeeding chapters deal with the more difficult 
topic of estimating variance components from unbalanced data. 

1. FIXED AND RANDOM MODELS 

Although the models of Chapters 5-8 are fixed effects models they have 
not been called that until now. Discussion of fixed effects and random effects 
therefore begins with a fixed effects model to confirm the use of this name. 

[ 376 ] 

Linear Models 
by S. R. Searle 

Copyright © 1971 John Wiley & Sons, Inc. 
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a. A fixed effects model 
A classic experiment in agricultural research concerns testing the efficacy 

of nitrogen (N), potash (P) and potassium (K) on crop yield. Suppose an 
experiment of this kind involved 24 plants, with 6 plants receiving nitrogen, 
6 plants getting potash, 6 plants potassium and 6 plants getting no fertilizer 
at all, these being considered as control (C). A suitable model for analyzing 
this experiment would be the 1-way classification model (see Sec. 6.2) 

yu =�  + (� .� + eu , (1) 
where y{j is theyth observation on the zth treatment, with �  being a mean, 
oii being the effect of treatment / and eu being an error term in the usual way. 

Analysis of this experiment can lead to estimating ax — a4, for example, 
and to testing the hypothesis H: ax — a4 = 0. In studying differences of 
this nature consider the treatments that are being dealt with. They are 4, 
very specific treatments of interest: in using them we have no thought for 
any other fertilizers and our interest lies solely in studying N, P and K in 
relation to each other and to no fertilizer. This, for example, would be 
particularly so if our experiment was a field trial laid out on a farmer's land 
with a view to demonstrating to him the value of those three fertilizers. In 
doing this there would be no thought for other fertilizers. This is the concept 
of fixed effects. Our attention is fixed upon just the treatments in the experi-
ment, upon these and no others, and so the effects are called fixed effects. 
Furthermore, because all the effects in the model are fixed effects (apart from 
the error terms, which are always random) the model is called the fixed effects 
model. It is often referred to as Model /, so named by Eisenhart (1947). 

The manner in which data are obtained always affects the inferences that 
can be drawn from them. We therefore consider a sampling process pertinent 
to this fixed effects model, in which the a's are the fixed effects of the four 
specific treatments, N, P, K and C (control). The data are envisaged as being 
one possible set of data involving these same treatments that could be derived 
in repetitions of the experiment, repetitions in which the e's on each occasion 
would be a random sample from a population of error terms distributed as 
(0, σ-gl).1 It is the randomness associated with obtaining the e's that provides 
the means for making inferences about functions of the α/s and about a2

e. 

b. A random effects model 
Suppose a laboratory experiment designed to study the maternal ability of 

mice uses litter weights often-day-old litters as a measure of maternal ability, 
after the manner of Young et al. (1965). Six litters from each of four dams, 
all of one breed, constitute the data. A suitable model for analyzing the data 
is the 1-way classification model 

y.. = �  + <5f + eu , (2) 
1 From this point on we use σ | in place of � 2 for the residual error variance. 
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where yio is the weight of the yth litter from the ith dam, <̂  being the effect 
due to the /th dam and ei} the customary error term. 

Consider the � /s and the dams they represent. The data relate to maternal 
ability, a variable that is assuredly subject to biological variation from 
animal to animal. The prime concern of the experiment is therefore unlikely 
to center on specifically the 4 female mice used in the experiment. After all, 
they are only a sample from a large population of mice, the females of the 
breed, each of which has some ability in a maternal capacity. The animals 
that are in the experiment are therefore envisaged as a random sample of 4 
from a population of females. 

In the fertilizer experiment previously described, each fertilizer is of specific 
importance and interest, with no thought for it being a sample from a 
population of fertilizers. But in the mouse experiment each mouse is merely a 
sample (of one) from a population of female mice. Nothing important has 
conditioned our choosing any one mouse over another, and we have no 
specific interest in the difference between any one of our 4 mice and any other 
of them. Interest does lie, however, in the extent to which maternal ability 
varies throughout the population of mice, and to this end our model is 
directed. 

The sampling process involved in obtaining such data is taken as being 
such that any one of many possible sets of data could be derived from 
repetitions of the data-gathering process. But now, in concentrating attention 
on repetitions, we do not confine ourselves to always having the same 4 mice— 
we imagine getting a random sample of 4 on each occasion from the popula-
tion of mice. And furthermore, for whatever 4 mice we get on any occasion 
we envisage getting a random sample of e's from a population of errors, just 
as with the fixed model. Thus our concept of the error terms is the same in 
both models. But whereas in the fixed model we conceive of always having the 
same a's, the same treatments, now, in the case of the mice data, we think of 
taking a random sample of mice on each occasion. Thus the ό/s of our data 
are a random sample from a population of <5's. Hence, so far as the data are 
concerned, the ό/s therein are random variables, which in this context we 
call random effects. And the model is correspondingly called the random 
effects model or, sometimes, the random model. Eisenhart (1947) called it 
Model � , a name that continues to receive widespread use. 

In each model the error terms are a random sample from a population 
distributed as (0, � \\). But whereas in the fixed effects model the a's represent 
effects of specific treatments, in the random model the <5's are also a random 
sample, from a population distributed as (0, � 2

� �). Furthermore, sampling of 
the o's is assumed to be independent of that of the e's and so covariances 
between d�s and e's are zero. Also, if the distribution of the o's was to have 
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a non-zero mean � � , we could rewrite the model (2) as 

Va = O + � � ) + (ßt ~ � � ) + en · (3) 
Then, on defining �  + � �  as the mean and � { — � �  as the dam effect, the 
latter would have a zero mean. There is therefore no loss in generality in 
taking the mean of the <5's in (2) to be zero. 

With the <5's and e's of (2) being random variables with variances a] and 
a\, respectively, the variance of an observation is, from (2), a\ = a\ + a2

e. 
The variances � 2

�  and o\ are accordingly called variance components; each is a 
variance in its own right and is a component of a\ . The model is sometimes 
referred to as a variance component model. Estimation of the variance 
components and inferences about them are the objectives of using such a 
model. 

c. Other examples 
(/) Of treatments and varieties. The fixed effects model of equation (1) 

relates to 4 fertilizer treatments. Suppose this experiment is expanded, to 
using each of the 4 treatments on 6 different plants of each of 3 varieties of 
the plant. The 2-way classification (with interaction) model of Sec. 7.2 would 
then be suitable for yijk , the yield of the /cth plant of they'th variety receiving 
the /th treatment. Thus we write 

Vuk = �  + *i + ßi + Yu + *nk > (4) 
where �  is a general mean, oq is the effect on yield of the /th treatment, 
ßj is the effect of the yth variety, � ^ is the interaction and em is the usual 
error term. Just as treatment effects af were earlier described as fixed effects, 
so they are now. Similarly, the variety effects ßi are also fixed effects because, 
in this experiment, interest in varieties centers solely on the 3 varieties 
being used. There is no thought that they are a random sample from some 
population of varieties. Thus both the az and the � �  and their interactions are 
considered as fixed effects and we have a fixed effects model. 

(//) Ofmice and men. Suppose the mouse experiment had been supervised 
by three laboratory technicians, one for each successive pair of litters that 
the mice had. One possible model for the resulting data would be 

Vuk = �  + di + ri + � �  + em > (5) 

where yijk is the weight of the fcth litter from the /th dam when being cared 
for by theyth technician: <5̂  is the effect on litter weight of the /th dam and 
Tj is the effect of the yth technician, and dio is the interaction. We earlier 
explained how (5t is a random effect, representing the maternal capacity of the 
/th dam chosen randomly from a population of (female) mice. It is not 
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difficult to imagine rj being a random effect of similar nature. A laboratory 
experiment has to be cared for, and usually there is little interest so far as 
the experiment itself is concerned in who the technician is attending to it. 
He can reasonably be thought of as a random sample (of one) from some 
population of laboratory technicians, so that in the whole experiment we have 
a random sample of 3 technicians. The τ ; are correspondingly random effects, 
with zero mean and variance � 2

�. Similarly, the interaction effects are also 
random, with zero mean and variance a\\ and all covariances are taken as 
zero. Thus all elements in the model (5)—save � —are random effects and we 
have a random model. The parameters of interest, apart from � , are o\, 
a2

T and o\, representing the influence of dam, technician and dam-by-tech-
nician interaction, respectively, on the variance of y. That part of the vari-
ance not accounted for by these effects is a\, the residual error variance, in the 
usual manner. 

(///) Of cows and bulls. Another example of the random model arises in 
dairy cow breeding. With the advent of artificial insemination, a bull can 
sire offspring in many different places simultaneously and have progeny in 
numerous different herds. When the females among these progeny themselves 
calve and start to give milk, analyses of their milk yields can be made. A 
suitable model for yijk , the milk yield of the kth daughter in herd / sired by 
bully, is 

Vuk = �  + *i + ßi + Vii + enk · (6) 

a, is the effect on yield of the cow's being in herd /, ß5 is the effect of bully, 
y{j is the interaction effect and em is the customary random error term. In 
this case all effects are considered random: the herds involved in the data are 
assumed to be a random sample from a population of herds, the bulls are 
taken as being random sample of bulls, and the interaction effects are 
assumed to be random, too. These effects are also considered to be mutually 
independent, with variances a\ , σ | , � * and a\ respectively. The animal 
breeder is interested in estimating these variances so that he can estimate the 
ratio 4<r|/(<7* + o\ + a* + a2

e), a ratio which is important in bringing 
about increased milk production through selective breeding. 

2 . MIXED MODELS 

A general mean �  (a fixed effect) and error terms e (random) occur in all 
the preceding examples, as they do in most models. Apart from these, all 
effects in each of the preceding models are either fixed or random. We now 
consider models where some of the effects (other than �  and e) are fixed and 
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some are random. Such models are called mixed models. Of course, any 
model containing a fixed effect �  and random error terms is truly a mixed 
model, but the description is usually reserved for models whose effects other 
than �  and <?'s are a mixture of fixed and random effects. In some situations, 
as we shall see (Sec. 10.8), it is convenient to treat all models as though they 
were mixed models, but generally the distinction is made between fixed, 
random and mixed models as described here. We give some examples of 
mixed models. 

(/) Of mice and diets. Suppose in the mouse experiment that instead of 
the mice being cared for by three different technicians one man supervised the 
whole experiment. Suppose, further, that three specially prepared diets were 
used, with the purpose of the experiment being to compare the three diets. 
Then, if yijk is the kth litter weight of the /th dam when receiving diet/, the 
model will be 

Vm = �  + � � + � � + Vu + enk · (7) 
Now, though, because the diets are three specific diets of interest, the � � 

effects representing those diets are fixed effects. As before, the di—the dam 
effects—are random. Thus (7) is a model containing fixed effects � 3� and 
random effects <̂  . This is a mixed model, a mixture of fixed and random 
effects. 

Notice that (7) includes interaction effects yi5 for interactions between 
dams and diets. Since dams are being taken as a random effect it is logical that 
these interactions are random also. Thus the model has � � as fixed effects, 
and the ^ and y{j as random, having zero means and variances a\ and � * 
respectively. 

(//) Of treatments and crosses. In an experiment concerning fertilizers, 
suppose that 6 plants of each of 20 replicate crosses of 2 varieties of the crop 
(early- and late-ripening tomatoes, say) are used. Each cross would be a 
random sample from the infinite number of times that the two varieties could 
be crossed. Equation (4) could still be the equation of the model, but � 3-
would now be a random effect for the/th replicate cross, and yi}- would be the 
(random) interaction effect between the ith fertilizer treatment and the / th 
cross. Thus equation (4), formerly appropriate to a fixed effects model, is 
now suited to a mixed model. The equation of the model is unchanged but the 
meanings of some of its terms have changed. 

(///) On measuring shell velocities. Thompson (1963), following Grubbs 
(1948), discusses the problem of using several instruments to simultaneously 
measure the muzzle velocity of firing a random sample of shells from a 
manufacturer's stock. A suitable model for yi5, the velocity of the ith shell 
as recorded by the/th measuring instrument, is 

Va = �  + af + ßi + eu . 
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In this, α̂  is the effect of the /th shell and � 5 is the bias in instrument/ Since 
the shells fired are a random sample of shells the a* are random effects; and 
because the instruments used are the only instruments of interest, the � }. 
are fixed effects. So again we have a mixed model. 

3 . FIXED OR RANDOM? 

Equation (4) for the treatments and varieties example is indistinguishable 
from (6) for the bulls and herds example. But the models involved are different 
in the two cases because of the interpretation attributed to the effects: in 
one case fixed and in the other random. In these and the other examples dis-
cussed most of the effects are categorically fixed or random. Thus fertilizer 
treatments are clearly fixed effects, as are diets and measuring instruments. 
Similarly, mice, bulls and artillery shells are random effects. But how about 
the laboratory technicians, where three of them cared for the mice; or the 
herds wherein the bulls' progeny were being milked? In each case these 
effects have been assumed random. But this might not always be so. With 
the technicians, for example, the situation might have been not that each 
one came and went as a random sample of employees, so to speak, but that 
all were available and we wanted to assess differences between those three 
specific technicians. In that case the technician effects in equation (5) would 
be fixed effects, not random. Similarly with the herd effects in equation (6). 
Analyses of data of such situations usually involve hundreds of herds that are 
considered a random sample from some larger population of herds. But 
were the situation to be one of analyzing just a few herds, five or six say, 
wherein the sole interest lay in just those herds, then herd effects in (6) would 
more appropriately be fixed and not random. Thus we see that the situation 
to which a model applies is the deciding factor in determining whether the 
effects of a factor are fixed or random. 

In some situations the decision as to whether certain effects are fixed or 
random is not immediately obvious. Take the case of year effects, for example, 
in studying wheat yields: are the effects of years on yield to be considered 
fixed or random? The years themselves are unlikely to be random, for they 
will probably be a group of consecutive years over which the data have been 
gathered or the experiments run. But the effects on yield may reasonably be 
considered random—unless, perhaps, one is interested in comparing specific 
years for some purpose. 

In endeavoring to decide whether a set of effects is fixed or random, the 
context of the data, the manner in which they were gathered and the en-
vironment from which they came are the determining factors. In considering 
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these points the important question is that of inference: are inferences going 
to be drawn from these data about just these levels of the factor? "Yes"— 
then the eifects are to be considered as fixed effects. "No"—then, presumably, 
inferences will be made not just about the levels occurring in the data but 
about some population of levels of the factor from which those in the data 
are presumed to have come; and so the eifects are considered as being 
random. Thus when inferences are going to be confined to the eifects in the 
model the effects are considered fixed; and when inferences will be made 
about a population of effects from which those in the data are considered to 
be a random sample then the effects are considered as random. 

It is to be emphasized that the assumption of randomness does not carry 
with it the assumption of normality. Often this assumption is made for 
random effects, but it is a separate assumption made subsequent to that of 
assuming effects are random. Although most estimation procedures for 
variance components do not require normality, if distributional properties 
of the resulting estimators are to be investigated then normality of the random 
effects is often assumed. 

4 . FINITE POPULATIONS 

Random effects occurring in data are assumed to be from a population of 
effects. The populations are usually considered to have infinite size as is, 
for example, the population of all possible crosses between two varieties of 
tomato. They could be crossed an infinite number of times. However, the 
definition of random effects does not demand infinite populations of such 
effects. They can be finite. In addition, finite populations may be very large, 
indeed so large as to be considered infinite for most purposes; an example 
would be all the mice in New York State on July 4, 1970! Hence random 
effects factors can have conceptual populations of three kinds insofar as 
their size is concerned: infinite, finite but so large as to be deemed infinite, 
and finite. 

We shall be concerned with random effects coming solely from populations 
assumed to be of infinite size, either because this is the case or because, 
although finite, the population is large enough to be taken as infinite. These 
are the most oft-occurring situations found in practical problems. Finite 
populations, a propos variance components, are discussed in several places, 
e.g., Bennett and Franklin (1954, p. 404) and Gaylor and Hartwell (1969). 
Rules for converting the estimation procedure of any infinite-population 
situation into one of finite populations are given in Searle and Fawcett 
(1970). 
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5 . INTRODUCTION TO ESTIMATION 

The estimation of variance components from balanced data relies almost 
exclusively on one method. For unbalanced data there are several methods 
each of which simplifies to the method used for balanced data. We therefore 
consider balanced data first. For any random (or mixed) model the method of 
estimating variance components relies on the mean squares of the analysis of 
variance for the corresponding fixed effects model. The general procedure is 
to calculate the analysis of variance as if the model were a fixed effects model 
and then derive the expected values of the mean squares under the random 
(or mixed) model. Certain of the expected values will be linear functions of 
the variance components. Equating these expected mean squares to their 
calculated (observed) values leads to linear equations in the variance com-
ponents, the solutions to which are taken as the estimators of those com-
ponents. This method of estimating variance components is known as the 
analysis of variance method. 

Mean squares in analyses of variance are quadratic forms in the observa-
tions. Their expected values can therefore be derived from Theorem 1 of 
Chapter 2, wherein V is the variance-covariance matrix of the observations. 
Although for balanced data this is not the easiest method of calculating 
expected values of mean squares, it is instructive to demonstrate the form of 
the V-matrix for a simple random model. It is the basis of such matrices for 
unbalanced data for which Theorem 1 of Chapter 2 is of utmost importance. 
We illustrate by means of the mouse example of Sec. lb. 
a. Variance matrix structures 

In all the fixed effects models of Chapters 5-8 the covariance matrix of the 
observations, var(y), has been of the form a2

elN . However, this is not so for 
random (and mixed) models, because the covariance structure of the random 
effects determines the variance-covariance matrix of the vector of observa-
tions. 

Suppose we rewrite the model for the mouse example, equation (2), as 
y.. == �  + α< + eif , (8) 

where �  and ei5 are the same as in (2) and α̂  is now used in place of � {. Thus 
ocf is a random effect, with zero mean and variance a\ , and is independent of 
the e�s and the other oc's; i.e., � {<� ^ = 0 for i �  k, and � {� .#�� ,) = 0 
for all /, /' a n d / . From this we have 

I o\ + a\ for i = *', j = / , 

al for i = i\ j �  / , 

0 for i 7* V. 
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Hence, for example, the variance-covariance matrix of the 6 observations on 
the first dam is 

2/n 

2/i2 

2/13 

2/14 

2/16 

2/l6_ 

= 

«l+ol 
ol 
ol 
ol 
ol 

ft + oti 

ol 

*w. 
ol 
ol 

< 

ol 

ol 
ol 

ol+ol 
ol 
ol 
ol 

ol 
ol 
ol 

ol+ol 
ol 
ol 

ol 
ol 
ol 
ol 

„2 , „2 
Ox+Oe 

ol 

ol 
ol 
ol 
ol 
ol 

ol+o 

We meet this form of matrix repeatedly: AXI + � 25 where � �  and � 2 are 
scalars (usually variances) and J is a square matrix with every element unity. 
In the present case it is the covariance matrix of the set of 6 litter weights 
from each dam. Since the weights are independent, as between one dam and 
another, the covariance matrix of all 24 weights can be partitioned as 

["(Tjl + a j j 0 0 0 1 

0 oft + <rj J 0 0 
var(y) = L 

0 0 aJl + aJJ 0 
[ 0 0 0 a2

el + CTJJJ 

where I and J have order equal to the number of observations in the classes, 
in this case 6. This matrix is the direct sum of four matrices of the form 
shown in (9). Using 2 + t 0 denote the operation of direct sum, as in Sec. 6.2a, 
we write 

var(y) = i + ( o f t + 4 J ) , (10) 

a notation we have frequent occasion to use, especially with unbalanced data 
a 

in the form 2 + (� % + � 1^�  where If and Ĵ  are then of order /^ . 
i = l 

b. Analyses of variance 
The 1-way classification model of Sec. 6.2d is suitable for the fertilizer 

experiment discussed in Sec. la. Its analysis of variance is shown in Table 
9.1, based on Table 6.4. 

The basic use of Table 9.1 is to summarize calculation of the F-statistic 
MSRm/MSE for testing H: all a's equal. The lower section of the table 
contains the expected values of the mean squares and is usually not shown for 
fixed effects models. Nevertheless, its presence emphasizes the hypothesis 
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TABLE 9 . 1 . ANALYSIS OF VARIANCE FOR 4 FERTILIZER 
TREATMENTS EACH USED ON 6 PLANTS 

[9.5] 

Source of 
Variation d.f. Sum of Squares Mean Square 

Mean 1 SSM = �1(� ) = 24y2. MSM = SSM/1 

Treatments 

Residual 
error 20 

SSRm = Ä(a | � ) 

= � 6^� -v.? 
i=l 

SSE = SST - i?(^, a) 
4 6 

= �  �  ton - ft�)2 

i=l j=l 

MSRm = SSRm/3 

MSE = SSE/20 

Total 24 SST=£I^· 
i=l 3=1 

Expected mean squares 

£(MSM) =24 ( 4 \ 2 

£(MSRw)=f£(a,· - i f a , ) + σ 

£(MSE) = 

that can be tested by the F-statistic. This is so because, for F = Q/sa2 used 
so much in earlier chapters, 

F~F�{s, N-r, [E(Q) - sa2]l2a2}, 

as can be shown from applying Theorems 1 and 2 of Chapter 2 to Q (see 
Exercise 4). Therefore the hypothesis concerning s LIN estimable functions 
which makes [E(Q) - sa2] zero is tested by comparing F = Q/sa2 against the 
central F(s, N — redistribution. 

Example. In Table 9.1 

£(SSRw) = o i ( a i - a . ) 2 + 3a^. 
i=l 

Hence, F = SSRw/3<^ tests the hypothesis that makes 6 �  (α* - ά.)2 zero, 
namely H: ax = a2 = a3 = a4 . 
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Although expected mean squares are helpful in indicating the hypotheses 
tested by the corresponding F-statistics, they are shown in Table 9.1 for 
comparison with the random model case of the mouse experiment of Sec. la. 
Since the fixed effects analogue of the model for this experiment is the same 
as the model for the fertilizer experiment, the variance components of the 
mouse data are estimated from the analysis of variance shown in Table 9.2. 
It is identical to Table 9.1 except for the section of expected values of mean 
squares. In both cases these expected values can be obtained from Theorem 1 
of Chapter 2. For Table 9.1 the covariance matrix V = var(y) is σ2Ι, and for 
Table 9.2 it is V of (10). An alternative (and often easier) derivation is the 
"brute force" one of substituting the equation of the model into the mean 
squares and then taking expectations, using the assumptions of the appropri-
ate model in each case (see Exercise 1). In practice, neither of these methods 
need be used for balanced data, because simple rules of thumb then apply, 
as given in Sec. 6. Neither method is therefore illustrated here. Illustration 
for the 2-way classification, balanced data, is given in Sec. 7, and for un-
balanced data in Chapter 10. 

TABLE 9 . 2 . ANALYSIS OF VARIANCE OF 4 DAMS 
EACH HAVING 6 LITTERS 

Source of 
Variation 

Mean 

Dams 

Residual 
error 

Total 

d.f. 

1 

3 

20 

24 

Sum of Squares 

SSM = � (� ) = lAyl 

SSRm = R(* | � ) 

SSE = SST - � (� , α) 
4 6 

= �  �  ton - &.)2 

ssT=ii>?3. 
i=l j� X 

Expected mean squares 

Mean Square 

MSM = SSM/1 

MSRm = S S R J 3 

MSE = SSE/20 

£(MSM) = 24/i2 + 6σ| + a 

£(MSRm) = 

£(MSE) = 

6� �  + a* 
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The feature that distinguishes Table 9.2 from Table 9.1 is that the expected 
mean squares differ. JE^MSR^) in Table 9.2 contains a term in a\, the variance 
component pertaining to the dams, whereas in Table 9.1 it contains a quad-
ratic function of the fixed effects. This difference in the two tables (also 
evident in the expected value of MSM) arises solely because of the differing 
models: in Table 9.2 the oc/s are random effects and in Table 9.1 they are 
fixed effects. 

It is possible to make the tables look even more alike: if in Table 9.1 we 
define 

4 / 4 \2 

Σ (<**- έΣα4 
3 

then £(MSR J = 6s2
a + o\ comparable to £(MSR J = 6cr* + a\ of Table 

9.2. Defining and using s\ in this fashion has no particular merit other than 
emphasizing that the quadratic in the oc/s in £(MSRW) in Table 9.1, the fixed 
effects model, is tantamount to a sample variance of the treatment effects 
ax, a2 , a3 and a4. While this kind of relationship is true for balanced data it 
does not hold for unbalanced data. More importantly, the one-to-one corre-
spondence between s2 and a2 so illustrated does not necessarily exist, even with 
balanced data, in more complex experimental designs than the one considered 
here. It is therefore misleading to use si in the belief that this apparent 
correspondence is universal. It is not. 

c. Estimation 
The residual error variance in the fixed effects model of Table 9.1 is esti-

mated in the usual way by a\ = MSE. This is tantamount to the analysis of 
variance method of estimating variance components by equating mean 
squares to their expected values. It is continued in Table 9.2 to give not only 

a\ = MSE but also 6σ* + a\ = MSRm. 
The solutions to these equations are 

a\ = MSE and a\ = (MSRm - MSE)/6, 

and they are the estimators of a\ and o\ . 
The preceding example is the simplest illustration of estimating variance 

components from balanced data of a random (or mixed) model. It extends 
easily to other balanced data situations. In the analysis of variance there will 
be as many mean squares whose expectations do not involve fixed effects as 
there are variance components to be estimated. Equating each of these mean 
squares to their expected values gives a set of linear equations in the vari-
ance components, the solutions to which are the estimators of the variance 
components. In Table 9.2, for example, £(MSM) involves � , but the other 
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expected mean squares do not and so they yield the estimators of the variance 
components of the model. With random models the only expected mean 
square involving fixed effects is £(MSM), that for the mean. In mixed models 
there will also be others, but there will also be sufficient expected mean 
squares that do not involve fixed effects to provide equations that yield esti-
mators of the variance components. This is the analysis of variance method of 
estimating variance components. 

The procedure of "equating mean squares to their expected values" is a 
special case of the more general procedure of equating quadratic forms to 
their expected values, as used in a variety of ways with unbalanced data. 
These are discussed in Chapter 10. For balanced data the "obvious" quadratic 
forms to use are the analysis of variance mean squares and, indeed, it turns 
out that the resulting estimators have several optimal properties. Since 
derivation of the estimators depends upon availability of expected mean 
squares we turn first to these and the rules which enable them to be written 
down on sight. Subsequently we consider the properties of the estimators. 

6 . RULES FOR BALANCED DATA 

Discussion is confined to factorial designs, consisting of crossed and 
nested classifications and combinations thereof, where the number of ob-
servations in all of the sub-most subclasses is the same. Situations of partially 
balanced data, such as in Latin squares, balanced incomplete blocks and 
their extensions are thus excluded. Otherwise, the rules of thumb for setting 
up analysis of variance tables apply to any combination of any number of 
crossed and/or nested classifications. These rules lay out procedures for 
determining (i) the lines in the analysis of variance, (ii) their degrees of free-
dom, (iii) formulae for calculating sums of squares and (iv) expected values of 
mean squares. Most of the rules are based on Henderson (1959, 1969) except 
that Rule 9 comes from Millman and Glass (1967), who rely heavily on the 
Henderson paper for a similar set of rules. 

The description of the rules is purposefully brief, with no attempt at 
substantiation. For this the reader is referred to Lum (1954) and Schultz 
(1955). 

a. Establishing analysis of variance tables 
(/) Factors and levels. The analysis of variance table is described in terms 

of factors A, B, C, . . . , with the number of levels in them being na , nb, 
nc, . . . respectively. When one factor is nested within another the notation 
will be C:B for factor C within factor B,C:BA for C within AB subclasses and 
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so on. A letter on the left of the colon represents the nested factor and those 
on the right of the colon represent the factors within which the nested factor 
is found. With a nested factor, C for example, nc is the number of levels of 
factor C within each of the factors in which it is nested. Factors that are not 
nested, namely those forming cross classifications, will be called crossed 
factors. 

Within every sub-most subclass of the data there are assumed to be the 
same number of observations, nw , either one or more than one. In either case 
these observations can, as Millman and Glass (1967) point out, be referred to 
as replications within all other subclasses. Following Henderson (1959) we 
refer to these as the "within" factor, using the notation W.ABC. . . , the 
number of levels of the "within" factor (i.e., number of replicates) being nw . 
The total number of observations is then the product of the «'s, namely 
N = nanbnc . . . nw . 

(//) Lines in the analysis of variance table 
Rule 1. There is one line for each factor (crossed or nested), for each 

interaction, and for "within". 

{Hi) Interactions. Interactions are obtained symbolically as products of 
factors, both factorial and nested. All products of 2, 3, 4 , . . . factors are 
considered. For the sake of generality all crossed factors are assumed to have 
a colon to the right of the symbol; e.g., A:, B: and so on. 

Rule 2. Every interaction is of the form ABC . . .: XYZ..., where ABC... 
is the product on the left of the colon of the factors being combined and 
XYZ . . . is the product on the right of the colon of the factors so associated 
with A, B and C . . . . 

Rule 3. Repeated letters on the right of the colon are replaced by one of 
their kind. 

Rule 4. If any letter occurs on both sides of a colon that interaction does 
not exist. 

Examples. 

Factors Interaction 
A and B AB (Rule 2) 
A and C:B AC.B (Rule 2) 
A:B and C:B AC.BB = AC.B (Rule 3) 
A:B and B:DE AB:BDE, nonexistent (Rule 4) 

The symbolic form W.ABC... for replicates does, by Rule 4, result in no 
interactions involving W. Furthermore, the line in the analysis of variance 
labeled W.ABC. . . , being the "within" line, is the residual error line. 
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(iv) Degrees of freedom. Each line in an analysis of variance table refers 
either to a crossed factor (such as A:), to a nested factor (such as C:B) or to 
an interaction (e.g., AC.B). Any line can therefore be typified by the general 
expression given for an interaction in Rule 2, namely ABC . . .:XYZ . . . . 

Rule 5. Degrees of freedom for the line denoted by 

� � :� � *� (� � -1)(� *-1)� � . 

The rule is simple. Degrees of freedom are the product of terms like (na — 1) 
for every letter A on the left of the colon and of terms like nx for every letter X 
on the right of the colon. 

Rule 6. The sum of all degrees of freedom is N — 1, with N = nwnanbnc.... 

(v) Sums of squares. The symbols that specify a line in the analysis of 
variance are used to establish the corresponding sum of squares. The basic 
elements are taken to be the uncorrected sums of squares with notation: 

1 = CF = Ny2 

and a, ab, abc = uncorrected sums of squares for the 
^4-factor and the AB and ABC subclasses, respectively. 

Rule 7. The sum of squares for the line denoted by 

AB: XY is (a — l)(b — X)xy = abxy — axy — bxy + xy . 

Again the rule is simple: symbolically, a sum of squares is the product of 
terms like {a — 1) for every letter A on the left of the colon and of terms like 
x for every letter X on the right of the colon. This rule is identical to Rule 5 
for degrees of freedom: if in the expression for degrees of freedom every nf 

is replaced by/ , the resulting expansion is, symbolically, the sum of squares: 
e.g., 
(na — l)(nb — \)nxny becomes {a — \)(b — \)xy = abxy — axy — bxy + xy. 

After expansion, interpretation of these products of lower case letters is as 
uncorrected sums of squares. 

Note that all sums of squares are expressed essentially in terms of crossed 
factors. Even when a factor is nested, sums of squares are expressed in terms 
of uncorrected sums of squares calculated as if the nested factor were a 
crossed factor. For example, the sum of squares for A:B (A within B)is 
{a — \)b = ab — b, where ab is the uncorrected sum of squares of the AB 
subclasses. 

Rule 8. The total of all sums of squares is 2 y2 — CF9 where 2 y2 represents 
the sum of squares of the individual observations, wabc . . . in the above nota-
tion, and where CF is the correction factor. 



A 
B 
C:B 
AB 
AC:B 
W.ABC 

na - 1 
nb - 1 
(nc - IK 
(na - l)(nb - 1) 
(na - \){nc - I K 
(nw - \)nanhnc 
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TABLE 9 . 3 . EXAMPLE OF RULES 1 - 8 : ANALYSIS OF V A R I A N C E 
FOR FACTORS A, B, C \ B AND W.ABC 

Line Degrees of Freedom Sum of Squares 
(Rules 1-4) (Rule 5) (Rule 7) 

(a - 1) = a - 1 
(b - 1) = b - 1 

(c -\)b =bc -b 
{a - \){b -l)=ab-a-b + l 

(a - l)(c - \)b = abc - ab - be + b 
(w — \)abc = wabc — abc 

Total N - 1 (Rule 6) Σ y2 - CF = wabc (Rule 8) 

Example. Table 9.3 shows the analysis of variance derived from these 
rules for the case of two crossed classifications A and B, a classification C 
nested within B, namely C:B, and the within factor W.ABC. Application 
of these rules is indicated at appropriate points in the table. 

b. Calculating sums of squares 
The uncorrected sums of squares denoted by lower case letters such as a 

and ab have so far been defined solely in words; for example, ab is the 
uncorrected sum of squares for AB subclasses. Henderson (1959,1969) has no 
formal, algebraic definition of these terms—and in some sense it is un-
necessary so to do, since "everyone knows" what is meant by this: the un-
corrected sum of squares for the AB subclasses is the sum over all such 
subclasses of the square of each subclass total, the sum being divided by the 
number of observations in such a subclass (the same number in each). 
However, Millman and Glass (1967) give a neat procedure for formalizing 
this. It starts from an expression for the total of all the observations. We 
state the rule using as an example the uncorrected sum of squares be in a 
situation where xhijk is the observation in levels h, i, j and k of factors A, B, 
Cand W respectively. 

Rule 9. (a) Write down the total of all observations: 
na rib nc nw 

2 2 2 2 xhiik · 
h=li=l j=17c=l 

(b) Re-order the summation signs so that those pertaining to the letters in 
the symbolic form of the uncorrected sum of squares of interest (be, in this 
case) come first, and enclose the remainder of the sum in parentheses: 

rib nc / ria nw \ 

i=l j=l\h=lk=l J 
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(c) Square the parenthesis and divide by the product of the «'s therein. 
The result is the required sum of squares: 

nb nc i na nw \ 2 

Σ Σ Σ 2xhm) 
e.g., be = i=1J=1\^=1^=1 1 

nanw 

As a workable rule this is patently simple. 
c. Expected values of mean squares, £(MS) 

Mean squares are sums of squares divided by degrees of freedom. Expected 
values of mean squares, to be denoted generally by £(MS), are obtained by 
the following rules. 

(0 Completely random models. 
Rule 10. Denote variances by a2 with appropriate subscripts. There will be 

as many a2's, with corresponding subscripts, as there are lines in the analysis 
table. The variance corresponding to the fP-factor is the error variance: 

2 2 
� w.abc... Qe � 

Example. Where there is an AC:B interaction, there is a variance alc:b . 

When nw = 1, there is no W-line in the analysis of variance, although it 
may be appropriate to envisage a\ as existing. 

Rule 11. Whenever a a2 appears in any ^ M S ) its coefficient is the product 
of all «'s whose subscripts do not occur in the subscript of that a2. 

Example. The coefficient of alc:h is nw when the factors are A, B, C:B 
and W.ABC. 

This rule implies that the coefficient of σ^.^^ is always unity. 

Rule 12. Each £(MS) contains only those a2's (with coefficients) whose 
subscripts include all letters pertaining to the MS. 

Example. For the AC:B line E[MS(AC:B)] = nwa2
ac:b + a2

w:abc. 

According to this rule a\ = o^:a&c... occurs in every £(MS) expression. 

The above examples of Rules 10-12 are part of the expected values shown 
in Table 9.4. These are the expected values, under the random model, of the 
mean squares of the analysis of variance of Table 9.3. 

(//) Fixed effects and mixed models. 
Rule 13. Treat the model as completely random, except that cr2-terms corre-

sponding to fixed effects and interactions of fixed effects get changed into 
quadratic functions of these fixed effects. All other a2-terms remain, including 
those pertaining to interactions of fixed and random effects. 



394 VARIANCE COMPONENTS: INTRODUCTIO N [9.7] 

TABLE 9 . 4 . EXAMPLE OF RULES 1 0 - 1 2 : EXPECTED VALUES, 
UNDER THE RANDOM MODEL, OF MEAN SQUARES OF TABLE 9 . 3 . 

Variances (Rule 10) and Coefficients (Rule 11) 
Mean _ _ _ _ 
Square nhncnwal nancnwal nanwa2

c:b ncnwalh nwo*c:b ol:abc = o\ 

MSU) 
MSCB) 
MS(C:J5) 

MS(AB) 
MS(AC:B) 
MS(W.ABC) 

* denotes a tf2-term that is included; e.g., nbncnwo\ is part of E[MS(A)]. 

This rule is equivalent to that given by Henderson (1969) but differs from 
Henderson (1959), where it is stated that some a2-terms "disappear" from 
some of the expectations of mean squares. Explanation of this difference is 
included in the discussion of the 2-way classification that now follows. 

7 . THE 2 -WAY CLASSIFICATION 

Chapter 7 deals fully with the analysis of unbalanced data from the fixed 
effects model of the 2-way classification. The analysis of variance for balanced 
data shown there is repeated here as Table 9.5, using new symbols for the sums 
of squares and mean squares. SSA, for example, is the sum of squares for the 

a 

Λ-factor (after � ), with SSA = R(OL \ � ) = 7?(α | � , � ) = bn J (&.. - £...)2, 

as in Table 7.9. Expected values of these sums of squares are now developed 
for the fixed, random and mixed models, both as illustration of the "brute 
force" method of deriving such expectations and for discussing certain 
aspects of the mixed model. 

The equation of the model is, as in Chapter 7, 

Vnk = Λ + *i + ßi + yu + em 0 *) 

with / = 1, 2, . . . , a,j = 1,2, ... ,b and, since we are considering balanced 
data, k = 1,2, . . . ,n. To establish expected values of the sums of squares in 

Terms included (Rule 12) 
* * * * 

* * * * * 

# * * 
* * 

* 
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TABLE 9 . 5 . ANALYSIS OF VARIANCE FOR A 2-WAY CLASSIFICATION 
INTERACTION MODEL, WITH BALANCED DATA (see Table 7 . 9 ) 

Source of 
Variation d.f. Sum of Squares 

Mean 

^-factor 

i?-factor 

a - 1 

b - 1 

SSM = Nyl. 

SSA =bnf(yi.� -y.��)2 

AB interaction (a — \)(b — 1) 

Residual error ab(n — 1) 

SSB =an2(y.j. -y...f 
3 = 1 

a b 

SSAB = « 2 2('J»· -y t~ -y.t. + y-)2 

i=l j=l 

ssE=iiifefc-%3��)2 

i = l y = l k=l 

Total N = abn 
a b n 

SST = 2 I I>?« 
i=\ j=l k=l 

Mean Squares 

MSM = SSM 
MSA = SSA/O - 1) 
MSB = SSB/(6 - 1) 

MSAB = SSAB/O - \)(b - 1) 
MSE = SSE/ab(n - 1) 

Table 9.5 first write down the various means. They involve using 

i = i 

and yti, fmj and y., defined in analogous manner. Hence from (11) 

St.. = �  + af + ft + � {. + eimm , 
ymjm = �  + ä. + ft + y.,· + £.,-. , 
Vii. = �  + a < + ßj + y« + £«. 

and £... = µ + ä. + ft + y.. + e... · 

(12) 
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Substituting (11) and (12) into Table 9.5 gives 

SSM = � (�  + «. + £ + � .. + e...)\ 

SSA = bn 2 (a, - a. + yt. - y.. + et.. - e..)\ 
i=l 

SSB = � � �  (� , - � . + ?., - f- + *.,. ~ e..)\ (13) 
3 = 1 

SSAB = n f l(Yu ~ % ~ y.t + ?� �  + e� . ~ K- - *,· + e...f 
i=l j=l 

and SSE = Ü £(e<ft - e^.f. 
i=lj=lk=l 

Now, no matter what model we use, fixed, random or mixed, we take the 
error terms as having zero mean and variance a2

e and being independent of 
one another. Furthermore, the expected value of the product of an error 
term with � , an a, a �  or a �  is zero. [If the effects are fixed the products have 
zero expectation because E(eijk) = 0 and, when any of the effects are random, 
products with e-terms have zero expectation because of assuming independ-
ence.] Finally, expected values of squares and products of means of the e's 
are such that, for example, 

E(el) = allbn, 
E(eim.e...) = £(£,.£..) = E{eii.e.^ = a\\abn 

and E{ei..e.5) = a2Jabn. 
Hence for the terms in (13) 

£(£,.. - e...f = (a - l)cr2Jabn, 
E{e.,. - e.j = (b - iWlabn, 

E(eiS. - e{.. - e.,. + e...)2 = (a - l)(b - Wjabn ( } 

and E(em - etj)
2 = (n - \)o2Jn . 

Consequently, on taking expected values of (13), and dividing by degrees of 
freedom to convert them to mean squares, we get 

£(MSM) = � � (�  + � L. + � . + � ..)2 + � \, 
bn £� , _ . . - Λ2 . 2 

£(MSA) = — — �  � ^� ~ «. + ft. ~ y..) + < > 
a — li=i 

an 
b 

£(MSB) = - ^ - �  E(ßi ~ß. + � -� ~ � -) + < > 
b — 1/=ι 

(15) 

n a " 
£(MSAB) = — Σ �� (� �  - % - f., + f-Y + < 

(a — l)(o — l)i=ii=i 
and £(MSE) = a\ 
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These results hold whether the model is fixed, random or mixed. Each model 
determines the consequence of the expectation operations shown on the right-
hand sides of (15). 

a. The fixed effects model 
In the fixed effects model all the a's, /?'s and / s are fixed effects. Therefore 

the expectation operations on the right-hand sides of (15) just involve drop-
ping the E symbol. The results are shown in Table 9.6. They have been derived, 
be it noted, without making any use of the "usual restrictions" on elements of 
the model. 

Suppose we consider a model 

Pijk = � � + < + ßj + � -j + eijk (16) 

in which the "usual restrictions" are part of the model, namely 

a b 

and 2 y�u — 0» f° r all7, ^� ^ = 0, for all /. 
(17) 

3=1 

Before using these restrictions the expected mean squares will be those of 
Table 9.6, with primes on the a's, /?'s and y's. After using the restrictions 
(17) the expectations reduce to those of Table 9.7, because (17) implies 
«.' = 0, � : = 0, y[. = 0 for ally and yl = 0 for all /. 

The apparent difference between Tables 9.6 and 9.7 can be shown to be 

TABLE 9 . 6 . EXPECTED MEAN SQUARES OF A 2-WAY CLASSIFICATION 
INTERACTION MODEL, WITH BALANCED DATA, (see Table 9.5) 

Fixed effects model 

£(MSM) = � (�  + α + � . + y..)2 + σ2 

£(M^A) = 2 (*i - a + fi. - � ..)2 + <?2
e 

a �  i i=i 
an h 

£(MSB) = - — 2 (ß> - ß. + v.* - r..)2 + � \ 
D — 1 j=i 

E(MSAB) - (a - m -1) J J>« - *� - ?� > + � ")2 + � * 
£(MSE) = ol 
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TABLE 9 . 7 . E X P E C T E D MEAN SQUARES OF A 2 - W A Y C L A S S I F I C A T I O N 
I N T E R A C T I O N M O D E L , W I T H B A L A N C E D DATA, (see T a b l e 9 . 5 ) 

Fixed effects model, that includes the restrictions 

2 « ; = � = 2 ^ = �  y�afor a11 uand �  4� = � for ajl L 

i = l " ' j=l i = l 3 = 1 

£(MSM) = TV//2 

£ ( M S A ) = 2 α 2 

a — I i=i 

£ ( M S B ) =^r , | /" 

r / ' u C A ΤΙΛ 
r (M.AD) - (fl _ m _ l } 

£(MSE) = 

+ <7t
2 

+ ^2 

i 2 

� � ^ + ^2 

i = l j = l 
σ . 

just that, apparent and not real. Suppose we rewrite the model as 

1/ijk = Va + em (18) 

Then, on defining 

� � = µ.., α· = µ,·. - � .., ^; = ß.j - � ,. and 7/,· = � �5 - f\ - fimj + fi.. 

(20) 
equation (19) is identical to (16), and α · , � ] and � [� , by their definition in (20), 

σ a 

satisfy (17); for example, 2 αί = J ^*'· "~ ^ = °- T h e r e f o r e the definitions 
i=l i = l 

in (20) are consistent with the expected mean squares of Table 9.7 and so, 
for example, 

£(MSA) = - ^ - i a s ' 2 + ^ . 
a — 1z=i 

But in comparing (18) and (11) note that 

� �  =�  + at- + ßj + yu (21) 
and so with 

< = fit. - � .. 
from (20) we have 

α ; = �  + a,· + /?. + y.,· - (µ + ä. + ß. + 7·.), 
i.e., a; = a,· - ä. + yf. - 7.. . (22) 
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a 

Thus 2 αί2 of F(MSA) in Table 9.7 has the same meaning as does 
a 

� ( � * - � . + � {. -� ..)2 

of F(MSA) in Table 9.6. Hence interpretation of the F-statistic MSA/MSE 
is the same whether one uses Table 9.6 or 9.7: MSA/MSE tests the signifi-
cance of α-effects in the presence of (or, plus the average of) interaction effects. 
In Table 9.7 the symbols are defined, as in (17), so that these averages are 
zero whereas in Table 9.6 they are not so defined. The equivalence of the 
expressions for F(MSA) in Tables 9.6 and 9.7, resting as it does on (22), can 
also be demonstrated for the other entries in the two tables, based upon 

ß�i = ßj - ß. + f.j - y- > 

y�u = 7ij - � � � - f-i + y» ( 2 3 ) 
and �  = �  + ä. + ß. + � .. . 

Defining effects that satisfy "the usual restrictions" in the manner of (20) 
has the effect of simplifying Table 9.6 to the form of Table 9.7. But this 
simplification occurs only for balanced data. It does not occur for unbalanced 
data because the sums of squares used with such data (e.g., Table 7.8) have 
expected values that do not involve the means of the effects in such a simple 
manner as with balanced data (see Table 9.6). Restrictions that are in terms 
of weighted sums of the effects are sometimes suggested for unbalanced 
data, although these have no simplifying effect when there are empty cells, as 
is often the case with unbalanced data. 

A special case of the simplifying effect of the "usual restrictions" (20) 
that is of some interest is F(MSM). In Table 9.6 

F(MSM) = � (�  + S. + � . + � ..)2 + <s\ = N[E(y)f + <s\ , (24) 

consistent with the hypothesis H: E{y) = 0 that can be tested by the 
F-statistic. In Table 9.7 the expected value is 

£(MSM) = � � �2 + a\ 

consistent with testing, in that model, H: E(y) = �  = 0. This is the origin 
of the concept of "testing the mean" by the F-statistic F(M) = MSM/MSE, 
referred to in earlier chapters. There, with unbalanced data, we saw how the 
meaning of this phrase was best described in terms of testing H: E(y) = 0. 
With balanced data, that description is still appropriate when the model has 
no "usual restrictions", as is evident in (24), but when the model does include 
such restrictions the hypothesis H: E(y) — 0 reduces to H: �  = 0 and 
thus gets described as "testing the mean". 
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TABLE 9 . 8 . EXPECTED MEAN SQUARES OF A 
2-WAY CLASSIFICATION INTERACTION MODEL, 

WITH BALANCED DATA, (see Table 9.5) 

Random effects model 

E(MSM) = abfifi2 + bna\ + anoj + no2 + a\ 
£(MSA) = bna\ + no2 + a2 

£(MSB) = ana2 + � � * + a\ 
£(MSAB) = no2 + a2 

E(MSE) = 

b. The random effects model 
All the α-, � - and y-effects in the model are random in the random effects 

model, with zero means and variances a\ , a\ and a\ respectively so that, for 
example 

Ε(οΟ = 0 and £(αϊ) = οί . (25) 

The effects are also assumed to be uncorrelated with each other; e.g., 

£(a^,) = 0 = Efay,·,) and £(α,α,0 = 0 for i * V. (26) 

Furthermore, similar to (14) 

£(a< - ä.)2 = {a - \)<t\la . (27) 

Similar results hold for the /Ps and y's. Using them in (15) gives the expecta-
tions shown in Table 9.8. 

Estimation of the variance components from Table 9.8 is achieved by 
equating mean squares to their expected values, the resulting solutions for 
the components being the estimators. This gives 

al = MSE, a\ = (MSB - MSAB)/an, 
� 2

�  = (MSAB - MSE) / I I , � l = (MSA - MSAB)/6n. ( 2 8 ) 

c. The mixed model 
Suppose the α-effects are fixed effects and the /?'s and y's are random. Then 

the expectation operations on the right-hand sides of (15) involve dropping 
the E symbol insofar as it pertains to a's and using properties like those of 
(25), (26) and (27) for the ß's and y's. This leads to the results shown in 
Table 9.9. 
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TABLE 9 . 9 . EXPECTED MEAN SQUARES OF A 
2-WAY CLASSIFICATION INTERACTION MODEL, 

WITH BALANCED DATA 

Mixed model: 

£(MSM) 

£(MSA) 

£(MSB) 
£(MSAB) 

£(MSE) 

a's fixed, 

= � � � (�  + α.)2 

bn 
~ a - 1 

= 
= 
= 

a 

�  («* -
• » = 1 

, £'s 

ä.)2 

and y's random 

+ anaj + � � * + 

+ no* + 

anoj + «σ2 + 
«σ2 + 

*� 

*s 
� \ 

� \ 
� � 

The difference between the random and mixed models is that the a's are 
random effects in the random model and are fixed effects in the mixed model. 
Since only the first two equations in (15) involve a's, only the first two entries 
in Table 9.9 differ from the corresponding entries in Table 9.8, and then only 
through having quadratic terms in the a's instead of terms in a\ . 

The expectations in Table 9.9 are arrived at without making any use of the 
"usual restrictions" on elements of the model, just as are the expectations in 

a 

Table 9.6 for the fixed effects model. However, if the restriction ]£ af = 0 

is taken as part of the mixed model then 2s(MSA) of Table 9.9 reduces to 
hn a 

E(MSA) = - 2 5 - 2 a? + no) + o\, 
a �  1*=i 

the quadratic in the a's being similar to that of Table 9.8. 
An alternative mixed model that is often used is 

� (�  = � " + *-+� ;+� ;; + � � , (29) 
with the restriction 

ί ^ = 7 · " = 0 for all; . (30) 

In (29) the a"'s are fixed effects and the /T's and / " s are random effects 
with zero means and variances a\» and >y , respectively, and with the /T's 
and / " s being uncorrelated with each other and of the e�s. All this is exactly 
the same as in the mixed model described earlier, except for (30). This 
restriction implies a covariance between certain of the y"'s, namely between 
� ^ and � �{�  for / �  �. Suppose this covariance is the same, 

cov(y;; , � �� ) = c, for all / ^ V and ;'. (31) 
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Then, from (30) 
/ a \ 

o � ( & * ) 
and so aa\. + a(a — \)c = 0, 

giving c = -a2
rl(a - 1). (32) 

Note that this covariance pertains only to y'"s within the same level of the 
/8-factor, arising as it does from (30). The covariance between y"'s in the 
same level of the oc-factor is zero as usual: 

cov(y£, yiV) = 0 for all i and j * j � . (33) 
Prior to utilizing (30), the expected mean squares for the model (29) can be 

derived from equations (15) with double prime superscripts on µ, the a's, 
jff's and y's. Upon invoking � [) = 0 from (30), and hence y" = 0, equations 
(15) become 

£(MSM) = � (� " + a.�f + � � (� �!2) + � \, 

£(MSA) = - ^ ~ 
a — 1 + <t 

£(MSB) = -20- ^� (� ) - ß".f + � *, 
b �  13=i 

£(MSAB) = ^ - I y£(y". - ftf + <Z 

(34) 

{a - \)(b - 1 ) £ 1 Ä 

and £(MSE) = a\. 
In carrying out the expectation operations in ^(MSA) and £(MSAB), use 
is made of (31), (32) and (33) to give 

£(y;02 = arUlb + b(b - i)0/fr2] = a\,\b 
and £(y" - f�lf = « I + 1/6 - 2/6) = (b - 1 ) ^ / 6 . 

As a result, expressions (34) reduce to those shown in Table 9.10. 
The results in Table 9.10 differ from those in Table 9.9 in two important 

ways: i^MSB) and ^(MSM) do not contain a2
r , and the term in o\, that does 

occur in £(MSA) and £(MSAB) includes the fraction a\(a — 1). The first of 
these differences, the absence of � 2

r from, particularly, £(MSB), is the reason 
for Rule 13 at the end of Sec. 6 differing from the first edition of Henderson 
(1959, 1969) but being the same as the second. The first edition specifies a 
general rule which leads to the absence of G\, from iT(MSB) on the basis of 
y". = 0, as in (30), whereas the second specifies a general rule which retains 
� 2

�  in ̂ (MSB) as in Table 9.9, using a model that has no restriction like (30). 
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TABLE 9 . 1 0 . EXPECTED MEAN SQUARES OF A 2-WAY 
CLASSIFICATION INTERACTION MODEL, WITH BALANCED DATA 

Mixed model, with restrictions on interaction effects: y" = 0 for ally. 

£(MSM) = � {� " + ä")2 + ano\. + + σ| 
bn 

a - lfti 
£(MSB) = anal. + o\ 

£(MSA) = 2 (a" ~ *�T + n( I 4 + a\ 

£(MSAB) = " ( ; — [ Κ " + σ" 

^(MSE) = 

This dual approach to the mixed model is evident in many places. For ex-
ample, Mood (1950, p. 344) and Kirk (1968, p. 137) use the Table 9.9 ex-
pectations whereas Anderson and Bancroft (1952, p. 339), Scheffe (1959, 
p. 269), Graybill (1961, p. 398) and Snedecor and Cochran (1967, p. 367) 
use those akin to Table 9.10. Mood and Graybill (1963) do not discuss the 
topic. Although results like Table 9.10 predominate in the literature, those of 
Table 9.9 are consistent with the results for unbalanced data and this fact, as 
Hartley and Searle (1969) point out, is strong argument for using Table 9.9. 

The second difference between Tables 9.9 and 9.10 is the occurrence of 
a/(a — 1) in the terms in the interaction variance component in Table 9.10. 
This is a consequence of the restriction /.', = 0 of (30) as shown also, for 
example, in Steel and Torrie (1960, pp. 214, 246). 

A relationship between Tables 9.9 and 9.10 can be established as follows. 
The model for Table 9.9 is 

Vnk = �  + a,· + ßi + � �  + em 

with the a's as fixed effects and the ß�s and y's random. Suppose it is rewritten 
as 

Vm = �  + *t + � i + y-s + 7u - y>i + eu* � 
On defining �  — � , � �� = α€, 

� ) - ßj + V-s a n d 7u = Va ~ f-J (35) 
we have the model (29), corresponding to Table 9.10. This is so because, from 
(35), 

v".i = y-i - v-i = ° 
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as in (30). Other properties of the / " s are also evident. First, from (35), 

a\�  = � 2
�  + crj/α (36) 

and <� » = � %\ + \\a - 2/α) = (α - \)� 2
� /� , (37) 

giving σ* = —^— o y . (38) 

a — 1 

Also, cov(/?'i , }·;;·) = <τ*(1/α - 1/α) = 0, 

cov(j8'i,y^) = 0 f o r ^ j / , 

cov(r;;· , r;:,) = σ*(-1/α - \\a + \\a) 

= - ( T y
2 / a 

= -σ7
27(« - 1) from (38), 

this being the same as in (31) and (32). Also 
covfo",, y,V) = 0 

as in (33). Hence properties of the /T's and y"'s defined in (35) are exactly 
those attributed to (29) and (30) in deriving Table 9.10. And substituting (36) 
and (38) into Table 9.10 yields Table 9.9.1 

The question of which model to use, that leading to Table 9.9 or the one 
leading to Table 9.10, remains open and has not been considered. Lengthy 
discussion of the model (29) and (30) that leads to Table 9.10 is to be found 
in such papers as Wilk and Kempthorne (1955, 1956) and Cornfield and 
Tukey (1956) as well as in Scheffe (1959). The model that leads to Table 9.9 
is the one customarily used for unbalanced data. More than this will not be 
said. The object of this section has been to show a relationship between the 
two different models. In either model the variance components are estimated 
from the last three mean squares of the appropriate table, either 9.9 or 9.10. 

8 . ESTIMATING VARIANCE COMPONENTS 
FROM BALANCED DATA 

The method of estimating variance components from balanced data has 
been discussed and illustrated in terms of the 1-way and 2-way classifications. 
Extension to multi-way classifications is straightforward. The rules of Sec.6 

1 Conversations with C. R. Henderson, R. R. Hocking and N. S. Urquhart on this topic 
are gratefully acknowledged. 
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TABLE 9 . 1 1 . A N A L Y S I S OF V A R I A N C E FOR 1 -WAY C L A S S I F I C A T I O N 
R A N D O M M O D E L , �  OBSERVATIONS IN EACH OF a CLASSES, TV = an 

Source of 
Variation 

Mean 
Classes 
Residual 

error 

Total 

d.f. 

1 
a- 1 

a(n - 1) 

an 

Sum of Squares 

SSM = � �  

SSA = TA - � �  

SSE = T0-TA 

SST = T0 

Mean Square 

MSM = SSM 
MSA = SSA/(e - 1) 

MSE = SSE/tfO - 1) 

Expected value 
of mean square 

� � 2 + no\ + a\ 

na\ + G\ 

determine both the appropriate analyses of variance and their expected mean 
squares. The latter are equated to observed mean squares for obtaining 
estimators. Properties of estimators derived in this fashion are now discussed. 
For illustration, we use the 1-way classification random model, the analysis 
of variance for which is shown in Table 9.11, a generalization of Table 9.2. 
In this we envisage data consisting of a classes with n observations in each. 

The notation 
an a 

Τ. = ΣΣ ϊ « . � �  = � � ?1 and � �  = Ny* , (39) 
i� 1j=l i=l 

with N = an, is introduced and used in Table 9.11 because it refers to the 
basic calculations required, it simplifies writing of the analysis of variance table 
and it extends conveniently to unbalanced data. Each T-term is a total 
uncorrected sum of squares, with subscript indicating the factor it refers to: 
o for the observations, A for the ^-factor and �  for � �  = � (� ). 

Estimation of a\ and � \ follows from Table 9.11 in the same way that it 
does from Table 9.2: 

a\ = MSE and a\ = (MSA - MSE)/n . (40) 
Notation From hereon the use of A over a symbol to denote best linear un-

biased estimation is abandoned. Henceforth it simply means "an estimator 
of". 

a. Unbiasedness and minimum variance 
Variance components estimators obtained from balanced data by the 

analysis of variance method are unbiased, be the model mixed or random. 
Suppose that m = {MJ, for / = 1, 2, . . . , k, is the vector of mean squares 
in the analysis such that E(m) does not involve fixed effects and that σ2 is 
the vector of variance components to be estimated, with 2i(m) = Ρσ2 for P 
non-singular. Then m = Ρσ2 are the equations to be solved as 

σ2 = P^m (41) 
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for the variance components estimators. They are unbiased because 

E(&) = � -�£(���) = Ρ Ψ σ 2 = � 2. 

It is to be emphasized that although the property of unbiasedness applies 
here to both random and mixed models we are concerned in this section just 
with balanced data. Unbiasedness is not a property of the analogous estima-
tion procedure for unbalanced data from mixed models. We return to this 
point in the next chapter, noting now only that not even this simplest of 
properties, unbiasedness, is universally true for analysis of variance estima-
tors of variance components. 

The estimators in σ2 of (41) have the smallest variance of all estimators which 
are both quadratic functions of the observations and unbiased. This is the 
property of minimum variance quadratic unbiasedness presented in Graybill 
and Hultquist (1961). Under normality assumptions, the estimators in (41) 
have the smallest variance from among all unbiased estimators, both those 
that are quadratic functions of the observations and those that are not.This 
result is discussed by Graybill (1954) and Graybill and Wortham (1956). 
These papers, and the minimum variance properties they establish, apply 
only to estimators from balanced data. Discussion of similar properties for 
estimators from unbalanced data appears to be limited to the 1-way classifica-
tion, as in Townsend (1968) and Harville (1969a). 

b. Negative estimates 
A variance component is, by definition, positive. Nevertheless, estimates 

derived from (41) can be negative. A simple example illustrates this. Suppose 
three observations in each of two classes are those of Table 9.12. Then, as in 
(39), 

TA = 512/3 + 452/3 = 1,542 
� �  = 962/6 = 1,536 
T0 = 192 + 172 + 152 + 252 + 52 + 152 = 1,750. 

TABLE 9 . 1 2 . HYPOTHETICAL DATA OF A 
1-WAY CLASSIFICATION, 3 OBSERVATIONS 

IN 2 CLASSES 

Class Observations Total 

1 19 17 15 51 =yv 

2 25 5 15 45 = y2m 

96 = y�  
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TABLE 9 . 1 3 . ANALYSIS OF VARIANCE IN DATA IN TABLE 9 . 1 2 

Source 

Mean 
Classes 
Residual error 

Total 

d.f. 

1 
1 
4 

6 

Sum of Squares 

1,536 = 1,536 
1,542 - 1,536 = 6 
1,750 - 1,542 = 208 

1,750 = 1,750 

Mean 
Square 

1,536 
6 

52 

Expected 
Mean Square 

3σα2 + a\ 

The analysis of variance for the data of Table 9.12 is shown in Table 9.13. 
Hence, as in (40), 

σ,2 = 52 and a\ = (6 - 52)/3 = - 1 5 * . (42) 
This demonstrates how negative estimates can arise from the analysis of 
variance method. There is nothing intrinsic in the method to prevent it. This 
is so not only with a simple case such as (42) but also in many-factored models, 
both with balanced data and with unbalanced data. 

It is clearly embarrassing to estimate a variance component as negative, 
since interpretation of a negative estimate of a non-negative parameter is 
obviously a problem. Several courses of action exist, few of them satisfactory. 

(i) Accept the estimate, despite its distastefulness, and use it as evidence 
that the true value of the component is zero. Although this interpretation 
may be appealing, the unsatisfying nature of the negative estimate still re-
mains. This is particularly so if the negative estimate is used in estimating a 
sum of components. The estimated sum can be less than the estimate of an 
individual component. For example, from (42) we have the estimated sum 
of the components as a\ + a\ = 52 — 15\ = 36\ < a2

e. 
(ii) Accept the negative estimate as evidence that the true value of the 

corresponding component is zero and hence, as the estimate, use zero in 
place of the negative value. Although this seems a logical replacement such a 
truncation procedure disturbs the properties of the estimates as otherwise 
obtained. For example, they are no longer unbiased. 

(iii) Use the negative estimate as indication of a zero component to 
ignore that component in the model, but retain the factor so far as the lines 
in the analysis of variance table are concerned. This leads to ignoring the 
component estimated as negative and re-estimating the others. Thompson 
(1961, 1962) gives rules for doing this, known as "pooling minimal mean 
squares with predecessors", and gives an application in Thompson and Moore 
(1963). 
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(iv) Interpret the negative estimate as indication of a wrong model and 
re-examine the source of one's data to look for a new model. In this connec-
tion, Searle and Fawcett (1970) suggest that finite population models may be 
viable alternatives because they sometimes give positive estimates when 
infinite population models have yielded negative estimates. Their use is 
likely to be of limited extent, however. In contrast, Neider (1954) suggests 
that at least for split plot and randomized block designs, randomization 
theory indicates that negative variance components can occur in some situa-
tions. Such an apparent inconsistency can arise from the intra-block corre-
lation of plots being less than the inter-block correlation. 

(v) Interpret the negative estimate as throwing question on the method 
which yielded it, and use some other method that yields non-negative estima-
tors. Two possibilities exist. One is to use Bayes procedures, for which the 
reader is referred to Hill (1965, 1967), Tiao and Tan (1965, 1966), and Tiao 
and Box (1967) and to Harville (1969b) for commentary thereon. A second 
possibility is to use maximum likelihood estimators, as suggested by Herbach 
(1959) and Thompson (1962); these are discussed at the end of this chapter. 

(vi) Take the negative estimate as indication of insufficient data, and 
follow the statistician's last hope: collect more data and analyze them, either 
on their own or pooled with those that yielded the negative estimate. If the 
estimate from the pooled data is negative that would be additional evidence 
that the corresponding component is indeed zero. 

Obtaining a negative estimate from the analysis of variance method is 
solely a consequence of the data and the method. It in no way depends on any 
implied distributional assumption, normality or otherwise. However, when 
normality is assumed, it is possible in certain cases to derive the probability of 
obtaining a negative estimate. This is discussed in Sec. 9e below. 

9 . NORMALITY ASSUMPTIONS 

No particular form for the distribution of the error terms or of the random 
effects in the model has been assumed up to now. All the preceding results 
in this chapter are true for any distribution. We now make the normality 
assumptions, namely that the e's and each set of random effects in the model 
are normally distributed, with zero means and variance-covariance structure 
discussed earlier. That is, the effects of each random factor have a variance-
covariance matrix that is their variance (component) multiplied by an identity 
matrix; and effects of each random factor are independent of those of every 
other factor and of the error terms. Under these conditions we assume 
normality. 
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a. Distribution of mean squares 
Let / , SS, and M be the degrees of freedom, sum of squares and mean 

S q u a r e M = SS// (43) 

in a line of an analysis of variance of balanced data. Under the normality 
assumptions just described it can be shown that 

SSjE{M) ~ � 2(/), and the SS-terms are pairwise independent. 

fM/E(M) ~ %\f), and the Af's are pairwise independent. * 

Result (44) can be derived by writing SS/E(M) as a quadratic form y'Ay 
in the observations y, and applying Theorems 2 and 4 of Chapter 2. In 
applying these theorems to random or mixed models, V is not o^I, a s it is 
in the fixed model, but is a matrix whose elements are functions of the cr2's 
of the model, as illustrated in (9) and (10). Nevertheless, for the A-matrices 
involved in expressing each SS/E(M) as a quadratic y'Ay it will be found that 
AV is always idempotent. Furthermore, for the random model, µ has the 
form � � and µ'Αµ = � � �� � �  will, by the nature of A, always be zero. Hence 
the #2's are central, as indicated in (44). For the mixed model, (44) will also 
apply for all sums of squares whose expected values do not involve fixed 
effects; those that do involve fixed effects will be non-central #2's. 

Example. The variance-covariance matrix for the 1-way classification 
model of Table 9.11 is 

\ = a2
el + ali+3 (45) 

J = l 

where I has order N = an and J has order n, and (45) is a generalization of 
(10). Now for Table 9.11, with JJV being a J-matrix of order N, the terms 
of (44) are 

SS = SSA = fin-1?? J - � ^�� ] (46) 

and E(M) = £(MSA) = � � \ + � % 
so that a 

SS/£(M) = y'Ay with A = — ί = ί - . (47) 

Hence, using properties of J-matrices such as l ' J = riY and J2 = nS [e.g., 
Searle (1966, p. 197)], 

AV = [ο ί ( » " \Γ " J - ^" ' J iv) + � \(�  J - nN-1^/(net + £) 

= j;n-1J-N-1JN. (48) 
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It is easily shown that (AV)2 = AV, i.e., that AV is idempotent; and from 
(47) l'A = 0. Hence 

SSA/£(MSA) ~ r>'[r(AV), 0] = � \�  - 1), (49) 

the rank of AV being its trace, namely a — 1, as is evident from (48). 
There are, of course, easier ways of deriving (49), but the intermediary 

steps (45)-(48) have useful generalizations in the case of unbalanced data. 

b. Distribution of estimators 
Equating mean squares to their expected values as a method of deriving 

variance component estimators gives estimators that are linear functions of 
the mean squares. These mean squares have the properties given in (44). 
The resulting variance components estimators are therefore linear functions 
of multiplies of ^-variables, some of them with negative coefficients. No 
closed form exists for the distribution of such functions and, furthermore, the 
coefficients are themselves functions of the population variance components. 

Example. In Table 9.11 

(A - 1)MSA 
not + ctl 

and, independently, 

a(n - 1)MSE 

X2(a-\) 

>� \� �  - a). 

Therefore � �  = 2 MSA - MSE 

2 2 

~ xX* - i) - / � «, x\�  ~ *)� (5� ) 
� � �  + ae 2 

n(a — 1) an(n — 1) 
The exact form of the distribution of (50) cannot be derived, both because its 
second term is negative and because a\ and a\ occur in the coefficients and 
are unknown. This state of affairs is true for these kinds of variance com-
ponents estimators generally. Were the coefficients of the #2's known, the 
methods of Robinson (1965) or of Wang (1967) could be employed to obtain 
the distributions as infinite series expansions. 

In contrast to other components the distribution of a\ is always known 
exactly, under normality assumptions: 

^ = M S E ~ - ^ - Z U I S E ) (50 
./MSE 

where/MSE is the degrees of freedom associated with MSE. 
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Generalization of (50) arises from (41), which is σ2 = P_1m. The elements 
of m follow (44) and so, for example, Mt ~ E(Mi)fi~

1x2(fi). Now write 

C = d i a g l / r y ^ ) } for ί = 1, 2 fc 

where there are k lines in the analysis of variance being used. Then from (41) 

a2 ~ P^CEim) ~ P^CPo2. (52) 

In this way the vector of estimators is expressed as a vector of multiples of 
central ^-variables. 

c. Tests of hypotheses 
Expected values of mean squares (derived by the rules of Sec. 6) will suggest 

which mean squares are the appropriate denominators for testing hypotheses 
that certain variance components are zero. Thus in Table 9.9, MSAB/MSE 
is appropriate for testing the hypothesis H: a2 = 0; and MSB/MSAB is 
the F-statistic for testing H: � 2

�  = 0. In the random model all ratios of mean 
squares have central F-distributions, because all mean squares follow (44). 
In the mixed model the same is true of ratios of mean squares whose expected 
values contain no fixed effects. 

The table of expected values will not always suggest the "obvious" de-
nominator for testing a hypothesis. For example, suppose in Table 9.4 we 
wished to test the hypothesis a\ = 0. From that table we have, using Mx, 
M2, M3 and M4 respectively for MS(B), MS(C:B\ MS(AB) and MS(AC:B), 

£(MX) = k&l + k2a
2
c:b + k3a

2
ab + k,a2

ac:b + � 2 

£(M2) = k2a
2
c:b + k^2

ac:b + � 2 

E(M3) = k3a
2
ab + k^2

ac:b + a\ 

£(M4) = k,a2
ac:b + <s\ 

where we have here written the coefficients of the a2's, the products of w's 
shown in the column heading of Table 9.4, as k�s: e.g., kx = nancnw. It is 
clear from these expected values that no mean square in the table is suitable 
as a denominator to Mx for an F-statistic to test H: a2, = 0, because there 
is no mean square whose expected value is E(M1) with the � \ term omitted, 
namely 

� (� ,) - kxa\ = k2a
2
c:b + k^2

ab + k,a2
ac:b + a2

e. (53) 

However, there is a linear function of the other mean squares whose expected 
value equals E(M1) — kxo\ , viz. 

E(M2) + £(M3) - £(M4) = k2a
2
c:b + fc8<& + M L * + <*\ · (54) 

From this we show how to use the mean squares in (53) and (54) to calculate 
a ratio that is approximately distributed as a central F-distribution. 
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In (54) some of the mean squares are involved negatively. But using (53) 
it is clear that 

� (� � ) + £(M4) = k&l + E(M2) + £(M3). 
From this let us generalize to 

E(Mr + · · · + Ms) = kal + E(Mm + · · · + Mn) (55) 

and consider testing the hypothesis H: <J\ = 0 where G\ is any component 
of a model. The statistic suggested by Satterthwaite (1946), for testing this 
hypothesis is 

W 

M" 
Mr+-� 
Mm + -

(Mr + � � 

• � + M, 
�  � + Mn � 

�  + Msf 

which is approximately ~ F(p, q) (56) 

where p = - ^ � - ^ - and (MOT + · · · + M )2 ^ 
M% +� � �  + M% MHfm + � � � + MHfn 

In p and q, the term fi is the degrees of freedom associated with the mean 
square Mi. Furthermore, of course, p and q are not necessarily integers and so, 
in comparing F against tabulated values of the F-distribution, interpolation 
will be necessary. 

The basis of this test is that both numerator and denominator of (56) are 
distributed approximately as multiples of central %2-variables (each mean 
square in the analysis is distributed as a multiple of a central � 2). Furthermore, 
in (56) there is no mean square that occurs in both numerator and denomina-
tor, which are therefore independent, and so F of (56) is distributed approxi-
mately as F(p, q) as shown. 

Both M� and M" in (56) are sums of mean squares and, as Satterthwaite 
(1946) showed, pM�\E{M�) is distributed approximately as a central � 2 

with p degrees of freedom for p of (57). (A similar result holds for M" with 
q degrees of freedom.) More generally, consider the case where some mean 
squares are included negatively. Suppose 

M0 = Mx - M2 

where � �  and M2 are now sums of mean squares having/i and/2 degrees of 
freedom respectively. Let 

p = � {� � )� � (� 2) and �  = MJM2 > 1, 
and 

/o = (P - �)2/(� /�  + �/� )2� 
Then, simulation studies by Gaylor and Hopper (1969) suggest that 

——- is approximately ~ %2(f0) 
E(M0) 
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provided ^ > F f ^ m ? f�  < m a n d ^ < ^ 

They further suggest that p > Ff f 0 975 "appears to be fulfilled reasonably 
well" when 

£ ^ ^/g./j.0.975 x ^ / l f / 2 , o . 5 o · 

Under these conditions, Satterthwaite's procedure in (56) and (57) can be used 
on functions of mean squares that involve differences as well as sums. 

d. Confidence intervals 
The inability to derive exact distributions does not preclude the use of 

approximate confidence intervals and, in some cases, of exact intervals. A 
method for obtaining approximate confidence intervals for a linear function 
of expected mean squares is that given by Graybill (1961, p. 369). Define 
Xn,L a n d � �,�  a s lower and upper points of a (1 — a)% region of the � \� )-
distribution such that 

Kt� .L < Z » < xl,v) = 1 - a. (58) 
Then for any constants kt, such that 2 ^i^i > 0, the approximate confidence 
interval on ̂  ^fiiMi) *s given by 

\ Xr.V Xr.L I 

(Σ kiMtf 
where r = y^-�—^-

analogous to (57). Since r will seldom be an integer, %2
r L and � �  �  are obtained 

from tables of the central ^-distribution, using either interpolation or the 
nearest (or next largest) integer to r. A correction to the tabulated ^-values 
when r < 30 is given by Welch (1956) and recommended by Graybill (1961, 
p. 370), where details may be found. Other methods for finding simultaneous 
confidence intervals on ratios of variance components are to be found in 
Broemeling (1969). 

Suppose M1 and M2 are two mean squares having the properties of (44) 
and such that 

� {� � ) = �  + � 2
�  and £(M2) = <re . 

Suppose / i and/2 are the respective degrees of freedom of M�  and M2 and 
1Ct F=M1/M2. 
Then, with Ff f α being the upper a% point on the F(fltfz) distribution, 
i.e., a fraction a% of the distribution lying beyond Ff f a , write 

ax + a2 = a 
a n d ^1 = Ffz.fi.ai » ^2 = Ffltf2.az ' 

An approximate (1 — a)% confidence interval on �  given by Scheffe (1959, 
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p. 235), similar to that of Bulmer (1957), is 

[9.9] 

M2(F - F2)(F + F2 - F�2) 

FF�2 
<� < 

F/F{ 
When F < F2 the lower limit is taken as zero and when F < \jFx the interval 
is taken as zero. Scheffe indicates that this interval can be "seriously in-
validated by non-normality, especially of the random effects" for which Mx 

is the mean square. 
Although only approximate confidence intervals can be placed on variance 

components generally, there are some instances where exact intervals can be 
derived. The most notable is for � \, based on the ^-distribution of (51). It 
yields the interval contained in the statement 

Pr SSE 
2 <�  < 

SSE 

Xu 
= 1 (59) 

where/ssE = / M S E a n d the ^-values are derived from tables as in (58). 
Other exact confidence intervals readily available are those for the 1-way 

classification shown in Table 9.14. The first entry there is the appropriate 

TABLE 9.14. CONFIDENCE INTERVALS ON VARIANCE COMPONENTS 
AND FUNCTIONS THEREOF, IN THE 1-WAY CLASSIFICATION, 

RANDOM MODEL, BALANCED DATA (see Table 9.11) 

Parameter 
Exact Confidence Interval1 

Lower 
Limit 

Upper 
Limit 

Confidence 
Coefficient 

i2 + σ2 

� i + � l 

SSE 
Xa(n-V.U 

SSA(1 - FujF) 

nXa-i.v 
FlFg - 1 

n + F/Fu - 1 
n 

n + F/FL - 1 
FjFv - 1 

SSE 
Xl(n-1),L 
SSA(1 - FjJF) 

n%l-i,L 
F/FL - 1 

n + F/FL - 1 
n 

n + F/Fu - 1 
F\FL - 1 

2a 

1 Notation: F = MSA/MSE 
PT{XIL < X2(n) < � �,� ) = 1 - a 

Pr{F/v < F[a - 1, a(n - 1)] < Fv} = 1 - a 
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form of (59). The last three entries are equivalent intervals for different ratio 
functions, all based on the fact that for F = MSA/MSE 

a\¥\{na\ + a2
e) ~ F[a - 1, a{n - 1)]. (60) 

The interval for σ*/(σ* + a2
e) is given by Graybill (1961, p. 379) and that for 

� � � � �  by Scheffe (1959, p. 229). The second entry in the table, the interval 
for G\ , is given by Williams (1962) and stems from combining (60) and the 
distribution of SSE/o·*. 

e. Probability of negative estimates 
Consider two mean squares Mx and M2 of the nature described in (44). 

Suppose E(M1 — M2) = ko2 so that 

a2 = (M, - M2)/k. 

Then the probability of a2 being negative is 

Pr{a2is negative} = Fr{MjM2 < 1} 

= fMj/KMj) E(M2)\ 

\M2IE(M2) E(Mx)i 

This provides a means of calculating the probability that an estimator of the 
form a2 = (M1 — M2)/k will be negative. It requires giving values to the 
variance components being estimated because E(M2) and E(M^) are functions 
of the components. However, in using a series of arbitrary values for these 
components, calculation of (61) provides some general indication of the 
probability of obtaining a negative estimate. The development of this pro-
cedure is given by Leone et al. (1968). Clearly, it could also be extended to use 
the approximate F-statistic of (56) for finding the probability that the esti-
mate of G\ of (55) would be negative. 

Example. For the 1-way classification of Table 9.11 equation (61) is 

PrR2 < 0} = Pr{Fa_liaU_1} < � %� \ + na\)} 

= P r i i V ^ ^ ) < 1/(1 + nP)} 

where p = c\\e\ . 
f. Sampling variances of estimators 

Sampling variances of variance component estimators that are linear 
functions of ^-variables can be derived even though the distribution 
functions of the estimators, generally speaking, cannot be. The variances are, 
of course, functions of the unknown components. 
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(i) Derivation. With the estimators being linear functions of mean squares 
they are linear functions of quadratic forms of the observations and hence are 
themselves quadratic forms of the observations. Theorem 1 of Chapter 2 
could therefore be used to derive their variances. This is the procedure used 
with unbalanced data, in the next chapter. However, with balanced data the 
mean squares are independent with known distributions, as in (44), and 
variances of linear functions of them are therefore easily derived. By writing 
an estimator as 

& = 2kiMi 
we have, from (44), � � � (� {� {,) = 0 for / ^ /' and 

v{Mt) = IfAEiMMT = 2[E(Mi)]% . 

k�AEiMi)]2 

Hence � � 2) = 2 2 -
ft 

(62) 

Example. In the 1-way classification of Table 9.11 

a\ = (MSA - MSE)/« 
and so from (62) 

� (� �) = - , 
. a - 1 + a(n — 1). 

Similarly, from (51) 

which, for Table 9.11, is 

»(ft 

v(� l) = 

JMSE 

a(n - 1) 

(63) 

(64) 

(65) 

(//) Covariance matrix. Mean squares in the analysis of variance of 
balanced data are distributed independently of one another, as noted in 
(44). They therefore have zero covariances. But such is not necessarily the 
case with variance component estimators that are linear functions of these 
mean squares. Such estimators usually have non-zero covariances. For 
example, in the 1-way classification we have, from (40), 

cov(5a
2, 61) = -p(MSE)/n (66) 

= -2σ*/αη(η - 1). (67) 

In general, the variance-covariance matrix of the vector of estimators is, 

var(d2) = P- 1 varimjP-1�. (68) 
from (41), 
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Because the mean squares are independent var(m) is diagonal, which we 
write as 

var(m) = D = diag{2[£(M<)]«//;} for / = 1, 2 , . . . , k. (69) 

Then var(62) = P O P 1 ' , (70) 
each element being a quadratic function of the variance components, as is 
[E(Mt)f in (69). 

(///) Unbiased estimation. The quadratic nature of the elements of var(62) 
just noted makes estimation of them in any optimal manner not easy. The 
simplest and most oft-used procedure is that of replacing E(Mj in D by M{. 
Thus from (69) we write 

Dx = diag{2M*//,} for i = 1, 2, . . . , k (71) 

and then have var(62) = P ^ P 1 ' . (72) 

These estimators have no known desirable properties. They are not even 
unbiased. 

Unbiased estimation of var(d2) can, however, be readily obtained from (71) 
through replacing/ therein b y / + 2. Thus with 

D2 = diag{2M2/a + 2)} for f = l , . . . , f c , (73) 
we have var(d2) = P ^ P 1 ' (74) 

as an unbiased estimator of var(£2). For example, from (63) and (65) 

� (� ;) = 
2at 

a(n - 1) + 2 

2 
and v(aa) = 

n 
~2\ = -

2 

2\2 i.4 (� � �  + aey , σ, 
+ a + \ a(n - 1) + 2_ 

are unbiased estimators of the variances of a\ and a\ . 
The reason that (74) gives an unbiased estimator of var(o2) is as follows. 

For any mean square M, with degrees of freedom/, 

v(M) = 2[E(M)flf 
and, by definition, 

v(M) = E(M2) - [E(M)]2. 

Hence E(M2) = (1 + 2/f)[E(M)]2 

M2 · W A S * � � (� )]* and so is an unbiased estimator ol . 
/ + 2 / 

Therefore, using Ml\(ft + 2) in place of \E(M$?\fi in (69), as is done in (73), 
makes D2 an unbiased estimator of D and hence P~1D2P~1' of (74) is an un-
biased estimator of var(d2) = P~1DP~1'. 
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g. Maximum likelihood estimation 
Estimating parameters of a fixed effects model by the method of maximum 

likelihood leads in many cases (under normality assumptions) to the same 
estimators as do the methods of least squares and best linear unbiased esti-
mation. One would hope that with variance component estimation it would 
lead to the analysis of variance estimators. But such is not the case. The 
ability of analysis of variance estimators to be negative shows that they can-
not be maximum likelihood estimators, because the latter would be derived 
by maximizing the likelihood over the parameter space, which is non-negative 
so far as variance components are concerned. Maximum likelihood esti-
mators must therefore be non-negative. The problem of deriving maximum 
likelihood estimation is therefore not as straightforward for variance 
components as it is for the parameters of a fixed effects model; and indeed, 
with unbalanced data, explicit estimators cannot be obtained. Some of the 
results available for balanced data, notably in the 1-way classification, are 
now discussed. 

The likelihood of the sample of observations in the 1-way classification of 
Table 9.11 is 

L = (2� )-**» |V|-* exp{-Ky -� �� � ^ ~ � �)}, (75) 
where V of (45) can be rewritten as 

with I and J being of order n. Then 

|V| = Π |(<# + 4J)| = [oT-l\al + „<#]· 
a �  1 ,~2 

and V-1 = 2 + 
all a%allnat)J_ 

Substituting for |V| and V- 1 into (75) leads, after a little simplification, to 

i L�V�M-� � � .^� ^�  �� run — / / . 

exp —\ 
SSE , SSA , an(y.. - � ) 

+ -i~~ ; + 
or? el + rial a\ + nal J j L u g e � f t v y a ^e * � *^a -* (lf\\ 

( 2 7 7 ) ^ V ^ a ( n ~ V e + nalfa 

Equating to zero the differentials of log L with respect to � , � \ and a\ 
and denoting the solutions by ß, � l and G\ gives �  = y.., and 

a^l + nal) = SSA and a(n - l)a2
e = SSE. (77) 

In doing this the maximization (of L) has not been restricted to positive values 
of al and &l; hence the solutions to (77) 

a\ = SSE/fl(n - 1) = MSE 
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TABLE 9 . 1 5 . ESTIMATORS OF VARIANCE COMPONENTS IN THE 
1-WAY CLASSIFICATION, RANDOM MODEL, WITH BALANCED 

DATA 

Methods of 
Estimation Conditions 

Estimators 

ofcrj of*! 

Analysis of variance 

Maximum likelihood 
(Herbach, 1959) 

Restricted maximum 
likelihood 
(Thompson, 1962) 

None 

a - 1 MSA > MSE 

(MSA - MSE)//2 

(a- 1 

a 

a- 1 MSA < MSE 

MSA > MSE 

MSA < MSE 

MSE 

MSA - MSE I / n MSE 

SST 
an 

MSE (MSA - MSE)/« 

SST 
an — 1 

and 
(SSA/a - ol) (1 - l / a )MSA - MSE 

are not maximum likelihood estimators. Herbach (1959) shows that when 
� l is negative, i.e., (1 — \/a)MSA < MSE, the maximum likelihood estimator 
of al is 0 and that of σ* is SSTJan. This result is shown in Table 9.15, along 
with that of Thompson (1962), who uses a restricted maximum likelihood 
procedure, confined to just that portion of the set of sufficient statistics which 
is location invariant. This is the basis for Thompson's procedure mentioned 
in Sec. 8b of pooling minimal mean squares with predecessors when the 
analysis of variance method yields negative estimates. 

1 0 . E X E R C I S E S 

1. Suppose you have balanced data from a model having factors A, B, C 
within ^-subclasses, and D within C. Set up the analysis of variance table, 
and give expected values of mean squares for (i) the random model, (ii) the 
mixed model when A is a fixed effects factor and (iii) the mixed model when 
both A and B are fixed effects factors. 
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2. Repeat Exercise 1 for a model having factors A, B, D, and C within AB. 

3. A split-plot experiment, whose main plots form a randomized complete blocks 
design, can be analyzed with the model 

Vuic = �  + (*i + Pi + da + ßk + 0ik + em. 

Set up the analysis of variance table, and give expected values of mean squares 
for the following cases: 
(a) Random model. 
(b) Mixed model, />'s and <5's random. 
(c) Mixed model, only the /Ts fixed. 
(d) Mixed model, only the a's fixed. 

4. Show that F = Qjso2 as used in earlier chapters [e.g., equation (21) of Chapter 6] 
is distributed as F�{s, N - r, [E(Q) - SO2]J2G2}. 

5. Use Theorems 2 and 4 of Chapter 2 to show that SSA/(a? + � � ^ and SSE/crJ 
of Table 9.11 are distributed independently as central %2-variables. 

6. For the random model 
Vijk = A* + *i + ftj + *tfjfc , 

with balanced data, derive explicit expressions for (i) the analysis of variance 
estimators of the variance components and, under normality assumptions, (ii) 
the variances of those estimators and (iii) unbiased estimators of those variances. 

7. Repeat Exercise 6 for the models 

(fl) Vuk = ^ + α ; + ßi + em 

and (b) yijk = µ + a,· + ^ + (a^)tV + ^ . 

8. When the â  in Exercise 6 are fixed effects show that the generalized least squares 

normal equations for �  + oct· lead to �  + α̂  = ^ . . . 



CHAPTER 10 

METHODS OF ESTIMATING VARIANCE 

COMPONENTS FROM UNBALANCED DATA 

Estimation of variance components from balanced data rests almost entirely 
on one method, the analysis of variance method described at length in the 
preceding chapter. In contrast, there are several methods available for use 
with unbalanced data, a number of which are now described. They are pre-
sented largely in general terms and are illustrated by means of the 1-way and 
the 2-way (crossed) classifications. Most of the illustrations are of individual 
aspects of the methods and not of complete analyses. The purpose of the 
chapter is to describe methodology without the clutter of lengthy details of 
specific cases. This should enable the reader to direct his attention to basic 
procedures rather than being diverted to their numerous details in individual 
applications. These are given in the next chapter, where, with little or no dis-
cussion of methodology, we have gathered together specific results available 
in the literature and shown them in full detail. The present chapter is therefore 
a chronicle of the various methods and the following one is a catalogue of the 
available consequences of applying those methods to specific cases. 

1. EXPECTATIONS OF QUADRATIC FORMS 

The analysis of variance method of estimating variance components from 
balanced data is based on equating mean squares of analyses of variance to 
their expected values. This is a well-defined method with balanced data 
because there is only one analysis of variance for any particular model. For 
example, with the 2-way classification interaction model the only analysis of 

[ 421 ] 
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variance is that of Table 7.9 (or equivalently Table 9.5). However, with un-
balanced data for that same model there are two analyses of variance, namely 
the two parts of Table 7.8, one for fitting a before ß and the other for fitting ß 
before oc. This is so in general; there can be several, maybe many, ways of 
partitioning a total sum of squares. (Table 8.2 is an example.) On the face of 
it there are no criteria for choosing any one of these partitionings over the 
others when it comes to using one of them for purposes of estimating variance 
components. We return to this matter subsequently, for the moment noticing 
only that there is, with unbalanced data, no uniquely "obvious" set of sums 
of squares or quadratic forms in the observations that can be optimumly used 
for estimating variance components. There is instead a variety of quadratic 
forms that can be used, each of them in the method of equating observed 
quadratic forms to their expected values. We therefore begin by considering 
the expected value of the general quadratic form y'Qy.1 

The general linear model is taken, as usual, to be 

y = Xb + e (1) 

where y is N X 1 (N observations) and, for the sake of generality, 

var(y) = V. 

Then, from Theorem 1 of Sec. 2.5a, the expected value of the quadratic form 
y�Qy is 

E(y�Qy) = tr(QV) + E(y�)QE(y). (2) 

We look at this in terms of the model (1) being successively a fixed effects 
model, a mixed model and a random model. 

In every case b represents all the effects in the model, be they fixed, random 
or mixed. Also, in each model we take E(e) = 0, so that var(e) is £(ee') = 
� % Furthermore, when b is a vector of fixed effects, £(be') = b£(e�) = 0; 
and when b includes elements that are random effects we assume they have 
zero means, and zero covariance with the elements in e; thus at all times 
£(be�) = E(eV) = 0. 

a. Fixed effects models 
In the usual fixed effects model b is a vector of fixed effects with E(y) = Xb 

and V = a2
elN. Then (2) becomes 

£(y�Qy) = b�X�QXb + <s\ tr(Q) (3) 

Examples. Two well-known applications of (3) are when Q = IN, giving 

E(y�y) = b�X�Xb + Na*; 

1 The matrix Q used here is not to be confused with the scalar Q used earlier for the 
numerator sum of squares in hypothesis testing. 
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and when Q is X(X'X)~X', for which y'Qy is the reduction in sum of squares 
R(b), giving 

E[R(b)] = b'X'Xb + (?e
2tr[X(X'X)-X'] 

= b'X'Xb + tf2
er(X), 

because X(X'X)~X' is idempotent and has the same rank as X (Theorem 7 
of Sec. 1.5). Hence E\y�y - R(b)] = [N - r(X)]a2, the familiar result for a 
residual sum of squares (see Sec. 5.2e). 

b. Mixed models 
In a mixed model we partition b� as 

b' = [bi b�A VB · · · b�K] (4) 
where bx contains all the fixed effects of the model (including the mean � ) 
and where the other b's each represent a set of random effects for the factors 
A, B, C, . . . , ^respectively. Although only single subscripts are used, inter-
action effects and/or nested-factor effects are not excluded by this notation. 
They are considered merely as factors, each identified by a single subscript 
rather than the letters of the corresponding main effects. For example, the 
^-interaction effects might be in the vector b^ . 

The model (1) is written in terms of (4) as 

y = Xxbx + Χ ^ + X^b* + · · · + XKbK + e; 
K 

i.e., as y = \xbx + 2 X A + e (5) 
� =�  

where X has been partitioned conformably for the product Xb and where 
�  in the summation takes the values A, B, . . . , K. For the random effects we 
make the two initial assumptions: that they have zero means and that the 
effects of each random factor have zero covariance with those of every other 
factor. Thus we write E(be) = 0 and from (5) obtain 

E(y) = Xxbx (6) 

and V = var(y) = ^ Χθ var(be)X^ + <� � �  (7) 
� =�  

where Ι^ is an identity matrix of order N, and var(b0) is the covariance 
matrix of the random effects of the ö-factor. These effects are usually assumed 
to be uncorrelated, with uniform variance a], so that 

var(bö) = <S\\NB for �  = A, B, . . . , K, (8) 
there being � �  different effects of the ö-factor in the data, i.e., � �  levels ofthat 
factor. Thus in (7) K 

V ^ X Ä ^ + tf^. (9) 
� =�  
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Hence from (6) and (9) the expected value of the quadratic form in (2) is 

E(y�Qy) = (X1b1)�QX1b1 + f <rj tr(QX0X^) + a\ tr(Q). (10) 

c. Random effects models 
In a random model all effects are taken to be random—all, that is, save � , 

the general mean. The expression (10) just developed for £(y'Qy) for the 
mixed model can therefore be used for the random model, by letting bx be 
the scalar �  and � �  be a vector of l's denoted by 1. Thus for the random 
model 

WQy) = ^l�Ql + I <*l tr(QX*Xi) + a\ tr(Q). (11) 
� =�  

d. Applications 
Applying these general results to particular models involves partitioning b 

into sub-vectors each of which contains effects pertaining to all levels of one 
complete classification (or interaction of classifications) involved in the linear 
model. In this way expressions (3), (10) and (11) represent the general results 
for the fixed, mixed and random models respectively. With their aid, ex-
pectations of quadratic forms can be readily obtained for any of the three 
models. For example, suppose we had 

Vijich == I1 + a i + Pj ~t~ 7k ~t~ ojk + eijkh . 

In vector form this could be written as 

y = � � + Χ ^ + X^b* + Xcbc + � � ,� ^ + e 

where b^ is the vector of oc-effects, b^ is the vector of ß9s9 and bc and b^ 
are vectors of the � - and ό-terms respectively. In this way the results in (3), 
(10) and (11) can be applied to finding expectations of any quadratic form 
y'Qy of the observations y. 

2 . ANALYSIS OF VARIANCE METHOD 
(HENDERSON'S METHOD 1) 

The analysis of variance method with balanced data consists of equating 
mean squares to their expected values. Essentially the same procedure is used 
with unbalanced data. 

We begin by discussing the method in terms of an example, the 2-way 
classification interaction model. Although not the simplest example that could 
be used it illustrates facets of the method that cannot be demonstrated with a 
simpler one. Many details of deriving estimators for the 2-way classification 
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interaction model are given here but the complete results are not. They are 
shown in Chapter 11. In this chapter we give just those details necessary for 
illustrating the method and its various aspects. 

a. Model and notation 
The model for the 2-way classification with interaction is 

Vuic = �  + H + ßj + 7a + eijk (12) 
where yijk is the kth observation in the ith level of the ^-factor and the yth 
level of the ^-factor; i = 1, 2, . . . , a,j = 1, 2, . . . , b and k = 1,2, . . . ,nij9 

with s of the ^-values being non-zero. A complete description of the fixed 
effects case of the model is given in Sec. 7.2a. In the random model, which we 
now consider, the oc/s, ß/s and y,/s are all assumed to be random with zero 
means and variances σ^Ια , a2

ßlb and a2ls respectively. This means, for example, 
that 

£(a,) = 0, E(<x2) = a\ and ^(α,α,Ο = 0 for i �  V, (13) 

with similar results for the /Ts and y's. Also, all covariances between pairs of 
non-identical random variables are assumed zero. The e-terms follow the usual 
prescription: E(e) = 0, var(e) = � ]��  and the covariance of every e with 
every random effect is zero. 

b. Analogous sums of squares 
The analysis of variance for balanced data in the model (12) is shown as 

Table 9.5. It contains a term 

SSA = ^ | ( , , . - ^ = | i | · - ^ , (14) 

the bar and dot notation of totals and means being the same as defined in 
Sec. 7.2a. The term analogous to (14) for unbalanced data is 

a v2 v2 

SSA = y ^ - ^ . (15) 
Ä «.·. n.. 

This is one of the terms used for estimating variance components by the 
analysis of variance method from unbalanced data. In similar manner the 
other terms are 

b v2- v2 

SSB = 2 — - — (16) 

a b 2 a 2 b 2 2 

SSAB = 2� ^-�—-�^ + ^�  (1?) 

and SSE = i i ' | ^ - i i ^ . (18) 
= Ü= l fc= l i = l j=l rii 
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The analysis of variance method of variance component estimation for un-
balanced data then involves equating (15)—(18) to their expected values. 
Before considering derivation of these expected values comments about these 
SS-terms are in order. 

(0 Empty cells. Since nu is the number of observations in a cell it can, 
as we have seen, be zero. The summations in SSAB and SSE that involve 
nu in the denominator are therefore defined only for the (i,j) combinations for 
which nu is non-zero; i.e., the summing is over only those s cells that have 
observations in them. The possibility of zero denominators is thus removed. 

(ii) Balanced data. It is clear that when the data are balanced, i.e., 
n{j = n for all / andy, then (15) reduces to (14). In similar fashion (16), (17) 
and (18) reduce to the corresponding analysis of variance sums of squares for 
balanced data shown in Table 9.5. 

(Hi) A negative "sum of squares�9. Expressions (15)—(18) have been estab-
lished solely by analogy with the analysis of variance of balanced data. In 
general not all such analogous expressions are sums of squares. For example, 
SSAB of (17) is not always positive (see Exercise 1 of Chapter 2) and so it is 
not a sum of squares. We might therefore refer to (15)—(18) and their counter-
parts in more complicated models as analogous sums of squares and the method 
as the analogous analysis of variance method. It is, however, conventionally 
called the analysis of variance method, or Henderson's Method 1, after 
Henderson (1953). 

(iv) Uncorrected sums of squares. Because, in general, the SS-terms are not 
sums of squares we deal with them in terms of uncorrected sums of squares, 
to be denoted by T's, as introduced for balanced data in equation (39) of 
Sec. 9.8. Thus for the SS-terms of (15)—(18) we define 

a v2 

rp ^ iff 
1 A - L~ 

i=lni-a b 2 

i=l j=l nij 

and 

and 

b v2� 

j=i n-j 
2 

(19) 
n.. 

a b nij 

with � 0 = � � � � �*-
i=l 3=1^=1 

Apart from � �  for the correction factor for the mean and T0 for the total sum 
of squares of all observations, the subscript to a T denotes the factor it 
applies to and provides easy recognition of the calculating required. For 
example, 

v (total y for a level of the ^-factor)2 

A levd̂ of no. of observations in that total 
^1-factor 

Similarly, TAB is calculated by an expression equivalent to (20) only with 
'M-factor" replaced by "AB-factor". With the T's of (19) the SS-terms in 
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(15M18) are 
SSA = TA-T and SSB = TB-TU, 

(21) 
SSAB = TAB -� � -� �  + � �  and SSE = T0 - TAB. 

In this form the SS-terms are handled with relative ease, since the T's are 
positive definite quadratic forms with manageable matrices. 
c. Expectations 

Variance components are estimated by equating observed values of terms 
like (15)—(18) to their expected values. The observed values are calculated 
from the T's and the expected values of (15)—(18), which are quadratic forms 
in the observations, could be derived by using Theorem 1 of Sec. 2.5; so 
could the expected values of the T's. However, the "brute force" method 
illustrated for balanced data in Sec. 9.7 is probably no more lengthy than 
using the theorem, especially when simplifications arising from the model are 
fully utilized. We therefore illustrate by deriving £(SSA) = E(TA) - � (� � ), 
and then give a generalization. The derivation of E(TA) in extenso serves as a 
guide to deriving expected values of T's generally. 

(/) An example. We obtain 
E(SSA) = E(TA) - � (� � ) 

by substituting the model (12) into TA and � �  of (19) and then taking ex-
pectations. First, for TA , we have 

b na b b 

Vi- = �  �  Vm = � {.�  + η,.α,- + � � � � � + � � � � �  + *<·· · (22) 
3 = l f c = l 3=1 3=1 

Hence on squaring and expanding the right-hand side of (22) and dividing by 
nim, we get b b 

� � 1� * � � 1� 2�  Vi" 2 2 ~\ ~1 ei~ 
— = � ^�  + rii.oLi + + + — 

b b b b 

�  �  ni3ni3�ßjß3� �  �  nunij�YnVij� 
, 3 = 1 j � ^ 3 , 3 = 1 3�� 3 

T" ~Γ 

+ 2 

rii. n{. 

b b b 

� � ^ + � � � � � � + �*� � � � �  + ^ · + α<Ση<^ 
3=1 3=1 3 = 1 

\inußi)\iniiYii) 
+ *iZnaYij + *iei» + " 

3 = 1 

\Lnußi)ei" \JLniiYii)ei�-
(23) 
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Expression (23) holds true no matter which effects in the model are fixed and 
which are random. 

Consider taking the expected value of (23) under a random model. Prod-
ucts involving �  go to zero because the other term in such products is a 
random variable having zero expectation; e.g., � {� � �.^�) = � � {.� (� {) = 0. 
Products of random variables also have zero expectation, because all co-
variances and expected values are zero; e.g., El a< �  nnßo) = �  nnE(<*-ißi)and 

\ 3=1 J j=l 

E{^ß3) = covfoft) + EiaMßj) = 0; similarly £ £ � �5� �� � {� &,) = 0. The 
3=1 3��  3 

only non-zero terms are the expected values of all squared terms which, 
apart from µ2, become variances. These are the only non-zero terms re-
maining in E(yl.jni) and so 

b b 

E (f£:) = � ,.� 2 + � ,.� � + ^ a\ + ^ cxj + � \ , (24) 
\n , � . / ni- ni-

the last term being a\ because 
ni3 

lE(elk) 
T?lei�\ V *=1 ni�� e 2 

with the cross-products in the e's having zero expectation. Hence, summing 
(24) gives 

E(TA) 
i=i \m. 

b b 

y n
2 . yn

2. 
= � � % +� � �+� � -� �  + � � -� �  + � � \. (25) 

i = l ni> i=l ni-

The extended form (23) shows clearly how (24) and (25) are derived; and 
it is particularly useful when we come to the case of mixed models where not 
all cross-product terms have an expected value of zero; e.g., see equation (30). 
However, the consequences of the expected values of the model [e.g., (13)] 
make it easy to go directly from (22) to (25). Thus for � �  we write 

�  b a b 

y,�  = � �  + 2 η<.α< + 5 > · Α + �  � � � ��  + e-
i=l 3=1 i=l 2=1 

and so 
a b a b 

,,,�  � »? � «�  � � »�  
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and hence 
£(SSA) = E(TA) - � (� � ) 

� 7 + (� - \)ae. (27) 

Expected values of SSB and SSAB can be obtained in like fashion. Together 
with i^SSE) = (N — S)GI the four expected values, when equated to their 
corresponding observed values, provide four equations in the four required 
variance components. 

A noticeable aspect of (27) is that it has a non-zero coefficient for every 
variance component in the model, whereas with balanced data the comparable 
expected value contains no term in a\ [see Z^MSA) in Table 9.8]. The term 
in Oß in (27) does, of course, reduce to zero for balanced data; i.e., when 

n{j = n, n{, = bn, n.5 = an and «.. = N = abn, (28) 

the coefficient of o\ in (27) is 

4,?� 2� Ifi tbn*\ ba*n* 
> — = a\-— — —;— = an — an = 0. 

£ L «i- N \ b n � abn 

Similarly the coefficient of G\ in (27) becomes 
a 

N — l—— = abn — —:— = bn(a — 1), jy abn 

and that of � * reduces to n(a — 1). Hence (27) for balanced data becomes 

£(SSA) = {a - l){bnal + � � 2
�  + a2

e) 

as is implicit in Table 9.8. 
(ii) Mixed models. Suppose that in the 2-way classification the ,4-factor 

is a fixed effects factor. Then the α/s of the model are fixed effects, and the 
expected values of the SS-terms of (21) differ from their values under the 
random model. For example, in taking the expected value of (23) to obtain 
E(TA) we have, with the oc's as fixed effects, 

Efa.a*) = � ^� �  , and not nt.a\ as in (24); ^ΟΛ 
� (2� � �.� ��) = � � � ^ , and not 0 as in (24). 
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Other terms in (23) involving ô  will have zero expectation, just as they did in 
the derivation of (24) but now for a different reason: for example, E(OL$0) = 0 
in (24) because the a's and /Ts were random variables with zero means and 
covariances. In the mixed model E(OL$3) is still equal to 0, but because 
� ^� ,) = ^� (� ,) = α<(0). 

Equations (29) mean that in the mixed model, instead of the terms � � 2 + 
� � �  

E(TA) contains � � 2 + �  niA + 2/* Σ w<·«* · (30) 
Similarly it can be shown that 

( �  � <�� <) 
� (� � ) contains � � 2 + - ^ + 2�  £ n<.af. (31) 

Therefore 
t = l 

( | n , a , ) 2 

£(SSA) = E(Tj) - � (� � ) contains £ n£.a; - ~� zl = � � , say. (32) 
i=l N 

Carrying through the same process for SSB shows that 

b 
v Y fv V 

£(SSB) = E(TB) - £(TW) contains 2 — - - ^ = θ2, say. (33) 

The important thing to notice here is that 0X �  � 2, so that £(SSA — SSB) is 
not free of the fixed effects in the way that E(TA — � � ) is of � � 2. This is true 
generally: in mixed models, expected values of the SS-terms contain func-
tions of the fixed effects that cannot be eliminated by considering linear 
combinations of the terms. Thus the analysis of variance method cannot be 
used for mixed models. 

There are two obvious ways of overcoming the above difficulty, but both 
are deviants from the true mixed model and must therefore be considered as 
unsatisfactory. The first is to ignore the fixed effects altogether and eliminate 
them from the model: what remains is a model that is completely random, 
for which estimation of the variance components can be made. The second 
possibility is to assume the fixed effects are in fact random, and then treat 
the model as if it were completely random. In the resulting estimation process, 
components for the fixed effect factors will be estimated and can be ignored. 
In using either of these possibilities we deal with random models, for which 
the estimation process is suitable. But the variance component estimators will, 
in both cases, be biased because their expectations under the true, mixed 
model will not equal the variance components of that model—they will 
include quadratic functions of the fixed effects. Despite this, if the models 
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which these approximations invoke are in any way acceptable alternatives to 
the mixed model then the approximations may be of some use. Furthermore, 
they utilize the relatively easy arithmetic of the analysis of variance method, 
which is sometimes advantageous in face of the greater complexity of other 
analyses of mixed models (see Sec. 3). 

(Hi) General results. General rules for obtaining expected values of T-
terms in random models are now developed. To do so we write the model as 

y = � � + �  X A + e (34) 
� =�  

which is (5) with Xx = 1 and bx taken as the scalar � . To derive E(TA) from 
(20) we define 

ym(A{) = total of ] 
observations in the /th level of the .^-factor 

n(Ai) = number of] 

and have, from (20), 

� , - � ^ . (35) 

Now, just as in Sec. 6.5, define n(At, d0) as the number of observations in the 
z'th level of the ^4-factor and the yth level of the 0-factor. Also define bQ. as 
the/th element of b 0 , and e.(A^) as the total of the error terms corresponding 
to y.(A{). Then using (34) in (35) gives 

NA 
� =�  j=l -

η(Λ) 
Taking expected values of this gives (i) a term in � 2: 

(36) 

� 1-^^ = � 2� � (� �)=� � 2; (37) 
i=i nyAj i=i 

(ii) a term in a\ , for �  = A, B, . . . , K: 

K4 , � � )� 2
�  = �  ^ *� , (38) 

*=1 n(At) 
so defining k(a\ , TA) as the coefficient of o\ in E(TA); and (iii) a term in a\\ 

/ A \ 2 NA 

=1 n(At) %=i 
2n-^=alil = NAal. (39) 
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Example. We derive E(TA) of (25) from (39). The terms � � 2 and � � � \ 
need no demonstration. The others are 

a £ WO,, ft)]" α Σ 4 
<=i n(a<) i=i n<. 

a Σ tW(a< , y<i)]2 a 2n<i 
and fc(*a, TJtfJ = 2 j=1 , , *v = Σ ^ 1 - ^ y 

Similarly the terms in � (� � ) are, for example, of the form: 

w .2 rr v .2 i = l 2 i = l 2 

as in (26). 
(iv) Calculation by "synthesis". Calculating coefficients of a2's in terms 

like £(SSA) and E{TA) without first requiring the algebraic form of these co-
efficients can be achieved by a method developed by Hartley (1967). The 
method applies to calculating coefficients of the a2's in expected values of any 
quadratic form that is homogeneous in the observations y, and it requires no 
distributional properties of the model. He has called it the method of "syn-
thesis". We describe it in terms of calculating TA of the preceding example. 

Write TA of (35) as 

TA = f Μ ^ ϊ = y'Q^y = TJy) (40) 
<=i n{At) 

and define x(@>j) = yth column of Χθ . (41) 

Then the method of synthesis derives k(a%, TA), the coefficient of σ2, in E(TA), 
as 

� � � ,� � )=� � � [� (� ,�)� , (42) 

i.e., using each column of Χθ as a column of data (all O's and l's) calculate 
TA , and sum the results over all columns of X0. The sum is the coefficient of 
<72 in E(TA), namely &(σ2, � � ) of (38). 

This procedure can be used numerically without recourse to explicit 
algebraic forms of the coefficients k(a%, TA), and since it applies to any 
quadratic form in the place of TA it can also be used directly on the SS-terms. 
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Thus, paraphrasing Hartley's words: we can apply the analysis of variance 
method in turn to each of the � �  columns of � �  used as data. Single out a 
particular quadratic/(y) and form the sum of the/(y) over the � �  analyses of 
variance, to obtain k[a% , /(y)], the coefficient of a\ in E[f(y)]. Carrying out 
K 
2 Ne analyses of variance and summing them appropriately therefore gives 

all the coefficients of the cr2's in the expected quadratics. Since many of the 
"observations" in these analyses will be zero, any computer procedure 
designed for this task should take account of this many-zeroed feature of the 
"data". 

Equivalence of (42) to (38) is readily shown. Theyth column of � � , namely 
χ(θ, /) , has � (� 3) ones in it and N — � {� 3) zeros. Therefore, using x(0,y) as 
the vector y in y.{Ai) of (40) we require the total of the "observations" in 
x(0,y) that are in the ith level of A. These "observations" will consist of 
n{Ai, � 0) ones and � (� {) — n{Ai, 03) zeros; their total is thus n(A{, 0,·). There-
fore from (40) 

f=i n(Ai) 

and summing this overy, as in (42), yields (38). 
This method of "synthesis" can also be applied to calculating variances of 

variance component estimators [see Sec. 2d(iii) following], and it has been 
extended by Rao (1968) to general incidence matrices and to mixed models. 

d. Sampling variances of estimators 
The analogous sums of squares [in the manner of (14)—(17)] used in the 

analysis of variance method for unbalanced data are the SS-terms and they do 
not, under normality assumptions, have ^-distributions. Nor are they 
distributed independently of one another. The only sum of squares with a 
known distribution is SSE, which follows a ^-distribution in the usual 
manner and has zero covariance with the other SS-terms. a\ — SSE/(N — s) 
therefore has a similar distribution. The other estimators, which are linear 
functions of the SS-terms, have distributions that are unknown. Despite this, 
variances of these estimators, under normality assumptions, can be derived. 
Suppose we define 

c = vector of SS-terms, but not SSE, 
σ

2 = vector of #2's, but not a\ 

and f = vector of "degrees of freedom", the coefficients of a\ in £(c). 

The vector of SS-terms is therefore [c' SSE], and equating this to its ex-
pected value yields the variance components estimators. Suppose P is the 
matrix of coefficients of variance components (other than a2

e) in £(c). Then 
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we can write 

and equating 

and 

c 
SSE 

c 
SSE 

f 
N - 5 

to its expected values gives the estimators 

a\ = SSE/(JV - s) 
62 = P-X(c - ali). 

(43) 

(44) 

These expressions provide a means for deriving variances of the estimators. 
(f) Derivation. The distribution of SSE/σ2 is � %_8 with variance 2(N — s) 

and so, from (44), 
v(al) = 2<y\l{N - s). (45) 

Now SSE (and hence σ2) has zero covariance with every element of c, i.e., 
with every other SS-term. Therefore, from (44) 

cov(62, <r2) = -F-Hvi� l) (46) 
and var(d2) = p-^va^c) + i ^ f f ' l P - 1 ' . 
In addition, since the SS-terms are linear functions of the J"s, we can, with 

t = vector of J 's , write c = Ht (47) 
for some matrix H (that is quite unrelated to H = GX'X of previous chapters). 
In the case of the 2-way classification, for example, H is the matrix of the 
transformation of the T's to SSA, SSB and SSAB shown in (21). Hence 

var(c) = H var(t)H' 

and var(d2) = P ^ H var(t)H' + t;(a2)ff,]P-l/. (48) 
This is the result derived in Searle (1958) and utilized in the general case by 
Blischke (1968). Its application in any particular situation requires obtaining 
only var(t), the variance-covariance matrix of the T's. P is the matrix of 
coefficients of the a2's in the expected values of the SS-terms, H is the matrix 
expressing the relationship between the SS-terms and the T's, and f is the 
vector of the "degrees of freedom" in the SS-terms, the coefficients of a\ 
in the expected values of the SS-terms. 

Deriving elements of var(t) involves cumbersome algebra, although the 
basis of two different methods for doing so is quite straightforward. For both 
methods we assume normality, i.e., that 

� ~� (� 19� )9 (49) 
and first show the manner in which � 2 occurs in the variances and covariances 
of the 7"s. From (40) it can be shown that 

Q^,!«-(bJ-"��; <50) 
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i.e., that Q^ is a diagonal matrix of square matrices of order n(A{) with every 
element being l /«(^) . This kind of result applies not just to the Λΐ-factor but 
to every factor �  of the model (34). For two factors A and B we then have, 
from Chapter 2, 

v(TA) = 2 tr(VQ AY + 4/^1'CLVQ^l 

and a similar expression for v(TB); and 

cov(r , , TB) = 2 tr(VQ^VQB) + V l ' Q ^ V C b l . 

But from (50) 

with the same true of QB also, and so 

K r , ) = 2 t r ( V Q ^ + V i ' V l 

and eov(7^ , TB) = 2 tr(VQ^VQ^) + 4^1 'Vl . 

Hence 4//2l'Vl is part of all the variances and covariances of the 7"s. How-
ever, because in c = Ht the T's are used only in terms of differences between 
them, the 4µ2ΐΎ1 term in the above expressions can be ignored. This is 
equivalent to assuming �  = 0 and it gives 

v(TA) = 2tr{YQA)2 (51) 

and cov(TA ,TB) = 2 tr(VQ^VQ^). (52) 

From these the elements of var(t) can be obtained, as has been done for 
several specific cases whose details are given in the next chapter. 

Blischke (1966, 1968) obtains the same elements of var(t) by using the fact 
that for normal variables u and v 

cov(w2, v2) = 2[cov(w, v)]2 

(see Exercise 23 of Chapter 2). Therefore, since TA and TB are weighted sums 
of squares of normally distributed random variables their covariance, 

I ft »w ft »(«,) I 
is, assuming �  = 0, 

COV^.T,) -^! � 2 1 ^?;^"� � 
A special case of this is 

= ^2{var[y.(^)]}2 *�  2{cov[y.(4), y.(^-)]}2 
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Whether these expressions or their equivalent matrix forms (51) and (52) 
are used, the ensuing algebra for specific cases is cumbersome and tedious, as 
is evident from the results listed in the next chapter. 

The extent of the elements in var(t) is one of the difficulties in deriving that 
matrix. An r-way classification random model, with all interactions (see 
Exercise 5), involves 2r_1(2r + 1) different elements in var(t), each element 
being a linear function of the same number of squares and products of 
variance components. Thus a square matrix of order 2r_1(2r + 1) of coeffi-
cients is involved. For r = 2, 3, 4 and 5 this matrix has order 10, 36, 136 and 
528 respectively. Its elements for r = 2 and r = 3 are shown in Chapter 11. 

(») Estimation. When the elements of var(t) have been derived from (51) 
and (52) they can be used in (48) to give var(a2). However, the elements of 
var(t) are quadratic functions of the unknown variance components. The 
problem of estimating var(o2) therefore remains. A common procedure is to 
replace the variance components in var(a2) by their estimates and use the 
resulting value of var(o2) as the estimator of var(d2). As an estimator, this 
has no known desirable properties—other than being relatively easy to com-
pute. A small numerical example is discussed in Searle (1961b). 

Unbiased estimators of the variances and covariances of the variance 
components estimators, i.e., of (45), (46) and (48), can be derived as follows. 
First array (45), (46) and the elements of the upper triangular half of (48) in 
a vector v: 

v = vector of variances and covariances of all cr2's. 

Similarly array the squares of all the a2's and the products of every pair of 
them in another vector γ : 

γ = vector of all squares and products of a2's; 

for example, in the 1-way classification with components a\ and o\ , 

v� = [v(al) v(al) cov(aa
2,^)] 

and γ ' = [σί a\ f� ]. 

Then, because of (45), (46) and (48), every element in v is a linear combination 
of the elements in γ , and so, for some matrix A say, 

v = Αγ. (53) 

With an r-way classification random model that has all possible inter-
actions A of (53) has order 2r~1(2r + 1). However, A is not the matrix referred 
to at the end of subsection (i) where the different elements of var(t) were 
envisaged as a vector, Βγ say. In (53) it is v(a2

e) and the elements of cov(o2, a2
e)9 

and var(o2) being written as Αγ. The matrices A and B have the same order 
but are not equal. 
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Unbiased estimation of v is derived from (53). First note that every vari-
ance component estimator in σ2 of (44) is unbiased and so, for example, on 
writing � �  for (� � )2 we have 

£(*i) = **i) + <£ � (54) 
Similarly � (� 2

� � 2
� ) == cow(a2

A , a2
B) + � 2

� � 2
�  . (55) 

Writing γ as the vector of squares and products of the a2's corresponding to 
γ we have, from (54) and (55), that 

Eft) = v + � . (56) 

It will then be found that replacing γ in (53) by γ — v and calling the resulting 
expression v yields v as an unbiased estimator of v; i.e., 

ν = Α ( γ - ν ) (57) 

gives v = (I + Α)-!Αγ (58) 

as an unbiased estimator of v. Utilizing (53) and (56) in taking the expected 
value of (58) shows that E(y) = v. The elements of v in (58) are therefore 
unbiased estimators of the variances and covariances of the analysis of 
variance estimators of the variance components. 

The derivation of v is described by Mahamunulu (1963) in terms of (57), 
namely of replacing every aA-term in (53) by � �  — � (� � ) and every � � � 2

� -

term in (53) by � � � �  — cov(cr^ , � � ), and calling the resulting expression v. 
The result given in (58) is the form derived by Ahrens (1965). 

The nature of (45) ensures that (58) yields 

v(al) = 2atl(N - 5 + 2). (59) 
This can, of course, be derived directly from (45) using the counterpart of 
(54) for a2

e . In the same way, (58) also yields 

6^(σ2, σ°;) = -F-�fvial) (60) 
as an unbiased estimator of (46). The remaining terms in v are unbiased esti-
mators of elements of var(cr2) of (48). 

Example. The analysis of variance for the 1-way classification model is 
derived in Sec. 6.2d. Denoting SSRm given there as SSA, we have 

SSA = I myl - Ny2., with £(SSA) = (ΛΓ - £ n2/N)al + (a - 1)� 2 

and 

SSE = Ü ^ 2 , - i ^ 2 , with £(SSE) = (ΛΓ - a)a2
e. 
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Therefore, from (43), P and f are scalars, 

P = N - 2 n ? / J V and f = a - l . 
The estimators are 

<r* = 
SSE 

J V - a 
and 

.2 S S A - ( a - l ) < 7 * 

[10.2] 

(61) 

(62) 
� -� � *��  

The variances and covariance of these estimators are [see Crump (1947) and 
Searle (1956)] 

t( i!) = V ! , for fc1 = 2 / ( JV-a ) 
cov(<r2, ot) = fc2a*, for fc2 = - 2 ( a - 1)/[(JV - a)(N - SJN)] (63) 

and v(dl) = fc3a* + fc4cr2a2 + kba* 
with 

/Co 
2iV2(JV - l)(a - 1) 

(N2 - S2)\N - a)� 
k,= 

4JV 
N2-S> and L� = 

2(N2S2 + Si - 2JVS3) 
(JV2 - S2)2 

� fcx 

/C2 

� 3 

0 

0 

fc4 

� �  
0 

h\ 

\«t] 
\ « 
L«i J 

where S2 = Σ w* anc* ^3 = Σ n* · Therefore (53) is 

cov(<r2, ά2) 

and so (58) is 

* * :> ] 
| �� � ( � 2 , cr2) I 

i5(52) J 

"l + fcx 0 

fc2 1 

1 

0 

0 

1 + fc* 

4242 

4* 

= (1 + kiXl + k6) 

From (64) 

fcx 0 0 

k2 0 0 

k3 fc4 fc5J L 3 

fci(l + fc6) 0 0 

fc2(l + fc5) 0 0 

kz-k2kt fc4(l + ki) fceil + fei). 

4* " 

(64) 

fci(l + fce)ii Mi 2d* 

(1 + fcxXl + fc6) 1 + /q tf - a + 2 
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on substituting for kx, a result that is in keeping with (59). Similarly, from 
(64) 

&ν(*;, o = - ^ 2 - θί = -2 (-*&-) = -2 ικίί), 
i + fci K \ i + fcx/ kx 

which agrees with (60) because, from (63) and (61), £2/&i = - P _ 1 f of (60). 
(Hi) Calculation by synthesis. The "synthesis" method of calculating 

numerical coefficients of a2's in expected values of quadratic forms has been 
described in Sec. 2c(iv). It can also be applied to calculating coefficients of 
squares and products of a2's in variances and covariances. We give the pro-
cedure for obtaining E(TATB) from which cov(r^ , TB) can then be obtained, 
using E(TA) and E(TB) based upon (42). 

We first write e = X0b0 with X0 = I and b0 = e so that the model (34) 
K 

becomes y = � � + ^ ^ Λ · Then Hartley (1967) derives E(TATB) in the form 
0=0 

K K 

E(TArB) = �  � <*� , � � � � )� 2
� �

2
�  +� � � *,� , � � � � )� ^�  

� ,� =0 0=0 
where, by definition 

µ40 = £(*?*) for i = 1,2, . . . , N 

and, for �  = A, B9...,K 

/ ιΜ = £(&},) for j = l , 2 , . . . , i V 0 . 

With these definitions the coefficients in E(TATB) given by Hartley (1967) are 

� � *,�  > TATB) = coefficient of � ^�  in E(TATB) 
� �  

= lTA[x(ej)]TB[x(dJ)l (65) 
3=1 

k(a$ , TATB) = coefficient of a\ in E(TATB) 

� �  � �  

= 1 1 � � [� (� ,]) + � (� ,]�)]� � [� (� ,�) + � (� ,� )] 
3 = 1 3�<3 

- (� �  - 5)/ι(>4,9, � � � � ), (66) 

k{a\a% , � � � � ) = coefficient of <?«� \ in E{TATB) 
1 � �  � �  

= k l lTAWfl,j) + � (� ,� )]� � [� (� ,]) + x(<p,j�)] 
1 3=1 3� = 1 

- � � � � ,>�  , � � � � ) - � � � (� ,>�  , � � � � ). (67) 
Thus for � � ^�  , � � � � ) we use columns of X0 as "data" vectors in TA and TB . 
In k(o\, TATB) we add pairs of different columns of � �  and use the sums as 
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"data" vectors in TA and TB . And for � (� 2
� �

2
�  , TATB) we add, in all possible 

combinations, a column of Χθ and a column of � �  and use these sums as 
"data" vectors in TA and TB . These results are quite general and apply to any 
quadratic forms of the observations, including the use of TA in place of TB 

to obtain E(TA) and hence v(TA). Furthermore, the results are all in terms of 
variances and fourth moments, and no particular form of distribution has been 
assumed for the random variables. The formulae are well suited computation-
ally for obtaining coefficients, numerically, in specific situations, although with 
large amounts of data the calculations would be extensive. They could also 
be used to find coefficients algebraically, although in most cases the details 
involved would be quite tedious. A simple example follows. 

Example. Hartley (1967) illustrates his results by finding the variance of 

52=52(*) = Iftf-nA/in-l) 

v(s2) = £(sV) - cr4 as 

where 

By (65) 

E(s2s2) = /c00a4 + Α0µ4#0. 
No 

*o=2{s2M<W)]}2 

3=1 

= i [ S
2 ( co lumnof I J ] 2 

1=1 

= n 
1 - njl/nf 

n - 1 . 
1 
n � 

And by (66) 
iVo iVo 

� � =�  �  {s2[x(0,j) + x(0, j�)]}2 - (N0 - 5)fc0 
3 = 1 i�<3 

= i Σ [s2(sum of 2 columns of In)f - (n - 5)/n 
3 = 1 )�<j 

(n — l)n n(2/nf 

L ( n - 1 ) 
n — 5 In + 3 

n(n - 1) 

Hence v(s2) = &00σ4 + � 0� ^0 — tf4 

_ [n2 - 2n + 3 _ i" 
L n(n — 1) 

^ 4 + � � �  = a*+faM 
n(n - 1) 

as can be obtained directly. With normality assumptions µ40 = 3σ4 and the 
result reduces to the familiar v(s2) = 2σ4/(# — 1). 
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3 . ADJUSTING FOR BIAS IN MIXED MODELS 

We indicated in Sec. 2c(ii) that with unbalanced data the analysis of vari-
ance method for mixed models leads to biased estimators of variance com-
ponents. There is, of course, a dual problem with mixed models—estimation 
of both the fixed effects and the variance components of the random effects. 
We here confine attention to estimating just the variance components. In 
some situations this is exactly what might be done in practice; with genetic 
data, for example, effects that are often considered fixed, such as year effects, 
might be of little interest compared to the genetic variance components. 
On the other hand, if trends in the year effects were of interest, their estimation 
together with that of the variance components would be considered simul-
taneously. This dual estimation problem is considered subsequently. 

The method known as Method 2 in Henderson (1953) first uses the data to 
estimate the fixed effects of the model. The data are then adjusted by these 
estimators and the variance components are estimated from the data so 
adjusted. The whole procedure is designed so that the resulting variance com-
ponents estimators are not biased by the presence of the fixed effects in the 
model, as are the analysis of variance estimators. The method certainly 
provides unbiased estimators but, as has been shown by Searle (1968), the 
method is not uniquely defined. Furthermore, certain simplified forms of it, 
of which Henderson's Method 2 is one special case, cannot be used when-
ever the model includes interactions between the fixed effects and the random 
effects. These points we now consider, closely following Searle (1968), the 
details of which are not repeated here. 

a. General method 
We consider the general model (34) in the form 

�  = � 1 + X A + Xrbr + e (68) 

where all fixed effects other than �  are represented by bf and all random 
effects by br. We take E(br) = 0 and so E(brbr) = var(br), the variance-
covariance matrix of the random effects. Suppose an estimator of the fixed 
effects by, is by = Ly. Then z = y — Xyby is a vector of the data adjusted by 
the estimator by. Substitution from (68) shows that the model for z contains 
no terms in by provided L i s a generalized inverse of Xf. Under this condition 
the analysis of variance method applied to z will yield unbiased estimators of 
the variance components. However, the fact that L has only to be a general-
ized inverse of Xy indicates the lack of uniqueness in the method. 
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b. A simplification 
The calculations involved in applying the analysis of variance method to y, 

particularly those involving the random effects Xrbr, have been documented in 
the preceding section. In z = y - Χ,&, the term in the random effects is 
Xr — X/LXr. Were X^XX,. to be null, applying the analysis of variance 
method to z would, so far as random effects are concerned, be the same as 
applying the method to y. More specifically, suppose we choose L such that 
the model for z is 

z = � *� + Xrbr + Ze, (69) 

for � * being a scalar (not necessarily equal to � ) and for Z being some matrix. 
The analysis of variance method applied to (69) would then involve no fixed 
effects and, although treatment of the error terms in (69) would differ from 
that of the error terms in (68), treatment of the random effects would be the 
same as when using (68). Apart from calculations relating to � % therefore, 
using the analysis of variance method on (69) would be the same as using it on 
(68) with the fixed effects ignored. To achieve this it has been shown (Searle, 
1968) that L need not be a generalized inverse of Xf but has to satisfy three 
conditions: 

XfLXr = 0, (70) 

XfL having its row sums equal (71) 

and Xf — X/LX/ having all its rows the same. (72) 

Although the non-unique condition on L, that XfLXf = Xf, has been replaced 
by these three conditions, they do not necessarily determine L uniquely. 
Furthermore, an implication of these conditions is that the model for y must 
not contain interactions between fixed and random effects. This is a severe 
limitation on the method. 

c. A special case: Henderson�s Method 2 
The procedure described by Henderson (1953) as Method 2 is simply one 

specific way in which the simpler form of the generalized method can be 
carried out. That is, Henderson's Method 2 estimates bf as hf = Ly using an 
L that satisfies (70), (71) and (72), and then uses the analysis of variance 
method on y — Xfhf . Through being just one way of executing the simpler 
form of the generalized method, Henderson's Method 2 suffers from the 
limitation already alluded to, that it cannot be used whenever the model 
contains interactions between fixed and random effects. Although this is not 
stated explicitly by Henderson (1953) it is true of his example ,wherein the 
fixed effects in a study of dairy production records were years and the random 
effects were herds, sires and herd-by-sire interactions. There were no inter-
actions of years with herds and/or sires. 
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In using Henderson's Method 2 we first estimate bf by least squares assum-
ing, temporarily and for this purpose only, that �  = 0 and that the random 
effects are fixed. This leads to the equations 

V 
A. 

XfXf XfXr 

_X�rXf X�rXr J 
IV 
IK. 

"x;y" 
_x;y_ 

It is the manner in which (73) is solved that leads to the solution b, being 
hf = Ly with L satisfying (70), (71) and (72). The essential part of the solution 
is picking a generalized inverse of X'X in the manner described at the end of 
Sec. 1.1, doing it in such a way that in striking out rows and columns of X'X 
to reduce it to full rank as many as possible must be rows and columns through 
X�fXf . Details of this process and the reasons for its satisfying (70)-(72) are 
given in Searle (1968). Despite being able to specify the method in this 
manner it nevertheless suffers from the deficiencies already alluded to: it 
is not uniquely specified and it cannot be used in the presence of interactions 
between fixed and random effects. Hence its use is not recommended. 

4 . F ITTING CONSTANTS METHOD 
(HENDERSON'S METHOD 3 ) 

Fitting the linear models of Chapters 5-8 is often referred to as the tech-
nique of fitting constants, as mentioned in Chapter 4, because the effects 
of fixed effects models are sometimes called constants. A third method of 
estimating variance components that we now describe is based on the fitting 
of these models and is accordingly called the fitting constants method, or 
Henderson's Method 3, after Henderson (1953). For whatever model is 
being used the method uses reductions in sums of squares due to fitting both 
this model and different sub-models thereof, in the manner of Chapters 6, 
7 and 8. These reductions, the R( )-terms of those chapters, are used in 
exactly the same manner as are the SS-terms, the analogous sums of squares 
of the analysis of variance method, namely estimating the variance components 
by equating each computed reduction to its expected value—its expected 
value under the full model. We describe the general properties of the method 
and then illustrate its application in the 2-way classification. The presentation 
follows closely that of Searle (1968). 

a. General properties 
We rewrite the general model y = Xb + e as 

y = ΧΛ + X2b2 + e, (74) 
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where the partitioning simply divides b into two groups of effects, b, and b 2 , 
with no thought for whether the groups represent fixed or random effects. 
This is considered subsequently. The reduction in sum of squares due to 
fitting this model will be denoted by Rib,, b2). For the moment we are 
concerned with finding the expected values of Rib, , b2) and of the reduction 
in sum of squares due to fitting the sub-model 

y = X,b, + e. (75) 

Both expectations will be taken under the full model, (74). 
Denoting the reduction in sum of squares due to fitting (75) by Rib,), we 

write 
R(b21 b,) = Rib, , b2) - Rib,) (76) 

in the manner of Sec. 6.3a. We will show that the expected value of (76) under 
the model (74) involves only a\ and 

£(b2bi) = var(b2) + £(b2)£(b2), (77) 

and it does not involve b,. Consequently the fitting constants method, by 
judicious choice of sub-models represented by b, in (76), yields unbiased 
estimators of the variance components of the full model, estimators that are 
uncomplicated by any fixed effects that may be in the model. 

First we slightly modify equation (2) for ü^y'Qy). In the general model 
y = Xb + e the vector b can be fixed, random or mixed. Adopting the 
convention that for a fixed effect � � ^ = bt enables £(b) to be defined what-
ever the nature of b, and so from (2) 

£(y'Qy) = tr[Q{X var(b)X' + σ*Ι}] + £(b')X'QX£(b) 
= tr[X'QX£(bb')] + o2

e tr(Q). 
In this form £(y'Qy) is suitable for considering the models (74) and (75). 

In fitting (74) the reduction in sum of squares is, as in equation (14) of 
Sec. 5.2f, 

#0h , b2) = y'X(X'X)-X'y (78) 

where (X'X)~ is a generalized inverse of X X Taking the expectation of (78) 
gives 

EtfO^b,) = tr{(X'X)£(bb')} + � 2� � ) 

_X2X^ X2Ä2J 

Similarly, when fitting (75) the reduction in sum of squares is 

Rib,) = y'X^XiXJ-Xiy, 

= tr £(bb') + � � � ). 
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with ERibJ = triX'X^XiX^-XiXf^bb')} + σΜΧι) 

ΚΧΑΠΧίΧχ X;X2]£(bb') + (rMXi) = tr 
XiXi 

= tr 
� � � �  X1X2 

X 2 Xi X 2 X i ( X i X i ) XiX2_ 
E(bb') + � � � ,). 

Hence the expected value of R(b2 j bx) is 

E[R(b21 b,)] = EiRib,, b2) - Rib,)] 

= tr{Xi[I - X1(XiX1)-Xi]Xi£(bibi)} + «ftKX) - KXi)]·- (79) 

As forecast, the only b-term involved here is b2; i.e., the expectation of 
R(b21 bj) is a function simply of £(b2b2) and a\. It involves neither Efab�i) 
nor Efab�2). Note, too, that this result has been derived without any assump-
tions on the form of E(bbf). 

The consequences of (79) are important. It means that if the b-vector of 
one's model can be partitioned into two parts bx and b2 where b2 contains 
just random effects, then ER(b21 bx) as given in (79) contains only a\ and the 
variance components relating to those random effects. Thus, when bx repre-
sents all the fixed effects, ER(b2 \ bx) contains no terms due to those fixed 
effects. This is the value of the method of fitting constants to the mixed model: 
it yields estimates of the variance components unaffected by the fixed effects. 
Furthermore, in the random model, where bx contains random effects, 
ER(b21 bx) contains no terms arising from var(bx) nor, more importantly, 
any terms arising from any covariance between the elements of b�  and b 2 . 
Hence, even if the model is such that terms in bj are correlated with terms 
in b2 the expectation in (79) does not involve this correlation—it depends 
solely on the second moments of the elements in b2 (and on a2

e). 
Compared with the analysis of variance method the immediate importance 

of the fitting constants method lies in its appropriateness for the mixed model, 
for which it yields variance component estimators that are unbiased by the 
fixed effects. It is therefore the preferred method for mixed models. Its dis-
advantage is that it involves calculating generalized inverses of matrices that 
will be very large in models having large numbers of effects in them, a 
difficulty that can arise in calculating not only reductions in sums of squares 
but also coefficients of the a2's in their expectations. Hartley's (1967) method 
of synthesis, described in Sec. 2d(iii), can be used as one means of calculation, 
and other available short cuts are described by Gaylor et al. (1970). 

Application of the method to the 2-way classification is now considered. 
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b. The 2-way classification 
The equation of the 2-way classification interaction model is shown in (12). 

Reductions in the sum of squares for fitting the fixed effects version of this 
model, and sub-models of it, are arrayed in Table 7.8. Included there are 

Λ(α | � ) = � (� , α) - Α(µ) 
R(ß I � , α) = Λ(µ, α, � ) - �1(� 9 α) (80) 
� (�  | � , α, � ) = � (� , α, � , � ) - � {� , α, � ) 

and SSE = 2 > * - � (� 9 *9 � 9 � ). 

These terms can be used in the fitting constants method of estimating variance 
components in a mixed or random effects version of the 2-way classification 
model. To do so requires their expected values. 

(/) Expected values. The expected value of SSE in (80) is, as usual, 
(N — s)a2

e. Taking R{y | � , α, � ) next, its expected value can be derived from 
(79). But expected values of R{OL | � ) and R(ß | � , α) cannot be obtained 
directly from (79). This is because (79) is the expected value of R(b21 bx) = 
R(b�  , b2) — jR(bi), which is the difference between two 7?(-)-terms one of which 
is for the full model and the other of which is for a sub-model. This is the 
only kind of R(- | -)-term to which (79) applies; R(y | � , α, � ) of (80) is an 
example. In contrast, (79) does not apply to R(- | -)-terms that are differences 
between two ^(-)-terms that are both for sub-models. For this reason, with 
the full model involving � , α, �  and � , (79) does not apply to R(OL | � ) and 
R(ß\ /i, a) of (80). 

Although (79) cannot be used directly on R(OL | � ) and R(ß | � , α) it can be 
utilized by considering certain sums of the terms in (80) that involve R(OL | � ) 
and R(ß | � , α). For example, (79) applies to 

Λ(α, � , �  I � ) = 11(� , α, � , � ) - � (� ) (81) 

which is the sum of the first three terms in (80): 

7?(α, � , � \� ) = Λ(α | � ) + R(ß \ � , a) + Ä(y | � , α, ^ ) . 

Similarly, (79) applies to 

R(ß, � \� 9*) = � (� 9 α, � 9 � ) - Λ(^, α) (82) 
which is Ä()3, �  \ � , α) = /?(/? | //, α) + Ä(y | ^, α, /8). 

Equating observed values of R(- | -)-terms to their expected values to obtain 
variance component estimators, using (81) and (82) in place of 7?(α | � ) and 
R(ß | � , α) of (80), yields equations that are linear combinations of those that 
would arise from using (80). The estimators will therefore be the same. The 
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form taken by the expected values of these reductions, (81), (82) and the last 
two terms of (80), is shown in Table 10.1. So also are computing formulae 
for the reductions. These, and the /^-coefficients of the a2's [which would be 
derived from (79)], are discussed subsequently. The coefficients of the afs 
have already been obtained from (79). 

TABLE 1 0 . 1 . REDUCTIONS IN SUM OF SQUARES FOR ESTIMATING 
VARIANCE COMPONENTS IN A 2-WAY CLASSIFICATION 
INTERACTION, RANDOM MODEL, UNBALANCED DATA 

Reduction 
in sum of squares 

i?(a, � ,� \� ) = � (� , a, � , � ) - � (� ) 

R(� , � \� ,*) = R<ji, � , � , � ) - Rfa, a) 

R(y 1 � , α, � ) = RQi, α, � , � ) - Rfa, α, ß) 

SSE = � y2- /?(µ, α, � , � ) 

Computing Expected 
formula1 values2 

= TAB - � �  hxa\ + h2o} + Α8σ* + (s - \)a\ 

= TAB - TA KO\ + hha\ + (s - a)a\ 

= TAB - RQJL, a, ß) Α6σ* + s*o2
e 

= T0- TAB (N - s)G2
e 

1 The T�s are defined in (19), and R^, α, � ) is defined in (63) of Sec. 7.2d(i). 
2 The A's come from (79) and are given in Sec. 11.4e. 

s* = s — a — b + 1. 

(ii) Estimation. The nature of (79) and of the reductions shown in Table 
10.1 ensures that the expectations of those reductions involve successively 
more variance components, one at a time, reading from the bottom up. 
Estimation of the components from Table 10.1 is therefore quite straight-
forward : 

o2
e = SSE/(iV - s) 

a2 = [R(y | � , α, � ) - (s - a - b + l )a e
2p6 

a2 = [R(ß9 �  I � , a) - \�� 2 - (s - a)o2
e]/h, 

and a\ = [Κ(α, � ,� \� )- h2a
2
ß - h3a

2 - (s - Ι^ Ι /Λχ . 

(83) 

These estimators are easily calculated once the R�s and /z's have been ob-
tained. To this we now turn. 

(in) Calculation. Expressions for calculating the 7?(-)-terms of Table 
10.1 are given at equations (58)-(63) of Sec. 7.2d(i). Most of them are the 
same as the T's given in (19) of this chapter; i.e., 

� (� ) = � �  , � (� 9 α) = � �  , 

� (� 9 α, � , � ) = � � �  and J V* = � �  · (84) 
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These are easily calculated, as in (19), and lead to the computing formulae 
shown in Table 10.1. It is noticeable that the only term which is not part of 
the analysis of variance method is � (� , α, /?). Calculation of this is given at 
equations (63)-(65) in Section 7.2d(i) and is repeated again in Chapter 11. 
For the moment we are concerned with general methodology rather than its 
specific applications. Details of calculating i?(/x, α, � ) and the A's of Table 
10.1 are therefore left until Chapter 11. In passing we may note that, because 
the reductions in Table 10.1 are largely functions of T's, most of the A's are 
correspondingly functions of coefficients of a2's in expected values of T's. 
A general expression for these coefficients is given in (38). Full details are 
shown in Chapter 11. 

c. Too many equations 
Table 10.1 contains no term Α(µ, � ) = TB . This is because the table is 

based on the reductions in sum of squares shown in (80). These in turn come 
from the first part of Table 7.8, which deals, in the fixed effects model, with 
the fitting of a before � , a context in which � (� , � ) does not arise. On the 
other hand, �1(� , � ) = ]1(� ) + R(ß | µ), comes from the second part of 
Table 7.8, concerned with fitting �  before a. Observe, however, that there is 
nothing sacrosanct about either part of that table so far as estimation of vari-
ance components in the random model is concerned. In (80) we have used the 
first part, but we could have just as well used the second. Rearrangement of the 
reductions in sums of squares therein, in the manner of Table 10.1, yields 
Table 10.2. It is exactly the same as Table 10.1 except for the second entry 
which involves � (� , � ) instead of � (� , α). Equating the reductions to their 

TABLE 1 0 . 2 . AN ALTERNATIVE SET OF REDUCTIONS IN SUM OF SQUARES FOR 
ESTIMATING VARIANCE COMPONENTS IN A 2-WAY CLASSIFICATION INTERAC-

TION, RANDOM MODEL, UNBALANCED DATA 

Reduction 
in sum of squares 

*(a, ft �  | � ) = � (� , α, � , � ) - 7?(µ) 

i?(oc, � \� ,� )= R(u, α, � , � ) - #(µ, � ) 

R(y | � , α, � ) = *(µ, α, � , � ) - *(µ, α, � ) 

S S E = � � 2- 1�{� ,� �.,� 9� ) 

Computing 
formula1 

= TAB — � �  

== TAB — � �  

= TAB- �� � ,� ,� ) 

= T0 — TAB 

Expected 
value2 

� � \ + � 2�
2

�  + ��3�
2
�  + (s - \)� \ 

h7al + h8G
2
y + (5 - b)o\ 

h%� 2
y + s*ol 

(N - s)o2
e 

1 The T's are defined in (19), and � (� ,� �,� ) is defined in (63) of Sec. 7.2d(i). 
2 The A's come from (79) and are given in Sec. 11.4e. 

s* = s — a — 6-f 1. 
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expected values yields the following estimators of the variance components: 

a2
e = SSE/(N - s) 

a* = [R(y \� ,*,ß)-(s-a-b + 1)σ*]//ι6 

ol = [*(α, � \� ,� )- h8a
2 - (s - b)o2

e]/h7
 ( 8 5 ) 

and σ | = [£(α, � ,� \� )- Ka\ - h3a
2 - (s - l)a2

e]lh2. 

The estimators a\ and a2 in (85) are the same as those in (83), but a\ and 
� 2�  are not. The question immediately arises as to which estimators should be 
used, (83) or (85)? Unfortunately there is no satisfactory answer to this 
question; indeed, there is almost no answer at all. Whereas in the fixed effects 
model there is often good reason for choosing between fitting �  after a and 
fitting a after � , there appears to be no criteria for making this choice when 
using the reductions in sums of squares to estimate variance components in 
the random model. It means, in effect, that we can have, in the fitting con-
stants method, more equations than variance components; for example, 
Tables 10.1 and 10.2 provide between them five equations in four variance 
components. 

This is an unsolved difficulty with the fitting constants method of estima-
tion : it can yield more equations than there are components to be estimated, 
and it provides no guidance as to which equations should be used. Further-
more, it is a difficulty that applies quite generally to the method and can 
assume some magnitude in multi-classification models, where many different 
sets of reductions in sums of squares can be available. For example, there are 
six sets in a 3-way classification model (see Table 8.2). Not only can each of 
these sets be used on its own, but combinations of terms from them can 
also be used. In Tables 10.1 and 10.2, for example, the last two lines are the 
same; these, and the second line from each table, could therefore be used to 
provide estimators. This is the principle of the procedures considered by 
Harville (1967) and Low (1964). 

A criterion that could have some appeal for deciding on which reductions 
to use is that they should add up to the total sum of squares corrected for the 
mean, SSTm = ^y2 — � �  . Although the reductions listed in Tables 10.1 
and 10.2 do not meet this requirement explicitly, they are linear combinations 
of reductions that do so and therefore provide the same estimators; e.g., the 
terms in Table 10.1 are linear combinations of those in (80) which do add to 
SSTm . One feature of this criterion is that the resulting estimators come from 
reductions that account for the total observed variability in the i/'s, and they 
are reductions with known properties in fixed effects models. This criterion 
would confine us to using sets of reductions like those of Tables 10.1 and 10.2 
and would preclude using combinations of terms from these tables. On the 
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other hand, using combinations is attractive, because, for example, Table 
10.1 excludes JR(//, /?) and Table 10.2 excludes �1(� , α), terms which one feels, 
intuitively, should not be omitted. 

Knowing, as we do, certain properties of the analysis of variance estimators 
with balanced data suggests that whatever reductions are used for estimating 
variance components from unbalanced data, they should be such as to reduce 
the resulting estimators to the analysis of variance estimators when the data 
are balanced, i.e., when the w^'s are all equal. However, this criterion is of 
little help in selecting which set of reductions to use with unbalanced data 
because all sets reduce to the analysis of variance of balanced data when the 
«'s are equal. For example, (80) reduces to Table 7.9 when nio = n for all / 
a n d / 

One possible way of overcoming the situation of having more equations 
than variance components is to apply "least squares" as suggested by Robson 
(1957). Arraying all calculated reductions as a vector r let us suppose that 
� (� ) = Ασ2. Then r = Ασ2 are the equations we would like to solve for σ2. 
However, when there are more equations than variance components these 
equations will usually not be consistent.1 Nevertheless, provided the reduc-
tions in r are linearly independent and A thus has full column rank, we could 
estimate σ2 by "least squares" as � 2 = (A�A)_1A�r. 

d. Mixed models 
The fitting constants method of estimation applies equally as well to mixed 

models as to random models. Indeed, for mixed models, it provides unbiased 
estimators which the analysis of variance method does not. This, as has 
already been explained, arises from (79). Based on that result we use only 
those reductions that have no fixed eifects in their expected values. For ex-
ample, in the 2-way classification model with a's as fixed effects we would use 
the last three lines of Table 10.1. They will, by (79), have no fixed eifects in 
their expectations, and they provide unbiased estimators of a2

e, a* and a\. 
The one entry in Table 10.2 that differs from Table 10.1 is R(a, � \� ,� ) 
and it has, by (79), an expected value that is not free of the fixed α-effects and 
so cannot be used. The last three lines of Table 10.1 are therefore the basis of 
estimation in the 2-way classification mixed model having a's as fixed effects. 

The principles illustrated here are quite straightforward and extend readily 
to multi-classification mixed models. 

Variations on Henderson's Method 2, of adjusting for bias in mixed models, 
can be mentioned here. That method, as shown in equation (73), temporarily 
assumes the random effects are fixed, for purposes of solving normal equa-
tions for the fixed effects. An alternative is to temporarily ignore the random 
effects, and solve normal equations for the fixed effects as hf = (X^X/)~X^y. 
1 Thanks go to D. A. Harville for bringing this to my attention. 
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The data are then adjusted to be 

z = y - ΧΛ = [i - χχχ;χ/)- x;]y = [i - xf(X�fxfr X;KXA + β>, 
using (68) as the model for y. With z, two possibilities are available: the 
analysis of variance method and the fitting constants method. The latter was 
suggested by Zelen (1968) as being equivalent to using the fitting constants 
method directly on y. Details of this are demonstrated in Searle (1969); 
see also Exercise 4. 

e. Sampling variances of estimators 
Each R( · ) reduction used in the fitting constants method can be ex-

pressed in the form y'X(X'X)~X'y for some matrix X. On the basis of normal-
ity assumptions, both for the error terms and the random effects, the sampling 
variance of each reduction can therefore be obtained from Theorem 2 of 
Chapter 2. Covariances between reductions can be derived in similar manner: 

cov(y'Py, y'Qy) = 2 tr(PVQV) + 4� �� � � >�  

when y ~ � (� 9 V). In this way, sampling variances of variance components 
estimators can be developed, since the estimators are linear combinations 
of these reductions. The details are somewhat lengthy, involving extensive 
matrix manipulations. Rohde and Tallis (1969) give general results applicable 
to components of both variance and covariance. Specific cases have been 
discussed by Low (1964) and Harville (1969c). 

5. ANALYSIS OF MEANS METHODS 

Data in which every subclass of the model contains observations can, in 
fixed effects models, be analyzed in terms of the means of the sub-most sub-
classes. Two such analyses are discussed in Sec. 8.3c. The mean squares of 
those analyses can also be used for estimating variance components in random 
and mixed models. Expected values of these mean squares for the random 
model are shown in Table 10.3. Estimators of the variance components are 
obtained in the usual manner of equating the mean squares to their expected 
values. The estimators are unbiased. Through being quadratic forms in the 
observations, their variances could, under normality assumptions, be ob-
tained from Theorem 1 of Chapter 2. The variances could also be derived by 
the method of "synthesis" described in Sec. 2d(iii). For mixed models, only 
the mean squares whose expectations contain no fixed effects will be used for 
estimating the variance components. For example, if the a's are fixed effects 
in the 2-way classification, MSAW or MSA^ of Table 10.3 will not be used. 
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TABLE 1 0 . 3 . E X P E C T E D VALUES OF MEAN SQUARES 
IN T W O ANALYSES OF MEANS OF THE 2 - W A Y 

C L A S S I F I C A T I O N I N T E R A C T I O N R A N D O M 
MODEL H A V I N G ALL ni3� > 0 

a. Unweighted means analysis (Table 8.12)1, 

£(MSAW) = bal + σ2 + nha\ 

£(MSBW) = aa} + <x2 + nha\ 

£(MSABJ = � * + nna\ 

£(MSE) = o\ 

b. Weighted means analysis (Table 8.18)2, 

E(MSAW) = 1 ( �  w{ - 2 w?/ 2 w\ {bal + <r2) + <r2 

£(MSBW) = — - 1 — ( Σ ^ - Σ»?/Σ^)(**ί + *?) + *; 
ß(0 - 1) \^=i j=i I j=i / 

£(MSAB J = σ2 + %σ2 

£(MSE) = o2
e 

a b I 
1� �  = �  ΣΛΓ / ab. 

1=1 j=l / 

I 3=1 / * = 1 

Extension of Table 10.3 to multi-way classifications depends upon exten-
sion of Tables 8.12 and 8.18. This is particularly straightforward for the 
unweighted means analysis of Table 8.12. However, the need for having data 
in every subclass of the model still remains. Analyses of means cannot be 
made otherwise. 

6 . SYMMETRIC SUMS METHODS 

A method of estimating variance components based on symmetric sums of 
products of the observations, rather than sums of squares, has been suggested 
by Koch (1967a, 1968). The method uses the fact that expected values of 
products of observations are linear functions of the variance components. 
Sums of these products (and hence means of them) therefore provide unbiased 
estimators of the components. We illustrate in terms of the 1-way classifica-
tion. 
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Consider the random model for the 1-way classification yi3- = �  + af + 
ei}, where £(a,) = E(ei}) = 0, E(OL2) = a\ and E(e2

3) = a\ for all / and j , 
and all covariances are zero. Then expected values of products of observa-
tions are as follows: 

EiVitfi�,�) = � 2 + crl + � 2
�  when i = V and ; = / ; 

= � 2 + a\ when i = V and j ^- j � \ (86) 

= � 2 when i -�  V. 

Estimators are derived from means of the different products in (86): 
^ a m i 

� * + %+� �= � � � �  �  (87) 

■^ a m m� J a 

� 2 + � 1 = �  Σ Σ vuvu� Σ «*(«< -1) 
i=l j=l j � � j I i=l 

( a a m \ I 

where S2 = 2 n\ > a n d 

(88 

, 2 

� 2 = Σ Σ Σ ^vuViT Σ Σ "Λ -
�=1��� � j=l j�=l I �=1� �� � 

{*-%*) (»�-S� . (89) 

Estimators σ̂  and a2 are easily obtained from these expressions. 
These estimators are unbiased and consistent, and they are identical to the 

analysis of variance estimators in the case of balanced data. However, their 
variances are functions of � , a deficiency noted by Koch (1968). Evidence of 
this is seen in a2 by using (87) and (88) to write 

62
e = y '(M;v- k2X 3nip (90) 

where kx = S2/N(S2 - N) and k2 = 1/(S2 - N). (91) 

In deriving the variance of (90) from Theorem 1 of Chapter 2, it will be found 
that the term in � 2 is 

V l ' ( f c A v - k2^ J n i ) (� %�  + � �^ JB<) (k.ljf - fc2J,+ J n ; ) l 

= V i ( o ! + n^lMk, - ntk2f . 
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This is non-zero for unequal ni although zero when the «i are equal. Hence for 
unbalanced data the variance of a2

e derived from (87) and (88) is a function of 
� , as may also be shown for a\. This is clearly unsatisfactory. 

This difficulty is overcome by Koch (1968), who suggests that, instead of 
using symmetric sums of products, symmetric sums of squares of differences 
should be used. Thus in the 1-way classification 

E(Vij ~ Vi�j�f = 2ul when i = V and j ^ / ; 
= 2(a2

e + <fl) when i ^ i'. 

Estimators are therefore derived from 

a m m I a 

^\ = �  �  I (y« - M 7 Σ � < - i) 
Z = l j = l j � �  j I 1 = 1 

and (92) 
a a m m� I a a 

2(*e + ^) = I �  �  �  {yu - yt;�)* �  �  "Λ- · 
i=li� � � j=l j�=l I �~1��� � 

The resulting estimators have variances that are free of µ, because (92) 
contains no terms in � . The estimators are unbiased and for balanced data 
reduce to the analysis of variance estimators. 

A by-product of (89) is a procedure given by Koch (1967b) for obtaining 
an unbiased estimator of �  from an unbiased estimator of � 2. Suppose the 
latter is � 2 = </(y), a quadratic function of the observations as is, for example, 
(89). Then 

EQ) = E[q(y)] = � \ 

From this it can be shown that for scalars �  and g 

E[q(y + 01)] = q(y) + 2g6 + � * = / ? + 2g6 + Θ2. 

Minimizing this with respect to �  gives �  = — g with the minimum value 
being � 2 — g2. This suggests taking �  = g, i.e., taking the estimator of �  as 
half the coefficient of �  in q(y + � �) where � 2 = q(y) derived when estimating 
variance components. That this gives an unbiased estimator is easily seen: 

�  = g = [q(y + ei) - q(y) - Ö2]/2Ö 

and SO � {� ) = [(�  + � )2 - � 2 - � 2]/2�  = � . 

As an example, we have in (89) an estimator of � 2 which is 

q(y) = (y2--iyl)/(N*-s2). 
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Thus 

q(y + Θ1) = [(*/.. + � � )2 - | ( 2 / , . + nß)2]/(N2 - S2), 

from which the estimator of µ, taken as half the coefficient of 0, is 

�  = (Ny- ~ 2niyi)j{N2 - S2). 

It does, of course, reduce to y.. with balanced data. 

7 . INFINITELY MANY QUADRATICS 

If the reader has gained an impression from the preceding sections that 
there are many quadratic forms of the observations that can be used for 
estimating variance components from unbalanced data, then he has judged 
the situation correctly. There are infinitely many quadratic forms that can be 
used in the manner of the analysis of variance method, namely equating 
observed values of quadratic forms to their expected values and solving the 
resulting equations to get estimators of the variance components. This pro-
cedure is widely used, as we have seen, but it has a serious deficiency: it gives 
no criteria for selecting the quadratic forms to be used. The only known prop-
erty that the method gives to the resulting estimators is that they are uni-
versally unbiased for random models and, with the fitting constants method, 
unbiased for mixed models. 

Even the property of unbiasedness is of questionable value. As a property 
of estimators it has been borrowed from fixed effects estimation, but in the 
context of variance component estimation it may not be appropriate. In 
estimating fixed effects, the basis of desiring unbiasedness of our estimators 
is the concept of repetition of data and associated estimates. This basis is 
often not valid with unbalanced data from random models—repeated data, 
perhaps, but not necessarily with the same pattern of unbalancedness or with 
the same set of (random) effects in the data. Replications of data are not, 
therefore, just replications of any existing data structure. Mean unbiasedness 
may therefore no longer be pertinent, and replacing it with some other 
criterion might be considered. Modal unbiasedness is one possibility, sug-
gested by Searle (1968, discussion), although Harville (1969b) doubts if 
modally unbiased estimators exist and questions the justification of such a 
criterion on decision-theoretic grounds. Nevertheless, as Kempthorne (1968) 
points out, mean unbiasedness in estimating fixed effects " . . . leads to 
residuals which do not contain systematic effects and is therefore valuable . . . 
and is fertile mathematically in that it reduces the class of candidate statistics 
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(or estimates)". However, ". . . in the variance component problem it does 
not lead to a fertile smaller class of statistics". 

All the estimation methods that have been discussed reduce to the analysis 
of variance method when the data are balanced. This and unbiasedness of the 
resulting estimators are the only known properties of the methods. Other-
wise, the quadratic forms involved in each method have been selected solely 
because they seemed "reasonable" in one way or another. However, "reason-
ableness" of the quadratic forms in each case provides little or no comparison 
of any properties of the estimators that result from the different methods. 
Probably the simplest idea would be to compare sampling variances. Un-
fortunately this comparison soon becomes bogged down in algebraic com-
plexity. Not only are the variances in any way tractable only if normality is 
assumed but also, just as with balanced data, the variances themselves are 
functions of the variance components. The complexity of the variances is 
evident in (63) which, aside from � (� 2

� ) = 2a*J(N — s), is the simplest example 
of a sampling variance of a variance component estimator obtained from 
unbalanced data. Suppose we rewrite (63) as 

It is clear that studying the behaviour of this variance as a function of TV, 
the total number of observations, of a, the number of classes, of n{, the 
number of observations in the zth class for / = 1, 2, . . . , a, and of a\ and 
G\—doing this is no small task, let alone comparing it with some equally as 
complex a function that is the variance of some other estimator. And this is 
the simplest example of unbalanced data. It is easy to understand, therefore, 
how it is that analytic comparison of the variances of different estimators 
presents great difficulties. 

As a result of the analytical difficulties just described comparisons of esti-
mators available in the literature have largely been in terms of numerical 
studies. These, though, are not without their difficulties also, and results can 
be costly to attain. Kussmaul and Anderson (1967) have studied a special 
case of the 2-way nested classification which makes it a particular form of the 
1-way classification. A study of the latter by Anderson and Crump (1967) 
suggests that the unweighted means estimator of G\ appears, for very un-
balanced data, to have larger variance than does the analysis of variance 
estimator for small values of p = o\\e\, but that it has smaller variance for 
large p. The 2-way classification interaction model has been studied by Bush 
and Anderson (1963) in terms of several cases of what can well be called 

(93) 
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TABLE 1 0 . 4 . VALUES OF ntj IN SOME 6 x 6 DESIGNS 
USED BY BUSH AND ANDERSON ( 1 9 6 3 ) 

Design Number 

S22 C18 124 
2 1 0 0 0 0 1 1 1 0 0 0 1 1 0 0 0 0 
1 2 1 0 0 0 1 1 1 0 0 0 1 1 0 0 0 0 
0 1 2 1 0 0 0 1 1 1 0 0 2 1 0 0 0 0 
0 0 1 2 1 0 0 0 1 1 1 0 1 2 0 0 0 0 
0 0 0 1 2 1 0 0 0 1 1 1 1 1 2 1 1 1 
0 0 0 0 1 2 0 0 0 1 1 1 1 1 2 1 1 1 

planned unbalancedness. For example, in the case of 6 rows and 6 columns, 
three of the designs used are those shown in Table 10.4. Designs such as these 
were used to compare the analysis of variance, the fitting constants and the 
weighted means methods of estimation. Comparisons were made, by way of 
variances of the estimators, both of different designs as well as of different 
estimation procedures, over a range of values of the underlying variance 
components. For the designs used, the general trend of the results is that, for 
values of the error variance much larger than the other components, the 
analysis of variance method estimators have smallest variance, but other-
wise the fitting constants method estimators have. 

Even with present-day computing facilities, making comparisons such as 
those made by Bush and Anderson is no small task. Nevertheless, as samples 
of unbalanced data generally, the examples they used (their designs) are of 
somewhat limited extent. This, of course, is the difficulty with numerical 
comparisons: planning sets of «^-values that will provide comparisons that 
are informative about unbalanced data in general. Even in the 1-way classifi-
cation there are infinitely many sets of «rvalues available for (93) for studying 
the behavior of v(al)—along with also varying the values of a and of a\ and 
a\. There is difficulty enough in planning a series of these values that in any 
sense "covers the field", a difficulty that is simply multiplied when one comes 
to consider higher-order classifications such as those handled by Bush and 
Anderson (1963). Neither analytic nor numeric comparisons of estimators 
are therefore easily resolved. 

The one thing that can be done is to go back to the grounds on which 
"reasonableness" was judged appropriate in establishing the methods. The 
situation is summarized by Searle (1971). "The analysis of variance method 
commends itself because it is the obvious analogue of the analysis of variance 
of balanced data, and it is easy to use; some of its terms are not sums of 
squares, and it gives biased estimators in mixed models. The generalized 
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form of Henderson's Method 2 makes up for this deficiency, but is not 
uniquely defined and his specific definition of it cannot be used when there 
are interactions between fixed and random effects. The fitting constants 
method uses sums of squares that have non-central ^-distributions in the 
fixed effects model, and it gives unbiased estimators in mixed models; but it 
can involve more quadratics than there are components to be estimated; and 
it can also involve extensive computing" (inverting matrices of order equal 
to the number of random effects in the model). For data in which all sub-
classes are filled the analysis of means methods have the advantage of being 
easier to compute than the fitting constants method; the unweighted means 
analysis is especially easy. All of the methods reduce, for balanced data, to 
the analysis of variance method, and all of them can yield negative estimates. 
Little more than this can be said by way of comparing the methods. The 
problem awaits thorough investigation. 

8 . MAXIMUM LIKELIHOOD FOR MIXED MODELS 

In Sec. 9.2 we mentioned that all models could, in fact, be called mixed 
models. This is so because every model usually has both a general mean � , 
which is a fixed effect, and error terms e, which are random. Thus although by 
its title this section might appear to be devoted to only one class of models it 
does in fact apply to all linear models. 

The fitting constants method of estimating variance components gives un-
biased estimators of the components even for mixed models. However, it is 
only a method for estimating the variance components of the model and gives 
no guidance on the problem of estimating the fixed effects. Were the variance 
components of the model known there would, of course, be no problem in 
estimating estimable functions of the fixed effects from a solution of the 
normal equations X'V_1Xb° = X'V_1y of the generalized least squares pro-
cedure. In these equations V is the variance-covariance matrix of y, the 
elements of V being functions of the (assumed known) variance components. 
However, when these components are unknown, as is usually the case, we have 
the problem of wanting to estimate, simultaneously, both the fixed effects and 
the variance components of the model. 

At least two courses of action are available, (i) Use the fitting constants 
method to estimate the variance components, and then use the resulting esti-
mates in place of the true components in V in the generalized least squares 
equations for the fixed effects, (ii) Estimate the fixed effects and the variance 
components simultaneously, with a unified procedure such as maximum 
likelihood. In both cases recourse has usually to be made to an iterative 
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procedure with its attendant computing requirements, which can be extensive, 
although some progress has been made analytically, the results of which we 
now indicate. 

a. Estimating fixed effects 
Let us write the model VT , _ / / w x 

y = Xb + Zu + e (94) 
where b is the vector of fixed effects, u is the vector of random effects, X 
and Z are the corresponding incidence matrices and e is the vector of random 
error terms. The random effects and the error terms are assumed, in the usual 
way, to have zero means, to be uncorrelated and, in this case, to have vari-
ance-covariance matrices 

var(u) = E(uu) = D and var(e) = £(ee') = R (95) 
that are assumed known. Then from (94) 

V = var(y) = ZDZ� + R. (96) 
We also assume that V is non-singular. The normal equations stemming from 
generalized least squares are then 

X�V^Xb0 = X'V^y (97) 
with solution b0 = ( χ Ύ - 1 χ ) - χ Ύ - ν ( 9 8 ) 

If V is singular, V"1 in (97) and (98) is replaced by V", as in (138) of Sec. 5.8b. 
Under normality assumptions for the w's and e's (98) also represents the 
maximum likelihood solution. 

Calculating (98) involves V-1, a matrix of order equal to the number of 
observations, which can be very large, perhaps many thousands. Having 
obtained V-1, then a generalized inverse (X'V-1X)~ is needed also, although 
this will be a lesser task because its order is the number of levels of the fixed 
effects. The difficulty with (97) and (98) is therefore that of calculating V-1. 
In the fixed effects case V usually has the form a2

elN or, with a little more 
generality, it may be diagonal. In either case inversion of V is simple. But in 
general, V = ZDZ� + R of (96) is not diagonal, even if D and R are, and so 
V^1 is not always easy to calculate. However, as indicated by Henderson 
et al. (1959), a set of equations not involving V- 1 can be established, alterna-
tive to (97), for deriving b°. This we now show. 

Suppose that in (94) the effects represented by u were in fact fixed and not 
random. Then, because var(e) = R, the normal equations for the now com-
pletely fixed effects model would be 

.e., 

X 
Z' 

R X [ X Z] 

X'R XX X R X Z ] 

Z R ] LX Z'R^zJ 

M 

lj 
Γ&" 

[_ίϊ 

z R V 

xry 
l f'R V. 

(99) 
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where we use the notation b in contrast to b° to distinguish a solution of (99) 
from one of (97). 

Suppose that we amend equations (99) by adding D_ 1 to the lower right-
hand sub-matrix Z�R_1Z of the matrix on the left. This gives 

rX'R^X X'R XZ 

Lz�R-xX Z�R^Z + D 1 

where solutions to these equations are distinguished by the asterisk notation. 
Then it can be shown that the solutions b* to (100) are identical to the 
solutions b° of (97). In this way, (100) provides a means of deriving b° without 
having to invert V. We have only to invert D and R, which are usually di-
agonal, and then to solve (100) which has as many equations as there are both 
fixed and random effects in the model. This is usually considerably fewer 
than the number of observations, and so (100) is easier to solve than (97). 

The equivalence of b* of (100) to b° of (98) is readily demonstrated. From 
(100) 

u* = (Z 'R^Z + D V i Z R ' y - Z'R xXb*) 
and so 

X ' t R 1 - R ^ Z ' R ^ Z + D - ^ Z ' R x]Xb* 
= X'flT1 - R ^ Z i Z R ^ Z + D - ^ Z ' R - ^ y , 

which in writing 

W = R-1 - R ^ Z R ^ Z + D ^ Z R - 1 

becomes 
X'WXb* = X'Wy. (101) 

But 

WV = [R-1 - R XZ(Z'R XZ + D-1) XZR X](ZDZ + R) 
= R ̂ Z D Z ' + I - R XZ(Z'R � �  + D x) �\Z R 'ZDZ' + Z ) 
= R^ZDZ' + I - R XZ(ZR XZ + D x) \ Z R Z + D X)DZ 
= 1, 

and so W = V"1. Therefore equations (101) and (97) are the same and so the 
solution b* to (101), which is part of the solution to (100), is a solution to 
(97) given in (98). Equation (100), with its computational advantages over 
(97), can therefore be used to derive a solution to (97). 

Equations (100) are easily described. They are simply the normal equations 
of the model assuming all effects fixed, namely equations (99), modified by 
adding the inverse of the variance-covariance matrix of the random effects 
u to the sub-matrix that is the coefficient of ü in the "ü-equations"—i.e., 
by adding � 1 to Z�R^Z, as in (100). This is particularly simple in certain 

x�R-y 
z�R-y 

(100) 
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special cases. For example, when R = var(e) = a2
elN , as is so often assumed, 

equations (99) are 
XX X'Z] 
Z'X Z'ZJ 

I T 
1_� _ 

== ~xy 
_zy 

and equations (100) are 

� � ��  � ��  

|_Z'X Z'Z + ^ D - 1 

Furthermore, D is often diagonal of the form 

D = diag{o5l^} for �  = � 9� ,...,�  

where A9 B, . . . , AT are the random factors, the factor 0 having � �  levels and 
variance a\. In this case (X^D-1 of (103) requires just adding a\\a\ to appropri-
ate diagonal elements of Z'Z. In particular, if there is only one random 
factor (103) becomes 

� � ��  � ��  

LZ�X Z�Z + (or;/(rJ)I 

This formulation of the maximum likelihood solution b° = b* applies, of 
course, only when the variance components are known, although just their 
values relative to a\ need be known in most applications as, for example, 
in (104). However, together with the fitting constants method of estimating 
variance components free of the fixed effects, (100) and its simplified forms 
provide a framework for estimating both the fixed effects and the variance 
components of a mixed model. 

Equations (100) arise from the joint density of y and u which, on assuming 
e — N(0, R) and u ~ N(09 D), is 

/(y, u) = g(y | u)A(u) 

= Cexp[-i-(y - Xb - Zu)'R_1(y - Xb - Zu)] exp[- |u 'D_ 1u] 

where C is a constant. Maximizing with respect to b and u leads at once to 
(100). 

The solution for b* in (100) is of interest because b is a vector of fixed 
effects in the model (94). However, even though u is a vector of random vari-
ables in (94), the solution for u* in (100) is, in many situations, of interest 
also. It is an estimator of the conditional mean of u given y. This we now show. 
First, from (94) and (95) we have cov(u, y') = DZ'. Then, on assuming 
normality, 

E(u | y) = E(u) + cov(u, y'MvaKy)]"1^ - E(y)] = D Z ' V ^ y - Xb). 

b* 
I I * 

X�y 
Z�y. 

(103) 

b* 
i i * 

x�y 
z�y. 

(104) 
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Hence from (100), 

u* = (Z 'R^Z -|- D Y Z ' R ^ i y - Xb*) 
= (Z 'R^Z + D T ' Z ' R ^ V V *(y - Xb*) 
= (Z'R_1Z + D ^ ^ Z ' R ^ Z D Z ' + R)V_1(y - Xb*) 
= (Z'R *Z + D 1 ) 1 ^ R_1Z + D_1)DZ'V % - Xb*) 
= DZ'V_1(y - Xb*), 

which is exactly E(u | y) with b replaced by b*, which we know is the maxi-
mum likelihood estimator of b. Hence u* = E(u | y) is the maximum likeli-
hood estimator of the mean of u, tor a given set of observations y. It is, as 
mentioned by Henderson et al. (1959) and further discussed in Henderson 
(1963), the "estimated genetic merit" used by animal breeders. In their case 
u is a vector of genetic merit values of a series of animals from whom y is the 
vector of production records, and the problem is to use y to get estimated 
values of u in order to decide which animals are best in some sense. 

b. Fixed effects and variance components 
Maximum likelihood equations for estimating variance components from 

unbalanced data cannot be solved explicitly. The equations for the simplest 
case possible illustrate this. Consider the 1-way classification as described in 
Sec. 6. With 

V = var(y) = i r e I i v + a a
2 i + J W i . 

as used there, 

|ν | = σ ^ - < * >Π ( ^ + η < ^ ) 

and V-1 = (M<ftlN + ?]- ( - J - J — - - ^ ) � . 

The likelihood function, on the basis of normality, is 

(2w)-*w|V|-*exp{-Ky - iKiyv-'fr - � �)}, 

and, after substituting for |V| and V-1, the logarithm of this reduces to 

L = JN l o g O ) - Ktf - a) log el - \ �  log(<re
2 + nrf) 

1 = 1 

i=i i=i i=i ae + n{aa 

Equating to zero the differentials of L with respect to � , � \ and a\ gives, 
formally, the equations whose solutions (to be denoted by � , � \ and al) are 
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the maximum likelihood estimators. These equations are as follows: 

N -

� l 
a 
- + 

a 1 
5* + 

a 

� -
i=l 0 

�  

wl 
W< 

__ i=i � l + π ^ 
α π 

V * 

Σ Σ ivu - vt 
1=1 j=l 

� l 

V " < ( % � -

? 

,)2 

� ßf 
�2 i ~2 - ^ / ~2 i ~2 \2 �e + ^ « <=lW+ "Λ) 
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Clearly these equations have no explicit solution for � , a\ and o\ . They do, 
of course, reduce to the simpler equations of balanced data given in equation 
(77) of Sec. 9.9g, when «̂  = n for all /. Even if solutions could be found in the 
unbalanced data case, the problem of using them to derive a non-negative 
estimator of a\ must also be considered, just as it is at the end of Sec. 9.9g 
for balanced data. 

Explicit maximum likelihood estimators must therefore be despaired of. 
However, Hartley and Rao (1967) have developed a general set of equations 
from which specific estimates are obtained by iteration, involving extensive 
computations. We give their equations and mention how they indicate a 
solution may be obtained. To do so we rewrite the model (94) using 

K 

Zu = 2 zeu0> 
� =�  

where ue is the vector of random effects of the 0-factor. Then defining � �  

as � �  = e\\a\ for �  = A, B, . . . , K, and H as 

H = i * + f r A z ; (105) 
� =�  

V of (96) is V = alH. On assuming normality the logarithm of the likelihood 
is 

- i JV log(27r) - iJV log a\ - \ log |H| - (y - XbyiT^y - Xb)/2cr^, 
and equating to zero the differentials of this with respect to a\, the � �  and 
the elements of b, gives the following equations: 

X' ir^Xb = X ' H - y (106) 
a\ = (y - XlyH-^y - Xb)/iV (107) 

and t r (H-%Zi) = (y - X b y H ^ Z ^ l H y - � � )\� \ 
for �  = � ,� ,...9� . (108) 
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These equations have to be solved for the elements of b, the error variance 
a\ and the variance components inherent in H. Hartley and Rao (1967) 
indicate how this can be achieved, either by the method of steepest ascent or 
by obtaining an alternative form for (108) which are the difficult equations to 
handle. Equations (106) and (107) are, of course, recognizable as the maxi-
mum likelihood equations for the fixed effects and the error variance; and 
they are easily solved if values of the y0's are available for H. Thus is iteration 
established via equations (106), (107) and (108). 

c. Large sample variances 
General expressions for large sample variances of maximum likelihood 

estimators of variance components have been obtained, under normality 
assumptions, by Searle (1970). They can be derived despite the fact that the 
estimators themselves cannot be obtained explicitly. On using the model (94), 
with var(Zu + e) = V as in (96) and with y ~ 7V(Xb, V), the likelihood of 
the sample is 

( 2π ) - ^ | νΓ έ exp{-Ky - Xbyv^iy - Xb)}. 
Apart from a constant the logarithm of this is 

L = - * log |V| - Ky - XbXV-^y - Xb). (109) 
Suppose the model has p fixed effects and q variance components repre-
sented by σ2 = {af} for i = 1, 2, . . . , q, one element of σ2 being a\. Then 
[see Wald (1943)] the variance-covariance matrix of the large sample maxi-
mum likelihood estimators of the p elements of b and the q variance com-
ponents is 

var(b) cov(b,<j2) 

|_cov(o2b) var(<*2) J 

-£(L&&) - i ( L J " 
(110) 

In (110) b and σ2 are maximum likelihood estimators of b and σ2 respectively, 
and the left-hand side is a statement of their covariance matrix. The right-
hand side of (110) shows how to derive this covariance matrix. In its sub-
matrices Lbb, for example, is the p x p matrix of second differentials of L of 
(109) with respect to elements of b. Definition of Lb<x2 and 1^2 follows in 
similar manner. 

The nature of (109) is such that, after some algebraic manipulations, (110) 
yields the following results: 

var(b) = (X'V-^X)-1, (111) 

cov(b,o2) = 0 (112) 

and var(o2) = 2 { t r i v - 1 ^ 2 V - 1 ^ for ij = 1 · · · q}~\ (113) 

Searle (1970) gives details of deriving these results. 
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The three results (111)-(113) merit attention. First, (111) corresponds 
to the variance of b° in (98) and therefore comes as no surprise. Nevertheless, 
it indicates that for unbalanced data from any mixed model the variance-
covariance matrix of the maximum likelihood (under normality) estimators of 
the fixed effects is what it would be if the variance components were known 
and were not having to be estimated. Second, (112) shows that covariances 
between large sample maximum likelihood estimators of fixed effects and 
variance components are zero. The simplest case of this relates to the mean of 
a sample and the sample variance; under normality they are distributed 
independently. The generalization of this result is (112), which is therefore 
no surprise either. However, the generality of the context of its derivation is 
to be observed. Finally, (113) gives the variance-covariance matrix of the 
large sample maximum likelihood estimators of the variance components. 
It is, we notice, quite free of X, the incidence matrix of the fixed effects. Its 
form, as evident in (113), is the inverse of a matrix whose typical element is 
the trace of a product of matrices V - 1 and derivatives of V with respect to 
the variance components. 

Example. Consider N observations from the model yi = �  + e{ with 
e ~ N(0, � 21� ). Then V = σ2Ι^, V"1 = (l/a2)lN and νσ 2 = Ι^ . Hence from 
(113) 

var(<r2) = 2{tr[(l/<r2)IiVIiV]2}-1 = 2(iV/a4)~1 = 2� */� , 

as is well known. Additional results stemming from (113) are shown in the 
next chapter. 

9 . MIXED MODELS HAVING ONE RANDOM FACTOR 

The mixed model (94) has several simplifying features when it has only 
one factor that is random. We assume that in 

y = Xb + Zu + e (114) 

r(X) = r, with b representing q > r fixed effects and u, in representing the 
random effects, contains / effects for just one random factor, having variance 
o\ . As a result, Z has full column rank, t, with its columns summing to 1, 
the same as do certain columns of X. This is assumed to be the only linear 
relationship of the columns of Z to those of X. Hence 

r[X Z] = r(X) + t - 1 = r + t - 1. 

Also, by the nature of Z, the matrix Z'Z is diagonal, of order t, with (Z 'Z) - 1 

existing. 
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Since the model is a mixed model, estimation is by the fitting constants 
method, using 

SSE = y'y - R(b, u) and R(u | b) = R(b, u) - R(b), 

with £(SSE) = [N - (r + t - \)\a\ (115) 

in the usual manner and, from (79), 

E[R(u | b)] = (tltvlZ�Z - Z'X(X'X)~X'Z] + a2
e[r(X) + t - l - r(X)]. (116) 

Hence estimators are 

6]= *-«&*) ( 1 1 7 ) 
N - r(X) - t + 1 

and au = — ! , (118) 
tr[Z'Z - Z'X(X'X)-X'Z] 

as given by Cunningham and Henderson (1968) for the case of X having full 
column rank. For a particular case of ensuring the non-singularity of X'X 
through appropriate "constraints" (see Sec. 5.7), Cunningham (1969) gives 
a simple expression for the denominator of (118). 

A computational difficulty in the preceding formulation is 

ü(b,u) = y'[X Z] 
X X X'Z 

zx zz 
X' 
Z� 

(119) 

Because Z has as many columns as there are random effects in the data, and 
the random effects can be very numerous, calculation of (119) may often be 
onerous. However, a generalization of the "absorption process" described in 
Chapter 7 for the 2-way classification permits of easier calculation as follows. 
W l t h R(u) = y'ZiZ'ZX^Z'y, (120) 

which is easy to calculate, we find that 

Ä(b|u) = R(b,u) - R(u) (121) 

simplifies, after substitution from (119) and (120), to 

R(b | u) = b°'X'[I - Z iZ 'Z^Z ' l y (122) 

where b° = Q-ΧΉ - ZCZ'ZJ^Z'ly (123) 

with Q = XX - X�ZiZ�Z^Z�X. (124) 

Because Q and b° have q rows, (122) is easier to compute than (119). Using 
(120) and (122) we then calculate i?(b, u) as 

i?(b, u) = R(b I u) + R(u) 
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and hence, for (118), calculate R(u | b) as 

R(u | b) = R(b | u) + R(u) - RQj), (125) 

where R(b) = y�XQL�XyX�y (126) 

is also easily computed. 
Results (122)-(126) are similar to those summarized by Cunningham and 

Henderson (1968) for a model in which X is assumed to have full column 
rank. This restriction is, as we see, not necessary. The crucial result is (122), 
derived from (121) by substituting from (119) and (120) using 

X X X�Z 

zx zz 
� 0 0 1 

|_o (z'z)-1] 
+ 

I 

-(Z'Z)_1Z'X 
Q-[I - X'Z(Z'Z)-1] 

(127) 

with Q of (124). In carrying out this derivation it will be found that b° of 
(123) is a solution to 

X X X�Z 

zx zz 
"X�y" 

z'y. 
(128) 

These are least squares normal equations for b° and u° assuming that u is a 
vector of fixed rather than random effects. Recall, however, that comparable 
equations for getting maximum likelihood solutions for the fixed effects are, 
from (104), 

� � ��  � � ��  �  � � * �  � � �-��  
(129) 

� � �  � � �  1 
� ��  � ��  + � \\ 

b* 

L u * . 
x�y 

.z�y. 

where �  = a\\a\ . (130) 

Since (129) is formally the same as (128) except for Z'Z + � \ replacing ZrZ, 
Cunningham and Henderson (1968) suggested making this replacement 
throughout the whole variance component estimation process described in 
(117) through (126). The result is an iterative procedure based on the maxi-
mum likelihood equations implicit in (129). Thus (117) and (118) would 
become 

y'y - R*(b, u) 

and 

r * 2 

* 2 

iV - r(X) - t + 1 

Ä*(u | b) - a*\t - 1) 
tr[Z'Z + � � - Ζ 'ΧίΧ 'ΧΓΧ 'Ζ] 

The comparable definitions of the Ä*-terms are 

JR*(b,u) = ^*(b |u ) + ^*(u) 

(131) 

(132) 

(133) 
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derived from using 
P = Z Z + � \ (134) 

in place of Z'Z in (120)-(126). Thus from (120) 

Ä*(u) = y'ZP ̂ Z 'y , (135) 

and from (122) through (124) 

R*(b | u) = y'(I - ZP-^OXIX'il - ZP XZ')X] X (I - ZP^Z'Jy; (136) 

and (126) remains the same, 

Ä*(b) = y'XiX'XrX'y. (137) 

Then for (132), just as in (125), 

R*(u | b) = J?*(b | u) + R*(u) - jR*(b). (138) 

The replacement of Z'Z by P = Z'Z + � � as just described is based on the 
premise that the expected values of SSE* = y'y — i?*(b, u) and R*(u | b) are 
those of SSE and R(u | b) shown in (115) and (116) with Z'Z replaced by P. 
Unfortunately, as Thompson (1969) has pointed out, this is not so, and con-
sequently (131) and (132) are not unbiased estimators. Derivation of un-
biased estimators, as indicated by Thompson (1969), proceeds as follows. 
Notice, first, that from (134) 

Ρ^ΖχΖΖ 'σ* + a2
el) = P-^Z'ZcrJ + a\X)Zf 

= JT\Z�Z + � \)� � � \ from (130) 
= p-1PZ'<r£, from (134) 
= Z'crS; (139) 

second, from (114) 

£(yy') = Xbb'X' + ZZ'cr* + a% (140) 

Hence, using E(y�Ay) = tr[A£(yy')], the expected value of (135) is 

E[R*(u)] = trfZP^Z'Efry')] 
= tr[ZP XZ Xbb X + ΖΖ'σ*]. (141) 

Similarly, with 
T = I - ΖΡ -Ή ' , (142) 

(139) gives � {� � !� \ + o2
el) = � 2

� 1 so that from (136) and (140) we have 

E[R*(b | u)] = tr[TX(X'TX)-X'T£(yy')] 
= tr[TX(X'TX)-X'TXbb'X' + ΤΧ(Χ'ΤΧ)-ΧΌί] 
= tr[TXbb'X' + � � (� �� � )-� �� % (143) 
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and from (137) and (140) 

E[R*(b)] = tr[X(X'X)-X'£(yy')] 
= tr[Xbb'X' + Χ(Χ'Χ)"Χ'(ΖΖ'σ; + all)]. (144) 

Therefore, from (138), using (141), (143) and (144), 

E[R*(u | b)] = tr{(ZP"1Z' + T - I)Xbb'X' + [I - Χ(Χ 'Χ)-χ ']ΖΖ 'σί 
+ [TX(X'TX)-X' - \(� �� )-� �]� �} 

= � � tr[Z'Z - Ζ'Χ(Χ'Χ)-Χ'Ζ] 
+ � \ tr[X�TX(X�TX)- - � �� (� �� )-]. (145) 

Now by Lemma 1 in Sec. 1.2c, tr[XTX'(XTX')"] = r(XTX'). Furthermore, 
T has full rank (its inverse being ZZ�jX + I), and so r(XTX') = r(X); and 
tr[X'X(X'X)~] = r(X). Hence the last term of (145) is zero and so 

E[R*(u | b)] = al tr[Z'Z - Z'X(X'X)-X'Z]. 

Also, from (140)-(143) 

£[y'y - R*(b, u)] = E[y'y - R*(u) - K*(b | u)] = [N - ,�(� )]**. 

Therefore, in place of (131) and (132) estimators for a\ and a\ are 

s2 y'y - [R*(u) + R*(b u)] 
ft = -� � -^� -1-1- (146) 

N — r(X) 

and a:, = ! . (147) 
tr[Z'Z - Ζ 'ΧίΧ 'ΧΓΧ 'Ζ] 

These results, given by Thompson (1969) for X of full column rank, provide 
an iterative procedure because, through P of (134), the reductions R*(u) and 
jR*(b|u) of (135) and (136) involve �  = G\\O\. Estimation is therefore 
achieved by taking an initial value of A, calculating (146) and (147), using the 
results to get a next value of �  and repeating the process. 

The replacement of Z'Z by P = Z'Z + ΛΙ in the fitting constants method 
of estimation does not lead from (117) and (118) to (131) and (132) because 
in the method so modified 7^*(b, u) is not, as Thompson (1969) points out, a 
reduction in sum of squares due to solving (129). It is true that 

R*(b, u) = b * X y + u * Z y . 

However, the right-hand side of this equation is the reduction in sum of 
squares only when the equation from which it stems, (129) in this case, is, for 
some matrix W, of the form 

"b*" 
W�W = W�y. 



470 VARIANCE COMPONENTS.* METHODS [10.10] 

By observation, (129) is not of this form. Furthermore, as shown by Thomp-
son (1969), the reduction in sum of squares after solving (129) is 

y'y - (y - Xb* - Zu*)'(y - Xb* - Zu*) = 7?*(u, b) + λιι*'ιι*. 

The calculations involved in the estimators (117), and (118), are sum-
marized in Sec. 11.7b and those for the estimators (146) and (147) are in 
Sec. 11.7c. 

1 0 . BEST QUADRATIC UNBIASED ESTIMATION 

The variance component analogue of the best linear unbiased estimator 
of a function of fixed effects is a best quadratic unbiased estimator (BQUE) 
of a variance component. By this we mean a quadratic function of the ob-
servations that is an unbiased estimator of the component, and of all such 
estimators it is the one having minimum variance. BQUE's of variance 
components from balanced data are those derived by the analysis of variance 
method, as has been discussed in Sec. 9.8a. Derivation of such estimators 
from unbalanced data is, however, more difficult—a situation that is not 
unexpected. Ideally we would like estimators that are uniformly "best" for 
all values of the variance components. In general, no such uniformly BQUE's 
exist. However, Townsend and Searle (1971) have obtained locally BQUE's 
for the variance components in a 1-way classification with �  = 0, and from 
these they have suggested approximate BQUE's for the �  ^ 0 model. We 
here outline the development for the �  = 0 case. 

The model yu = a* + e{j is written, similar to (94), as y = Za + e with 
V of (96) being V = σ^ΖΖ' + � % Suppose we let the desired estimators of 
a\ and a\ be 

σ2 = y'Ay and σ2 = y'By 
such that 

£(σ2) = tr(AV) = σ2. and Ef� ) = tr(BV) = a\ (148) 
and that 

ü(dj) = 2tr(AV)2 and v(al) = 2tr(BV)2 be minimized. (149) 

The problem is then to find matrices A and B such that (149) is satisfied 
subject to (148). Upon obtaining the canonical form of V under orthogonal 
similarity as P'VP = D where P is orthogonal and D is the diagonal matrix 
of latent roots of V, we find that satisfying (148) and (149) demands mini-
mizing 2tr(DQ)2 subject to a\ = tr(DQ) and minimizing 2tr(DR)2 subject 
to a\ = tr(DR) where Q = P A P and R = P'BP. The latent roots of V are 
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o2
e, with multiplicity N — a, and a\ + n{al for / = 1, 2, . . . , a; the corre-

sponding latent vectors are the columns of the matrix Σ+ G ,̂ where Ĝ  is 
the last (^ — 1) rows of a Helmert matrix of order /ii (see Sec. 2.1), and the 
columns of Z. The minimization procedure leads, after some algebraic 
simplification, to the following results. Define 

t=i(l + niP) 
a n2 a 

s = �  ,�  / - and t = l ] i-iil+riipf iti(l+niP)2� 

Then the BQUE's are 

� ! = 2 — — — + s(SSE)] 
■=i(i 4- n,pf n4 J 

and a�  = j.jrnt L ^ « i ( S S E ) l 
(150) 

rs- t*Li=i(l +niP)m 

where SSE is the usual error sum of squares, ΣΣ yfj — Σ � $\. . 
These estimators are functions of the variance components through being 

functions of the ratio p = a\\a\. The variances of the estimators are identical 
to those of the large sample maximum likelihood estimators, and the limits 
of the estimators as p —>■ 0 are the Koch (1968) estimators given in (92). The 
limit of a2

e as p -> oo is the analysis of variance method estimator of a2
e. 

Comparison of the BQUE's with other estimators is difficult not only 
because their variances are functions of the unknown variance components 
but also because the BQUE's themselves, as in (150), are functions of those 
components. Townsend (1968) therefore compared the BQUE's with the 
analysis of variance method (ANOVA) estimators numerically. In doing so 
he used a range of values of p, both for the actual BQUE's (assuming p 
known) and for approximate BQUE's using a prior estimate, or guess, p0 

of p, in the estimation procedure. He found that considerable reduction in 
the variance of estimates of a\ can be achieved if the approximate BQUE 
is used rather than the ANOVA estimator. Furthermore, this advantage can 
be gained even when rather inaccurate prior estimates (guesses) of p are used 
as pQ . The reduction in variance appears to be greatest when the data are 
severely unbalanced and p is either small or large, and it appears smallest for 
values of p that are moderately small. In some cases there is actually no 
reduction in variance, when the ANOVA is a BQUE for some specific p. 
Details of these comparisons are to be found in Townsend (1968). The esti-
mators, their variances and suggested expressions for the �  ^ 0 model, 
taken from Townsend (1968), are shown in Sec. 11.If. 
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1 1 . EXERCISES 

1. In equation (32) show that for balanced data � �  = &«(Σα? - aä2), and that 
for the a's random 0X is the term in σ2 in (27). 

2. Establish result (33) and show that for balanced data 02 = 0 and for the a's 
random 

a a 

j=i n.j N 

3. Explain why, for nested classification models, there is only one way of carrying 
out the fitting constants method of estimating variance components and that 
it is equivalent to the analysis of variance method. 

4. In fitting y = � � + X,b/ + X ^ + X2b2 + e show that i?(bj | bf) equals ^ ( b ^ 
when fitting z = Wy = W X ^ + WX2b2 + We, where W = I - Xf(X�fX�f)-X�f . 
Show also that the reduction in sum of squares due to fitting z = W X ^ + We 
by generalized least squares is i^Oh)^ 

5. In the r-way classification random model, having all possible interactions, 
show that var(t) has 2r~1(2r + 1) different elements. 

6. Derive, from first principles, v(s2) given at the end of Sec. 10.2. 

7. Show that the estimators σ2 and σ2. given by (87)-(89) are the analysis of 
variance method estimators for balanced data. 

8. Find the variance of a\ given in (90), checking the term in 4/<2 given below (91). 
Check your results for balanced data. 

9. Find the variance of the estimator o\ that can be derived from (88) and (89). 

10. Show that for balanced data the estimators in (90) and (92) simplify to be the 
analysis of variance method estimators. 

11. Use (38) to derive 

E(T0) = NL* + 2 � | + � �  

�  and � (� � ) =� � 2 + �  
� =�  

1� \� 3) � $ + � � 

12. Derive equation (122) and the last equation in Sec. 9. 



CHAPTER 11 

VARIANCE COMPONENT ESTIMATION 

FROM UNBALANCED DATA: FORMULAE 

This chapter catalogues detailed formulae resulting from the application of 
methods discussed in Chapter 10 to specific models. Just the results available 
in the literature are included, with reference to their source. The amount of 
information available therefore varies from model to model, depending on 
what results have been found in the literature. Bayesian results are not in-
cluded here, for the methodology behind them has not been discussed in 
Chapter 10. The reader interested in this is referred to Hill (1965, 1967), 
Tiao and Tan (1965,1966) and Tiao and Box (1967). Other than this exclusion, 
every attempt has been made to make the following list complete but there 
can, of course, be no guarantee of this. The results are given without com-
ment, in a notation that has been made as uniform and as consistent with 
Chapters 9 and 10 as possible. The results for each model have been gathered 
together, starting with the 1-way classification and ending with the 3-way 
crossed classification. 

The equation of the model is shown for each situation discussed. Limits of 
the subscripts are shown also and thereafter, for typographical convenience, 
many of the summations are written using just these subscripts. For example, 
with / = 1, 2, . . . , a, we write 

a 

N = �  ni as N = � �  � 

1. THE 1-WAY CLASSIFICATION 

a. Model 
Va = �  + af + etj, 

i = 1, 2, . . . , a and j = 1, 2 , . . . ,n{, with N = 2,·«,·. 

[473 ] 

Linear Models 
by S. R. Searle 

Copyright © 1971 John Wiley & Sons, Inc. 
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b. Analysis of variance estimators 

Calculate T0 = £ £ A . TA = | </2./«, T„ - £ , 

S« = L»i and S, = 2*»?· 
Then ^ = (� �  - r^)/(iV - a) 

and cr2 = [7^ -� � -{� - l)<r2]/(iV - S,/A0. 

c. Variances of analysis of variance estimators (under normality) 

� (� �) = 2� � /(�  - a) 

. = 2� *� � 2(� �  - l)(g - 1) 4� 2<� > 2� %� % + S2 - 2iVS8) 

(/V - a)(N2 - S2f N2-S2 (N2 - S2)2 

cov(<r2, ^2) =-� (� - i)v(ol)l(N2 - S2). 
(Searle, 1956) 

d. Variances of large sample maximum likelihood estimators (with normality) 
Calculate 

P = <*IK > wi = "»/(I + niP) 
and D = N^w 2 - £ > , ) * . 
Then o(� i) = 2<7*(2>2)/D, 

� � 2) = 2^[iV - a + ^wJ/nJl/D 
and cov(d2, � 2) = - 2� ^� � � 2/� � )/ D. 

(Crump 1951; Searle, 1956) 

e. Symmetric sums estimators 

? = ( 2 / 2 . - M ) / 0 V 2 - S 2 ) 

£ = (� � 2>2� - M/(s 2 - N) _ 

(Koch, 1968) 

f. BQUE�s for the model with �  = 0 (under normality) 
With �  = � 2/� 2 calculate 

q( = 1/(1 + «,�/>), 

r = � <�  + ( # - « ) , s = 2,n2q2 and / = 2>i<?
2 � 

Then 7).� 2 = [£ ( s - f «,)«?«,# + 5(� 0 - TJ]/(rs - <2) 

and ;.� 2 = � £(/7�, - / ) q 2 ^ 2 - �(� �  - TJ]/(rs - �2) 
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with variances 

v(Bol) = 2s<r*/(rs - t2) and � (� � 2
� ) = 2ra*J(rs - t2). 

For an approximate BQUE of a\, assign some value p0 to p and 
using p0 in place of p denote qi by qi>0. 

Then ^ 0σ 2 = [ ]>> 0 ^ - Qq2^2. - t0(T0 - Τ^ ) ] / ^ , , - ig) 
with variance 

ι< Α Ο φ = 2 σ * β \ ( ^ - hfqUjq2 + (�  - a)t2]l(r0s0 - t2
0)

2. 

(Townsend, 1968) 
g. BQUE�s for ihe model with � ^ �  

They are unknown. A suggested estimator for σ2, based on using results 
from the �  = 0 model in the general estimator given by Tukey (1957), is as 
follows. 

Calculate w, = and tu — ^ 
(rs - t2)(l + niPf 2/Wi 

di = \^i- lUiWi + u2 and yu = 2 Λ & · > 

and 9v = «<"<- - M<HV - w^w*, for ι �  V 

Then ^ α 2 = [2> ; ί£ , - £w)2 - (ΣΑ /ϋ ,χτ . - T,)/(N - α)]/2,θ, 
with variance 

v(BPa) = 2� %� � 2 + (2,θ,/η,)2/(Ν - a) + Ι , Σ ^ » ^ ] 

(Townsend, 1968) 

2 . THE 2-WAY NESTED CLASSIFICATION 

a. Model 
Vuk = �  + α« + Ai + *«*> 

i = 1, 2 , . . . , a, j = 1, 2, . . . , bi and k = 1, 2 , . . . , � ^ , 

with 5. = 2 A a n d # = � �� �� �  · 
b. Analysis of variance estimators 

Calculate 

fci = ^ . / N , /c3 = � &� �/� , k12 = � � � � � �  
TA = � � ��� � �� > TAB = 2iliyirlnH > 
To = ZliLttHik and T„ = y2./A. 
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Then al = (T„ - TAB)I(N - b.) 

*2 = [TAB - T A - {b. - a)<x2]/(iV - k12) 

ol = [TA - T„ - (fc12 - k^l - (a - 1)61W - fcx). 

(Searle, 1961) 

c. Variances of analysis of variance estimators (under normality) 

v(at) = 2a\l{N - b). 

Calculate fc4 = Σ £ χ fc5 = Σ ,βΧ / , ι , . ) 

fe« = lilt� TK k7 = 2«QX)X 
β̂ = Σ>,··0>«) fc» = 2i"f· 

and λχ = (ΛΤ - knfMN + h) - 2/c9/iV], 

22 = fc,[rV(fc18 - fc3)2 + fc3(iV - fc12)2] + (N - k3)% 

- 2(N - k3)[(k12 - k3)kb + (N- k12)kJN] 

+ 2(rV - fc12)(/c12 - fc3)/c4/tf, 
� 3 = [(A/ - fc12)2(A7 - l)(a - 1) - (N - fc3)2(a - l)(/>. - «) 

+ (fc„ - k3f(N - l)(b. - «)]/(iV - b.), 

� 4 = (� - k12f[k3(N + kj - 2/c8/iV], 

h = (JV - k12)2(JV - kx) 

and Λβ = (iV - k12)(N - k3)(k12 - /c3). 

Then 

r2. = 2 ( V * + � 2� *�  + Α3σ̂  + 2 ν > | -f 2λ5σ2<τ2 + 2Α6σ2σ2) 
(iV - hfiN - k12)2 

2(fc7 + Nk3 - 2k5)^4 + 4(N - fc^*2 

f.2. + 2{b. - a)(N - α)σ*/(ΛΤ - 6.) 
* * > = ^ ^ 

cov(<x2, <r2) = [(k12 - k3)(b. - a)l(N - k12) - (a - l)M<0/(rV - h) 

cov(<x|, <r2) = -(b. - a)v(ol)l(N - k12) 

cov(<x2, <r2) = {2[k5 - k7 + (fc6 - /c4)/iV]^ + 2(a - 1)(6. - � )� %�  - fr.) 
- (N - /c12)(fc12 - fc3)t;(^)}/(JV - kt)(N - k12). 

(Searle, 1961) 
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d. Variances of large sample maximum likelihood estimators (with normality) 

� (� 2
� ) cov(o£ � 2

� ) cov(^, σ*)Ί 

cov(<7a
2, σ|) ϋ(σ|) cov(a|, σ*) | 

cov(o£, ofj) cov^2, <72) v(al) 

APQ = 2Xn*Vm?i)» f o r integers p and g, 

<?, = 1 + (&4m , 

t<xß = ^i^i22lQ.i 9 

tßß = 2i(� i22 - 2alAi^jqi + o*Af22jq% 

he = � �(� � 2 - ^A^Jq, + � *� � 2� �22^*) 

tee = li(Ai02 - 2a\Am\qi + � *� � *� *) + (ΛΓ - i>.)/*i . 
(Searle, 1970) 

Symmetrie sums estimators 

ft2 = (V2.� - ΣΑ2..)/(ΛΤ2 - iVfcO 

� l = (� �� � ^� �  - liljy2r)lN(ks - 0 

61 = li(N ~ n^^y^jNiN - kj - ? - a\ - a2
e. 

(Koch, 1968) 

3 . THE 3-WAY NESTED CLASSIFICATION 

a. Model 

yijkm, = = ft ·" a i ' r i j ' %'Jfc ' eijkm 9 

i == 1, 2, . . . , α , j = 1, 2, . . . , bt-, fc = 1, 2, . . . , ciS, 

and m = 1, 2, . . . , Hiifc , 
with 

&. = � � > cf = � � ; > c-i = � � * a n d N = � « � >� � ->* 
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b. Analysis of variance estimators 

Calculate k, = � ^�/�  k2 = Σ<Σ*4· /# 

fcs = Σ<Σ*Σ*4*/"<» k6 = 2iljl^hJriij. 
and v�  = N - k�  v2 = /c4 - k2 v3 = /c5 - k3 vA = a - 1 

5̂ = N — /c4 Vß = k6 — k5 v7 = b. — a vg = N — k6 

v9 = c ~ b. v10 = N — c. . 
Then with 

tf2 = (To - TABC)lv10 

� �  = ( T ^ c - ^ 7 ? - � 9� �)� � 8 

� 2�  = (� � �  - � �  - � � � �  - � 66*)�� �  

σα = (� �  - � �  - ι?4σβ - � 3� �  - � 2� � )� � 1. 
(Mahamunulu, 1963) 

c. Variances of analysis of variance estimators (under normality) 

K#e) = 2σί/ϋ10 

cov(a2, al
e) = [� 2(� 7� 8 - vsv9) + � � (� 3� 9 - �^8)]�*�)�^8 

cov(o-|, of) = �(i;7t?8 - �6�;9)�<�*)/�;5�;8 

cov(o£ σ*) = - M d - ^ / ü g . 
Calculate 

7̂ = Σ Λ - ^ = Σ»Σ*4· 
k* = � �� *� *� �  fcio = Σ(ΣΑ4*)Μ · · 

fen = Σ<ΣΛΣ*Π«*)/Π«· feia = Σ(Σ.-4·)/«,. 
few = Σ*(Σ;4·)2Μ·· few = Σ /Σ ;Σ*4Λ · · · 
fcw = ΣΣΧΣ*4*)2/*«· feie = Σ·{Σίη«·(Σ*π<Λ)}/π<·· 
fei? = Σ / Σ , · 4 · ) ( ΣΑ 4 ^ ) / " , . fcw = Σ<{ΣΧΣ*η?Λ)2Μ/·}Μ» 
few = Σ<Σ/Σ*4*)74· 2̂0 = Σ ; ( Σ ; 4 0 ( Σ Α 4 * ) / 4 
fe»i = Σ (ΣΑ4 * ) > 2 · *». = � � � ,� �� �� � 
hs = Σ*>ν·(Σ;4·) 2̂4 = ΣΛ · · · (Σ ,Σ*4*) 
2̂5 = � �� �� �� \� � � �)� ) 

and Δχ = fc19 + k21 — 2kls, Δ2 = Nk3 + fc19 — 2fcn, 

Δ3 = feio ~ ^18, Δ4 = ku - k19 and Δ5 = (fc9 - /c15)/iV. 
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Also calculate 

� �  = v2
8(Nk2 + fe22 - 2fc12) 

d2 = ^ + ι;|Δ2 + 2ι;6ι>8(Δ3 - Δ4) 

^3 = (v7v8 — v6v9)
2lv10 + v7vl + î §̂ 9 

d4 == v2
8(Nk3 + /c20 - 2/c16), d5 = v5vl and J6 = v6v8(v6 + i;8) 

and 

gl = vMN^ + fe2 - 2fe7/JV) 

g2 = Μδ(*22 + /c2
2 - 2fc18/tf) + ι&ίχ - 2v2d5[k12 - k22 - (fe8 - fc18)/JV] 

g3 = Μδ(&21 + ^3 - 2fe14/A^) + Γ^βΔχ + (v2Ve - ϋ3ϋ5)2Δ2 

- 2i;2d5[fe18 - fe21 - (fe15 - fel4)/iV] 

+ 2ι;8(ι;2ι?6 - ϋ3ι?5)|>5(Δ3 - Δ5) - υ2(Δ4 - Δ3)] 

g4 = M s O — 1) + � \� � � \ + � 9(� 2� 6 - ^ s ) 2 

+ [ * V ^ 8 - � 2� � � % + Vs(v2Vs - V3V5)flvw 

gb = vbdh(Nk2 + k ^ - 2fe23/iV) 
g6 = M6(JVIr3 + feife, - 2fe24/N) 
g7 = t,ll?5i/5 

gs = Μ δ ( ^ 2 0 + ^ 3 - 2 f e 1 7 / N ) + ^2^1(Nfe 3 + /C20 - 2fe1 6) 

2v2d5[k16 /c20 (/c25 k17)jN\ 

g% = M5O2 + ^5) and g10 = ι?8[ι>8(ι?3ι>5 + ^ β ) + ( ^ β - v3v5)
2]. 

Then 

Kö"2) = 2(g!cr* + g2a\ + g3or* + g4a* + 2 g 5 ^ J + 2g6cr2tf2 + 2g7(r2<72 

+ 2g 8 a |a 2 + 2g9a\a2
e + 2%� ^� � ^\� \� \� \ 

� (� 2� ) = 2{dxo\ + d2a* + dz&l + 2d� o\o2 + 2d5a
2
ßa

2
e + 2ί/6οτ2σ2)/ι;2ί;2 

<σ 2 ) = 2[Δ2σ4
γ + � 9(� 9 + v10)a

4Jv10 + 2vsa
2
ya

2
e]lvt 

cov(o-|, σ2) = [2(Δ4 - Δ3)σ* + 2v7v9a*Jv10 - i ^ s K ^ l / ^ s 

cov((72, d·2) = {2[ι?5(Δ8 - Δ5) - ι;2(Δ4 - Δ3)]σ* + 2� 9(� ^� 5 - v2v7)a*Jv10 

- VS(V3V5 - � 2� � )� (^)}/�?� � 5� 8 
and 

i?ii>5*>8[cov(^, � 2� )] = 2(fe12 - fe22 - (k8 - k13)lN](jß 

+ 2[fe18 - fe21 - (fe16 - fc14)/N - ϋβ(Δ8 - Δ5) - ι>8(Δ4 - Δ8)]ο* 

+ 2[fe16 - fe20 - (fe25 - k17)jN]a2a2
y 

+ 2[v^v7vs — v9(v^v6 + v3v7)]o*Jv10 

- � 2� 5� 8� (� 2
� ) + � 3� 6� 8� (� 2

� ). 
(Mahamunulu, 1963) 
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4 . THE 2-WAY CLASSIFICATION 
WITH INTERACTION, RANDOM MODEL 

a. Model 

Viik = P + *i + ßi + � �  + em, 
i = 1, 2, . . . , a, j = 1, 2, . . . , b and k = 1, 2, . . . , nu , 

with � �5 > 0 for s (i,y>cells and � �� *� �  = N · 
b. Analysis of variance estimators 

Calculate Table 11.1 and 

To = lililtcvL�, � �  = id»/"*. ^ = Σ*Λ7*.,> 
Γ4Α = lil^frK and Τµ = */2../W . 

TABLE 1 1 . 1 . ANALYSIS OF VARIANCE ESTIMATION OF VARIANCE 
COMPONENTS IN THE 2-WAY CROSSED CLASSIFICATION 

INTERACTION RANDOM MODEL 

Terms needed for calculating estimators and their variances. 
For estimators only, calculate just kl9 k2, k3, &4 and &23 . 

* �= � � ? � 
*3 = � ,.�� ,� � � 
ks = 2A. 
k7 = l^Xnlfin,. 
k, = l&nim. 

*„ = � ,�� ,� � . 
klz = � &� �� � "»».^-
kls = ^(� � , -». / /«, � . 
*IT = � ��� ,/^«.,)/^. 
Ar19 = � ,�� ,� ^� . 
Ar21 = � <� <� «(� �� ««<�1)2/«�.»��. 

� 23 = 2,(2,^^ 

£25 = � £}� ^.� .} 
^27 ^ <£i-£jftij/fti.tt.j 

kt-2A 
kt = � }(� /� � � 
� 6 = � ,«3,� 
£8 = X&ufln., 

k10 = I&rfftf, 
klt = � ^�� � ,� «., 
� �14 = � ,-�� ^-,� � � � .)/«.,� 

*��  = � ,-(� � ,�� <�)2/».� 
*18 = � 3(� *" � /**.)/".,� 
2̂0 = � ,�� ^)«., 

fc22 = � ,� ,�̂ �� ^� � -� �� .,� . 

kM = � � 4 
/c2e = � , � , � ? , / « , . « . , 

k^ = � �� � -� .«.,� 

A:; = fc /# for all r. 
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Then 

and with 
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*i = (T0 ~ TAB)I(N - 5) 

1 ^ 3 ~"~ ^ 2 *^3 ^ 2 3 

K 4 /C23 

IS /C3 fC4 + ^ 2 3 j 

N 

� 1 "" ^4 

� �  �  

^2 ^3 

= p -1 

TA -� � -(� - \)� 2 

� �  - � „ 
� � � �  -TA-Tli+Tll-(s-a-b + l)o2J 

as in (44) of Sec. 10.2d. This is equivalent to calculating 

«5.4 = [TAB - TA - (s - a)a*]/(iV - ks) 

and � �  = [TAB -TB-(s- b)a2
e]/(N - fe4) 

with which 

� 2 = [(N - k[)dB + (k3 - k�2)dA 

~ {TA ~� � -(�  - 1)� 2}]/(�  -k[~K + k�i3), 
and 6l = � �  — � 2. 

(Searle, 1958) 
� �  = � , 

c. Variances of analysis of variance estimators (under normality) 

� (� 2) = 2a*KN - s). 

For P given above and for H and f being 

H = 

1 

0 

1 

0 

1 

- 1 

0 

0 

1 

- 1 

- 1 

1 

and f = 

a - 1 

b - 1 

s-a -b+ 1 

var(d2) = Ρ-Χ[Η var(t)H' + i<d*)ff ΊΡ"1', 
and cov(d2, a2

e) = - Ρ " 1 ^ ^ ) , from (46)on p.434 

where var(t) = var 
TAB 

Var(t) has 10 different elements; each element is a function of the 10 squares 
and products of σ2, σ|, σ* and a2

e. The 10 x 10 matrix of these coefficients 
is shown in Table 11.2. Apart from N, a, b, s and unity Table 11.2 involves only 
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28 different terms. These are shown in Table 11.1. An example of using 
Table 11.2 is 

V(TAB) = 21>ισα + k2a
A

fi + fc23tfj + sa\ 

+ 2(k2,ayß + k2,ayy + Na\a\ + k2,a
2a2 + � � }� ] + Na2

ya
2
e)]� 

d. Symmetric sums estimators 
Calculate 

hA = �� �� �(� > - "iJlkvL - (I>-V - Σ<2>£·)]/(*2 - ^23) 
hB = [� � � � �- - ^iilkvlk - (Σ^?·· - Σ»·Σί^·)]/(*ι - k2s) 

and 

� � �  = [� � � >(�  ~ ni- - n-i + "ϋ)Σ*^2 

2 - (yi. - Σ^ " · - Σ*Λ · + liliVuMN* -kx-k2 + fcM). 

Then σ* = Σ<Σίπ</Σ*^* ~ "uVu�)!^ - N)> 

and o* = h4 + hB — hAB — a2 

�  A B AB e (Koch, 1968) 
e. Fitting constants method estimators 

Label the factor having the smaller number of levels in the data as the 
ß-factor, with b levels. 

Calculate � (� , α, � ) and h6 as in Table 11.3. Also, using Table 11.1, 

calculate hx = N — k[, h2 = N — k2, h3 = N — k23, 

h^ — N — k3 = h5 and h7 = N — /c4 = h8. 

Then σ2 = (T0 - T42?)/(N - 5) 

and σ2 = [TAB - RQ*9 α, /?) - (5 - a - b + 1)σ2]//*6. 

Estimators of a\ and σ̂  come from using any two of the following based on 
Tables 10.1 and 10.2 

o\ = [TAB - T B - (s - b)a2
e]/h7 - a2, [10.2] 

*ϊ = [TAB - TA " (s - a)a2
e]/h, - a2 [10.1] 

and Λ A2 + M l = 7 ^ - T„ - h3a
2 - (s - 1)σ2. [10.1 and 10.2] 

This procedure is derived in Sec. 10.4. In Table 11.3 the calculations for 
� (� , α, � ) are the same as those in Sec. 7.2, and the calculations for h6 
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TABLE 1 1 . 3 . COMPUTING FORMULAE FOR THE TERMS NEEDED IN 
THE FITTING CONSTANTS METHOD OF ESTIMATING VARIANCE 

COMPONENTS ADDITIONAL TO THOSE NEEDED IN THE 
ANALYSIS OF VARIANCE METHOD; FOR THE 2-WAY 

CLASSIFICATION, MIXED OR RANDOM MODELS 

To calculate R(fi, α, � ) compute 

For j = 1 , . . . , b 
a 2 

t=i n.. 
a n n � , 

C33� Z« »./ ^ J 
i=i ni-

(Check: 2 cir = o j 

a 

I b \ 
(Check: 2 ^ =01 

F o r / , ; " = 1,2, . . . . , (b - 1) 

C = {cjr} and C 1 = {cis�} 

r = {rj} 
Then 

tB = r 'C- l · = R(ß | � 9 α) 
and 
#(// , α, � ) = � �  + /*. 

To calculate Λ6 compute 

For / = 1, . . . , a 
b 

li = Σ nVni-
3 = 1 

For / = 1, . . . , a 
andy",/ = 1, . . . , b 

An = (/ltf//l».)(Ai + >V ~ 2w«) 

f o r . / * / 
/ b \ (Check: 2 / ^ = 0 J 

For / = 1, . . . , a 
and / , / = 1, . . . , (6 - 1) 

F« = {/i.ii'} 
Then 

£* =Σ ^ · +tr(C-12F,) 
t= l i=l 

and 
h6 = N - k*. 

come from Searle and Henderson (1961). Simplification of general results in 
Rohde and Tallis (1969) would yield variances of these estimators. 

f. Analysis of means estimators 
These methods can be used only if all cells have data in them; i.e., s = ab, 

and ni3- > 1 for all / = 1, 2, . . . , a and; = 1, 2, . . . , b. 
Two possible analyses are the unweighted and the weighted means analyses. 

Details of the mean squares in these analyses, and of their expected values, 
are found in Chapters 8 and 10, as indicated in Table 11.4. Equating expected 
values to calculated values in either method yields variance component esti-
mators. Similar handling of the other analyses considered by Gosslee and 
Lucas (1965) provides additional methods of estimation. 
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TABLE 1 1 . 4 . ANALYSIS OF MEANS METHODS FOR ESTIMATING 
VARIANCE COMPONENTS WHEN ALL CELLS CONTAIN DATA 

Method 

Unweighted means 
Weighted means 

Mean Squares 

Calculation Expected Values 

Table 8.12, Sec. 8.3c(i) Table 10.3a, Sec. 10.5 
Table 8.18, Sec. 8.3c(iii) Table 10.3b, Sec. 10.5 

Estimators from the unweighted means method are, from Table 10.3a 
of Sec. 10.5, 

6\ = MSE, 6) = (MSBM - MSABw)/a , 

� * = MSABM - nha
2
e, a\ = (MSAM - MSABM)/b . 

The mean squares used here are defined in Table 8.12 of Sec. 8.3. 
Variances of these estimators utilize 

# i = ab^il^M = aVnh , N2 = ab^l^tf,), 

^3 = aEilils0lnanis\ N* = � � �� �� �0� � � � � ) 

and N5 = � �� �� 1� *(� � � � � ^ 
Then 

v{a\) = 2atl(N - ab), 

� (� *) = nlv(ol) + 2 « + 2ηΑσ2σ2)/[(α - \)(b - 1)] 
+ 2[(β - 2)(b - 2)N2 + (a- 2)JV3 

+ (b- 2)JV4 + Ns]<tl[ab(a - i)(b - l)]2, 
� (� 2

� ) = 2{(1 - 1/α)σ| + [� * + (σ2 - σ2)/α]2 

+ 2nh\a\ + (σ2 - σ|)/α]σ2}/[(α - \){b - 1)] 
+ 2[� 5 - NJa + (b- 2)(Ni - Ntla)]a*J[ab(a - l)(b - l)]2, 

and 

v(6l) = 2{(1 - ilb)< + [ol + {a* - ol)/bf 

+ 2nh[al + (σ2 - σϊ)/&]ο*}/[(« - i)(b - 1)] 
+ 2[iV5 - NJb +(a- 2)(N3 - Njb)]atl[ab(a - !)(£> - l)]2. 

(Hirotsu, 1966) 
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5 . THE 2 -WAY CLASSIFICATION 
WITH INTERACTION, MIXED MODEL 

a. Model 

Viik = P + a i + ßj + 7ij + eijk, ß/s taken as fixed effects. 

i = 1, 2, . . . , a, j = 1, 2, . . . , b and k — 1 , 2 , . . . , « ^ · , 

with n^ > 0 for s (i,/)-cells and � �� �� �  = ^ · 

The model is exactly the same as the random model case of the preceding 
section, except that the /?'s are taken as fixed effects. They are assumed to 
be fewer in number than the random effects in the data. 

b. Fitting constants method estimators 
Calculate T09 TAB and TB of the analysis of variance method and � (� , α, � ) 

and/*6 of Table 11.3. Then 

*l = (To ~ TAB)/(N - si 

*2y = [T AB R(JA9 K,ß)-(s-a-b + l)a2
e]lh6 

and *l = [TAB - T B - ( S - b)o2
e]/(N - fe4) 

These estimators arise from the last three lines of Table 10.2 of Sec. 10.4, as 
discussed in that section. 

c. Fixed effects estimators 
Writing the model as 

y = � � + Χα + Ζβ + \¥γ + e 

where α, β and γ are the vectors of α-, � -, and /-effects, we can use (103) of 
Sec. 10.8a to write down equations 

X'X + ((7>*)I X'Z X'W 

Z'X Z'Z Z'W 

W'X W'Z W'W + (<r>y
2)I 

When the variance components are known, solutions to these for β° are 
maximum likelihood. When � \\� \ and cr2

e/a
2

y are unknown, using � \\� \ and 
alia2 in their place provides equations that can be solved, although their 
solution is not maximum likelihood. 

� � �  
U�  
LY�. 

= 
"x'y" 
Zy 

W'y. 
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6 . THE 2 -WAY CLASSIFICATION WITHOUT 
INTERACTION, RANDOM MODEL 

a. Model 
Vnk = f* + *i + ßi + eijk, 

i = 1, 2, . . . , a, y ' = l , 2 , . . 

with riij > 0 for s (z,7)-cells 

b. Analysis of variance estimators 
Calculate 

Using Table 11.1 calculate 

^ = (jV - jfei)/(iV - fc4) and 

b and £ = 1, 2, . 

and JV = ΣίΣ/1« . 

and 
7; = 2/2../iV, 

7* = 2iV2i-l"-i · 

22 = (iV - fc;)/(tf - /c3). 

Then 
.2 � 2(� 0 - TA) + � ,{� 0 - TB) - (T0 - � � ) a. = 

and 

� 2(�  -� ) + � ^�  - b) - (JV - 1) 
*J = [T0 -TB-(N- b)a*]/(N - fc4) 
*i = [Te - Γ , - (N - � )� *]�(�  - k3). 

c. Variances of analysis of variance estimators (under normality) 
Writing 

N — k[ k3 — k�2 a — 1 

/c4 — k[ N — kf
2 b — 1 | and Q = 

.K 
N -k2 

/Co ACo iV 6 + 1 
� 2 

it can be shown that the estimators are solutions to 

Γ � � -� �  Ί Γ 0 

Qd2 = TB - � �  = Ht + 0 

[To — TA — TB + � � \ [_T0 — TABj 

for Ht of Sec. 4c. 
When ntj = 0 or 1, TAB = T0 and QÄ2 = Ht so that 

var(d2) = Q -Ή var(t)H,Q-1/. 

Var(t) will be calculated exactly as in Tables 11.1 and 11.2 except with 
a) = 0. 
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When ntj > 0, TAB exists even though not used in the estimation procedure. 
Nevertheless 

0 

d2 = Q Ht + 

Furthermore, T0 — TAB has variance 2a%N — s) and is independent of every 
element in Ht, whether σ2 — 0 or not. Therefore 

var(d2) = Q ^ H v a r ^ H Q 1 ' + 2q3q'3^(JV - s) 

where q3 is column 3 of Q_1. As with the n^ = 0 or 1 case, var(t) is calcu-
lated from Tables 11.1 and 11.2 using σ2= 0. 

d. Symmetric sums estimators 
Calculate 

hA = iMZiVu - yi)/(fci - ff) 

hB = l^ilivh - y » 2 - N) 

and hAB = (� �� >(�  - ni� ~ ni + nio)vl 

- (y2. - livl - Itfi + lil^M"2 -h-k2 + N). 
Then G\ = hAB - hB , σ | = hAB - hA and σ2 = hA + hB - hAB . 

Koch (1968) gives these results for just the case of n^ = 0 or 1, but presumably 
they would extend quite directly to the niS > 0 case. Denominators of the 
A's, for example, would have their TV's (not N2) replaced by k2Z. 

e. Fitting constants method estimators 
Calculate #(µ, α, � ) of Table 11.3, and from Table 11.1 

h1 = N - k[ h2 = N - k�2 

fc4 = N - k3 h7 = N-kA. 

Then σ2 = [T0 - Rfa α, � )]/(�  - a - b + 1) 
and a\ and a\ are estimated by using a/*y /WO of the following 

al = [R0*, a, /J) - Γ* - (a - l)dJ]/Ä7, 
<r2 = [ÄOi, a, £) - TA - (6 - 1)σ2]//ι4 

and M i + /ι2σ| = Rfa, oc, � ) - � �  - (a + b - 2)o2
e. 

These expressions come from Tables 10.1 and 10.2 by not using � (� , α, � , � ) 
and having o*2 = 0. 
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f. Variances of fitting constants method estimators (under normality) 
For estimators obtained without using the last equation of the preceding 

section Low (1964) derives the following variances and covariances. Calculate 

N� = N - a - b + l 

and, with the aid of Table 11.1, 

/ l = kl - 2^18 + 2i2i�(liniJni�iln�if 

and f2 = k2- 2/c17 + � �� � � �� � � � �� *� 

Then v(a2
e) = 2a4jN\ 

cov(<7a
2, 61) = - ( a - l)v(o2

e)lh7, 
cov(o2

ß,o
2
e)=-(b-l)v(a2

e)/h,, 

� (� 2) = 2[� %�  - b)(a - 1)/ΛΤ + 2h7a
2
ea

2 + f^/h2, 
� (� 2) = 2[� %�  - a)(b - l)/iV' + 2h,a2

ea
2 + ha\\\h\ 

and cov(<ra2, � 2
� ) = 2a%k26 - 1 + (a - l)(b - l)/JV']//iA. 

(Low, 1964) 

7 . MIXED MODELS WITH ONE RANDOM FACTOR 

a. Model 
y = Xb + Zu + e, 

where r(X) = r, Z has full column rank t, and u represents the effects of a 
single random factor having variance U\ . The estimation procedures sum-
marized below come from Sec. 10.9, based upon Cunningham and Henderson 
(1968) and Thompson (1969). 

b. Fitting constants method estimators 
Calculate 

T0 = y'y, 
M = X'[I - Ζ ίΖ 'Ζ^Ζ ' ] , 
Q = MX, Q- and b° = Q~My. 

R(b | u) = b°'My, 
R(u) = y'ZtZ'Zy^Z'y and R(b) = y'X(X'X)-X'y, 

R(b, u) = R(b | u) + R(u) and R(u | b) = R(b, u) - R(b). 

Also calculate 
c = tr[Z'Z - Ζ'Χ(Χ'ΧΓΧ'Ζ]. 
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Then 

a\ = [T0 - R(b, u)]/(N - r - t + 1) and a\ = [R(u | b) - (i - l)dj]/c. 
c. An iterative procedure 

Assign an initial value to 

and calculate 
P = Z'Z + AI and T = I - ZP^Z ' , 

R*(b | u) = y'TX(X'TX)-X'Ty, 
Ä*(u) = y'Z'P xZy and Jl*(b) = i?(b) = y'X(X'X)"X'y, 

R*(b, u) = **(b | u) + Ä*(u) and ii*(u | b) = tf*(b, u) - J?*(b). 

Also calculate c as above, and then 

a\ = [T0 - Ä*(b, u)]/(N - r) and aj = Ä*(u | b)/c. 

Use these to evaluate 1 = � \\� \ and with this value of �  repeat the calculation 
of � l and of.. 

8 . THE 2 - W A Y CLASSIFICATION WITHOUT 
INTERACTION, MIXED MODEL 

a. Model 

Vm = /* + *, + ßj + em , ß/s taken as fixed effects. 
i = 1, 2, . . . , a, j = 1, 2, . . . , b and & = 1, 2, . . . , n{j, 

with «^r> 0 for s(ijy cells and �  = � �� }� � � 

b. Fitting constants method estimators 

� ! = [T0 - � (AI, a, £)]/(# - a - b + 1) 
<ra2 = [� fci, a, 0) - Γ* - (a - l)ae

2]//i7. 
The variances and covariance of these estimators are as in Sec. 6f. 

c� An iterative procedure 
Write the model as 

y = Xb + Zu + e, 

where b is the vector of �  and the fixed ^-effects and u is the vector of random 
{^-effects. Then the prescriptions of Sec. 7c apply exactly. 
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d. Fixed effects estimators 
In terms of the preceding model the maximum likelihood solution for 

�  = [�  � 1 · · · ßb] will be 

b* = (XTX')-X'Ty 

with T = I - Z[Z'Z + (a2Ja2
a)l]~lZf. 

9 . THE 3-WAY CLASSIFICATION, RANDOM MODEL 

a. Model 
Using notation such as (αβ)^ for the interaction effect peculiar to the z'th 

a-level and theyth ß-level write the model as 

Vnkh = f* + a* + ßi + 7k + (*ß)u + (ay)« + (ßy)jk + (*ßy)m + ^Hkh > 

with / = 1, 2, . . . , a, j = 1, 2, . . . , b, 

k = 1, 2, . . . , c and A = 1, 2 , . . . , nijk . 

b. Analysis of variance estimators 

a2 = {T0 - TABC)I(N - s) 

where s is the number of filled cells. The other seven components are estimated 
from calculating the elements of 

t = [TA TB Tc TAB TAC TBC TABC � � ] 

and of E(tf). The Ts are calculated as in (35) of Sec. 10.2c(iii), and the coeffi-
cients of the <r2's in the E(T)-terms are obtained from (38) of the same section. 
The T's and their expected values are shown in Table 11.5. Equating the 
calculated values of 

� �  -� �  TC -� �  

TB - � �  TAC -� � -� 0 + � �  

� � �  �  TA �  TB + � �  TBC � � �  �  � 0 + � �  

and 
TABC — TAB — TAC — TBC + TA + TB + Tc — � �  

to their expected values yields, together with a2
e, estimators of the com-

ponents 
9� r 2 2 2 _2 2 .2 .2 ,2i 

<* = [<*A <*B <*C <*AB <*AC (*BC <*ABC ^el� 
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c. Variances of analysis of variance estimators (under normality) 
The variance-covariance matrix of t, var(t), is 8 x 8 with 36 different 

elements, as discussed in Sec. 10.2d(i). Each element is a linear function of the 
36 squares and products of the a2's in σ2. The elements of the resulting 36 x 36 
matrix are shown in Table 11.6, prepared by W. R. Blischke as an appendix 
to Blischke (1968). It is published here with his kind permission. 

The three factors are denoted by numbers 1, 2, 3 instead of letters A, B, 
C. For example, 7\ and Γ23 correspond to TA and TBC respectively and a\ 
is ac. The entries of Table 11.6 are defined in terms of the nijh , using the usual 
"dot" notation, and the additional notation 

with the convention that an asterisk in the fourth, fifth or sixth subscript is 
used to indicate that that subscript is equated to the first, second, or third 
subscript, respectively, prior to summation. Thus, for example, 

Wij-st* = 2* nijhnsth 9 wi-i�* = Z* nijhnith = 2* ni-h -> 
h j.h.t h 

and 

The symbol Aitj is used to denote the table entry in the /th row and yth 
column. Throughout the table it is understood that summations extend over 
all subscripts. 



TABLE 1 1 . 6 . COEFFICIENTS OF SQUARES AND PRODUCTS OF VARIANCE 
COMPONENTS IN VARIANCES AND COVARIANCES OF UNCORRECTED SUMS 

OF SQUARES (7 ' s ) IN THE 3-WAY CROSSED CLASSIFICATION 

Coefficients are denoted by Aitj for /,/ = 1,2,.. . , 36. Au is the coefficient 
of the title of row / in |cov(title of column j); e.g., the A12 entry is the 
coefficient of o\ in |cov(r2) = Jvar(r2), and the entry A9tll is the 

coefficient of 2a\a\ in |cov(rx, T12). al = a\ throughout. 

Column 

(l/2)Cov 

Row Product 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

4 

� t 
4 

°12 

4 
°13 

£ 
„4 
σ ΐ23 

4 σο 

„ 2 2 
2σΐ°2 

Λ 2 2 
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L W 1 . . 8 . . 

2 
�  "i.hs.u 
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�  
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TABLE 11.6 (Continued) 

Column 6 7 8 9 10 11 

(l/2)Cov T23 T123 Tf ��,�2 T rT 3 T1ST12 

Row Product 

4 A2,2 A2 

� 3 A 3 , 3 A 3 , 3 

1 L " . j h . t u ^ 1 ^ n S L w . j . i . . � " . - . . � . . 1 , �  

/ \ 2 2 2 2 
( 3,3) y wi.i . . .* y wi.h..h y w n . s . * 
V n / � � � . . � � . L w i . . . . h � " � 3 . 5 . . 

2 / \ 2 2 2 
. 4 y w.jh*ju . f � ^ � ) y " n . i j . y wi.hi*. 

4 yw. ih*th ( A i o , i ) V I M . * y "i.hi.h y W I J . I . * 

„4 . . / � , , �  y w n . . i * y wi-h-*h y w i i - » j * 

7 σ* ylih*jh Λ31Υ Y"M-^I* y^Jüiü y ^LLUi 

4 , V " u - i l - V "i .h i .h 
8 °0 ^ m123 X ^ ^ 7 T 7 ^"i. . . .h 

n 

» » f t A10>1 V l ^ I ^ A 1 0 > 1 
n 

2 
2 2 A � �  .AQ . V W i . 1 . i J - V W l . h i 1 h n i , 1 . A 

11 2σ?12 \.6 A9,l ^� ^ ^ ^ 7 ί l n i . h ^ 1 

n 
A5,6 A ^ A x a W y : ^ ^ jiild! 

2 ^ i l . w i . h . . h 
n J 

[^5] 
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Row 

1 

Column 
( l / 2 ) C o v 

Product 

12 
T .T 1 1 , 1 1 3 

10 

11 

12 

123 

*tt 
2 2 

2 σ ΐ σ 3 

o 2 2 
2 σ ΐ σ ΐ 2 

2 2 
2 σ1 σ1 3 

1,1 

L� w. 
h s * . 

i . h s . . 

3 

'4u 
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4 3 

Λ3 , 1 0 
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Z J W. , 
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1 . , 

2 

y^L_ 
L� w. 

i * . 

2 
w. y w i . . i . * 

ZJ W_. 

� ; 
2 
i . . . • • 

w . . n 

16 
T ,T 1 2 , 1 3 

� -
2 

y -
Z-. w 

L� w 

� * 
y w i . . i** v \ 
L w. Aw 

� 1 

h * . . 

. . h 

h ^ 

h . j . 

h . . h 

h * j . 

. . . h 

h* .h 

h . j h 

h*jh 

. . h 

h . j h 

. . h 

A 9 , l Δ n 

yw . .h*. . n . . h 
10 ,1 Δ n 

yiu^ 
9,1 i w , 

10 ,1 Δ u* 
h i . . 

�  
y 
L 

�  

V 

w i . h . * h n i . . 
n . . h 

w i i . . 1 * n i . . 
n . j . 

" . 1 h * . . " . . 1 h * 1 . 
w . j . . . h 

w . 1 h * . . " . i h * . h 

\ J . . . b 
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TABLE 11.6 (Continued) 

Column 17 18 19 20 
(l/2)Cov T2,T12 T2,T13 T2,T23 T2,T123 

Row Product 

> Λ Γ w i j h l · . . y . J h * t 

4 

% 

2 2 
w. . 

A y i j M - y ^ 

2 2 

o : y ^ � ^ i y^ j j L � ^ A. 
3 LTT* + ^ . 4 "3,16 

σ 4 A 
σ12 11 ,9 

i j . . t . w w i . h . j . 
2 2 

yWl-1hiJ. VLJMJL· 
^ " . j . i . h . j h . j . 

2 2 2 
4 y w i i . i t * y w i , i h i . h y w . j h * t h 

* 1 3 L^..t. ^ . j . i . h L w . j h . t . 

2 2 2 
4 v w i i . i , i * v w i i h i i h y w . j h * j h 

°123 
Y Wl 1-1.1» V i.jhijh Y -
L w i j . . j . ^ W . j . i . h ^ ^ j . - j h 

4 T y Wi .1hi jh 

9 2� �  Vi � ^ �  

2 

2 

2 2 A y w i i h i . . y w . i h * t . w . i h * t h 
12 ^ l " ^ A12,9 ^^jTTT ^ Vjh. t . 

A l 

A2 

V 

A U 

A 5 , 

A24 

A32 

,9 

,2 

16 

,9 

18 

,16 

,18 

V 

A10, 

A l l , 

A12 

1 

,17 

,9 

,9 
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TABLE 11.6 {Continued) 

Column 
( l / 2 )Cov 

Row Product 

4 

21 

w 3 

J123 

T 2 , T f 

2 

yw-j.*�� 

2 
y w - . i - - j -
L w , 

2 

yw-,i���* 
/ . w 

2 

y li^uL� 

2 

Vv-.l�*-* 

W . J . . . . 
2 

22 
� 3 , � 1 2 

V "l.lhl.. 

�  � "�,1� 
* i j . . . h 
2 

y wl1h..h 
L w i J . . . h 

� ^ 
2 

y wijhi.h 

2 
y Vl1h.1h 
A w i j . . . h 

2 
V V l j h i 1 h 

W l j . . . h 

23 

VT13 

1,10 

y vi.h.*u 
i . h . . u 

"3,3 

y w�ih*i" 
L w . j h . . u 

"12,10 

�  l.h.*h 

� ? hl*h 

24 
� 3,� 23 

y w.ih*.u 
. j h . . u 

� 2 ,16 

"3,3 

w2 
i . h l * u 

L� W i . h . . u 

il� 
jh* .h 

j h . . h 

"19,16 

l . h . . h 
� - jh*jh 

j h . . h 

� ? 1hl1h 

l j . . . h 

2 2 2 V 2 

2 2 
10 2� ^� 3 

2 2 
11 2 � ^ 2 

2 2 12 2 0 ^ 3 

V i s 

l-
yv 
�  

yv 

�  

•1�*�� , 

' . 1 . * . . w 

W . J . . 

' . 1 . * . . w 

W . J . . 

L�^ 

1�*.1� 

1 . * . * 

. 

Ywi.~,1-n i ih 
L w i j . . . h 

2 

L� W i j . i . . 

2 

y v i jhi . . 
w . . h i . . 

w n2 

y w11hl..n llh 
1 W i j . . . h 

1 ^ h".jh 

"10,1 

"11,10 

"12,10 

9 ,23 

*10,1 

w x, j . w y w.ih*.uw.ih*iu 
�  w . j h . . h 

"5,24 
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TABLE 11.6 (Continued) 

low 

1 

2 

3 

4 

5 

Column 
( l / 2 ) C o v 

Product 

< 

a4 

2 

4 

"ίζ 

-�3 

25 
T .T i 3 , i 1 2 3 

A l , 1 0 

A 2 ,16 

A 3 , 3 

A 4 ,22 

A 12 ,10 

26 
T 3 , T f 

2 
γ w..h*.. 

2 
γ w..h.*. 
L w . . h . . . 

2 
Y w. .h. .h 
i w . h , . 

2 
γ w..h**, 

2 
γ w..h*.h 

2 

27 
T .T i 1 2 , i 1 3 

A i , i 

A 2 ,18 

A l , 1 3 

A 17 ,18 

A 23 ,22 

2 

28 29 30 

6 σ 2 3 Α19 ,16 

7 G123 A29,22 

L� w , 
*h 

• h . . . 
L> w . . u 

l j . s . h 

γ w..h**h γ i1 
L w �  w.. 

J h i j h 

T 1 2 , T 2 3 T 1 2 , T 1 2 3 T 1 2 , T f 

A A A 
3,22 1,1 1,15 

2,2 

*1,13 

11,13 

V W l j 
^ w. . 

l j h i t h 

i j . i . h 

i j . . t h 

24,22 

y W i i h i i h 

A A 
2,2 2,21 

2 

A y ^ i Al,13 i w 

2 

A y ^ i A9,i I ^ y 
2 

y^Li l23,22 ^ w . 4 

2 

y ^ i k24,22 Δ ν ^ 

2 

y ^ i l25,22 L w 

.. .* 

. . . . 

• i i -

. i . * 

. . j * 

.i]* 

8 σ - Η 
γ W i j h i j h 
L w. . , 

i j . i . h 

\ " Wi,jhi,jh 
12 

9 2 σ ΐ σ ΐ Α9 , 2 3 
γ w . ,h*. .w. .h. 

" 9 , 1 9 ,1 
A A 

9 ,1 9,15 

1 0 2 σ ΐ σ 2 A 1 0 , l 

11 2σ 

" 1 0 , 1 5 

2 2 γ w . . h * . . W . . h * * . 

ισΐ2 A n , i o L w u 

10 ,1 

9 , 1 

A 1 0 , l A 1 0 , l A 10,15 

A A A 
11,13 9 , 1 11,15 

1 2 2 σ ΐ σ ΐ 3 Α12 ,10 y " - - h * - - W - - h * - h A 1 0 , l 
Λ W . . h . . . 

A l l , 1 4 A 1 0 , l A12,15 

[ 499 ] 



TABLE 11.6 {Continued) 

Column 
( l / 2 )Cov 

Rcw Product 

31 32 33 34 35 
T 1 3 , T 2 3 T 1 3 , T 1 2 3 T 1 3 , T f 

36 

12 

"13 

A> 

"123 

2 2 

2 2 10 2 � ^ 

11 2o\o\2 

2 2 12 2 0 ^ 3 

^ , 2 2 

A 2 ,18 

"1,1 

"2,18 

"1,15 

2 
�  w i . h . * 

T23,T123 

A3,22 

T23,Tf 

2 

y",ih*·· 
^ w . J h . . . 

T T 
123,xf 

Al,15 

A 3 , 3 A 3 , 3 A 3 ,26 

2 2 
Y w l 1 h i 1 u y W l . h i * . 
L� w4 , 4

 � 17 ,18 �  w, . i . h . j u i . h . . . 

2 
A A V W i . h i . h 

11,14 A 1 0 , l L w. , 
l . n . . . 
2 

y w i . 
?,18 i w A 19 ,18 A 19 , 

h.*h 

A 2 ,2 

A 3 ,3 

"11,13 

11,14 

*16,2 

L w i . h . j h 1 3 

A 9 , l A 9 , l A 9 ,15 

A10,l A10,l A10,15 

All,13 A9,l All,15 

A l l , 1 4 A 1 0 , l A 12 ,15 

m23 

"9,1 

10,1 

"2,21 

*3,26 

It 

it 
2 

It 
y uhuh y j-hj*h A y l 

h * j . 

h . . . 

h*.h 

h . j h 

h . . . 

h*jh 

9,15 

10,15 

A 2 , 21 

3,26 

"4,30 

*5,33 

� 6 ,35 

y Wi1hi,1h 

11,13 L w 
•1h*J» 

. j h . 

� l l , 1 4 L w , 
•1**1-

. j h . . . 

9 ,15 

10,15 

*11,15 

12,15 
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TABLE 11.6 (Continued) 

.2 2 

Colunm 1 2 3 4 5 
( i / 2 ) C o v τ χ τ 2 T 3 T 1 2 T 1 3 

Row Product 

13 2σ 2σ 2 w V l � ^ J h �  » i . h . J h 
I J ^ σ 1 ° 2 3 w . . . * * * A w , 4 L w . . A 1 3 , l A 1 3 , l 

. j . . j . . . h . . h 

14 2� ?� ?„ � , , V ^ L - J �  V ^J� Slk A A 1 123 13 ,1 L� w . . L w , , 13 ,1 13 ,1 
• j " J · . . h . . h 

1 5 2 σ2 σ2 _ V w . j . * i , V W . . h * . h 
1 0 

y Vi.*.i- y w..t 
Δ n . Δ n 

» **1 \ ( � ^ ) 2 

1 7 2 ö 2 ° L A 2 , l A 9 , l 

1 8 2 σ2 ° 1 3 L f ^ A 1 3 , l 
1 . . 1 . . 

j 2 y i j . i . h 
13 Lw. . 

1 . . 1 . . 

19 2� 2� 23 � � � - ^ � ^ ) A16,2 

1 . . 1 . . 

2 0 L n 
2 2 V i . . i * . 21 2σ*σ* x i··! 

2 2 2σ3σ212 A 1 8 , l A 13 ,2 

» 2 V l 3 A5,l Xfr^Y 
i , h , u x j J ' 

\ 2 2 

2 y / y w i , h i j u \ y w . j . . j * 
23 L [ L n . I L· w 

24 2� 2� ; 

A 16 ,2 

v 2 

� ^�  
A 1 8 , l 

A 16 ,2 

A 17 ,3 

' . . h . * h 
n . . h 

A 1 3 , l 

A 1 0 , l 

A 16 ,2 

A 16 ,2 

A 9 , l 

A A 1 3 , l 

A 16,2 

A 1 3 , l 

n 

A 1 3 , l 

A 5 , 4 

A 6 , 4 

A 16,2 

A 4 , 5 

A A 1 3 , l 

A 6 , 5 

A 7 , 5 

V W i . h i * h 
L n i . h 

A 
13,1 

A 1 0 , l 

A 16,2 
j , h , u x i 
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TABLE 11.6 (Continued) 

Column 6 7 8 9 10 
l /2 )Cov 

Row Product 
( l / 2 ) C o v T 2 3 T 1 2 3 T f T r T 2 T l , T 1 3 

13 2σ2σ2 A , A,, , A
1,1A16,2 T * J " . l A l · yW.-*»Jhn.Jh 

1 23 13 ,1 13 ,1 *—2—*— L n L· n . 
n "-' ' 

» 2*M23 A7 6 A13 1 V*"»* Σ ̂  Σ ^ ^ 
L U0 / > & i J , i 2 i j . - j . w i . h . . h 

15 2Vo Σ ^ - ^ 1 
. j h n 

1 6 2σ2σ3 A16 2 A16 2 W Y " ΐ . 1 ' · ·Αΐ · Y " l - · 1,1*"· l· 
n 2 Δ n i . . L "I . . 

i7 »& V l Λ9>1 i ^ χ ^ IWl-^;w;h
h1*· 

n 

18 2σ2σ2 A A A2 2A10 1 V I U I 1 I * ! L L · V Wi.hi.hwj.h.*. 
18 2�2�13 � ^ ^ � ^ � 2,2̂ 10,1 £ £ w. _ _ h 

n 

19 2�2�2 A A A2 2A16 2 V ̂ " . l A l - V Wi-h.*.wj.h.*h 
19 2�2�23 A16>2 A l 6^ J^l_^^l L n._ L� Wi....h 

n 
2 

2 2 . An „A, 0 , V W H h i j . V W J . h i * h W i . h . * . 
20 2Vl23 A13,l A13,l 2 ' 2

2
1 3 ^ ^ ^ T T : L wi. . . . h 

A. o Λ V i . h . * . i . h 
21 2σοσΛ n n 2 ,2 Α ^ �  L ~ 2 2 A 

7 2 σ0 η - ^ " 2 1 , 1 " i . . . . h 

A 18 ,9 

2 
h 

22 2^3 Λ13>1 Λ13>1 S ^ I M-11- 11·· .* 

n 

? ? A A Γ w i 1 . . . * w i 1 . i . * V W i . h i . 
23 2σ3°13 V l A10,l ^ ^ ^ ^ , , , Ι , Σ — 

n 
2 2 A A V W i 1 . . 1 * W i ± . · · * V W i . h . * h n i . h 

2 4 2σ3σ23 \6 ,2 A",2 ^ i ^ Σ - ^ 4 ^ — 2. V . 
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TABLE 11.6 (Continued) 

Column 
( l / 2 ) C o v 

Row Product 
2 2 

2 2 14 2σ σ 

11 
τ .τ 1 1 , 1 1 2 

"13 ,1 

"13 ,1 

12 
� 1 � � 1 3 

"13,1 

^13,1 

13 
�  ,�  

1 ' 23 

" 1 3 , 1 
2 

V Wi.1hi.jh 
L w . . . 

14 15 
Τ1 ' Τ1 2 3 T l ' T f 

V W i . . . * * n i 
13 ,1 i n 

A 1 3 , l Lw 
. . . i . . 

2 2 15 2� fl 

2 2 16 2� *� * 

2 2 17 2σ ^ 2
1 2 

2 2 18 2 σ ^ 3 

2 2 19 2 V ^ 3 

20 to^ 

2 2 21 2σ 2σ 0 

2 2 22 2σ σ ζ ζ * 3 12 

2 2 23 2σ 3σ 1 3 

Ywi . . . i*n l 

"17,9 

"18,9 

*19,9 

"20,9 

"21 ,1 

"18,9 

"5 ,11 

*16,11 

"4 ,12 

"18,9 

" 1 5 , 6 

2 

w. 
i . . . j h 

2 

� � . . . n . ., 

i . . . j h 
2 

y w i . h . , i . n i i h 
L W i . . . j h 

3*L 
n 

x�  W . . W . 

V i - h s * . i . h s * h γ i j h . j . 
Δ W. Z_ w. . 

l . h s . . l . . . j . 

V W i - h i * h W i . h i * . Γ n j j h n . j . 
L w, 

16,11 

17,9 

18,9 

19,9 

L 

I 
V 
L 

L 

s 

w. 
1 

w. 
1 

w. 
- i 

w. 
1 

w 
. . . 1 . . 

-^ W . 

. . * . i . w 
. . . 1 . . 

^ w. 
w 

. . . 1 . . 

. . * . 1 . 

w 
. . . 1 . . 

w 
. . * . i . 

. i * . 

. 1 . * 

. .** 

. i** 

2 4 2� 2� 23 ^ . s ^ - s , * 

l j . S . . 

l . h i . . 

"21 ,1 

"18,9 

"23,10 

"24 ,10 

" i . - . j h 
2 

2 
γ W i j . . . h n i . j h 
Δ w i . . . j h 

2 
V W i . h . . h n i j h 
Δ w. ., 

i . . . j h 
2 

Y Wi,1h..h 
/_, w. 

i . . . . h 

"20,9 

"21 ,1 
"2,2 

L18,9 

L23,10 

24,10 

V W i . . . . * W i -
L w . 

. . . i . . 

r w i . . . . * w i . 
I w . 

. . . 1 . . 

v- w. .w. V i . . . . * l . 

L� w 
. . . 1 . . 

. i * . 

. j . . * 

. i** 
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TABLE 11.6 (Continued) 

Column 
( l / 2 ) C o v 

Row Product 

16 
� 2,� 3 

17 18 19 

» *ft � ^ 
j · 

- ^ 2 3 1 - ^ 
• j -

15 2σ 
2 2 � � �&*�� 
ισο 1 w . j . . . 

j h * 

j h * j h 

16 

17 

18 

19 

20 

21 

22 

23 

24 

2 2 
2 σ 2 ° 3 

o 2 2 
2 V l 2 

2 2 
2 σ 2 σ ! 3 

» & 

2 2 
2 σ2 σ1 2 3 

2 2 
2 σ 2 ° 0 

2 2 2σ σ Ζ 3 12 

2 2 
2 σ ? 1 3 

2 2 
2 σ3 ° 2 3 

Α16 ,2 

y w . ih*i . n . . ih 
L n . . h 

A 13 ,9 

2 
y ^ j h j h 

L� w 
. . h . j h 
2 

^ W . . h . j h 

A 21 ,3 

A 13 ,9 

T— w n . , 

Y _�Jhtib 1 - h 

L n . j . 

2 
y w-jh-ih 

^ w . j . . j h 

T 2 , T 1 2 

A 13 ,9 

A 14 ,9 

A A 15 ,2 

A 16 ,2 

A 9 , l 

� 2 , � 1 3 

2 
y w i . . . ih n i , ih 
1 w . j . i . h 

3 
y n i j h n i . . 
L w . j . i . h 

y n i j h n i . . 

2 
y w i i h . . h 

i . h . . h 

2 

L w i . h l j . 

� -

T T 
V 23 

A 13 ,9 

. j h * j . w . j h * j h 

w . j h . j . 

A 15 ,2 

A 16 ,2 

V l 

Ä 1 3 , l 

16,2 

13 ,1 

13,9 

13 ,1 
2 

w . , . w . 

y *.� � *» 
^ w i . h . j h 

2 
y Wijhijh 

^ W i . h i j h 

21 ,5 
2 

y w i 1 . . . h n i , 1 h 

. j . i . h 

2 
t * Γ W i j h . . h 

" i j . . t . 

"6 ,17 

� 9 . j . . . h 
2 

n i j h W . j h . . h 
L w . j . i . h 

13 ,1 

*16,2 

13 ,1 

17,16 

"23,16 

24,16 

20 
T T i 2 ' i 1 2 3 

13,9 

*14,9 

15,2 

16,2 

9 , 1 

13 ,1 

16,2 

13 ,1 

13,9 

23,16 

24,16 
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TABLE 11.6 (Continued) 

22 Column 21 
(l/2)Cov T2,Tf 

Row Product 

13 2 o v y -.i·*·· ·,ι··,ι* yii^ii i 
1 23 L w L· w_. �  

23 24 25 
T T 
13,i12 

2 
L...jhni1h 

T3�T13 

A13,10 

T .T 13,123 

A13,10 

T3�T123 

A13,10 

- -M23 r^��";1�*1* � 5 
2 2 1,1 

n � ^ 

� �  n w 

••M*· ••h y-*-n Z-. w. 

2 2 17 2 σ ^ 2 Vwn--i- Y l i 

h i . . 
. . . h 

h i . . 

h ^ 

14,10 

15,3 

16,2 

V W»,1h*.hW.jh*jh 
L w . j h . . h 

hjL, 
. . h I: i .h.*u i .hi*u 

W i .h . . u 

"15,3 

16,2 

"17,16 

14,10 

15,3 

16,2 

"17,16 

2 2 18 2� ^�  2 V . j . * . * . j . γ i . h . j . i jh 
13 L n �  w.. . 

i j . . . h 

2 2 
1 9 2°2σ23 

20 2 � 2 � 2 2 3 

2 2 21 2σ2σ0 

2 
w . 

V - l h - 1 � VM..1h"l1h 
i j . . . h 

13,10 

6,23 

3 n. ., n 
y ijh.j . y nhVi . y wi.h.*hwi 
^ w . . . . j . i w i j . . . h L w i . h . . h 

hi*h 

2,2 y n i i h n . . i � 
L w i j . . . h 21,3 

13,10 

A 19,16 

"20,16 

"21,3 

13,10 

19,16 

rt20,16 

*21,3 

22 2�  
w . .w σ2 Υ - ^ I 12 L w 

23 2α2σ2
3 

2 2 
2 4 2σ3σ23 

L w 

� ^ 

HJL^ i i 
• j -

*13,1 

* . j . * . * y i j h i . h 
. . j . ^ " i . h l j . 

2 

�  w ., . . 
• j · \ j h i j . 

13,1 

10,2 

"16,2 

"13,1 

10,2 

*16,2 

13,1 

10, 1 

16,2 
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TABLE 11.6 {Continued) 

Column 26 2 7 28 29 30 31 
l/2)Cov 

Row Product 

d/2)cov T3,Tf τ 1 2 ) τ 1 3 τ 1 2 , τ 2 3 τ 1 2 , τ 1 2 3 x12,Tf τ 1 3 ,τ 2 3 

i �> �>„2,-,2 V W--h*-.W..h.*h . 
1 3 2� 1� 23 L � — A13,l A13,l A13,l 

..h... 

2 2 T W..h*..W..h**h 14 2� � / �^1^�" A A A l* ^ 1 123 � w u
 A13,l A14,13 A13,l .. n... 

15 2�2��2 ^ � � � ^ , 

16 2�2�3 A16,21 A16,2 A16,2 A16,2 

2 2 �  . . h . * . . .h**. 
2 12 L w "17,18 "9,1 "9,1 

h . . . 

2 2 � �  , .h .* . . .h*.h 
1 8 2� 2� 13 l - ^ r - A ! 3 , l A13,l A13,l 

. . n. . � 

2 2 T" ..h.*. ..h.*h 
19 2�2�23 1 = � A19,18 A16,2 A16,2 

2 2 V . . h . * . ..h**h 
2 0 2Vl23 I T~ A20,18 A 13 , l A 13 , l 

. .h.. � 

21 2�2�2 \ �  A 2 1 ) 5 n 

2 2 V ..h**. �.h 
22 2�3��2 L n A13,l A13,l A13,l 

A 13 ,15 

A 14 ,15 

n 

A 16 ,21 

A 1 7 , 2 1 

A 1 8 , 2 1 

A 19 ,21 

A 20 ,21 

n 

A 22 ,26 

A 1 3 , l 

A 14 ,13 

A 15 ,6 

A 16 ,2 

A 17 ,18 

A 
13,1 

A 19 ,18 

A 20 ,18 

A 2 1 , 5 

A A 1 3 , l 

�,, -> 2�2 V M..h*.h"..h . . . V "n.|..*wi1.l.* 
23 2Vl3 L n A23,22 A23,22 A23,22 L �"...Ij. 10,1 

22 yw..h.*hn..h . . . ν"ί1···*Μί1··1* V . .h.*h"..h 
2 4 2V23 L n A24,22 *24,22 � 24,22 L 7 ~ ^ "16,2 
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TABLE 11.6 {Continued) 

Row 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

Column 
( l / 2 ) C o v 

Product 

2 2 
2 σ ΐ ° 2 3 

2 2 
2°?123 

, 2 2 
2σισο 

, 2 2 2ο 2ο 3 

2 2 2 V l 2 

2 2 2 V l 3 

2 2 
2 σ2 ° 2 3 

2 2 
2 σ 2 σ ΐ 2 3 

2 2 
2 σ 2 σ 0 

2 2 
2 σ3°12 

ο 2 2 
2 σ 3 σ ! 3 

ο 2 2 2α 3σ 2 3 

32 
Τ .Τ llV 123 

Α1 3 , 1 

Α1 3 , 1 

�  

Α16 ,2 

Α17 ,18 

Α1 3 , 1 

Α19 ,18 

Α20 ,18 

Α2 1 , 5 

Α1 3 , 1 

Αιο,ι 

Α16,2 

� * 

y -

33 
τ13,τ£ 

Α13 ,15 

Α14 ,15 

^ Ι 
�  

Α16 ,21 

� h . * . W j . h i * . 
w � u 

. . . l . h 

A 18 ,21 

. h . * . V j . h . * h 

. . . i . h 

. h . * . W i . h i * h 
w � u . . . l . h 

A 
A 2 ,2 

n 

A 22,26 

A 23 ,26 

A 24,26 

34 
T T i 2 3 ' i 1 2 3 

A 1 3 , l 

A 14 ,13 

A 15 ,6 

A 16 ,2 

A 9 , l 

A 1 3 , I 

A 16,2 

A 1 3 , l 

n 

A 1 3 , l 

A 1 0 , l 

A 16 ,2 

L 

35 
T T 

A 13,15 

. j h * . . W . j h * j h 

w . . . . j h 

n 

A 16 ,21 

A 17 ,21 

A 18 ,21 

A 19 ,21 

A 20 ,21 

^2 
n 

A 22,26 

A23,26 

A24,26 

36 
T T 123' f 

A 13,15 

A 14,15 

n 

A 16,21 

A 17 ,21 

A 15 ,21 

A 19 ,21 

A 20 ,21 

A 2 ,2 
n 

A 22,26 

A23,26 

A24,26 
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TABLE 11.6 (Continued) 

Column 1 2 3 4 5 6 7 
d / 2 ) C o v T j T2 T3 T 1 2 T 1 3 T 2 3 T 1 2 3 

Row Product 2 2 

25 2 o V Y^LMJu y"-,1hi,1" A A A A A 
^ 3 123 L ^ t L w A 1 3 , l A 7 , 4 A 1 3 , l A 1 3 , l A 1 3 , l 

26 2σν yVti:* 
3 0 ZLi n 

2 2 
27 2 � 1 2 � � 3 � � 8 �  k^2 k ^ 3 � � 3� k u l A? e k u i 

2 2 
2 8 2 � � 2 � 2 3 A 2 0 , l "13,2 Lv~~ K "13,1 � 7 , 5 rt13,l "13,1 

2 2 

29 2�
12

��23 �20,1 "14,2 "4,3 "13,1 "7,5 "7,6 "13,1 

30 2�22�
2 � ^ A ^ LA^J"- n A 2 1 5 A 1 5 6 

2 2 

31 2 � 1 3 � 2 3 A 2 5 1 A 2 5 2 k n 3 A ? 4 � � 3 1 A 1 3 j l � � 3 1 

2 

3 2 2 � � 3� � 23 A 2 5 > 1
 A5,2 �  � � ^ A7,4 A13,l A7,6 A !3 , l 

3 3 2 � � 3 � 0 � 26 ,1 ^ A
5 > 2 ] 1 / 2 A 1 5 , 3 A 26 ,4 

3 4 2 < b a i 2 3 A 6 , l A 5 , 2 A 28 ,3 A 7 , 4 A 7 , 5 A 1 3 , l A 1 3 , l 

3 5 2 � 2 3 � 0 [ A 6 , 1 ] 1 / 2 A 26 ,2 A 15 ,3 A 26 ,4 A 21 ,5 A 15 ,6 n 

3 6 2 W 0 � , 1 ] 1 / 2 [ A 5 , 2 ] 1 / 2 [ A 4 , 3 ] 1 / 2 ^ 6 , 4 A 21 ,5 A 15 ,6 » 

n . j . 

A 14 ,2 

A 13 ,2 

A 14 ,2 

A 15 ,2 

n 

A 1 4 , 3 

2 
y w . j h i t h 
i w . . h . . h 

A 4 , 3 

[A ] 1 / 2 

I n i j . 

A 1 3 , l 

A 1 3 , l 

A 1 3 , l 

n 
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TABLE 11.6 (continued) 

Column 8 9 10 11 12 
(1/2)C0V Tf �^,�^ T1,T3

 Tl>T12 T1,T13 
Row Product 

2 2 2 
25 , 2 2 A3?3

A13?1 V nijuWij...* V "i.hi.jh y "iju^j. i.* 
25 2 * 3 1 2 3 n2 ^ V . . j . ^i.a.h l «ij.i.. 2 5 > 1 0 

26 2�3�0 V �"]:"*;1� A26,l A26,l A26,l 
1 . . . J · 

2 2 
2 7 2 σ 2 σ 2 A 9 , 1 A 1 0 , 1 y n 1 1 . w i j . l . * y n i . h W J . h i * . 
2 7 2C712 13 2 Δ w. . L v . . A l Q Ω Α ι 

n i . . . j . i . . . . h 

33 2σ2 2 ^ o j y w i i - i - * n i j · y _ i 
13 0 n Δ w. . L· w. i . . . j . ^ w i . . . . h 

2 2 
An £ ~ΑΊΟ n — n . . , w . . r n . ., w 

Λ18,9 "18 ,9 

2 
2 8 2 σ 2 σ 2 Α9 ·1Α16 ,2 γ η 1 1 · " ί 1 · · 1 * V " i . h l * . W l . h . * h 
28 2σ 1 2σ 2 3 2 L v. , A w . . A 2 0 , 9 A 20 ,13 

2 2 
20 2 σ 2 σ 2 A 9 , 1 A 1 3 , 1 V " i j . i j h y " i j h ^ . h i * . 
2 9 2(712 123 2 L w , �  L v . A 20 ,9 A 20 ,13 

n i . . . j . i . . . . h 
3 

™ . 2 2 9 , 1 V n i 1 . V w i . h i * . n j . h A Λ 3 0 2σΐ2σ0 " ΐ - Ι ^ - 1 ~ — Α21,1 Α21,1 
�.. .j� �....� 

31 2 �
2 � 2 �10-1�16,2 y W1J. .,1*wlJ.l�.* � ni.hwj.h.*h 

31 2��3�23 2 � w. . L w. . �25,11 �25,10 
� �...j� �..�.� 

2 2 
�9 9�2 �2 ���,���3,� y niihwij.i.* y wijhi.h 
32 2� � 2 L w. . � w. . A25,ll A25,10 

n i...3. 1 n 
A26,l A26,l 

*/ 9̂ 2 a2 *16.2*13,1 y "i.1hwij..j* y "ijh i.h.*h A 
34 2�23��23 ^ " " ^ � w. . 2, v. . A7,H A7,12 

n 1...3. 1....n 

3 5 , 1 
35 2 � 2 2 ^ 2 y W l ,1 . -1* n i1 . V ^ i ^ * h ^ h A 3D �  23 0 n L wie< L, wt h 35,1 

, 6 ,� 2 � 2 ^ � y n i i h n � . y niihni.h A A 
3 6 2 � � 23� 0 ^ � ^ Lw, , � � . . A35,l A35,l 

1 . . . j . 1 . . . . h 
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TABLE 11.6 {Continued) 

Column 13 14 15 16 17 
( l / 2 ) C o v T l > T 2 3 T r T 1 2 3 V T f T 2 > T 3 T2 >T1 2 

Row Product 3 2 
n. n u _ w. w. _, w 

3 1 2 3 L w i . . . j h 25 ,10 �  v _ 1 - #
 L w . j h . j . �  W i j . . j . 

2 n. � ���  , A-
2 2 �  " i j h " . . h "3 ,3 
3 � 0 L w. A 2 6 , l n ft26,2 � 26 ,2 26 2 � ; � ; > ;� * � ^ - ^ A _ A. 

2 2 
27 2 � 2 � 2 V � � ^ � � � �  �  V M-i-h T -J**J- .jh».h 
Z / � � 12� � 3 L w4 4. A10,9 Lw . L w , . A 

i . . . j h . . . 1 . . . j . . . h 

3 

U 
W i . . . j h 
2 n. .. n. , A-

r uiih"i.h "10,1 y v n 
i w . .. 2 6 , 1 ti �  w 

3 

j . . . h 

A, 

14,9 

28 2 � 2 � 2 A A Y "*� � *� �� �** V W - J h � ^ � J h * . l � A 2 0 � � � 2 � 2 3 A 20 ,9 A 20 ,9 L w . Z, w 4 , A 13 ,9 
. . . i . . . j � � � 1 * 

3 2 
29 2 � 2 � 2 V V * ! � A �  "H-ith y W. Jh*j.V. jhtjh 
2 9 � � � 2 � � 2 3 Zi w< 4, A 2 0 , 9 �  w . L w 4 . A 14 ,9 

i . . . J h . . . i . . . j . . ,h 

30 2σ 2σ 2 Y UlSLiL� A i i l y w,Jh*J.n-Jh Jü ���2�0 L w 4 4. A21,l n � w . A15,2 i...jh .j���" 

31 2�2 �2 A A Y "i-i�**!� "** V "-.Ih". Jh*.h 
31 2�13�23 A 2 5 1 0 A 2 5 l Q £ w £ w *25,17 

. . . i . . . j . . . h 
3 2 

3 2 2 2 � 2 Y n i1h n i .h Y Wi-MJtt y W.1h*JhW
t|1h*.h 

J 2 2C713 123 �  w4 .. A 2 5 , 1 0 L� v . �  w 
A17,17 

33 2 � � 0 � � > „ � �" * � " A„. t - ^ ) � A. 
13� 0 ^ w i . . . J h 2 6 , 1 n L W . j . . - h 3 3 � 2 

2 2 
o/ o^2 a 2 V W i1hiJh A �  w j . . . * * w i . . i * * �  W i j h . j h 
3 4 2 � 2 3 �

1 2 3 � ^ ~ � 34 ,13 �  w _ ^ ^ \ j . . . h 2 5 � 1 ? 

3 5 2 � 2 3 � 0 A 3 5 , l A 3 5 , l " � ^ �  � ^ � 26 ,2 

, £ 2 2 V n i j h . * 1 3 , 1 �  w .1h*jh »jh 
3 6 2� �23� 0 � , ^ � ^ A35,l � t- L W j h

 A33,2 
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TABLE 11.6 (Continued) 

Column 18 19 20 21 22 23 

(l/2)Cov T2,T13 T2,T23 T2,T123 T2,Tf T3,T12 T ^ 

Row Product 

25 

26 

27 

28 

29 

2 2 2σ 3σ 1 2 3 

2 2 
2 σ 3 σ 0 

2 2 
2 σ ΐ 2 σ ΐ 3 

2 2 
2 σ ΐ 2 ° 2 3 

2 2 
2 σ ! 2 σ ! 2 3 

3 
y n � hn . .h 

y n i j h n . . h 
A w . j . i . h 

A 1 4 , 9 

2 
f— " W y i1hwil-.Jh 
L W . j . i . h 

3 
yni.i"ni.l� 
L w . j . i . h 

2 
— n , ., n . . 

A 25 ,16 

A 26 ,2 

A 14 ,19 

A 1 3 , 9 

A 14 ,19 

A 25 ,16 

A 26 ,2 

A 1 4 , 9 

A 13 ,9 

A 1 4 , 9 

y � - � � � �* � � , � � 
L� w . 

^ 3 
n 

y w . i .* i . w . 1. 
L w 

y wi^�.ih 
� w . . . . j . 

2 

ylLLiili 

AQ ·, 

, * j * 

,*.* 

�  

y 

2 
W i : j h i j h 
w i j h i j . 

A 26 ,4 

A 14 ,10 

A 20 ,16 

2 
W i j h i j h 
W. . h i j h 

A 1 3 , l 

n 

A 14 ,10 

A 20 ,23 

A 17 ,23 

3 0 2��2�0 � ^ � ^ A15,2 A15,2 ^ A30,3 A30,3 

2 
2 2 V v . j . . i * w . l . * . * . V n i j h w i . 

31 2σ1 3σ2 3 A 2 5 j l 6 *25� �
 A

2 5 ,16 L w . L w. . . "13,10 
y " ^ . . j * ^ . * . * . y " i j h - i . h . j h 

A25,16 A25,16 Z. w_ _ Δ w i j . . . h 1 3 , 1 

2 3 
2 0 2 y Wi,1hi,ih y W . 1 . * . * W . j . * j * y n i , jh n i .h 

2 
2 2 10,1 Γ V i h V h 

3 3 2σ ΐ3σ0 A33,2 A33,2 A33,2 ~ t ~ ^ « i j . . . h
 1 5 ' 3 

3 2 3 
3 4 2α2 σ2 y n i i h n . i h y w.,ihijh y n i , ih n . jh 
3 4 2�23��23 i w , . f c

 A25,16 A25,16 � w . L w A20,23 

2 . �2 
« , 2 2 V ni.ih�..ih . . "16,2 y_iii 
35 2a23�0 L . � A26,2 A26,2 "��*- ^ vT h " 2 1 � 3 

2 2 r� ni ih A A 13,1 "T wijhijh A 

36 123� � ^ f̂h 33,2 33,2 "^ ^^j3 30,3 
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TABLE 11.6 (Continued) 

Column 24 25 26 27 28 29 

( l / 2 ) C o v T 3 , T 2 3 T 3 , T 1 2 3 T 3 , T f T 1 2 , T 1 3 � ^ , � ^ � 1 2 , � 1 2 3 

3V123 "13,1 A 1 3 , l L w ~ � 25 ,22 � 25 ,22 � 25 ,22 

Row Product 
2 

2 5 * ^ o * � �  �  * n � 7 „ i j h " h Ao c „ Ao c 0 0 A 
.h 

2 6 2V0 n n - H A26,4 A26,4 A26,4 

97 9�2 �2 A A V W..h*.hW.<h**. 
z 12 13 14,24 14,10 L w h

 A13,l A14,13 A13,l 

28 2��2�23 A2() � & ^�,�� L� w A20,18 A13,l A13,l 

0 O 2 2 �  W . . h * * . W . .h**h A A A 
12� � 23 A 7 , 2 4 A 29 ,22 A w . 20,18 14,13 A 1 3 , l 

n 

7 12 � 0 � 30 ,3 A 30 ,3 - ^ "21,5 "15,6 30 2 � � �  � � �  , � , �  , 2lil � � �  �  A n A n 

2 
h . j h �  

2 5 , 2 2 "25,22 � 25,22 
2 2 . . V W i - h . j h A A A 

3 1 2<713� 23 � 13 ,10 � 13 ,10 L w ^ � 25 ,22 V " � � 
.h 

2 

3 2 2��3��23 �14,24 �14,10 � ̂ � �».22 ^ " �25,22 

3 3 2��3�0 �15,3 �15,3 ^ � - �26,4 � ̂ ^ �26,4 

2 
2 2 . �  W. i h i t h A A A 

34 2 � 2 3 � 1 2 3 A ^ ^ A ^ ^ � � ^ ^ � 7 ,27 � 25 ,22 � 25,22 

3 
2 2 � 16 ,2 V " i jh �  �  

3 5 2 � 2 3 � 0 � 21 ,3 � 21 ,3 " � " ^ n . i . h 2 6 > 4 2 6 > 4 

3 6 2 � ! 2 3 � 0 � 30 ,3 � 30 ,3 ~~"� ^~ � 35 ,27 � 33 ,28 � 26 ,4 
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TABLE 11.6 {Continued) 

Row 

25 

26 

27 

Column 

(l/2)Cov 

Product 

o 2 2 
2�3��23 

*¥* 
2 2 

2� � z 12 13 

30 

� .� 
12� f 

_ W W 

£-J W 
•••ij. 

^ 3 
n 

t-n w. . . n. 
V M-ijh i.h 
^ n 

ij* 

31 
T ,T 
13� 23 

A13,l 

n 

A14,13 

32 

T .T 
13� 123 

A13,l 

n 

A13,l 

33 

T ,T 
13� f 

A25,26 

n 

A27,3 

34 
T ,T 
23� l: 

A13,l 

n 

A14,3 

28 2a 2 - 2 .- »..-...» 12�23 y-H.ljh-.1h A2 8 A V 1-hl*. i.h.«h A 

2 

...i.h 

» *W« � ^ �7�31 V » � r:;.;�"1*" *».13 

l.h.jh 

J 1 2��3 23 L� w .. A13,l 13,1 L n 13,1 

2 
�  „ 2 2 V W i i . i . * W i i . i j * A A V Wijhi.h . 
3 2 2 � !3 � !23 I i . , A14,13 A13,l L V ~ A14,13 

. . . i j . . . . i . h 

33 *� IA ^ A15,6 » ^ 

3 4 2qr<r y W i i - - 1 * W l i . i i * A A Y t -h-*hl .h l«h 
3 4 2^3CT123 /L w . . A20,18 20,18 L " . . . i . h 1 3 > 1 2 3 - " . . i j . 

35 2o2
2/0 tlL�! A21>5 A 2 1 ) 5 

36 2 a 2
2 3 0 2 ^ 1 A ^ ^ A 2 1 > 5 ^ �  A ^ 
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TABLE 11.6 (Continued) 

Row 

25 

26 

27 

28 

Column 

( l / 2 ) C o v 

Product 

o 2 2 
2 ° 3 σ ΐ2 3 

2o2A 3 0 

2 2 2σ σ z 12 13 

2 2 

I -

35 

T 2 3 , T f 

A 25 ,26 

^ , 3 
n 

. , 1h* j . W . jh* .h 
w \ . . . j h 

A 28 ,30 

36 

T T A 123 ' f 

A 25 ,26 

A 3 , 3 
n 

A 27 ,30 

A 2 8 , 3 

29 2�2 O2 Y W-.1hM�W-.1hMh A 29 2��2�123 L w 4. A29,30 
.. ..jh 

30 

31 

32 

33 

34 

35 

36 

2 « 
2 2 

2 σ ΐ 3 σ 2 3 

2 2 
2 � � 3� � 23 

2 2 
2 σ ! 3 σ 0 

2 2 
2 σ23°123 

, 2 2 
2 σ2 3 σ0 

2 2 
2 σ ΐ 2 3 σ 0 

�  
W 

�  

�  

Α31 ,33 

1h* .h W . jh* jh 

A 1 0 , l 
�  

2 

W . . . . j h 

Α16,2 
�  

Α1 3 3 1 
�  

�  

Α31 ,33 

Α32 ,33 

Α1 0 , 1 
�  

Α34 ,33 

Α16 ,2 
�  

Α1 3 , 1 
�  
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STATISTICAL TABLES 
The following abridged tables of the normal, and central /-, � 2- and 

^-distributions are given solely for convenience. They in no way represent 
detailed coverage of these distributions. 

TABLE 1. VALUES Px AND X ON THE NORMAL DISTRIBUTION 

N(0, l)-distribution 

0 x 

Px = Pr{N(0, D-variable > x) 

px 

.50 

.45 

.40 

.35 

.30 

.25 

.20 

.15 

.10 

.05 

X 

0.00 
0.13 
0.25 
0.39 
0.52 

0.67 
0.84 
1.04 
1.28 
1.64 

� �  

.050 

.048 

.046 

.044 

.042 

.040 

.038 

.036 

.034 

.032 

X 

1.64 
1.66 
1.68 
1.71 
1.73 

1.75 
1.77 
1.80 
1.83 
1.85 

� �  

.030 

.029 

.028 

.027 

.026 

.025 

.024 

.023 

.022 

.021 

X 

1.88 
1.90 
1.91 
1.93 
1.94 

1.96 
1.98 
2.00 
2.01 
2.03 

Px 

.020 

.019 

.018 

.017 

.016 

.015 

.014 

.013 

.012 

.011 

X 

2.05 
2.07 
2.10 
2.12 
2.14 

2.17 
2.20 
2.23 
2.26 
2.29 

Px 

.010 

.009 

.008 

.007 

.006 

.005 

.004 

.003 

.002 

.001 
0.000 

X 

2.33 
2.37 
2.41 
2.46 
2.51 

2.58 
2.65 
2.75 
2.88 
3.09 

00 

Bold-face values are those often (but not exclusively) used when testing hypotheses and/or 
establishing confidence intervals. 
Source: Table 2 of Lindley and Miller (1958), Cambridge Elementary Statistical Tables, 
published by Cambridge University Press, with kind permission of the authors and 
publishers. 
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TABLE 2 . VALUES OF / n > a ON THE /(^)-DISTRIBUTION 

/(^-distribution 

\ ^ j r Note: Pr{/(^-variable > tn>oc} = a 
i l l f ^ ^ ? Pr{i(w)-variable < — tni(X} = a 

0 in>a Pr{|/00-variable| > tn>a} = 2a 

n 
(d.f.) 

1 
2 
3 
4 
5 

6 
7 
8 
9 
10 

12 
14 
16 
18 
20 

30 
40 
60 
120 

oo [JV(0, 1)] 

.10 

3.08 
1.89 
1.64 
1.53 
1.48 

1.44 
1.42 
1.40 
1.38 
1.37 

1.36 
1.34 
1.34 
1.33 
1.32 

1.31 
1.30 
1.30 
1.29 
1.28 

.05 

6.31 
2.92 
2.35 
2.13 
2.02 

1.94 
1.89 
1.86 
1.83 
1.81 

1.78 
1.76 
1.75 
1.73 
1.72 

1.70 
1.68 
1.67 
1.66 
1.64 

a 

.025 

12.71 
4.30 
3.18 
2.78 
2.57 

2.45 
2.36 
2.31 
2.26 
2.23 

2.18 
2.14 
2.12 
2.10 
2.09 

2.04 
2.02 
2.00 
1.98 
1.96 

.010 

31.82 
6.97 
4.54 
3.75 
3.36 

3.14 
3.00 
2.90 
2.82 
2.76 

2.68 
2.62 
2.58 
2.55 
2.53 

2.46 
2.42 
2.39 
2.36 
2.33 

.005 

63.66 
9.92 
5.84 
4.60 
4.03 

3.71 
3.50 
3.36 
3.25 
3.17 

3.06 
2.98 
2.92 
2.88 
2.84 

2.75 
2.70 
2.66 
2.62 
2.58 

Source: Table 2 is adapted from Table III of Fisher and Yates (1963), 
Statistical Tables for Biological, Agricultural and Medical Research, 6th 
Ed., published by Oliver and Boyd, Edinburgh, with kind permission 
of the authors and publishers. 
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TABLE 3 . VALUES OF %*>a ON THE £2(V)-DISTRIBUTION 

Pr{%2(«)-variable > � � ,� } = a 

1 
\y � fc MM 

0 X2 
U «,«1 

n 

(d.f.) 

1 
2 
3 
4 
5 

6 
7 
8 
9 

10 

11 
12 
13 
14 
15 

20 
25 
30 

40 
50 
60 
70 
80 

90 
100 

.99 

.000157 

.020 
.115 
.297 
.554 

.872 
1.24 
1.65 
2.09 
2.56 

3.05 
3.57 
4.11 
4.66 
5.23 

8.26 
11.52 
14.95 

22.16 
29.71 
37.48 
45.44 
53.54 

61.75 
70.06 

Y///^fi%W, 

a l 

.975 

_ L 
0 

.95 

Values of χ 2
 Μ 

.000982 

.051 

.216 

.484 

.831 

1.24 
1.69 
2.18 
2.70 
3.25 

3.82 
4.40 
5.01 
5.63 
6.26 

9.59 
13.12 
16.79 

24.43 
32.36 
40.48 
48.76 
57.15 

65.65 
74.22 

.00393 

.103 

.352 

.711 
1.145 

1.64 
2.17 
2.73 
3.33 
3.94 

4.57 
5.23 
5.89 
6.57 
7.26 

10.85 
14.61 
18.49 

26.51 
34.76 
43.19 
51.74 
60.39 

69.13 
77.93 

/ 
y 

.05 

3.84 
5.99 
7.81 
9.49 

11.07 

12.59 
14.07 
15.51 
16.92 
18.31 

19.68 
21.03 
22.36 
23.68 
25.00 

31.41 
37.65 
43.77 

55.76 
67.50 
79.08 
90.53 

101.9 

113.1 
124.3 

\ . j 
X2 

a 2 

.025 

5.02 
7.38 
9.35 

11.14 
12.83 

14.45 
16.01 
17.53 
19.02 
20.48 

21.92 
23.34 
24.74 
26.12 
27.49 

34.17 
40.65 
46.98 

59.34 
71.42 
83.30 
95.02 

106.6 

118.1 
129.6 

/ - " 
*%%zm. 
«*^4h**rfh*A**w» 

.01 

6.63 
9.21 

11.34 
13.28 
15.09 

16.81 
18.48 
20.09 
21.67 
23.21 

24.73 
26.22 
27.69 
29.14 
30.58 

37.57 
44.31 
50.89 

63.69 
76.15 
88.38 

100.4 
112.3 

124.1 
135.8 

Source: Abridged from Table 8 of Pearson and Hartley (1954), Biometrika Tables for 
Statisticians, Volume /, published at the Cambridge University Press for Biometrika 
Trustees, with kind permission of the authors and publishers. 
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TABLE 4 a . VALUES OF F ? ? 1 ( / ? 2 > a ON THE F(nlt ^ - D I S T R I B U T I O N 

F(nl9 ^-distribution 
Pr{F(«l5 //2)-variable > Fn n )0J = a = .05 

a = .05 

n2 
(denom. d.f.) 

1 
2 
3 
4 
5 

6 
7 
8 
9 

10 

11 
12 
13 
14 
15 

20 
25 
30 

40 
60 

120 
oo 

1 

t̂ n2,.025-l 
161.4 
18.51 
10.13 
7.71 
6.61 

5.99 
5.59 
5.32 
5.12 
4.96 

4.84 
4.75 
4.67 
4.60 
4.54 

4.35 
4.24 
4.17 

4.08 
4.00 
3.92 
3.84 

2 

199.5 
19.00 
9.55 
6.94 
5.79 

5.14 
4.74 
4.46 
4.26 
4.10 

3.98 
3.89 
3.81 
3.74 
3.68 

3.49 
3.39 
3.32 

3.23 
3.15 
3.07 
3.00 

4 

224.6 
19.25 
9.12 
6.39 
5.19 

4.53 
4.12 
3.84 
3.63 
3.48 

3.36 
3.26 
3.18 
3.11 
3.06 

2.87 
2.76 
2.69 

2.61 
2.53 
2.45 
2.37 

^(numerator d.f.) 
6 

234.0 
19.33 
8.94 
6.16 
4.95 

4.28 
3.87 
3.58, 
3.37 
3.22 

3.09 
3.00 
2.92 
2.85 
2.79 

2.60 
2.49 
2.42 

2.34 
2.25 
2.17 
2.10 

8 10 

Values of Fn n 

238.9 
19.37 
8.85 
6.04 
4.82 

4.15 
3.73 
3.44 
3.23 
3.07 

2.95 
2.85 
2.77 
2.70 
2.64 

2.45 
2.34 
2.27 

2.18 
2.10 
2.02 
1.94 

241.9 
19.40 
8.79 
5.96 
4.74 

4.06 
3.64 
3.35 
3.14 
2.98 

2.85 
2.75 
2.67 
2.60 
2.54 

2.35 
2.24 
2.16 

2.08 
1.99 
1.91 
1.83 

12 

a 

243.9 
19.41 
8.74 
5.91 
4.68 

4.00 
3.57 
3.28 
3.07 
2.91 

2.79 
2.69 
2.60 
2.53 
2.48 

2.28 
2.16 
2.09 

2.00 
1.92 
1.83 
1.75 

24 

249.1 
19.45 
8.64 
5.77 
4.53 

3.84 
3.41 
3.12 
2.90 
2.74 

2.61 
2.51 
2.42 
2.35 
2.29 

2.08 
1.96 
1.89 

1.79 
1.70 
1.61 
1.52 

0 0 

254.3 
19.50 
8.53 
5.63 
4.36 

3.67 
3.23 
2.93 
2.71 
2.54 

2.40 
2.30 
2.21 
2.13 
2.07 

1.84 
1.71 
1.62 

1.51 
1.39 
1.25 
1.00 

Source: Abridged from Table 18 of Pearson and Hartley (1954), Biometrika Tables for 
Statisticians, Volume /, published at the Cambridge University Press for Biometrika 
Trustees, with kind permission of the authors and publishers. 
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TABLE 4 b . VALUES OF i 7 ^ , ^ , « ON THE F ^ , ^-DISTRIBUTION 

F(«l5 w2)-distribution 
Pr{F(/z1? «2)-variable > F^,^,«} = a = .01 

" l , " 2 » a 

.01 

n2 
(denom. d.f.) 

1 
2 
3 
4 
5 

6 
7 
8 
9 

10 

11 
12 
13 
14 
15 

20 
25 
30 

40 
60 

120 
0 0 

1 

[^,.ΟΟδΙ 
4052 
98.50 
34.12 
21.20 
16.26 

13.75 
12.25 
11.26 
10.56 
10.04 

9.65 
9.33 
9.07 
8.86 
8.68 

8.10 
7.77 
7.56 

7.31 
7.08 
6.85 
6.63 

2 

5000 
99.00 
30.82 
18.00 
13.27 

10.92 
9.55 
8.65 
8.02 
7.56 

7.21 
6.93 
6.70 
6.51 
6.36 

5.85 
5.57 
5.39 

5.18 
4.98 
4.79 
4.61 

4 

5625 
99.25 
28.71 
15.98 
11.39 

9.15 
7.85 
7.01 
6.42 
5.99 

5.67 
5.41 
5.21 
5.04 
4.89 

4.43 
4.18 
4.02 

3.83 
3.65 
3.48 
3.32 

nx (numerator d.f.) 
6 

5859 
99.33 
27.91 
15.21 
10.67 

8.47 
7.19 
6.37 
5.80 
5.39 

5.07 
4.82 
4.62 
4.46 
4.32 

3.87 
3.63 
3.47 

3.29 
3.12 
2.96 
2.80 

8 10 

Values of / ^ , * 
5982 
99.37 
27.49 
14.80 
10.29 

8.10 
6.84 
6.03 
5.47 
5.06 

4.74 
4.50 
4.30 
4.14 
4.00 

3.56 
3.32 
3.17 

2.99 
2.82 
2.66 
2.51 

6056 
99.40 
27.23 
14.55 
10.05 

7.87 
6.62 
5.81 
5.26 
4.85 

4.54 
4.30 
4.10 
3.94 
3.80 

3.37 
3.13 
2.98 

2.80 
2.63 
2.47 
2.32 

12 

2 � « 
6106 
99.42 
27.05 
14.37 
9.89 

7.72 
6.47 
5.67 
5.11 
4.71 

4.40 
4.16 
3.96 
3.80 
3.67 

3.23 
2.99 
2.84 

2.66 
2.50 
2.34 
2.18 

24 

6235 
99.46 
26.60 
13.93 
9.47 

7.31 
6.07 
5.28 
4.73 
4.33 

4.02 
3.78 
3.59 
3.43 
3.29 

2.86 
2.62 
2.47 

2.29 
2.12 
1.95 
1.79 

oo 

6366 
99.50 
26.13 
13.46 
9.02 

6.88 
5.65 
4.86 
4.31 
3.91 

3.60 
3.36 
3.17 
3.00 
2.87 

2.42 
2.17 
2.01 

1.80 
1.60 
1.38 
1.00 

Source: Abridged from Table 18 of Pearson and Hartley (1954), Biometrika Tables for 
Statisticians, Volume /, published at the Cambridge University Press for the Biometrika 
Trustees, with kind permission of the authors and publishers. 
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Absorbing equations, 266 
Adjusting for effects, 274 
Aitken�s Integral, 43 
All cells filled, data with, 314, 361 
Analysis of means, 365 

unweighted means analysis, 365 
variance component estimation, 451 
weighted squares of means, 369 

Analysis of variance method, chapter 10,424 

Balanced data, 138 
analyses of variance, rules for, 389 
see also Two-way classification and vari-

ance components 
Best linear unbiased estimation (b.l.u.e.), 88 
Best quadratic unbiased estimation (b.q.u.e.), 

470 
Bilinear form, 33, 64 
b.l.u.e.,88,181,470 

Chi-square distribution, 47 
non-central, 49 

Classification, crossed, 155 
hierarchical, 156 
nested, 156 

Classification models, see One-, Two- and 
Three-way 

Coefficient of determination, 172 
Conditional distribution, 39 
Conditional inverse, 1 
Confidence interval, 107 

estimable function, 183 
regression, 107 
variance components, 413 

Connected data, 320 
Connectedness, 318, 337 

Constraints on solutions, 204 
"usual constraints," 209 

Contrasts, independent, 199 
orthogonal, 199 

Correlation matrix, 40 
Covariance, chapter 8, 340 
Crossed classification, 155 

Data, all cells filled, 314, 361 
balanced, 138 
large-scale, chapter 8, 332 
survey-type, chapter 8, 332 
unbalanced, 138 

Design matrix, 166 
Design models, 257 
Determination, coefficient of, 172 
Diagonal matrix, 2 
Disconnected data, 320 
Distributions, chapter 2, 38 

mean squares, 409 
quadratic forms, 54 
variance component estimators, 409 

Dummy variable, 135 

Effect, 146 
fixed, 377 
mixed, 380 
random, 377 

Equal-numbers data, 138 
Errors, types I and II, 125 
Estimable function, 162,180 

restrictions involving, 206 
Estimated expected value, 90 
Estimation, 86 

best linear unbiased (b.l.u.e.), 88 
generalized least squares, 87 
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maximum likelihood, 87 
ordinary least squares, 87 
variance components, chapters 9,10, and 

11, 376; see also Variance components, 
estimation 

Examining residuals, 129 

F-Distribution, 48 
doubly non-central, 53 
non-central, 51 

Factor, 140 
Finite population, 383 
Fitting constants, 139 

variance component estimation, 443 
Fixed effect, 377 
Full model, 116 

G-inverse, 1 
Generalized inverse, chapter 1,1 

normalized, 19 
ofX�X,20 
partitioned matrix, 27 
product matrix, 28 
pseudo inverse, 19 
reflexive, 19 
weak, 19 

Generalized least squares, 87 

Helmert matrix, 33 
Henderson�s methods, chapter 10,424 
Hierarchical classification, 156 
Hypotheses, see Tests of hypotheses 

Ignoring effects, 274 
Incidence matrix, 145,166 
Independent contrasts, 199 
Independent vectors, 47 
Interaction, 151 
Intra-class regression, 355 

Jacobian, 40 

Lack of fit, 103 
Large-scale data, chapter 8, 332 
Least squares, generalized, 87 

ordinary, 87 
Level, 140 
Likelihood ratio test, 124 
LIN, 12 
Linear equations, 7 

combinations of solutions, 13 
invariance property of solution«, 14 
linearly independent solutions, 12 
solutions and generalized inverses, 11, 26 

Linear independence (LIN), 12 
Linear transformations, 40 

Main effect, 149 
Main-effects-only models, 335 
Marginal distribution, 38 
Matrix, design, 166 

generalized inverse, chapter 1,1 
Helmert, 33 
incidence, 145,166 
Jacobian, 40 
orthogonal, 31 
permutation, 5 

Maximum likelihood, 87 
variance components, 418,458 

Minimum variance estimation, 88 
variance component estimators, 405 

Mixed model, 380 
adjusting for bias, 441 
expected mean squares, 393,423,429 
fitting constants method, 445,450 
maximum likelihood, 458 
one random factor, 465,489 
two-way classification, balanced data, 394 

Model, 75 
classification models, see One-, Two-, 

Three-way, and survey data 
covariance, chapter 8, 340 
Eisenhart I (fixed effects), 377 
Eisenhart II (random effects), 378 
fixed effects, 377 
full, 116 
full rank, 75 
intra-class regression, 355 
main-effects-only, 335 
mixed effects, see Mixed models, 38 
� , 324,338 
non full rank, 143 

chapter 5,164 
random effects, 377 

finite population, 383 
reduced, 116 
reduced restricted, 207 
regression, chapter 3, 75 
restricted, 204 
unrestricted, 205 
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variance components, see Variance com-
ponents, 379 

within-class regression, 350 
� -models, 324, 338 
Moment generating functions, 41 
Moments, 39 
Multivariate distribution, 38 

normal, 43 

Nearly identical, 337 
Negative estimates of variance components, 

406 
Nested classification, 156 
Non full rank model, chapter 5,164 
Non-singular covariance matrix, 220 
Non-testable hypotheses, 193 
Normal distribution, 42 

multivariate, 43 
singular, 66 

Normal equations, 80 
design models, 257 
many solutions, 160,168 
non full rank model, 164 
regression, 80 

Notation, diagonal matrix, 2 
6,84 
interactions, 154,158 
null matrix, 2 
R( ),246 
reduction in sums of squares, 246 
regression and effects, 144 
variance-covariance matrix, 40 
X,85 

Null matrix, 2 

One-way classification, 145 
covariance model, 340 
fixed effects model, chapter 6,227 
random effects model, 405 

Ordinary least squares, 87 
Orthogonal contrasts, 199 
Orthogonal matrix, 31 

Penrose inverse, 16 
Permutation matrix, 5 
Positive definiteness, 34 
Power of test, 128 
Predicted y-values, 91 
Pseudo inverse, 1 
Pure error, 103 

Quadratic forms, chapter 2, 34 
cumulants, 55 
distribution of, 54 
expected values, 55, 421 
independence of, 59 
infinitely many for variance component 

estimation, 455 
mean, 55,421 
non-central chi-square, 57 
non-negative definite, 35 
positive definite, 34 
positive semi-definite, 35 
singular normal variables, 67 
variance of, 57 

Random effect, 377 
Reduced model, 116 

restricted, 207 
Reductions in sums of squares, 246 
Regression, chapter 3,75 

dummy variables, 135 
intra-class, 355 
within-class, 350 

Residuals, examining, 129 
Restricted model, 204 
Restrictions on the model, 204 

estimable functions, 206 
non-estimable functions, 208 
"usual constraints," 209 

Singular covariance matrix, 221 
Singular normal distribution, 66 
Solutions to normal equations, 80 

non-full rank model, 168 
Stepwise fitting, 337 
Survey data, chapter 8, 337 
"Synthesis," 432 

t-Distribution, 48 
non-central, 5 3 

Testability, 195 
Testable hypotheses, 189 
Tests of hypotheses, 104 

general linear hypothesis, 110 
non full rank model, 189 
regression, 110 

likelihood ratio test, 124 
non full rank model, 178 
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non-testable hypotheses, 193 
power of, 128 
regression, 104,110 
testable hypotheses, 189 
variance components, 411 

Three-way crossed classification, 148 
variance components estimation, formulae, 

chapter 11,491 
Three-way nested classification, variance com-

ponents, 477 
Tolerance interval, 109 
Two-way crossed classification, balanced data, 

394 
fixed effects model, 397 
mixed model, 400 
random model, 400 

Two-way crossed classification, unbalanced 
data, 147 

fixed effects model, chapter 7, 261 
analysis of means, 365 
covariance, 360 
with interaction, 286 
without interaction, 261 

mixed model, 429 
with interaction, formulae chapter 11,486 
without interaction, formulae, chapter 11, 

490 
random effects model, with interaction, 425 

analysis of variance method, 425 
fitting constants method, 446 
variance components estimation, formulae, 

chapter 11,480 
random effects model, with interaction, 425 

analysis of variance method, 425 
fitting constants method, 446 
variance components estimation, formulae, 

chapter 11,480 
random effects model, without interaction, 

formulae, chapter 11,487 
Two-way nested classification, 157 

fixed effects model, chapter 6, 249 
variance component estimation, formulae, 

chapter 11,473 
Type I and type II errors, 125 

Unbalanced data, definition, 138 
Unequal-numbers data, 138 
Unrestricted model, 205 
Unweighted means analysis, 365 
"Usual constraints," 209 

and restrictions, 215 

Variance components, chapters 9,10 and 11, 
376 

confidence intervals, 413 
estimation, 384 

adjusting for bias in mixed models, 441 
analysis of means methods, 451 
analysis of variance method, chapter 10, 

424 
balanced data, chapter 9,404 
best quadratic unbiased estimator (b.q.u.e.), 

470 
fitting constants method, chapter 10,443 
Henderson�s methods, chapter 10,424 
maximum likelihood, 418,458 
sy me trie sums method, 452 
"synthesis" method, 432 
too many equations, 448 
unbalanced data, methods, chapter 10,421 

formulae, chapter 11,473 
Henderson�s methods, 421 

I (analysis of variance method), 424 
II (adjusting for bias), 442 
III (fitting constants), 443 

infinitely many quadratics, 455 
maximum likelihood estimation, 418,458 
mixed models, 380 
model, 379 
negative estimates, 406 

probability of, 415 
sampling variances of estimators, balanced 

data, 415 
fitting constants method, 451 
maximum likelihood, 464 
unbalanced data, 433 

tests of hypotheses, 411 
unbalanced data, methods, chapter 10, 

421 
formulae, chapter 11,473 

Variance components estimation, results, 
chapter 11,473 

Variance-covariance matrix, 40 

1-Way classification, see One-way 
2-Way classification, see Two-way 
3-Way classification, see Three-way 
Weighted squares of means, 369 
Within-class regression, 350 


