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PREFACE

In the second edition, we have added chapters on Bayesian inference in linear models
(Chapter 11) and linear mixed models (Chapter 17), and have upgraded the material
in all other chapters. Our continuing objective has been to introduce the theory of
linear models in a clear but rigorous format.

In spite of the availability of highly innovative tools in statistics, the main tool of
the applied statistician remains the linear model. The linear model involves the sim-
plest and seemingly most restrictive statistical properties: independence, normality,
constancy of variance, and linearity. However, the model and the statistical
methods associated with it are surprisingly versatile and robust. More importantly,
mastery of the linear model is a prerequisite to work with advanced statistical tools
because most advanced tools are generalizations of the linear model. The linear
model is thus central to the training of any statistician, applied or theoretical.

This book develops the basic theory of linear models for regression, analysis-of-
variance, analysis–of–covariance, and linear mixed models. Chapter 18 briefly intro-
duces logistic regression, generalized linear models, and nonlinear models.
Applications are illustrated by examples and problems using real data. This combination
of theory and applications will prepare the reader to further explore the literature and to
more correctly interpret the output from a linear models computer package.

This introductory linear models book is designed primarily for a one-semester
course for advanced undergraduates or MS students. It includes more material than
can be covered in one semester so as to give an instructor a choice of topics and to
serve as a reference book for researchers who wish to gain a better understanding
of regression and analysis-of-variance. The book would also serve well as a text
for PhD classes in which the instructor is looking for a one-semester introduction,
and it would be a good supplementary text or reference for a more advanced PhD
class for which the students need to review the basics on their own.

Our overriding objective in the preparation of this book has been clarity of expo-
sition. We hope that students, instructors, researchers, and practitioners will find this
linear models text more comfortable than most. In the final stages of development, we
asked students for written comments as they read each day’s assignment. They made
many suggestions that led to improvements in readability of the book. We are grateful
to readers who have notified us of errors and other suggestions for improvements of
the text, and we will continue to be very grateful to readers who take the time to do so
for this second edition.
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Another objective of the book is to tie up loose ends. There are many approaches
to teaching regression, for example. Some books present estimation of regression
coefficients for fixed x’s only, other books use random x’s, some use centered
models, and others define estimated regression coefficients in terms of variances
and covariances or in terms of correlations. Theory for linear models has been pre-
sented using both an algebraic and a geometric approach. Many books present clas-
sical (frequentist) inference for linear models, while increasingly the Bayesian
approach is presented. We have tried to cover all these approaches carefully and to
show how they relate to each other. We have attempted to do something similar
for various approaches to analysis-of-variance. We believe that this will make the
book useful as a reference as well as a textbook. An instructor can choose the
approach he or she prefers, and a student or researcher has access to other methods
as well.

The book includes a large number of theoretical problems and a smaller number of
applied problems using real datasets. The problems, along with the extensive set of
answers in Appendix A, extend the book in two significant ways: (1) the theoretical
problems and answers fill in nearly all gaps in derivations and proofs and also extend
the coverage of material in the text, and (2) the applied problems and answers become
additional examples illustrating the theory. As instructors, we find that having
answers available for the students saves a great deal of class time and enables us to
cover more material and cover it better. The answers would be especially useful to
a reader who is engaging this material outside the formal classroom setting.

The mathematical prerequisites for this book are multivariable calculus and matrix
algebra. The review of matrix algebra in Chapter 2 is intended to be sufficiently com-
plete so that the reader with no previous experience can master matrix manipulation
up to the level required in this book. Statistical prerequisites include some exposure to
statistical theory, with coverage of topics such as distributions of random variables,
expected values, moment generating functions, and an introduction to estimation
and testing hypotheses. These topics are briefly reviewed as each is introduced.
One or two statistical methods courses would also be helpful, with coverage of
topics such as t tests, regression, and analysis-of-variance.

We have made considerable effort to maintain consistency of notation throughout
the book. We have also attempted to employ standard notation as far as possible and
to avoid exotic characters that cannot be readily reproduced on the chalkboard. With a
few exceptions, we have refrained from the use of abbreviations and mnemonic
devices. We often find these annoying in a book or journal article.

Equations are numbered sequentially throughout each chapter; for example, (3.29)
indicates the twenty-ninth numbered equation in Chapter 3. Tables and figures are
also numbered sequentially throughout each chapter in the form “Table 7.4” or
“Figure 3.2.” On the other hand, examples and theorems are numbered sequentially
within a section, for example, Theorems 2.2a and 2.2b.

The solution of most of the problems with real datasets requires the use of the com-
puter. We have not discussed command files or output of any particular program,
because there are so many good packages available. Computations for the numerical
examples and numerical problems were done with SAS. The datasets and SAS
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command files for all the numerical examples and problems in the text are available
on the Internet; see Appendix B.

The references list is not intended to be an exhaustive survey of the literature. We
have provided original references for some of the basic results in linear models and
have also referred the reader to many up-to-date texts and reference books useful for
further reading. When citing references in the text, we have used the standard format
involving the year of publication. For journal articles, the year alone suffices, for
example, Fisher (1921). But for a specific reference in a book, we have included a
page number or section, as in Hocking (1996, p. 216).

Our selection of topics is intended to prepare the reader for a better understanding
of applications and for further reading in topics such as mixed models, generalized
linear models, and Bayesian models. Following a brief introduction in Chapter 1,
Chapter 2 contains a careful review of all aspects of matrix algebra needed to read
the book. Chapters 3, 4, and 5 cover properties of random vectors, matrices, and
quadratic forms. Chapters 6, 7, and 8 cover simple and multiple linear regression,
including estimation and testing hypotheses and consequences of misspecification
of the model. Chapter 9 provides diagnostics for model validation and detection of
influential observations. Chapter 10 treats multiple regression with random x’s.
Chapter 11 covers Bayesian multiple linear regression models along with Bayesian
inferences based on those models. Chapter 12 covers the basic theory of analysis-
of-variance models, including estimability and testability for the overparameterized
model, reparameterization, and the imposition of side conditions. Chapters 13 and
14 cover balanced one-way and two-way analysis-of-variance models using an over-
parameterized model. Chapter 15 covers unbalanced analysis-of-variance models
using a cell means model, including a section on dealing with empty cells in two-
way analysis-of-variance. Chapter 16 covers analysis of covariance models.
Chapter 17 covers the basic theory of linear mixed models, including residual
maximum likelihood estimation of variance components, approximate small-
sample inferences for fixed effects, best linear unbiased prediction of random
effects, and residual analysis. Chapter 18 introduces additional topics such as
nonlinear regression, logistic regression, loglinear models, Poisson regression, and
generalized linear models.

In our class for first-year master’s-level students, we cover most of the material in
Chapters 2–5, 7–8, 10–12, and 17. Many other sequences are possible. For example,
a thorough one-semester regression and analysis-of-variance course could cover
Chapters 1–10, and 12–15.

Al’s introduction to linear models came in classes taught by Dale Richards and
Rolf Bargmann. He also learned much from the books by Graybill, Scheffé, and
Rao. Al expresses thanks to the following for reading the first edition manuscript
and making many valuable suggestions: David Turner, John Walker, Joel
Reynolds, and Gale Rex Bryce. Al thanks the following students at Brigham
Young University (BYU) who helped with computations, graphics, and typing of
the first edition: David Fillmore, Candace Baker, Scott Curtis, Douglas Burton,
David Dahl, Brenda Price, Eric Hintze, James Liechty, and Joy Willbur. The students
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in Al’s Linear Models class went through the manuscript carefully and spotted many
typographical errors and passages that needed additional clarification.

Bruce’s education in linear models came in classes taught by Mel Carter, Del
Scott, Doug Martin, Peter Bloomfield, and Francis Giesbrecht, and influential short
courses taught by John Nelder and Russ Wolfinger.

We thank Bruce’s Linear Models classes of 2006 and 2007 for going through the
book and new chapters. They made valuable suggestions for improvement of the text.
We thank Paul Martin and James Hattaway for invaluable help with LaTex. The
Department of Statistics, Brigham Young University provided financial support
and encouragement throughout the project.

Second Edition

For the second edition we added Chapter 11 on Bayesian inference in linear models
(including Gibbs sampling) and Chapter 17 on linear mixed models.

We also added a section in Chapter 2 on vector and matrix calculus, adding several
new theorems and covering the Lagrange multiplier method. In Chapter 4, we pre-
sented a new proof of the conditional distribution of a subvector of a multivariate
normal vector. In Chapter 5, we provided proofs of the moment generating function
and variance of a quadratic form of a multivariate normal vector. The section on the
geometry of least squares was completely rewritten in Chapter 7, and a section on the
geometry of least squares in the overparameterized linear model was added to
Chapter 12. Chapter 8 was revised to provide more motivation for hypothesis
testing and simultaneous inference. A new section was added to Chapter 15
dealing with two-way analysis-of-variance when there are empty cells. This material
is not available in any other textbook that we are aware of.

This book would not have been possible without the patience, support, and
encouragement of Al’s wife LaRue and Bruce’s wife Lois. Both have helped and sup-
ported us in more ways than they know. This book is dedicated to them.

ALVIN C. RENCHER AND G. BRUCE SCHAALJE

Department of Statistics
Brigham Young University
Provo, Utah
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1 Introduction

The scientific method is frequently used as a guided approach to learning. Linear
statistical methods are widely used as part of this learning process. In the biological,
physical, and social sciences, as well as in business and engineering, linear models
are useful in both the planning stages of research and analysis of the resulting data.
In Sections 1.1–1.3, we give a brief introduction to simple and multiple linear
regression models, and analysis-of-variance (ANOVA) models.

1.1 SIMPLE LINEAR REGRESSION MODEL

In simple linear regression, we attempt to model the relationship between two vari-
ables, for example, income and number of years of education, height and weight
of people, length and width of envelopes, temperature and output of an industrial
process, altitude and boiling point of water, or dose of a drug and response. For a
linear relationship, we can use a model of the form

y ¼ b0 þ b1xþ 1, (1:1)

where y is the dependent or response variable and x is the independent or predictor
variable. The random variable 1 is the error term in the model. In this context, error
does not mean mistake but is a statistical term representing random fluctuations,
measurement errors, or the effect of factors outside of our control.

The linearity of the model in (1.1) is an assumption. We typically add other
assumptions about the distribution of the error terms, independence of the observed
values of y, and so on. Using observed values of x and y, we estimate b0 and b1 and
make inferences such as confidence intervals and tests of hypotheses for b0 and b1.
We may also use the estimated model to forecast or predict the value of y for a
particular value of x, in which case a measure of predictive accuracy may also be
of interest.

Estimation and inferential procedures for the simple linear regression model are
developed and illustrated in Chapter 6.

Linear Models in Statistics, Second Edition, by Alvin C. Rencher and G. Bruce Schaalje
Copyright # 2008 John Wiley & Sons, Inc.
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1.2 MULTIPLE LINEAR REGRESSION MODEL

The response y is often influenced by more than one predictor variable. For example,
the yield of a crop may depend on the amount of nitrogen, potash, and phosphate fer-
tilizers used. These variables are controlled by the experimenter, but the yield may
also depend on uncontrollable variables such as those associated with weather.

A linear model relating the response y to several predictors has the form

y ¼ b0 þ b1x1 þ b2x2 þ � � � þ bkxk þ 1: (1:2)

The parameters b0,b1, . . . ,bk are called regression coefficients. As in (1.1), 1

provides for random variation in y not explained by the x variables. This random
variation may be due partly to other variables that affect y but are not known or
not observed.

The model in (1.2) is linear in the b parameters; it is not necessarily linear in the x
variables. Thus models such as

y ¼ b0 þ b1x1 þ b2x2
1 þ b3x2 þ b4 sin x2 þ 1

are included in the designation linear model.
A model provides a theoretical framework for better understanding of a pheno-

menon of interest. Thus a model is a mathematical construct that we believe may
represent the mechanism that generated the observations at hand. The postulated
model may be an idealized oversimplification of the complex real-world situation,
but in many such cases, empirical models provide useful approximations of the
relationships among variables. These relationships may be either associative or
causative.

Regression models such as (1.2) are used for various purposes, including the
following:

1. Prediction. Estimates of the individual parameters b0,b1, . . . ,bk are of less
importance for prediction than the overall influence of the x variables on y.
However, good estimates are needed to achieve good prediction performance.

2. Data Description or Explanation. The scientist or engineer uses the estimated
model to summarize or describe the observed data.

3. Parameter Estimation. The values of the estimated parameters may have
theoretical implications for a postulated model.

4. Variable Selection or Screening. The emphasis is on determining the import-
ance of each predictor variable in modeling the variation in y. The predictors
that are associated with an important amount of variation in y are retained;
those that contribute little are deleted.

5. Control of Output. A cause-and-effect relationship between y and the x
variables is assumed. The estimated model might then be used to control the
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output of a process by varying the inputs. By systematic experimentation, it
may be possible to achieve the optimal output.

There is a fundamental difference between purposes 1 and 5. For prediction, we need
only assume that the same correlations that prevailed when the data were collected
also continue in place when the predictions are to be made. Showing that there is a
significant relationship between y and the x variables in (1.2) does not necessarily
prove that the relationship is causal. To establish causality in order to control
output, the researcher must choose the values of the x variables in the model and
use randomization to avoid the effects of other possible variables unaccounted for.
In other words, to ascertain the effect of the x variables on y when the x variables
are changed, it is necessary to change them.

Estimation and inferential procedures that contribute to the five purposes listed
above are discussed in Chapters 7–11.

1.3 ANALYSIS-OF-VARIANCE MODELS

In analysis-of-variance (ANOVA) models, we are interested in comparing several
populations or several conditions in a study. Analysis-of-variance models can be
expressed as linear models with restrictions on the x values. Typically the x’s are 0s
or 1s. For example, suppose that a researcher wishes to compare the mean yield for
four types of catalyst in an industrial process. If n observations are to be obtained for
each catalyst, one model for the 4n observations can be expressed as

yij ¼ mi þ 1ij, i ¼ 1, 2, 3, 4, j ¼ 1, 2, . . . , n, (1:3)

where mi is the mean corresponding to the ith catalyst. A hypothesis of interest is
H0 : m1 ¼ m2 ¼ m3 ¼ m4. The model in (1.3) can be expressed in the alternative form

yij ¼ mþ ai þ 1ij, i ¼ 1, 2, 3, 4, j ¼ 1, 2, . . . , n: (1:4)

In this form, ai is the effect of the ith catalyst, and the hypothesis can be expressed as
H0 : a1 ¼ a2 ¼ a3 ¼ a4.

Suppose that the researcher also wishes to compare the effects of three levels of
temperature and that n observations are taken at each of the 12 catalyst–temperature
combinations. Then the model can be expressed as

yijk ¼ mij þ 1ijk ¼ mþ ai þ bj þ gij þ 1ijk (1:5)

i ¼ 1, 2, 3, 4; j ¼ 1, 2, 3; k ¼ 1, 2, . . . , n,

where mij is the mean for the ijth catalyst–temperature combination, ai is the effect of
the ith catalyst, bj is the effect of the jth level of temperature, and gij is the interaction
or joint effect of the ith catalyst and jth level of temperature.

1.3 ANALYSIS-OF-VARIANCE MODELS 3



In the examples leading to models (1.3)–(1.5), the researcher chooses the type of
catalyst or level of temperature and thus applies different treatments to the objects or
experimental units under study. In other settings, we compare the means of variables
measured on natural groupings of units, for example, males and females or various
geographic areas.

Analysis-of-variance models can be treated as a special case of regression models,
but it is more convenient to analyze them separately. This is done in Chapters 12–15.
Related topics, such as analysis-of-covariance and mixed models, are covered in
Chapters 16–17.

4 INTRODUCTION



2 Matrix Algebra

If we write a linear model such as (1.2) for each of n observations in a dataset, the n
resulting models can be expressed in a single compact matrix expression. Then the
estimation and testing results can be more easily obtained using matrix theory.

In the present chapter, we review the elements of matrix theory needed in the
remainder of the book. Proofs that seem instructive are included or called for in
the problems. For other proofs, see Graybill (1969), Searle (1982), Harville (1997),
Schott (1997), or any general text on matrix theory. We begin with some basic defi-
nitions in Section 2.1.

2.1 MATRIX AND VECTOR NOTATION

2.1.1 Matrices, Vectors, and Scalars

A matrix is a rectangular or square array of numbers or variables. We use uppercase
boldface letters to represent matrices. In this book, all elements of matrices will be
real numbers or variables representing real numbers. For example, the height (in
inches) and weight (in pounds) for three students are listed in the following matrix:

A ¼
65 154
73 182
68 167

0
@

1
A: (2:1)

To represent the elements of A as variables, we use

A ¼ (aij) ¼
a11 a12

a21 a22

a31 a32

0
@

1
A: (2:2)

The first subscript in aij indicates the row; the second identifies the column. The nota-
tion A ¼ (aij) represents a matrix by means of a typical element.

Linear Models in Statistics, Second Edition, by Alvin C. Rencher and G. Bruce Schaalje
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The matrix A in (2.1) or (2.2) has three rows and two columns, and we say that A is
3 � 2, or that the size of A is 3 � 2.

A vector is a matrix with a single row or column. Elements in a vector are often
identified by a single subscript; for example

x ¼
x1

x2

x3

0
@

1
A:

As a convention, we use lowercase boldface letters for column vectors and lowercase
boldface letters followed by the prime symbol (0) for row vectors; for example

x0 ¼ (x1, x2, x3) ¼ (x1 x2 x3):

(Row vectors are regarded as transposes of column vectors. The transpose is defined
in Section 2.1.3 below). We use either commas or spaces to separate elements of a
row vector.

Geometrically, a row or column vector with p elements can be associated with a
point in a p-dimensional space. The elements in the vector are the coordinates of the
point. Sometimes we are interested in the distance from the origin to the point
(vector), the distance between two points (vectors), or the angle between the
arrows drawn from the origin to the two points.

In the context of matrices and vectors, a single real number is called a scalar. Thus
2.5, 29, and 7.26 are scalars. A variable representing a scalar will be denoted by a
lightface letter (usually lowercase), such as c. A scalar is technically distinct from a
1 � 1 matrix in terms of its uses and properties in matrix algebra. The same notation
is often used to represent a scalar and a 1 � 1 matrix, but the meaning is usually
obvious from the context.

2.1.2 Matrix Equality

Two matrices or two vectors are equal if they are of the same size and if the elements
in corresponding positions are equal; for example

3 �2 4
1 3 7

� �
¼ 3 �2 4

1 3 7

� �
,

but

5 2 �9
8 �4 6

� �
=

5 3 �9
8 �4 6

� �
:
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2.1.3 Transpose

If we interchange the rows and columns of a matrix A, the resulting matrix is known
as the transpose of A and is denoted by A0; for example

A ¼
6 �2
4 7
1 3

0
@

1
A, A0 ¼ 6 4 1

�2 7 3

� �
:

Formally, if A is denoted by A ¼ (aij), then A0 is defined as

A0 ¼ (aij)
0 ¼ (a ji): (2:3)

This notation indicates that the element in the ith row and jth column of A is found in
the jth row and ith column of A0. If the matrix A is n � p, then A0 is p � n.

If a matrix is transposed twice, the result is the original matrix.

Theorem 2.1. If A is any matrix, then

(A0)0 ¼ A: (2:4)

PROOF. By (2.3), A0 ¼ (aij)0 ¼ (a ji): Then (A0)0 ¼ (a ji)0 ¼ (aij) ¼ A. A

(The notation A is used to indicate the end of a theorem proof, corollary proof or
example.)

2.1.4 Matrices of Special Form

If the transpose of a matrix A is the same as the original matrix, that is, if A0 ¼ A or
equivalently (a ji) ¼ (aij), then the matrix A is said to be symmetric. For example

A ¼
3 2 6
2 10 �7
6 �7 9

0
@

1
A

is symmetric. Clearly, all symmetric matrices are square.

The diagonal of a p � p square matrix A ¼ (aij) consists of the elements
a11, a22, . . . , a pp. If a matrix contains zeros in all off-diagonal positions, it is said

2.1 MATRIX AND VECTOR NOTATION 7



to be a diagonal matrix; for example, consider the matrix

D ¼

8 0 0 0
0 �3 0 0
0 0 0 0
0 0 0 4

0
BB@

1
CCA,

which can also be denoted as

D ¼ diag(8, �3, 0, 4):

We also use the notation diag(A) to indicate a diagonal matrix with the same diagonal
elements as A; for example

A ¼
3 2 6
2 10 �7
6 �7 9

0
@

1
A, diag(A) ¼

3 0 0
0 10 0
0 0 9

0
@

1
A:

A diagonal matrix with a 1 in each diagonal position is called an identity matrix,
and is denoted by I; for example

I ¼
1 0 0
0 1 0
0 0 1

0
@

1
A: (2:5)

An upper triangular matrix is a square matrix with zeros below the diagonal; for
example,

T ¼

7 2 3 �5
0 0 �2 6
0 0 4 1
0 0 0 8

0
BB@

1
CCA:

A lower triangular matrix is defined similarly.
A vector of 1s is denoted by j:

j ¼

1
1

..

.

1

0
BBB@

1
CCCA: (2:6)
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A square matrix of 1s is denoted by J; for example

J ¼
1 1 1
1 1 1
1 1 1

0
@

1
A: (2:7)

We denote a vector of zeros by 0 and a matrix of zeros by O; for example

0 ¼
0
0
0

0
@

1
A, O ¼

0 0 0 0
0 0 0 0
0 0 0 0

0
@

1
A: (2:8)

2.2 OPERATIONS

We now define sums and products of matrices and vectors and consider some pro-
perties of these sums and products.

2.2.1 Sum of Two Matrices or Two Vectors

If two matrices or two vectors are the same size, they are said to be conformal
for addition. Their sum is found by adding corresponding elements. Thus, if A is
n � p and B is n � p, then C ¼ Aþ B is also n � p and is found as
C ¼ (cij) ¼ (aij þ bij); for example

7 �3 4
2 8 �5

� �
þ 11 5 �6

3 4 2

� �
¼ 18 2 �2

5 12 �3

� �
:

The difference D ¼ A� B between two conformal matrices A and B is defined simi-
larly: D ¼ (dij) ¼ (aij � bij).

Two properties of matrix addition are given in the following theorem.

Theorem 2.2a. If A and B are both n � m, then

(i) Aþ B ¼ Bþ A: (2.9)

(ii) (Aþ B)0 ¼ A0 þ B0: (2.10)

A
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2.2.2 Product of a Scalar and a Matrix

Any scalar can be multiplied by any matrix. The product of a scalar and a matrix is
defined as the product of each element of the matrix and the scalar:

cA ¼ (caij) ¼

ca11 ca12 � � � ca1m

ca21 ca22 � � � ca2m

..

. ..
. ..

.

can1 can2 � � � canm

0
BBB@

1
CCCA: (2:11)

Since caij ¼ aijc, the product of a scalar and a matrix is commutative:

cA ¼ Ac: (2:12)

2.2.3 Product of Two Matrices or Two Vectors

In order for the product AB to be defined, the number of columns in A must equal the
number of rows in B, in which case A and B are said to be conformal for multipli-
cation. Then the (ij)th element of the product C ¼ AB is defined as

cij ¼
X

k

aikbkj, (2:13)

which is the sum of products of the elements in the ith row of A and the elements in
the jth column of B. Thus we multiply every row of A by every column of B. If A is
n � m and B is m � p, then C ¼ AB is n � p. We illustrate matrix multiplication in
the following example.

Example 2.2.3. Let

A ¼ 2 1 3
4 6 5

� �
and B ¼

1 4
2 6
3 8

0
@

1
A:

Then

AB ¼
2 � 1þ 1 � 2þ 3 � 3 2 � 4þ 1 � 6þ 3 � 8
4 � 1þ 6 � 2þ 5 � 3 4 � 4þ 6 � 6þ 5 � 8

� �
¼

13 38

31 92

� �
,

BA ¼
18 25 23

28 38 36

38 51 49

0
B@

1
CA:

A

Note that a 1 � 1 matrix A can only be multiplied on the right by a 1 � n matrix B or
on the left by an n � 1 matrix C, whereas a scalar can be multiplied on the right or
left by a matrix of any size.
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If A is n � m and B is m � p, where n = p, then AB is defined, but BA is not
defined. If A is n � p and B is p � n, then AB is n � n and BA is p � p. In this
case, of course, AB = BA, as illustrated in Example 2.2.3. If A and B are both
n � n, then AB and BA are the same size, but, in general

AB = BA: (2:14)

[There are a few exceptions to (2.14), for example, two diagonal matrices or a square
matrix and an identity.] Thus matrix multiplication is not commutative, and certain
familiar manipulations with real numbers cannot be done with matrices. However,
matrix multiplication is distributive over addition or subtraction:

A(B + C) ¼ AB + AC, (2:15)

(A + B)C ¼ AC + BC: (2:16)

Using (2.15) and (2.16), we can expand products such as (A� B)(C� D):

(A� B)(C� D) ¼ (A� B)C� (A� B)D [by (2:15)]

¼ AC� BC� ADþ BD [by (2:16)]: (2:17)

Multiplication involving vectors follows the same rules as for matrices. Suppose
that A is n � p, b is p � 1, c is p � 1, and d is n � 1. Then Ab is a column vector
of size n � 1, d0A is a row vector of size 1 � p, b0c is a sum of products (1 � 1),
bc0 is a p � p matrix, and cd0 is a p � n matrix. Since b0c is a 1 � 1 sum of products,
it is equal to c0b:

b0c ¼ b1c1 þ b2c2 þ � � � þ bpcp,

c0b ¼ c1b1 þ c2b2 þ � � � þ cpbp,

b0c ¼ c0b: (2:18)

The matrix cd0 is given by

cd0 ¼

c1d1 c1d2 � � � c1dn

c2d1 c2d2 � � � c2dn

..

. ..
. ..

.

cpd1 cpd2 � � � cpdn

0
BBB@

1
CCCA: (2:19)
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Similarly

b0b ¼ b2
1 þ b2

2 þ � � � þ b2
p, (2:20)

bb0 ¼

b2
1 b1b2 � � � b1bp

b2b1 b2
2 � � � b2bp

..

. ..
. ..

.

bpb1 bpb2 � � � b2
p

0
BBBBB@

1
CCCCCA
: (2:21)

Thus, b0b is a sum of squares and bb0 is a (symmetric) square matrix.
The square root of the sum of squares of the elements of a p � 1 vector b is the

distance from the origin to the point b and is also referred to as the length of b:

Length of b ¼
ffiffiffiffiffiffiffi
b0b
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiXp

i¼1

b2
i

s
: (2:22)

If j is an n � 1 vector of 1s as defined in (2.6), then by (2.20) and (2.21), we have

j0j ¼ n, jj0 ¼

1 1 � � � 1
1 1 � � � 1

..

. ..
. ..

.

1 1 � � � 1

0
BBB@

1
CCCA ¼ J, (2:23)

where J is an n � n square matrix of 1s as illustrated in (2.7). If a is n � 1 and A is
n � p, then

a0j ¼ j0a ¼
Xn

i¼1

ai, (2:24)

j0A ¼
�X

i

ai1,
X

i

ai2, . . . ,
X

i

aip

�
, Aj ¼

P
j a1jP
j a2j

..

.

P
j anj

0
BBBBB@

1
CCCCCA
: (2:25)

Thus a0j is the sum of the elements in a, j0A contains the column sums of A, and Aj
contains the row sums of A. Note that in a0j, the vector j is n � 1; in j0A, the vector j
is n � 1; and in Aj, the vector j is p � 1.
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The transpose of the product of two matrices is the product of the transposes in
reverse order.

Theorem 2.2b. If A is n � p and B is p � m, then

(AB)0 ¼ B0A0: (2:26)

PROOF. Let C ¼ AB: Then by (2.13)

C ¼ (cij) ¼
Xp

k¼1

aikbkj

 !
:

By (2.3), the transpose of C ¼ AB becomes

(AB)0 ¼ C0 ¼ (cij)
0 ¼ (c ji)

¼
Xp

k¼1

a jkbki

 !
¼

Xp

k¼1

bkia jk

 !
¼ B0A0: A

We illustrate the steps in the proof of Theorem 2.2b using a 2 � 3 matrix A and a
3 � 2 matrix B:

AB ¼
a11 a12 a13

a21 a22 a23

� � b11 b12

b21 b22

b31 b32

0
B@

1
CA

¼
a11b11 þ a12b21 þ a13b31 a11b12 þ a12b22 þ a13b32

a21b11 þ a22b21 þ a23b31 a21b12 þ a22b22 þ a23b32

� �
,

(AB)0 ¼
a11b11 þ a12b21 þ a13b31 a21b11 þ a22b21 þ a23b31

a11b12 þ a12b22 þ a13b32 a21b12 þ a22b22 þ a23b32

� �

¼
b11a11 þ b21a12 þ b31a13 b11a21 þ b21a22 þ b31a23

b12a11 þ b22a12 þ b32a13 b12a21 þ b22a22 þ b32a23

� �

¼
b11 b21 b31

b12 b22 b32

� � a11 a21

a12 a22

a13 a23

0
B@

1
CA

¼ B0A0:
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The following corollary to Theorem 2.2b gives the transpose of the product of
three matrices.

Corollary 1. If A, B, and C are conformal so that ABC is defined, then
(ABC)0 ¼ C0B0A0. A

Suppose that A is n � m and B is m � p. Let a0i be the ith row of A and bj be the jth
column of B, so that

A ¼

a01
a02

..

.

a0n

0
BBB@

1
CCCA, B ¼ (b1, b2, . . . , bp):

Then, by definition, the (ij)th element of AB is a0ibj:

AB ¼

a01b1 a01b2 � � � a01bp

a02b1 a02b2 � � � a02bp

..

. ..
. ..

.

a0nb1 a0nb2 � � � a0nbp

0
BBB@

1
CCCA:

This product can be written in terms of the rows of A:

AB ¼

a01(b1, b2, . . . , bp)
a02(b1, b2, . . . , bp)

..

.

a0n(b1, b2, . . . , bp)

0
BBB@

1
CCCA ¼

a01B
a02B

..

.

a0nB

0
BBB@

1
CCCA ¼

a01
a02

..

.

a0n

0
BBB@

1
CCCAB: (2:27)

The first column of AB can be expressed in terms of A as

a01b1

a02b1

..

.

a0nb1

0
BBB@

1
CCCA ¼

a01
a02

..

.

a0n

0
BBB@

1
CCCAb1 ¼ Ab1:

Likewise, the second column is Ab2, and so on. Thus AB can be written in terms of
the columns of B:

AB ¼ A(b1, b2, . . . , bp) ¼ (Ab1, Ab2, . . . , Abp): (2:28)
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Any matrix A can be multiplied by its transpose to form A0A or AA0. Some pro-
perties of these two products are given in the following theorem.

Theorem 2.2c. Let A be any n � p matrix. Then A0A and AA0 have the following
properties.

(i) A0A is p � p and its elements are products of the columns of A.

(ii) AA0 is n � n and its elements are products of the rows of A.

(iii) Both A0A and AA0 are symmetric.

(iv) If A0A ¼ O, then A ¼ O. A

Let A be an n � n matrix and let D ¼ diag(d1, d2, . . . , dn). In the product DA, the
ith row of A is multiplied by di, and in AD, the jth column of A is multiplied by dj.
For example, if n ¼ 3, we have

DA ¼

d1 0 0

0 d2 0

0 0 d3

0
BBB@

1
CCCA

a11 a12 a13

a21 a22 a23

a31 a32 a33

0
BBB@

1
CCCA

¼

d1a11 d1a12 d1a13

d2a21 d2a22 d2a23

d3a31 d3a32 d3a33

0
BBB@

1
CCCA, (2:29)

AD ¼

a11 a12 a13

a21 a22 a23

a31 a32 a33

0
BBB@

1
CCCA

d1 0 0

0 d2 0

0 0 d3

0
BBB@

1
CCCA

¼

d1a11 d2a12 d3a13

d1a21 d2a22 d3a23

d1a31 d2a32 d3a33

0
BBB@

1
CCCA, (2:30)

DAD ¼

d2
1a11 d1d2a12 d1d3a13

d2d1a21 d2
2a22 d2d3a23

d3d1a31 d3d2a32 d2
3a33

0
BBB@

1
CCCA: (2:31)
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Note that DA = AD. However, in the special case where the diagonal matrix is the
identity, (2.29) and (2.30) become

IA ¼ AI ¼ A: (2:32)

If A is rectangular, (2.32) still holds, but the two identities are of different sizes.
If A is a symmetric matrix and y is a vector, the product

y0Ay ¼
X

i

aiiy
2
i þ

X
i=j

aijyiyj (2:33)

is called a quadratic form. If x is n � 1, y is p � 1, and A is n � p, the product

x0Ay ¼
X

ij

aijxiyj (2:34)

is called a bilinear form.

2.2.4 Hadamard Product of Two Matrices or Two Vectors

Sometimes a third type of product, called the elementwise or Hadamard product,
is useful. If two matrices or two vectors are of the same size (conformal for addition),
the Hadamard product is found by simply multiplying corresponding elements:

(aijbij) ¼

a11b11 a12b12 � � � a1pb1p

a21b21 a22b22 � � � a2pb2p

..

. ..
. ..

.

an1bn1 an2bn2 � � � anpbnp

0
BBB@

1
CCCA:

2.3 PARTITIONED MATRICES

It is sometimes convenient to partition a matrix into submatrices. For example, a par-
titioning of a matrix A into four (square or rectangular) submatrices of appropriate
sizes can be indicated symbolically as follows:

A ¼ A11 A12

A21 A22

� �
:
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To illustrate, let the 4 � 5 matrix A be partitioned as

A ¼

7 2 5 8 4

�3 4 0 2 7

9 3 6 5 �2

3 1 2 1 6

0
BBBBBBB@

1
CCCCCCCA
¼ A11 A12

A21 A22

� �
,

where

A11 ¼
7 2 5

�3 4 0

� �
, A12 ¼

8 4

2 7

� �
,

A21 ¼
9 3 6

3 1 2

� �
, A22 ¼

5 �2

1 6

� �
:

If two matrices A and B are conformal for multiplication, and if A and B are parti-
tioned so that the submatrices are appropriately conformal, then the product AB can
be found using the usual pattern of row by column multiplication with the subma-
trices as if they were single elements; for example

AB ¼
A11 A12

A21 A22

� �
B11 B12

B21 B22

� �

¼
A11B11 þ A12B21 A11B12 þ A12B22

A21B11 þ A22B21 A21B12 þ A22B22

� �
: (2:35)

If B is replaced by a vector b partitioned into two sets of elements, and if A is
correspondingly partitioned into two sets of columns, then (2.35) becomes

Ab ¼ (A1, A2)
b1

b2

� �
¼ A1b1 þ A2b2, (2:36)

where the number of columns of A1 is equal to the number of elements of b1, and A2

and b2 are similarly conformal. Note that the partitioning in A ¼ (A1, A2) is indicated
by a comma.

The partitioned multiplication in (2.36) can be extended to individual columns of
A and individual elements of b:

Ab ¼ (a1, a2, . . . , ap)

b1

b2

..

.

bp

0
BBB@

1
CCCA ¼ b1a1 þ b2a2 þ � � � þ bpap: (2:37)
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Thus Ab is expressible as a linear combination of the columns of A, in which the
coefficients are elements of b. We illustrate (2.37) in the following example.

Example 2.3. Let

A ¼
6 �2 3
2 1 0
4 3 2

0
@

1
A, b ¼

4
2
�1

0
@

1
A:

Then

Ab ¼
17
10
20

0
@

1
A:

Using a linear combination of columns of A as in (2.37), we obtain

Ab ¼ b1a1 þ b2a2 þ b2a3

¼ 4

6

2

4

0
B@

1
CAþ 2

�2

1

3

0
B@

1
CA�

3

0

2

0
B@

1
CA

¼
24

8

16

0
B@

1
CAþ

�4

2

6

0
B@

1
CA�

3

0

2

0
B@

1
CA ¼

17

10

20

0
B@

1
CA:

A

By (2.28) and (2.37), the columns of the product AB are linear combinations of the
columns of A. The coefficients for the jth column of AB are the elements of the jth
column of B.

The product of a row vector and a matrix, a0B, can be expressed as a linear com-
bination of the rows of B, in which the coefficients are elements of a0:

a0B ¼ (a1, a2, . . . , an)

b01
b02

..

.

b0n

0
BBB@

1
CCCA ¼ a1b01 þ a2b02 þ � � � þ anb0n: (2:38)

By (2.27) and (2.38), the rows of the matrix product AB are linear combinations
of the rows of B. The coefficients for the ith row of AB are the elements of the ith
row of A.
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Finally, we note that if a matrix A is partitioned as A ¼ (A1, A2), then

A0 ¼ (A1, A2)0 ¼ A01
A02

� �
: (2:39)

2.4 RANK

Before defining the rank of a matrix, we first introduce the notion of linear indepen-
dence and dependence. A set of vectors a1, a2, . . . , an is said to be linearly dependent
if scalars c1, c2, . . . , cn (not all zero) can be found such that

c1a1 þ c2a2 þ � � � þ cnan ¼ 0: (2:40)

If no coefficients c1, c2, . . . , cn can be found that satisfy (2.40), the set of vectors
a1, a2, . . . , an is said to be linearly independent. By (2.37) this can be restated as
follows. The columns of A are linearly independent if Ac ¼ 0 implies c ¼ 0. (If a
set of vectors includes 0, the set is linearly dependent.) If (2.40) holds, then at
least one of the vectors a i can be expressed as a linear combination of the other
vectors in the set. Among linearly independent vectors there is no redundancy of
this type.

The rank of any square or rectangular matrix A is defined as

rank(A) ¼ number of linearly independent columns of A

¼ number of linearly independent rows of A:

It can be shown that the number of linearly independent columns of any matrix is
always equal to the number of linearly independent rows.

If a matrix A has a single nonzero element, with all other elements equal to 0, then
rank(A) ¼ 1. The vector 0 and the matrix O have rank 0.

Suppose that a rectangular matrix A is n � p of rank p, where p , n. (We typically
shorten this statement to “A is n � p of rank p , n.”) Then A has maximum possible
rank and is said to be of full rank. In general, the maximum possible rank of an n � p
matrix A is min(n, p). Thus, in a rectangular matrix, the rows or columns (or both) are
linearly dependent. We illustrate this in the following example.

Example 2.4a. The rank of

A ¼ 1 �2 3
5 2 4

� �
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is 2 because the two rows are linearly independent (neither row is a multiple of the
other). Hence, by the definition of rank, the number of linearly independent columns
is also 2. Therefore, the columns are linearly dependent, and by (2.40) there exist
constants c1, c2, and c3 such that

c1
1
5

� �
þ c2

�2
2

� �
þ c3

3
4

� �
¼ 0

0

� �
: (2:41)

By (2.37), we can write (2.41) in the form

1 �2 3
5 2 4

� � c1

c2

c3

0
@

1
A ¼ 0

0

� �
or Ac ¼ 0: (2:42)

The solution to (2.42) is given by any multiple of c ¼ (14, �11, �12)0. In this case,
the product Ac is equal to 0, even though A = O and c = 0. This is possible because
of the linear dependence of the column vectors of A. A

We can extend (2.42) to products of matrices. It is possible to find A = O and
B = O such that

AB ¼ O; (2:43)

for example

1 2
2 4

� �
2 6
�1 �3

� �
¼ 0 0

0 0

� �
:

We can also exploit the linear dependence of rows or columns of a matrix to create
expressions such as AB ¼ CB, where A = C. Thus in a matrix equation, we cannot,
in general, cancel a matrix from both sides of the equation. There are two exceptions
to this rule: (1) if B is a full-rank square matrix, then AB ¼ CB implies A ¼ C; (2)
the other special case occurs when the expression holds for all possible values of the
matrix common to both sides of the equation; for example

if Ax ¼ Bx for all possible values of x, (2:44)

then A ¼ B. To see this, let x ¼ (1, 0, . . . , 0)0. Then, by (2.37) the first column of A
equals the first column of B. Now let x ¼ (0, 1, 0, . . . , 0)0, and the second column of
A equals the second column of B. Continuing in this fashion, we obtain A ¼ B.
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Example 2.4b. We illustrate the existence of matrices A, B, and C such that
AB ¼ CB, where A = C. Let

A ¼ 1 3 2
2 0 �1

� �
, B ¼

1 2
0 1
1 0

0
@

1
A, C ¼ 2 1 1

5 �6 �4

� �
:

Then

AB ¼ CB ¼ 3 5
1 4

� �
:

A

The following theorem gives a general case and two special cases for the rank of a
product of two matrices.

Theorem 2.4

(i) If the matrices A and B are conformal for multiplication, then rank(AB) �
rank(A) and rank(AB) � rank(B).

(ii) Multiplication by a full–rank square matrix does not change the rank; that is,
if B and C are full–rank square matrices, rank(AB) ¼ rank(CA) ¼ rank(A).

(iii) For any matrix A, rank(A0A) ¼ rank(AA0) ¼ rank(A0) ¼ rank(A).

PROOF

(i) All the columns of AB are linear combinations of the columns of A (see a
comment following Example 2.3). Consequently, the number of linearly
independent columns of AB is less than or equal to the number of linearly
independent columns of A, and rank(AB) � rank(A). Similarly, all the
rows of AB are linear combinations of the rows of B [see a comment follow-
ing (2.38)], and therefore rank(AB) � rank(B).

(ii) This will be proved later.

(iii) This will also be proved later.
A

2.5 INVERSE

A full-rank square matrix is said to be nonsingular. A nonsingular matrix A has a
unique inverse, denoted by A�1, with the property that

AA�1 ¼ A�1A ¼ I: (2:45)
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If A is square and less than full rank, then it does not have an inverse and is said to be
singular. Note that full-rank rectangular matrices do not have inverses as in (2.45).
From the definition in (2.45), it is clear that A is the inverse of A�1:

(A�1)�1 ¼ A: (2:46)

Example 2.5. Let

A ¼ 4 7
2 6

� �
:

Then

A�1 ¼ :6 �:7
�:2 :4

� �

and

4 7
2 6

� �
:6 �:7
�:2 :4

� �
¼ :6 �:7
�:2 :4

� �
4 7
2 6

� �
¼ 1 0

0 1

� �
:

A

We can now prove Theorem 2.4(ii).

PROOF. If B is a full-rank square (nonsingular) matrix, there exists a matrix B�1 such
that BB�1 ¼ I. Then, by Theorem 2.4(i), we have

rank(A) ¼ rank(ABB�1) � rank(AB) � rank(A):

Thus both inequalities become equalities, and rank(A) ¼ rank(AB). Similarly,
rank(A) ¼ rank(CA) for C nonsingular. A

In applications, inverses are typically found by computer. Many calculators also
compute inverses. Algorithms for hand calculation of inverses of small matrices
can be found in texts on matrix algebra.

If B is nonsingular and AB ¼ CB, then we can multiply on the right by B�1

to obtain A ¼ C. (If B is singular or rectangular, we can’t cancel it from
both sides of AB ¼ CB; see Example 2.4b and the paragraph preceding the
example.) Similarly, if A is nonsingular, the system of equations Ax ¼ c has the
unique solution

x ¼ A�1c, (2:47)
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since we can multiply on the left by A�1 to obtain

A�1Ax ¼ A�1c

Ix ¼ A�1c:

Two properties of inverses are given in the next two theorems.

Theorem 2.5a. If A is nonsingular, then A0 is nonsingular and its inverse can be
found as

(A0)�1 ¼ (A�1)0: (2:48)

A

Theorem 2.5b. If A and B are nonsingular matrices of the same size, then AB is
nonsingular and

(AB)�1 ¼ B�1A�1: (2:49)

A

We now give the inverses of some special matrices. If A is symmetric and nonsin-
gular and is partitioned as

A ¼ A11 A12

A21 A22

� �
,

and if B ¼ A22 � A21A�1
11 A12, then, provided A�1

11 and B�1 exist, the inverse of A is
given by

A�1 ¼ A�1
11 þ A�1

11 A12B�1A21A�1
11 �A�1

11 A12B�1

�B�1A21A�1
11 B�1

� �
: (2:50)

As a special case of (2.50), consider the symmetric nonsingular matrix

A ¼ A11 a12

a012 a22

� �
,

in which A11 is square, a22 is a 1 � 1 matrix, and a12 is a vector. Then if A�1
11 exists,

A�1 can be expressed as

A�1 ¼ 1
b

bA�1
11 þ A�1

11 a12a012A�1
11 �A�1

11 a12

�a012A�1
11 1

� �
, (2:51)
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where b ¼ a22 � a012A�1
11 a12. As another special case of (2.50), we have

A11 O
O A22

� ��1

¼ A�1
11 O

O A�1
22

� �
: (2:52)

If a square matrix of the form Bþ cc0 is nonsingular, where c is a vector and B is a
nonsingular matrix, then

(Bþ cc0)�1 ¼ B�1 � B�1cc0B�1

1þ c0B�1c
: (2:53)

In more generality, if A, B, and A þ PBQ are nonsingular, then

(Aþ PBQ)�1 ¼ A�1 � A�1PB(Bþ BQA�1PB)�1BQA�1: (2:54)

Both (2.53) and (2.54) can be easily verified (Problems 2.33 and 2.34).

2.6 POSITIVE DEFINITE MATRICES

Quadratic forms were introduced in (2.33). For example, the quadratic form
3y2

1 þ y2
2 þ 2y2

3 þ 4y1y2 þ 5y1y3 � 6y2y3 can be expressed as

3y2
1 þ y2

2 þ 2y2
3 þ 4y1y2 þ 5y1y3 � 6y2y3 ¼ y0Ay,

where

y ¼
y1

y2

y3

0
@

1
A, A ¼

3 4 5
0 1 �6
0 0 2

0
@

1
A:

However, the same quadratic form can also be expressed in terms of the symmetric
matrix

1
2

(Aþ A0) ¼
3 2 5

2
2 1 �3
5
2 �3 2

0
@

1
A:
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In general, any quadratic form y0Ay can be expressed as

y0Ay ¼ y0
Aþ A0

2

� �
y, (2:55)

and thus the matrix of a quadratic form can always be chosen to be symmetric (and
thereby unique).

The sums of squares we will encounter in regression (Chapters 6–11) and
analysis–of–variance (Chapters 12–15) can be expressed in the form y0Ay, where
y is an observation vector. Such quadratic forms remain positive (or at least nonne-
gative) for all possible values of y. We now consider quadratic forms of this type.

If the symmetric matrix A has the property y0Ay . 0 for all possible y except
y ¼ 0, then the quadratic form y0Ay is said to be positive definite, and A is said to
be a positive definite matrix. Similarly, if y0Ay � 0 for all y and there is at least
one y = 0 such that y0Ay ¼ 0, then y0Ay and A are said to be positive semidefinite.
Both types of matrices are illustrated in the following example.

Example 2.6. To illustrate a positive definite matrix, consider

A ¼ 2 �1
�1 3

� �

and the associated quadratic form

y0Ay ¼ 2y2
1 � 2y1y2 þ 3y2

2 ¼ 2( y1 � 1
2 y2)2 þ 5

2 y2
2,

which is clearly positive as long as y1 and y2 are not both zero.
To illustrate a positive semidefinite matrix, consider

(2y1 � y2)2 þ (3y1 � y3)2 þ (3y2 � 2y3)2,

which can be expressed as y0Ay, with

A ¼
13 �2 �3
�2 10 �6
�3 �6 5

0
@

1
A:

If 2y1 ¼ y2, 3y1 ¼ y3, and 3y2 ¼ 2y3, then (2y1 � y2)2 þ (3y1 � y3)2þ
(3y2 � 2y3)2 ¼ 0. Thus y0Ay ¼ 0 for any multiple of y ¼ (1, 2, 3)0. Otherwise
y0Ay > 0 (except for y ¼ 0). A

2.6 POSITIVE DEFINITE MATRICES 25



In the matrices in Example 2.6, the diagonal elements are positive. For positive
definite matrices, this is true in general.

Theorem 2.6a

(i) If A is positive definite, then all its diagonal elements aii are positive.

(ii) If A is positive semidefinite, then all aii � 0.

PROOF

(i) Let y0 ¼ (0, . . . , 0, 1, 0, . . . , 0) with a 1 in the ith position and 0’s elsewhere.
Then y0Ay ¼ aii . 0.

(ii) Let y0 ¼ (0, . . . , 0, 1, 0, . . . , 0) with a 1 in the ith position and 0’s elsewhere.
Then y0Ay ¼ aii � 0. A

Some additional properties of positive definite and positive semidefinite matrices
are given in the following theorems.

Theorem 2.6b. Let P be a nonsingular matrix.

(i) If A is positive definite, then P0AP is positive definite.

(ii) If A is positive semidefinite, then P0AP is positive semidefinite.

PROOF

(i) To show that y0P0APy . 0 for y = 0, note that y0(P0AP)y ¼ (Py)0A(Py).
Since A is positive definite, (Py)0A(Py) . 0 provided that Py = 0. By
(2.47), Py ¼ 0 only if y ¼ 0, since P�1Py ¼ P�10 ¼ 0. Thus
y0P0APy . 0 if y = 0.

(ii) See problem 2.36. A

Corollary 1. Let A be a p � p positive definite matrix and let B be a k � p matrix of
rank k � p. Then BAB0 is positive definite. A

Corollary 2. Let A be a p � p positive definite matrix and let B be a k � p matrix.
If k . p or if rank(B) ¼ r, where r , k and r , p, then BAB0 is positive
semidefinite. A

Theorem 2.6c. A symmetric matrix A is positive definite if and only if there exists a
nonsingular matrix P such that A ¼ P0P.
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PROOF. We prove the “if” part only. Suppose A ¼ P0P for nonsingular P. Then

y0Ay ¼ y0P0Py ¼ (Py)0(Py):

This is a sum of squares [see (2.20)] and is positive unless Py ¼ 0. By (2.47), Py ¼ 0
only if y ¼ 0. A

Corollary 1. A positive definite matrix is nonsingular. A

One method of factoring a positive definite matrix A into a product P0P as in
Theorem 2.6c is provided by the Cholesky decomposition (Seber and Lee 2003,
pp. 335–337), by which A can be factored uniquely into A ¼ T0T, where T is a non-
singular upper triangular matrix.

For any square or rectangular matrix B, the matrix B0B is positive definite or posi-
tive semidefinite.

Theorem 2.6d. Let B be an n� p matrix.

(i) If rank(B) ¼ p, then B0B is positive definite.

(ii) If rank(B) , p, then B0B is positive semidefinite.

PROOF

(i) To show that y0B0By . 0 for y = 0, we note that

y0B0By ¼ (By)0(By),

which is a sum of squares and is thereby positive unless By ¼ 0. By (2.37),
we can express By in the form

By ¼ y1b1 þ y2b2 þ � � � þ ypbp:

This linear combination is not 0 (for any y = 0) because rank(B) ¼ p, and
the columns of B are therefore linearly independent [see (2.40)].

(ii) If rank(B) , p, then we can find y = 0 such that

By ¼ y1b1 þ y2b2 þ � � � þ ypbp ¼ 0

since the columns of B are linearly dependent [see (2.40)]. Hence
y0B0By � 0.

A
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Note that if B is a square matrix, the matrix BB ¼ B2 is not necessarily positive
semidefinite. For example, let

B ¼ 1 �2
1 �2

� �
:

Then

B2 ¼ �1 2
�1 2

� �
, B0B ¼ 2 �4

�4 8

� �
:

In this case, B2 is not positive semidefinite, but B0B is positive semidefinite, since
y0B0By ¼ 2( y1 � 2y2)2.

Two additional properties of positive definite matrices are given in the following
theorems.

Theorem 2.6e. If A is positive definite, then A21 is positive definite.

PROOF. By Theorem 2.6c, A ¼ P0P, where P is nonsingular. By Theorems 2.5a and
2.5b, A�1 ¼ (P0P)�1 ¼ P�1(P0)�1 ¼ P�1(P�1)0, which is positive definite by
Theorem 2.6c. A

Theorem 2.6f. If A is positive definite and is partitioned in the form

A ¼ A11 A12

A21 A22

� �
,

where A11 and A22 are square, then A11 and A22 are positive definite.

PROOF. We can write A11, for example, as A11 ¼ (I, O)A
I
O

� �
, where I is the same

size as A11. Then by Corollary 1 to Theorem 2.6b, A11 is positive definite. A

2.7 SYSTEMS OF EQUATIONS

The system of n (linear) equations in p unknowns

a11x1 þ a12x2 þ � � � þ a1pxp ¼ c1

a21x1 þ a22x2 þ � � � þ a2pxp ¼ c2

..

.

an1x1 þ an2x2 þ � � � þ anpxp ¼ cn (2:56)
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can be written in matrix form as

Ax ¼ c, (2:57)

where A is n � p, x is p � 1, and c is n � 1. Note that if n = p, x and c are of differ-
ent sizes. If n ¼ p and A is nonsingular, then by (2.47), there exists a unique solution
vector x obtained as x ¼ A�1c. If n . p, so that A has more rows than columns, then
Ax ¼ c typically has no solution. If n , p, so that A has fewer rows than columns,
then Ax ¼ c typically has an infinite number of solutions.

If the system of equations Ax ¼ c has one or more solution vectors, it is said to be
consistent. If the system has no solution, it is said to be inconsistent.

To illustrate the structure of a consistent system of equations Ax ¼ c, suppose that
A is p � p of rank r , p. Then the rows of A are linearly dependent, and there exists
some b such that [see (2.38)]

b0A ¼ b1a01 þ b2a02 þ � � � þ bpa0p ¼ 00:

Then we must also have b0c ¼ b1c1 þ b2c2 þ � � � þ bpcp ¼ 0, since multiplication of
Ax ¼ c by b0 gives b0Ax ¼ b0c, or 00x ¼ b0c. Otherwise, if b0c = 0, there is no x
such that Ax ¼ c. Hence, in order for Ax ¼ c to be consistent, the same linear
relationships, if any, that exist among the rows of A must exist among the elements
(rows) of c. This is formalized by comparing the rank of A with the rank of the aug-
mented matrix (A, c). The notation (A, c) indicates that c has been appended to A as
an additional column.

Theorem 2.7 The system of equations Ax ¼ c has at least one solution vector x if
and only if rank(A) ¼ rank(A, c).

PROOF. Suppose that rank(A) ¼ rank(A, c), so that appending c does not change the
rank. Then c is a linear combination of the columns of A; that is, there exists some x
such that

x1a1 þ x2a2 þ � � � þ xpap ¼ c,

which, by (2.37), can be written as Ax ¼ c: Thus x is a solution.
Conversely, suppose that there exists a solution vector x such that Ax ¼ c. In

general, rank (A) � rank(A, c) (Harville 1997, p. 41). But since there exists an x
such that Ax ¼ c, we have

rank(A, c) ¼ rank(A, Ax) ¼ rank[A(I, x)]

� rank(A) [by Theorem 2:4(i)]:
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Hence

rank(A) � rank(A, c) � rank(A),

and we have rank(A) ¼ rank(A, c). A

A consistent system of equations can be solved by the usual methods given in
elementary algebra courses for eliminating variables, such as adding a multiple of
one equation to another or solving for a variable and substituting into another
equation. In the process, one or more variables may end up as arbitrary constants,
thus generating an infinite number of solutions. A method of solution involving gen-
eralized inverses is given in Section 2.8.2. Some illustrations of systems of equations
and their solutions are given in the following examples.

Example 2.7a. Consider the system of equations

x1 þ 2x2 ¼ 4

x1 � x2 ¼ 1

x1 þ x2 ¼ 3

or

1 2
1 �1
1 1

0
@

1
A x1

x2

� �
¼

4
1
3

0
@

1
A:

The augmented matrix is

(A, c) ¼
1 2 4
1 �1 1
1 1 3

0
@

1
A,

which has rank ¼ 2 because the third column is equal to twice the first column plus
the second:

2
1
1
1

0
@

1
Aþ

2
�1

1

0
@

1
A ¼

4
1
3

0
@

1
A:

Since rank(A) ¼ rank(A, c) ¼ 2, there is at least one solution. If we add twice the first
equation to the second, the result is a multiple of the third equation. Thus the third
equation is redundant, and the first two can readily be solved to obtain the unique
solution x ¼ (2, 1)0.
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The three lines representing the three equations are plotted in Figure 2.1. Notice
that the three lines intersect at the point (2, 1), which is the unique solution of the
three equations. A

Example 2.7b. If we change the 3 to 2 in the third equation in Example 2.7, the aug-
mented matrix becomes

(A, c) ¼
1 2 4
1 �1 1
1 1 2

0
@

1
A,

which has rank ¼ 3, since no linear combination of columns is 0. [Alternatively,
j(A, c)j= 0, and (A, c) is nonsingular; see Theorem 2.9(iii)] Hence rank (A, c) ¼
3 = rank(A) ¼ 2, and the system is inconsistent.

The three lines representing the three equations are plotted in Figure 2.2, in which we
see that the three lines do not have a common point of intersection. [For the “best”
approximate solution, one approach is to use least squares; that is, we find the values
of x1 and x2 that minimize (x1 þ 2x2 � 4)2 þ (x1 � x2 � 1)2 þ (x1 þ x2 � 2)2.] A

Example 2.7c. Consider the system

x1 þ x2 þ x3 ¼ 1

2x1 þ x2 þ 3x3 ¼ 5

3x1 þ 2x2 þ 4x3 ¼ 6:

Figure 2.1 Three lines representing the three equations in Example 2.7a.
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The third equation is the sum of the first two, but the second is not a multiple of the
first. Thus, rank(A, c) ¼ rank(A) ¼ 2, and the system is consistent.

By solving the first two equations for x1 and x2 in terms of x3, we obtain

x1 ¼ �2x3 þ 4

x2 ¼ x3 � 3:

The solution vector can be expressed as

x ¼
�2x3 þ 4

x3 � 3
x3

0
@

1
A ¼ x3

�2
1
1

0
@

1
Aþ

4
�3

0

0
@

1
A,

where x3 is an arbitrary constant. Geometrically, x is the line representing the inter-
section of the two planes corresponding to the first two equations. A

2.8 GENERALIZED INVERSE

We now consider generalized inverses of those matrices that do not have inverses in
the usual sense [see (2.45)]. A solution of a consistent system of equations Ax ¼ c
can be expressed in terms of a generalized inverse of A.

Figure 2.2 Three lines representing the three equations in Example 2.7b.
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2.8.1 Definition and Properties

A generalized inverse of an n � p matrix A is any matrix A2 that satisfies

AA�A ¼ A: (2:58)

A generalized inverse is not unique except when A is nonsingular, in which case
A� ¼ A�1. A generalized inverse is also called a conditional inverse.

Every matrix, whether square or rectangular, has a generalized inverse. This holds
even for vectors. For example, let

x ¼

1
2
3
4

0
BB@

1
CCA:

Then x�1 ¼ (1, 0, 0, 0) is a generalized inverse of x satisfying (2.58). Other examples
are x�2 ¼ (0, 1

2 , 0, 0), x�3 ¼ (0, 0, 1
3 , 0), and x�4 ¼ (0, 0, 0, 1

4 ). For each x�i , we have

xx�i x ¼ x1 ¼ x, i ¼ 1, 2, 3, 4:

In this illustration, x is a column vector and x�i is a row vector. This pattern is
generalized in the following theorem.

Theorem 2.8a. If A is n � p, any generalized inverse A2 is p � n. A

In the following example we give two illustrations of generalized inverses of a
singular matrix.

Example 2.8.1. Let

A ¼
2 2 3
1 0 1
3 2 4

0
@

1
A: (2:59)

The third row of A is the sum of the first two rows, and the second row is not a mul-
tiple of the first; hence A has rank 2. Let

A�1 ¼
0 1 0
1
2 �1 0

0 0 0

0
@

1
A, A�2 ¼

0 1 0

0 � 3
2

1
2

0 0 0

0
@

1
A: (2:60)

It is easily verified that AA�1 A ¼ A and AA�2 A ¼ A. A
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The methods used to obtain A�1 and A�2 in (2.60) are described in Theorem 2.8b
and the five-step algorithm following the theorem.

Theorem 2.8b. Suppose A is n � p of rank r and that A is partitioned as

A ¼ A11 A12

A21 A22

� �
;

where A11 is r � r of rank r. Then a generalized inverse of A is given by

A� ¼ A�1
11 O

O O

� �
,

where the three O matrices are of appropriate sizes so that A2 is p � n.

PROOF. By multiplication of partitioned matrices, as in (2.35), we obtain

AA�A ¼ I O
A21A�1

11 O

� �
A ¼ A11 A12

A21 A21A�1
11 A12

� �
:

To show that A21A�1
11 A12 ¼ A22, multiply A by

B ¼ I O
�A21A�1

11 I

� �
,

where O and I are of appropriate sizes, to obtain

BA ¼ A11 A12

O A22 � A21A�1
11 A12

� �
:

The matrix B is nonsingular, and the rank of BA is therefore r ¼ rank(A) [see

Theorem 2.4(ii)]. In BA, the submatrix
A11

O

� �
is of rank r, and the columns

headed by A12 are therefore linear combinations of the columns headed by A11. By
a comment following Example 2.3, this relationship can be expressed as

A12

A22 � A21A�1
11 A12

� �
¼ A11

O

� �
Q (2:61)
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for some matrix Q. By (2.27), the right side of (2.61) becomes

A11

O

� �
Q ¼ A11Q

OQ

� �
¼ A11Q

O

� �
:

Thus A22 � A21A�1
11 A12 ¼ O, or

A22 ¼ A21A�1
11 A12:

A

Corollary 1. Suppose that A is n � p of rank r and that A is partitioned as in
Theorem 2.8b, where A22 is r � r of rank r. Then a generalized inverse of A is
given by

A� ¼ O O
O A�1

22

� �
,

where the three O matrices are of appropriate sizes so that A2 is p � n. A

The nonsingular submatrix need not be in the A11 or A22 position, as in Theorem
2.8b or its corollary. Theorem 2.8b can be extended to the following algorithm for
finding a conditional inverse A2 for any n � p matrix A of rank r (Searle 1982,
p. 218):

1. Find any nonsingular r � r submatrix C. It is not necessary that the elements
of C occupy adjacent rows and columns in A.

2. Find C21 and (C�1)0.

3. Replace the elements of C by the elements of (C�1)0.

4. Replace all other elements in A by zeros.

5. Transpose the resulting matrix.

Some properties of generalized inverses are given in the following theorem, which
is the theoretical basis for many of the results in Chapter 11.

Theorem 2.8c. Let A be n � p of rank r, let A2 be any generalized inverse of A, and
let (A0A)2 be any generalized inverse of A0A. Then

(i) rank(A2A) ¼ rank(AA2) ¼ rank(A) ¼ r.

(ii) (A2)0 is a generalized inverse of A0; that is, (A0)2 ¼ (A2)0.

(iii) A ¼ A(A0A)�A0A and A0 ¼ A0A(A0A)�A0.

(iv) (A0A)�A0 is a generalized inverse of A; that is, A� ¼ (A0A)�A0.
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(v) A(A0A)�A0 is symmetric, has rank ¼ r, and is invariant to the choice of
(A0A)�; that is, A(A0A)�A0 remains the same, no matter what value of
(A0A)� is used. A

A generalized inverse of a symmetric matrix is not necessarily symmetric.
However, it is also true that a symmetric generalized inverse can always be found
for a symmetric matrix; see Problem 2.46. In this book, we will assume that gener-
alized inverses of symmetric matrices are symmetric.

2.8.2 Generalized Inverses and Systems of Equations

Generalized inverses can be used to find solutions to a system of equations.

Theorem 2.8d. If the system of equations Ax ¼ c is consistent and if A2 is any
generalized inverse for A, then x ¼ A�c is a solution.

PROOF. Since AA2A ¼ A, we have

AA�Ax ¼ Ax:

Substituting Ax ¼ c on both sides, we obtain

AA�c ¼ c:

Writing this in the form A(A�c) ¼ c, we see that A2c is a solution to Ax ¼ c. A

Different choices of A2 will result in different solutions for Ax ¼ c.

Theorem 2.8e. If the system of equations Ax ¼ c is consistent, then all possible sol-
utions can be obtained in the following two ways:

(i) Use a specific A2 in x ¼ A�cþ (I� A�A)h, and use all possible values of
the arbitrary vector h.

(ii) Use all possible values of A2 in x ¼ A�c if c = 0.

PROOF. See Searle (1982, p. 238). A

A necessary and sufficient condition for the system of equations Ax ¼ c to be
consistent can be given in terms of a generalized inverse of A (Graybill 1976, p. 36).
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Theorem 2.8f. The system of equations Ax ¼ c has a solution if and only if for any
generalized inverse A2 of A

AA�c ¼ c:

PROOF. Suppose that Ax ¼ c is consistent. Then, by Theorem 2.8d, x ¼ A�c is a
solution. Multiply c ¼ Ax by AA� to obtain

AA�c ¼ AA�Ax ¼ Ax ¼ c:

Conversely, suppose AA�c ¼ c. Multiply x ¼ A�c by A to obtain

Ax ¼ AA�c ¼ c:

Hence, a solution exists, namely, x ¼ A2c. A

Theorem 2.8f provides an alternative to Theorem 2.7a for determining whether a
system of equations is consistent.

2.9 DETERMINANTS

The determinant of an n � n matrix A is a scalar function of A defined as the sum of
all n! possible products of n elements such that

1. each product contains one element from every row and every column of A.

2. the factors in each product are written so that the column subscripts appear
in order of magnitude and each product is then preceded by a plus or
minus sign according to whether the number of inversions in the row sub-
scripts is even or odd. (An inversion occurs whenever a larger number pre-
cedes a smaller one.)

The determinant of A is denoted by jAj or det(A). The preceding definition is not
very useful in evaluating determinants, except in the case of 2 � 2 or 3 � 3 matrices.
For larger matrices, determinants are typically found by computer. Some calculators
also evaluate determinants.

The determinants of some special square matrices are given in the following
theorem.

Theorem 2.9a.

(i) If D ¼ diag(d1, d2, . . . , dn), jDj ¼
Qn

i¼1 di:
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(ii) The determinant of a triangular matrix is the product of the diagonal
elements.

(iii) If A is singular, jAj ¼ 0:

(iv) If A is nonsingular, jAj= 0:

(v) If A is positive definite, jAj . 0:

(vi) jA0j ¼ jAj:
(vii) If A is nonsingular, jA�1j ¼ 1

jAj : A

Example 2.9a. We illustrate each of the properties in Theorem 2.9a.

(i) diagonal:
2 0
0 3

����
���� ¼ (2) (3)� (0) (0) ¼ (2) (3).

(ii) triangular:
2 1
0 3

����
���� ¼ (2) (3)� (0) (1) ¼ (2) (3).

(iii) singular:
1 2
3 6

����
���� ¼ (1) (6)� (3) (2) ¼ 0,

nonsingular:
1 2
3 4

����
����¼ (1) (4)� (3) (2) ¼ �2.

(iv) positive definite:
3 �2
�2 4

����
���� ¼ (3) (4)� (�2) (�2) ¼ 8 . 0.

(v) transpose:
3 �7
2 1

����
����¼ (3)(1)� (2)(�7)¼ 17,

3 2
�7 1

����
����¼ (3)(1)� (�7)(2)¼ 17.

(vi) inverse:

3 2
1 4

� ��1

¼ :4 �:2
�:1 :3

� �
,

3 2
1 4

����
���� ¼ 10,

:4 �:2
�:1 :3

����
���� ¼ :1.

A

As a special case of (62), suppose that all diagonal elements are equal, say,
D ¼ diag(c, c, . . . , c) ¼ cI. Then

jDj ¼ jcIj ¼
Yn

i¼1

c ¼ cn: (2:68)
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By extension, if an n� n matrix is multiplied by a scalar, the determinant becomes

jcAj ¼ cnjAj: (2:69)

The determinant of certain partitioned matrices is given in the following theorem.

Theorem 2.9b. If the square matrix A is partitioned as

A ¼ A11 A12

A21 A22

� �
, (2:70)

and if A11 and A22 are square and nonsingular (but not necessarily the same size), then

jAj ¼ jA11j jA22 � A21A�1
11 A12j ð2:71Þ

¼ jA22j jA11 � A12A�1
22 A21j: (2:72)

A

Note the analogy of (2.71) and (2.72) to the case of the determinant of a 2 � 2 matrix:

a11 a12

a21 a22

����
���� ¼ a11a22 � a21a12

¼ a11 a22 �
a21a12

a11

� �

¼ a22 a11 �
a12a21

a22

� �
:

Corollary 1. Suppose

A ¼ A11 O
A21 A22

� �
or A ¼ A11 A12

O A22

� �
,

where A11 and A22 are square (but not necessarily the same size). Then in either case

jAj ¼ jA11j jA22j: (2:73)

A
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Corollary 2. Let

A ¼ A11 O
O A22

� �
,

where A11 and A22 are square (but not necessarily the same size). Then

jAj ¼ jA11j jA22j: (2:74)

A

Corollary 3. If A has the form A ¼ A11 a12

a012 a22

� �
, where A11 is a nonsingular

matrix, a12 is a vector, and a22 is a 1 � 1 matrix, then

jAj ¼ A11 a12

a012 a22

����
���� ¼ jA11j(a22 � a012A�1

11 a12): (2:75)

A

Corollary 4. If A has the form A ¼ B c
�c0 1

� �
, where c is a vector and B is a

nonsingular matrix, then

jBþ cc0j ¼ jBj(1þ c0B�1c): (2:76)

A

The determinant of the product of two square matrices is given in the following
theorem.

Theorem 2.9c. If A and B are square and the same size, then the determinant of the
product is the product of the determinants:

jABj ¼ jAj jBj: (2:77)

A

Corollary 1

jABj ¼ jBAj: (2:78)

A

Corollary 2

jA2j ¼ jAj2: (2:79)

A

40 MATRIX ALGEBRA



Example 2.9b. To illustrate Theorem 2.9c, let

A ¼ 1 2
3 4

� �
and B ¼ 3 �2

1 2

� �
:

Then

AB ¼
5 2

13 2

� �
, jABj ¼ �16,

jAj ¼ �2, jBj ¼ 8, jAj jBj ¼ �16:
A

2.10 ORTHOGONAL VECTORS AND MATRICES

Two n � 1 vectors b and b are said to be orthogonal if

a0b ¼ a1b1 þ a2b2 þ � � � þ anbn ¼ 0: (2:80)

Note that the term orthogonal applies to two vectors, not to a single vector.
Geometrically, two orthogonal vectors are perpendicular to each other. This is

illustrated in Figure 2.3 for the vectors x1 ¼ (4, 2)0 and x2 ¼ (�1, 2)0. Note that
x01x2 ¼ (4) (�1)þ (2) (2) ¼ 0.

To show that two orthogonal vectors are perpendicular, let u be the angle between
vectors a and b in Figure 2.4. The vector from the terminal point of a to the terminal
point of b can be represented as c ¼ b� a. The law of cosines for the relationship of

Figure 2.3 Two orthogonal (perpendicular) vectors.
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u to the sides of the triangle can be stated in vector form as

cos u ¼ a0aþ b0b� (b� a)0(b� a)

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(a0a)(b0b)

p

¼ a0aþ b0b� (b0bþ a0a� 2a0b)

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(a0a)(b0b)

p

¼ a0bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(a0a)(b0b)

p : (2:81)

When u ¼ 908, a0b ¼ 0 since cos(908) ¼ 0. Thus a and b are perpendicular when
a0b ¼ 0.

If a0a ¼ 1, the vector a is said to be normalized. A vector b can be normalized by
dividing by its length,

ffiffiffiffiffiffiffi
b0b
p

. Thus

c ¼ bffiffiffiffiffiffiffi
b0b
p (2:82)

is normalized so that c0c ¼ 1.
A set of p � 1 vectors c1, c2, . . . , cp that are normalized (c0ici ¼ 1 for all i) and

mutually orthogonal (c0icj ¼ 0 for all i = j) is said to be an orthonormal set of
vectors. If the p � p matrix C ¼ (c1, c2, . . . , cp) has orthonormal columns, C is
called an orthogonal matrix. Since the elements of C0C are products of columns of

Figure 2.4 Vectors a and b in 3-space.
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C [see Theorem 2.2c(i)], an orthogonal matrix C has the property

C0C ¼ I: (2:83)

It can be shown that an orthogonal matrix C also satisfies

CC0 ¼ I: (2:84)

Thus an orthogonal matrix C has orthonormal rows as well as orthonormal columns.
It is also clear from (2.83) and (2.84) that C0 ¼ C21 if C is orthogonal.

Example 2.10. To illustrate an orthogonal matrix, we start with

A ¼
1 1 1
1 �2 0
1 1 �1

0
@

1
A,

whose columns are mutually orthogonal but not orthonormal. To normalize the
three columns, we divide by their respective lengths,

ffiffiffi
3
p

,
ffiffiffi
6
p

, and
ffiffiffi
2
p

, to obtain
the matrix

C ¼
1=

ffiffiffi
3
p

1=
ffiffiffi
6
p

1=
ffiffiffi
2
p

1=
ffiffiffi
3
p

�2=
ffiffiffi
6
p

0
1=

ffiffiffi
3
p

1=
ffiffiffi
6
p

�1=
ffiffiffi
2
p

0
@

1
A,

whose columns are orthonormal. Note that the rows of C are also orthonormal, so that
C satisfies (2.84) as well as (2.83). A

Multiplication of a vector by an orthogonal matrix has the effect of rotating axes;
that is, if a point x is transformed to z ¼ Cx, where C is orthogonal, then the distance
from the origin to z is the same as the distance to x:

z0z ¼ (Cx)0(Cx) ¼ x0C0Cx ¼ x0Ix ¼ x0x: (2:85)

Hence, the transformation from x to z is a rotation.
Some properties of orthogonal matrices are given in the following theorem.

Theorem 2.10. If the p � p matrix C is orthogonal and if A is any p � p matrix, then

(i) jCj ¼ þ1 or 21.
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(ii) jC0ACj ¼ jAj:
(iii) �1 � cij � 1, where cij is any element of C.

2.11 TRACE

The trace of an n � n matrix A ¼ (aij) is a scalar function defined as the sum of the
diagonal elements of A; that is, tr(A) ¼

Pn
i¼1 aii. For example, suppose

A ¼
8 4 2
2 �3 6
3 5 9

0
@

1
A:

Then

tr(A) ¼ 8� 3þ 9 ¼ 14:

Some properties of the trace are given in the following theorem.

Theorem 2.11

(i) If A and B are n � n, then

tr(A + B) ¼ tr(A) + tr(B): (2:86)

(ii) If A is n � p and B is p � n, then

tr(AB) ¼ tr(BA): ð2:87Þ

Note that in (2.87) n can be less than, equal to, or greater than p.

(iii) If A is n � p, then

tr(A0A) ¼
Xp

i¼1

a0iai, (2:88)

where a i is the ith column of A.

(iv) If A is n � p, then

tr(AA0) ¼
Xn

i¼1

a0iai, (2:89)

where a0i is the ith row of A.
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(v) If A ¼ (aij) is an n � p matrix with representative element aij, then

tr(A0A) ¼ tr(AA0) ¼
Xn

i¼1

Xp

j¼1

a2
ij: (2:90)

(vi) If A is any n � n matrix and P is any n � n nonsingular matrix, then

tr(P�1AP) ¼ tr(A): (2:91)

(vii) If A is any n � n matrix and C is any n � n orthogonal matrix, then

tr(C0AC) ¼ tr(A): (2:92)

(viii) If A is n � p of rank r and A2 is a generalized inverse of A, then

tr(A�A) ¼ tr(AA�) ¼ r: (2:93)

PROOF. We prove parts (ii), (iii), and (vi).

(ii) By (2.13), the ith diagonal element of E ¼ AB is eii ¼
P

k aikbki. Then

tr(AB) ¼ tr(E) ¼
X

i

eii ¼
X

i

X
k

aikbki:

Similarly, the ith diagonal element of F ¼ BA is fii ¼
P

k bikaki, and

tr(BA) ¼ tr(F) ¼
X

i

fii ¼
X

i

X
k

bikaki

¼
X

k

X
i

akibik ¼ tr(E) ¼ tr(AB):

(iii) By Theorem 2.2c(i), A0A is obtained as products of columns of A. If ai is
the ith column of A, then the ith diagonal element of A0A is a0iai.

(vi) By (2.87) we obtain

tr(P�1AP) ¼ tr(APP�1) ¼ tr(A):
A

Example 2.11. We illustrate parts (ii) and (viii) of Theorem 2.11.

(ii) Let

A ¼
1 3
2 �1
4 6

0
@

1
A and B ¼ 3 �2 1

2 4 5

� �
:
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Then

AB ¼
9 10 16

4 �8 �3

24 16 34

0
B@

1
CA, BA ¼

3 17

30 32

� �
,

tr(AB) ¼ 9� 8þ 34 ¼ 35, tr(BA) ¼ 3þ 32 ¼ 35:

(viii) Using A in (2.59) and A�1 in (2.60), we obtain

A�A ¼
1 0 1

0 1 1
2

0 0 0

0
B@

1
CA, AA� ¼

1 0 0

0 1 0

1 1 0

0
B@

1
CA,

tr(A�A) ¼ 1þ 1þ 0 ¼ 2 ¼ rank(A),

tr(AA�) ¼ 1þ 1þ 0 ¼ 2 ¼ rank(A):
A

2.12 EIGENVALUES AND EIGENVECTORS

2.12.1 Definition

For every square matrix A, a scalar l and a nonzero vector x can be found such that

Ax ¼ lx, (2:94)

Figure 2.5 An eigenvector x is transformed to lx.
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where l is an eigenvalue of A and x is an eigenvector. (These terms are sometimes
referred to as characteristic root and characteristic vector, respectively.) Note that in
(2.94), the vector x is transformed by A onto a multiple of itself, so that the point
Ax is on the line passing through x and the origin. This is illustrated in Figure 2.5.

To find l and x for a matrix A, we write (2.94) as

(A� lI)x ¼ 0: (2:95)

By (2.37), (A� lI)x is a linear combination of the columns of A� lI, and by (2.40)
and (2.95), these columns are linearly dependent. Thus the square matrix (A� lI) is
singular, and by Theorem 2.9a(iii), we can solve for l using

jA� lIj ¼ 0, (2:96)

which is known as the characteristic equation.
If A is n � n, the characteristic equation (2.96) will have n roots; that is, A will

have n eigenvalues l1,l2, . . . ,ln. The l’s will not necessarily all be distinct, or all
nonzero, or even all real. (However, the eigenvalues of a symmetric matrix are
real; see Theorem 2.12c.) After finding l1,l2, . . . , ln using (2.96), the accompanying
eigenvectors x1, x2, . . . , xn can be found using (2.95).

If an eigenvalue is 0, the corresponding eigenvector is not 0. To see this, note that
if l ¼ 0, then (A� lI)x ¼ 0 becomes Ax ¼ 0, which has solutions for x because A
is singular, and the columns are therefore linearly dependent. [The matrix A is singu-
lar because it has a zero eigenvalue; see (63) and (2.107).]

If we multiply both sides of (2.95) by a scalar k, we obtain

k(A� lI)x ¼ k0 ¼ 0,

which can be rewritten as

(A� lI)kx ¼ 0 [by (2:12)]:

Thus if x is an eigenvector of A, kx is also an eigenvector. Eigenvectors are therefore
unique only up to multiplication by a scalar. (There are many solution vectors x
because A� lI is singular; see Section 2.8) Hence, the length of x is arbitrary,
but its direction from the origin is unique; that is, the relative values of (ratios of)
the elements of x ¼ (x1, x2, . . . , xn)0 are unique. Typically, an eigenvector x is
scaled to normalized form as in (2.82), x0x ¼ 1.
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Example 2.12.1. To illustrate eigenvalues and eigenvectors, consider the matrix

A ¼ 1 2
�1 4

� �
:

By (2.96), the characteristic equation is

jA� lIj ¼ 1� l 2
�1 4� l

����
���� ¼ (1� l)(4� l)þ 2 ¼ 0,

which becomes

l2 � 5lþ 6 ¼ (l� 3)(l� 2) ¼ 0,

with roots l1 ¼ 3 and l2 ¼ 2.
To find the eigenvector x1 corresponding to l1 ¼ 3, we use (2.95)

(A� l1I)x1 ¼ 0,

1� 3 2

�1 4� 3

� �
x1

x2

� �
¼

0

0

� �
,

which can be written as

�2x1 þ 2x2 ¼ 0

�x1 þ x2 ¼ 0:

The second equation is a multiple of the first, and either equation yields x1 ¼ x2. The
solution vector can be written with x1 ¼ x2 ¼ c as an arbitrary constant:

x1 ¼
x1

x2

� �
¼ x1

x1

� �
¼ x1

1
1

� �
¼ c

1
1

� �
:

If c is set equal to 1=
ffiffiffi
2
p

to normalize the eigenvector, we obtain

x1 ¼ 1=
ffiffiffi
2
p

1=
ffiffiffi
2
p

� �
:

Similarly, corresponding to l2 ¼ 2, we obtain

x2 ¼ 2=
ffiffiffi
5
p

1=
ffiffiffi
5
p

� �
:

A
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2.12.2 Functions of a Matrix

If l is an eigenvalue of A with corresponding eigenvector x, then for certain functions
g(A), an eigenvalue is given by g(l) and x is the corresponding eigenvector of g(A)
as well as of A. We illustrate some of these cases:

1. If l is an eigenvalue of A, then cl is an eigenvalue of cA, where c is an arbi-
trary constant such that c = 0. This is easily demonstrated by multiplying the
defining relationship Ax ¼ lx by c:

cAx ¼ clx: (2:97)

Note that x is an eigenvector of A corresponding to l, and x is also an eigen-
vector of cA corresponding to cl.

2. If l is an eigenvalue of the A and x is the corresponding eigenvector of A,
then clþ k is an eigenvalue of the matrix cAþ kI and x is an eigenvector
of cAþ kI, where c and k are scalars. To show this, we add kx to (2.97):

cAxþ kx ¼ clxþ kx,

(cAþ kI)x ¼ (clþ k)x: (2:98)

Thus clþ k is an eigenvalue of cAþ kI and x is the corresponding eigen-
vector of cAþ kI. Note that (2.98) does not extend to Aþ B for arbitrary
n � n matrices A and B; that is, Aþ B does not have lA þ lB for an eigen-
value, where lA is an eigenvalue of A and lB is an eigenvalue of B.

3. If l is an eigenvalue of A, then l2 is an eigenvalue of A2. This can be demon-
strated by multiplying the defining relationship Ax ¼ lx by A:

A(Ax) ¼ A(lx),

A2x ¼ lAx ¼ l(lx) ¼ l2x: (2:99)

Thus l2 is an eigenvalue of A2, and x is the corresponding eigenvector of A2.
This can be extended to any power of A:

Akx ¼ lkx; (2:100)

that is, lk is an eigenvalue of Ak, and x is the corresponding eigenvector.
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4. If l is an eigenvalue of the nonsingular matrix A, then 1/l is an eigenvalue
of A�1. To demonstrate this, we multiply Ax ¼ lx by A�1 to obtain

A�1Ax ¼ A�1lx,

x ¼ lA�1x,

A�1x ¼ 1
l

x: (2:101)

Thus 1/l is an eigenvalue of A�1, and x is an eigenvector of both A and A�1.

5. The results in (2.97) and (2.100) can be used to obtain eigenvalues and eigen-
vectors of a polynomial in A. For example, if l is an eigenvalue of A, then

(A3 þ 4A2 � 3Aþ 5I)x ¼ A3xþ 4A2x� 3Axþ 5x

¼ l3xþ 4l2x� 3lxþ 5x

¼ (l3 þ 4l2 � 3lþ 5)x:

Thus l3 þ 4l2 � 3lþ 5 is an eigenvalue of A3 þ 4A2 � 3Aþ 5I, and x is
the corresponding eigenvector.

For certain matrices, property 5 can be extended to an infinite series. For example,
if l is an eigenvalue of A, then, by (2.98), 1� l is an eigenvalue of I� A. If
I� A is nonsingular, then, by (2.101), 1=(1� l) is an eigenvalue of (I� A)�1.
If �1 , l , 1, then 1=(1� l) can be represented by the series

1
1� l

¼ 1þ lþ l2 þ l3 þ � � � :

Correspondingly, if all eigenvalues of A satisfy �1 , l , 1, then

(I� A)�1 ¼ Iþ Aþ A2 þ A3 þ � � � : (2:102)

2.12.3 Products

It was noted in a comment following (2.98) that the eigenvalues of Aþ B are not of
the form lA þ lB, where lA is an eigenvalue of A and lB is an eigenvalue of B.
Similarly, the eigenvalues of AB are not products of the form lAlB. However, the
eigenvalues of AB are the same as those of BA.

Theorem 2.12a. If A and B are n � n or if A is n � p and B is p � n, then the
(nonzero) eigenvalues of AB are the same as those of BA. If x is an eigenvector
of AB, then Bx is an eigenvector of BA. A
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Two additional results involving eigenvalues of products are given in the follow-
ing theorem.

Theorem 2.12b. Let A be any n � n matrix.

(i) If P is any n � n nonsingular matrix, then A and P21AP have the same
eigenvalues.

(ii) If C is any n � n orthogonal matrix, then A and C0AC have the same
eigenvalues.

A

2.12.4 Symmetric Matrices

Two properties of the eigenvalues and eigenvectors of a symmetric matrix are given
in the following theorem.

Theorem 2.12c. Let A be an n � n symmetric matrix.

(i) The eigenvalues l1,l2, . . . ,ln of A are real.

(ii) The eigenvectors x1, x2, . . . , xk of A corresponding to distinct eigenvalues
l1,l2, . . . ,lk are mutually orthogonal; the eigenvectors xkþ1, xkþ2, . . . , xn

corresponding to the nondistinct eigenvalues can be chosen to be mutually
orthogonal to each other and to the other eigenvectors; that is, x0ixj ¼ 0 for
i = j. A

If the eigenvectors of a symmetric matrix A are normalized and placed as columns
of a matrix C, then by Theorem 2.12c(ii), C is an orthogonal matrix. This orthogonal
matrix can be used to express A in terms of its eigenvalues and eigenvectors.

Theorem 2.12d. If A is an n � n symmetric matrix with eigenvalues l1,l2, . . . ,ln

and normalized eigenvectors x1, x2, . . . , xn, then A can be expressed as

A ¼ CDC0 (2:103)

¼
Xn

i¼1

lixix
0
i, (2:104)

where D ¼ diag(l1,l2, . . . , ln) and C is the orthogonal matrix C ¼ (x1, x2, . . . , xn).
The result in either (2.103) or (2.104) is often called the spectral decomposition of A.

PROOF. By Theorem 2.12c(ii), C is orthogonal. Then by (2.84), I ¼ CC0, and multi-
plication by A gives

A ¼ ACC0:
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We now substitute C ¼ (x1, x2, . . . , xn) to obtain

A ¼ A(x1, x2, . . . , xn)C0

¼ (Ax1, Ax2, . . . , Axn)C0 [by (2:28)]

¼ (l1x1,l2x2, . . . , lnxn)C0 [by (2:94)]

¼ CDC0, (2:105)

since multiplication on the right by D ¼ diag(l1, l2, . . . ,ln) multiplies columns of C
by elements of D [see (2.30)]. Now writing C0 in the form

C0 ¼ (x1, x2, . . . , xn)0 ¼

x01
x02

..

.

x0n

0
BBB@

1
CCCA [by (2:39)],

(2.105) becomes

A ¼ (l1x1,l2x2, . . . ,lnxn)

x01
x02

..

.

x0n

0
BBBB@

1
CCCCA

¼ l1x1x01 þ l2x2x02 þ � � � þ lnxnx0n:
A

Corollary 1. If A is symmetric and C and D are defined as in Theorem 2.12d, then C
diagonalizes A:

C0AC ¼ D: (2:106)
A

We can express the determinant and trace of a square matrix A in terms of its
eigenvalues.

Theorem 2.12e. If A is any n � n matrix with eigenvalues l1,l2, . . . , ln, then

(i) jAj ¼
Yn

i¼1

li: (2:107)

(ii)

tr(A) ¼
Xn

i¼1

li: (2:108)

A

We have included Theorem 2.12e here because it is easy to prove for a symmetric
matrix A using Theorem 2.12d (see Problem 2.72). However, the theorem is true for
any square matrix (Searle 1982, p. 278).
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Example 2.12.4. To illustrate Theorem 2.12e, consider the matrix A in Example
2.12.1

A ¼ 1 2
�1 4

� �
,

which has eigenvalues l1 ¼ 3 and l2 ¼ 2. The product l1l2 ¼ 6 is the same as
jAj ¼ 4� (� 1) (2) ¼ 6. The sum l1 þ l2 ¼ 3þ 2 ¼ 5 is the same as
tr(A) ¼ 1þ 4 ¼ 5. A

2.12.5 Positive Definite and Semidefinite Matrices

The eigenvalues l1,l2, . . . ,ln of positive definite and positive semidefinite matrices
(Section 2.6) are positive and nonnegative, respectively.

Theorem 2.12f. Let A be n � n with eigenvalues l1, l2, . . . ,ln.

(i) If A is positive definite, then li . 0 for i ¼ 1, 2, . . . , n.

(ii) If A is positive semidefinite, then li � 0 for i ¼ 1, 2, . . . , n. The number of
eigenvalues li for which li . 0 is the rank of A.

PROOF.

(i) For any li, we have Axi ¼ lixi. Multiplying by x0i, we obtain

x0iAxi ¼ lix
0
ixi,

li ¼
x0iAxi

x0ixi
. 0:

In the second expression, x0iAxi is positive because A is positive definite, and
x0ixi is positive because xi = 0. A

If a matrix A is positive definite, we can find a square root matrix A1=2 as follows.
Since the eigenvalues of A are positive, we can substitute the square roots

ffiffiffiffi
li
p

for li

in the spectral decomposition of A in (2.103), to obtain

A1=2 ¼ CD1=2C0, (2:109)

where D1=2 ¼ diag(
ffiffiffiffiffi
l1
p

,
ffiffiffiffiffi
l2
p

, . . . ,
ffiffiffiffiffi
ln
p

). The matrix A1=2 is symmetric and has the
property

A1=2A1=2 ¼ (A1=2)2 ¼ A: (2:110)
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2.13 IDEMPOTENT MATRICES

A square matrix A is said to be idempotent if A2 ¼ A. Most idempotent matrices in
this book are symmetric. Many of the sums of squares in regression (Chapters 6–11)
and analysis of variance (Chapters 12–15) can be expressed as quadratic forms y0Ay.
The idempotence of A or of a product involving A will be used to establish that y0Ay
(or a multiple of y0Ay) has a chi-square distribution.

An example of an idempotent matrix is the identity matrix I.

Theorem 2.13a. The only nonsingular idempotent matrix is the identity matrix I.

PROOF. If A is idempotent and nonsingular, then A2 ¼ A and the inverse A�1 exists.
If we multiply A2 ¼ A by A�1, we obtain

A�1A2 ¼ A�1A,

A ¼ I:
A

Many of the matrices of quadratic forms we will encounter in later chapters are
singular idempotent matrices. We now give some properties of such matrices.

Theorem 2.13b. If A is singular, symmetric, and idempotent, then A is positive
semidefinite.

PROOF. Since A ¼ A0 and A ¼ A2, we have

A ¼ A2 ¼ AA ¼ A0A,

which is positive semidefinite by Theorem 2.6d(ii). A

If a is a real number such that a2 ¼ a, then a is either 0 or 1. The analogous prop-
erty for matrices is that if A2 ¼ A, then the eigenvalues of A are 0s and 1s.

Theorem 2.13c. If A is an n � n symmetric idempotent matrix of rank r, then A has
r eigenvalues equal to 1 and n� r eigenvalues equal to 0.

PROOF. By (2.99), if Ax ¼ lx, then A2x ¼ l2x. Since A2 ¼ A, we have
A2x ¼ Ax ¼ lx. Equating the right sides of A2x ¼ l2x and A2x ¼ lx, we have

lx ¼ l2x or (l� l2)x ¼ 0:

But x = 0, and therefore l� l2 ¼ 0, from which, l is either 0 or 1.
By Theorem 2.13b, A is positive semidefinite, and therefore by Theorem 2.12f(ii),

the number of nonzero eigenvalues is equal to rank(A). Thus r eigenvalues of A are
equal to 1 and the remaining n� r eigenvalues are equal to 0. A
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We can use Theorems 2.12e and 2.13c to find the rank of a symmetric idempotent
matrix.

Theorem 2.13d. If A is symmetric and idempotent of rank r, then rank(A) ¼
tr(A) ¼ r.

PROOF. By Theorem 2.12e(ii), tr(A) ¼
Pn

i¼1 li, and by Theorem 2.13c,Pn
i¼1 li ¼ r. A

Some additional properties of idempotent matrices are given in the following four
theorems.

Theorem 2.13e. If A is an n � n idempotent matrix, P is an n � n nonsingular
matrix, and C is an n � n orthogonal matrix, then

(i) I� A is idempotent.

(ii) A(I� A) ¼ O and (I� A)A ¼ O.

(iii) P�1AP is idempotent.

(iv) C0AC is idempotent. (If A is symmetric, C0AC is a symmetric idempotent
matrix.) A

Theorem 2.13f. Let A be n � p of rank r, let A� be any generalized inverse of A,
and let (A0A)� be any generalized inverse of A0A. Then A�A, AA�, and
A(A0A)�A0 are all idempotent. A

Theorem 2.13g. Suppose that the n � n symmetric matrix A can be written as

A ¼
Pk

i¼1 Ai for some k, where each Ai is an n � n symmetric matrix. Then any
two of the following conditions implies the third condition.

(i) A is idempotent.

(ii) Each of A1, A2, . . . , Ak is idempotent.

(iii) AiAj ¼ O for i = j.
A

Theorem 2.13h. If I ¼
Pk

i¼1 Ai, where each n � n matrix Ai is symmetric of rank ri,

and if n ¼
Pk

i¼1 ri, then both of the following are true:

(i) Each of A1, A2, . . . , Ak is idempotent.

(ii) AiAj ¼ O for i = j.
A
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2.14 VECTOR AND MATRIX CALCULUS

2.14.1 Derivatives of Functions of Vectors and Matrices

Let u ¼ f (x) be a function of the variables x1, x2, . . . , xp in x ¼ (x1, x2, . . . , xp)0, and
let @u=@x1, @u=@x2, . . . , @u=@xp be the partial derivatives. We define @u=@x as

@u

@x
¼

@u

@x1

@u

@x2

..

.

@u

@xp

0
BBBBBBBBB@

1
CCCCCCCCCA

: (2:111)

Two specific functions of interest are u ¼ a0x and u ¼ x0Ax. Their derivatives with
respect to x are given in the following two theorems.

Theorem 2.14a. Let u ¼ a0x ¼ x0a, where a0 ¼ (a1, a2, . . . , ap) is a vector of con-
stants. Then

@u

@x
¼ @(a0x)

@x
¼ @(x0a)

@x
¼ a: (2:112)

PROOF

@u

@xi
¼ @(a1x1 þ a2x2 þ � � � þ apxp)

@xi
¼ ai:

Thus by (2.111) we obtain

@u

@x
¼

a1

a2

..

.

ap

0
BBB@

1
CCCA ¼ a:

A

Theorem 2.14b. Let u ¼ x0Ax, where A is a symmetric matrix of constants. Then

@u

@x
¼ @(x0Ax)

@x
¼ 2Ax: (2:113)
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PROOF. We demonstrate that (2.113) holds for the special case in which A is 3 � 3.
The illustration could be generalized to a symmetric A of any size. Let

x ¼
x1

x2

x3

0
@

1
A and A ¼

a11 a12 a13

a12 a22 a23

a13 a23 a33

0
@

1
A ¼

a01
a02
a03

0
@

1
A:

Then x0Ax ¼ x2
1a11 þ 2x1x2a12 þ 2x1x3a13 þ x2

2a22 þ 2x2x3a23 þ x2
3a33, and we have

@(x0Ax)
@x1

¼ 2x1a11 þ 2x2a12 þ 2x3a13 ¼ 2a01x

@(x0Ax)
@x2

¼ 2x1a12 þ 2x2a22 þ 2x3a23 ¼ 2a02x

@(x0Ax)
@x3

¼ 2x1a13 þ 2x2a23 þ 2x3a33 ¼ 2a03x:

Thus by (2.11), (2.27), and (2.111), we obtain

@(x0Ax)
@x

¼

@(x0Ax)
@x1

@(x0Ax)
@x2

@(x0Ax)
@x3

0
BBBBBB@

1
CCCCCCA
¼ 2

a01x
a02x
a03x

0
@

1
A ¼ 2Ax:

A

Now let u ¼ f (X) be a function of the variables x11, x12, . . . , x pp in the p � p
matrix X, and let (@u=@x11), (@u=@x12), . . . , (@u=@x pp) be the partial derivatives.
Similarly to (2.111), we define @u=@X as

@u

@X
¼

@u

@x11
� � � @u

@x1p

..

. ..
.

@u

@x p1
� � � @u

@x pp

0
BBBBB@

1
CCCCCA
: (2:114)

Two functions of interest of this type are u ¼ tr(XA) and u ¼ ln jXj for a positive
definite matrix X.

Theorem 2.14c. Let u ¼ tr(XA), where X is a p � p positive definite matrix and A is
a p � p matrix of constants. Then

@u

@X
¼ @[tr(XA)]

@X
¼ Aþ A0 � diag A: (2:115)
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PROOF. Note that tr(XA) ¼
Pp

i¼1

Pp
j¼1 xija ji [see the proof of Theorem 2.11(ii)].

Since xij ¼ x ji, [@tr(XA)]=@xij ¼ a ji þ aij if i = j, and [@tr(XA)]=@xii ¼ aii. The
result follows. A

Theorem 2.14d. Let u ¼ ln jXj where X is a p � p positive definite matrix. Then

@ ln jXj
@X

¼ 2X�1 � diag(X�1): (2:116)

PROOF. See Harville (1997, p. 306). See Problem 2.83 for a demonstration that this
theorem holds for 2 � 2 matrices. A

2.14.2 Derivatives Involving Inverse Matrices and Determinants

Let A be an n � n nonsingular matrix with elements aij that are functions of a scalar x.
We define @A=@x as the n � n matrix with elements @aij=@x. The related
derivative @A�1=@x is often of interest. If A is positive definite, the derivative
(@=@x) log jAj is also often of interest.

Theorem 2.14e. Let A be nonsingular of order n with derivative @A=@x. Then

@A

@x

�1

¼ �A�1 @A

@x
A�1 (2:117)

PROOF. Because A is nonsingular, we have

A�1A ¼ I:

Thus

@A�1

@x
Aþ A�1 @A

@x
¼ O:

Hence

@A�1

@x
A ¼ �A�1 @A

@x
,

and so

@A�1

@x
¼ �A�1 @A

@x
A�1:

A

Theorem 2.14f. Let A be an n � n positive define matrix. Then

@ log jAj
@x

¼ tr A�1 @A

@x

� �
: (2:118)
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PROOF. Since A is positive definite, its spectral decomposition (Theorem 2.12d) can
be written as CDC0, where C is an orthogonal matrix and D is a diagonal matrix of
positive eigenvalues, li. Using Theorem 2.12e, we obtain

@ log jAj
@x

¼ @ log
Qn

i¼1 li

@x

¼ @
Pn

i¼1 log li

@x

¼
Xn

i¼1

1
li

@li

@x

¼ tr D�1 @D

@x

� �
:

Now

A�1 @A

@x
¼ CD�1C0

@CDC0

@x

¼ CD�1C0 C
@DC0

@x
þ @C

@x
DC0

� �

¼ CD�1C0 C
@D

@x
C0 þ CD

@C0

@x
þ @C

@x
DC0

� �

¼ CD�1 @D

@x
C0 þ C

@C0

@x
þ CD�1C0

@C

@x
DC0:

Using Theorem 2.11(i) and (ii), we have

tr A�1 @A

@x

� �
¼ tr D�1 @D

@x
þ C

@C0

@x
þ C0

@C

@x

� �
:

Since C is orthogonal, C0C ¼ I which implies that

@C0C

@x
¼ C0

@C

@x
þ @C0

@x
C ¼ O

and

tr C0
@C

@x
þ @C0C

@x

� �
¼ tr C0

@C

@x
þ C

@C0

@x

� �
¼ 0:

Thus tr[A�1(@A=@x)] ¼ tr[D�1(@D=@x)] and the result follows. A
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2.14.3 Maximization or Minimization of a Function of a Vector

Consider a function u ¼ f (x) of the p variables in x. In many cases we can find a
maximum or minimum of u by solving the system of p equations

@u

@x
¼ 0: (2:119)

Occasionally the situation requires the maximization or minimization of the func-
tion u, subject to q constraints on x. We denote the constraints as
h1(x) ¼ 0, h2(x) ¼ 0, . . . , hq(x) ¼ 0 or, more succinctly, h(x) ¼ 0. Maximization
or minimization of u subject to h(x) ¼ 0 can often be carried out by the method of
Lagrange multipliers. We denote a vector of q unknown constants (the Lagrange mul-
tipliers) by l and let y0 ¼ (x0,l0). We then let v ¼ uþ l0h(x). The maximum or
minimum of u subject to h(x) ¼ 0 is obtained by solving the equations

@v

@y
¼ 0

or, equivalently

@u

@x
þ @h

@x
l ¼ 0 and h(x) ¼ 0, (2:120)

where

@h

@x
¼

@h1

@x1
� � � @hq

@x1

..

. ..
.

@h1

@xp
� � � @hq

@xp

0
BBBBB@

1
CCCCCA
:

PROBLEMS

2.1 Prove Theorem 2.2a.

2.2 Let A ¼ 7 �3 2
4 9 5

� �
:

(a) Find A0.
(b) Verify that (A0)0 ¼ A, thus illustrating Theorem 2.1.

(c) Find A0A and AA0.

2.3 Let A ¼ 2 4
�1 3

� �
and B ¼ 1 3

2 �1

� �
.
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(a) Find AB and BA.

(b) Find jAj, jBj, and jABj, and verify that Theorem 2.9c holds in this case.

(c) Find jBAj and compare to jABj.
(d) Find (AB)0 and compare to B0A0.
(e) Find tr(AB) and compare to tr(BA).

(f) Find the eigenvalues of AB and of BA, thus illustrating Theorem 2.12a.

2.4 Let A ¼ 1 3 �4
5 �7 2

� �
and B ¼ 3 �2 5

6 9 7

� �
.

(a) Find Aþ B and A� B.

(b) Find A0 and B0.
(c) Find (Aþ B)0 and A0 þ B0, thus illustrating Theorem 2.2a(ii).

2.5 Verify the distributive law in (2.15), A(Bþ C) ¼ ABþ AC.

2.6 Let A ¼ 8 3 7
�2 5 �3

� �
, B ¼

�2 5
3 7
6 �4

0
@

1
A, C ¼

1 2
�3 1

2 4

0
@

1
A.

(a) Find AB and BA.

(b) Find Bþ C, AC, and A(Bþ C). Compare A(Bþ C) with ABþ AC, thus
illustrating (2.15).

(c) Compare (AB)0 with B0A0, thus illustrating Theorem 2.2b.

(d) Compare tr(AB) with tr(BA) and confirm that (2.87) holds in this case.

(e) Let a01 and a02 be the two rows of A. Find
a01B
a02B

� �
and compare with AB in

part (a), thus illustrating (2.27).

(f) Let b1 and b2 be the two columns of B. Find (Ab1, Ab2) and compare with
AB in part (a), thus illustrating (2.28).

2.7 Let A ¼
3 2 1
6 4 2
12 8 4

0
@

1
A, B ¼

1 �1 2
�1 1 �2
�1 1 �2

0
@

1
A.

(a) Show that AB ¼ O.

(b) Find a vector x such that Ax ¼ 0.

(c) What is the rank of A and the rank of B?

2.8 If j is a vector of 1s, as defined in (2.6), show that

(a) j0a ¼ a0j ¼
P

i ai, as in (2.24).

(b) Aj is a column vector whose elements are the row sums of A, as in (2.25).

(c) j0A is a row vector whose elements are the column sums of A, as in (2.25).

PROBLEMS 61



2.9 Prove Corollary 1 to Theorem 2.2b; that is, assuming that A, B, and C are
conformal, show that (ABC)0 ¼ C0B0A0.

2.10 Prove Theorem 2.2c.

2.11 Use matrix A in Problem 2.6 and let

D1 ¼
3 0
0 �2

� �
, D2 ¼

5 0 0
0 3 0
0 0 6

0
@

1
A:

Find D1A and AD2, thus illustrating (2.29) and (2.30).

2.12 Let A ¼
1 2 3
4 5 6
7 8 9

0
@

1
A, D ¼

a 0 0
0 b 0
0 0 c

0
@

1
A.

Find DA, AD, and DAD.

2.13 For y0 ¼ (y1, y2, y3) and the symmetric matrix

A ¼
a11 a12 a13

a12 a22 a23

a13 a23 a33

0
@

1
A,

express y0Ay in the form given in (2.33).

2.14 Let A ¼
5 �1 3
�1 1 2

3 2 7

0
@

1
A, B ¼

6 �2 3
7 1 0
2 �3 5

0
@

1
A, C ¼

2 �3
�1 4

3 1

0
@

1
A,

x ¼
3
�1

2

0
@

1
A, y ¼

3
2
4

0
@

1
A, z ¼ 2

5

� �
:

.

Find the following:

(a) Bx (h) xy0

(b) y0B (i) B0B
(c) x0Ax ( j) yz0

(d) x0Cz (k) zy0

(e) x0x (l)
ffiffiffiffiffiffi
y0y
p

(f) x0y (m) C0C
(g) xx0

2.15 Use x, y, A, and B as defined in Problem 2.14.

(a) Find xþ y and x� y.
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(b) Find tr(A), tr(B), A þ B, and tr(A þ B).

(c) Find AB and BA.

(d) Find tr(AB) and tr(BA).

(e) Find jABj and jBAj.
(f) Find (AB)0 and B0A0.

2.16 Using B and x in Problem 2.14, find Bx as a linear combination of the columns
of B, as in (2.37), and compare with Bx as found in Problem 2.14(a).

2.17 Let A ¼ 2 5
1 3

� �
, B ¼ 1 �6 2

5 0 3

� �
, I ¼ 1 0

0 1

� �
.

(a) Show that (AB)0 ¼ B0A0 as in (2.26).

(b) Show that AI ¼ A and that IB ¼ B.

(c) Find jAj.
(d) Find A�1.

(e) Find (A�1)�1 and compare with A, thus verifying (2.46).

(f) Find (A0)�1 and verify that it is equal to (A�1)0 as in Theorem 2.5a.

2.18 Let A and B be defined and partitioned as follows:

A ¼
2 1 2
3 2 0

1 0 1

0
B@

1
CA, B ¼

1 1 1 0
2 1 1 2

2 3 1 2

0
B@

1
CA:

(a) Find AB as in (2.35), using the indicated partitioning.

(b) Check by finding AB in the usual way, ignoring the partitioning.

2.19 Partition the matrices A and B in Problem 2.18 as follows:

A ¼
2 1 2
3 2 0
1 0 1

0
@

1
A ¼ (a1, A2),

B ¼
1 1 1 0
2 1 1 2

2 3 1 2

0
@

1
A ¼ b01

B2

� �
:

Repeat parts (a) and (b) of Problem 2.18. Note that in this case, (2.35) becomes
AB ¼ a1b01 þ A2B2.
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2.20 Let A ¼ 5 �2 3
7 3 1

� �
, b ¼

2
4
�3

0
@

1
A.

Find Ab as a linear combination of the columns of A as in (2.37) and check the

result by finding Ab in the usual way.

2.21 Show that each column of the product AB can be expressed as a linear com-
bination of the columns of A, with coefficients arising from the corresponding
column of B, as noted following Example 2.3.

2.22 Let A ¼
3 0 2
1 �1 1
2 1 0

0
@

1
A, B ¼

�2 �1
3 1
1 �1

0
@

1
A.

Express the columns of AB as linear combinations of the columns of A.

2.23 Show that if a set of vectors includes 0, the set is linearly dependent, as noted
following (2.40).

2.24 Suppose that A and B are n � n and that AB ¼ O as in (2.43). Show that A
and B are both singular or one of them is O.

2.25 Let A ¼ 1 3 2
2 0 �1

� �
, B ¼

1 2
0 1
1 0

0
@

1
A, C ¼ 2 1 1

5 �6 �4

� �
.

Find AB and CB. Are they equal? What are the ranks of A, B, and C?

2.26 Let A ¼ 3 1 2
1 0 �1

� �
, B ¼

2 1
0 2
1 0

0
@

1
A.

(a) Find a matrix C such that AB ¼ CB. Is C unique?

(b) Find a vector x such that Ax ¼ 0. Can you do this for B?

2.27 Let A ¼
3 1 2
4 �2 3
1 0 �1

0
@

1
A, x ¼

5
2
3

0
@

1
A.

(a) Find a matrix B = A such that Ax ¼ Bx. Why is this possible? Can A
and B be nonsingular? Can A� B be nonsingular?

(b) Find a matrix C = O such that Cx ¼ 0. Can C be nonsingular?

2.28 Prove Theorem 2.5a.

2.29 Prove Theorem 2.5b.

2.30 Use the matrix A in Problem 2.17, and let B ¼ 4 �2
3 1

� �
. Find AB, B21,

and (AB)21. Verify that Theorem 2.5b holds in this case.
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2.31 Show that the partitioned matrix A ¼ A11 A12

A21 A22

� �
has the inverse indicated

in (2.50).

2.32 Show that the partitioned matrix A ¼ A11 a12

a012 a22

� �
has the inverse given in

(2.51).

2.33 Show that Bþ cc0 has the inverse indicated in (2.53).

2.34 Show that Aþ PBQ has the inverse indicated in (2.54).

2.35 Show that y0Ay ¼ y0 1
2 (Aþ A0)
� 	

y as in (2.55).

2.36 Prove Theorem 2.6b(ii).

2.37 Prove Corollaries 1 and 2 of Theorem 2.6b.

2.38 Prove the “only if” part of Theorem 2.6c.

2.39 Prove Corollary 1 to Theorem 2.6c.

2.40 Compare the rank of the augmented matrix with the rank of the coefficient
matrix for each of the following systems of equations. Find solutions where
they exist.

ðaÞ x1 þ 2x2 þ 3x3 ¼ 6

x1 � x2 ¼ 2

x1 � x3 ¼ �1

ðbÞ x1 � x2 þ 2x3 ¼ 2

x1 � x2 � x3 ¼ �1

2x1 � 2x2 þ x3 ¼ 2

ðcÞ x1 þ x2 þ x3 þ x4 ¼ 8

x1 � x2 � x3 � x4 ¼ 6

3x1 þ x2 þ x3 þ x4 ¼ 22

2.41 Prove Theorem 2.8a.

2.42 For the matrices A, A�1 , and A�2 in (2.59) and (2.60), show that AA�1 A ¼ A
and AA�2 A ¼ A.

2.43 Show that A�1 in (2.60) can be obtained using Theorem 2.8b.

2.44 Show that A�2 in (2.60) can be obtained using the five-step algorithm follow-
ing Theorem 2.8b.

2.45 Prove Theorem 2.8c.

2.46 Show that if A is symmetric, there exists a symmetric generalized inverse for
A, as noted following Theorem 2.8c.

2.47 Let A ¼
4 2 2
2 2 0
2 0 2

0
@

1
A.

(a) Find a symmetric generalized inverse for A.
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(b) Find a nonsymmetric generalized inverse for A.

2.48 (a) Show that if A is nonsingular, then A� ¼ A�1.

(b) Show that if A is n � p of rank p , n, then A� is a “left inverse” of A,
that is, A�A ¼ I.

2.49 Prove Theorem 2.9a parts (iv) and (vi).

2.50 Use A ¼ 2 5
1 3

� �
from Problem 2.17 to illustrate (64), (2.66), and (2.67) in

Theorem 2.9a.

2.51 (a) Multiply A in Problem 2.50 by 10 and verify that (2.69) holds in this case.
(b) Verify that (2.69) holds in general.

2.52 Prove Corollaries 1, 2, 3, and 4 of Theorem 2.9b.

2.53 Prove Corollaries 1 and 2 of Theorem 2.9c.

2.54 Use A in Problem 2.50 and let B ¼ 4 �2
3 1

� �
.

(a) Find jAj, jBj, AB, and jABj and illustrate (2.77).

(b) Find jAj2 and jA2j and illustrate (2.79).

2.55 Use Theorem 2.9c and Corollary 1 of Theorem 2.9b to prove Theorem 2.9b.

2.56 Show that if C0C ¼ I, then CC0 ¼ I as in (2.84).

2.57 The columns of the following matrix are mutually orthogonal:

A ¼
1 �1 1
�1 0 2

1 1 1

0
@

1
A:

(a) Normalize the columns of A by dividing each column by its length;
denote the resulting matrix by C.

(b) Show that C0C ¼ CC0 ¼ I.

2.58 Prove Theorem 2.10a.

2.59 Prove Theorem 2.11 parts (i), (iv), (v), and (vii).

2.60 Use matrix B in Problem 2.26 to illustrate Theorem 2.11 parts (iii) and (iv).

2.61 Use matrix A in Problem 2.26 to illustrate Theorem 2.11(v), that is,
tr(A0A) ¼ tr(AA0) ¼

P
ij a2

ij.

2.62 Show that tr(A�A) ¼ tr(AA�) ¼ r ¼ rank(A), as in (2.93).

2.63 Use A in (2.59) and A�2 in (2.60) to illustrate Theorem 2.11(viii), that is,
tr(A�A) ¼ tr(AA�) ¼ r ¼ rank(A).
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2.64 Obtain x2 ¼ (2=
ffiffiffi
5
p

, 1=
ffiffiffi
5
p

)0 in Example 2.12.1.

2.65 For k ¼ 3, show that Akx ¼ lkx as in (2.100).

2.66 Show that limk!1 Ak ¼ O in (2.102) if A is symmetric and if all eigenvalues
of A satisfy �1 , l , 1.

2.67 Prove Theorem 2.12a.

2.68 Prove Theorem 2.12b.

2.69 Prove Theorem 2.12c(ii) for the case where the eigenvalues l1,l2, . . . , ln are
distinct.

2.70 Prove Corollary 1 to Theorem 2.12d.

2.71 Let A ¼
3 1 1
1 0 2
1 2 0

0
@

1
A.

(a) The eigenvalues of A are 1, 4, 22. Find the normalized eigenvectors and
use them as columns in an orthogonal matrix C.

(b) Show that A ¼ CDC0, as in (2.103), where D ¼ diag(1, 4, �2).

(c) Show that C0AC ¼ D as in (2.106).

2.72 Prove Theorem 2.12e for a symmetric matrix A.

2.73 Let A ¼
1 1 �2
�1 2 1

0 1 �1

0
@

1
A.

(a) Find the eigenvalues and associated normalized eigenvectors.

(b) Find tr(A) and jAj and verify that tr(A) ¼
P3

i¼1 li and jAj ¼
Q3

i¼1 li, as
in Theorem 2.12e.

2.74 Prove Theorem 2.12f(ii).

2.75 Let A ¼
1 0 �1
0 1 �1
�1 �1 3

0
@

1
A.

(a) Show that jAj . 0.

(b) Find the eigenvalues of A. Are they all positive?

2.76 Let A1=2 be defined as in (2.109).
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(a) Show that A1=2 is symmetric.

(b) Show that (A1=2)2 ¼ A as in (2.110).

2.77 For the positive definite matrix A ¼ 2 �1
�1 2

� �
, calculate the eigenvalues

and eigenvectors and find the square root matrix A1=2 as in (2.109). Check
by showing (A1=2)2 ¼ A.

2.78 Prove Theorem 2.13e.

2.79 Prove Theorem 2.13f.

2.80 Let A ¼
2
3 0

ffiffi
2
p

3
0 1 0ffiffi

2
p

3 0 1
3

0
@

1
A.

(a) Find the rank of A.

(b) Show that A is idempotent.

(c) Show that I� A is dempotent.

(d) Show that A(I� A) ¼ O.

(e) Find tr(A).

(f) Find the eigenvalues of A.

2.81 Consider a p � p matrix A with eigenvalues l1, l2, . . . ,lp. Show that
[tr(A)]2 ¼ tr(A2)þ 2

PP
i=j lilj:

2.82 Consider a nonsingular n � n matrix A whose elements are functions of the
scalar x. Also consider the full-rank p � n matrix B. Let H ¼ B0(BAB0)�1B.
Show that

@H

@x
¼ �H

@A

@x
H:

2.83 Show that

@ ln jXj
@X

¼ 2X�1 � diag X�1

for a 2 � 2 positive definite matrix X.

2.84 Let u ¼ x0Ax where x is a 3 � 1 vector and A ¼
1 0 0
0 2 0
0 0 3

0
@

1
A. Use the

Lagrange multiplier method to find the vector x that minimizes u subject to
the constraints x1 þ x2 ¼ 2, and x2 þ x3 ¼ 3.
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3 Random Vectors and Matrices

3.1 INTODUCTION

As we work with linear models, it is often convenient to express the observed data
(or data that will be observed) in the form of a vector or matrix. A random vector
or random matrix is a vector or matrix whose elements are random variables.
Informally, a random variable is defined as a variable whose value depends on the
outcome of a chance experiment. (Formally, a random variable is a function
defined for each element of a sample space.)

In terms of experimental structure, we can distinguish two kinds of random vectors:

1. A vector containing a measurement on each of n different individuals or exper-
imental units. In this case, where the same variable is observed on each of n
units selected at random, the n random variables y1, y2, . . . , yn in the vector are
typically uncorrelated and have the same variance.

2. A vector consisting of p different measurements on one individual or exper-
imental unit. The p random variables thus obtained are typically correlated
and have different variances.

To illustrate the first type of random vector, consider the multiple regression model

yi ¼ b0 þ b1xi1 þ b2xi2 þ � � � þ bkxik þ 1i, i ¼ 1, 2, . . . , n,

as given in (1.2). In Chapters 7–9, we treat the x variables as constants, in which case
we have two random vectors:

y ¼

y1

y2

..

.

yn

0
BBB@

1
CCCA and 1 ¼

11

12

..

.

1n

0
BBB@

1
CCCA: (3:1)

Linear Models in Statistics, Second Edition, by Alvin C. Rencher and G. Bruce Schaalje
Copyright # 2008 John Wiley & Sons, Inc.
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The yi values are observable, but the 1i’s are not observable unless the b’s are
known.

To illustrate the second type of random vector, consider regression of y on several
random x variables (this regression case is discussed in Chapter 10). For the ith indi-
vidual in the sample, we observe the k þ 1 random variables yi, xi1, xi2, . . . , xik, which
constitute the random vector ( yi, xi1, . . . , xik)0. In some cases, the k þ 1 variables
yi, xi1, . . . , xik are all measured using the same units or scale of measurement, but
typically the scales differ.

3.2 MEANS, VARIANCES, COVARIANCES, AND CORRELATIONS

In this section, we review some properties of univariate and bivariate random vari-
ables. We begin with a univariate random variable y. We do not distinguish notation-
ally between the random variable y and an observed value of y. In many texts, an
uppercase letter is used for the random variable and the corresponding lowercase
letter represents a realization of the random variable, as in the expression P(Y � y).
This practice is convenient in a univariate context but would be confusing in
the present text where we use uppercase letters for matrices and lowercase letters
for vectors.

If f(y) is the density of the random variable y, the mean or expected value of y is
defined as

m ¼ E(y) ¼
ð1

�1

yf (y) dy: (3:2)

This is the population mean. Later (beginning in Chapter 5), we also use the sample
mean of y, obtained from a random sample of n observed values of y.

The expected value of a function of y such as y2 can be found directly without first
finding the density of y2. In general, for a function u( y), we have

E[u(y)] ¼
ð1

�1

u(y)f (y) dy: (3:3)

For a constant a and functions u( y) and v( y), it follows from (3.3) that

E(ay) ¼ aE(y), (3:4)

E[u(y)þ v(y)] ¼ E[u(y)]þ E[v(y)]: (3:5)

The variance of a random variable y is defined as

s2 ¼ var(y) ¼ E(y� m)2, (3:6)
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This is the population variance. Later (beginning in Chapter 5), we also use the
sample variance of y, obtained from a random sample of n observed values of y.
The square root of the variance is known as the standard deviation:

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
var(y)

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E(y� m)2

q
: (3:7)

Using (3.4) and (3.5), we can express the variance of y in the form

s2 ¼ var(y) ¼ E(y2)� m2: (3:8)

If a is a constant, we can use (3.4) and (3.6) to show that

var(ay) ¼ a2var(y) ¼ a2s2: (3:9)

For any two variables yi and yj in the random vector y in (3.1), we define the
covariance as

sij ¼ cov(yi, yj) ¼ E[(yi � mi)(yj � mj)], (3:10)

where mi ¼ E( yi) and mj ¼ E ( yj). Using (3.4) and (3.5), we can express sij in the form

sij ¼ cov(yi, yj) ¼ E(yiyj)� mimj: (3:11)

Two random variables yi and yj are said to be independent if their joint density
factors into the product of their marginal densities

f (yi, yj) ¼ fi(yi) fj(yj), (3:12)

where the marginal density fi( yi) is defined as

fi(yi) ¼
ð1

�1

f (yi, yj)dyj: (3:13)

From the definition of independence in (3.12), we obtain the following properties:

1: E(yi, yj) ¼ E(yi)E(yj) if yi and yj are independent. (3:14)

2: sij ¼ cov(yi, yj) ¼ 0 if yi and yj are independent. (3:15)

The second property follows from the first.
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In the first type of random vector defined in Section 3.1, the variables y1, y2, . . . , yn

would typically be independent if obtained from a random sample, and we would
thus have sij ¼ 0 for all i = j. However, for the variables in the second type of
random vector, we would typically have sij = 0 for at least some values of i and j.

The converse of the property in (3.15) is not true; that is, sij ¼ 0 does not imply
independence. This is illustrated in the following example.

Example 3.2. Suppose that the bivariate random variable (x, y) is distributed uni-
formly over the region 0 � x � 2, 2x 2 x2 � y � 1 þ 2x 2 x2; see Figure 3.1.

The area of the region is given by

Area ¼
ð2

0

ð1þ2x�x2

2x�x2

dy dx ¼ 2:

Hence, for a uniform distribution over the region, we set

f (x, y) ¼ 1
2 , 0 � x � 2, 2x� x2 � y � 1þ 2x� x2,

so that
Ð Ð

f (x, y)dx dy ¼ 1.
To find sxy using (3.11), we need E(xy), E(x), and E( y). The first of these is

given by

E(xy) ¼
ð2

0

ð1þ2x�x2

2x�x2
xy 1

2

� �
dy dx

¼
ð2

0

x

4
(1þ 4x� 2x2)dx ¼ 7

6
:

Figure 3.1 Region for f (x, y) in Example 3.2.
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To find E(x) and E( y), we first find the marginal distributions of x and y. For f1(x),
we have, by (3.13),

f1(x) ¼
ð1þ2x�x2

2x�x2

1
2 dy ¼ 1

2 , 0 � x � 2:

For f2( y), we obtain different results for 0 � y � 1 and 1 � y � 2:

f2(y) ¼
ð1�

ffiffiffiffiffiffi
1�y
p

0

1
2 dxþ

ð2

1þ
ffiffiffiffiffiffi
1�y
p

1
2 dx ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffi
1� y
p

, 0 � y � 1, (3:16)

f2(y) ¼
ð1þ

ffiffiffiffiffiffi
2�y
p

1�
ffiffiffiffiffiffi
2�y
p

1
2 dx ¼

ffiffiffiffiffiffiffiffiffiffiffi
2� y
p

, 1 � y � 2: (3:17)

Then

E(x) ¼
ð2

0
x 1

2

� �
dx ¼ 1,

E(y) ¼
ð1

0
y(1�

ffiffiffiffiffiffiffiffiffiffiffi
1� y

p
)dyþ

ð2

1
y
ffiffiffiffiffiffiffiffiffiffiffi
2� y

p
dy ¼ 7

6 :

Now by (3.11), we obtain

sxy ¼ E(xy)� E(x)E(y)

¼ 7
6� (1) 7

6

� �
¼ 0:

However, x and y are clearly dependent since the range of y for each x depends on the
value of x.

As a further indication of the dependence of y on x, we examine E( yjx), the
expected value of y for a given value of x, which is found as

E(yjx) ¼
ð

yf (yjx)dy:

The conditional density f ( yjx) is defined as

f (yjx) ¼ f (x, y)
f1(x)

, (3:18)
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which becomes

f (yjx) ¼
1
2
1
2

¼ 1, 2x� x2 � y � 1þ 2x� x2:

Thus

E(yjx) ¼
ð1þ2x�x2

2x�x2

y(1)dy

¼ 1
2 (1þ 4x� 2x2):

Since E( yjx) depends on x, the two variables are dependent. Note that
E(yjx) ¼ 1

2 (1þ 4x� 2x2) is the average of the two curves y ¼ 2x 2 x2 and y ¼
1 þ 2x 2 x2. This is illustrated in Figure 3.2. A

In Example 3.2 we have two dependent random variables x and y for whichsxy ¼ 0.
In cases such as this,sxy is not a good measure of relationship. However, if x and y have
a bivariate normal distribution (see Section 4.2), then sxy ¼ 0 implies independence of
x and y (see Corollary 1 to Theorem 4.4c). In the bivariate normal case, E( yjx) is a
linear function of x (see Theorem 4.4d), and curves such as
E(yjx) ¼ 1

2 (1þ 4x� 2x2) do not occur.
The covariance sij as defined in (3.10) depends on the scale of measurement of

both yi and yj. To standardize sij, we divide it by (the product of) the standard devi-
ations of yi and yj to obtain the correlation:

rij ¼ corr(yi, yj) ¼
sij

sisj:
(3:19)

Figure 3.2 E( yjx) in Example 3.2.
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3.3 MEAN VECTORS AND COVARIANCE MATRICES FOR
RANDOM VECTORS

3.3.1 Mean Vectors

The expected value of a p � 1 random vector y is defined as the vector of expected
values of the p random variables y1, y2, . . . , yp in y:

EðyÞ ¼ E

y1

y2

..

.

yp

0
BBB@

1
CCCA ¼

E( y1)
E( y2)

..

.

E( yp)

0
BBB@

1
CCCA ¼

m1
m2

..

.

mp

0
BBB@

1
CCCA ¼ m, (3:20)

where E( yi) ¼ mi is obtained as E( yi) ¼
Ð

yi fi( yi) dyi, using fi( yi), the marginal
density of yi.

If x and y are p � 1 random vectors, it follows from (3.20) and (3.5) that the
expected value of their sum is the sum of their expected values:

E(xþ y) ¼ E(x)þ E(y): (3:21)

3.3.2 Covariance Matrix

The variances s1
2, s2

2, . . . , sp
2 of y1, y2, . . . , yp and the covariances sij for all i = j

can be conveniently displayed in the covariance matrix, which is denoted by S,
the uppercase version of sij:

S ¼ cov(y) ¼

s11 s12 . . . s1p

s21 s22 . . . s2p

..

. ..
. ..

.

s p1 s p2 . . . s pp

0
BBB@

1
CCCA: (3:22)

The ith row of S contains the variance of yi and the covariance of yi with each of the
other y variables. To be consistent with the notation sij, we have used sii ¼ si

2, i ¼ 1,
2, . . . , p, for the variances. The variances are on the diagonal of S, and the covari-
ances occupy off-diagonal positions. There is a distinction in the font used for S
as the covariance matrix and

P
as the summation symbol. Note also the distinction

in meaning between the notation cov(y) ¼ S and cov( yi, yj) ¼ sij.
The covariance matrixS is symmetric becausesij ¼ sji [see (3.10)]. In many appli-

cations, S is assumed to be positive definite. This will ordinarily hold if the y variables
are continuous random variables and if there are no linear relationships among them.
(If there are linear relationships among the y variables, Swill be positive semidefinite.)

3.3 MEAN VECTORS AND COVARIANCE MATRICES FOR RANDOM VECTORS 75



By analogy with (3.20), we define the expected value of a random matrix Z as the
matrix of expected values:

E(Z) ¼ E

z11 z12 . . . z1p

z21 z22 . . . z2p

..

. ..
. ..

.

zn1 zn2 . . . znp

0
BBB@

1
CCCA ¼

E(z11) E(z12) . . . E(z1p)
E(z21) E(z22) . . . E(z2p)

..

. ..
. ..

.

E(zn1) E(zn2) . . . E(znp)

0
BBB@

1
CCCA: (3:23)

We can express S as the expected value of a random matrix. By (2.21), the (ij)th
element of the matrix (y2m)(y2m)0 is ( yi2mi)( yj2mj). Thus, by (3.10) and (3.23),
the (ij)th element of E [(y2m) (y2m)0] is E[ ( yi2mi) ( yj2mj)]¼ sij. Hence

E[( y� m)(y� m0)] ¼

s11 s12 . . . s1p

s21 s22 . . . s2p

..

. ..
. ..

.

s p1 s p2 . . . s pp

0
BBB@

1
CCCA ¼ S: (3:24)

We illustrate (3.24) for p ¼ 3:

S ¼ E[(y� m)(y� m)0]

¼ E

y1 � m1

y2 � m2

y3 � m3

0
B@

1
CA(y1 � m1, y2 � m2, y3 � y3)

2
64

3
75

¼ E

(y1 � m1)2 (y1 � m1)(y2 � m2) (y1 � m1)(y3 � m3)

(y2 � m2)(y1 � m1) (y2 � m2)2 (y2 � m2)(y3 � m3)

(y3 � m3)(y1 � m1) (y3 � m3)(y2 � m2) (y3 � m3)2

2
64

3
75

¼
E(y1 � m1)2 E[(y1 � m1)(y2 � m2)] E[(y1 � m1)(y3 � m3)]

E[(y2 � m2)(y1 � m1)] E(y2 � m2)2 E[(y2 � m2)(y3 � m3)]

E[(y3 � m3)(y1 � m1)] E[(y3 � m3)(y2 � m2)] E(y3 � m3)2

2
64

3
75

¼
s2

1 s12 s13

s21 s2
2 s23

s31 s32 s2
3

0
B@

1
CA:

We can write (3.24) in the form

S ¼ E[(� m)(y� m)0] ¼ E(yy0)� mm0, (3:25)

which is analogous to (3.8) and (3.11).
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3.3.3 Generalized Variance

A measure of overall variability in the population of y variables can be defined as the
determinant of S:

Generalized variance ¼ jSj: (3:26)

If jSj is small, the y variables are concentrated closer to m than if jSj is large. A small
value of jSj may also indicate that the variables y1, y2, . . . , yp in y are highly inter-
correlated, in which case the y variables tend to occupy a subspace of the p dimen-
sions [this corresponds to one or more small eigenvalues; see Rencher (1998, Section
2.1.3)].

3.3.4 Standardized Distance

To obtain a useful measure of distance between y and m, we need to account for the
variances and covariances of the yi variables in y. By analogy with the univariate stan-
dardized variable (y� m)=s, which has mean 0 and variance 1, the standardized dis-
tance is defined as

Standardized distance ¼ (y� m)0S�1(y� m): (3:27)

The use of S�1 standardizes the (transformed) yi variables so that they have means
equal to 0 and variances equal to 1 and are also uncorrelated (see Problem 3.11).
A distance such as (3.27) is often called a Mahalanobis distance (Mahalanobis 1936).

3.4 CORRELATION MATRICES

By analogy with S in (3.22), the correlation matrix is defined as

Pr ¼ (rij) ¼

1 r12 . . . r1p

r21 1 . . . r2p

..

. ..
. ..

.

r p1 r p2 . . . 1

0
BBB@

1
CCCA, (3:28)

where rij ¼ sij=sisj is the correlation of yi and yj defined in (3.19). The second row
of Pr, for example, contains the correlation of y2 with each of the other y variables.
We use the subscript r in Pr to emphasize that P is the uppercase version of r.

If we define

Ds ¼ [diag(S)]1=2 ¼ diag(s1, s2, . . . , sp), (3:29)
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then by (2.31), we can obtain Pr from S and vice versa:

Pr ¼ D�1
s SD�1

s , (3:30)

S ¼ DsPrDs: (3:31)

3.5 MEAN VECTORS AND COVARIANCE MATRICES FOR
PARTITIONED RANDOM VECTORS

Suppose that the random vector v is partitioned into two subsets of variables, which
we denote by y and x:

v ¼ y
x

� �
¼

y1

..

.

yp

x1

..

.

xq

0
BBBBBBBB@

1
CCCCCCCCA
:

Thus there are p þ q random variables in v.
The mean vector and covariance matrix for v partitioned as above can be expressed

in the following form

m ¼ E(v) ¼ E
y

x

� �
¼

E(y)

E(x)

� �
¼

my

mx

� �
, (3:32)

S ¼ cov(v) ¼ cov
y

x

� �
¼

Syy Syx

Sxy Sxx

� �
, (3:33)

where Sxy ¼ S0yx. In (3.32), the submatrix my ¼ [E(y1), E(y2), . . . , E(yp)]0

contains the means of y1, y2, . . . , yp. Similarly mx contains the means of the x
variables. In (3.33), the submatrix Syy ¼ cov(y) is a p � p covariance matrix for y
containing the variances of y1, y2, . . . , yp on the diagonal and the covariance of
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each yi with each yj (i = j) off the diagonal:

Syy ¼

s2
y1

sy1y2 � � � sy1yp

sy2y1 s2
y2
� � � sy2yp

..

. ..
. ..

.

sypy1 sypy2 � � � s2
yp

0
BBBB@

1
CCCCA
:

Similarly, Sxx ¼ cov(x) is the q � q covariance matrix of x1, x2, . . . , xq. The matrix
Syx in (3.33) is p � q and contains the covariance of each yi with each xj:

Syx ¼

sy1x1 sy1x2 � � � sy1xq

sy2x1 sy2x2 � � � sy2xq

..

. ..
. ..

.

sypx1 sypx2 � � � sypxq

0
BBB@

1
CCCA:

Thus Syx is rectangular unless p ¼ q. The covariance matrix Syx is also denoted
by cov(y, x) and can be defined as

Syx ¼ cov(y, x) ¼ E[(y� my)(x� mx)0]: (3:34)

Note the difference in meaning between cov
y
x

� �
in (3.33) and cov(y, x) ¼ Syx

in (3.34). We have now used the notation cov in three ways: (1) cov( yi, yj), (2)
cov(y), and (3) cov(y, x). The first of these is a scalar, the second is a symmetric
(usually positive definite) matrix, and the third is a rectangular matrix.

3.6 LINEAR FUNCTIONS OF RANDOM VECTORS

We often use linear combinations of the variables y1, y2, . . . , yp from a random
vector y. Let a ¼ (a1, a2, . . . , ap)0 be a vector of constants. Then, by an expression
preceding (2.18), the linear combination using the a terms as coefficients can be
written as

z ¼ a1y1 þ a2y2 þ � � � þ apyp ¼ a0y: (3:35)

We consider the means, variances, and covariances of such linear combinations in
Sections 3.6.1 and 3.6.2.
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3.6.1 Means

Since y is a random vector, the linear combination z ¼ a0y is a (univariate) random
variable. The mean of a0y is given the following theorem.

Theorem 3.6a. If a is a p � 1 vector of constants and y is a p � 1 random vector
with mean vector m, then

mz ¼ E(a0y) ¼ a0E(y) ¼ a0m: (3:36)

PROOF. Using (3.4), (3.5), and (3.35), we obtain

E(a0y) ¼ E(a1y1 þ a2y2 þ � � � þ apyp)

¼ E(a1y1)þ E(a2y2)þ � � � þ E(apyp)

¼ a1E(y1)þ a2E(y2)þ � � � þ apE(yp)

¼ (a1, a2, . . . , ap)

E(y1)

E(y2)

..

.

E(yp)

0
BBBB@

1
CCCCA

¼ a0E(y) ¼ a0m: A

Suppose that we have several linear combinations of y with constant coefficients:

z1 ¼ a11y1 þ a12y2 þ . . .þ a1pyp ¼ a01y

z2 ¼ a21y1 þ a22y2 þ . . .þ a2pyp ¼ a02y

..

. ..
.

zk ¼ ak1y1 þ ak2y2 þ . . .þ akpyp ¼ a0ky,

where a0i ¼ (ai1, ai2, . . . , aip) and y ¼ (y1, y2, . . . , yp)0. These k linear functions can
be written in the form

z ¼ Ay, (3:37)
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where

z ¼

z1

z2

..

.

zk

0
BBB@

1
CCCA, A ¼

a01
a02

..

.

a0k

0
BBB@

1
CCCA ¼

a11 a12 . . . a1p

a21 a22 . . . a2p

..

. ..
. ..

.

ak1 ak2 . . . akp

0
BBB@

1
CCCA:

It is possible to have k . p, but we typically have k � p with the rows of A
linearly independent, so that A is full-rank. Since y is a random vector, each
zi ¼ a0iy is a random variable and z ¼ (z1, z2, . . . , zk)0 is a random vector. The
expected value of z ¼ Ay is given in the following theorem, as well as some
extensions.

Theorem 3.6b. Suppose that y is a random vector, X is a random matrix, a and b are
vectors of constants, and A and B are matrices of constants. Then, assuming the
matrices and vectors in each product are conformal, we have the following expected
values:

ðiÞ E(Ay) ¼ AE(y): (3:38)

ðiiÞ E(a0Xb) ¼ a0E(X)b: (3:39)

ðiiiÞ E(AXB) ¼ AE(X)B: (3:40)

PROOF. These results follow from Theorem 3.6A (see Problem 3.14). A

Corollary 1. If A is a k � p matrix of constants, b is a k � 1 vector of constants, and
y is a p � 1 random vector, then

E(Ayþ b) ¼ AE(y)þ b: (3:41)

A

3.6.2 Variances and Covariances

The variance of the random variable z ¼ a0y is given in the following theorem.

Theorem 3.6c. If a is a p � 1 vector of constants and y is a p � 1 random vector
with covariance matrix S, then the variance of z ¼ a0y is given by

s2
z ¼ var(a0y) ¼ a0Sa: (3:42)
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PROOF. By (3.6) and Theorem 3.6a, we obtain

var(a0y) ¼ E(a0y� a0m)2 ¼ E[a0(y� m)]2

¼ E[a0(y� m)a0(y� m)]

¼ E[a0(y� m)(y� m)0a] [by (2:18)]

¼ a0E[(y� m)(y� m)0]a [by Theorem 3:6b(ii)]

¼ a0Sa [by(3:24)]: A

We illustrate 3.42 for p ¼ 3:

var(a0y) ¼ var(a1y1 þ a2y2 þ a3y3) ¼ a0Sa

¼ a2
1s

2
1 þ a2

2s
2
2 þ a2

3s
2
3 þ 2a1a2s12 þ 2a1a3s13 þ 2a2a3s23:

Thus, var(a0y) ¼ a0Sa involves all the variances and covariances of y1, y2, and y3.
The covariance of two linear combinations is given in the following corollary to

Theorem 3.6c.

Corollary 1. If a and b are p � 1 vectors of constants, then

cov(a0y, b0y) ¼ a0Sb: (3:43)

A

Each variable zi in the random vector z ¼ (z1, z2, . . . , zk)0 ¼ Ay in (3.37) has a
variance, and each pair zi and zj (i = j) has a covariance. These variances and covari-
ances are found in the covariance matrix for z, which is given in the following
theorem, along with cov(z, w), where w ¼ By is another set of linear functions.

Theorem 3.6d. Let z ¼ Ay and w ¼ By, where A is a k � p matrix of constants, B
is an m� p matrix of constants, and y is a p� 1 random vector with covariance
matrix S. Then

ðiÞ cov(z) ¼ cov(Ay) ¼ ASA0, (3:44)

ðiiÞ cov(z, w) ¼ cov(Ay, By) ¼ ASB0: (3:45)

A

Typically, k � p, and the k � p matrix A is full rank, in which case, by Corollary 1
to 2.6b, ASA0 is positive definite (assuming S to be positive definite). If k . p, then
by Corollary 2 to Theorem 2.6b, ASA0 is positive semidefinite. In this case, ASA0 is
still a covariance matrix, but it cannot be used in either the numerator or denominator
of the multivariate normal density given in (4.9) in Chapter 4.
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Note that cov(z, w) ¼ ASB0 is a k � m rectangular matrix containing the covari-
ance of each zi with each wj, that is, cov(z, w) contains cov(zi, wj), i ¼ 1, 2, . . . , k,
j ¼ 1, 2, . . . , m. These km covariances can also be found individually by (3.43).

Corollary 1. If b is a k � 1 vector of constants, then

cov(Ayþ b) ¼ ASA0: (3:46)

A

The covariance matrix of linear functions of two different random vectors is given
in the following theorem.

Theorem 3.6e. Let y be a p � 1 random vector and x be a q� 1 random vector such
that cov(y, x) ¼ Syx. Let A be a k � p matrix of constants and B be an h� q matrix
of constants. Then

cov(Ay, Bx) ¼ ASyxB0: (3:47)

PROOF. Let

v ¼ y
x

� �
and C ¼ A O

O B

� �
:

A

Use Theorem 3.6d(i) to obtain cov(Cv). The result follows.

PROBLEMS

3.1 Show that E(ay) ¼ aE(y) as in (3.4).

3.2 Show that E(y� m)2 ¼ E(y2)� m2 as in (3.8).

3.3 Show that var(ay) ¼ a2s2 as in (3.9).

3.4 Show that cov(yi, yj) ¼ E(yiyj)� mimj as in (3.11).

3.5 Show that if yi and yj are independent, then E(yiyj) ¼ E(yi)E(yj) as in (3.14).

3.6 Show that if yi and yj are independent, then sij ¼ 0 as in (3.15).

3.7 Establish the following results in Example 3.2:

(a) Show that f2(y) ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffi
1� y
p

for 0 � y � 1 and f2(y) ¼
ffiffiffiffiffiffiffiffiffiffiffi
2� y
p

for
1 � y � 2.

(b) Show that E(y) ¼ 7
6 and E(xy) ¼ 7

6.

(c) Show that E(yjx) ¼ 1
2 (1þ 4x� 2x2).
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3.8 Suppose the bivariate random variable (x, y) is uniformly distributed over the
region bounded below by y ¼ x� 1 for 1 � x � 2 and by y ¼ 3� x for
2 � x � 3 and bounded above by y ¼ x for 1 � x � 2 and by y ¼ 4� x for
2 � x � 3.

(a) Show that the area of this region is 2, so that f (x, y) ¼ 1
2.

(b) Find f1(x), f2(y), E(x), E(y), E(xy), and sxy, as was done in Example 3.2.
Are x and y independent?

(c) Find f (yjx) and E(yjx).

3.9 Show that E(xþ y) ¼ E(x)þ E(y) as in (3.21).

3.10 Show that E[(y� m)(y� m)0] ¼ E(yy0)� mm0 as in (3.25).

3.11 Show that the standardized distance transforms the variables so that they are
uncorrelated and have means equal to 0 and variances equal to 1 as noted
following (3.27).

3.12 Illustrate Pr ¼ D�1
s SD�1

s in (3.30) for p ¼ 3.

3.13 Using (3.24), show that

cov(v) ¼ cov
y
x

� �
¼ Syy Syx

Sxy Sxx

� �

as in (3.33).

3.14 Prove Theorem 3.6b.

3.15 Prove Corollary 1 to Theorem 3.6b.

3.16 Prove Corollary 1 to Theorem 3.6c.

3.17 Prove Theorem 3.6d.

3.18 Prove Corollary 1 to Theorem 3.6d.

3.19 Consider four k � 1 random vectors y, x, v, and w, and four h� k constant
matrices A, B, C, and D. Find cov(Ayþ Bx, Cvþ Dw).

3.20 Let y ¼ (y1, y2, y3)0 be a random vector with mean vector and covariance
matrix

m ¼
1
�1

3

0
@

1
A, S ¼

1 1 0
1 2 3
0 3 10

0
@

1
A:
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(a) Let z ¼ 2y1 � 3y2 þ y3. Find E(z) and var(z).

(b) Let z1 ¼ y1 þ y2 þ y3 and z2 ¼ 3y1 þ y2 � 2y3. Find E(z) and cov(z),
where z ¼ (z1, z2)0.

3.21 Let y be a random vector with mean vector and covariance matrix m and S as
given in Problem 3.20, and define w ¼ (w1, w2, w3)0 as follows:

w1 ¼ 2y1 � y2 þ y3

w2 ¼ y1 þ 2y2 � 3y3

w3 ¼ y1 þ y2 þ 2y3:

(a) Find E(w) and cov(w).

(b) Using z as defined in Problem 3.20b, find cov(z, w).
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4 Multivariate Normal Distribution

In order to make inferences, we often assume that the random vector of interest has a
multivariate normal distribution. Before developing the multivariate normal density
function and its properties, we first review the univariate normal distribution.

4.1 UNIVARIATE NORMAL DENSITY FUNCTION

We begin with a standard normal random variable z with mean 0 and variance 1. We
then transform z to a random variable y with arbitrary mean m and variance s 2, and
we find the density of y from that of z. In Section 4.2, we will follow an analogous
procedure to obtain the density of a multivariate normal random vector.

The standard normal density is given by

g(z) ¼ 1ffiffiffiffiffiffi
2p
p e�z2=2, �1 , z , 1, (4:1)

for which E(z) ¼ 0 and var(z) ¼ 1. When z has the density (4.1), we say that z is dis-
tributed as N(0, 1), or simply that z is N(0,1).

To obtain a normal random variable y with arbitrary mean m and variance s 2, we
use the transformation z ¼ (y� m)=s or y ¼ s zþ m, so that E(y) ¼ m and
var(y) ¼ s 2. We now find the density f ( y) from g(z) in (4.1). For a continuous
increasing function (such as y ¼ s zþ m) or for a continuous decreasing function,
the change-of-variable technique for a definite integral gives

f (y) ¼ g(z)
dz

dy

����
����, (4:2)

where jdz=dyj is the absolute value of dz/dy (Hogg and Craig 1995, p. 169). To use
(4.2) to find the density of y, it is clear that both z and dz/dy on the right side must be
expressed in terms of y.

Linear Models in Statistics, Second Edition, by Alvin C. Rencher and G. Bruce Schaalje
Copyright # 2008 John Wiley & Sons, Inc.
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Let us apply (4.2) to y ¼ s zþ m. The density g(z) is given in (4.1), and for
z ¼ (y� m)=s, we have jdz=dyj ¼ 1=s. Thus

f (y) ¼ g(z)
dz

dy

����
���� ¼ g

y� m

s

� � 1
s

¼ 1ffiffiffiffiffiffi
2p
p

s
e�(y�m)2=2s2

, (4:3)

which is the normal density with E(y) ¼ m and var(y) ¼ s 2. When y has the density
(4.3), we say that y is distributed as N(m, s2) or simply that y is N(m, s2).

In Section 4.2, we use a multivariate extension of this technique to find the multi-
variate normal density function.

4.2 MULTIVARIATE NORMAL DENSITY FUNCTION

We begin with independent standard normal random variables z1, z2, . . . , zp, with
mi ¼ 0 and s 2

i ¼ 1 for all i and sij ¼ 0 for i = j, and we then transform the zi
0s to

multivariate normal variables y1, y2, . . . , yp, with arbitrary means, variances, and
covariances. We thus start with a random vector z ¼ (z1, z2, . . . , zp)0, where
E(z) ¼ 0, cov(z) ¼ I, and each zi has the N(0,1) density in (4.1). We wish to trans-
form z to a multivariate normal random vector y ¼ (y1, y2 . . . , yp)0 with E(y) ¼ m

and cov(y) ¼ S, where m is any p� 1 vector and S is any p� p positive definite
matrix.

By (4.1) and an extension of (3.12), we have

g(z1, z2, . . . , zp) ¼ g(z) ¼ g1(z1)g2(z2) � � � gp(zp)

¼ 1ffiffiffiffiffiffi
2p
p e�z2

1=2 1ffiffiffiffiffiffi
2p
p e�z2

2=2 � � � 1ffiffiffiffiffiffi
2p
p e�z2

p=2

¼ 1

(
ffiffiffiffiffiffi
2p
p

)p
e�
P

i
z2

i =2

¼ 1

(
ffiffiffiffiffiffi
2p
p

)p
e�z0z=2 [by (2:20)]: (4:4)

If z has the density (4.4), we say that z has a multivariate normal density with mean
vector 0 and covariance matrix I or simply that z is distributed as Np(0, I), where p is
the dimension of the distribution and corresponds to the number of variables in y.

To transform z to y with arbitrary mean vector E(y) ¼ m and arbitrary (positive
definite) covariance matrix cov(y) ¼ S, we define the transformation

y ¼ S
1=2zþ m, (4:5)
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where S1=2 is the (symmetric) square root matrix defined in (2.109). By (3.41) and
(3.46), we obtain

E(y) ¼ E(S1=2zþ m) ¼ S
1=2E(z)þ m ¼ S

1=20þ m ¼ m,

cov(y) ¼ cov(S1=2zþ m) ¼ S
1=2cov(z)(S1=2)0 ¼ S

1=2IS1=2 ¼ S:

Note the analogy of (4.5) to y ¼ s zþ m in Section 4.1.
Let us now find the density of y ¼ S

1=2zþ m from the density of z in (4.4). By
(4.2), the density of y ¼ s zþ m is f (y) ¼ g(z)jdz=dy ¼ g(z)j1=sj. The analogous

expression for the multivariate linear transformation y ¼ S1=2zþ m is

f (y) ¼ g(z)abs(jS�1=2j), (4:6)

where S�1=2 is defined as (S1=2)�1 and abs(jS�1=2j) represents the absolute value of

the determinant of S�1=2, which parallels the absolute value expression

jdz=dyj ¼ j1=sj in the univariate case. (The determinant jS�1=2j is the Jacobian of

the transformation; see any advanced calculus text.) Since S�1=2 is positive definite,
we can dispense with the absolute value and write (4.6) as

f (y) ¼ g(z)jS�1=2j (4:7)

¼ g(z)jSj�1=2 [by (2:67)]: (4:8)

In order to express z in terms of y, we use (4.5) to obtain z ¼ S�1=2(y� m). Then
using (4.4) and (4.8), we can write the density of y as

f (y) ¼ g(z)jSj�1=2 ¼ 1

(
ffiffiffiffiffiffi
2p
p

)pjSj1=2
e�z0z=2

¼ 1

(
ffiffiffiffiffiffi
2p
p

)pjSj1=2
e�[S�1=2(y�m)]0[S�1=2(y�m)]=2

¼ 1

(
ffiffiffiffiffiffi
2p
p

)pjSj1=2
e�(y�m)0(S1=2S1=2)�1(y�m)=2

¼ 1

(
ffiffiffiffiffiffi
2p
p

)pjSj1=2
e�(y�m)0S�1(y�m)=2, (4:9)

which is the multivariate normal density function with mean vector m and covariance
matrix S. When y has the density (4.9), we say that y is distributed as Np(m, S) or
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simply that y is Np(m, S). The subscript p is the dimension of the p-variate normal
distribution and indicates the number of variables, that is, y is p� 1, m is p � 1,
and S is p � p.

A comparison of (4.9) and (4.3) shows the standardized distance (y� m)0

S
�1(y� m) in place of ( y� m)2=s 2 in the exponent and the square root of the gen-

eralized variance jSj in place of the square root of s 2 in the denominator. [For stan-
dardized distance, see (3.27), and for generalized variance, see (3.26).] These
distance and variance functions serve analogous purposes in the densities (4.9) and
(4.3). In (4.9), f (y) decreases as the distance from y to m increases, and a small
value of jSj indicates that the y0s are concentrated closer to m than is the case when
jSj is large. A small value of jSj may also indicate a high degree of multicollinearity
among the variables. High multicollinearity indicates that the variables are highly
intercorrelated, in which case the y0s tend to occupy a subspace of the p dimensions.

4.3 MOMENT GENERATING FUNCTIONS

We now review moment generating functions, which can be used to obtain some of
the properties of multivariate normal random variables. We begin with the univariate
case.

The moment generating function for a univariate random variable y is defined as

My(t) ¼ E(ety), (4:10)

provided E(ety) exists for every real number t in the neighborhood �h , t , h for
some positive number h. For the univariate normal N(m, s 2), the moment generating
function of y is given by

My(t) ¼ etmþt2s 2=2: (4:11)

Moment generating functions characterize a distribution in some important ways
that prove very useful (see the two properties at the end of this section). As their
name implies, moment generating functions can also be used to generate moments.
We now demonstrate this. For a continuous random variable y, the moment generating
function can be written as My(t) ¼ E(ety) ¼

Ð1

�1
etyf (y) dy. Then, provided we can

interchange the order of integration and differentiation,we have

dMy(t)
dt
¼ M0y(t) ¼

ð1

�1

yetyf ( y) dy: (4:12)

Setting t ¼ 0 gives the first moment or mean:

M0y(0) ¼
ð1

�1

yf (y) dy ¼ E( y): (4:13)
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Similarly, the kth moment can be obtained using the kth derivative evaluated at 0:

M(k)
y (0) ¼ E(yk): (4:14)

The second moment, E(y2), can be used to find the variance [see (3.8)].
For a random vector y, the moment generating function is defined as

My(t) ¼ E(et1y1þt2y2þ���þtpyp ) ¼ E(et0y): (4:15)

By analogy with (4.13), we have

@My(0)
@t

¼ E(y), (4:16)

where the notation @My(0)=@t indicates that @My(t)=@t is evaluated at t ¼ 0.
Similarly, @2My(t)=@tr@ts evaluated at tr ¼ ts ¼ 0 gives E( yrys):

@2My(0)
@tr@ts

¼ E(yrys): (4:17)

For a multivariate normal random vector y, the moment generating function is
given in the following theorem.

Theorem 4.3. If y is distributed as Np(m, S), its moment generating function is
given by

My(t) ¼ et0mþt0St=2: (4:18)

PROOF. By (4.15) and (4.9), the moment generating function is

My(t) ¼
ð1

�1

. . .

ð1

�1

ket0y�(y�m)0S�1(y�m)=2 dy, (4:19)

where k ¼ 1=(
ffiffiffiffiffiffi
2p
p

)pjSj1=2 and dy ¼ dy1 dy2 � � � dyp. By rewriting the exponent, we
obtain

My(t) ¼
ð1

�1

. . .

ð1

�1

k et0mþt0St=2�(y�m�St)0S�1(y�m�St)=2 dy (4:20)

¼ et0mþt0St=2

ð1

�1

. . .

ð1

�1

k e�[y�(mþSt)]0S�1[y�(mþSt)]=2 dy (4:21)

¼ et0mþt0St=2:
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The multiple integral in (4.21) is equal to 1 because the multivariate normal
density in (4.9) integrates to 1 for any mean vector, including mþ St. A

Corollary 1. The moment generating function for y� m is

My�m(t) ¼ et0St=2: (4:22)

A

We now list two important properties of moment generating functions.

1. If two random vectors have the same moment generating function, they have
the same density.

2. Two random vectors are independent if and only if their joint moment gener-
ating function factors into the product of their two separate moment generating
functions; that is, if y0 ¼ (y01, y02) and t0 ¼ (t01, t02), then y1 and y2 are indepen-
dent if and only if

My(t) ¼ My1
(t1)My2

(t2): (4:23)

4.4 PROPERTIES OF THE MULTIVARIATE NORMAL
DISTRIBUTION

We first consider the distribution of linear functions of multivariate normal random
variables.

Theorem 4.4a. Let the p � 1 random vector y be Np(m, S), let a be any p � 1
vector of constants, and let A be any k � p matrix of constants with rank k � p.
Then

(i) z ¼ a0y is N(a0m, a0Sa)

(ii) z ¼ Ay is Nk(Am, ASA0).

PROOF

(i) The moment generating function for z ¼ a0y is given by

Mz(t) ¼ E(etz) ¼ E(eta0y) ¼ E(e(ta)0y)

¼ e(ta)0mþ(ta)0S(ta)=2 [by (4:18)]

¼ e(a0m)tþ(a0Sa)t2=2: (4:24)
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On comparing (4.24) with (4.11), it is clear that z ¼ a0y is univariate normal
with mean a0m and variance a0Sa.

(ii) The moment generating function for z ¼ Ay is given by

Mz(t) ¼ E(et0z) ¼ E(et0Ay),

which becomes

Mz(t) ¼ et0(Am)þt0(ASA0)t=2 (4:25)

(see Problem 4.7). By Corollary 1 to Theorem 2.6b, the covariance
matrix ASA0 is positive definite. Thus, by (4.18) and (4.25), the k � 1
random vector z ¼ Ay is distributed as the k-variate normal Nk(Am,
ASA0). A

Corollary 1. If b is any k � 1 vector of constants, then

z ¼ Ayþ b is Nk(Amþ b, ASA0): A

The marginal distributions of multivariate normal variables are also normal, as
shown in the following theorem.

Theorem 4.4b. If y is Np(m, S), then any r � 1 subvector of y has an r-variate
normal distribution with the same means, variances, and covariances as in the orig-
inal p-variate normal distribution.

PROOF. Without loss of generality, let y be partitioned as y0 ¼ (y01, y02), where y1 is the
r � 1 subvector of interest. Let m and S be partitioned accordingly:

y ¼ y1
y2

� �
, m ¼ m1

m2

� �
, S ¼ S11 S12

S21 S22

� �
:

Define A ¼ (Ir, O), where Ir is an r � r identity matrix and O is an r � ( p 2 r)
matrix of 0s. Then Ay ¼ y1, and by Theorem 4.4a (ii), y1 is distributed as
Nr(m1, S11). A

Corollary 1. If y is Np(m, S), then any individual variable yi in y is distributed as
N(mi, sii). A

For the next two theorems, we use the notation of Section 3.5, in which the random
vector v is partitioned into two subvectors denoted by y and x, where y is p � 1 and x
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is q � 1, with a corresponding partitioning of m and S [see (3.32) and (3.33)]:

v ¼ y
x

� �
, m ¼ E

y
x

� �
¼ my

mx

� �
, S ¼ cov

y
x

� �
¼ Syy Syx

Sxy Sxx

� �
:

By (3.15), if two random variables yi and yj are independent, then sij ¼ 0. The
converse of this is not true, as illustrated in Example 3.2. By extension, if two
random vectors y and x are independent (i.e., each yi is independent of each xj),
then Syx ¼ O (the covariance of each yi with each xj is 0). The converse is not
true in general, but it is true for multivariate normal random vectors.

Theorem 4.4c. If v ¼ y
x

� �
is N pþq(m, S), then y and x are independent if

Syx ¼ O:

PROOF. Suppose Syx ¼ O. Then

S ¼ Syy O
O Sxx

� �
,

and the exponent of the moment generating function in (4.18) becomes

t0mþ 1
2 t0St ¼ (t0y, t0x)

my

mx

� �
þ 1

2 (t0y, t0x)
Syy O

O Sxx

� �
ty

tx

� �

¼ t0ymy þ t0xmx þ 1
2 t0ySyyty þ 1

2 t0xSxxtx:

The moment generating function can then be written as

Mv(t) ¼ et0ymyþt0ySyyty=2et0xmxþt0xSxxtx=2,

which is the product of the moment generating functions of y and x. Hence, by (4.23),
y and x are independent. A

Corollary 1. If y is Np(m, S), then any two individual variables yi and yj are inde-
pendent if sij ¼ 0.

Corollary 2. If y is Np(m, S) and if cov(Ay, By) ¼ ASB0 ¼ O, then Ay and By are
independent. A

The relationship between subvectors y and x when they are not independent
(Syx = O) is given in the following theorem.
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Theorem 4.4d. If y and x are jointly multivariate normal with Syx = O, then the
conditional distribution of y given x, f (yjx), is multivariate normal with mean
vector and covariance matrix

E(yjx) ¼ my þ SyxS
�1
xx (x� mx), (4:26)

cov(yjx) ¼ Syy � SyxS
�1
xx Sxy: (4:27)

PROOF. By an extension of (3.18), the conditional density of y given x is

f (yjx) ¼ g(y, x)
h(x)

, (4:28)

where g(y, x) is the joint density of y and x, and h(x) is the marginal density of x. The
proof can be carried out by directly evaluating the ratio on the right hand side of
(4.28), using results (2.50) and (2.71) (see Problem 4.13). For variety, we use an
alternative approach that avoids working explicitly with g(y, x) and h(x) and the
resulting partitioned matrix formulas.

Consider the function

w
u

� �
¼ A

y
x

� �
� my

mx

� �� 	
, (4:29)

where

A ¼ A1

A2

� �
¼ I �SyxS

�1
xx

O I

� �
:

To be conformal, the identity matrix in A1 is p � p while the identity in A2 is q � q.
Simplifying and rearranging (4.29), we obtain w ¼ y� [my þ SyxS

�1
xx (x� mx)] and

u ¼ x� mx. Using the multivariate change-of-variable technique [referred to in (4.6],
the joint density of (w, u) is

p(w, u) ¼ g(y, x)jA�1j ¼ g(y, x)

[employing Theorem 2.9a (ii) and (vi)]. Similarly, the marginal density of u is

q(u) ¼ h(x)jI�1j ¼ h(x):

Using (3.45), it also turns out that

cov(w, u) ¼ A1SA2 ¼ Syx � SyxS
�1
xx Sxx ¼ O (4:30)

(see Problem 4.14). Thus, by Theorem 4.4c, w is independent of u. Hence

p(w, u) ¼ r(w)q(u),
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where r(w) is the density of w. Since p(w, u) ¼ g(y, x) and q(u) ¼ h(x), we also have

g(y, x) ¼ r(w)h(x),

and by (4.28),

r(w) ¼ g(y, x)
h(x)

¼ f (yjx):

Hence we obtain f (yjx) simply by finding r(w). By Corollary 1 to Theorem 4.4a,
r(w) is the multivariate normal density with

mw ¼ A1
my

mx

� �
�

my

mx

� �� 	
¼ 0, (4:31)

Sww ¼ A1SA01

¼ (I, � SyxS
�1
xx )

Syy Syx

Sxy Sxx

� �
I

�S�1
xx Sxy

� �

¼ Syy � SyxS
�1
xx Sxy: (4:32)

Thus r(w) ¼ r(y� [my þ SyxS
�1
xx (x� mx)]) is of the form Np(0, Syy� SyxS

�1
xx Sxy).

Equivalently, yjx is Np[my þ SyxS
�1
xx (x� mx), Syy � SyxS

�1
xx Sxy]. A

Since E(yjx) ¼ my þ SyxS
�1
xx (x� mx) in (4.26) is a linear function of x, any pair

of variables yi and yj in a multivariate normal vector exhibits a linear trend
E(yijyj) ¼ mi þ (sij=s jj)(yj � mj). Thus the covariance sij is related to the slope of
the line representing the trend, and sij is a useful measure of relationship between
two normal variables. In the case of nonnormal variables that exhibit a curved
trend, sij may give a very misleading indication of the relationship, as illustrated in
Example 3.2.

The conditional covariance matrix cov(yjx) ¼ Syy � SyxS
�1
xx Sxy in (4.27) does

not involve x. For some nonnormal distributions, on the other hand, cov(yjx) is a
function of x.

If there is only one y, so that v is partitioned in the form
v ¼ ( y, x1, x2, . . . , xq) ¼ ( y, x0), then m and S have the form

m ¼ my

mx

� �
, S ¼ s2

y s0yx
syx Sxx

� �
,

where my and s 2
y are the mean and variance of y, s 0yx ¼ (sy1, sy2, . . . , syq) contains

the covariances syi ¼ cov(y, xi), and Sxx contains the variances and covariances of
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the x variables. The conditional distribution is given in the following corollary to
Theorem 4.4d.

Corollary 1. If v ¼ ( y, x1, x2, . . . , xq) ¼ (y, x0), with

m ¼ my

mx

� �
, S ¼ s2

y s0yx
syx Sxx

� �
,

then yjx is normal with

E(yjx) ¼ my þ s0yxS
�1
xx (x� mx), (4:33)

var(yjx) ¼ s2
y � s0yxS

�1
xx syx: (4:34)

A

In (4.34), s0yxS
�1
xx syx � 0 because S�1

xx is positive definite. Therefore

var(yjx) � var(y): (4:35)

Example 4.4a. To illustrate Theorems 4.4a–c, suppose that y is N3(m, S), where

m ¼
3
1
2

0
@

1
A, S ¼

4 0 2
0 1 �1
2 �1 3

0
@

1
A:

For z ¼ y1 � 2y2 þ y3 ¼ (1, � 2, 1)y ¼ a0y, we have a0m ¼ 3 and a0Sa ¼ 19.
Hence by Theorem 4.4a(i), z is N(3, 19).

The linear functions

z1 ¼ y1 � y2 þ y3, z2 ¼ 3y1 þ y2 � 2y3

can be written as

z ¼ z1

z2

� �
¼ 1 �1 1

3 1 �2

� � y1

y2

y3

0
@

1
A ¼ Ay:

Then by Theorem 3.6b(i) and Theorem 3.6d(i), we obtain

Am ¼ 4
6

� �
, ASA0 ¼ 14 4

4 29

� �
,

and by Theorem 4.4a(ii), we have

z is N2
4
6

� �
,

14 4
4 29

� �� 	
:
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To illustrate the marginal distributions in Theorem 4.4b, note that y1 is N(3, 4), y3 is

N(2, 3),
y1

y2

� �
is N2

3
1

� �
,

4 0
0 1

� �� 	
, and

y1

y3

� �
is N2

3
2

� �
;

4 2
2 3

� �� 	
:

To illustrate Theorem 4.4c, we note that s12 ¼ 0, and therefore y1 and y2 are
independent. A

Example 4.4b. To illustrate Theorem 4.4d, let the random vector v be N4(m, S),
where

m ¼

2
5
�2

1

0
BB@

1
CCA, S ¼

9 0 3 3
0 1 �1 2
3 �1 6 �3
3 2 �3 7

0
BB@

1
CCA:

If v is partitioned as v ¼ (y1, y2, x1, x2)0, then my ¼
2
5

� �
, mx ¼

�2
1

� �
, Syy ¼

9 0
0 1

� �
, Syx ¼

3 3
�1 2

� �
, and Sxx ¼

6 �3
�3 7

� �
. By (4.26), we obtain

E(yjx) ¼ my þ SyxS
�1
xx (x� mx)

¼
2

5

� �
þ

3 3

�1 2

� �
6 �3

�3 7

� ��1 x1 þ 2

x2 � 1

� �

¼
2

5

� �
þ 1

33

30 27

�1 9

� �
x1 þ 2

x2 � 1

� �

¼
3þ 10

11
x1 þ

9
11

x2

14
3
� 1

33
x1 þ

3
11

x2

0
BB@

1
CCA:

By (4.27), we have

cov(yjx) ¼ Syy � SyxS
�1
xx Sxy

¼
9 0

0 1

� �
�

3 3

�1 2

� �
6 �3

�3 7

� ��1 3 �1

3 2

� �

¼
9 0

0 1

� �
� 1

33

171 24

24 19

� �

¼ 1
33

126 �24

�24 14

� �
:
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Thus

yjx is N2
3þ 10

11 x1 þ 9
11 x2

14
3 � 1

33 x1 þ 3
11 x2

 !
, 1

33
126 �24
�24 14

� �" #
:

A

Example 4.4c. To illustrate Corollary 1 to Theorem 4.4d, let v be N4(m, S), where m
and S are as given in Example 4.4b. If v is partitioned as v ¼ (y, x1, x2, x3)0, then m
and S are partitioned as follows:

m ¼
my

mx

� �
¼

2

5

�2

1

0
BBB@

1
CCCA,

S ¼
s2

y s0yx

syx Sxx

 !
¼

9 0 3 3

0 1 �1 2

3 �1 6 �3

3 2 �3 7

0
BBB@

1
CCCA:

By (4.33), we have

E(yjx1, x2, x3) ¼ my þ s0yxS
�1
xx (x� mx)

¼ 2þ (0, 3, 3)

1 �1 2

�1 6 �3

2 �3 7

0
B@

1
CA
�1 x1 � 5

x2 þ 2

x3 þ 1

0
B@

1
CA

¼ 95
7 � 12

7 x1 þ 6
7 x2 þ 9

7 x3:

By (4.34), we obtain

var(yjx1, x2, x3) ¼ s2
y � s0yxS

�1
xx syx

¼ 9� (0, 3, 3)

1 �1 2

�1 6 �3

2 �3 7

0
B@

1
CA
�1 0

3

3

0
B@

1
CA

¼ 9� 45
7 ¼ 18

7 :

Hence yjx1, x2, x3 is N( 95
7 � 12

7 x1 þ 6
7 x2 þ 9

7 x3, 18
7 ). Note that var(yjx1, x2, x3) ¼ 18

7
is less than var(y) ¼ 9, which illustrates (4.35). A
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4.5 PARTIAL CORRELATION

We now define the partial correlation of yi and yj adjusted for a subset of other y vari-
ables. For convenience, we use the notation of Theorems 4.4c and 4.4d. The subset of
y0s containing yi and yj is denoted by y, and the other subset of y0s is denoted by x.

Let v be N pþq(m, S) and let v, m, and S be partitioned as in Theorem 4.4c and
4.4d:

v ¼ y
x

� �
, m ¼ my

mx

� �
, S ¼ Syy Syx

Sxy Sxx

� �
:

The covariance of yi and yj in the conditional distribution of y given x will be denoted
by sij�rs...q, where yi and yj are two of the variables in y and yr , ys, . . . , yq are all the

variables in x. Thus sij�rs...q is the (ij)th element of cov(yjx) ¼ Syy � SyxS
�1
xx Sxy. For

example, s13�567 represents the covariance between y1 and y3 in the conditional dis-
tribution of y1, y2, y3, y4 given y5, y6, and y7 [in this case x ¼ (y5, y6, y7)0]. Similarly,
s22�567 represents the variance of y2 in the conditional distribution of y1, y2, y3, y4

given y5, y6, y7.
We now define the partial correlation coefficient rij�rs...q to be the correlation

between yi and yj in the conditional distribution of y given x, where
x ¼ ( yr, ys, . . . , yq)0. From the usual definition of a correlation [see (3.19)], we
can obtain rij�rs...q from sij�rs...q:

rij�rs...q ¼
sij�rs...qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sii�rs...qs jj�rs...q
p : (4:36)

This is the population partial correlation. The sample partial correlation rij�rs � � � q is
discussed in Section 10.7, including a formulation that does not require normality.

The matrix of partial correlations, Py�x ¼ (rij�rs...q) can be found by (3.30) and
(4.27) as

Py�x ¼ D�1
y�xSy�xD�1

y�x , (4:37)

where Sy�x ¼ cov(yjx) ¼ Syy � SyxS
�1
xx Sxy and Dy�x ¼ [diag(Sy�x)]1=2.

Unless y and x are independent (Syx ¼ O), the partial correlation rij�rs...q is differ-
ent from the usual correlation rij ¼ sij=

ffiffiffiffiffiffiffiffiffiffiffi
siis jj
p

. In fact, rij�rs...q and rij can be of oppo-
site signs (for an illustration, see Problem 4.16 g, h). To show this, we express sij�rs...q

in terms of sij. We first write Syx in terms of its rows

Syx ¼ cov(y, x) ¼

sy1x1 sy1x2 . . . sy1xq

sy2x1 sy2x2 . . . sy2xq

..

. ..
. ..

.

sypx1 sypx2 . . . sypxq

0
BBB@

1
CCCA ¼

s01x
s02x

..

.

s0px

0
BBB@

1
CCCA, (4:38)
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where s0ix ¼ (syix1 , syix2 , . . . , syixq ). Then sij�rs...q, the (ij)th element of

Syy � SyxS
�1
xx Sxy, can be written as

sij�rs...q ¼ sij � s0ixS
�1
xx s jx: (4:39)

Suppose that sij is positive. Then sij�rs...q is negative if s0ixS
�1
xx s jx . sij. Note also

that since S
�1
xx is positive definite, (4.39) shows that

sii�rs...q ¼ sii � s0ixS
�1
xx six � sii:

Example 4.5. We compare r12 and r12�34 using m and S in Example 4.4b. From S,
we obtain

r12 ¼
s12ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s11s22
p ¼ 0ffiffiffiffiffiffiffiffiffiffiffiffi

(9)(1)
p ¼ 0:

From cov(yjx) ¼ 1
33

126 �24
�24 14

� �
in Example 4.4b, we obtain

r12�34 ¼
s12�34ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s11�34s22�34
p ¼ �24=33ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(126=33)(14=33)
p ¼ �24ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(36)(49)
p

¼ �4
7
¼ �:571: A

PROBLEMS

4.1 Show that E(z) ¼ 0 and var(z) ¼ 1 when z has the standard normal density (4.1).

4.2 Obtain (4.8) from (4.7); that is, show that jS�1=2j ¼ jSj�1=2.

4.3 Show that @My(0)=@t ¼ E(y) as in (4.16).

4.4 Show that @2My(0)=@tr@ts ¼ E(yrys) as in (4.17).

4.5 Show that the exponent in (4.19) can be expressed as in (4.20); that is,
show that t0y� (y� m)0S�1(y� m)=2 ¼ t0mþ t0St=2� (y� m� St)0S�1

(y� m� St)=2.

4.6 Prove Corollary 1 to Theorem 4.3.

4.7 Show that E(et0Ay) ¼ et0(Am)þt0(ASA0)t=2 as in (4.25).

4.8 Consider a random variable with moment generating function M(t). Show that
the second derivative of ln[M(t)] evaluated at t ¼ 0 is the variance of the
random variable.

4.9 Assuming that y is Np(m, s2I) and C is an orthogonal matrix, show that Cy is
Np(Cm, s2I).
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4.10 Prove Corollary 1 to Theorem 4.4a.

4.11 Let A ¼ (Ir, O), as defined in the proof of Theorem 4.4b. Show that
Ay ¼ y1, Am ¼ m1, and ASA0 ¼ S11.

4.12 Prove Corollary 2 to Theorem 4.4c.

4.13 Prove Theorem 4.4d by direct evaluation of (4.28).

4.14 Given w ¼ y� Bx, show that cov(w, x) ¼ Syx � BSxx, as in (4.30).

4.15 Show that E(y� SyxS
�1
xx x) ¼ my � SyxS

�1
xx mx as in (4.31) and that

cov(y� SyxS
�1
xx x) ¼ Syy � SyxS

�1
xx Sxy as in (4.32).

4.16 Suppose that y is N4(m, S), where

m ¼

1
2
3
�2

0
BB@

1
CCA, S ¼

4 2 �1 2
2 6 3 �2
�1 3 5 �4

2 �2 �4 4

0
BB@

1
CCA:

Find the following.

(a) The joint marginal distribution of y1 and y3

(b) The marginal distribution of y2

(c) The distribution of z ¼ y1 þ 2y2 � y3 þ 3y4

(d) The joint distribution of z1 ¼ y1 þ y2 � y3 � y4 and z2 ¼ �3y1 þ y2 þ
2y3 � 2y4

(e) f (y1, y2jy3, y4)

(f) f (y1, y3jy2, y4)

(g) r13

(h) r13�24

(i) f (y1jy2, y3, y4)

4.17 Let y be distributed as N3(m, S), where

m ¼
2
�1

3

0
@

1
A, S ¼

4 1 0
1 2 1
0 1 3

0
@

1
A:

Find the following.

(a) The distribution of z ¼ 4y1 � 6y2 þ y3

(b) The distribution of z ¼ y1 � y2 þ y3

2y1 þ y2 � y3

� �

(c) f ( y2jy1, y3)

(d) f ( y1, y2jy3)

(e) r12 and r12�3
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4.18 If y is N3(m, S), where

S ¼
2 0 �1
0 4 0
�1 0 3

0
@

1
A,

which variables are independent? (See Corollary 1 to Theorem 4.4a)

4.19 If y is N4(m, S), where

S ¼

1 0 0 0
0 2 0 0
0 0 3 �4
0 0 �4 6

0
BB@

1
CCA,

which variables are independent?

4.20 Show that sij�rs � � � q ¼ sij � s0ixS
�1
xx s jx as in (4.39).
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5 Distribution of Quadratic
Forms in y

5.1 SUMS OF SQUARES

In Chapters 3 and 4, we discussed some properties of linear functions of the random
vector y. We now consider quadratic forms in y. We will find it useful in later chapters
to express a sum of squares encountered in regression or analysis of variance as a
quadratic form y0Ay, where y is a random vector and A is a symmetric matrix of con-
stants [see (2.33)]. In this format, we will be able to show that certain sums of squares
have chi-square distributions and are independent, thereby leading to F tests.

Example 5.1. We express some simple sums of squares as quadratic forms in y. Let
y1, y2, . . ., yn be a random sample from a population with mean m and variance s2. In
the following identity, the total sum of squares

Pn
i¼1 y2

i is partitioned into a sum of
squares about the sample mean �y ¼

Pn
i¼1 yi=n and a sum of squares due to the mean:

Xn

i¼1

y2
i ¼

Xn

i¼1

y2
i � ny�2

 !
þ n�y2

¼
Xn

i¼1

(yi � �y)2 þ n�y2: (5:1)

Using (2.20), we can express
Pn

i¼1 y2
i as a quadratic form

Xn

i¼1

y2
i ¼ y0y ¼ y0Iy,

where y0 ¼ ( y1, y2, . . ., yn). Using j ¼ (1, 1, . . ., 1)0 as defined in (2.6), we can
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write ȳ as

�y ¼ 1
n

Xn

i¼1

yi ¼
1
n

j0y

[see (2.24)]. Then nȳ2 becomes

n�y2 ¼ n
1
n

j0y

� �2

¼ n
1
n

j0y

� �
1
n

j0y

� �

¼ n
1
n

� �2

y0jj0y [by (2:18)]

¼ n
1
n

� �2

y0Jy [by (2:23)]

¼ y0
1
n

J

� �
y:

We can now write
Pn

i¼1 (yi � �y)2 as

Xn

i¼1

(yi � �y)2 ¼
Xn

i¼1

y2
i � n�y2 ¼ y0Iy� y0

1
n

J

� �
y

¼ y0 I� 1
n

J

� �
y: (5:2)

Hence (5.1) can be written in terms of quadratic forms as

y0Iy ¼ y0 I� 1
n

J

� �
yþ y0

1
n

J

� �
y: (5:3)

A

The matrices of the three quadratic forms in (5.3) have the following properties:

1. I ¼ I� 1
n

J

� �
þ 1

n
J:

2. I, I� 1
n

J, and
1
n

J are idempotent.

3. I� 1
n

J

� �
1
n

J

� �
¼ O:
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Using theorems given later in this chapter (and assuming normality of the yi’s), these
three properties lead to the conclusion that

Pn
i¼1 (yi � �y)2=s 2 and n�y2=s 2 have chi-

square distributions and are independent.

5.2 MEAN AND VARIANCE OF QUADRATIC FORMS

We first consider the mean of a quadratic form y0Ay.

Theorem 5.2a. If y is a random vector with mean m and covariance matrix S and if
A is a symmetric matrix of constants, then

E(y0Ay) ¼ tr(AS)þ m0Am: (5:4)

PROOF. By (3.25), S ¼ E(yy)0 � mm0, which can be written as

E(yy0) ¼ Sþ mm0: (5:5)

Since y0Ay is a scalar, it is equal to its trace. We thus have

E(y0Ay) ¼ E[tr(y0Ay)]

¼ E[tr(Ayy0)] [by (2:87)]

¼ tr[E(Ayy0)] [by (3:5)]

¼ tr[AE(yy0)] [by (3:40)]

¼ tr[A(Sþ mm0)] [by (5:8)]

¼ tr[ASþ Amm0] [by (2:15)]

¼ tr(AS)þ tr(m0Am) [by (2:86)]

¼ tr(AS)þ m0Am

:

Note that since y0Ay is not a linear function of y, E(y0Ay) = E(y0)AE(y). A

Example 5.2a. To illustrate Theorem 5.2a, consider the sample variance

s2 ¼
Pn

i¼1 (yi � �y)2

n� 1
: (5:6)

By (5.2), the numerator of (5.6) can be written as

Xn

i¼1

(yi � �y)2 ¼ y0 I� 1
n

J

� �
y,
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where y ¼ (y1, y2, . . . , yn)0. If the y’s are assumed to be independently distributed
with mean m and variance s2, then E(y) ¼ (m, m, . . . , m)0 ¼ mj and cov(y) ¼ s 2I.
Thus for use in (5.4) we have A ¼ I� (1=n)J, S ¼ s 2I, and m ¼ mj; hence

E
Xn

i¼1

(yi ¼ �y)2

" #
¼ tr I� 1

n
J

� �
(s 2I)

� �
þ m j0 I� 1

n
J

� �
mj

¼ s 2tr I� 1
n

J

� �
þ m2 j0j� j0jj0jð Þ [by (2:23)]

¼ s 2 n� n

n

� �
þ m2 n� 1

n
n2

� �
[by (2:23)]

¼ s 2(n� 1)þ 0:

Therefore

E(s2) ¼
E
Pn

i¼1 (yi � �y)2
� 	

n� 1
¼ (n� 1)s 2

n� 1
¼ s 2: (5:7)

A

Note that normality of the y’s is not assumed in Theorem 5.2a. However, normality
is assumed in obtaining the moment generating function of y0Ay and var(y0Ay) in the
following theorems.

Theorem 5.2b. If y is Np(m,S), then the moment generating function of y0Ay is

My0Ay(t) ¼ jI� 2tASj�1=2e�m
0[I�(I�2tAS)�1]S�1m=2 (5:8)

PROOF. By the multivariate analog of (3.3), we obtain

My 0Ay(t) ¼ E(ety 0Ay) ¼
ð1

�1

. . .

ð1

�1

ety 0Ayk1e�(y�m)0S�1(y�m)=2dy

¼ k1

ð1

�1

. . .

ð1

�1

e�[y0(I�2tAS)S�1y�2m0S�1yþm0S�1m]=2dy,

where k1 ¼ 1=[(
ffiffiffiffiffiffi
2p
p

)pjSj1=2] and dy ¼ dy1 dy2 . . . dyp: For t sufficiently close to 0,

I� 2tAS is nonsingular. Letting u 0 ¼ m 0(I� 2tAS)�1 and V�1 ¼ (I� 2tAS)S�1,
we obtain

My0Ay(t) ¼ k1k2

ð1

�1

. . .

ð1

�1

k3e�(y�u)0V�1(y�u)=2dy
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(Problem 5.4), where k2 ¼ (
ffiffiffiffiffiffiffiffi
(2p
p

)pjVj1=2e�½m
0S�1m�u0V�1u �=2 and k3 ¼

1=½ð
ffiffiffiffiffiffiffiffi
(2p
p

)pjVj1=2�. The multiple integral is equal to 1 since the multivariate
normal density integrates to 1. Thus My0AyðtÞ ¼ k1k2. Substituting and simplifying,
we obtain (5.8) (see Problem 5.5). A

Theorem 5.2c. If y is Np(m,S), then

var(y 0Ay) ¼ 2tr[(AS)2]þ 4m0ASAm: (5:9)

PROOF. The variance of a random variable can be obtained by evaluating the second
derivative of the natural logarithm of its moment generating function at t ¼ 0 (see hint
to Problem 5.14). Let C ¼ I� 2tAS. Then, from (5.8)

k(t) ¼ ln [My0Ay(t)] ¼ � 1
2

ln jCj � 1
2
m0(I� C�1)S�1m:

Using (2.117), we differentiate k(t) twice to obtain

k00(t) ¼ 1
2

1

jCj2
djCj
dt

� �2

� 1
2

1
jCj

d2jCj
dt2
� 1

2
m0C�1 d2C

dt2
C�1S�1m

þ m C�1 dC

dt

� �2

C�1S
�1m

(Problem 5.6). A useful expression for jCj can be found using (2.97) and (2.107).
Thus, if the eigenvalues of AS are li, i ¼ 1, . . . , p, we obtain

jCj ¼
Yp

i¼1

(1� 2tli)

¼ 1� 2t
X

i

li þ 4t2
X
i=j

lilj � � � � þ (� 1)p2ptpl1l2 � � � lp:

Then (djCj=dt) ¼ �2Sili þ 8tSi=jliljþ higher-order terms in t, and
(d2jCj=dt2) ¼ 8Si=jliljþ higher-order terms in t. Evaluating these expressions
at t ¼ 0, we obtain jCj ¼ 1, (djCj=dt)jt¼0 ¼ �2Sili ¼ �2 tr(AS) and
(d2jCj=dt2)jt¼0 ¼ 8Si=jlilj: For t ¼ 0 it is also true that C ¼ I, C�1 ¼ I,

(dC=dt)jt¼0 ¼ 2AS and (d2C=dt)jt¼0 ¼ O: Thus

k00(0) ¼ 2[tr(AS)]2 � 4
X
i=j

lilj þ 0þ 4m0ASAm

¼ 2 [tr(AS)]2 � 2
X
i=j

lilj

( )
þ 4m0ASAm:
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By Problem 2.81, this can be written as

2 tr[(AS)2]þ 4m0ASAm:

A

We now consider cov(y, y0Ay). To clarify the meaning of the expression cov(y,
y0Ay), we denote y0Ay by the scalar random variable v. Then cov(y, v) is a column
vector containing the covariance of each yi and v:

cov(y, v) ¼ E{[y� E(y)][v� E(v)]} ¼

sy1v

sy2v

..

.

sypv

0
BBB@

1
CCCA: (5:10)

[On the other hand, cov(v, y) would be a row vector.] An expression for cov(y, y0Ay)
is given in the next theorem.

Theorem 5.2d. If y is Np(m, S), then

cov(y, y0Ay) ¼ 2SAm: (5:11)

PROOF. By the definition in (5.10), we have

cov( y, y0Ay) ¼ E{[y� E(y)][y0Ay� E(y0Ay)]}:

By Theorem 5.2a, this becomes

cov( y, y0Ay) ¼ E{(y� m)[y0Ay� tr(AS)� m0Am]}:

Rewriting y0Ay� m0Am in terms of y� m (see Problem 5.7), we obtain

cov(y, y0Ay) ¼ E{(y� m)[(y� m)0A(y� m)þ 2(y� m)0Am� tr(AS)]} (5:12)

¼ E[(y� m)(y� m)0A(y� m)]þ 2E[(y� m)(y� m)0Am]

� E[(y� m)tr(AS)]

¼ 0þ 2SAm� 0:

The first term on the right side is 0 because all third central moments of the
multivariate normal are zero. The results for the other two terms do not depend on
normality (see Problem 5.7). A
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Corollary 1. Let B be a k � p matrix of constants. Then

cov(By, y0Ay) ¼ 2BSAm: (5:13)

A

For the partitioned random vector v ¼ y
x

� �
, the bilinear form x0Ay was intro-

duced in (2.34). The expected value of x0Ay is given in the following theorem.

Theorem 5.2e. Let v ¼ y
x

� �
be a partitioned random vector with mean vector and

covariance matrix given by (3.32) and (3.33)

E
y
x

� �
¼ my

mx

� �
and cov

y
x

� �
¼ Syy Syx

Sxy Sxx

� �
,

where y is p � 1, x is q � 1, and Syx is p � q. Let A be a q � p matrix of constants.

Then

E(x0Ay) ¼ tr(ASyx)þ m0xAmy: (5:14)

PROOF. The proof is similar to that of Theorem 5.2a; see Problem 5.10. A

Example 5.2b. To estimate the population covariance sxy ¼ E[(x� mx)(y� my)] in
(3.10), we use the sample covariance

sxy ¼
Pn

i¼1 (xi � �x)(yi � �y)
n� 1

, (5:15)

where (x1, y1), (x2, y2), . . . , (xn, yn) is a bivariate random sample from a population
with means mx and my, variances sx

2 and sy
2, and covariance sxy. We can write

(5.15) in the form

sxy ¼
Pn

i¼1 xiyi � n�x�y

n� 1
¼ x0[I� (1=n)J]y

n� 1
, (5:16)

where x ¼ (x1, x2, . . . , xn)0 and y ¼ (y1, y2, . . . , yn)0. Since (xi, yi) is independent of

(xj, yj) for i = j, the random vector v ¼ y
x

� �
has mean vector and covariance matrix

E
y

x

� �
¼

my

mx

� �
¼

myj

mxj

� �
,

cov
y

x

� �
¼

Syy Syx

Sxy Sxx

� �
¼

s2
yI sxyI

sxyI s2
xI

 !
,
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where each I is n � n. Thus for use in (5.14), we have A ¼ I� (1=n) J,
Syx ¼ sxyI, mx ¼ mxj, and my ¼ myj. Hence

E x0 I� 1
n

J

� �
y

� �
¼ tr I� 1

n
J

� �
sxyI

� �
þ mxj0 I� 1

n
J

� �
myj

¼ sxytr I� 1
n

J

� �
þ mxmy j0j� 1

n
j0jj0j

� �

¼ sxy(n� 1)þ 0:

Therefore

E(sxy) ¼
E
Pn

i¼1 (xi � �x)(yi � �y)
� 	

n� 1
¼ (n� 1)sxy

n� 1
¼ sxy: (5:17)

A

5.3 NONCENTRAL CHI-SQUARE DISTRIBUTION

Before discussing the noncentral chi-square distribution, we first review the central
chi-square distribution. Let z1, z2, . . . , zn be a random sample from the standard
normal distribution N(0, 1). Since the z’s are independent (by definition of random
sample) and each zi is N(0, 1), the random vector z ¼ (z1, z2, . . . , zn)0 is distributed
as Nn(0, I): By definition

Xn

i¼1

z2
i ¼ z0z is x2(n); (5:18)

that is, the sum of squares of n independent standard normal random variables is dis-
tributed as a (central) chi-square random variable with n degrees of freedom.

The mean, variance, and moment generating function of a chi-square random vari-
able are given in the following theorem.

Theorem 5.3a. If u is distributed as x2(n), then

E(u) ¼ n, (5:19)

var(u) ¼ 2n, (5:20)

Mu(t) ¼ 1

(1� 2t)n=2
: (5:21)

PROOF. Since u is the quadratic form z0Iz, E(u), var(u), and Mu(t) can be obtained by
applying Theorems 5.2a, 5.2c, and 5.2b, respectively. A
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Now suppose that y1, y2, . . . , yn are independently distributed as N(mi, 1), so that y
is Nn(m, I), where m ¼ (m1, m2, . . . , mn)0. In this case, Sn

i¼1 y2
i ¼ y0y does not have a

chi-square distribution, but S(yi � mi)
2 ¼ (y� m)0(y� m) is x2(n) since yi � mi is

distributed as N(0,1).
The density of v ¼ S

n
i¼1y2

i ¼ y0y, where the y’s are independently distributed as
N(mi, 1), is called the noncentral chi-square distribution and is denoted by
x2(n, l). The noncentrality parameter l is defined as

l ¼ 1
2

Xn

i¼1

m2
i ¼

1
2
m0m: (5:22)

Note that l is not an eigenvalue here and that the mean of v ¼ S
n
i¼1 y2

i is greater than
the mean of u ¼ S

n
i¼1(yi � mi)

2:

E
Xn

i¼1

(yi � mi)
2

" #
¼
Xn

i¼1

E(yi � mi)
2 ¼

Xn

i¼1

var(yi) ¼
Xn

i¼1

1 ¼ n,

E
Xn

i¼1

y2
i

 !
¼
Xn

i¼1

E(y2
i ) ¼

Xn

i¼1

(s2
i þ m2

i ) ¼
Xn

i¼1

(1þ m2
i )

¼ nþ
Xn

i¼1

m2
i ¼ nþ 2l,

where l is as defined in (5.22). The densities of u and v are illustrated in Figure 5.1.

Figure 5.1 Central and noncentral chi-square densities.
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The mean, variance, and moment generating function of a noncentral chi-square
random variable are given in the following theorem.

Theorem 5.3b. If v is distributed as x2(n,l), then

E(v) ¼ nþ 2l, (5:23)

var(v) ¼ 2nþ 8l, (5:24)

Mv(t) ¼ 1

(1� 2t)n=2
e�l[1�1=(1�2t)]: (5:25)

PROOF. For E(v) and var(v), see Problems 5.13 and 5.14. For Mv(t), use Theorem
5.2b. A

Corollary 1. If l ¼ 0 (which corresponds to mi ¼ 0 for all i), then E(v), var(v), and
Mv(t) in Theorem 5.3b reduce to E(u), var(u), Mu(t) for the central chi-square distri-
bution in Theorem 5.3a. Thus

x2(n, 0) ¼ x2(n): (5:26)

A

The chi-square distribution has an additive property, as shown in the following
theorem.

Theorem 5.3c. If v1, v2, . . . , vk are independently distributed as x2(ni, li), then

Xk

i¼1

vi is distributed as x2
Xk

i¼1

ni,
Xk

i¼1

li

 !
: (5:27)

A

Corollary 1. If u1, u2, . . . , uk are independently distributed as x2(ni), then

Xk

i¼1

ui is distributed as x2
Xk

i¼1

ni

 !
:

A

5.4 NONCENTRAL F AND t DISTRIBUTIONS

5.4.1 Noncentral F Distribution

Before defining the noncentral F distribution, we first review the central F. If u is
x2(p), v is x2(q), and u and v are independent, then by definition

w ¼ u=p

v=q
is distributed as F(p, q), (5:28)
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the (central) F distribution with p and q degress of freedom. The mean and variance
of w are given by

E(w) ¼ q

q� 2
, var(w) ¼ 2q2(pþ q� 2)

p(q� 1)2(q� 4)
: (5:29)

Now suppose that u is distributed as a noncentral chi-square random variable,
x2(p, l), while v remains central chi-square random variable, x2(q), with u and v
independent. Then

z ¼ u=p

v=q
is distributed as F(p, q, l), (5:30)

the noncentral F distribution with noncentrality parameter l, where l is the same
noncentrality parameter as in the distribution of u (noncentral chi-square distribution).
The mean of z is

E(z) ¼ q

q� 2
1þ 2l

p

� �
, (5:31)

which is, course, greater than E(w) in (5.29).
When an F statistic is used to test a hypothesis H0, the distribution will typically be

central if the (null) hypothesis is true and noncentral if the hypothesis is false. Thus
the noncentral F distribution can often be used to evaluate the power of an F test. The
power of a test is the probability of rejecting H0 for a given value of l. If Fa is the
upper a percentage point of the central F distribution, then the power, P( p, q, a,
l), can be defined as

P( p, q, a, l) ¼ Prob (z � Fa), (5:32)

where z is the noncentral F random variable defined in (5.30). Ghosh (1973) showed
that P( p, q, a, l) increases if q or a or l increases, and P( p, q, a, l) decreases if p
increases. The power is illustrated in Figure 5.2.

The power as defined in (5.32) can be evaluated from tables (Tiku 1967) or
directly from distribution functions available in many software packages. For
example, in SAS, the noncentral F-distribution function PROBF can be used to
find the power in (5.32) as follows:

P(p, q, a, l) ¼ 1� PROBF(Fa, p, q, l):

A probability calculator for the F and other distributions is available free of charge
from NCSS (download at www.ncss.com).
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5.4.2 Noncentral t Distribution

We first review the central t distribution. If z is N(0,1), u is x2(p), and z and u are
independent, then by definition

t ¼ zffiffiffiffiffiffiffiffi
u=p

p is distributed as t(p), (5:33)

the (central) t distribution with p degrees of freedom.
Now suppose that y is N(m, 1), u is x2(p), and y and u are independent. Then

t ¼ yffiffiffiffiffiffiffiffi
u=p

p is distributed as t(p,m), (5:34)

the noncentral t distribution with p degrees of freedom and noncentrality parameter m.
If y is N(m, s 2), then

t ¼ y=sffiffiffiffiffiffiffiffi
u=p

p is distributed as t(p,m=s),

since by (3.4), (3.9), and Theorem 4.4a(i), y/s is distributed as N(m=s, 1):

Figure 5.2 Central F, noncentral F, and power of the F test (shaded area).

116 DISTRIBUTION OF QUADRATIC FORMS IN y



5.5 DISTRIBUTION OF QUADRATIC FORMS

It was noted following Theorem 5.3a that if y is Nn(m, I), then (y� m)0(y� m) is
x2(n). If y is Nn(m, S), we can extend this to

(y� m)0S�1(y� m) is x2(n): (5:35)

To show this, we write (y� m)0 S�1(y� m) in the form

(y� m)0 S�1(y� m) ¼ (y� m)0S�1=2 S�1=2(y� m)

¼ S
�1=2(y� m)

h i0
S
�1=2(y� m)

h i

¼ z0z,

where z ¼ S�1=2(y� m) and S�1=2 ¼ (S1=2)�1, with S1=2 given by (2.109).
The vector z is distributed as Nn(0, I) (see Problem 5.17); therefore, z0z is x2(n) by

definition [see (5.18)]. Note the analogy of (y� m)0S�1(y� m) to the univariate
random variable (y� m)2=s 2, which is distributed as x2(1) if y is N(m, s 2).

In the following theorem, we consider the distribution of quadratic forms in
general. In the proof we follow Searle (1971, p. 57). For alternative proofs, see
Graybill (1976, pp. 134–136) and Hocking (1996, p. 51).

Theorem 5.5. Let y be distributed as Np(m, S), let A be a symmetric matrix of con-
stants of rank r, and let l ¼ 1

2m
0Am. Then y0Ay is x2(r, l), if and only if AS is

idempotent.

PROOF. By Theorem 5.2b the moment generating function of y0Ay is

My0Ay(t) ¼ jI� 2tASj�1=2e�(1=2)m0[I�(I�2tAS)�1]S�1m:

By (2.98), the eigenvalues of I� 2tAS are 1� 2tli, i ¼ 1, 2, . . . , p, where li is an
eigenvalue of AS. By (2.107), jI� 2tASj ¼

Qp
i¼1 (1� 2tli). By (2.102),

(I� 2tAS)�1¼ Iþ
P1

k¼1ð2tÞkðASÞk, provided �1 , 2tli , 1 for all i. Thus
My0AyðtÞ can be written as

My0Ay(t) ¼
Yp

i¼1

(1� 2tli)
�1=2

 !
e�(1=2)m0 �

P1

k¼1
(2t)k(AS)k½ �S�1m:
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Suppose that AS is idempotent of rank r (the rank of A); then r of the li’s are equal
to 1, p 2 r of the li’s are equal to 0, and (AS)k ¼ AS. Therefore,

My0Ay(t) ¼
Yr

i¼1

(1� 2t)�1=2

 !
e�(1=2)m0 �

P1

k¼1
(2t)k½ �ASS�1m

¼ (1� 2t)�r=2e�1=2m0 1�(1�2t)�1½ �Am,

provided�1 , 2t , 1 or � 1
2 , t , 1

2, which is compatible with the requirement that
the moment generating function exists for t in a neighborhood of 0. Thus

My0Ay(t) ¼ 1

(1� 2t)r=2
e�ð1=2Þm0Am 1�1=(1�2t)½ �,

which by (5.25) is the moment generating function of a noncentral chi-square
random variable with degrees of freedom r ¼ rank(A) and noncentrality parameter
l ¼ 1

2m
0Am.

For a proof of the converse, namely, if y0Ay is x2(r, l), then AS is idempotent; see
Driscoll (1999). A

Some corollaries of interest are the following (for additional corollaries, see
Problem 5.20).

Corollary 1. If y is Np(0, I), then y0Ay is x2(r) if and only if A is idempotent of
rank r. A

Corollary 2. If y is Np(m, s 2I), then y0Ay=s 2 is x2(r, m0Am=2s 2) if and only if A
is idempotent of rank r. A

Example 5. To illustrate Corollary 2 to Theorem 5.5, consider the distribution of
(n� 1)s2=s 2 ¼

Pn
i¼1 (yi � �y)2=s 2, where y ¼ (y1, y2, . . . , yn)0 is distributed as

Nn(mj, s 2I) as in Examples 5.1 and 5.2 In (5.2) we have
Pn

i¼1 (yi � �y)2 ¼
y0 I� (1=n)J½ �y. The matrix I� (1=n)J is shown to be idempotent in Problem 5.2.
Then by Theorem 2.13d, rank I� (1=n)J½ � ¼ tr[I� (1=n)J] ¼ n� 1. We next find
l, which is given by

l ¼ m0Am

2s 2
¼

mj0(I� 1
n J)mj

2s 2
¼

m2(j0j� 1
n j0Jj)

2s 2

¼
m2(n� 1

n j0jj0j)

2s 2
¼

m2[n� 1
n (n)(n)]

2s 2
¼ 0:

Therefore, y0 I� (1=n)J½ �y=s 2 is x2(n� 1). A
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5.6 INDEPENDENCE OF LINEAR FORMS AND
QUADRATIC FORMS

In this section, we discuss the independence of (1) a linear form and a quadratic form,
(2) two quadratic forms, and (3) several quadratic forms.

For an example of (1), consider ȳ and s2 in a simple random sample or b̂ and s2 in
a regression setting. To illustrate (2), consider the sum of squares due to regression
and the sum of squares due to error. An example of (3) is given by the sums of
squares due to main effects and interaction in a balanced two-way analysis of
variance.

We begin with the independence of a linear form and a quadratic form.

Theorem 5.6a. Suppose that B is a k � p matrix of constants, A is a p � p sym-
metric matrix of constants, and y is distributed as Np(m,S). Then By and y0Ay are
independent if and only if BSA ¼ O.

PROOF. Suppose BSA ¼ O. We prove that By and y0Ay are independent for the
special case in which A is symmetric and idempotent. For a general proof, see
Searle (1971, p. 59).

Assuming that A is symmetric and idempotent, y0Ay can be written as

y0Ay ¼ y0A0Ay ¼ (Ay)0Ay:

If BSA ¼ O, we have by (3.45)

BSA ¼ cov(By, Ay) ¼ O:

Hence, by Corollary 2 to Theorem 4.4c, By and Ay are independent, and therefore
By and the function (Ay)0Ay are also independent (Seber 1977, pp. 17, 33–34).

We now establish the converse, namely, if By and y0Ay are independent, then
BSA ¼ O. By Corollary 1 to Theorem 5.2d, cov(By, y0Ay) ¼ 0 becomes

2BSAm ¼ 0:

Since this holds for all possible m, we have BSA ¼ O [see (2.44)]. A

Note that BSA ¼ O does not imply ASB ¼ O. In fact, the product ASB will not be
defined unless B has p rows.

Corollary 1. If y is Np(m, s 2I), then By and y0Ay are independent if and only if
BA ¼ O. A
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Example 5.6a. To illustrate Corollary 1, consider s2 ¼
Pn

i¼1 (yi � �y)2=(n� 1) and
�y ¼

Pn
i¼1 yi=n, where y ¼ (y1, y2, . . . , yn)0 is Nn(mj, s 2I). As in Example 5.1, ȳ

and s2 can be written as �y ¼ (1=n)j0y and s2 ¼ y0 I� (1=n)J½ �y=(n� 1). By
Corollary 1, ȳ is independent of s2 since (1=n)j0 I� (1=n)J½ � ¼ 00: A

We now consider the independence of two quadratic forms.

Theorem 5.6b. Let A and B be symmetric matrices of constants. If y is Np(m, S),
then y0Ay and y0By are independent if and only if ASB ¼ O.

PROOF. Suppose ASB ¼ O. We prove that y0Ay and y0By are independent for the
special case in which A and B are symmetric and idempotent. For a general proof,
see Searle (1971, pp. 59–60) or Hocking (1996, p. 52).

Assuming that A and B are symmetric and idempotent, y0Ay and y0By can be
written as y0Ay ¼ y0A0Ay ¼ (Ay)0Ay and y0By ¼ y0B0By ¼ (By)0By. If ASB ¼ O,
we have [see (3.45)]

ASB ¼ cov(Ay, By) ¼ O:

Hence, by Corollary 2 to Theorem 4.4c, Ay and By are independent. It follows that
the functions (Ay)0(Ay) ¼ y0Ay and (By)0(By) ¼ y0By are independent (Seber 1977,
pp. 17, 33–34). A

Note that ASB ¼ O is equivalent to BSA ¼ O since transposing both sides of
ASB ¼ O gives BSA ¼ O (A and B are symmetric).

Corollary 1. If y is Np(m, s 2I), then y0Ay and y0By are independent if and only if
AB ¼ O (or, equivalently, BA ¼ O). A

Example 5.6b. To illustrate Corollary 1, consider the partitioning in (5.1),Pn
i¼1 y2

i ¼
Pn

i¼1 (yi � �y)2 þ n�y2, which was expressed in (5.3) as

y0y ¼ y0(I� (1=n)J)yþ y0((1=n)J)y:

If y is Nn(mj, s 2I), then by Corollary 1, y0[I� (1=n)J]y and y0[(1=n)J]y are indepen-
dent if and only if [I� (1=n)J][(1=n)J] ¼ O, which is shown in Problem 5.2. A

The distribution and independence of several quadratic forms are considered in the
following theorem.
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Theorem 5.6c. Let y be Nn(m, s 2I), let Ai be symmetric of rank ri for

i ¼ 1, 2, . . . , k, and let y0Ay ¼
Pk

i¼1 y0Aiy, where A ¼
Pk

i¼1 Ai is symmetric of
rank r. Then

(i) y0Aiy=s 2 is x2(ri, m
0Aim=2s 2), i ¼ 1, 2, . . . , k.

(ii) y0Aiy and y0Ajy are independent for all i = j.

(iii) y0Ay=s 2 is x2(r, m0Am=2s 2).

These results are obtained if and only if any two of the following three statements
are true:

(a) Each Ai is idempotent.

(b) AiAj ¼ O for all i = j:

(c) A ¼
Pk

i¼1 Ai is idempotent.

Or if and only if (c) and (d) are true, where (d) is the following statement:

(d) r ¼
Pk

i¼1 ri:

PROOF. See Searle (1971, pp. 61–64). A

Note that by Theorem 2.13g, any two of (a), (b), or (c) implies the third.
Theorem 5.6c pertains to partitioning a sum of squares into several component

sums of squares. The following corollary treats the special case where A ¼ I; that
is, the case of partitioning the total sum of squares y0y into several sums of squares.

Corollary 1. Let y be Nn(m, s 2I), let Ai be symmetric of rank ri for i ¼ 1, 2, . . . , k,

and let y0y ¼
Pk

i¼1 y0Aiy. Then (i) each y0Aiy=s 2 is x2(ri, m
0Aim=2s 2) and (ii) the

y0Aiy terms are mutually independent if and only if any one of the following state-
ments holds:

(a) Each Ai is idempotent.

(b) AiAj ¼ O for all i= j.

(c) n ¼
Pk

i¼1 ri. A

Note that by Theorem 2.13h, condition (c) implies the other two conditions. Cochran
(1934) first proved a version of Corollary 1 to Theorem 5.6c.

PROBLEMS

5.1 Show that
Pn

i¼1 (yi � �y)2 ¼
Pn

i¼1 y2
i � n�y2 as in (5.1).
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5.2 Show that (1/n)J is idempotent, I� (1=n)J is idempotent, and
[I� (1=n)J][(1=n)J] ¼ O, as noted in Section 5.1.

5.3 Obtain var(s2) in the following two ways, where s2 is defined in (5.6) as
s2 ¼

Pn
i¼1 (yi � �y)2=(n� 1) and we assume that y ¼ ( y1, y2, . . . , yn)0 is

Nn(mj, s 2I).

(a) Write s2 as s2 ¼ y0[I� (1=n)J]y=(n� 1) and use Theorem 5.2b.

(b) The function u ¼ (n� 1)s2=s 2 is distributed as x2(n� 1), and therefore
var(u) ¼ 2(n� 1). Then var(s2) ¼ var s 2u=(n� 1)½ �.

5.4 Show that

jSj�(1=2)jVj(1=2)e�(m0S�1m�u0V�1u)=2

¼ jI� 2tASje�(1=2)m0 [I� (I� 2tAS)�1]S�1m=2

as in the proof of Theorem 5.2b, where u 0 ¼ m0(I� 2tAS)�1 and

V�1 ¼ (I� 2tAS)S�1:

5.5 Show that

e�[y0(I�2tAS)S�1y�2m0S�1yþm0S�1m]=2 ¼ e�[m0S�1m�u0V�1u]=2e�(y�u)0V�1(y�u)=2

as in the proof of Theorem 5.2b, where u 0 ¼ m0(I� 2tAS)�1 and

V�1 ¼ (I� 2tAS)S�1.

5.6 Let k(t) ¼ � 1
2 ln jCj � 1

2m
0ðI� C�1ÞS�1m as in the proof of Theorem 5.2c,

where C is a nonsingular matrix. Derive k00ðtÞ.

5.7 Show that y0Ay� m0Am ¼ ðy� mÞ0Aðy� mÞ þ 2ðy� mÞ0Am as in (5.12).

5.8 Obtain the three terms 0, 2SAm, and 0 in the proof of Theorem 5.2d.

5.9 Prove Corollary 1 to Theorem 5.2d.

5.10 Prove Theorem 5.2e.

5.11 (a) Show that
Pn

i¼1ðxi � �xÞðyi � �yÞ in (5.15) is equal to
Pn

i¼1 xiyi � n�x�y
in (5.16).

(b) Show that
Pn

i¼1 xiyi � n�x�y ¼ x0[I� ð1=nÞJ]y, as in (5.16) in
Example 5.2.

5.12 Prove Theorem 5.3a.

5.13 If v ¼ x2ðn,lÞ, use Theorem 5.2c to show that varðvÞ ¼ 2nþ 8l as in (5.24).

5.14 If v is x2ðn; lÞ, use the moment generating function in (5.25) to find
E(v) and var(v). [Hint: Use ln[MvðtÞ]; then d ln[Mvð0Þ]=dt ¼ EðvÞ and
d2 ln [Mvð0Þ]=dt ¼varðvÞ (see Problem 4.8). The notation d ln[Mvð0Þ]=dt
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indicates that d ln[MvðtÞ]=dt is evaluated at t ¼ 0; the notation
d2 ln[Mvð0Þ]=dt2 is defined similarly.]

5.15 Prove Theorem 5.3c.

5.16 (a) Show that if t ¼ z=
ffiffiffiffiffiffiffiffi
u=p

p
is t( p) as in (5.33), then t2 is F (1, p).

(b) Show that if t ¼ y=
ffiffiffiffiffiffiffiffi
u=p

p
is t( p, m) as in (5.34), then t2 is Fð1, p, 1

2m
2Þ.

5.17 Show that S�1=2ðy� mÞ is Nnð0, IÞ, as used in the illustration at the beginning
of Section 5.5.

5.18 (a) Prove Corollary 1 of Theorem 5.5a.
(b) Prove Corollary 2 of Theorem 5.5a.

5.19 If y is Nnðm, SÞ, verify that ðy� mÞ0S�1ðy� mÞ is x2(n), as in (5.25), by

using Theorem 5.5a. What is the distribution of y0S�1y?

5.20 Prove the following additional corollaries to Theorem 5.5a:

(a) If y is Npð0, SÞ, then y0Ay is x2(r) if and only if AS is idempotent of
rank r.

(b) If y is Npðm, s 2IÞ, then y0y=s 2 is x2ð p, m0m=2s 2Þ.
(c) If y is Npðm, IÞ, then y0Ay is x2ðr, 1

2m
0AmÞ if and only if A is idempotent

of rank r.

(d) If y is Npðm, s 2SÞ, then y0Ay=s 2 is x2ðr, m0Am=2s 2Þ if and only if AS
is idempotent of rank r.

(e) If y is Npðm, s 2SÞ, then y0S�1y=s 2 is x2ð p, m0S�1m=2s 2Þ.

5.21 Prove Corollary 1 of Theorem 5.6a.

5.22 Show that j0½I� ð1=nÞJ� ¼ 00, as in Example 5.6a.

5.23 Prove Corollary 1 of Theorem 5.6b.

5.24 Suppose that y1, y2, . . . , yn is a random sample from Nðm, s 2Þ so that
y ¼ ðy1, y2, . . . , ynÞ0 is Nnðmj, s 2IÞ. It was shown in Example 5.5 that

ðn� 1Þs2=s 2 ¼
Pn

i¼1ðyi � �yÞ2=s 2 is x2ðn� 1Þ. In Example 5.6a, it was

demonstrated that ȳ and s2 ¼
Pn

i¼1ðyi � �yÞ2=ðn� 1Þ are independent.

(a) Show that ȳ is Nðm, s 2=nÞ.
(b) Show that t ¼ ð�y� mÞ=ðs=

ffiffiffi
n
p
Þ is distributed as t (n 2 1).

(c) Given m0 = m, show that t ¼ ð�y� m0Þ=ðs=
ffiffiffi
n
p
Þ is distributed as

t(n 2 1, d). Find d.

5.25 Suppose that y is Nnðmj, s 2IÞ. Find the distribution of

u ¼ n�y2

Pn
i¼1 (yi � �y)2=(n� 1)

:

(This statistic could be used to test H0: m ¼ 0.)
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5.26 Suppose that y is Nnðm, SÞ, where m ¼ m j and

S ¼ s2

1 r . . . r

r 1 . . . r

..

. ..
. ..

.

r r . . . 1

0
BBB@

1
CCCA:

Thus EðyiÞ ¼ m for all i, varðyiÞ ¼ s 2 for all i, and covðyi, yjÞ ¼ s 2r for all
i= j; that is, the y’s are equicorrelated.

(a) Show that S can be written in the form S ¼ s 2½ð1� rÞIþ rJ�.
(b) Show that

Pn
i¼1ðyi � �yÞ2=½s 2ð1� rÞ� is x2ðn� 1Þ.

5.27 Suppose that y is N3ðm, SÞ, where

m ¼
2
�1

3

0
@

1
A, S ¼

4 1 0
1 2 1
0 1 3

0
@

1
A:

Let

A ¼
1 �3 �8
�3 2 �6
�8 �6 3

0
@

1
A:

(a) Find E (y0Ay).

(b) Find var (y0Ay).

(c) Does y0Ay have a chi-square distribution?

(d) If S ¼ s 2I, does y0Ay=s 2 have a chi-square distribution?

5.28 Assuming that y is N3ðm, SÞ, where

m ¼
3
�2

1

0
@

1
A, S ¼

2 0 0
0 4 0
0 0 3

0
@

1
A,

find a symmetric matrix A such that y0Ay is x2ð3, 1
2m
0AmÞ. What is

l ¼ 1
2m
0Am?
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5.29 Assuming that y is N4ðm, SÞ, where

m ¼

3
�2

1
4

0
BB@

1
CCA, S ¼

1 0 0 0
0 2 0 0
0 0 3 �4
0 0 �4 6

0
BB@

1
CCA,

find a matrix A such that y0Ay is x2ð4, 1
2m
0AmÞ. What is l ¼ 1

2m
0Am?

5.30 Suppose that y is N3ðm, s 2IÞ and let

m ¼
3
�2

1

0
@

1
A, A ¼ 1

3

2 �1 �1
�1 2 �1
�1 �1 2

0
@

1
A, B ¼ 1 1 1

1 0 �1

� �
:

(a) What is the distribution of y0Ay=s 2 ?

(b) Are y0Ay and By independent?

(c) Are y0Ay and y1þ y2þ y3 independent?

5.31 Suppose that y is N3ðm, s 2IÞ, where m ¼ ð1, 2, 3Þ0, and let

B ¼ 1
3

1 1 1
1 1 1
1 1 1

0
@

1
A:

(a) What is the distribution of y0By=s 2 ?

(b) Is y0By independent of y0Ay, where A is as defined in Problem 5.30?

5.32 Suppose that y is Nnðm, s 2IÞ and that X is an n � p matrix of constants with
rank p , n.

(a) Show that H ¼ XðX0XÞ�1X0 and I�H ¼ I� XðX0XÞ�1X0 are idempo-
tent, and find the rank of each.

(b) Assuming m is a linear combination of the columns of X, that is m¼ Xb for
some b [see (2.37)], find Eðy0HyÞ and E½y0ðI�HÞy�, where H is as defined
in part (a) .

(c) Find the distributions of y0Hy=s 2 and y0ðI�HÞy=s 2.

(d) Show that y0Hy and y0ðI�HÞy are independent.

(e) Find the distribution of

y0Hy=p

y0(I�H)y=(n� p)
:
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6 Simple Linear Regression

6.1 THE MODEL

By (1.1), the simple linear regression model for n observations can be written as

yi ¼ b0 þ b1xi þ 1i, i ¼ 1, 2, . . . , n: (6:1)

The designation simple indicates that there is only one x to predict the response y, and
linear means that the model (6.1) is linear in b0 and b1. [Actually, it is the assumption
E( yi) ¼ b0 þ b1xi that is linear; see assumption 1 below.] For example, a model such
as yi ¼ b0 þ b1x2

i þ 1i is linear in b0 and b1, whereas the model yi ¼ b0 þ eb1xi þ 1i

is not linear.
In this chapter, we assume that yi and 1i are random variables and that the values of

xi are known constants, which means that the same values of x1, x2, . . . , xn would be
used in repeated sampling. The case in which the x variables are random variables is
treated in Chapter 10.

To complete the model in (6.1), we make the following additional assumptions:

1. E(1i) ¼ 0 for all i ¼ 1, 2, . . . , n, or, equivalently, E(yi) ¼ b0 þ b1xi.

2. var(1i) ¼ s2 for all i ¼ 1, 2, . . . , n, or, equivalently, var(yi) ¼ s2.

3. cov(1i, 1j) ¼ 0 for all i= j, or, equivalently, cov( yi, yj) ¼ 0.

Assumption 1 states that the model (6.1) is correct, implying that yi depends only on xi

and that all other variation in yi is random. Assumption 2 asserts that the variance of 1
or y does not depend on the values of xi. (Assumption 2 is also known as the assump-
tion of homoscedasticity, homogeneous variance or constant variance.) Under
assumption 3, the 1 variables (or the y variables) are uncorrelated with each other.
In Section 6.3, we will add a normality assumption, and the y (or the 1) variables
will thereby be independent as well as uncorrelated. Each assumption has been
stated in terms of the 1’s or the y’s. For example, if var(1i) ¼ s2, then
var(yi) ¼ E[ yi � E(yi)]2 ¼ E(yi � b0 � b1xi)2 ¼ E(12

i Þ ¼ s2.

Linear Models in Statistics, Second Edition, by Alvin C. Rencher and G. Bruce Schaalje
Copyright # 2008 John Wiley & Sons, Inc.
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Any of these assumptions may fail to hold with real data. A plot of the data
will often reveal departures from assumptions 1 and 2 (and to a lesser extent assump-
tion 3). Techniques for checking on the assumptions are discussed in Chapter 9.

6.2 ESTIMATION OF b0, b1, AND s2

Using a random sample of n observations y1, y2, . . . , yn and the accompanying fixed
values x1, x2, . . . ,xn, we can estimate the parameters b0, b1, and s 2. To obtain the
estimates b̂0 and b̂1, we use the method of least squares, which does not require
any distributional assumptions (for maximum likelihood estimators based on normal-
ity, see Section 7.6.2).

In the least-squares approach, we seek estimators b̂0 and b̂1 that minimize the sum
of squares of the deviations yi � ŷi of the n observed yi’s from their predicted
values ŷi ¼ b̂0 þ b̂1xi:

1̂01̂ ¼
Xn

i¼1

1̂2
i ¼

Xn

i¼1

( yi � ŷi)
2 ¼

Xn

i¼1

( yi � b̂0 � b̂1xi)
2: (6:2)

Note that the predicted value ŷi estimates E(yi), not yi; that is, b̂0 þ b̂1xi estimates

b0 þ b1xi, notb0 þ b1xi þ 1i. A better notation would be dE( yi), but ŷi is commonly used.
To find the values of b̂0 and b̂1 that minimize 1̂01̂ in (6.2), we differentiate with

respect to b̂0 and b̂1 and set the results equal to 0:

@1̂01̂

@b̂0

¼ �2
Xn

i¼1

( yi � b̂0 � b̂1xi) ¼ 0, (6:3)

@1̂01̂

@b̂1

¼ �2
Xn

i¼1

( yi � b̂0 � b̂1xi)xi ¼ 0: (6:4)

The solution to (6.3) and (6.4) is given by

b̂1 ¼
Pn

i¼1 xiyi � n�x�yPn
i¼1 x2

i � n�x2 ¼
Pn

i¼1 (xi � �x)(yi � �y)Pn
i¼1 (xi � �x)2 , (6:5)

b̂0 ¼ �y� b̂1�x: (6:6)

To verify that b̂0 and b̂1 in (6.5) and (6.6) minimize 1̂01̂ in (6.2), we can examine the
second derivatives or simply observe that 1̂01̂ has no maximum and therefore the first
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derivatives yield a minimum. For an algebraic proof that b̂0 and b̂1 minimize (6.2),
see (7.10) in Section 7.3.1.

Example 6.2. Students in a statistics class (taught by one of the authors) claimed that
doing the homework had not helped prepare them for the midterm exam. The exam
score y and homework score x (averaged up to the time of the midterm) for the 18
students in the class were as follows:

y x y x y x

95 96 72 89 35 0
80 77 66 47 50 30

0 0 98 90 72 59
0 0 90 93 55 77

79 78 0 18 75 74
77 64 95 86 66 67

Using (6.5) and (6.6), we obtain

b̂1 ¼
Pn

i¼1 xiyi � n�x�yPn
i¼1 x2

i � n�x2

¼ 81,195� 18(58:056)(61:389)

80,199� 18(58:056)2 ¼ :8726,

b̂0 ¼ �y� b̂1�x ¼ 61:389� :8726(58:056) ¼ 10:73:

The prediction equation is thus given by

ŷ ¼ 10:73þ :8726x:

This equation and the 18 points are plotted in Figure 6.1. It is readily apparent in the
plot that the slope b̂1 is the rate of change of ŷ as x varies and that the intercept b̂0 is
the value of ŷ at x ¼ 0.

The apparent linear trend in Figure 6.1 does not establish cause and effect between
homework and test results (for inferences that can be drawn, see Section 6.3). The
assumption var(1i) ¼ s 2 (constant variance) for all i ¼ 1, 2, . . . , 18 appears to be
reasonable. A

Note that the three assumptions in Section 6.1 were not used in deriving the least-
squares estimators b̂0 and b̂1 in (6.5) and (6.6). It is not necessary that ŷi ¼ b̂0 þ b̂1xi

be based on E( yi) ¼ b0 þ b1xi; that is, ŷi ¼ b̂0 þ b̂1xi can be fit to a set of data for
which E(yi) = b0 þ b1xi. This is illustrated in Figure 6.2, where a straight line has
been fitted to curved data.
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However, if the three assumptions in Section 6.1 hold, then the least-squares esti-
mators b̂0 and b̂1 are unbiased and have minimum variance among all linear unbiased
estimators (for the minimum variance property, see Theorem 7.3d in Section 7.3.2;

note that b̂0 and b̂1 are linear functions of y1, y2, . . . , yn ). Using the three

Figure 6.1 Regression line and data for homework and test scores.

Figure 6.2 A straight line fitted to data with a curved trend.
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assumptions, we obtain the following means and variances of b̂0 and b̂1:

E(b̂1) ¼ b1 (6:7)

E(b̂0) ¼ b0 (6:8)

var(b̂1) ¼ s2

Pn
i¼1 (xi � �x)2 (6:9)

var(b̂0) ¼ s2 1
n
þ �x2

Pn
i¼1 (xi � �x)2

� �
: (6:10)

Note that in discussing E(b̂1) and var(b̂1), for example, we are considering
random variation of b̂1 from sample to sample. It is assumed that the n values x1,
x2, . . ., xn would remain the same in future samples so that var(b̂1) and var(b̂0)
are constant.

In (6.9), we see that var(b̂1) is minimized when
Pn

i¼1 (xi � �x)2 is maximized. If
the xi values have the range a � xi � b, then

Pn
i¼1 (xi � �x)2 is maximized if half

the x’s are selected equal to a and half equal to b (assuming that n is even; see
Problem 6.4). In (6.10), it is clear that var(b̂0) is minimized when �x ¼ 0.

The method of least squares does not yield an estimator of var(yi) ¼ s 2; minimiz-
ation of 1̂01̂ yields only b̂0 and b̂1. To estimate s 2, we use the definition in (3.6),
s2 ¼ E[yi � E(yi)]2. By assumption 2 in Section 6.1, s 2 is the same for each
yi, i ¼ 1, 2, . . . , n. Using ŷi as an estimator of E(yi), we estimate s2 by an average
from the sample, that is

s2 ¼
Pn

i¼1 (yi � ŷi)2

n� 2
¼
P

i (yi � b̂0 � b̂1xi)2

n� 2
¼ SSE

n� 2
, (6:11)

where b̂0 and b̂1 are given by (6.5) and (6.6) and SSE ¼
P

i (yi � ŷi)2. The deviation
1̂i ¼ yi � ŷi is often called the residual of yi, and SSE is called the residual sum of
squares or error sum of squares. With n22 in the denominator, s2 is an unbiased
estimator of s2:

E(s2) ¼ E(SSE)
n� 2

¼ (n� 2)s 2

n� 2
¼ s 2: (6:12)

Intuitively, we divide by n 2 2 in (6.11) instead of n 2 1 as in
s2 ¼

P
i (yi � �y)2=(n� 1) in (5.6), because ŷi ¼ b̂0 þ b̂1xi has two estimated para-

meters and should thereby be a better estimator of E( yi) than ȳ. Thus we
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expect SSE ¼
P

i (yi � ŷi)2 to be less than
P

i (yi � �y)2. In fact, using (6.5) and (6.6),
we can write the numerator of (6.11) in the form

SSE ¼
Xn

i¼1

(yi � ŷi)
2 ¼

Xn

i¼1

(yi � �y)2 �
Pn

i¼1 (xi � �x)(yi � �y)
� �2

Pn
i¼1 (xi � �x)2 , (6:13)

which shows that
P

i (yi � ŷi)2 is indeed smaller than
P

i (yi � �y)2.

6.3 HYPOTHESIS TEST AND CONFIDENCE INTERVAL FOR b1

Typically, hypotheses about b1 are of more interest than hypotheses about b0, since
our first priority is to determine whether there is a linear relationship between y and x.
(See Problem 6.9 for a test and confidence interval for b0.) In this section, we con-
sider the hypothesis H0: b1 ¼ 0, which states that there is no linear relationship
between y and x in the model yi ¼ b0 þ b1xi þ 1i. The hypothesis H0:b1 ¼ c (for
c = 0) is of less interest.

In order to obtain a test for H0: b1 ¼ 0, we assume that yi is N(b0 þ b1xi, s
2).

Then b̂1 and s2 have the following properties (these are special cases of results estab-
lished in Theorem 7.6b in Section 7.6.3):

1. b̂1 is N b1, s 2=
P

i (xi � �x)2
� �

.

2. (n� 2)s2=s 2 is x2(n� 2).

3. b̂1 and s2 are independent.

From these three properties it follows by (5.29) that

t ¼ b̂1

s
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i (xi � �x)2
q (6:14)

is distributed as t(n22, d), the noncentral t with noncentrality parameter d.

By a comment following (5.29), d is given by d ¼ E(b̂1)=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var(b̂1)

q

¼ b1=[s=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i (xi � �x)2
q

]. If b1 ¼ 0, then by (5.28), t is distributed as t(n22). For

a two-sided alternative hypothesis H1 :b1 = 0, we reject H0 : b1 ¼ 0 if
jtj � ta=2, n�2, where ta=2, n�2 is the upper a/2 percentage point of the central t distri-
bution and a is the desired significance level of the test (probability of rejecting H0

when it is true). Alternatively, we reject H0 if p �a, where p is the p value. For a two-
sided test, the p value is defined as twice the probability that t(n22) exceeds the
absolute value of the observed t.
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A 100(1 2 a)% confidence interval for b1 is given by

b̂1 + ta=2, n�2
sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 (xi � �x)2
q : (6:15)

Confidence intervals are defined and discussed further in Section 8.6. A confidence
interval for E( y) and a prediction interval for y are also given in Section 8.6.

Example 6.3. We test the hypothesis H0: b1 ¼ 0 for the grades data in Example 6.2.
By (6.14), the t statistic is

t ¼ b̂1

s=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 (xi � �x)2
q ¼ :8726

(13:8547)=(139:753)
¼ 8:8025:

Since t ¼ 8.8025 . t.025, 16 ¼ 2.120, we reject H0: b1 ¼ 0 at the a ¼.05 level of sig-
nificance. Alternatively, the p value is 1.571 � 1027, which is less than .05.

A 95% confidence interval for b1 is given by (6.15) as

b̂1 + t:025, 16
sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 (xi � �x)2
q

:8726 + 2:120(:09914)

:8726 + :2102

(:6624, 1:0828):

6.4 COEFFICIENT OF DETERMINATION

The coefficient of determination r2 is defined as

r2 ¼ SSR

SST
¼
Pn

i¼1 (ŷi � �y)2

Pn
i¼1 (yi � �y)2 , (6:16)

where SSR ¼
P

i (ŷi � �y)2 is the regression sum of squares and SST ¼
P

i (yi � �y)2

is the total sum of squares. The total sum of squares can be partitioned into SST ¼
SSR þ SSE, that is,

Xn

i¼1

(yi � �y)2 ¼
Xn

i¼1

(ŷi � �y)2 þ
Xn

i¼1

(yi � ŷi)
2: (6:17)
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Thus r2 in (6.16) gives the proportion of variation in y that is explained by the
model or, equivalently, accounted for by regression on x.

We have labeled (6.16) as r2 because it is the same as the square of the sample
correlation coefficient r between y and x

r ¼ sxyffiffiffiffiffiffiffiffi
s2

xs2
y

q ¼
Pn

i¼1 (xi � �x)(yi � �y)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 (xi � �x)2

� � Pn
i¼1 (yi � �y)2

� �q , (6:18)

where sxy is given by 5.15 (see Problem 6.11). When x is a random variable, r
estimates the population correlation in (3.19). The coefficient of determination r2 is
discussed further in Sections 7.7, 10.4, and 10.5.

Example 6.4. For the grades data of Example 6.2, we have

r2 ¼ SSR

SST
¼ 14, 873:0

17, 944:3
¼ :8288:

The correlation between homework score and exam score is r ¼
ffiffiffiffiffiffiffiffiffiffiffi
:8288
p

¼ :910.
The t statistic in (6.14) can be expressed in terms of r as follows:

t ¼ b̂1

s
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i (xi � �x)2
q (6:19)

¼
ffiffiffiffiffiffiffiffiffiffiffi
n� 2
p

rffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2
p : (6:20)

If H0: b1 ¼ 0 is true, then, as noted following (6.14), the statistic in (6.19) is dis-
tributed as t(n22) under the assumption that the xi’s are fixed and the yi’s are inde-
pendently distributed as N(b0 þ b1xi, s 2). If x is a random variable such that x and y

have a bivariate normal distribution, then t ¼
ffiffiffiffiffiffiffiffiffiffiffi
n� 2
p

r=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2
p

in (6.20) also has
the t(n22) distribution provided that H0 : r ¼ 0 is true, where r is the population cor-
relation coefficient defined in (3.19) (see Theorem 10.5). However, (6.19) and (6.20)
have different distributions if H0 :b1 ¼ 0 and H0 : r ¼ 0 are false (see Section 10.4).
If b1 = 0, then (6.19) has a noncentral t distribution, but if r = 0, (6.20) does not
have a noncentral t distribution.

PROBLEMS

6.1 Obtain the least-squares solutions (6.5) and (6.6) from (6.3) and (6.4).

6.2 (a) Show that E(b̂1) ¼ b1 as in (6.7).

(b) Show that E(b̂0) ¼ b0 as in (6.8).
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6.3 (a) Show that var(b̂1) ¼ s 2=
Pn

i¼1 (xi � �x)2 as in (6.9).

(b) Show that var(b̂0) ¼ s 2 1=nþ �x2=
Pn

i¼1 (xi � �x)2
� �

as in (6.10).

6.4 Suppose that n is even and the n values of xi can be selected anywhere in the
interval from a to b. Show that var(b̂1) is a minimum if n/2 values of xi are
equal to a and n/2 values are equal to b.

6.5 Show that SSE ¼
Pn

i¼1 (yi � ŷi)2 in (6.11) can be expressed in the form given
in (6.13).

6.6 Show that E(s2) ¼ s 2 as in (6.12).

6.7 Show that t ¼ b̂1=[s=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i (xi � �x)2
q

] in (6.14) is distributed as t(n22, d),

where d ¼ b1=[s=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i (xi � �x)2
q

].

6.8 Obtain a test for H0 : b1 ¼ c versus H1 : b1 = c.

6.9 (a) Obtain a test for H0 : b0 ¼ a versus H1 : b0 = a.

(b) Obtain a confidence interval for b0.

6.10 Show that
Pn

i¼1 (yi � �y)2 ¼
Pn

i¼1 (ŷi � �y)2 þ
Pn

i¼1 (yi � ŷi)2 as in (6.17).

6.11 Show that r2 in (6.16) is the square of the correlation

r ¼
Pn

i¼1 (xi � �x)(yi � �y)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 (xi � �x)2

� � Pn
i¼1 (yi � �y)2

� �q

as given by (6.18).

TABLE 6.1 Eruptions of Old Faithful Geyser, August 1–4, 1978a

y x y x y x y x

78 4.4 80 4.3 76 4.5 75 4.0
74 3.9 56 1.7 82 3.9 73 3.7
68 4.0 80 3.9 84 4.3 67 3.7
76 4.0 69 3.7 53 2.3 68 4.3
80 3.5 57 3.1 86 3.8 86 3.6
84 4.1 90 4.0 51 1.9 72 3.8
50 2.3 42 1.8 85 4.6 75 3.8
93 4.7 91 4.1 45 1.8 75 3.8
55 1.7 51 1.8 88 4.7 66 2.5
76 4.9 79 3.2 51 1.8 84 4.5
58 1.7 53 1.9 80 4.6 70 4.1
74 4.6 82 4.6 49 1.9 79 3.7
75 3.4 51 2.0 82 3.5 60 3.8
— — — — — — 86 3.4

aWhere x ¼ duration, y ¼ interval (both in minutes).
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6.12 Show that r ¼ cos u, where u is the angle between the vectors x� �xj and
y� �yj, where x� �xj ¼ (x1 � �x, x2 � �x, . . . , xn � �x)0 and y� �yj ¼ (y1 � �y,
y2 � �y, . . . , yn � �y)0.

6.13 Show that t ¼ b̂1=[s=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 (xi � �x)2
q

] in (6.19) is equal to t ¼
ffiffiffiffiffiffiffiffiffiffiffi
n� 2
p

r=ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2
p

in (6.20).

6.14 Table 6.1 (Weisberg 1985, p. 231) gives the data on daytime eruptions of Old
Faithful Geyser in Yellowstone National Park during August 1–4, 1978. The
variables are x ¼ duration of an eruption and y ¼ interval to the next eruption.
Can x be used to successfully predict y using a simple linear model
yi ¼ b0 þ b1xi þ 1i?

(a) Find b̂0 and b̂1.

(b) Test H0 : b1 ¼ 0 using (6.14).

(c) Find a confidence interval for b1.

(d) Find r2 using (6.16).
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7 Multiple Regression: Estimation

7.1 INTRODUCTION

In multiple regression, we attempt to predict a dependent or response variable y on
the basis of an assumed linear relationship with several independent or predictor vari-
ables x1, x1, . . . , xk. In addition to constructing a model for prediction, we may wish
to assess the extent of the relationship between y and the x variables. For this purpose,
we use the multiple correlation coefficient R (Section 7.7).

In this chapter, y is a continuous random variable and the x variables are fixed con-
stants (either discrete or continuous) that are controlled by the experimenter. The case
in which the x variables are random variables is covered in Chapter 10. In analysis-of-
variance (Chapters 12–15), the x variables are fixed and discrete.

Useful applied expositions of multiple regression for the fixed-x case can be found
in Morrison (1983), Myers (1990), Montgomery and Peck (1992), Graybill and Iyer
(1994), Mendenhall and Sincich (1996), Ryan (1997), Draper and Smith (1998), and
Kutner et al. (2005). Theoretical treatments are given by Searle (1971), Graybill
(1976), Guttman (1982), Kshirsagar (1983), Myers and Milton (1991), Jørgensen
(1993), Wang and Chow (1994), Christensen (1996), Seber and Lee (2003), and
Hocking (1976, 1985, 2003).

7.2 THE MODEL

The multiple linear regression model, as introduced in Section 1.2, can be
expressed as

y ¼ b0 þ b1x1 þ b2x2 þ � � � þ bkxk þ 1: (7:1)

We discuss estimation of the b parameters when the model is linear in the b’s. An
example of a model that is linear in the b’s but not the x’s is the second-order

Linear Models in Statistics, Second Edition, by Alvin C. Rencher and G. Bruce Schaalje
Copyright # 2008 John Wiley & Sons, Inc.
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response surface model

y ¼ b0 þ b1x1 þ b2x2 þ b3x2
1 þ b4x2

2 þ b5x1x2 þ 1: (7:2)

To estimate the b’s in (7.1), we will use a sample of n observations on y and the
associated x variables. The model for the ith observation is

yi ¼ b0 þ b1xi1 þ b2xi2 þ � � � þ bkxik þ 1i, i ¼ 1, 2, . . . , n: (7:3)

The assumptions for 1i or yi are essentially the same as those for simple linear
regression in Section 6.1:

1. E(1i) ¼ 0 for i ¼ 1, 2, . . . , n, or, equivalently, E( yi) ¼ b0 þ b1xi1 þ b2xi2þ
� � � þ bkxik.

2. var(1i) ¼ s2 for i ¼ 1, 2, . . . , n, or, equivalently, var( yi) ¼ s2.

3. cov(1i, 1j) ¼ 0 for all i = j, or, equivalently, cov( yi, yj) ¼ 0.

Assumption 1 states that the model is correct, in other words that all relevant x’s are
included and the model is indeed linear. Assumption 2 asserts that the variance of y
is constant and therefore does not depend on the x’s. Assumption 3 states that the y’s
are uncorrelated with each other, which usually holds in a random sample (the
observations would typically be correlated in a time series or when repeated
measurements are made on a single plant or animal). Later we will add a normality
assumption (Section 7.6), under which the y variable will be independent as well as
uncorrelated.

When all three assumptions hold, the least-squares estimators of the b’s have some
good properties (Section 7.3.2). If one or more assumptions do not hold, the estima-
tors may be poor. Under the normality assumption (Section 7.6), the maximum like-
lihood estimators have excellent properties.

Any of the three assumptions may fail to hold with real data. Several procedures
have been devised for checking the assumptions. These diagnostic techniques are
discussed in Chapter 9.

Writing (7.3) for each of the n observations, we have

y1 ¼ b0 þ b1x11 þ b2x12 þ � � � þ bkx1k þ 11

y2 ¼ b0 þ b1x21 þ b2x22 þ � � � þ bkx2k þ 12

..

.

yn ¼ b0 þ b1xn1 þ b2xn2 þ � � � þ bkxnk þ 1n:

138 MULTIPLE REGRESSION: ESTIMATION



These n equations can be written in matrix form as

y1

y2

..

.

yn

0
BBB@

1
CCCA ¼

1 x11 x12 . . . x1k

1 x21 x22 . . . x2k

..

. ..
. ..

. ..
.

1 xn1 xn2 . . . xnk

0
BBB@

1
CCCA

b0

b1

..

.

bk

0
BBB@

1
CCCAþ

11

12

..

.

1n

0
BBB@

1
CCCA

or

y ¼ Xbþ 1: (7:4)

The preceding three assumptions on 1i or yi can be expressed in terms of the model in
(7.4):

1. E(1) ¼ 0 or E(y) ¼ Xb.

2. cov(1) ¼ s2I or cov(y) ¼ s2I.

Note that the assumption cov(1) ¼ s2I includes both the previous assumptions
var(1i) ¼ s2 and cov(1i, 1j) ¼ 0.

The matrix X in (7.4) is n � (k þ 1). In this chapter we assume that n . k þ 1 and
rank (X) ¼ k þ 1. If n , k þ 1 or if there is a linear relationship among the x’s, for
example, x5 ¼

P4
j¼1 xj=4, then X will not have full column rank. If the values of the

xij’s are planned (chosen by the researcher), then the X matrix essentially contains the
experimental design and is sometimes called the design matrix.

The b parameters in (7.1) or (7.4) are called regression coefficients. To emphasize
their collective effect, they are sometimes referred to as partial regression coeffi-
cients. The word partial carries both a mathematical and a statistical meaning.
Mathematically, the partial derivative of E(y) ¼ b0 þ b1x1 þ b2x2 þ � � � þ bkxk

with respect to x1, for example, is b1. Thus b1 indicates the change in E( y) with a
unit increase in x1 when x2, x3, . . . , xk are held constant. Statistically, b1 shows the
effect of x1 on E( y) in the presence of the other x’s. This effect would typically be
different from the effect of x1 on E( y) if the other x’s were not present in the
model. Thus, for example, b0 and b1 in

y ¼ b0 þ b1x1 þ b2x2 þ 1

will usually be different from b0
� and b1

� in

y ¼ b�0 þ b�1x1 þ 1�:

[If x1 and x2 are orthogonal, that is, if x01x2 ¼ 0 or if (x1 � �x1j)0(x2 � �x2j) ¼ 0, where
x1 and x2 are columns in the X matrix, then b0 ¼ b�0 and b1 ¼ b�1; see Corollary 1 to
Theorem 7.9a and Theorem 7.10]. The change in parameters when an x is deleted
from the model is illustrated (with estimates) in the following example.
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Example 7.2. [See Freund and Minton (1979, pp. 36–39)]. Consider the (contrived)
data in Table 7.1.

Using (6.5) and (6.6) from Section 6.2 and (7.6) in Section 7.3 (see Example
7.3.1), we obtain prediction equations for y regressed on x1 alone, on x2 alone, and
on both x1 and x2:

ŷ ¼ 1:86þ 1:30x1,

ŷ ¼ :86þ :78x2,

ŷ ¼ 5:37þ 3:01x1 � 1:29x2:

TABLE 7.1 Data for Example 7.2

Observation
Number y x1 x2

1 2 0 2
2 3 2 6
3 2 2 7
4 7 2 5
5 6 4 9
6 8 4 8
7 10 4 7
8 7 6 10
9 8 6 11
10 12 6 9
11 11 8 15
12 14 8 13

Figure 7.1 Regression of y on x2 ignoring x1.

140 MULTIPLE REGRESSION: ESTIMATION



As expected, the coefficients change from either of the reduced models to the full
model. Note the sign change as the coefficient of x2 changes from .78 to 21.29.

The values of y and x2 are plotted in Figure 7.1 along with the prediction equation
ŷ ¼ :86þ :78x2. The linear trend is clearly evident.

In Figure 7.2 we have the same plot as in Figure 7.1, except that each point
is labeled with the value of x1. Examining values of y and x2 for a fixed value of
x1 (2, 4, 6, or 8) shows a negative slope for the relationship. These negative relation-
ships are shown as partial regressions of y on x2 for each value of x1. The partial
regression coefficient b̂2 ¼ �1:29 reflects the negative slopes of these four partial
regressions.

Further insight into the meaning of the partial regression coefficients is given in
Section 7.10. A

7.3 ESTIMATION OF b AND s2

7.3.1 Least-Squares Estimator for b

In this section, we discuss the least-squares approach to estimation of the b’s in the
fixed-x model (7.1) or (7.4). No distributional assumptions on y are required to obtain
the estimators.

For the parameters b0,b1, . . . ,bk, we seek estimators that minimize the sum of
squares of deviations of the n observed y’s from their predicted values ŷ. By extension

Figure 7.2 Regression of y on x2 showing the value of x1 at each point and partial regressions
of y on x2.
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of (6.2), we seek b̂0, b̂1, . . . , b̂k that minimize

Xn

i¼1

1̂2
i ¼

Xn

i¼1

(yi � ŷi)
2

¼
Xn

i¼1

(yi �b̂0 �b̂1xi1 �b̂2xi2 � � � � �b̂kxik)2: (7:5)

Note that the predicted value ŷi ¼ b̂0 þb̂1xi1 þ � � � þb̂kxik estimates E( yi), not yi. A

better notation would be dE(yi), but ŷi is commonly used.
To obtain the least-squares estimators, it is not necessary that the prediction

equation ŷi ¼ b̂0 þb̂1xi1 þ � � � þb̂kxik be based on E( yi). It is only necessary to pos-
tulate an empirical model that is linear in the b̂ ’s, and the least-squares method will
find the “best” fit to this model. This was illustrated in Figure 6.2.

To find the values of b̂0, b̂1, . . . , b̂k that minimize (7.5), we could differentiate
P

i 1̂
2
i

with respect to each b̂ j and set the results equal to zero to yield k þ 1 equations that can

be solved simultaneously for the b̂ j’s. However, the procedure can be carried out in more
compact form with matrix notation. The result is given in the following theorem.

Theorem 7.3a. If y ¼ Xb þ 1, where X is n � (k þ 1) of rank k þ 1 , n, then the
value of b̂ ¼ (b̂0, b̂1, . . . , b̂k)0 that minimizes (7.5) is

b̂ ¼ (X0X)�1X0y: (7:6)

PROOF. Using (2.20) and (2.27), we can write (7.5) as

1̂01̂ ¼
Xn

i¼1

(yi � x0ib̂)2 ¼ (y� Xb̂)0(y� Xb̂), (7:7)

where x0i ¼ (1, xi1, . . . , xik) is the ith row of X. When the product (y� Xb̂)0(y� Xb̂)
in (7.7) is expanded as in (2.17), two of the resulting four terms can be combined to
yield

1̂01̂ ¼ y0y� 2y0Xb̂þ b̂0X0Xb̂:

We can find the value of b̂ that minimizes 1̂01̂ by differentiating 1̂01̂ with respect to b̂
[using (2.112) and (2.113)] and setting the result equal to zero:

@1̂01̂

@b̂
¼ 0� 2X0yþ 2X0Xb̂ ¼ 0,

This gives the normal equations

X0Xb̂ ¼ X0y: (7:8)
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By Theorems 2.4(iii) and 2.6d(i) and Corollary 1 of Theorem 2.6c, if X is full-rank,
X0X is nonsingular, and the solution to (7.8) is given by (7.6). A

Since b̂ in (7.6) minimizes the sum of squares in (7.5), b̂ is called the least-

squares estimator. Note that each b̂ j in b̂ is a linear function of y; that is,

b̂j ¼ a0jy, where a0j is the jth row of (X0X)�1X0. This usage of the word linear in
linear estimator is different from that in linear model, which indicates that the
model is linear in the b’s.

We now show that b̂ ¼ (X0X)�1X0y minimizes 1̂01̂. Let b be an alternative estima-

tor that may do better than b̂ so that 1̂01̂ is

1̂01̂ ¼ (y� Xb)0(y� Xb):

Now adding and subtracting Xb̂, we obtain

¼ (y� Xb̂þ Xb̂� Xb)0(y� Xb̂þ Xb̂� Xb) (7:9)

¼ (y� Xb̂)0(y� Xb̂)þ (b̂� b)0X0X(b̂� b)

þ 2(b̂� b)0(X0y� X0Xb̂): (7:10)

The third term on the right side of (7.10) vanishes because of the normal equations

X0y ¼ X0Xb̂ in (7.8). The second term is a positive definite quadratic form (assuming

that X is full-rank; see Theorem 2.6d), and 1̂01̂ is therefore minimized when b ¼ b̂.
To examine the structure of X0X and X0y, note that by Theorem 2.2c(i), the

(k þ 1) � (k þ 1) matrix X0X can be obtained as products of columns of X; similarly,
X0y contains products of columns of X and y:

X0X ¼

n
P

i xi1
P

i xi2 . . .
P

i xikP
i xi1

P
i x2

i1

P
i xi1xi2 . . .

P
i xi1xik

..

. ..
. ..

. ..
.

P
xik

P
i xi1xik

P
i xi2xik . . .

P
i x2

ik

0
BBBB@

1
CCCCA

,

X0y ¼

P
i yiP

i xi1yi

..

.

P
i xikyi

0
BBBB@

1
CCCCA
:

If b̂ ¼ (X0X)�1X0y as in (7.6), then

1̂ ¼ y� Xb̂ ¼ y� ŷ (7:11)
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is the vector of residuals, 1̂1 ¼ y1 � ŷ1, 1̂2 ¼ y2 � ŷ2, . . . , 1̂n ¼ yn � ŷn. The residual
vector 1̂ estimates 1 in the model y ¼ Xbþ 1 and can be used to check the validity
of the model and attendant assumptions; see Chapter 9.

Example 7.3.1a. We use the data in Table 7.1 to illustrate computation of b̂ using (7.6).

y ¼

2

3

2

7

6

8

10

7

8

12

11

14

0
BBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCA

, X ¼

1 0 2

1 2 6

1 2 7

1 2 5

1 4 9

1 4 8

1 4 7

1 6 10

1 6 11

1 6 9

1 8 15

1 8 13

0
BBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCA

, X0X ¼
12 52 102

52 395 536

102 536 1004

0
B@

1
CA,

X0y ¼
90

482

872

0
B@

1
CA, (X0X)�1 ¼

:97476 :24290 �:22871

:24290 :16207 �:11120

�:22871 �:11120 :08360

0
B@

1
CA,

b̂ ¼ (X0X)�1X0y ¼
5:3754

3:0118

�1:2855

0
B@

1
CA:

A

Example 7.3.1b. Simple linear regression from Chapter 6 can also be expressed in
matrix terms:

y ¼

y1

y2

..

.

yn

0
BBBB@

1
CCCCA

, X ¼

1 x1

1 x2

..

. ..
.

1 xn

0
BBBB@

1
CCCCA

, b ¼
b0

b1

� �
,

X0X ¼
n

P
i xiP

i xi
P

i x2
i

� �
, X0y ¼

P
i yiP

i xiyi

� �
,

(X0X)�1 ¼ 1

n
P

i x2
i � (

P
i xi)2

P
i x2

i �
P

i xi

�
P

i xi n

 !
:
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Then b̂0 and b̂1 can be obtained using (7.6), b̂ ¼ (X0X)�1X0y:

b̂¼ b̂0

b̂1

� �
¼ 1

n
P

i x2
i � (

P
i xi)2

�P
i x2

i

��P
yi

�
�
�P

i xi

��P
i xiyi

�

�
�P

i xi

��P
yi

�
þ n

P
i xiyi

0
@

1
A: (7:12)

The estimators b̂0 and b̂1 in (7.11) are the same as those in (6.5) and (6.6). A

7.3.2 Properties of the Least-Squares Estimator b̂

The least-squares estimator b̂ ¼ (X0X)�1X0y in Theorem 7.3a was obtained without
using the assumptions E(y) ¼ Xb and cov(y) ¼ s2I given in Section 7.2. We merely
postulated a model y ¼ Xbþ 1 as in (7.4) and fitted it. If E(y) = Xb, the model

y ¼ Xbþ 1 could still be fitted to the data, in which case, b̂ may have poor proper-

ties. If cov(y) = s2I, there may be additional adverse effects on the estimator b̂.

However, if E(y) ¼ Xb and cov(y) ¼ s2I hold, b̂ has some good properties, as

noted in the four theorems in this section. Note that b̂ is a random vector (from
sample to sample). We discuss its mean vector and covariance matrix in this
section (with no distributional assumptions on y) and its distribution (assuming
that the y variables are normal) in Section 7.6.3. In the following theorems, we
assume that X is fixed (remains constant in repeated sampling) and full rank.

Theorem 7.3b. If E(y) ¼ Xb, then b̂ is an unbiased estimator for b.

PROOF

E(b̂) ¼ E[(X0X)�1X0y]

¼ (X0X)�1X0E(y) [by (3:38)]

¼ (X0X)�1X0Xb

¼ b: (7:13)

A

Theorem 7.3c. If cov(y) ¼ s2I, the covariance matrix for b̂ is given by s2(X0X)�1.

PROOF

cov(b̂) ¼ cov[(X0X)�1X0y]

¼ (X0X)�1X0cov(y)[(X0X)�1X0]0 [by (3:44)]

¼ (X0X)�1X0(s2I)X(X0X)�1

¼ s2(X0X)�1X0X(X0X)�1

¼ s2(X0X)�1: (7:14)

A
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Example 7.3.2a. Using the matrix (X0X)�1 for simple linear regression given in
Example 7.3.1, we obtain

cov(b̂) ¼ cov
b̂0

b̂1

 !
¼ var(b̂0) cov(b̂0, b̂1)

cov(b̂0, b̂1) var(b̂1)

 !
¼ s2(X0X)�1

¼ s2

n
P

i x2
i � (

P
i xi)2

P
i x2

i �
P

i xi

�
P

i xi n

 !
(7:15)

¼ s2

P
i (xi � �x)2

P
i x2

i =n ��x

��x 1

� �
: (7:16)

Thus

var(b̂0) ¼ s2P
i x2

i =nP
i (xi � �x)2 , var(b̂1) ¼ s2

P
i (xi � �x)2 ,

cov(b̂0, b̂1) ¼ �s2�xP
i (xi � �x)2 :

We found var(b̂0) and var(b̂1) in Section 6.2 but did not obtain cov(b̂0, b̂1). Note that if
�x . 0, then cov(b̂0, b̂1) is negative and the estimated slope and intercept are negatively
correlated. In this case, if the estimate of the slope increases from one sample to another,
the estimate of the intercept tends to decrease (assuming the x’s stay the same). A

Example 7.3.2b. For the data in Table 7.1, (X0X)21 is as given in Example 7.3.1.
Thus, cov(b̂) is given by

cov(b̂) ¼ s2(X0X)�1 ¼ s2

:975 :243 �:229

:243 :162 �:111

�:229 �:111 :084

0
B@

1
CA:

The negative value of cov(b̂1, b̂2) ¼ �:111 indicates that in repeated sampling
(using the same 12 values of x1 and x2), b̂1 and b̂2 would tend to move in opposite
directions; that is, an increase in one would be accompanied by a decrease in the
other. A

In addition to E(b̂) ¼ b and cov(b̂) ¼ s2(X0X)�1, a third important property of b̂
is that under the standard assumptions, the variance of each b̂ j is minimum (see the
following theorem).

Theorem 7.3d (Gauss–Markov Theorem). If E(y) ¼ Xb and cov(y) ¼ s2I, the
least-squares estimators b̂j, j ¼ 0, 1, . . . , k, have minimum variance among all
linear unbiased estimators.

146 MULTIPLE REGRESSION: ESTIMATION



PROOF. We consider a linear estimator Ay of b and seek the matrix A for which Ay is
a minimum variance unbiased estimator of b. In order for Ay to be an unbiased esti-
mator of b, we must have E(Ay) ¼ b. Using the assumption E(y) ¼ Xb, this can be
expressed as

E(Ay) ¼ AE(y) ¼ AXb ¼ b,

which gives the unbiasedness condition

AX ¼ I

since the relationship AXb ¼ b must hold for any possible value of b [see (2.44)].
The covariance matrix for the estimator Ay is given by

cov(Ay) ¼ A(s2I)A0 ¼ s2AA0:

The variances of the b̂ j’s are on the diagonal of s2AA0, and we therefore need to
choose A (subject to AX ¼ I) so that the diagonal elements of AA0 are minimized.

To relate Ay to b̂ ¼ (X0X)�1X0y, we add and subtract (X0X)�1X0 to obtain

AA0 ¼ [A� (X0X)�1X0 þ (X0X)�1X0][A� (X0X)�1X0 þ (X0X)�1X0]0:

Expanding this in terms of A 2 (X0X)21X0 and (X0X)21X0, we obtain four terms, two
of which vanish because of the restriction AX ¼ I. The result is

AA0 ¼ [A� (X0X)�1X0][A� (X0X)�1X0]0 þ (X0X)�1: (7:17)

The matrix [A� (X0X)�1X0][A� (X0X)�1X0]0 on the right side of (7.17) is positive
semidefinite (see Theorem 2.6d), and, by Theorem 2.6a (ii), the diagonal elements are
greater than or equal to zero. These diagonal elements can be made equal to zero by
choosing A ¼ (X0X)�1X0. (This value of A also satisfies the unbiasedness condition
AX ¼ I.) The resulting minimum variance estimator of b is

Ay ¼ (X0X)�1X0y,

which is equal to the least–squares estimator b̂. A

The Gauss–Markov theorem is sometimes stated as follows. If E(y) ¼ Xb and
cov(y) ¼ s2I, the least-squares estimators b̂0, b̂1, . . . , b̂k are best linear unbiased
estimators (BLUE). In this expression, best means minimum variance and linear indi-
cates that the estimators are linear functions of y.

The remarkable feature of the Gauss–Markov theorem is its distributional general-
ity. The result holds for any distribution of y; normality is not required. The only
assumptions used in the proof are E(y) ¼ Xb and cov(y) ¼ s2I. If these assumptions

do not hold, b̂ may be biased or each b̂j may have a larger variance than that of some
other estimator.
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The Gauss–Markov theorem is easily extended to a linear combination of the b̂’s,
as follows.

Corollary 1. If E(y) ¼ Xb and cov(y) ¼ s2I, the best linear unbiased estimator of

a0b is a0b̂, where b̂ is the least–squares estimator b̂ ¼ (X0X)�1X0y.

PROOF. See Problem 7.7. A

Note that Theorem 7.3d is concerned with the form of the estimator b̂ for a given X
matrix. Once X is chosen, the variances of the b̂ j’s are minimized by b̂ ¼ (X0X)�1X0y.

However, in Theorem 7.3c, we have cov(b̂) ¼ s2(X0X)�1 and therefore var(b̂ j) and

cov(b̂i, b̂ j) depend on the values of the xj’s. Thus the configuration of X0X is important
in estimation of the bj’s (this was illustrated in Problem 6.4).

In both estimation and testing, there are advantages to choosing the x’s (or the
centered x’s) to be orthogonal so that X0X is diagonal. These advantages include mini-
mizing the variances of the b̂ j’s and maximizing the power of tests about the b j’s
(Chapter 8). For clarification, we note that orthogonality is necessary but not sufficient
for minimizing variances and maximizing power. For example, if there are two x’s,
with values to be selected in a rectangular space, the points could be evenly placed
on a grid, which would be an orthogonal pattern. However, the optimal orthogonal
pattern would be to place one-fourth of the points at each corner of the rectangle.

A fourth property of b̂ is as follows. The predicted value ŷ ¼ b̂0þ
b̂1x1 þ � � � þ b̂kxk ¼ b̂

0
x is invariant to simple linear changes of scale on the x’s,

where x ¼ (1, x1, x2, . . . , xk)0. Let the rescaled variables be denoted by zj ¼ cjxj,
j ¼ 1, 2, . . . , k, where the cj terms are constants. Thus x is transformed to
z ¼ (1, c1x1, . . . , ckxk)0. The following theorem shows that ŷ based on z is the same
as ŷ based on x.

Theorem 7.3e. If x ¼ (1, x1, . . . , xk)0 and z ¼ (1, c1x1, . . . , ckxk)0, then ŷ ¼
b̂0x ¼ b̂0zz, where b̂z is the least squares estimator from the regression of y on z.

PROOF. From (2.29), we can rewrite z as z ¼ Dx, where D ¼ diag(1, c1, c2, . . . , ck).
Then, the X matrix is transformed to Z ¼ XD [see (2.28)]. We substitute Z ¼ XD in

the least-squares estimator b̂z ¼ (Z0Z)�1Z0y to obtain

b̂z ¼ (Z0Z)�1Z0y ¼ [(XD)0(XD)]�1(XD)0y

¼ D�1(X0X)�1X0y [by (2:49)]

¼ D�1b̂, (7:18)

where b̂ is the usual estimator for y regressed on the x’s. Then

b̂
0
zz ¼ (D�1b̂)0Dx ¼ b̂

0
x:

A
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In the following corollary to Theorem 7.3e, the invariance of ŷ is extended to any
full-rank linear transformation of the x variables.

Corollary 1. The predicted value ŷ is invariant to a full-rank linear transformation on
the x’s.

PROOF. We can express a full-rank linear transformation of the x’s as

Z ¼ XK ¼ ( j, X1)
1 00

0 K1

� �
¼ (jþ X10, j00 þ X1K1) ¼ ( j, X1K1),

where K1 is nonsingular and

X1 ¼

x11 x12 . . . x1k

x21 x22 . . . x2k

..

. ..
. ..

.

xn1 xn2 . . . xnk

0
BBB@

1
CCCA: (7:19)

We partition X and K in this way so as to transform only the x’s in X1, leaving the first
column of X unaffected. Now b̂z becomes

b̂z ¼ (Z0Z)�1Z0y ¼ K�1b̂, (7:20)
and we have

ŷ ¼ b̂
0
zz ¼ b̂

0
x, (7:21)

where z ¼ K0x. A

In addition to ŷ, the sample variance s2 (Section 7.3.3) is also invariant to changes
of scale on the x variable (see Problem 7.10). The following are invariant to changes
of scale on y as well as on the x’s (but not to a joint linear transformation on y and the
x’s): t statistics (Section 8.5), F statistics (Chapter 8), and R2 (Sections 7.7 and 10.3).

7.3.3 An Estimator for s2

The method of least squares does not yield a function of the y and x values in the
sample that we can minimize to obtain an estimator of s2. However, we can devise
an unbiased estimator for s2 based on the least-squares estimator b̂. By assumption
2 following (7.3), s2 is the same for each yi, i ¼ 1, 2, . . . , n. By (3.6), s2 is defined by
s2 ¼ E[yi � E(yi)]2, and by assumption 1, we obtain

E(yi) ¼ b0 þ bixi1 þ b2xi2 þ � � � þ bkxik ¼ x0ib,

where xi
0 is the ith row of X. Thus s2 becomes

s2 ¼ E[yi � x0ib]2:
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We estimate s2 by a corresponding average from the sample

s2 ¼ 1
n� k � 1

Xn

i¼1

(yi � x0ib̂)2, (7:22)

where n is the sample size and k is the number of x’s. Note that, by the corollary to
Theorem 7.3d, x0ib̂ is the BLUE of x0ib.

Using (7.7), we can write (7.22) as

s2 ¼ 1
n� k � 1

(y� Xb̂)0(y� Xb̂) (7:23)

¼ y0y� b̂0X0y

n� k � 1
¼ SSE

n� k � 1
, (7:24)

where SSE ¼ (y� Xb̂)0(y� Xb̂) ¼ y0y� b̂0X0y. With the denominator
n� k � 1, s2 is an unbiased estimator of s2, as shown below.

Theorem 7.3f. If s2 is defined by (7.22), (7.23), or (7.24) and if E(y) ¼ Xb and
cov(y) ¼ s2I, then

E(s2) ¼ s2: (7:25)

PROOF. Using (7.24) and (7.6), we write SSE as a quadratic form:

SSE ¼ y0y� b̂0X0y ¼ y0y� y0X(X0X)�1X0y

¼ y0 I� X(X0X)�1X0
� �

y: (7:26)

By Theorem 5.2a, we have

E(SSE) ¼ tr I� X(X0X)�1X0
� �

s2I
� 	

þ E(y0) I� X(X0X)�1X0
� �

E(y)

¼ s2tr I� X(X0X)�1X0
� �

þ b0X0 I� X(X0X)�1X0
� �

Xb

¼ s2 n� tr X(X0X)�1X0
� �� 	

þ b0X0Xb� b0X0X(X0X)�1X0Xb

¼ s2 n� tr[X0X(X0X)�1]
� 	

þ b0X0Xb� b0X0Xb [by (2:87)]:
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Since X0X is (k þ 1)� (k þ 1), this becomes

E(SSE) ¼ s2[n� tr(Ikþ1)] ¼ s2(n� k � 1):
A

Corollary 1. An unbiased estimator of cov(b̂) in (7.14) is given by

dcov(b̂) ¼ s2(X0X)�1: (7:27)
A

Note the correspondence between n 2 (k þ 1) and y0y� b̂
0
X0y; there are n terms in

y0y and k þ 1 terms in b̂
0
X0y ¼ b̂

0
X0Xb̂ [see (7.8)]. A corresponding property of the

sample is that each additional x (and b̂ ) in the model reduces SSE (see Problem 7.13).
Since SSE is a quadratic function of y, it is not a best linear unbiased estimator.

The optimality property of s2 is given in the following theorem.

Theorem 7.3g. If E(1) ¼ 0, cov(1) ¼ s2I, and E(14
i ) ¼ 3s4 for the linear model

y ¼ Xbþ 1, then s2 in (7.23) or (7.24) is the best (minimum variance) quadratic
unbiased estimator of s2.

PROOF. See Graybill (1954), Graybill and Wortham (1956), or Wang and Chow
(1994, pp. 161–163). A

Example 7.3.3. For the data in Table 7.1, we have

SSE ¼ y0y� b̂
0
Xy

¼ 840� (5:3754, 3:0118, �1:2855)

90

482

872

0
B@

1
CA

¼ 840� 814:541 ¼ 25:459,

s2 ¼ SSE
n� k � 1

¼ 25:459
12� 2� 1

¼ 2:829:

A

7.4 GEOMETRY OF LEAST SQUARES

In Sections 7.1–7.3 we presented the multiple linear regression model as the matrix
equation y ¼ Xbþ 1 in (7.4). We defined the principle of least-squares estimation in
terms of deviations from the model [see (7.7)], and then used matrix calculus and
matrix algebra to derive the estimators of b in (7.6) and of s2 in (7.23) and (7.24).
We now present an alternate but equivalent derivation of these estimators based com-
pletely on geometric ideas.
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It is important to clarify first what the geometric approach to least squares is not. In
two dimensions, we illustrated the principle of least squares by creating a two-
dimensional scatter plot (Fig. 6.1) of the n points (x1, y1), (x2, y2), . . . , (xn, yn). We
then visualized the least-squares regression line as the best-fitting straight line to
the data. This approach can be generalized to present the least-squares estimate in
multiple linear regression on the basis of the best-fitting hyperplane in (k þ 1)-
dimensional space to the n points (x11, x12, . . . , x1k, y1), (x21, x22, . . . , x2k, y2), . . . ,
(xn1, xn2, . . . , xnk, yn). Although this approach is somewhat useful in visualizing
multiple linear regression, the geometric approach to least-squares estimation in
multiple linear regression does not involve this high-dimensional generalization.

The geometric approach to be discussed below is appealing because of its math-
ematical elegance. For example, the estimator is derived without the use of matrix cal-
culus. Also, the geometric approach provides deeper insight into statistical inference.
Several advanced statistical methods including kernel smoothing (Eubank and
Eubank 1999), Fourier analysis (Bloomfield 2000), and wavelet analysis (Ogden
1997) can be understood as generalizations of this geometric approach. The geo-
metric approach to linear models was first proposed by Fisher (Mahalanobis 1964).
Christensen (1996) and Jammalamadaka and Sengupta (2003) discuss the linear stat-
istical model almost completely from the geometric perspective.

7.4.1 Parameter Space, Data Space, and Prediction Space

The geometric approach to least squares begins with two high-dimensional spaces, a
(k þ 1)-dimensional space and an n-dimensional space. The unknown parameter
vector b can be viewed as a single point in (k þ 1)-dimensional space, with axes cor-
responding to the k þ 1 regression coefficients b0, b1, b0, . . . , bk. Hence we call this
space the parameter space (Fig. 7.3). Similarly, the data vector y can be viewed as a

Figure 7.3 Parameter space, data space, and prediction space with representative elements.
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single point in n-dimensional space with axes corresponding to the n observations.
We call this space the data space.

The X matrix of the multiple regression model (7.4) can be written as a partitioned
matrix in terms of its k þ 1 columns as

X ¼ ( j, x1, x2, x3, . . . , xk):

The columns of X, including j, are all n-dimensional vectors and are therefore
points in the data space. Note that because we assumed that X is of rank k þ 1,
these vectors are linearly independent. The set of all possible linear combinations
of the columns of X (Section 2.3) constitutes a subset of the data space. Elements
of this subset can be written as

Xb ¼ b0jþ b1x1 þ b2x2 þ � � � þ bkxk, (7:28)

where b is any k þ 1 vector, that is, any vector in the parameter space. This subset
actually has the status of a subspace because it is closed under addition and scalar
multiplication (Harville 1997, pp. 28–29). This subset is said to be the subspace gen-
erated or spanned by the columns of X, and we will call this subspace the prediction
space. The columns of X constitute a basis set for the prediction space.

7.4.2 Geometric Interpretation of the Multiple Linear Regression Model

The multiple linear regression model (7.4) states that y is equal to a vector in the
prediction space, E(y) ¼ Xb, plus a vector of random errors, 1 (Fig. 7.4). The

Figure 7.4 Geometric relationships of vectors associated with the multiple linear regression
model.
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problem is that neither b nor 1 is known. However, the data vector y, which is not in
the prediction space, is known. And it is known that E(y) is in the prediction space.

Multiple linear regression can be understood geometrically as the process of
finding a sensible estimate of E(y) in the prediction space and then determining
the vector in the parameter space that is associated with this estimate (Fig. 7.4).
The estimate of E(y) is denoted as ŷ, and the associated vector in the parameter

space is denoted as b̂.
A reasonable geometric idea is to estimate E(y) using the point in the prediction

space that is closest to y. It turns out that ŷ, the closest point in the prediction
space to y, can be found by noting that the difference vector 1̂ ¼ y� ŷ must be
orthogonal (perpendicular) to the prediction space (Harville 1997, p. 170).
Furthermore, because the prediction space is spanned by the columns of X, the
point ŷ must be such that 1̂ is orthogonal to the columns of X. Using an extension
of (2.80), we therefore seek ŷ such that

X01̂ ¼ 0
or

X0(y� ŷ) ¼ X0(y� Xb̂) ¼ X0y� X0Xb̂ ¼ 0, (7:29)

which implies that

X0Xb̂ ¼ X0y:

Thus, using purely geometric ideas, we obtain the normal equations (7.8) and conse-
quently the usual least-squares estimator b̂ in (7.6). We can then calculate ŷ as

Xb̂ ¼ X(X0X)�1X0y ¼ Hy. Also, 1̂ ¼ y� Xb̂ ¼ (I�H)y can be taken as an esti-
mate of 1. Since 1̂ is a vector in (n 2 k 2 1)-dimensional space, it seems reasonable
to estimate s2 as the squared length (2.22) of 1̂ divided by n 2 k 2 1. In other words,
a sensible estimator of s2 is s2 ¼ y0(I�H)y=(n� k � 1), which is equal to (7.25).

7.5 THE MODEL IN CENTERED FORM

The model in (7.3) for each yi can be written in terms of centered x variables as

yi ¼ b0 þ b1xi1 þ b2xi2 þ � � � þ bkxik þ 1i

¼ aþ b1(xi1 � �x1)þ b2(xi2 � �x2)þ � � � þ bk(xik � �xk)þ 1i, (7:30)

i ¼ 1, 2, . . . , n, where

a ¼ b0 þ b1�x1 þ b2�x2 þ . . .þ bk�xk (7:31)

and �xj ¼
Pn

i¼1 xij=n, j ¼ 1, 2, . . . , k. The centered form of the model is useful in
expressing certain hypothesis tests (Section 8.1), in a search for influential obser-
vations (Section 9.2), and in providing other insights.
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In matrix form, the centered model (7.30) for y1, y2, . . . , yn becomes

y ¼ ( j, Xc)
a

b1

� �
þ 1, (7:32)

where b1 ¼ (b1, b2, . . . , bk)0,

Xc ¼ I� 1
n

J

� �
X1 ¼

x11 � �x1 x12 � �x2 . . . x1k � �xk

x21 � �x1 x22 � �x2 . . . x2k � �xk

..

. ..
. ..

.

xn1 � �x1 xn2 � �x2 . . . xnk � �xk

0
BBB@

1
CCCA, (7:33)

and X1 is as given in (7.19). The matrix I 2 (1/n)J is sometimes called the centering
matrix.

As in (7.8), the normal equations for the model in (7.32) are

( j, Xc)0( j, Xc)
â

b̂1

� �
¼ ( j, Xc)0y: (7:34)

By (2.35) and (2.39), the product ( j, Xc)0( j, Xc) on the left side of (7.34) becomes

( j, Xc)0( j, Xc) ¼
j0

X0c

� �
( j, Xc) ¼

j0j j0Xc

X0cj X0cXc

� �

¼
n 00

0 X0cXc

� �
, (7:35)

where j0Xc ¼ 00 because the columns of Xc sum to zero (Problem 7.16). The right
side of (7.34) can be written as

(j, Xc)0y ¼ j0

X0c

� �
y ¼ n�y

X0cy

� �
:

The least-squares estimators are then given by

â

b̂1

� �
¼ [( j, Xc)0( j, Xc)]

�1( j, Xc)0y ¼
n 00

0 X0cXc

� ��1 n�y

X0cy

� �

¼
1=n 00

0 (X0cXc)�1

� �
n�y

X0cy

� �
¼

�y

(X0cXc)�1X0cy

� �
,

or

â ¼ �y, (7:36)

b̂1 ¼ (X0cXc)�1X0cy: (7:37)
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These estimators are the same as the usual least-squares estimators b̂ ¼ (X0X)�1X0y
in (7.6), with the adjustment

b̂0 ¼ â� b̂1�x1 � b̂2�x� � � � � b̂k�xk ¼ �y� b̂01�x (7:38)

obtained from an estimator of a in (7.31) (see Problem 7.17).
When we express ŷ in centered form

ŷ ¼ âþ b̂1(x1 � �x1)þ � � � þ b̂k(xk � �xk),

it is clear that the fitted regression plane passes through the point (�x1, �x2, . . . , �xk, �y).
Adapting the expression for SSE (7.24) to the centered model with centered ŷ’s,

we obtain

SSE ¼
Xn

i¼1

(yi � �y)2 � b̂01X0cy, (7:39)

which turns out to be equal to SSE ¼ y0y� b̂0X0y (see Problem 7.19).
We can use (7.36)–(7.38) to express b̂1 and b̂0 in terms of sample variances and

covariances, which will be useful in comparing these estimators with those for the
random-x case in Chapter 10. We first define a sample covariance matrix for the x
variables and a vector of sample covariances between y and the x’s

Sxx ¼

s2
1 s12 . . . s1k

s21 s2
2 . . . s2k

..

. ..
. ..

.

sk1 sk2 . . . s2
k

0
BBB@

1
CCCA, syx ¼

sy1

sy2

..

.

syk

0
BBB@

1
CCCA, (7:40)

where, s2
i , sij, and syi are analogous to s2 and sxy defined in (5.6) and (5.15); for

example

s2
2 ¼

Pn
i¼1 (xi2 � �x2)2

n� 1
, (7:41)

s12 ¼
Pn

i¼1 (xi1 � �x1)(xi2 � �x2)
n� 1

, (7:42)

sy2 ¼
Pn

i¼1 (xi2 � �x2)(yi � �y)
n� 1

, (7:43)

with �x2 ¼
Pn

i¼1 xi2=n. However, since the x’s are fixed, these sample variances and
covariances do not estimate population variances and covariances. If the x’s were
random variables, as in Chapter 10, the s2

i , sij, and syi values would estimate popu-
lation parameters.
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To express b̂1 and b̂0 in terms of Sxx and syx, we first write Sxx and syx in terms of
the centered matrix Xc:

Sxx ¼
X0cXc

n� 1
, (7:44)

syx ¼
X0cy

n� 1
: (7:45)

Note that X0cy in (7.45) contains terms of the form
Pn

i¼1 (xij � �xj)yi rather thanPn
i¼1 (xij � �xj)(yi � �y) as in (7.43). It can readily be shown thatP
i (xij � �xj)(yi � �y) ¼

P
i (xij � �xj)yi (see Problem 6.2).

From (7.37), (7.44), and (7.45), we have

b̂1 ¼ (n� 1)(X0cXc)�1 X0cy

n� 1
¼ X0cXc

n� 1

� ��1 X0cy

n� 1
¼ S�1

xx syx, (7:46)

and from (7.38) and (7.46), we obtain

b̂0 ¼ â� b̂01�x ¼ �y� s0yxS�1
xx �x: (7:47)

Example 7.5. For the data in Table 7.1, we calculate b̂1 and b̂0 using (7.46) and (7.47).

b̂1 ¼ S�1
xx syx ¼

6:4242 8:5455

8:5455 12:4545

� ��1 8:3636

9:7273

� �

¼
3:0118

�1:2855

� �
,

b̂0 ¼ �y� s0yxS�1
xx �x

¼ 7:5000� (3:0118, �1:2855)
4:3333

8:5000

� �

¼ 7:500� 2:1246 ¼ 5:3754:

These values are the same as those obtained in Example 7.3.1a. A

7.6 NORMAL MODEL

7.6.1 Assumptions

Thus far we have made no normality assumptions about the random variables
y1, y2, . . . , yn. To the assumptions in Section 7.2, we now add that

y is Nn(Xb, s2I) or 1 is Nn(0, s2I):
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Under normality, sij ¼ 0 implies that the y (or 1) variables are independent, as well as
uncorrelated.

7.6.2 Maximum Likelihood Estimators for b and s2

With the normality assumption, we can obtain maximum likelihood estimators. The
likelihood function is the joint density of the y’s, which we denote by L(b, s2). We
seek values of the unknown b and s2 that maximize L(b, s2) for the given y and x
values in the sample.

In the case of the normal density function, it is possible to find maximum likeli-
hood estimators b̂ and ŝ2 by differentiation. Because the normal density involves a
product and an exponential, it is simpler to work with ln L(b, s2), which achieves its
maximum for the same values of b and s2 as does L(b, s2).

The maximum likelihood estimators for b and s2 are given in the following
theorem.

Theorem 7.6a. If y is Nn(Xb, s2I), where X is n � (k þ 1) of rank k þ 1 , n, the
maximum likelihood estimators of b and s2 are

b̂ ¼ (X0X)�1X0y, (7:48)

ŝ2 ¼ 1
n

(y� Xb̂)0(y� Xb̂): (7:49)

PROOF. We sketch the proof. For the remaining steps, see Problem 7.21. The likeli-
hood function ( joint density of y1, y2, . . . , yn ) is given by the multivariate normal
density (4.9)

L(b, s2) ¼ f (y; b, s2) ¼ 1

(2p)n=2js2Ij1=2
e�(y�Xb)0(s2I)�1(y�Xb)=2

¼ 1

(2ps2)n=2
e�(y�Xb)0(y�Xb)=2s2

: (7:50)

[Since the yi’s are independent, L(b, s2) can also be obtained as
Qn

i¼1 f (yi; x0ib, s2).]
Then ln L(b, s2) becomes

ln L(b, s2) ¼ � n

2
ln (2p)� n

2
lns2 � 1

2s2
(y� Xb)0(y� Xb): (7:51)

Taking the partial derivatives of ln L(b, s2) with respect to b and s2 and setting the

results equal to zero will produce (7.48) and (7.49). To verify that b̂ maximizes (7.50)
or (7.51), see (7.10). A
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The maximum likelihood estimator b̂ in (7.48) is the same as the least-squares estima-

tor b̂ in Theorem 7.3a. The estimator ŝ2 in (7.49) is biased since the denominator is n
rather than n 2 k 2 1. We often use the unbiased estimator s2 given in (7.23) or (7.24).

7.6.3 Properties of b̂ and ŝ2

We now consider some properties of b̂ and ŝ2 (or s2) under the normal model. The

distributions of b̂ and ŝ2 are given in the following theorem.

Theorem 7.6b. Suppose that y is Nn(Xb, s2I), where X is n � (k þ 1) of rank k þ
1 , n and b ¼ (b0, b1, . . . , bk)0. Then the maximum likelihood estimators b̂ and ŝ2

given in Theorem 7.6a have the following distributional properties:

(i) b̂ is Nkþ1[b, s2(X0X)�1].

(ii) nŝ2=s2 is x2(n� k � 1), or equivalently, (n� k � 1)s2=s2 is x2(n� k � 1).

(iii) b̂ and ŝ2 (or s2) are independent.

PROOF

(i) Since b̂ ¼ (X0X)�1X0y is a linear function of y of the form b̂ ¼ Ay, where

A ¼ (X0X)�1X0 is a constant matrix, then by Theorem 4.4a(ii), b̂ is
Nkþ1[b, s2(X0X)�1].

(ii) The result follows from Corollary 2 to Theorem 5.5.

(iii) The result follows from Corollary 1 to Theorem 5.6a.
A

Another property of b̂ and ŝ2 under normality is that they are sufficient statistics.
Intuitively, a statistic is sufficient for a parameter if the statistic summarizes all the

information in the sample about the parameter. Sufficiency of b̂ and ŝ2 can be estab-
lished by the Neyman factorization theorem [see Hogg and Craig (1995, p. 318) or

Graybill (1976, pp. 69–70)], which states that b̂ and ŝ2 are jointly sufficient for b
and s2 if the density f (y;b, s2) can be factored as f (y; b, s2) ¼
g(b̂, ŝ2, b, s2)h(y), where h(y) does not depend on b or s2. The following

theorem shows that b̂ and ŝ2 satisfy this criterion.

Theorem 7.6c. If y is Nn(Xb, s2I), then b̂ and ŝ2 are jointly sufficient for b and s2.

PROOF. The density f (y; b, s2) is given in (7.50). In the exponent, we add and

subtract Xb̂ to obtain

(y� Xb)0(y� Xb) ¼ (y� Xb̂þ Xb̂� Xb)0(y� Xb̂þ Xb̂� Xb)

¼ [(y� Xb̂)þ X(b̂� b)]0[(y� Xb̂)þ X(b̂� b)]:
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Expanding this in terms of y� Xb̂ and X(b̂� b), we obtain four terms, two of

which vanish because of the normal equations X0Xb̂ ¼ X0y. The result is

(y� Xb)0(y� Xb) ¼ (y� Xb̂)0(y� Xb̂)þ (b̂� b)0X0X(b̂� b) (7:52)

¼ nŝ2 þ (b̂� b)0X0X(b̂� b):

We can now write the density (7.50) as

f (y; b, s2) ¼ 1

(2ps2)n=2
e�[nŝ2þ(b̂�b)0X0X(b̂�b)]=2s2

,

which is of the form

f (y; b, s2) ¼ g(b̂, ŝ2, b, s2)h(y),

where h(y) ¼ 1. Therefore, by the Neyman factorization theorem, b̂ and ŝ2 are
jointly sufficient for b and s2. A

Note that b̂ and ŝ2 are jointly sufficient for b and s2, not independently sufficient;

that is, f (y; b, s2) does not factor into the form g1(b̂, b)g2(ŝ2, s2)h(y). Also note
that because s2 ¼ nŝ2=(n� k � 1), the proof to Theorem 7.6c can be easily modified

to show that b̂ and s2 are also jointly sufficient for b and s2.
Since b̂ and s2 are sufficient, no other estimators can improve on the information

they extract from the sample to estimate b and s2. Thus, it is not surprising that b̂ and

s2 are minimum variance unbiased estimators (each b̂ j in b̂ has minimum variance).
This result is given in the following theorem.

Theorem 7.6d. If y is Nn(Xb, s2I), then b̂ and s2 have minimum variance among all
unbiased estimators.

PROOF. See Graybill (1976, p. 176) or Christensen (1996, pp. 25–27). A

In Theorem 7.3d, the elements of b̂ were shown to have minimum variance among
all linear unbiased estimators. With the normality assumption added in Theorem

7.6d, the elements of b̂ have minimum variance among all unbiased estimators.
Similarly, by Theorem 7.3g, s2 has minimum variance among all quadratic unbiased
estimators. With the added normality assumption in Theorem 7.6d, s2 has minimum
variance among all unbiased estimators.

The following corollary to Theorem 7.6d is analogous to Corollary 1 of Theorem
7.3d.

Corollary 1. If y is Nn(Xb, s2I), then the minimum variance unbiased estimator of

a0b is a0b̂, where b̂ is the maximum likelihood estimator given in (7.48). A
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7.7 R2 IN FIXED-x REGRESSION

In (7.39), we have SSE ¼
Pn

i¼1 (yi � �y)2 � b̂01X0cy. Thus the corrected total sum of
squares SST ¼

P
i (yi � �y)2 can be partitioned as

Xn

i¼1

(yi � �y)2 ¼ b̂01X0cyþ SSE, (7:53)

SST ¼ SSRþ SSE,

where SSR ¼ b̂01X0cy is the regression sum of squares. From (7.37), we obtain

X0cy ¼ X0cXcb̂1, and multiplying this by b̂01 gives b̂01X0cy ¼ b̂01X0cXcb̂1. Then

SSR ¼ b̂01X0cy can be written as

SSR ¼ b̂01X0cXcb̂1 ¼ (Xcb̂1)0(Xcb̂1): (7:54)

In this form, it is clear that SSR is due to b1 ¼ (b1, b2, . . . , bk)0.
The proportion of the total sum of squares due to regression is

R2 ¼ b̂01X0cXcb̂1Pn
i¼1 (yi � �y)2 ¼

SSR
SST

, (7:55)

which is known as the coefficient of determination or the squared multiple corre-
lation. The ratio in (7.55) is a measure of model fit and provides an indication of
how well the x’s predict y.

The partitioning in (7.53) can be rewritten as the identity

Xn

i¼1

(yi � �y)2 ¼ y0y� n�y2 ¼ (b̂0X0y� n�y2)þ (y0y� b̂0X0y)

¼ SSRþ SSE,

which leads to an alternative expression for R2:

R2 ¼ b̂0X0y� n�y2

y0y� n�y2 : (7:56)

The positive square root R obtained from (7.55) or (7.56) is called the multiple cor-
relation coefficient. If the x variables were random, R would estimate a population
multiple correlation (see Section (10.4)).

We list some properties of R2 and R:

1. The range of R2 is 0 � R2 � 1. If all the b̂j’s were zero, except for b̂0, R2

would be 0. (This event has probability 0 for continuous data.) If all the
y values fell on the fitted surface, that is, if yi ¼ ŷi, i ¼ 1, 2, . . . , n, then R2

would be 1.
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2. R ¼ ryŷ; that is, the multiple correlation is equal to the simple correlation [see
(6.18)] between the observed yi’s and the fitted ŷi’s.

3. Adding a variable x to the model increases (cannot decrease) the value of R2.

4. If b1 ¼ b2 ¼ � � � ¼ bk ¼ 0, then

E(R2) ¼ k

n� 1
: (7:57)

Note that the b̂j’s will not be 0 when the bj’s are 0.

5. R2 cannot be partitioned into k components, each of which is uniquely attribu-
table to an xj, unless the x’s are mutually orthogonal, that is,Pn

i¼1 (xij � �xj) (xim � �xm) ¼ 0 for j = m.

6. R2 is invariant to full-rank linear transformations on the x’s and to a scale change
on y (but not invariant to a joint linear transformation including y and the x’s).

In properties 3 and 4 we see that if k is a relatively large fraction of n, it is possible to
have a large value of R2 that is not meaningful. In this case, x’s that do not contribute
to predicting y may appear to do so in a particular example, and the estimated
regression equation may not be a useful estimator of the population model. To
correct for this tendency, an adjusted R2, denoted by R2

a, was proposed by Ezekiel
(1930). To obtain R2

a, we first subtract k/(n 2 1) in (7.57) from R2 in order to
correct for the bias when b1 ¼ b2 ¼ . . . ¼ bk ¼ 0. This correction, however,
would make R2

a too small when the b’s are large, so a further modification is made
so that R2

a ¼ 1 when R2 ¼ 1. Thus R2
a is defined as

R2
a ¼

(R2 � k
n�1 )(n� 1)

n� k � 1
¼ (n� 1)R2 � k

n� k � 1
: (7:58)

Example 7.7. For the data in Table 7.1 in Example 7.2, we obtain R2 by (7.56) and

R2
a by (7.58). The values of b̂0X0y and y0y are given in Example 7.3.3.

R2 ¼ b̂0X0y� n�y2

y0y� n�y2 ¼
814:5410� 12(7:5)2

840� 12(7:5)2

¼ 139:5410
165:0000

¼ :8457,

R2
a ¼

(n� 1)R2 � k

n� k � 1
¼ (11)(:8457)� 2

9
¼ :8114:

A

Using (7.44) and (7.46), we can express R2 in (7.55) in terms of sample variances
and covariances:

R2 ¼ b̂01X0cXcb̂1Pn
i¼1 (yi � �y)2 ¼

s0yxS�1
xx (n� 1)SxxS�1

xx syxPn
i¼1 (yi � �y)2 ¼

s0yxS�1
xx syx

s2
y

: (7:59)
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This form of R2 will facilitate a comparison with R2 for the random-x case in Section
(10.4) [see (10.34)].

Geometrically, R is the cosine of the angle u between y and ŷ corrected for their
means. The mean of ŷ1, ŷ2, . . . , ŷn is �y, the same as the mean of y1, y2, . . . , yn (see
Problem 7.30). Thus the centered forms of y and ŷ are y� �yj and ŷ� �yj. The
angle between them is illustrated in Figure 7.5. (Note that �yj is in the estimation
space since it is a multiple of the first column of X.)

To show that cosu is equal to the square root of R2 as given by (7.56), we use
(2.81) for the cosine of the angle between two vectors:

cos u ¼ (y� �yj)0(ŷ� �yj)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
[(y� �yj)0(y� �yj)][(ŷ� �yj)0(ŷ� �yj)]

p : (7:60)

To simplify (7.60), we use the identity y� �yj ¼ (ŷ� �yj)þ (y� ŷ), which can also
be seen geometrically in Figure 7.5. The vectors ŷ� �yj and y� ŷ on the right side
of this identity are orthogonal since ŷ� �yj is in the prediction space. Thus the numer-
ator of (7.60) can be written as

(y� �yj)0(ŷ� �yj) ¼ [(ŷ� �yj)þ (y� ŷ)]0(ŷ� �yj)

¼ (ŷ� �yj)0(ŷ� �yj)þ (y� ŷ)0(ŷ� �yj)

¼ (ŷ� �yj)0(ŷ� �yj)þ 0:

Then (7.60) becomes

cos u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(ŷ� �yj)0(ŷ� �yj)

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(y� �yj)0(y� �yj)

p ¼ R, ð7:61Þ

Figure 7.5 Multiple correlation R as cosine of u, the angle between y� �yj and ŷ� �yj.
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which is easily shown to be the square root of R2 as given by (7.56). This is
equivalent to property 2 following (7.56): R ¼ ryŷ.

We can write (7.61) in the form

R2 ¼
Pn

i¼1 (ŷi � �y)2

Pn
i¼1 (yi � �y)2 ¼

SSR
SST

,

in which SSR ¼
Pn

i¼1 (ŷi � �y)2 is a sum of squares for the ŷi’s. Then the partitioning
SST ¼ SSR þ SSE below (7.53) can be written as

Xn

i¼1

(yi � �y)2 ¼
Xn

i¼1

(ŷi � �y)2 þ
Xn

i¼1

(yi � ŷi)
2,

which is analogous to (6.17) for simple linear regression.

7.8 GENERALIZED LEAST SQUARES: cov(Y) 5 s2V

We now consider models in which the y variables are correlated or have differing var-
iances, so that cov(y) = s2I. In simple linear regression, larger values of xi may lead to
larger values of var( yi). In either simple or multiple regression, if y1, y2, . . . , yn occur at
sequential points in time, they are typically correlated. For cases such as these, in which
the assumption cov(y) ¼ s2I is no longer appropriate, we use the model

y ¼ Xbþ 1, E(y) ¼ Xb, cov(y) ¼ S ¼ s2V, (7:62)

where X is full-rank and V is a known positive definite matrix. The usage S ¼ s2V
permits estimation of s2 in some convenient contexts (see Examples 7.8.1 and 7.8.2).

The n � n matrix V has n diagonal elements and
n
2

� �
elements above (or below) the

diagonal. If V were unknown, these
n
2

� �
þ n distinct elements could not be esti-

mated from a sample of n observations. In certain applications, a simpler structure
for V is assumed that permits estimation. Such structures are illustrated in
Examples 7.8.1 and 7.8.2.

7.8.1 Estimation of b and s2 when cov(y) 5 s2V

In the following theorem we give estimators of b and s2 for the model in (7.62).
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Theorem 7.8a. Let y ¼ Xbþ 1, let E(y) ¼ Xb, and let cov(y) ¼ cov(1) ¼ s2V,
where X is a full-rank matrix and V is a known positive definite matrix. For this
model, we obtain the following results:

(i) The best linear unbiased estimator (BLUE) of b is

b̂ ¼ (X0V�1X)�1X0V�1y: (7:63)

(ii) The covariance matrix for b̂ is

cov(b̂) ¼ s2(X0V�1X)�1: (7:64)

(iii) An unbiased estimator of s2 is

s2 ¼ (y� Xb̂)0V�1(y� Xb̂)
n� k � 1

(7:65)

¼ y0[V�1 � V�1X(X0V�1X)�1X0V�1]y
n� k � 1

, (7:66)

where b̂ is as given by (7.63).

PROOF. We prove part (i). For parts (ii) and (iii), see Problems (7.32) and (7.33).

1. Since V is positive definite, there exists an n� n nonsingular matrix P such that
V ¼ PP0 (see Theorem 2.6c). Multiplying y ¼ Xbþ 1 by P�1, we obtain
P�1y ¼ P�1Xbþ P�11, for which E(P�11) ¼ P�1E(1) ¼ P�10 ¼ 0 and

cov(P�11) ¼ P�1cov(1)(P�1)0 [by (3:44)]

¼ P�1s2V(P�1)0 ¼ s2P�1PP0(P0)�1 ¼ s2I:

Thus the assumptions for Theorem 7.3d are satisfied for the model P�1y ¼
P�1Xbþ P�11, and the least-squares estimator b̂ ¼ [(P�1X)0(P�1X)]�1

(P�1X)0P�1y is BLUE. Using Theorems 2.2b and 2.5b, this can be written as

b̂ ¼ [X0(P�1)0P�1X]�1X0(P�1)0P�1y

¼ [X0(P0)�1P�1X]�1X0(P0)�1P�1y [by (2:48)]

¼ [X0(PP0)�1X]�1X0(PP0)�1y [by (2:49)]

¼ (X0V�1X)�1X0V�1y:

A
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Note that since X is full-rank, X0V�1X is positive definite (see Theorem 2.6b). The

estimator b̂ ¼ (X0V�1X)�1X0V�1y is usually called the generalized least-squares
estimator. The same estimator is obtained under a normality assumption.

Theorem 7.8b. If y is Nn(Xb, s2V), where X is full-rank and V is a known positive
definite matrix, where X is n� (k þ 1) of rank k þ 1, then the maximum likelihood
estimators for b and s2 are

b̂ ¼ (X0V�1X)�1X0V�1y,

ŝ2 ¼ 1
n

(y� Xb̂)0V�1(y� Xb̂):

PROOF. The likelihood function is

L(b, s2) ¼ 1

(2p)n=2js2Vj1=2
e�(y�Xb)0(s2V)�1(y�Xb)=2:

By (2.69), js2Vj ¼ (s2)njVj. Hence

L(b, s2) ¼ 1

(2ps2)n=2jVj1=2
e�(y�Xb)0V�1(y�Xb)=2s2:

The results can be obtained by differentiation of ln L(b, s2) with respect to b and
with respect to s2. A

We illustrate an application of generalized least squares.

Example 7.8.1. Consider the centered model in (7.32)

y ¼ ( j, Xc)
a

b1

� �
þ 1,

with covariance pattern

S ¼ s2[(1� r)Iþ rJ] ¼ s2V (7:67)

¼ s2

1 r . . . r

r 1 . . . r

..

. ..
. ..

.

r r . . . 1

0
BBBBB@

1
CCCCCA

,

in which all variables have the same variance s2 and all pairs of variables have the
same correlation r. This covariance pattern was introduced in Problem 5.26 and is
assumed for certain repeated measures and intraclass correlation designs. See
(3.19) for a definition of r.

166 MULTIPLE REGRESSION: ESTIMATION



By (7.63), we have

b̂ ¼ â

b̂1

� �
¼ (X0V�1X)�1X0V�1y:

For the centered model with X ¼ ( j, Xc), the matrix X0V�1X becomes

X0V�1X ¼
j0

X0c

� �
V�1( j, Xc)

¼
j0V�1j j0V�1Xc

X0cV�1j X0cV�1Xc

 !
:

The inverse of the n� n matrix V ¼ (1� r)Iþ rJ in (7.67) is given by

V�1 ¼ a(I� brJ), (7:68)

where a ¼ 1=(1� r) and b ¼ 1=[1þ (n� 1)r]. Using V�1 in (7.68), X0V�1X
becomes

X0V�1X ¼ bn 00

0 aX0cXc

� �
: (7:69)

Similarly

X0V�1y ¼ bn�y
aX0cy

� �
: (7:70)

We therefore have

â

b̂1

� �
¼ (X0V�1X)�1X0V�1y ¼ �y

(X0cXc)�1X0cy

� �
,

which is the same as (7.36) and (7.37). Thus the usual least-squares estimators are
BLUE for a covariance structure with equal variances and equal correlations. A

7.8.2 Misspecification of the Error Structure

Suppose that the model is y ¼ Xbþ 1 with cov(y) ¼ s2V, as in (7.62), and we mis-

takenly (or deliberately) use the ordinary least-squares estimator b̂� ¼ (X0X)�1X0y in

(7.6), which we denote here by b̂� to distinguish it from the BLUE estimator

b̂ ¼ (X0V�1X)�1X0V�1y in (7.63). Then the mean vector and covariance matrix
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for b̂� are

E(b̂�) ¼ b, (7:71)
cov(b̂�) ¼ s2(X0X)�1X0VX(X0X)�1: (7:72)

Thus the ordinary least-squares estimators are unbiased, but the covariance matrix
differs from (7.64). Because of Theorem 7.8a(i), the variances of the b̂�j ’s in (7.72)

cannot be smaller than the variances in cov(b̂) ¼ s2(X0V�1X)�1 in (7.64). This is
illustrated in the following example.

Example 7.8.2. Suppose that we have a simple linear regression model
yi ¼ b0 þ b1xi þ 1i, where var(yi) ¼ s2xi and cov(yi, yj) ¼ 0 for i = j. Thus

cov(y) ¼ s2V ¼ s2

x1 0 . . . 0
0 x2 . . . 0
..
. ..

. ..
.

0 0 . . . xn

0
BBB@

1
CCCA:

This is an example of weighted least squares, which typically refers to the case where
V is diagonal with functions of the x’s on the diagonal. In this case

X ¼

1 x1

1 x2

..

. ..
.

1 xn

0
BBB@

1
CCCA,

and by (7.63), we have

b̂ ¼ b̂0

b̂1

 !
¼ (X0V�1X)�1X0V�1y

¼ 1
Pn

i¼1 xi

� � Pn
i¼1

1
xi

� �
� n2

Pn
i¼1 xi

� � Pn
i¼1

yi

xi

� �
� n

Pn
i¼1 yi

Pn
i¼1 yi

� � Pn
i¼1

1
xi

� �
� n

Pn
i¼1

yi

xi

0
B@

1
CA: (7:73)

The covariance matrix for b̂ is given by (7.64):

cov(b̂) ¼ s2(X0V�1X)�1

¼ s2

P
i xi
P

i
1
xi
� n2

P
i xi �n

�n
P

i
1
xi

0
B@

1
CA: (7:74)
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If we use the ordinary least-squares estimator b̂� ¼ (X0X)�1X0y as given in (6.5)

and (6.6) or in (7.12) in Example 7.3.1b, then cov(b̂�) is given by (7.72); that is,

cov(b̂�) ¼ s2(X0X)�1X0VX(X0X)�1

¼ s2

n
P

i xi

P
i xi

P
i x2

i

0
B@

1
CA
�1 P

i xi
P

i x2
i

P
i x2

i

P
i x3

i

0
B@

1
CA

n
P

i xi

P
i xi

P
i x2

i

0
B@

1
CA
�1

¼ s2c

P
i x3

i (
P

i xi)2 �
P

i xi(
P

i x2
i )2 n(

P
i x2

i )2 � n
P

i xi
P

i x3
i

n(
P

i x2
i )2 � n

P
i xi
P

i x3
i n2P

i x3
i � 2n

P
i xi
P

i x2
i þ (

P
i xi)3

0
B@

1
CA,

(7:75)

where c ¼ 1= n
P

i x2
i �

P
i xi

� �2
h i2

. The variance of the estimator b̂�1 is given by the

lower right diagonal element of (7.75):

var(b̂�1) ¼ s2 n2P
i x3

i � 2n
P

i xi
P

i x2
i þ (

P
i xi)3

n
P

i x2
i �

P
i xi

� �2
h i2 , (7:76)

and the variance of the estimator b̂1 is given by the corresponding element of (7.74):

var(b̂1) ¼ s2

P
i (1=xi)P

i xi
P

i (1=xi)� n2
: (7:77)

Consider the following seven values of x: 1, 2, 3, 4, 5, 6, 7. Using (7.76), we obtain
var(b̂�1) ¼ :1429s2, and from (7.77), we have var(b̂1) ¼ :1099s2. Thus for
these values of x, the use of ordinary least squares yields a slope estimator with a
larger variance, as expected. A

Further consequences of using a wrong model are discussed in the next section.

7.9 MODEL MISSPECIFICATION

In Section 7.8.2, we discussed some consequences of misspecification of cov(y). We
now consider consequences of misspecification of E(y). As a framework for discus-
sion, let the model y ¼ Xbþ 1 be partitioned as

y ¼ Xbþ 1 ¼ (X1, X2)
b1

b2

� �
þ 1

¼ X1b1 þ X2b2 þ 1: (7:78)
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If we leave out X2b2 when it should be included (i.e., when b2 = 0), we are under-
fitting. If we include X2b2 when it should be excluded (i.e., when b2 ¼ 0), we are
overfitting. We discuss the effect of underfitting or overfitting on the bias and the
variance of the b̂j, ŷ, and s2 values.

We first consider estimation of b1 when underfitting. We write the reduced model as

y ¼ X1b
�
1 þ 1�, ð7:79Þ

using b�1 to emphasize that these parameters (and their estimates b̂�1) will be different

from b1 (and b̂1) in the full model (7.78) (unless the x’s are orthogonal; see Corollary
1 to Theorem 7.9a and Theorem 7.10). This was illustrated in Example 7.2. In the fol-

lowing theorem, we discuss the bias in the estimator b̂�1 obtained from (7.79) and give

the covariance matrix for b̂�1.

Theorem 7.9a. If we fit the model y ¼ X1b
�
1 þ 1� when the correct model is

y ¼ X1b1 þ X2b2 þ 1 with cov(y) ¼ s2I, then the mean vector and covariance

matrix for the least-squares estimator b̂�1 ¼ (X01X1)�1X01y are as follows:

(i) E(b̂�1) ¼ b1 þ Ab2, where A ¼ (X01X1)�1X01X2, (7:80)

(ii) cov(b̂�1) ¼ s2(X01X1)�1: (7:81)

PROOF

(i) E(b̂�1) ¼ E[(X01X1)�1X01y] ¼ (X01X1)�1X01E(y)

¼ (X01X1)�1X01(X1b1 þ X2b2)

¼ b1 þ (X01X1)�1X01X2b2:

(ii) cov(b̂�1) ¼ cov[(X01X1)�1X01y]

¼ (X01X1)�1X01(s2I)X1(X01X1)�1 [by (3:44)]

¼ s2(X01X1)�1:
A

Thus, when underfitting, b̂�1 is biased by an amount that depends on the values of the x’s
in both X1 and X2. The matrix A ¼ (X01X1)�1X01X2 in (7.81) is called the alias matrix.

Corollary 1. If X01X2 ¼ O, that is, if the columns of X1 are orthogonal to the

columns of X2, then b̂�1 is unbiased: E(b̂�1) ¼ b1. A

In the next three theorems, we discuss the effect of underfitting oroverfitting on ŷ, s2, and
the variances of the b̂j’s. In some of the proofs we follow Hocking (1996, pp. 245–247).

Let x0 ¼ (1, x01, x02, . . . , x0k)0 be a particular value of x for which we desire to
estimate E(y0) ¼ x00b. If we partition x00 into (x001, x002) corresponding to the
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partitioning X ¼ (X1, X2) and b0 ¼ (b01, b02), then we can use either ŷ0 ¼ x00b̂ or

ŷ01 ¼ x001b̂
�
1 to estimate x00b. In the following theorem, we consider the mean of ŷ01.

Theorem 7.9b. Let ŷ01 ¼ x001b̂
�
1, where b̂�11 ¼ (X01X1)�1X01y. Then, if b2 = 0, we

obtain

E(x001b̂
�
1) ¼ x001(b1 þ Ab2), (7:82)

¼ x00b� (x02 � A0x01)0b2 = x00b: (7:83)

PROOF. See Problem 7.43. A

In Theorem 7.9b, we see that, when underfitting, x001b̂
�
1 is biased for estimating x00b.

[When overfitting, x00b̂ is unbiased since E(x00b̂) ¼ x00b ¼ x001b1 þ x002b2, which is
equal to x001b1 if b2 ¼ 0.]

In the next theorem, we compare the variances of b̂�j and b̂j, where b̂�j is from b̂�1
and b̂j is from b̂1. We also compare the variances of x001b̂

�
1 and x00b̂.

Theorem 7.9c. Let b̂ ¼ (X0X)�1X0y from the full model be partitioned as

b̂ ¼ b̂1

b̂2

� �
, and let b̂�1 ¼ (X01X1)�1X01y be the estimator from the reduced model. Then

(i) cov(b̂1)� cov(b̂�1) ¼ s2AB�1A0, which is a positive definite matrix, where
A ¼ (X01X1)�1X01X2 and B ¼ X02X2 � X02X1A. Thus var(b̂j) . var(b̂�j ).

(ii) var(x00b̂) � var(x001b̂
�
1).

PROOF

(i) Using X0X partitioned to conform to X ¼ (X1, X2), we have

cov(b̂) ¼ cov
b̂1

b̂2

 !
¼ s2(X0X)�1 ¼ s2 X01X1 X01X2

X02X1 X02X2

� ��1

¼ s2 G11 G12

G21 G22

� ��1

¼ s2 G11 G12

G21 G22

 !
,

where Gij ¼ X0iXj and Gij is the corresponding block of the partitioned inverse

matrix (X0X)�1. Thus cov(b̂1) ¼ s2G11. By (2.50), G11 ¼ G�1
11 þ

G�1
11 G12B�1G21G�1

11 , where B ¼ G22 �G21G�1
11 G12. By (7.81), cov(b̂�1) ¼

s2(X01X1)�1 ¼ s2G�1
11 . Hence

cov(b̂1)� cov(b̂�1) ¼ s2(G11 �G�1
11 )

¼ s2(G�1
11 þG�1

11 G12B�1G21G�1
11 �G�1

11 )

¼ s2AB�1A0:
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(ii) var(x00b̂) ¼ s2x00(X0X)�1x0

¼ s2(x001, x002)
G11 G12

G21 G22

 !
x01

x02

� �

¼ s2(x001G11x01 þ x001G12x02 þ x002G21x01 þ x002G22x02):

Using (2.50), it can be shown that

var(x00b̂)� var(x001b̂
�
1) ¼ s2(x02 � A0x01)0G22(x02 � A0x01) � 0

because G22 is positive definite. A

By Theorem 7.9c(i), var(b̂j) in the full model is greater than var(b̂�j ) in the reduced
model. Thus underfitting reduces the variance of the b̂j’s but introduces bias. On the

other hand, overfitting increases the variance of the b̂j’s. In Theorem 7.9c (ii), var(ŷ0)
based on the full model is greater than var(ŷ01) based on the reduced model. Again,
underfitting reduces the variance of the estimate of E(y0) but introduces bias.
Overfitting increases the variance of the estimate of E(y0).

We now consider s2 for the full model and for the reduced model. For the full model
y ¼ Xbþ 1 ¼ X1b1 þ X2b2 þ 1, the sample variance s2 is given by (7.23) as

s2 ¼ (y� Xb̂)0(y� Xb̂)
n� k � 1

:

In Theorem 7.3f, we have E(s2) ¼ s2. The expected value of s2 for the reduced model
is given in the following theorem.

Theorem 7.9d. If y ¼ Xbþ 1 is the correct model, then for the reduced model
y ¼ X1b

�
1 þ 1� (underfitting), where X1 is n� (pþ 1) with p , k, the variance

estimator

s2
1 ¼

(y� X1b̂
�
1)0(y� X1b̂

�
1)

n� p� 1
(7:84)

has expected value

E(s2
1) ¼ s2 þ b02X02[I� X1(X01X1)�1X01]X2b2

n� p� 1
: (7:85)

PROOF. We write the numerator of (7.84) as

SSE1 ¼ y0y� b̂�1X01y ¼ y0y� y0X1(X01X1)�1X01y

¼ y0[I� X1(X01X1)�1X01]y:
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Since E(y) ¼ Xb by assumption, we have, by Theorem 5.2a,

E(SSE1) ¼ tr{[I� X1(X01X1)�1X01]s2I}þ b0X0[I� X1(X01X1)�1X01]Xb

¼ (n� p� 1)s2 þ b02X02[I� X1(X01X1)�1X01]X2b2

(see Problem 7.45). A

Since the quadratic form in (7.85) is positive semidefinite, s2 is biased upward when
underfitting (see Fig. 7.6). We can also examine (7.85) from the perspective of over-
fitting, in which case b2 ¼ 0 and s2 is unbiased.

To summarize the results in this section, underfitting leads to biased b̂j’s, biased
ŷ’s, and biased s2. Overfitting increases the variances of the b̂j’s and of the ŷ’s. We
are thus compelled to seek an appropriate balance between a biased model and one
with large variances. This is the task of the model builder and serves as motivation
for seeking an optimum subset of x’s.

Example 7.9a. Suppose that the model yi ¼ b�0 þ b�1xi þ 1�i has been fitted when the
true model is yi ¼ b0 þ b1xi þ b2x2

i þ 1i. (This situation is similar to that illustrated

in Figure 6.2.) In this case, b̂�0, b̂�1, and s2
1 would be biased by an amount dependent

on the choice of the xi’s [see (7.80) and (7.86)]. The error term 1̂�i in the misspecified
model yi ¼ b�0 þ b�1xi þ 1�i does not have a mean of 0:

E(1�i ) ¼ E(yi � b�0 � b�1xi)

¼ E(yi)� b�0 � b�1xi

¼ b0 þ b1xi þ b2x2
i � b�0 � b�1xi

¼ b0 � b�0 þ (b1 � b�1)xi þ b2x2
i :

A

Figure 7.6 Straight-line fit to a curved pattern of points.
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Example 7.9b. Suppose that the true model is yi ¼ b0 þ b1xi þ 1i and we fit the
model yi ¼ b�1xi þ 1�i , as illustrated in Figure 7.7.

For the model yi ¼ b�1xi þ 1�i , the least-squares estimator is

b̂�1 ¼
Pn

i¼1 xiyiPn
i¼1 x2

i

(7:86)

(see Problem 7.46). Then, under the full model yi ¼ b0 þ b1xi þ 1i, we have

E(b̂�1) ¼ 1P
i x2

i

X
i

xiE(yi)

¼ 1P
i x2

i

X
i

xi(b0 þ b1xi)

¼ 1P
i x2

i

b0

X
i

xi þ b1

X
i

x2
i

 !

¼ b0

P
i xiP
i x2

i

þ b1: (7:87)

Thus b̂�1 is biased by an amount that depends on b0 and the values of the x’s. A

7.10 ORTHOGONALIZATION

In Section 7.9, we discussed estimation of b�1 in the model y ¼ X1b
�
1 þ 1� when the true

model is y ¼ X1b1 þ X2b2 þ 1. By Theorem 7.9a, E(b̂�1) ¼ b1 þ (X01X1)�1X01X2b2,

Figure 7.7 No-intercept model fit to data from an intercept model.
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so that estimation of b1 is affected by the presence of X2, unless X01X 2 ¼ O, in which

case, E(b̂�1) ¼ b1. In the following theorem, we show that if X01X2 ¼ O, the estimators
of b�1 and b1 not only have the same expected value, but are exactly the same.

Theorem 7.10. If X01X2 ¼ O, then the estimator of b1 in the full model
y ¼ X1b1 þ X2b2 þ 1 is the same as the estimator of b�1 in the reduced model
y ¼ X1b

�
1 þ 1�.

PROOF. The least-squares estimator of b�1 is b̂�1 ¼ (X01X1)�1X01y. For the estimator of

b1 in the full model, we partition b̂ ¼ (X0X)�1X0y to obtain

b̂1

b̂2

� �
¼ X01X1 X01X2

X02X1 X02X2

� ��1
X01y
X02y

� �
:

Using the notation in the proof of Theorem 7.9c, this becomes

b̂1

b̂2

 !
¼

G11 G12

G21 G22

� ��1 X01y

X02y

� �

¼ G11 G12

G21 G22

 !
X01y

X02y

� �
:

By (2.50), we obtain

b̂1 ¼ G11X01yþG12X02y

¼ (G�1
11 þG�1

11 G12B�1G21G�1
11 )X01y�G�1

11 G12B�1X02y,

where B ¼ G22 �G21G�1
11 G12. If G12 ¼ X01X2 ¼ O, then b̂1 reduces to

b̂1 ¼ G�1
11 X01y ¼ (X01X1)�1X01y,

which is the same as b̂�1. A

Note that Theorem 7.10 will also hold if X1 and X2 are “essentially orthogonal,” that
is, if the centered columns of X1 are orthogonal to the centered columns of X2.

In Theorem 7.9a, we discussed estimation of b�1 in the presence of b2 when
X01X2 = O. We now consider a process of orthogonalization to give additional
insights into the meaning of partial regression coefficients.

In Example 7.2, we illustrated the change in the estimate of a regression coefficient
when another x was added to the model. We now use the same data to further examine
this change.The prediction equation obtained in Example 7.2 was

ŷ ¼ 5:3754þ 3:0118x1 � 1:2855x2, (7:88)
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and the negative partial regressions of y on x2 were shown in Figure 7.2. By means of
orthogonalization, we can give additional meaning to the term 21.2855x2. In order to
add x2 to the prediction equation containing only x1, we need to determine how much
variation in y is due to x2 after the effect of x1 has been accounted for, and we must
also correct for the relationship between x1 and x2. Our approach is to consider the
relationship between the residual variation after regressing y on x1 and the residual
variation after regressing x2 on x1. We follow a three-step process.

1. Regress y on x1, and calculate residuals [see (7.11)]. The prediction equation is

ŷ ¼ 1:8585þ 1:3019x1, (7:89)

and the residuals yi � ŷi(x1) are given in Table 7.2, where ŷi(x1) indicates that ŷ
is based on a regression of y on x1 as in (7.89).

2. Regress x2 on x1 and calculate residuals. The prediction equation is

x̂2 ¼ 2:7358þ 1:3302x1, (7:90)

and the residuals x2i � x̂2i(x1) are given in Table 7.2, where x̂2i(x1) indicates that
x2 has been regressed on x1 as in (7.90).

3. Now regress y� ŷ(x1) on x2 � x̂2(x1), which gives

dy� ŷ ¼ �1:2855(x2 � x̂2): (7:91)

There is no intercept in (7.91) because both sets of residuals have a mean of 0.

TABLE 7.2 Data from Table 7.1 and Residuals

y x1 x2 y� ŷ(x1) x2 � x̂2ðx1Þ

2 0 2 0.1415 20.7358
3 2 6 21.4623 0.6038
2 2 7 22.4623 1.6038
7 2 5 2.5377 20.3962
6 4 9 21.0660 0.9434
8 4 8 0.9340 20.0566
10 4 7 2.9340 21.0566
7 6 10 22.6698 20.7170
8 6 11 21.6698 0.2830
12 6 9 2.3302 21.7170
11 8 15 21.2736 1.6226
14 8 13 1.7264 20.3774
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In (7.91), we obtain a clearer insight into the meaning of the partial regression coef-
ficient 21.2855 in (7.88). We are using the “unexplained” portion of x2 (after x1 is
accounted for) to predict the “unexplained” portion of y (after x1 is accounted for).

Since x2 � x̂2(x1) is orthogonal to x1 [see Section 7.4.2, in particular (7.29)], fitting
y� ŷ(x1) to x2 � x̂2(x1) yields the same coefficient, 21.2855, as when fitting y to x1

and x2 together. Thus 21.2855 represents the additional effect of x2 beyond the effect
of x1 and also after taking into account the overlap between x1 and x2 in their effect on
y. The orthogonality of x1 and x2 � x̂2(x1) makes this simplified breakdown of effects
possible.

We can substitute ŷ(x1) and x̂2(x1) in (7.91) to obtain

dy� ŷ ¼ ŷ(x1, x2)� ŷ(x1) ¼ �1:2855[x2 � x̂2(x1)],

or

ŷ� (1:8585þ 1:3019x1) ¼ �1:2855[x2 � (2:7358þ 1:3302x1)], (7:92)

which reduces to

ŷ ¼ 5:3754þ 3:0118x1 � 1:2855x2, (7:93)

the same as (7.88). If we regress y (rather than y� ŷ) on x2 � x̂2(x1), we will still
obtain �1:2855x2, but we will not have 5.3754 þ 3.0118x1.

The correlation between the residuals y� ŷ(x1) and x2 � x̂2(x1) is the same as the
(sample) partial correlation of y and x2 with x1 held fixed:

ry2�1 ¼ ry�ŷ, x2�x̂2 : (7:94)

This is discussed further in Section 10.8.
We now consider the general case with full model

y ¼ X1b1 þ X2b2 þ 1

and reduced model

y ¼ X1b
�
1 þ 1�:

We use an orthogonalization approach to obtain an estimator of b2, following the
same three steps as in the illustration with x1 and x2 above:

1. Regress y on X1 and calculate residuals y� ŷ(X1), where

ŷ(X1) ¼ X1b̂
�
1 ¼ X1(X01X1)�1X01y [see (7.11)].

2. Regress the columns of X2 on X1 and obtain residuals X2�1 ¼ X2 � X̂2(X1). If
X2 is written in terms of its columns as X2 ¼ (x21, . . . , x2j, . . . , x2p), then the
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regression coefficient vector for x2j on X1 is bj ¼ (X01X1)�1X01x2j, and
x̂2j ¼ X1bj ¼ X1(X01X1)�1X01x2j. For all columns of X2, this becomes

X̂2(X1) ¼ X1(X01X1)�1X01X2 ¼ X1A, where A ¼ (X01X1)�1X01X2 is the alias

matrix defined in (7.80). Note that X2�1 ¼ X2 � X̂2(X1) is orthogonal to X1:

X01X2�1 ¼ O: (7:95)

Using the alias matrix A, the residual matrix can be expressed as

X2�1 ¼ X2 � X̂2(X1) (7:96)

¼ X2 � X1(X01X1)�1X01X2 ¼ X2 � X1A: (7:97)

3. Regress y� ŷ(X1) on X2�1 ¼ X2 � X̂2(X1). Since X2�1 is orthogonal to X1, we

obtain the same b̂2 as in the full model ŷ ¼ X1b̂1 þ X2b̂2. Adapting the nota-
tion of (7.91) and (7.92), this can be expressed as

ŷ(X1, X2)� ŷ(X1) ¼ X2�1b̂2: (7:98)

If we substitute ŷ(X1) ¼ X1b̂
�
1 and X2�1 ¼ X2 � X1A into (7.98) and use

b̂�1 ¼ b̂1 þ Ab̂2 from (7.80), we obtain

ŷ(X1, X2) ¼ X1b̂
�
1 þ (X2 � X1A)b̂2

¼ X1(b̂1 þ Ab̂2)þ (X2 � X1A)b̂2

¼ X1b̂1 þ X2b̂2

which is analogous to (7.93). This confirms that the orthogonality of X1 and X2�1
leads to the estimator b̂2 in (7.98). For a formal proof, see Problem 7.50.

PROBLEMS

7.1 Show that
Pn

i¼1 (yi � x0ib̂)2 ¼ (y� Xb̂)0(y� Xb̂), thus verifying (7.7).

7.2 Show that (7.10) follows from (7.9). Why is X0X positive definite, as noted
below (7.10)?

7.3 Show that b̂0 and b̂1 in (7.12) in Example 7.3.1 are the same as in (6.5) and
(6.6).
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7.4 Obtain cov(b̂) in (7.16) from (7.15).

7.5 Show that var(b̂0) ¼ s2(
P

i x2
i =n)=

P
i (xi � �x)2 in (7.16) in Example 7.3.2a

is the same as var(b̂0) in (6.10).

7.6 Show that AA0 can be expressed as AA0 ¼ [A� (X0X)�1X0]
[A� (X0X)�1X0]0 þ (X0X)�1 as in (7.17) in Theorem 7.3d.

7.7 Prove Corollary 1 to Theorem 7.3d in the following two ways:

(a) Use an approach similar to the proof of Theorem 7.3d.

(b) Use the method of Lagrange multipliers (Section 2.14.3).

7.8 Show that if the x’s are rescaled as zj ¼ cjxj, j ¼ 1, 2, . . . , k, then b̂z ¼ D�1b̂,
as in (7.18) in the proof of the Theorem 7.3e.

7.9 Verify (7.20) and (7.21) in the proof of Corollary 1 to Theorem 7.3e.

7.10 Show that s2 is invariant to changes of scale on the x’s, as noted following
Corollary 1 to Theorem 7.3e.

7.11 Show that (y� Xb̂)0(y� Xb̂) ¼ y0y� b̂0X0y as in (7.24).

7.12 Show that E(SSE) ¼ s2(n� k � 1), as in Theorem 7.3f, using the

following approach. Show that SSE ¼ y0y� b̂0X0Xb̂. Show that

E(y0y) ¼ ns2 þ b0X0Xb and that E(b̂0X0Xb̂) ¼ (k þ 1)s2 þ b0X0Xb.

7.13 Prove that an additional x reduces SSE, as noted following Theorem 7.3f.

7.14 Show that the noncentered model preceding (7.30) can be written in the cen-
tered form in (7.30), with a defined as in (7.31).

7.15 Show that Xc ¼ [I� (1=n)J]X1 as in (7.33), where X1 is as given in (7.19).

7.16 Show that j0Xc ¼ 00, as in (7.35), where Xc is the centered X matrix defined in
(7.33).

7.17 Show that the estimators â ¼ �y and b̂1 ¼ (X0cXc)�1X0cy in (7.36) and (7.37)

are the same as b̂ ¼ (X0X)�1X0y in (7.6). Use the following two methods:

(a) Work with the normal equations in both cases.

(b) Use the inverse of X0X in partitioned form:
(X0X)�1 ¼ [( j, X1)0( j, X1)]�1.

7.18 Show that the fitted regression plane ŷ ¼ âþ b̂1(x1 � �x1)þ � � � þ b̂k(xk � �xk)
passes through the point (�x1,�x2, . . . , �xk, �y), as noted below (7.38).

7.19 Show that SSE ¼
P

i (yi � �y)2 � b̂01X0cy in (7.39) is the same as

SSE ¼ y0y� b̂0X0y in (7.24).
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7.20 (a) Show that Sxx ¼ X0cXc=(n� 1) as in (7.44).

(b) Show that syx ¼ X0cy=(n� 1) as in (7.45).

7.21 (a) Show that if y is Nn(Xb, s2I), the likelihood function is

L(b, s2) ¼ 1

(2ps2)n=2
e�(y�Xb)0(y�Xb)=2s2

,

as in (7.50) in the proof of Theorem 7.6a.

(b) Differentiate ln L(b, s2) in (7.51) with respect to b to obtain

b̂ ¼ (X0X)�1X0y in (7.48).

(c) Differentiate ln L(b, s2) with respect to s2 to obtain ŝ2 ¼ (y� Xb̂)0(y�
Xb̂)=n as in (7.49).

7.22 Prove parts (ii) and (iii) of Theorem 7.6b.

7.23 Show that (y� Xb)0(y� Xb) ¼ (y� Xb̂)0(y� Xb̂)þ (b̂� b)0X0X(b̂� b)
as in (7.52) in the proof of Theorem 7.6c.

7.24 Explain why f (y; b, s2) does not factor into g1(b̂, b)g2(ŝ2, s2)h(y), as noted
following Theorem 7.6c.

7.25 Verify the equivalence of (7.55) and (7.56); that is, show that

b̂0X0y� n�y2 ¼ b̂01X0cXcb̂1.

7.26 Verify the comments in property 1 in Section 7.7, namely, that if
b̂1 ¼ b̂2 ¼ � � � ¼ b̂k ¼ 0, then R2 ¼ 0, and if yi ¼ ŷi, i ¼ 1, 2, . . . , n, then
R2 ¼ 1.

7.27 Show that adding an x to the model increases (cannot decrease) the value of
R2, as in property 3 in Section 7.7.

7.28 (a) Verify that R2 is invariant to full-rank linear transformations on the x’s as
in property 6 in Section 7.7.

(b) Show that R2 is invariant to a scale change z ¼ cy on y.

7.29 (a) Show that R2 in (7.55) can be written in the form
R2 ¼ 1� SSE=

P
i (yi � �y)2.

(b) Replace SSE and
P

i (yi � �y)2 in part (a) by variance estimators
SSE=(n� k � 1) and

P
i (yi � �y)2=(n� 1) and show that the result is

the same as R2
a in (7.56).

7.30 Show that
Pn

i¼1 ŷi=n ¼
Pn

i¼1 yi=n, as noted following (7.59) in Section 7.7.

7.31 Show that cos u ¼ R as in (7.61), where R2 is as given by (7.56).
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7.32 (a) Show that E(b̂) ¼ b, where b̂ ¼ (X0V�1X)�1X0V�1y as in (7.63).

(b) Show that cov(b̂) ¼ s2(X0V�1X)�1 as in (7.64).

7.33 (a) Show that the two forms of s2 in (7.65) and (7.66) are equal.

(b) Show that E(s2) ¼ s2, where s2 is as given by (7.66).

7.34 Complete the steps in the proof of Theorem 7.8b.

7.35 Show that for V ¼ (1� r)Iþ rJ in (7.67), the inverse is given by
V�1 ¼ a(I� brJ) as in (7.68), where a ¼ 1=(1� r) and b ¼ 1=
[1þ (n� 1)r].

7.36 (a) Show that X0V�1X ¼ bn 00

0 aX0cXc

� �
as in (7.69).

(b) Show that X0V�1y ¼ bn�y
aX0cy

� �
as in (7.70).

7.37 Show that cov(b̂�) ¼ s2(X0X)�1X0VX(X0X)�1 as in (7.72), where

b̂� ¼ (X0X)�1X0y and cov(y) ¼ s2V.

7.38 (a) Show that the weighted least-squares estimator b̂ ¼ (b̂0, b̂1)0 for the
model yi ¼ b0 þ b1xi þ 1i with var(yi) ¼ s2xi has the form given in
(7.73).

(b) Verify the expression for cov(b̂) in (7.74).

7.39 Obtain the expression for cov(b̂�) in (7.75).

7.40 As an alternative derivation of var(b̂�1) in (7.76), use the following two steps to
find var(b̂�1) using b̂�1 ¼

P
i (xi � �x)yi=

P
i (xi � �x)2 from the answer to

Problem 6.2:

(a) Using var(yi) ¼ s2xi, show that var(b̂�1) ¼ s2P
i (xi � �x)2xi=�P

i (xi � �x)2
�2

.

(b) Show that this expression for var(b̂�1) is equal to that in (7.76).

7.41 Using x ¼ 2, 3, 5, 7, 8, 10, compare var(b̂�1) in (7.76) with var(b̂1) in (7.77).

7.42 Provide an alternative proof of cov(b̂�1) ¼ s2(X01X1)�1 in (7.81) using the

definition in (3.24), cov(b̂�1) ¼ E{[b̂�1 � E(b̂�1)][b̂�1 � E(b̂�1)]0}.

7.43 Prove Theorem 7.9b.

7.44 Provide the missing steps in the proof of Theorem 7.9c(ii).

7.45 Show that x01b̂
�
1 is biased for estimating x01b1 if b2 = 0 and X01X2 = O.

7.46 Show that var(x01 b̂1) � var(x01 b̂
�
1).

7.47 Complete the steps in the proof of Theorem 7.9d.
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7.48 Show that for the no-intercept model yi ¼ b�1xi þ 1�i , the least-squares estima-
tor is b̂�1 ¼

P
i xiyi=

P
i x2

i as in (7.86).

7.49 Obtain E(b̂�1) ¼ b0

P
i xi=

P
i x2

i þ b1 in (7.87) using (7.80),

E(b̂�1) ¼ b1 þ Ab2.

7.50 Suppose that we use the model yi ¼ b�0 þ b�1xi þ 1�i when the true model is
yi ¼ b0 þ b1xi þ b2x2

i þ b3x3
i þ 1i.

(a) Using (7.80), find E(b̂�0) and E(b̂�1) if observations are taken at
x ¼ �3, �2, �1, 0, 1, 2, 3.

(b) Using (7.85), find E(s2
1) for the same values of x.

7.51 Show that X2�1 ¼ X2 � X̂2(X1) is orthogonal to X1, that is, X01X2�1 ¼ O, as in
(7.95).

7.52 Show that b̂2 in (7.98) is the same as in the full fitted model

ŷ ¼ X1b̂1 þ X2b̂2.

7.53 When gasoline is pumped into the tank of a car, vapors are vented into the
atmosphere. An experiment was conducted to determine whether y, the
amount of vapor, can be predicted using the following four variables based
on initial conditions of the tank and the dispensed gasoline:

x1 ¼ tank temperature (8F)

x2 ¼ gasoline temperature (8F)

x3 ¼ vapor pressure in tank ( psi)

x4 ¼ vapor pressure of gasoline ( psi)

The data are given in Table 7.3 (Weisberg 1985, p. 138).

(a) Find b̂ and s2.

(b) Find an estimate of cov(b̂).

(c) Find b̂1 and b̂0 using Sxx and syx as in (7.46) and (7.47).

(d) Find R2 and R2
a.

7.54 In an effort to obtain maximum yield in a chemical reaction, the values of the
following variables were chosen by the experimenter:

x1 ¼ temperature (8C)

x2 ¼ concentration of a reagent (%)

x3 ¼ time of reaction (hours)

Two different response variables were observed:

y1 ¼ percent of unchanged starting material

y2 ¼ percent converted to the desired product
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The data are listed in Table 7.4 (Box and Youle 1955, Andrews and Herzberg
1985, p. 188). Carry out the following for y1:

(a) Find b̂ and s2.

(b) Find an estimate of cov(b̂).

TABLE 7.3 Gas Vapor Data

y x1 x2 x3 x4 y x1 x2 x3 x4

29 33 53 3.32 3.42 40 90 64 7.32 6.70
24 31 36 3.10 3.26 46 90 60 7.32 7.20
26 33 51 3.18 3.18 55 92 92 7.45 7.45
22 37 51 3.39 3.08 52 91 92 7.27 7.26
27 36 54 3.20 3.41 29 61 62 3.91 4.08
21 35 35 3.03 3.03 22 59 42 3.75 3.45
33 59 56 4.78 4.57 31 88 65 6.48 5.80
34 60 60 4.72 4.72 45 91 89 6.70 6.60
32 59 60 4.60 4.41 37 63 62 4.30 4.30
34 60 60 4.53 4.53 37 60 61 4.02 4.10
20 34 35 2.90 2.95 33 60 62 4.02 3.89
36 60 59 4.40 4.36 27 59 62 3.98 4.02
34 60 62 4.31 4.42 34 59 62 4.39 4.53
23 60 36 4.27 3.94 19 37 35 2.75 2.64
24 62 38 4.41 3.49 16 35 35 2.59 2.59
32 62 61 4.39 4.39 22 37 37 2.73 2.59

TABLE 7.4 Chemical Reaction Data

y1 y2 x1 x2 x3

41.5 45.9 162 23 3
33.8 53.3 162 23 8
27.7 57.5 162 30 5
21.7 58.8 162 30 8
19.9 60.6 172 25 5
15.0 58.0 172 25 8
12.2 58.6 172 30 5

4.3 52.4 172 30 8
19.3 56.9 167 27.5 6.5

6.4 55.4 177 27.5 6.5
37.6 46.9 157 27.5 6.5
18.0 57.3 167 32.5 6.5
26.3 55.0 167 22.5 6.5

9.9 58.9 167 27.5 9.5
25.0 50.3 167 27.5 3.5
14.1 61.1 177 20 6.5
15.2 62.9 177 20 6.5
15.9 60.0 160 34 7.5
19.6 60.6 160 34 7.5
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(c) Find R2 and R2
a.

(d) In order to find the maximum yield for y1, a second-order model is of

interest. Find b̂ and s2 for the model y1 ¼ b0 þ b1x1 þ b2x2 þ b3x3þ
b4x2

1 þ b5x2
2 þ b6x2

3 þ b7x1x2 þ b8x1x3 þ b9x2x3 þ 1.

(e) Find R2 and R2
a for the second-order model.

7.55 The following variables were recorded for several counties in Minnesota in
1977:

y ¼ average rent paid per acre of land with alfalfa

x1 ¼ average rent paid per acre for all land

x2 ¼ average number of dairy cows per square mile

x3 ¼ proportion of farmland in pasture

The data for 34 counties are given in Table 7.5 (Weisberg 1985, p. 162). Can
rent for alfalfa land be predicted from the other three variables?

(a) Find b̂ and s2.

(b) Find b̂1 and b̂0 using Sxx and syx as in (7.46) and (7.47).

(c) Find R2 and R2
a.

TABLE 7.5 Land Rent Data

y x1 x2 x3 y x1 x2 x3

18.38 15.50 17.25 .24 8.50 9.00 8.89 .08
20.00 22.29 18.51 .20 36.50 20.64 23.81 .24
11.50 12.36 11.13 .12 60.00 81.40 4.54 .05
25.00 31.84 5.54 .12 16.25 18.92 29.62 .72
52.50 83.90 5.44 .04 50.00 50.32 21.36 .19
82.50 72.25 20.37 .05 11.50 21.33 1.53 .10
25.00 27.14 31.20 .27 35.00 46.85 5.42 .08
30.67 40.41 4.29 .10 75.00 65.94 22.10 .09
12.00 12.42 8.69 .41 31.56 38.68 14.55 .17
61.25 69.42 6.63 .04 48.50 51.19 7.59 .13
60.00 48.46 27.40 .12 77.50 59.42 49.86 .13
57.50 69.00 31.23 .08 21.67 24.64 11.46 .21
31.00 26.09 28.50 .21 19.75 26.94 2.48 .10
60.00 62.83 29.98 .17 56.00 46.20 31.62 .26
72.50 77.06 13.59 .05 25.00 26.86 53.73 .43
60.33 58.83 45.46 .16 40.00 20.00 40.18 .56
49.75 59.48 35.90 .32 56.67 62.52 15.89 .05
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8 Multiple Regression: Tests of
Hypotheses and Confidence
Intervals

In this chapter we consider hypothesis tests and confidence intervals for the
parameters b0, b1, . . . , bk in b in the model y ¼ Xbþ 1. We also provide a confi-
dence interval for s 2 ¼ var(yi). We will assume throughout the chapter that y is
Nn(Xb, s 2I), where X is n� (k þ 1) of rank k þ 1 , n.

8.1 TEST OF OVERALL REGRESSION

We noted in Section 7.9 that the problems associated with both overfitting and under-
fitting motivate us to seek an optimal model. Hypothesis testing is a formal tool for,
among other things, choosing between a reduced model and an associated full model.
The hypothesis H0, expresses the reduced model in terms of values of a subset of the
bj’s in b. The alternative hypothesis, H1, is associated with the full model.

To illustrate this tool we begin with a common test, the test of the overall
regression hypothesis that none of the x variables predict y. This hypothesis
(leading to the reduced model) can be expressed as H0 : b1 ¼ 0, where
b1 ¼ (b1, b2, . . . , bk)0. Note that we wish to test H0 : b1 ¼ 0, not H0 : b ¼ 0, where

b ¼ b0

b1

� �
:

Since b0 is usually not zero, we would rarely be interested in including b0 ¼ 0 in the
hypothesis. Rejection of H0: b ¼ 0 might be due solely to b0, and we would not
learn whether the x variables predict y. For a test of H0 :b ¼ 0, see Problem 8.6.

We proceed by proposing a test statistic that is distributed as a central F if H0 is true
and as a noncentral F otherwise. Our approach to obtaining a test statistic is somewhat
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simplified if we use the centered model (7.32)

y ¼ (j, Xc)
a

b1

� �
þ 1,

where Xc ¼ [I� (1=n)J]X1 is the centered matrix [see (7.33)] and X1 contains all the
columns of X except the first [see (7.19)]. The corrected total sum of squares
SST ¼

Pn
i¼1 (yi � �y)2 can be partitioned as

Xn

i¼1

(yi � �y)2 ¼ b̂01X0cyþ
Xn

i¼1
(yi � �y)2 � b̂01X0cy

h i
[by (7:53)]

¼ b̂01X0cXcb̂1 þ SSE ¼ SSRþ SSE [by (7:54)], (8:1)

where SSE is as given in (7.39). The regression sum of squares SSR ¼ b̂
0
1X0cXcb̂1 is

clearly due to b1.
In order to construct an F test, we first express the sums of squares in (8.1) as quad-

ratic forms in y so that we can use theorems from Chapter 5 to show that SSR and
SSE have chi-square distributions and are independent. Using

P
i (yi � �y)2 ¼

y0[I� (1=n)J]y in (5.2), b̂1 ¼ (X0cXc)�1X0cy in (7.37), and SSE ¼
Pn

i¼1 (yi � �y)2�
b̂01X0cy in (7.39), we can write (8.1) as

y0 I� 1
n

J

� �
y ¼ SSRþ SSE

¼ y0Xc(X0cXc)
�1X0cyþ y0 I� 1

n
J

� �
y� y0Xc(X0cXc)�1X0cy

¼ y0Hcyþ y0 I� 1
n

J�Hc

� �
y, (8:2)

where Hc ¼ Xc(X0cXc)�1X0c.
In the following theorem we establish some properties of the three matrices of the

quadratic forms in (8.2).

Theorem 8.1a. The matrices I� (1=n) J, Hc ¼ Xc(X0cXc)�1X0c, and I� (1=n) J�Hc

have the following properties:

(i) Hc[I� (1=n) J] ¼ Hc: (8:3)

(ii) Hc is idempotent of rank k.

(iii) I� (1=n) J�Hc is idempotent of rank n� k � 1.

(iv) Hc[I� (1=n) J�Hc] ¼ O: (8:4)

PROOF. Part (i) follows from X0cj ¼ 0, which was established in Problem 7.16. Part (ii)
can be shown by direct multiplication. Parts (iii) and (iv) follow from (i) and (ii). A
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The distributions of SSR=s 2 and SSE=s 2 are given in the following theorem.

Theorem 8.1b. If y is Nn(Xb, s 2I), then SSR=s 2 ¼ b̂01X0cXcb̂1=s
2 and

SSE=s 2 ¼
Pn

i¼1 (yi � �y)2 � b̂01X0cXcb̂1

h i
=s 2 have the following distributions:

(i) SSR=s 2 is x 2(k, l1), where l1 ¼ m0Am=2s 2 ¼ b01X0cXcb1=2s 2.

(ii) SSE=s 2 is x 2(n� k � 1).

PROOF. These results follow from (8.2), Theorem 8.1a(ii) and (iii), and Corollary 2 to
Theorem 5.5. A

The independence of SSR and SSE is demonstrated in the following theorem.

Theorem 8.1c. If y is Nn(Xb, s 2I), then SSR and SSE are independent, where SSR
and SSE are defined in (8.1) and (8.2).

PROOF. This follows from Theorem 8.1a(iv) and Corollary 1 to Theorem 5.6b. A

We can now establish an F test for H0: b1 ¼ 0 versus H1: b1 = 0.

Theorem 8.1d. If y is Nn(Xb, s 2I), the distribution of

F ¼ SSR=(ks 2)
SSE=[(n� k � 1)s 2]

¼ SSR=k

SSE=(n� k � 1)
(8:5)

is as follows:

(i) If H0 : b1 ¼ 0 is false, then

F is distributed as F(k, n� k � 1, l1),

where l1 ¼ b01X0cXcb1=2s 2.

(ii) If H0 : b1 ¼ 0 is true, then l1 ¼ 0 and

F is distributed as F(k, n� k � 1):

PROOF

(i) This result follows from (5.30) and Theorems 8.1b and 8.1c.

(ii) This result follows from (5.28) and Theorems 8.1b and 8.1c. A

Note that l1 ¼ 0 if and only if b1 ¼ 0, since X0cXc is positive definite (see Corollary
1 to Theorem 2.6b).
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The test for H0 : b1 ¼ 0 is carried out as follows. Reject H0 if F � Fa,k,n�k�1,
where Fa,k,n�k�1 is the upper a percentage point of the (central) F distribution.
Alternatively, a p value can be used to carry out the test. A p value is the tail area
of the central F distribution beyond the calculated F value, that is, the probability
of exceeding the calculated F value, assuming H0 : b1 ¼ 0 to be true. A p value
less than a is equivalent to F > Fa,k,n�k�1.

The analysis-of-variance (ANOVA) table (Table 8.1) summarizes the results and
calculations leading to the overall F test. Mean squares are sums of squares
divided by the degrees of freedom of the associated chi-square (x 2) distributions.

The entries in the column for expected mean squares in Table 8.1 are simply
E(SSR=k) and E[SSE=(n� k � 1)]. The first of these can be established by
Theorem 5.2a or by (5.20). The second was established by Theorem 7.3f.

If H0 : b1 ¼ 0 is true, both of the expected mean squares in Table 8.1 are equal to
s 2, and we expect F to be near 1. If b1 = 0, then E(SSR=k) . s 2 since X0cXc is posi-
tive definite, and we expect F to exceed 1. We therefore reject H0 for large values of F.

The test of H0 : b1 ¼ 0 in Table 8.1 has been developed using the centered model
(7.32). We can also express SSR and SSE in terms of the noncentered model
y ¼ Xbþ 1 in (7.4):

SSR ¼ b̂0X0y� n�y2, SSE ¼ y0y� b̂0X0y: (8:6)

These are the same as SSR and SSE in (8.1) [see (7.24), (7.39), (7.54), and Problems
7.19, 7.25].

Example 8.1. Using the data in Table 7.1, we illustrate the test of H0 : b1 ¼ 0 where,
in this case, b1 ¼ (b1,b2)0. In Example 7.3.1(a), we found X0y ¼ (90, 482, 872)0 and

b̂ ¼ (5:3754, 3:0118, �1:2855)0. The quantities y0y, b̂0X0y, and n�y2 are given by

y0y ¼
X12

i¼1

y2
i ¼ 22 þ 32 þ � � � þ 142 ¼ 840,

b̂0X0y ¼ (5:3754, 3:0118, �1:2855)

90

482

872

0
B@

1
CA ¼ 814:5410,

TABLE 8.1 ANOVA Table for the F Test of H0 : b1 ¼ 0

Source of
Variation df Sum of Squares Mean Square

Expected Mean
Square

Due to b1 k SSR ¼ b̂
0
1X0cy ¼ b̂0X0y� n�y2 SSR/k s 2 þ 1

k b
0
1X0cXcb1

Error n� k � 1 SSE ¼
X

i

ðyi � �yÞ2 � b̂01X0cy SSE=(n� k � 1) s 2

¼ y0y� b̂0X0y
Total n21 SST ¼

P
i (yi � �y)2
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n�y2 ¼ n

P
i yi

n

� �2

¼ 12
90
12

� �2

¼ 675:

Thus, by (8.6), we obtain

SSR ¼ b̂0X0y� n�y2 ¼ 139:5410,

SSE ¼ y0y� b̂0X0y ¼ 25:4590,

Xn

i¼1

(yi � �y)2 ¼ y0y� n�y2 ¼ 165:

The F test is given in Table 8.2. Since 24:665 . F:05,2,9 ¼ 4:26, we reject H0 : b1 ¼ 0
and conclude that at least one of b1 or b2 is not zero. The p value is .000223. A

8.2 TEST ON A SUBSET OF THE b’S

In more generality, suppose that we wish to test the hypothesis that a subset of the x’s
is not useful in predicting y. A simple example is H0 : bj ¼ 0 for a single bj. If H0 is
rejected, we would retain bjxj in the model. As another illustration, consider the
model in (7.2)

y ¼ b0 þ b1x1 þ b2x2 þ b3x2
1 þ b4x2

2 þ b5x1x2 þ 1,

for which we may wish to test the hypothesis H0 : b3 ¼ b4 ¼ b5 ¼ 0. If H0 is
rejected, we would choose the full second-order model over the reduced first-order
model.

Without loss of generality, we assume that the b’s to be tested have been arranged
last in b, with a corresponding arrangement of the columns of X. Then b and X can
be partitioned accordingly, and by (7.78), the model for all n observations becomes

y ¼ Xbþ 1 ¼ (X1, X2)
b1

b2

� �
þ 1

¼ X1b1 þ X2b2 þ 1, (8:7)

TABLE 8.2 ANOVA for Overall Regression Test for Data in Table 7.1

Source df SS MS F

Due to b1 2 139.5410 69.7705 24.665
Error 9 25.4590 2.8288

Total 11 165.0000
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where b2 contains the b’s to be tested. The intercept b0 would ordinarily be
included in b1.

The hypothesis of interest is H0 : b2 ¼ 0. If we designate the number of par-
ameters in b2 by h, then X2 is n � h, b1 is (k � hþ 1)� 1, and X1 is
n� (k � hþ 1). Thus b1 ¼ (b0, b1, � � � , bk�h)0 and b2 ¼ (bk�hþ1, � � � , bk)0. In
terms of the illustration at the beginning of this section, we would have
b1 ¼ (b0, b1, b2)0 and b2 ¼ (b3, b4, b5)0. Note that b1 in (8.7) is different from

b1 in Section 8.1, in which b was partitioned as b ¼ b0
b1

� �
and b1 constituted

all of b except b0.
To test H0 : b2 ¼ 0 versus H1 : b2 = 0, we use a full–reduced-model approach.

The full model is given by (8.7). Under H0 : b2 ¼ 0, the reduced model becomes

y ¼ X1b
�
1 þ 1�: (8:8)

We use the notation b�1 and 1� as in Section 7.9, because in the reduced model, b�1
and 1� will typically be different from b1 and 1 in the full model (unless X1 and X2

are orthogonal; see Theorem 7.9a and its corollary). The estimator of b�1 in the

reduced model (8.8) is b̂�1 ¼ (X01X1)�1X01y, which is, in general, not the same as

the first k 2 h þ 1 elements of b̂ ¼ (X0X)�1X0y from the full model (8.7) (unless
X1 and X2 are orthogonal; see Theorem 7.10).

In order to compare the fit of the full model (8.7) to the fit of the reduced model
(8.8), we add and subtract b̂0X0y and b̂�

0

1 X01y to the total corrected sum of squaresPn
i¼1 (yi � �y)2 ¼ y0y� n�y2 so as to obtain the partitioning

y0y� n�y2 ¼ (y0y� b̂0Xy)þ (b̂0X0y� b̂�
0

1 X01y)þ (b̂�
0

1 X1y� n�y2) (8:9)

or

SST ¼ SSEþ SS(b2jb1)þ SSR(reduced), (8:10)

where SS(b2jb1) ¼ b̂0X0y� b̂�
0

1 X01y is the “extra” regression sum of squares due to
b2 after adjusting for b1. Note that SS(b2jb1) can also be expressed as

SS(b2jb1) ¼ b̂0X0y� n�y2 � (b̂�
0

1 X01y� n�y2)

¼ SSR( full)� SSR(reduced),

which is the difference between the overall regression sum of squares for the full
model and the overall regression sum of squares for the reduced model [see (8.6)].

If H0 : b2 ¼ 0 is true, we would expect SS(b2jb1) to be small so that SST in
(8.10) is composed mostly of SSR(reduced) and SSE. If b2 = 0, we expect
SS(b2jb1) to be larger and account for more of SST. Thus we are testing
H0 : b2 ¼ 0 in the full model in which there are no restrictions on b1. We are not
ignoring b1 (assuming b1 ¼ 0) but are testing H0 : b2 ¼ 0 in the presence of b1,
that is, above and beyond whatever b1 contributes to SST.
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To develop a test statistic based on SS(b2jb1), we first write (8.9) in terms of quad-

ratic forms in y. Using b̂ ¼ (X0X)�1X0y and b̂�1 ¼ (X01X1)�1X01y and (5.2), (8.9)
becomes

y0 I� 1
n

J

� �
y ¼ y0y� y0X(X0X)�1X0yþ y0X(X0X)�1X0y

� y0X1(X01X1)�1X01yþ y0X1(X01X1)�1X01y� y0
1
n

Jy

¼ y0 I� X(X0X)�1X0
� �

yþ y0[X(X0X)�1X0 � X1(X01X1)�1X01]y

þ y0 X1(X01X1)�1X01 �
1
n

J

� �
y (8:11)

¼ y0(I�H)yþ y0(H�H1)yþ y0 H1 �
1
n

J

� �
y, (8:12)

where H ¼ X(X0X)�1X0 and H1 ¼ X1(X01X1)�1X01. The matrix I�H was shown to
be idempotent in Problem 5.32a, with rank n� k � 1, where k þ 1 is the rank of X
(k þ 1 is also the number of elements in b). The matrix H�H1 is shown to be idem-
potent in the following theorem.

Theorem 8.2a. The matrix H�H1 ¼ X(X0X)�1X0 � X1(X01X1)�1X01 is idempotent
with rank h, where h is the number of elements in b2.

PROOF. Premultiplying X by H, we obtain

HX ¼ X(X0X)�1X0X ¼ X

or

X ¼ X(X0X)�1X0
� �

X: (8:13)

Partitioning X on the left side of (8.13) and the last X on the right side, we obtain [by
an extension of (2.28)]

(X1, X2) ¼ X(X0X)�1X0
� �

(X1, X2)

¼ X(X0X)�1X0X1, X(X0X)�1X0X2
� �

:

Thus

X1 ¼ X(X0X)�1X0X1,

X2 ¼ X(X0X)�1X0X2:
(8:14)
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Simplifying HH1 and H1H by (8.14) and its transpose, we obtain

HH1 ¼ H1 and H1H ¼ H1: (8:15)

The matrices H and H1 are idempotent (see Problem 5.32). Thus

(H�H1)2 ¼ H2 �HH1 �H1HþH2
1

¼ H�H1 �H1 þH1

¼ H�H1,

and H�H1 is idempotent. For the rank of H�H1, we have (by Theorem 2.13d)

rank(H�H1) ¼ tr(H�H1)

¼ tr(H)� tr(H1) [by (2:86)]

¼ tr X(X0X)�1X0
� �

� tr X1(X01X1)�1X01
� �

¼ tr X0X(X0X)�1
� �

� tr X01X1(X01X1)�1
� �

[by (2:87)]

¼ tr(Ikþ1)� tr(Ik�hþ1) ¼ k þ 1� (k � hþ 1) ¼ h:

A

We now find the distributions of y0(I�H)y and y0(H�H1)y in (8.12) and show
that they are independent.

Theorem 8.2b. If y is Nn(Xb, s 2I) and H and H1 are as defined in (8.11) and (8.12),
then

(i) y0(I�H)y=s 2 is x 2(n� k � 1).

(ii) y0(H�H1)y=s2 is x2(h,l1),l1¼b02 X02X2�X02X1(X01X1)�1X01X2
� �

b2=2s2 :

(iii) y0(I�H)y and y0(H�H1)y are independent.

PROOF. Adding y0(1=n)Jy to both sides of (8.12), we obtain the decomposition
y0y ¼ y0(I�H)yþ y0(H�H1)yþ y0H1y. The matrices I�H, H�H1, and H1

were shown to be idempotent in Problem 5.32 and Theorem 8.2a. Hence by
Corollary 1 to Theorem 5.6c, all parts of the theorem follow. See Problem 8.9 for
the derivation of l1. A

If l1 ¼ 0 in Theorem 8.2b(ii), then y0(H�H1)y=s 2 has the central chi-square
distribution x 2(h). Since X02X2 � X02X1(X01X1)�1X01X2 is positive definite (see
Problem 8), l1 ¼ 0 if and only if b2 ¼ 0.

An F test for H0 : b2 ¼ 0 versus H1: b2 = 0 is given in the following theorem.
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Theorem 8.2c. Let y be Nn(Xb, s 2I) and define an F statistic as follows:

F ¼ y0(H�H1)y=h

y0(I�H)y=(n� k � 1)
¼ SS(b2jb1)=h

SSE=(n� k � 1)
(8:16)

¼ (b̂0X0y� b̂�
0

1 X01y)=h

(y0y� b̂0X0y)=(n� k � 1)
, (8:17)

where b̂ ¼ (X0X)�1X0y is from the full model y ¼ Xbþ 1 and b̂ �1 ¼ (X01X1)�1X01y
is from the reduced model y ¼ X1b1

� þ 1�. The distribution of F in (8.17) is as
follows:

(i) If H0 : b2 ¼ 0 is false, then

F is distributed as F(h, n� k � 1, l1),

where l1 ¼ b02 X02X2 � X02X1(X01X1)�1X01X2
� �

b2=2s 2.

(ii) If H0 : b2 ¼ 0 is true, then l1 ¼ 0 and

F is distributed as F(h, n� k � 1):

PROOF

(i) This result follows from (5.30) and Theorem 8.2b.

(ii) This result follows from (5.28) and Theorem 8.2b. A

The test for H0 : b2 ¼ 0 is carried out as follows: Reject H0 if F � Fa,h,n�k�1,
where Fa,h,n�k�1 is the upper a percentage point of the (central) F distribution.
Alternatively, we reject H0 if p , a, where p is the p value. Since
X02X2 � X02X1(X01X1)�1X01X2 is positive definite (see Problem 8.10), l1 . 0 if
H0 : b2 ¼ 0 is false. This justifies rejection of H0 for large values of F.

Results and calculations leading to this F test are summarized in the ANOVA table
(Table 8.3), where b1 is (k � hþ 1)� 1, b2 is h� 1, X1 is n� (k � hþ 1), and X2

is n� h.
The entries in the column for expected mean squares are E[SS(b2jb1)=h] and

E[SSE=(n� k � 1)]. For E[SS(b2jb1)=h], see Problem 8.11. Note that if H0 is
true, both expected mean squares (Table 8.3) are equal to s 2, and if H0 is false,
E[SS(b2jb1)=h] . E SSE=(n� k � 1)½ � since X02X2 � X02X1(X01X1)�1X01X2 is posi-
tive definite. This inequality provides another justification for rejecting H0 for large
values of F.
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Example 8.2a. Consider the dependent variable y2 in the chemical reaction data in
Table 7.4 (see Problem 7.52 for a description of the variables). In order to check
the usefulness of second-order terms in predicting y2, we use as a full model,
y2¼b0þb1x1þb2x2þb3x3þb4x2

1þb5x2
2þb6x2

3þb7x1x2þb8x1x3þb9x2x3þ1,

and test H0 :b4¼b5¼ ...¼b9¼0. For the full model, we obtain b̂0X0y�n�y2¼
339:7888, and for the reduced model y2¼b�0þ b�1x1þb�2x2þb�3x3þ1�, we

have b̂�
0

1 X01y�n�y2¼151:0022. The difference is b̂0X0y�b̂�01 X01y¼188:7866. The
error sum of squares is SSE¼60:6755, and the F statistic is given by (8.16) or Table 8.3 as

F¼188:7866=6
60:6755=9

¼31:4644
6:7417

¼4:6671,

which has a p value of .0198. Thus the second-order terms are useful in prediction of
y2. In fact, the overall F in (8.5) for the reduced model is 3.027 with p¼ :0623, so that
x1,x2, and x3 are inadequate for predicting y2. The overall F for the full model is 5.600
with p ¼ .0086. A

In the following theorem, we express SS(b2jb1) as a quadratic form in b̂2 that
corresponds to l1 in Theorem 8.2b(ii).

Theorem 8.2d. If the model is partitioned as in (8.7), then

SS(b2jb1) ¼ b̂0X0y� b̂�
0

1 X01y can be written as

SS(b2jb1) ¼ b̂02 X02X2 � X02X1(X01X1)�1X01X2
� �

b̂2, (8:18)

where b̂2 is from a partitioning of b̂ in the full model:

b̂ ¼ b̂1
b̂2

� �
¼ (X0X)�1X0y: (8:19)

PROOF. We can write Xb̂ in terms of b̂1 and b̂2 as Xb̂ ¼ (X1, X2) b̂1
b̂2

� �
¼ X1b̂1þ

X2b̂2. To write b̂�1 in terms of b̂1 and b̂2, we note that by (7.80), E(b̂�1) ¼ b1 þ Ab2,
where A ¼ (X01X1)�1X01X2 is the alias matrix defined in Theorem 7.9a. This can be

estimated by b̂�1 ¼ b̂1 þ Ab̂2, where b̂1 and b̂2 are from the full model, as in (8.19).
Then SS(b2jb1) in (8.10) or Table 8.3 can be written as

SS(b2jb1) ¼ b̂ 0X0y� b̂�
0

1 X01y

¼ b̂0X0Xb̂� b̂�
0

1 X01X1b̂
� [by (7:8)]

¼ (b̂01X01 þ b̂02X02)(X1b̂1 þ X2b̂2)� (b̂01 þ b̂02A0)X01X1(b̂1 þ Ab̂2):

Multiplying this out and substituting (X01X1)�1X01X2 for A, we obtain (8.18). A
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In (8.18), it is clear that SS(b2jb1) is due to b2. We also see in (8.18) a direct corre-
spondence between SS(b2jb1) and the noncentrality parameter l1 in Theorem 8.2b
(ii) or the expected mean square in Table 8.3.

Example 8.2b. The full–reduced-model test of H0 : b2 ¼ 0 in Table 8.3 can be used
to test for significance of a single b̂j. To illustrate, suppose that we wish to
test H0 : bk ¼ 0, where b is partitioned as

b ¼

b0
b1

..

.

bk�1

bk

0
BBBBB@

1
CCCCCA
¼ b1

bk

� �
:

Then X is partitioned as X ¼ (X1, xk), where xk is the last column of X and X1 contains
all columns except xk. The reduced model is y ¼ X1b

�
1 þ 1�, and b�1 is estimated as

b̂�1 ¼ (X01X1)�1X01y. In this case, h ¼ 1, and the F statistic in (8.17) becomes

F ¼ b̂0X0y� b̂�
0

1 X01y

(y0y� b̂0X0y)=(n� k � 1)
, (8:20)

which is distributed as F(1, n� k � 1) if H0 : bk ¼ 0 is true. A

Example 8.2c. The test in Section 8.1 for overall regression can be obtained as a full–
reduced-model test. In this case, the partitioning of X and of b is X ¼ (j, X1) and

b ¼

b0

b1

..

.

bk

0
BBB@

1
CCCA ¼

b0
b1

� �
:

The reduced model is y ¼ b�0jþ 1�, for which we have

b̂�0 ¼ �y and SS(b�0) ¼ n�y2 (8:21)

(see Problem 8.13). Then SS(b1jb0) ¼ b̂0X0y� n�y2, which is the same as (8.6). A

8.3 F TEST IN TERMS OF R2

The F statistics in Sections 8.1 and 8.2 can be expressed in terms of R2 as defined
in (7.56).
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Theorem 8.3. The F statistics in (8.5) and (8.17) for testing H0 : b1 ¼ 0 and
H0 : b2 ¼ 0, respectively, can be written in terms of R2 as

F ¼ (b̂0X0y� n�y2)=k

(y0y� b̂0X0y)=(n� k � 1)
(8:22)

¼ R2=k

(1� R2)=(n� k � 1)
(8:23)

and

F ¼ (b̂0X0y� b̂�
0

1 X01y)=h

(y0y� b̂0X0y)=(n� k � 1)
(8:24)

¼ (R2 � R2
r )=h

(1� R2)=(n� k � 1)
, (8:25)

where R2 for the full model is given in (7.56) as R2 ¼ (b̂0X0y� n�y2)=(y0y� n�y2) and
R2

r for the reduced model y ¼ X1b
�
1 þ 1 in (8.8) is similarly defined as

R2
r ¼

b̂�
0

1 X01y� n�y2

y0y� n�y2 : (8:26)

PROOF. Adding and subtracting n�y2 in the denominator of (8.22) gives

F ¼ (b̂0X0y� n�y2)=k

[y0y� n�y2 � (b̂0X0y� n�y2)]=(n� k � 1)
:

Dividing numerator and denominator by y0y� n�y2 yields (8.23). For (8.25), see
Problem 8.15. A

In (8.25), we see that the F test for H0 : b2 ¼ 0 is equivalent to a test for significant
reduction in R2. Note also that since F � 0 in (8.25), we have R2 � R2

r , which is an
additional confirmation of property 3 in Section 7.7, namely, that adding an x to the
model increases R2.

Example 8.3. For the dependent variable y2 in the chemical reaction data in
Table 7.4, a full model with nine x’s and a reduced model with three x’s were con-
sidered in Example 8.2a. The values of R2 for the full model and reduced model
are .8485 and .3771, respectively. To test the significance of the increase in R2
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from .3771 to .8485, we use (8.25)

F ¼ (R2 � R2
r )=h

(1� R2)=(n� k � 1)
¼ (:8485� :3771)=6

(1� :8485)=9

¼ :07857
:01683

¼ 4:6671,

which is the same as the value obtained for F in Example 8.2a. A

8.4 THE GENERAL LINEAR HYPOTHESIS TESTS FOR
H0 : Cb 5 0 AND H0 : Cb 5 t

We discuss a test for H0 : Cb ¼ 0 in Section 8.4.1 and a test for H0 : Cb ¼ t in
Section 8.4.2.

8.4.1 The Test for H0 : Cb ¼ 0

The hypothesis H0 : Cb ¼ 0, where C is a known q� (k þ 1) coefficient matrix of
rank q � k þ 1, is known as the general linear hypothesis. The alternative hypothesis
is H1: Cb = 0. The formulation H0 : Cb ¼ 0 includes as special cases the hypoth-
eses in Sections 8.1 and 8.2. The hypothesis H0 : b1 ¼ 0 in Section 8.1 can be
expressed in the form H0 : Cb ¼ 0 as follows

H0 : Cb ¼ (0, Ik)
b0
b1

� �
¼ b1 ¼ 0 [by (2:36)],

where 0 is a k � 1 vector. Similarly, the hypothesis H0 : b2 ¼ 0 in Section 8.2 can be
expressed in the form H0 : Cb ¼ 0:

H0 : Cb ¼ (O, Ih)
b1
b2

� �
¼ b2 ¼ 0,

where the matrix O is h� (k � hþ 1) and the vector 0 is h � 1.
The formulation H0 : Cb ¼ 0 also allows for more general hypotheses such as

H0 : 2b1 � b2 ¼ b2 � 2b3 þ 3b4 ¼ b1 � b4 ¼ 0,

which can be expressed as follows:

H0 :
0 2 �1 0 0
0 0 1 �2 3
0 1 0 0 �1

0
@

1
A

b0

b1
b2

b3

b4

0
BBBB@

1
CCCCA
¼

0
0
0

0
@

1
A:
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As another illustration, the hypothesis H0 : b1 ¼ b2 ¼ b3 ¼ b4 can be expressed in
terms of three differences, H0 : b1 � b2 ¼ b2 � b3 ¼ b3 � b4 ¼ 0, or, equivalently,
as H0 : Cb ¼ 0:

H0 :
0 1 �1 0 0
0 0 1 �1 0
0 0 0 1 �1

0
@

1
A

b0

b1

b2
b3

b4

0
BBBB@

1
CCCCA
¼

0
0
0

0
@

1
A:

In the following theorem, we give the sums of squares used in the test of
H0 : Cb ¼ 0 versus H1: Cb = 0, along with the properties of these sums of
squares. We denote the sum of squares due to Cb (due to the hypothesis) as SSH.

Theorem 8.4a. If y is distributed Nn(Xb, s 2I) and C is q� (k þ 1) of rank
q � k þ 1, then

(i) Cb̂ is Nq[Cb, s 2C(X0X)�1C0]:

(ii) SSH=s 2 ¼ (Cb̂)0[C(X0X)�1C0]�1Cb̂=s 2 is x 2(q,l),
where l ¼ (Cb)0[C(X0 X)�1C0]�1Cb=2s 2.

(iii) SSE=s 2 ¼ y0[I� X(X0X)�1X0]y=s 2 is x 2(n� k � 1).

(iv) SSH and SSE are independent.

PROOF

(i) By Theorem 7.6b (i), b̂ is Nkþ1[b, s 2(X0X)�1]. The result then follows by
Theorem 4.4a (ii).

(ii) Since cov(Cb̂) ¼ s 2C(X0X)�1C0 and s 2[C(X0X)�1C]�1C(X0X)�1C0=s 2 ¼
I, the result follows by Theorem 5.5.

(iii) This was established in Theorem 8.1b(ii).

(iv) Since b̂ and SSE are independent [see Theorem 7.6b(iii)], SSH ¼
b̂C0[C(X0X)�1C0]Cb̂ and SSE are also independent (Seber 1977, pp. 17,
33–34). For a more formal proof, see Problem 8.16. A

The F test for H0 : Cb ¼ 0 versus H1 : Cb = 0 is given in the following theorem.

Theorem 8.4b. Let y be Nn(Xb, s 2I) and define the statistic

F ¼ SSH=q

SSE=(n� k � 1)

¼ (Cb̂)0[C(X0X)�1C0]�1Cb̂=q

SSE=(n� k � 1)
, (8:27)

where C is q� (k þ 1) of rank q � k þ 1 and b̂ ¼ (X0X)�1X0y. The distribution of F
in (8.27) is as follows:
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(i) If H0 : Cb ¼ 0 is false, then

F is distributed as F(q, n� k � 1, l),

where l ¼ (Cb)0 C(X0X)�1C0
� ��1

Cb=2s 2.

(ii) If H0 : Cb ¼ 0 is true, then

F is distributed as F(q, n� k � 1):

PROOF

(i) This result follows from (5.30) and Theorem 8.4a.

(ii) This result follows from (5.28) and Theorem 8.4a. A

The F test for H0 : Cb ¼ 0 in Theorem 8.4b is usually called the general linear
hypothesis test. The degrees of freedom q is the number of linear combinations in
Cb. The test for H0 : Cb ¼ 0 is carried out as follows. Reject H0 if
F � Fa,q,n�k�1, where F is as given in (8.27) and Fa,q,n�k�1 is the upper a percentage
point of the (central) F distribution. Alternatively, we can reject H0 if p � a where p
is the p value for F. [The p value is the probability that F(q, n� k � 1) exceeds the
observed F value.] Since C(X0X)�1C0 is positive definite (see Problem 8.17), l . 0 if
H0 is false, where l ¼ (Cb)0[C(X0X)�1C0]�1Cb=2s 2. Hence we reject H0 : Cb ¼ 0
for large values of F.

In Theorems 8.4a and 8.4b, SSH could be written as (Cb̂� 0)0[C(X0X)�1C0]�1

(Cb̂� 0), which is the squared distance between Cb̂ and the hypothesized value

of Cb. The distance is standardized by the covariance matrix of Cb̂. Intuitively, if

H0 is true, Cb̂ tends to be close to 0 so that the numerator of F in (8.27) is small.
On the other hand, if Cb is very different from 0, the numerator of F tends to be large.

The expected mean squares for the F test are given by

E
SSH

q

� �
¼ s 2 þ 1

q
(Cb)0 C(X0X)�1C0

� ��1
Cb,

E
SSE

n� k � 1

� �
¼ s 2:

(8:28)

These expected mean squares provide additional motivation for rejecting H0 for large
values of F. If H0 is true, both expected mean squares are equal to s2; if H0 is false,
E(SSH=q) . E[SSE=(n� q� 1)].

The F statistic in (8.27) is invariant to full-rank linear transformations on the x’s or
on y.

Theorem 8.4c. Let z ¼ cy and W ¼ XK, where K is nonsingular (see Corollary 1 to
Theorem 7.3e for the form of K). The F statistic in (8.27) is unchanged by these
transformations.
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PROOF. See Problem 8.18. A

In the first paragraph of this section, it was noted that the hypothesis H0 : b2 ¼ 0
can be expressed in the form H0 : Cb ¼ 0. Since we used a full–reduced-model
approach to develop the test for H0 : b2 ¼ 0, we expect that the general linear hypoth-
esis test is also a full–reduced-model test. This is confirmed in the following theorem.

Theorem 8.4d. The F test in Theorem 8.4b for the general linear hypothesis
H0 : Cb ¼ 0 is a full–reduced-model test.

PROOF. The reduced model under H0 is

y ¼ Xbþ 1 subject to Cb ¼ 0: (8:29)

Using Lagrange multipliers (Section 2.14.3), it can be shown (see Problem 8.19) that
the estimator for b in this reduced model is

b̂c ¼ b̂� (X0X)�1C0[C(X0X)�1C0]�1Cb̂, (8:30)

where b̂ ¼ (X0X)�1X0y is estimated from the full model unrestricted by the hypoth-

esis and the subscript c in b̂c indicates that b is estimated subject to the constraint
Cb ¼ 0. In (8.29), the X matrix for the reduced model is unchanged from the full

model, and the regression sum of squares for the reduced model is therefore b̂0cX0y

(for a more formal justification of b̂0cX0y, see Problem 8.20). Hence, the regression
sum of squares due to the hypothesis is

SSH ¼ b̂0X0y� b̂0cX
0y: (8:31)

By substituting b̂c [as given by (8.30)] into (8.31), we obtain

SSH ¼ (Cb̂)0[C(X0X)�1C0]�1Cb̂ (8:32)

(see Problem 8.21), thus establishing that the F test in Theorem 8.4b for H0 : Cb ¼ 0,
is a full–reduced-model test. A

Example 8.4.1a. In many cases, the hypothesis can be incorporated directly into the
model to obtain the reduced model. Suppose that the full model is

yi ¼ b0 þ b1xi1 þ b2xi2 þ b3xi3 þ 1i

and the hypothesis is H0 : b1 ¼ 2b2. Then the reduced model becomes

yi ¼ b0 þ 2b2xi1 þ b2xi2 þ b3xi3 þ 1i

¼ bc0 þ bc2(2xi1 þ xi2)þ bc3xi3 þ 1i,
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where bci indicates a parameter subject to the constraint b1 ¼ 2b2. The full model

and reduced model could be fit, and the difference SS(b2jb1) ¼ b̂0X0y� b̂�
0
X01y

would be the same as SSH in (8.32). A

If Cb = 0, the estimator b̂c in (8.30) is a biased estimator of b, but the variances

of the b̂cj’s in b̂c are reduced, as shown in the following theorem.

Theorem 8.4e. The mean vector and covariance matrix of b̂c in (8.30) are as
follows:

(i) E(b̂c) ¼ b� (X0X)�1C0 C(X0X)�1C0
� ��1

Cb : (8:33)

(ii) cov(b̂c) ¼ s 2(X0X)�1 � s 2(X0X)�1C0 C(X0X)�1C0
� ��1

C(X0X)�1: (8:34)

PROOF. See Problem 8.22. A

Since the second matrix on the right side of (8.34) is positive semidefinite, the
diagonal elements of cov(b̂c) are less than those of cov(b̂) ¼ s 2(X0X)�1; that is,
var(b̂cj) � var(b̂j) for j ¼ 0, 1, 2, � � � , k, where b̂cj is the jth diagonal element of

cov(b̂c) in (8.34). This is analogous to the inequality var(b̂�j ) , var(b̂j) in

Theorem 7.9c, where b̂�j is from the reduced model.

Example 8.4.1b. Consider the dependent variable y1 in the chemical reaction
data in Table 7.4. For the model y1 ¼ b0 þ b1x1 þ b2x2 þ b3x3 þ 1,
we test H0 : 2b1 ¼ 2b2 ¼ b3 using (8.27) in Theorem 8.4b. To express H0 in the
form Cb ¼ 0, the matrix C becomes

C ¼ 0 1 �1 0
0 0 2 �1

� �
,

and we obtain

Cb̂ ¼
�:1214

�:6118

� �
,

C(X0X)�1C0 ¼
:003366 �:006943

�:006943 :044974

� �
,

F ¼

�:1214

�:6118

� �0 :003366 �:006943

�:006943 :044974

� ��1 �:1214

�:6118

� �
=2

5:3449

¼ 28:62301=2
5:3449

¼ 2:6776,

which has p ¼ :101. A
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8.4.2 The Test for H0 : Cb ¼ t

The test for H0 : Cb ¼ t is a straightforward extension of the test for H0 : Cb ¼ 0. With
the additional flexibility provided by t, we can test hypotheses such as H0 : b2 ¼ b1 þ 5.
We assume that the system of equations Cb ¼ t is consistent, that is, that
rank(C) ¼ rank(C, t) (see Theorem 2.7). The requisite sums of squares and their prop-
erties are given in the following theorem, which is analogous to Theorem 8.4a.

Theorem 8.4f. If y is Nn(Xb, s 2I) and C is q� (k þ 1) of rank q � k þ 1, then

(i) Cb̂� t is Nq[Cb� t, s 2C(X0X)�1C0]:

(ii) SSH=s 2 ¼ (Cb̂� t)0 C(X0X)�1C0
� ��1

(Cb̂� t)=s 2 is x 2(q, l)
where l ¼ (Cb� t)0 [C(X0X)�1C0]�1(Cb� t)=2s 2:

(iii) SSE=s 2 ¼ y0[I� X(X0X)�1X0]y=s 2 is x 2(n� k � 1).

(iv) SSH and SSE are independent.

PROOF

(i) By Theorem 7.6b (i), b̂ is Nkþ1[b, s 2(X0X)�1]. The result follows by
Corollary 1 to Theorem 4.4a.

(ii) By part (i), cov(Cb̂� t) ¼ s 2C(X0X)�1C0. The result follows as in the proof
of Theorem 8.4a (ii).

(iii) See Theorem 8.1b (ii).

(iv) Since b̂ and SSE are independent [see Theorem 7.6b (iii)], SSH and SSE are
independent [see Seber (1977, pp. 17, 33–34)]. For a more formal proof, see
Problem 8.23. A

An F test for H0 : Cb ¼ t versus H1 : Cb = t is given in the following theorem,
which is analogous to Theorem 8.4b.

Theorem 8.4g. Let y be Nn(Xb, s 2I) and define an F statistic as follows:

F ¼ SSH=q

SSE=(n� k � 1)

¼
(Cb̂� t)0 C(X0X)�1C0

� ��1
(Cb̂� t)=q

SSE=(n� k � 1)
, (8:35)

where b̂ ¼ (X0X)�1X0y. The distribution of F in (8.35) is as follows:

(i) If H0 : Cb ¼ t is false, then

F is distributed as F(q, n� k � 1, l),

where l ¼ (Cb� t)0[C(X0X)�1C0]�1(Cb� t)=2s 2.
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(ii) If H0 : Cb ¼ t is true, then l ¼ 0 and

F is distributed as F(q, n� k � 1):

PROOF

(i) This result follows from (5.28) and Theorem 8.4f.

(ii) This result follows from (5.30) and Theorem 8.4f. A

The test for H0 : Cb ¼ t is carried out as follows. Reject H0 if F � Fa,q,n�k�1,
where Fa,q, n�k�1 is the upper a percentage point of the central F distribution.
Alternatively, we can reject H0 if p � a, where p is the p value for F.

The expected mean squares for the F test are given by

E
SSH

q

� �
¼ s 2 þ 1

q
(Cb� t)0 C(X0X)�1C0

� ��1
(Cb� t),

E
SSE

n� k � 1

� �
¼ s 2:

(8:36)

By extension of Theorem 8.4d, the F test for H0 : Cb ¼ t in Theorem 8.4g is a
full–reduced-model test (see Problem 8.24 for a partial result).

8.5 TESTS ON bj AND a0b

We consider tests for a single bj or a single linear combination a0b in Section 8.5.1
and tests for several bj’s or several a0ib’s in Section 8.5.2.

8.5.1 Testing One bj or One a0b

Tests for an individual bj can be obtained using either the full–reduced-
model approach in Section 8.2 or the general linear hypothesis approach in
Section 8.4 The test statistic for H0 : bk ¼ 0 using a full–reduced–model is given
in (8.20) as

F ¼ b̂0X0y� b̂�
0

1 X01y

SSE=(n� k � 1)
, (8:37)

which is distributed as F(1, n� k � 1) if H0 is true. In this case, bk is the last b, so

that b is partitioned as b ¼ b1
bk

� �
and X is partitioned as X ¼ (X1, xk), where xk is
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the last column of X. Then X1 in the reduced model y ¼ X1b
�
1 þ 1 contains all the

columns of X except the last.
To test H0 : bj ¼ 0 by means of the general linear hypothesis test of H0 : Cb ¼ 0

(Section 8.4.1), we first consider a test of H0 : a0b ¼ 0 for a single linear combi-
nation, for example, a0b ¼ (0, 2, �2, 3,1)b. Using a0 in place of the matrix C in
Cb ¼ 0, we have q ¼ 1, and (8.27) becomes

F ¼
(a0b̂)0 a0(X0X)�1a

� ��1
a0b̂

SSE=(n� k � 1)
¼ (a0b̂)2

s2a0(X0X)�1a
, (8:38)

where s2 ¼ SSE=(n� k � 1). The F statistic in (8.38) is distributed as
F(1, n� k � 1) if H0 : a0b ¼ 0 is true.

To test H0 : bj ¼ 0 using (8.38), we define a0 ¼ (0, . . . , 0, 1, 0, . . . , 0), where the
1 is in the jth position. This gives

F ¼
b̂2

j

s2g jj
, (8:39)

where g jj is the jth diagonal element of (X0X)�1. If H0 : bj ¼ 0 is true, F in (8.39) is
distributed as F(1, n� k � 1). We reject H0 : bj ¼ 0 if F � Fa,1,n�k�1 or, equiva-
lently, if p � a, where p is the p value for F.

By Theorem 8.4d (see also Problem 8.25), the F statistics in (8.37) and (8.39) are the
same (for j ¼ k). This confirms that (8.39) tests H0 : bj ¼ 0 adjusted for the other b’s.

Since the F statistic in (8.39) has 1 and n� k � 1 degrees of freedom, we can
equivalently use the t statistic

tj ¼
b̂ j

s
ffiffiffiffiffiffi
g jj
p (8:40)

to test the effect of bj above and beyond the other b’s (see Problem 5.16). We reject
H0 : bj ¼ 0 if jtjj � ta=2,n�k�1 or, equivalently, if p � a, where p is the p value. For a
two-tailed t test such as this one, the p value is twice the probability that t(n� k � 1)
exceeds the absolute value of the observed t.

For j¼ 1, (8.40) becomes t ¼ b̂1=s
ffiffiffiffiffiffi
g11
p

, which is not the same as t ¼

b̂1= s=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i (xi � �x)2
q� �

in (6.14). Unless the x’s are orthogonal, g�1
11 =

P
i (x1i � �x1)2.

8.5.2 Testing Several bj’s or a0ib
0s

We sometimes want to carry out several separate tests rather than a single joint test of
the hypotheses. For example, the test in (8.40) might be carried out separately for
each bi, i ¼ 1, . . . , k rather than the joint test of H0 : b1 ¼ 0 in (8.5). Similarly,
we might want to carry out separate tests for several (say, d ) aib’s using (8.38)
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rather than the joint test of H0 : Cb ¼ 0 using (8.27), where

C ¼

a1

a2

..

.

ad

0
BBB@

1
CCCA:

In such situations there are two different a levels, the overall or familywise a level
(af) and the a level for each test or comparisonwise a level (ac). In some cases
researchers desire to control ac when doing several tests (Saville 1990), and so no
changes are needed in the testing procedure. In other cases, the desire is to control
af. In yet other cases, especially those involving thousands of separate tests (e.g., micro-
array data), it makes sense to control other quantities such as the false discovery rate
(Benjamini and Hochberg 1995, Benjamini and Yekutieli 2001). This will not be dis-
cussed further here. We consider two ways to control af when several tests are made.

The first of these methods is the Bonferroni approach (Bonferroni 1936), which
reduces ac for each test, so that af is less than the desired level of a�. As an
example, suppose that we carry out the k tests of H0j: bj ¼ 0, j ¼ 1, 2, . . . , k. Let
Ej be the event that the jth test rejects H0j when it is true, where P(Ej) ¼ ac.
The overall af can be defined as

af ¼ P(reject at least one H0j when all H0j are true)

¼ P(E1 or E2 . . . or Ek):

Expressing this more formally and applying the Bonferroni inequality, we obtain

af ¼ P(E1 < E2 < � � �< Ek)

�
Xk

j¼1

P(Ej) ¼
Xk

j¼1

ac ¼ kac:
(8:41)

We can thus ensure that af is less than or equal to the desired a� by simply setting
ac ¼ a�=k. Since af in (8.41) is at most a�, the Bonferroni procedure is a conserva-
tive approach.

To test H0j : bj ¼ 0, j ¼ 1, 2, . . . , k, with af � a�, we use (8.40)

tj ¼
b̂j

s
ffiffiffiffiffiffi
g jj
p , (8:42)

and reject H0j if jtjj � ta�=2k, n�k�1. Bonferroni critical values ta�=2k,n are available in
Bailey (1977). See also Rencher (2002, pp. 562–565). The critical values ta�=2k,n can
also be found using many software packages. Alternatively, we can carry out the test
by the use of p values and reject H0j if p � a�=k.
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More generally, to test H0i : a0ib ¼ 0 for i ¼ 1, 2, . . . , d withaf � a� , we use (8.38)

Fi ¼
(a0ib̂)0 a0i(X

0X)�1ai

� ��1
a0ib̂

s2
(8:43)

and reject H0i if Fi � Fa�=d, 1, n�k�1. The critical values Fa�=d are available in many
software packages. To use p values, reject H0i if p � a�=d.

The above Bonferroni procedures do not require independence of the b̂j’s; they are
valid for any covariance structure on the b̂j’s. However, the logic of the Bonferroni
procedure for testing H0i: a0ib ¼ 0 for i ¼ 1, 2, . . . , d requires that the coefficient
vectors a1, a2, . . . , ad be specified before seeing the data. If we wish to choose
values of ai after looking at the data, we must use the Scheffé procedure described
below. Modifications of the Bonferroni approach have been proposed that are less
conservative but still control af. For examples of these modified procedures, see
Holm (1979), Shaffer (1986), Simes (1986), Holland and Copenhaver (1987),
Hochberg (1988), Hommel (1988), Rom (1990), and Rencher (1995, Section
3.4.4). Comparisons of these procedures have been made by Holland (1991) and
Broadbent (1993).

A second approach to controlling af due to Scheffé (1953; 1959, p. 68) yields
simultaneous tests of H0 : a0b ¼ 0 for all possible values of a including those
chosen after looking at the data. We could also test H0 : a0b ¼ t for arbitrary t. For
any given a, the hypothesis H0 : a0b ¼ 0 is tested as usual by (8.38)

F ¼
(a0b̂)0 a0(X0X)�1a

� ��1
a0b̂

s2

¼ (a0b̂)2

s2a0(X0X)�1a
, (8:44)

but the test proceeds by finding a critical value large enough to hold for all possible a.
Accordingly, we now find the distribution of maxa F.

Theorem 8.5

(i) The maximum value of F in (8.44) is given by

max
a

(a0b̂)2

s2a0(X0X)�1a
¼ b̂0X0Xb̂

s2
: (8:45)

(ii) If y is Nn(Xb, s2I), then b̂0X0Xb̂=(k þ 1)s2 is distributed as
F(k þ 1, n� k � 1). Thus

max
a

(a0b̂)2

s2a0(X0X)�1a(k þ 1)

is distributed as F(k þ 1, n� k � 1).
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PROOF

(i) Using the quotient rule, chain rule, and Section 2.14.1, we differentiate

(a0b̂)2=a0(X0X)�1a with respect to a and set the result equal to 0:

@

@a

(a0b̂)2

a0(X0X)�1a
¼ [a0(X0X)�1a]2(a0b̂)b̂� (a0b̂)22(X0X)�1a

[a0(X0X)�1a]
2 ¼ 0:

Multiplying by [a0(X0X)�1a�2=2a0b̂ and treating 1 � 1 matrices as scalars, we
obtain

[a0(X0X)�1a] b̂� a0b̂(X0X)�1a ¼ 0,

a ¼ a0(X0X)�1a

a0b̂
X0Xb̂ ¼ cX0Xb̂,

where c ¼ a0(X0X)�1a=a0b̂. Substituting a ¼ cX0Xb̂ into (8.44) gives

max
a

(a0b̂)2

s2a0(X0X)�1a
¼ (cb̂0X0Xb̂)2

s2cb̂0X0X(X0X)�1cX0Xb̂
¼ c2(b̂0X0Xb̂)2

s2c2b̂0X0Xb̂
¼ b̂0X0Xb̂

s2
:

(ii) Using C ¼ Ikþ1 in (8.27), we have, by Theorem 8.4b (ii), that

F ¼ b̂0X0Xb̂

(k þ 1)s2
is distributed as F(k þ 1, n� k � 1):

A

By Theorem 8.5(ii), we have

P max
a

(a0b̂)2

s2a0(X0X)�1a(k þ 1)
� Fa� ,kþ1,n�k�1

" #
¼ a� ,

P max
a

(a0b̂)2

s2a0(X0X)�1a
� (k þ 1)Fa� ,kþ1,n�k�1

" #
¼ a� :

Thus, to test H0 : a0b ¼ 0 for any and all a (including values of a chosen after seeing
the data) with af � a�, we calculate F in (8.44) and reject H0 if
F � (k þ 1)Fa�, kþ1, n�k�1.

To test for individual bj’s using using Scheffé’s procedure, we set
a0 ¼ (0, . . . , 0, 1, 0, . . . , 0) with a 1 in the jth position. Then F in (8.44) reduces to
F ¼ b̂2

j =s2g jj in (8.39), and the square root is tj ¼ b̂j=s
ffiffiffiffiffiffi
g jj
p

in (8.42). By Theorem

8.5, we reject H0 : a0b ¼ bj ¼ 0 if jtjj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(k þ 1)Fa�, kþ1, n�k�1

p
.

For practical purposes [k � (n� 3)], we have

ta�=2k, n�k�1 ,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(k þ 1)Fa�, kþ1, n�k�1

p
,
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and thus the Bonferroni tests for individual bj’s in (8.42) are usually more powerful
than the Scheffé tests. On the other hand, for a large number of linear combinations
a0b, the Scheffé test is better since (k þ 1)Fa�, kþ1, n�k�1 is constant, while the critical
value Fa�=d,1,n�k�1 for Bonferroni tests in (8.43) increases with the number of tests d
and eventually exceeds the critical value for Scheffé tests.

It has been assumed that the tests in this section for H0 : bj ¼ 0 are carried out
without regard to whether the overall hypothesis H0 : b1 ¼ 0 is rejected. However, if
the test statistics tj ¼ b̂j=s

ffiffiffiffiffi
g jj
p

, j ¼ 1, 2, . . . , k, in (8.42) are calculated only if
H0 : b1 ¼ 0 is rejected using F in (8.5), then clearly af is reduced and the conservative
critical values ta�=2k, n�k�1 and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(k þ 1)Fa�, kþ1, n�k�1

p
become even more conserva-

tive. Using this protected testing principle (Hocking 1996, p. 106), we can even use
the critical value ta�=2, n�k�1 for all k tests andaf will still be close toa�. [For illustrations
of this familywise error rate structure, see Hummel and sligo (1971) and Rencher and
Scott (1990).] A similar statement can be made for testing the overall hypothesis
H0 : Cb ¼ 0 followed by t tests or F tests of H0 : c0ib ¼ 0 using the rows of C.

Example 8.5.2. We test H01 : b1 ¼ 0 and H02 : b2 ¼ 0 for the data in Table 7.1.
Using (8.42) and the results in Examples 7.3.1(a), 7.33 and 8.1, we have

t1 ¼
b̂1

s
ffiffiffiffiffiffi
g11
p ¼ 3:0118ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2:8288
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

:16207
p ¼ 3:0118

:67709
¼ 4:448,

t2 ¼
b̂2

s
ffiffiffiffiffiffi
g22
p ¼ �1:2855ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2:8288
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

:08360
p ¼ �1:2855

0:48629
¼ �2:643:

Using a¼.05 for each test, we reject both H01 and H02 because t:025,9 ¼ 2:262. The
(two-sided) p values are .00160 and .0268, respectively. If we use a ¼ :05=2 ¼ :025
for a Bonferroni test, we would not reject H02 since p ¼ :0268 . :025. However,
using the protected testing principle, we would reject H02 because the overall
regression hypothesis H0 : b1 ¼ 0 was rejected in Example 8.1. A

8.6 CONFIDENCE INTERVALS AND PREDICTION INTERVALS

In this section we consider a confidence region for b, confidence intervals for
bj, a0b, E(y), and s2, and prediction intervals for future observations. We assume

throughout Section 8.6 that y is Nn(Xb, s2I).

8.6.1 Confidence Region for b

If C is equal to I and t is equal to b in (8.35), q becomes k þ 1, we obtain a central F
distribution, and we can make the probability statement

P[(b̂� b)0X0X(b̂� b)=(k þ 1)s2 � Fa,kþ1,n�k�1] ¼ 1� a,
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where s2 ¼ SSE=(n� k � 1). From this statement, a 100(1� a)% joint confidence
region for b0, b1, . . . ,bk in b is defined to consist of all vectors b that satisfy

(b̂� b)0X0X(b̂� b) � (k þ 1)s2Fa,kþ1,n�k�1: (8:46)

For k ¼ 1, this region can be plotted as an ellipse in two dimensions. For k . 1, the
ellipsoidal region in (8.46) is unwieldy to interpret and report, and we therefore con-
sider intervals for the individual bj’s.

8.6.2 Confidence Interval for bj

If bj = 0, we can subtract bj in (8.40) so that tj ¼ (b̂j � bj)=s
ffiffiffiffiffiffi
g jj
p

has the central t
distribution, where gjj is the jth diagonal element of (X0X)�1. Then

P �ta=2,n�k�1 �
b̂j � bj

s
ffiffiffiffiffiffi
g jj
p � ta=2,n�k�1

" #
¼ 1� a:

Solving the inequality for bj gives

P(b̂j � ta=2,n�k�1s
ffiffiffiffiffiffi
g jj
p � bj � b̂j þ ta=2,n�k�1s

ffiffiffiffiffiffi
g jj
p

) ¼ 1� a:

Before taking the sample, the probability that the random interval will contain bj is
1 2 a. After taking the sample, the 100(1 2 a)% confidence interval for bj

b̂j + ta=2, n�k�1s
ffiffiffiffiffiffi
g jj
p

(8:47)

is no longer random, and thus we say that we are 100(1 2 a)% confident that the
interval contains bj.

Note that the confidence coefficient 1 2 a holds only for a single confidence inter-
val for one of the bj’s. For confidence intervals for all k þ 1 of the b’s that hold
simultaneously with overall confidence coefficient 1 2 a, see Section 8.6.7.

Example 8.6.2. We compute a 95% confidence interval for each bj using y2 in the
chemical reaction data in Table 7.4 (see Example 8.2a). The matrix (X0X)�1 (see

the answer to Problem 7.52) and the estimate b̂ have the following values:

(X0X)�1 ¼

65:37550 �0:33885 �0:31252 �0:02041
�0:33885 0:00184 0:00127 �0:00043
�0:31252 0:00127 0:00408 �0:00176
�0:02041 �0:00043 �0:00176 0:02161

0
BB@

1
CCA,

b̂ ¼

�26:0353
0:4046
0:2930
1:0338

0
BB@

1
CCA:
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For b1, we obtain by (8.47),

b̂1 + t:025,15s
ffiffiffiffiffiffi
g11
p

:4046 + (2:1314)(4:0781)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:00184
p

:4046 + :3723,

(:0322, :7769):

For the other bj’s, we have

b0: �26:0353 + 70:2812
(� 96:3165, 44:2459),

b2: :2930 + :5551
(� :2621, :8481),

b3: 1:0338 + 1:27777
(� :2439, 2:3115):

The confidence coefficient .95 holds for only one of the four confidence intervals. For
more than one interval, see Example 8.6.7. A

8.6.3 Confidence Interval for a0b

If a0b = 0, we can subtract a0b from a0b̂ in (8.44) to obtain

F ¼ (a0b̂� a0b)2

s2a0(X0X)�1a
,

which is distributed as F(1, n� k � 1). Then by Problem 5.16,

t ¼ a0b̂� a0b

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0(X0X)�1a

p (8:48)

is distributed as t(n� k � 1), and a 100(1� a)% confidence interval for a single
value of a0b is given by

a0b̂+ ta=2,n�k�1s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0(X0X)�1a:

q
(8:49)

8.6.4 Confidence Interval for E( y)

Let x0 ¼ (1, x01, x02, . . . , x0k)0 denote a particular choice of x ¼ (1, x1, x2, . . . , xk)0.
Note that x0 need not be one of the x’s in the sample; that is, x00 need not be a row
of X. If x0 is very far outside the area covered by the sample however, the prediction
may be poor. Let y0 be an observation corresponding to x0. Then

y0 ¼ x00bþ 1,
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and [assuming that the model is correct so that E(1) ¼ 0]

E(y0) ¼ x00b: (8:50)

We wish to find a confidence interval for E( y0), that is, for the mean of the distri-
bution of y-values corresponding to x0.

By Corollary 1 to Theorem 7.6d, the minimum variance unbiased estimator of
E( y0) is given by

dE(y0) ¼ x00b̂: (8:51)

Since (8.50) and (8.51) are of the form a0b and a0b̂, respectively, we obtain a
100(12a)% confidence interval for E(y0) ¼ x00b from (8.49):

x00b̂+ ta=2,n�k�1s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x00(X0X)�1x0

q
: (8:52)

The confidence coefficient 12a for the interval in (8.52) holds only for a single
choice of the vector x0. For intervals covering several values of x0 or all possible
values of x0, see Section 8.6.7.

We can express the confidence interval in (8.52) in terms of the centered model in
Section 7.5, yi ¼ aþ b01(x01 � �x1)þ 1i, where x01 ¼ (x01, x02, . . . , x0k)0 and �x1 ¼
(�x1, �x2, . . . , �xk)0. [We use the notation x01 to distinguish this vector from x0 ¼
(1, x01, x02, . . . , x0k)0 above.] For the centered model, (8.50), (8.51), and (8.52) become

E(y0) ¼ aþ b01(x01 � �x1), (8:53)

dE(y0) ¼ �yþ b̂01(x01 � �x1), (8:54)

�yþ b̂01(x01 � �x1) + ta=2,n�k�1s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
þ (x01 � �x1)0(X0cXc)�1(x01 � �x1)

r
: (8:55)

Note that in the form shown in (8.55), it is clear that if x01 is close to �x1 the interval is
narrower; in fact, it is narrowest for x01 ¼ �x. The width of the interval increases as the
distance of x01 from �x1 increases.

For the special case of simple linear regression, (8.50), (8.51), and (8.55) reduce to

E(y0) ¼ b0 þ b1x0, (8:56)

dE(y0) ¼ b̂0 þ b̂1x0, (8:57)

b̂0 þ b̂1x0 + ta=2,n�2s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
þ (x0 � �x)2

Pn
i¼1 (xi � �x)2

s
, (8:58)

where s is given by (6.11). The width of the interval in (8.58) depends on how far x0 is
from �x.
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Example 8.6.4. For the grades data in Example 6.2, we find a 95% confidence
interval for E( y0), where x0 ¼ 80. Using (8.58), we obtain

b̂0 þ b̂1(80) + t:025,16s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

18
þ (80� 58:056)2

19530:944

s
,

80:5386 + 2:1199(13:8547)(:2832),
80:5386 + 8:3183,
(72:2204, 88:8569): A

8.6.5 Prediction Interval for a Future Observation

A “confidence interval” for a future observation y0 corresponding to x0 is called a
prediction interval. We speak of a prediction interval rather than a confidence
interval because y0 is an individual observation and is thereby a random variable
rather than a parameter. To be 100(12a)% confident that the interval contains y0,
the prediction interval will clearly have to be wider than a confidence interval for
the parameter E( y0).

Since y0 ¼ x00b þ 10, we predict y0 by ŷ0 ¼ x00b̂, which is also the estimator of
E(y0) ¼ x00b. The random variables y0 and ŷ0 are independent because y0 is a
future observation to be obtained independently of the n observations used to

compute ŷ0 ¼ x00b̂. Hence the variance of y0 � ŷ0 is

var(y0 � ŷ0) ¼ var(y0 � x00b̂) ¼ var(x00bþ 10 � x00b̂):

Since x00b is a constant, this becomes

var(y0 � ŷ0) ¼ var(10)þ var(x00b̂) ¼ s 2 þ s 2x00(X0X)�1x0

¼ s 2 1þ x00(X0X)�1x0
� �

, (8:59)

which is estimated by s2[1þ x00(X0X)�1x0]. It can be shown that E(y0 � ŷ0) ¼ 0 and

that s2 is independent of both y0 and ŷ0 ¼ x00b̂. Therefore, the t statistic

t ¼ y0 � ŷ0 � 0

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x00(X0X)�1x0

q (8:60)

is distributed as t(n� k � 1), and

P ¼ �ta=2,n�k�1 �
y0 � ŷ0

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x00(X0X)�1x0

q � ta=2,n�k�1

2
64

3
75 ¼ 1� a:
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The inequality can be solved for y0 to obtain the 100(12a)% prediction interval

ŷ0 � ta=2, n�k�1s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x00(X0X)�1x0

q
� y0 � ŷ0 þ ta=2, n�k�1s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x00(X0X)�1x0

q

or, using ŷ0 ¼ x00b̂, we have

x00b̂+ ta=2,n�k�1s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x00(X0X)�1x0

q
: (8:61)

Note that the confidence coefficient 12a for the prediction interval in (8.61) holds
for only one value of x0.

In 1þ x00(X0X)�1x0, the second term, x00(X0X)�1x0, is typically much smaller than

1 (provided k is much smaller than n) because the variance of ŷ0 ¼ x00b̂ is much less
than the variance of y0. [To illustrate, if X0X were diagonal and x0 were in the area
covered by the rows of X, then x00(X0X)�1x0 would be a sum with k þ 1 terms,
each of the form x2

0j=
Pn

i¼1 x2
ij, which is of the order of 1/n.] Thus prediction intervals

for y0 are generally much wider than confidence intervals for E(y0) ¼ x00b.
In terms of the centered model in Section 7.5, the 100(12a)% prediction interval

in (8.61) becomes

�yþ b̂01(x01 � �x1) + ta=2,n�k�1s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

n
þ (x01 � �x1)0(X0cXc)�1(x01 � �x1)

r
: (8:62)

For the case of simple linear regression, (8.61) and (8.62) reduce to

b̂0 þ b̂1x0 + ta=2, n�2s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

n
þ (x0 � �x)2

Pn
i¼1 (xi � �x)2

s
, (8:63)

where s is given by (6.11). In (8.63), it is clear that the second and third terms within
the square root are much smaller than 1 unless x0 is far removed from the interval
bounded by the smallest and largest x’s.

For a prediction interval for the mean of q future observations, see Problem 8.30.

Example 8.6.5. Using the data from Example 6.2, we find a 95% prediction interval
for y0 when x0 ¼ 80. Using (8.63), we obtain

b̂0 þ b̂1(80) + t:025,16s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

18
þ (80� 58:056)2

19530:944

r
,

80:5386 + 2:1199(13:8547)(1:0393),

80:5386 + 30:5258,

(50:0128, 111:0644):
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Note that the prediction interval for y0 here is much wider than the confidence interval
for E( y0) in Example 8.6.4. A

8.6.6 Confidence Interval for s2

By Theorem 7.6b(ii), (n� k � 1)s2=s 2 is x 2(n� k � 1). Therefore

P x 2
1�a=2, n�k�1 �

(n� k � 1)s2

s 2
� x 2

a=2, n�k�1

� �
¼ 1� a, (8:64)

where x2
a=2, n�k�1 is the upper a=2 percentage point of the chi-square distribution and

x 2
1�a=2, n�k�1 is the lower a=2 percentage point. Solving the inequality for s 2 yields

the 100(12a)% confidence interval

(n� k � 1)s2

x 2
a=2, n�k�1

� s 2 � (n� k � 1)s2

x 2
1�a=2, n�k�1

: (8:65)

A 100(12a)% confidence interval for s is given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(n� k � 1)s2

x 2
a=2,n�k�1

s
� s �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(n� k � 1)s2

x 2
1�a=2, n�k�1

s
: (8:66)

8.6.7 Simultaneous Intervals

By analogy to the discussion of testing several hypotheses (Section 8.5.2), when
several intervals are computed, two confidence coefficients can be considered:
familywise confidence (12af) and individual confidence (12ac). Familywise confi-
dence of 12af means that we are 100(12af)% confident that every interval contains
its respective parameter.

In some cases, our goal is simply to control 12ac for each one of several confi-
dence or prediction intervals so that no changes are needed to expressions (8.47),
(8.49), (8.52), and (8.61). In other cases the desire is to control 12af. To do so,
both the Bonferroni and Scheffé methods can be adapted to the situation of multiple
intervals. In yet other cases we may want to control other properties of multiple inter-
vals (Benjamini and Yekutieli 2005).

The Bonferroni procedure increases the width of each individual interval so that
12af for the set of intervals is greater than or equal to the desired value 12a�.
As an example suppose that it is desired to calculate the k confidence intervals for
b1, . . . , bk. Let Ej be the event that the jth interval includes bj, and Ej

c be the comp-
lement of that event. Then by definition

1� af ¼ P(E1 > E2 > . . . > Ek)

¼ 1� P(Ec
1 < Ec

2 < . . . < Ec
k):
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Assuming that P(Ec
j ) ¼ ac for j ¼ 1, . . . , k, the Bonferroni inequality now implies that

1� af � 1� kac:

Hence we can ensure that 12af is greater than or equal to the desired 12a� by setting
1� ac ¼ 1� a�=k for the individual intervals.

Using this approach, Bonferroni confidence intervals for b1, b2, . . . , bk are given by

b̂j + ta�=2k, n�k�1s
ffiffiffiffiffi
g jj
p

, j ¼ 1, 2, . . . , k, (8:67)

where g jj is the jth element of (X0X)�1. Bonferroni t values ta�=2k are available in
Bailey (1977) and can also be obtained in many software programs. For example, a
probability calculator for the t, the F, and other distributions is available free from
NCSS (download at www.ncss.com).

Similarly for d linear functions a01b, a02b, . . . , a0db (chosen before seeing the data),
Bonferroni confidence intervals are given by

a0ib̂+ ta�=2d, n�k�1s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0i(X

0X)�1ai

q
, i ¼ 1, 2, . . . , d: (8:68)

These intervals hold simultaneously with familywise confidence of at least 1� a� .
Bonferroni confidence intervals for E(y0) ¼ x00b for a few values of x0, say,

x01, x02, . . . , x0d are given by

x00ib̂+ ta�=2d, n�k�1s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x00i(X

0X)�1x0i

q
, i ¼ 1, 2, . . . , d: (8:69)

[Note that x01 here differs from x01 in (8.53)–(8.55).]
For simultaneous prediction of d new observations y01, y02, . . . , y0d at d values of

x0, say, x01, x02, . . . , x0d, we can use the Bonferroni prediction intervals

x00ib̂+ ta�=2d, n�k�1s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x00i(X

0X)�1x0i

q
i ¼ 1, 2, . . . , d (8:70)

[see (8.61) and (8.69)].
Simultaneous Scheffé confidence intervals for all possible linear functions a0b

(including those chosen after seeing the data) can be based on the distribution of
maxa F [Theorem 8.5(ii)]. Thus a conservative confidence interval for any and all a0b is

a0b̂+ s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(k þ 1)Fa�, kþ1, n�k�1a0(X0X)�1a

q
: (8:71)

The (potentially infinite number of) intervals in (8.71) have an overall confidence
coefficient of at least 12a�. For a few linear functions, the intervals in (8.68) will
be narrower, but for a large number of linear functions, the intervals in (8.71) will
be narrower. A comparison of ta�=2d, n�k�1 and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(k þ 1)Fa�, kþ1, n�k�1

p
will show

which is preferred in a given case.
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For confidence limits for E(y0) ¼ x00b for all possible values of x0, we use (8.71):

x00b̂+ s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(k þ 1)Fa�, kþ1,n�k�1x00(X0X)�1x0

q
: (8:72)

These intervals hold simultaneously with a confidence coefficient of 1� a� . Thus,
(8.72) becomes a confidence region that can be applied to the entire regression
surface for all values of x0. The intervals in (8.71) and (8.72) are due to Scheffé
(1953; 1959, p. 68) and Working and Hotelling (1929).

Scheffé-type prediction intervals for y01, y02, . . . , y0d are given by

x00ib̂+ s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dFa�, d, h�k�1[1þ x00i(X

0X)�1x0i]
q

i ¼ 1, 2, . . . , d (8:73)

(see Problem 8.32). These d prediction intervals hold simultaneously with overall
confidence coefficient at least 1� a� , but note that dFa�, d, n�k�1 is not constant. It
depends on the number of predictions.

Example 8.6.7. We compute 95% Bonferroni confidence limits for b1, b2, and b3,
using y2 in the chemical reaction data in Table 7.4; see Example 8.6.2 for (X0X)�1

and b̂. By (8.67), we have

b̂1 + t:025=3,15s
ffiffiffiffiffiffi
g11
p

:4056 + (2:6937)(4:0781)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:00184
p

:4056 + :4706
(� :0660, :8751),

b2: :2930 + :7016
(� :4086, :9946) ,

b3: 1:0338 + 1:6147
(� :5809, 2:6485):

These three intervals hold simultaneously with confidence coefficient at least .95. A

8.7 LIKELIHOOD RATIO TESTS

The tests in Sections 8.1, 8.2, and 8.4 were derived using informal methods based
on finding sums of squares that have chi-square distributions and are independent.
These same tests can be obtained more formally by the likelihood ratio approach.
Likelihood ratio tests have some good properties and sometimes have optimal
properties.

We describe the likelihood ratio method in the simple context of testing
H0 : b ¼ 0 versus H1 : b = 0. The likelihood function L(b, s 2) was defined in
Section 7.6.2 as the joint density of the y’s. For a random sample
y ¼ (y1, y2, . . . , yn)0 with density NnðXb, s2IÞ, the likelihood function is given

8.7 LIKELIHOOD RATIO TESTS 217



by (7.50) as

L(b,s 2) ¼ 1

(2ps 2)n=2
e�(y�Xb)0(y�Xb)=2s 2

: (8:74)

The likelihood ratio method compares the maximum value of L(b,s 2) restricted
by H0 : b ¼ 0 to the maximum value of L(b, s 2) under H1: b1 = 0, which is essen-
tially unrestricted. We denote the maximum value of L(b,s 2) restricted by b ¼ 0
as maxH0 L(b, s 2) and the unrestricted maximum as maxH1 L(b,s 2). If b is equal
(or close) to 0, then maxH0 L(b,s 2) should be close to maxH1 L(b,s 2). If
maxH0 L(b,s 2) is not close to maxH1 L(b,s 2), we would conclude that
y ¼ (y1, y2, . . . , yn)0 apparently did not come from Nn(Xb,s 2I) with b ¼ 0.

In this illustration, we can find maxH0 L(b,s 2) by settingb ¼ 0 and then estimating
s 2 as the value that maximizes L(0,s 2). Under H1 : b = 0, both b and s 2 are esti-
mated without restriction as the values that maximize L(b,s 2). [In designating the
unrestricted maximum as maxH1 L(b,s 2), we are ignoring the restriction in H1 that
b = 0.]

It is customary to describe the likelihood ratio method in terms of maximizing L
subject to v, the set of all values of b and s2 satisfying H0, and subject to V, the set of
all values of b and s2 without restrictions (other than natural restrictions such as
s 2 . 0). However, to simplify notation in cases such as this in which H1 includes
all values of b except 0, we refer to maximizing L under H0 and H1.

We compare the restricted maximum under H0 with the unrestricted maximum
under H1 by the likelihood ratio

LR ¼ maxH0 L(b,s 2)
maxH1 L(b,s 2)

¼ max L(0,s 2)
max L(b,s 2)

: (8:75)

It is clear that 0 � LR � 1, because the maximum of L restricted to b ¼ 0 cannot
exceed the unrestricted maximum. Smaller values of LR would favor H1, and
larger values would favor H0. We thus reject H0 if LR � c, where c is chosen so
that P(LR � c) ¼ a if H0 is true.

Wald (1943) showed that, under H0

�2 ln LR is approximately x 2(n)

for large n, where n is the number of parameters estimated under H1 minus the
number estimated under H0. In the case of H0 : b ¼ 0 versus H1 : b = 0, we have
n ¼ k þ 2� 1 ¼ k þ 1 because b and s 2 are estimated under H1 while only s2 is
estimated under H0. In some cases, the x2 approximation is not needed because
LR turns out to be a function of a familiar test statistic, such as t or F, whose exact
distribution is available.
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We now obtain the likelihood ratio test for H0 : b ¼ 0. The resulting likelihood
ratio is a function of the F statistic obtained in Problem 8.6 by partitioning the
total sum of squares.

Theorem 8.7a. If y is Nn(Xb,s 2I), the likelihood ratio test for H0 : b ¼ 0 can be
based on

F ¼ b̂0X0y=(k þ 1)

(y0y� b̂0X0y)=(n� k � 1)
:

We reject H0 if F . Fa, kþ1, n�k�1.

PROOF. To find maxH1 L(b,s 2) ¼ max L(b,s 2), we use the maximum likelihood

estimators b̂ ¼ (X0X)�1X0y and ŝ2 ¼ (y� Xb̂)0(y� Xb̂)=n from Theorem 7.6a.
Substituting these in (8.74), we obtain

max
H1

L(b,s 2) ¼ max L(b,s 2) ¼ L(b̂, ŝ2)

¼ 1

(2pŝ2)n=2
e�(y�Xb̂)0(y�Xb̂)=2ŝ2

¼ nn=2e�n=2

(2p)n=2 (y� Xb̂)0(y� Xb̂)
h in=2

: (8:76)

To find maxH0 L(b,s 2) ¼ max L(0, s 2), we solve @ ln L(0, s 2)=@s 2 ¼ 0 to obtain

ŝ2
0 ¼

y0y

n
: (8:77)

Then

max
H0

L(b,s 2) ¼ max L(0,s 2) ¼ L(0, ŝ 2
0 )

¼ 1

(2pŝ2
0)n=2

e�y0y=2ŝ2
0

¼ nn=2e�n=2

(2p)n=2(y0y)n=2
: (8:78)
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Substituting (8.76) and (8.78) into (8.75), we obtain

LR ¼ maxH0 L(b,s 2)
maxH1 L(b,s 2)

¼ (y� Xb̂)0(y� Xb̂)
y0y

" #n=2

¼ 1
1þ (k þ 1)F=(n� k � 1)

� �n=2

, (8:79)

where

F ¼ b̂0X0y=(k þ 1)

(y0y� b̂0X0y)=(n� k � 1)
:

Thus, rejecting H0 : b ¼ 0 for a small value of LR is equivalent to rejecting H0 for a
large value of F. A

We now show that the F test in Theorem 8.4b for the general linear hypothesis
H0 : Cb ¼ 0 is a likelihood ratio test.

Theorem 8.7b. If y is Nn(Xb,s 2I), then the F test for H0 : Cb ¼ 0 in Theorem 8.4b
is equivalent to the likelihood ratio test.

PROOF. Under H1 : Cb = 0, which is essentially unrestricted, maxH1 L(b,s 2) is
given by (8.76). To find maxH0 L(b,s 2) ¼ max L(b, s 2) subject to Cb ¼ 0, we
use the method of Lagrange multipliers (Section 2.14.3) and work with L(b,s 2)
to simplify the differentiation:

v ¼ lnL(b,s 2)þ l0(Cb� 0)

¼ � n

2
ln(2p)� n

2
lns 2 � (y� Xb)0(y� Xb)

2s 2
þ l0Cb:

Expanding (y� Xb)0(y� Xb) and differentiating with respect to b,l, and s 2, we
obtain

@v

@b
¼ (2X0y� 2X0Xb)=2s 2 þ C0l ¼ 0, (8:80)

@v

@l
¼ Cb ¼ 0, (8:81)

@v

@s 2
¼ � n

2s 2
þ 1

2(s 2)2 (y� Xb)0(y� Xb) ¼ 0: (8:82)
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Eliminating l and solving for b and s 2 gives

b̂0 ¼ b̂� (X0X)�1C0[C(X0X)�1C0]�1Cb̂, (8:83)

ŝ 2
0 ¼

1
n

(y� Xb̂0)0(y� Xb̂0) (8:84)

¼ ŝ 2 þ 1
n

(Cb̂)0[C(X0X)�1C0]�1Cb̂ (8:85)

(Problems 8.35 and 8.36), where ŝ 2 ¼ (y� Xb̂)0(y� Xb̂)=n and b̂ ¼ (X0X)�1X0y
are the maximum likelihood estimates from Theorem 7.6a. Thus

max
H0

L(b,s 2) ¼ L(b̂0, ŝ2
0)

¼ 1

(2p)n=2(ŝ2
0)n=2

e�(y�Xb̂0)0(y�Xb̂0)=2ŝ2
0

¼ nn=2e�n=2

(2p)n=2 SSEþ (Cb̂)0 C(X0X)�1C0
� ��1

Cb̂
n on=2

,

and

LR ¼ maxH0 L(b,s 2)
maxH1 L(b,s 2)

¼ SSE

SSEþ (Cb̂)0[C(X0X)�1C0]�1Cb̂

� �n=2

¼ 1
1þ SSH=SSE

� �n=2

¼ 1
1þ qF=(n� k � 1)

� �n=2

,

where SSH ¼ (Cb̂)0[C(X0X)�1C0]�1Cb̂, SSE ¼ (y� Xb̂)0(y� Xb̂), and F is given
in (8.27). A

PROBLEMS

8.1 Show that SSR ¼ b̂01X0cXcb̂1 in (8.1) becomes y0Xc(X0cXc)�1X0cy as in (8.2).

8.2 (a) Show that Hc[I� (1=n)J] ¼ Hc, as in (8.3) in Theorem 8.1a(i), where
Hc ¼ Xc(X0cXc)�1X0c.

(b) Prove Theorem 8.1a(ii).

(c) Prove Theorem 8.1a(iii).

(d) Prove Theorem 8.1a(iv).
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8.3 Show that l1 ¼ b01XcXcb1=2s 2 as in Theorem 8.1b(i).

8.4 Prove Theorem 8.1b(ii).

8.5 Show that E(SSR=k) ¼ s 2 þ (1=k)b01X0cXcb1, as in the expected mean square
column of Table 8.1. Employ the following two approaches:

(a) Use Theorem 5.2a.

(b) Use the noncentrality parameter in (5.19).

8.6 Develop a test for H0 : b ¼ 0 in the model y ¼ Xbþ 1, where y is
Nn(Xb, s 2I). (It was noted at the beginning of Section 8.1 that this hypothesis
is of little practical interest because it includes b0 ¼ 0.) Use the partitioning

y0y ¼ (y0y� b̂0X0y)þ b̂0X0y, and proceed as follows:

(a) Show that b̂0X0y ¼ y0X(X0X)�1X0y and y0y� b̂0X0y ¼ y0[I� X(X0X)�1

X0]y.

(b) Let H ¼ X(X0X)�1X0: Show that H and I�H are idempotent of rank
k þ 1 and n� k � 1, respectively.

(c) Show that y0Hy=s 2 is x 2(k þ 1, l1), where l1 ¼ b0X0Xb=2s 2, and that
y0(I�H)y=s 2 is x 2(n� k � 1).

(d) Show that y0Hy and y0(I�H)y are independent.

(e) Show that

b̂0X0y

(k þ 1)s2
¼ y0Hy=(k þ 1)

y0(I�H)y=(n� k � 1)

is distributed as F(k þ 1, n� k � 1, l1).

8.7 Show that HH1 ¼ H1 and H1H ¼ H1, as in (8.15), where H and H1 are as
defined in (8.11) and (8.12).

8.8 Show that conditions (a) and (b) of Corollary 1 to Theorem 5.6c are satisfied
for the sum of quadratic forms in (8.12), as noted in the proof of Theorem
8.2b.

8.9 Show that l1 ¼ b02[X02X2 � X02X1(X01X1)�1X01X2]b2=2s 2 as in Theorem
8.2b(ii).

8.10 Show that X02X2 � X02X1(X01X1)�1X01X2 is positive definite, as noted below
Theorem 8.2b.

8.11 Show that E[SS(b2jb1)=h] ¼ s 2 þ b02[X02X2 � X02X1(X01X1)�1X01X2]b2=h
as in Table 8.3.

8.12 Find the expected mean square corresponding to the numerator of the F
statistic in (8.20) in Example 8.2b.

8.13 Show that b̂�0 ¼ �y and SS(b�0 ) ¼ n�y2, as in (8.21) in Example 8.2c.
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8.14 In the proof of Theorem 8.2d, show that (b̂01X01 þ b̂02X02)(X1b̂1 þ X2b̂2)�
(b̂01 þ b̂02A0)X01X1(b̂1 þ Ab̂2) ¼ b̂02[X02X2 � X02X1(X01X1)�1X01X2]b̂2.

8.15 Express the test for H0 : b2 ¼ 0 in terms of R2, as in (8.25) in Theorem 8.3.

8.16 Prove Theorem 8.4a(iv).

8.17 Show that C(X0X)�1C0 is positive definite, as noted following Theorem 8.4b.

8.18 Prove Theorem 8.4c.

8.19 Show that in the model y ¼ Xbþ 1 subject to Cb ¼ 0 in (8.29), the estimator

of b is b̂c ¼ b̂� (X0X)�1C0[C(X0X)�1C0]�1Cb̂ as in (8.30), where b̂ ¼
(X0X)�1X0y. Use a Lagrange multiplier l and minimize u ¼
(y� Xb)0(y� Xb)þ l0(Cb� 0) with respect to b and l as follows:

(a) Differentiate u with respect to l and set the result equal to 0 to obtain

Cb̂c ¼ 0.

(b) Differentiate u with respect to b and set the result equal to 0 to obtain

b̂c ¼ b̂� 1
2 (X0X)�1C0l, (1)

where b̂ ¼ (X0X)�1X0y.

(c) Multiply (1) in part (b) by C, use Cb̂c ¼ 0 from part (a), solve for l, and
substitute back into (1).

8.20 Show that b̂0cX0Xb̂c ¼ b̂0cX0y, thus demonstrating directly that the sum of

squares due to the reduced model is b̂0cX
0y and that (8.31) holds.

8.21 Show that for the general linear hypothesis H0 : Cb ¼ 0 in Theorem 8.4d, we

have b̂0X0y� b̂0cX
0y ¼ (Cb̂)0[C(X0X)�1C0]�1Cb̂ as in (8.32), where b̂c is as

given in (8.30).

8.22 Prove Theorem 8.4e.

8.23 Prove Theorem 8.4f(iv) by expressing SSH and SSE as quadratic forms in the
same normally distributed random vector.

8.24 Show that the estimator for b in the reduced model y ¼ Xbþ 1 subject to

Cb ¼ t is given by b̂c ¼ b̂� (X0X)�1C0[C(X0X)�1C0]�1(Cb̂� t), where

b̂ ¼ (X0X)�1X0y.

8.25 Show that b̂0X0y� b̂�
0

1 X01y in (8.37) is equal to b̂2
k=gkk in (8.39) (for j ¼ k), as

noted below (8.39).

8.26 Obtain the confidence interval for a0b in (8.49) from the t statistic in (8.48).

8.27 Show that the confidence interval for x00b in (8.52) is the same as that for the
centered model in (8.55).

8.28 Show that the confidence interval for b0 þ b1x0 in (8.58) follows from (8.55).
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8.29 Show that t ¼ (y0 � ŷ0)=s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x00(X0X)�1x0

q
in (8.60) is distributed as

t(n� k � 1).

8.30 (a) Given that �y0 ¼
Pq

i ¼ y0i=q is the mean of q future observations at x0,
show that a 100(1� a)% prediction interval for �y0 is given by

x00b̂+ ta=2, n�k�1s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=qþ x00(X0X)�1x0

q
.

(b) Show that for simple linear regression, the prediction interval for �y0 in part (a)

reduces to b̂0 þ b̂1x0 + ta=2, n�2s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=qþ 1=nþ (x0 � �x)2=

Pn
i¼1(xi � �x)2

q
.

8.31 Obtain the confidence interval for s 2 in (8.65) from the probability statement
in (8.64).

8.32 Show that the Scheffé prediction intervals for d future observations are given
by (8.73).

8.33 Verify (8.76)–(8.79) in the proof of Theorem 8.7a.

8.34 Verify (8.80), @v=@b ¼ (2X0y� 2X0Xb)=2s 2 þ C0l.

8.35 Show that the solution to (8.80)–(8.82) is given by b̂0 and ŝ2
0 in (8.83) and

(8.84).

8.36 Show that (y� Xb̂0)0(y� Xb̂0) ¼ nŝ2 þ (Cb̂)0[C(X0X)�1C0]�1Cb̂ as in
(8.85).

8.37 Use the gas vapor data in Table 7.3.

(a) Test the overall regression hypothesis H0 : b1 ¼ 0 using (8.5) [or (8.22)]
and (8.23).

(b) Test H0 : b1 ¼ b3 ¼ 0, that is, that x1 and x3 do not significantly contrib-
ute above and beyond x2 and x4.

(c) Test H0 : bj ¼ 0 for j ¼ 1, 2, 3, 4 using tj in (8.40). Use t:05=2 for each test
and also use a Bonferroni approach based on t:05=8 (or compare the p value
to .05/4).

(d) Using general linear hypothesis tests, test H0 : b1 ¼ b2 ¼ 12b3 ¼ 12b4,
H01 :b1¼b2, H02 :b2¼12b3, H03 :b3¼b4, and H04 :b1¼b2 andb3¼b4.

(e) Find confidence intervals forb1,b2,b3 andb4 using both (8.47) and (8.67).

8.38 Use the land rent data in Table 7.5.

(a) Test the overall regression hypothesis H0 : b1 ¼ 0 using (8.5) [or (8.22)]
and (8.23).

(b) Test H0 : bj ¼ 0 for j ¼ 1, 2, 3 using tj in (8.40). Use t:05=2 for each test and
also use a Bonferroni approach based on t:05=6 (or compare the p value to
.05/3).

(c) Find confidence intervals for b1,b2,b3 using both (8.47) and (8.67).

(d) Using (8.52), find a 95% confidence interval for E(y0) ¼ x00b, where
x00 ¼ (1,15,30,:5).
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(e) Using (8.61), find a 95% prediction interval for y0 ¼ x00bþ 1, where
x00 ¼ (1,15,30,:5).

8.39 Use y2 in the chemical reaction data in Table 7.4.

(a) Using (8.52), find a 95% confidence interval for E(y0) ¼ x00b, where
x00 ¼ (1, 165, 32,5).

(b) Using (8.61), find a 95% prediction interval for y0 ¼ x00bþ 1, where
x00 ¼ (1,165,32,5).

(c) Test H0:2b1 ¼ 2b2 ¼ b3 using (8.27). (This was done for y1 in Example
8.4.b.)

8.40 Use y1 in the chemical reaction data in Table 7.4. The full model with second-
order terms and the reduced model with only linear terms were fit in Problem
7.52.

(a) Test H0 : b4 ¼ b5 ¼ � � � ¼ b9 ¼ 0, that is, that the second-order terms are
not useful in predicting y1. (This was done for y2 in Example 8.2a.)

(b) Test the significance of the increase in R2 from the reduced model to the
full model. (This was done for y2 in Example 8.3. See Problem 7.52 for
values of R2.)

(c) Find a 95% confidence interval for each of b0, b1, b2, b3 using (8.47).

(d) Find Bonferroni confidence intervals for b1, b2, b3 using (8.67).

(e) Using (8.52), find a 95% confidence interval for E(y0) ¼ x00b, where
x00 ¼ (1,165,32,5).

(f) Using (8.61), find a 95%, prediction interval for y0 ¼ x00bþ 1, where
x00 ¼ (1,165,32,5).
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9 Multiple Regression: Model
Validation and Diagnostics

In Sections 7.8.2 and 7.9 we discussed some consequences of misspecification of the
model. In this chapter we consider various approaches to checking the model and the
attendant assumptions for adequacy and validity. Some properties of the residuals
[see (7.11)] and the hat matrix are developed in Sections 9.1 and 9.2. We discuss out-
liers, the influence of individual observations, and leverage in Sections 9.3 and 9.4.

For additional reading, see Snee (1977), Cook (1977), Belsley et al. (1980), Draper
and Smith (1981, Chapter 6), Cook and Weisberg (1982), Beckman and Cook
(1983), Weisberg (1985, Chapters 5, 6), Chatterjee and Hadi (1988), Myers (1990,
Chapters 5–8), Sen and Srivastava (1990, Chapter 8), Montgomery and Peck
(1992, pp. 67–113, 159–192), Jørgensen (1993, Chapter 5), Graybill and Iyer
(1994, Chapter 5), Hocking (1996, Chapter 9), Christensen (1996, Chapter 13),
Ryan (1997, Chapters 2, 5), Fox (1997, Chapters 11–13) and Kutner et al. (2005,
Chapter 10).

9.1 RESIDUALS

The usual model is given by (7.4) as y ¼ Xb þ 1 with assumptions E(1) ¼ 0
and cov(1) ¼ s2I, where y is n � 1, X is n � (k þ 1) of rank k þ 1 , n, and b is
(k þ 1) � 1. The error vector 1 is unobservable unless b is known. To estimate 1
for a given sample, we use the residual vector

1̂ ¼ y� Xb̂ ¼ y� ŷ (9:1)

as defined in (7.11). The n residuals in (9.1), 1̂1, 1̂2, . . . , 1̂n, are used in various plots
and procedures for checking on the validity or adequacy of the model.

We first consider some properties of the residual vector 1̂. Using the least-squares
estimator b̂ ¼ (X0X)�1X0y in (7.6), the vector of predicted values ŷ ¼ Xb̂ can be
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written as

ŷ ¼ Xb̂ ¼ X(X0X)�1X0y

¼ Hy, (9:2)

where H ¼ X(X0X)�1X0 (see Section 8.2). The n � n matrix H is called the hat
matrix because it transforms y to ŷ. We also refer to H as a projection matrix for
essentially the same reason; geometrically it projects y (perpendicularly) onto ŷ
(see Fig. 7.4). The hat matrix H is symmetric and idempotent (see Problem 5.32a).

Multiplying X by H, we obtain

HX ¼ X(X0X)�1X0X ¼ X: (9:3)

Writing X in terms of its columns and using (2.28), we can write (9.3) as

HX ¼ H(j, x1, . . . xk) ¼ (Hj, Hx1, . . . , Hxk),

so that

j ¼ Hj, xi ¼ Hxi, i ¼ 1, 2, . . . , k: (9:4)

Using (9.2), the residual vector 1̂ (9.1) can be expressed in terms of H:

1̂ ¼ y� ŷ ¼ y�Hy

¼ (I�H)y: (9:5)

We can rewrite (9.5) to express the residual vector 1̂ in terms of 1:

1̂ ¼ (I�H)y ¼ (I�H)(Xbþ 1)

¼ (Xb�HXb)þ (I�H)1

¼ (Xb� Xb)þ (I�H)1 [by (9:3)]

¼ (I�H)1: (9:6)

In terms of the elements hij of H, we have 1̂i ¼ 1i �
Pn

j¼1 hij1j, i ¼ 1, 2, . . . , n. Thus,
if the hij’s are small (in absolute value), 1̂ is close to 1.

The following are some of the properties of 1̂ (see Problem 9.1). For the first four,
we assume that E(y) ¼ Xb and cov(y) ¼ s2I:

E(1̂) ¼ 0 (9:7)
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cov(1̂) ¼ s2[I� X(X0X)�1X0] ¼ s2(I�H) (9:8)

cov(1̂, y) ¼ s2[I� X(X0X)�1X0] ¼ s2(I�H) (9:9)

cov(1̂, ŷ) ¼ O (9:10)

�̂1 ¼
Xn

i¼1

1̂i=n ¼ 1̂0j=n ¼ 0 (9:11)

1̂0y ¼ SSE ¼ y0[I� X(X0X)�1X0]y ¼ y0(I�H)y (9:12)

1̂0ŷ ¼ 0 (9:13)

1̂0X ¼ 00 (9:14)

In (9.7), the residual vector 1̂ has the same mean as the error term 1, but in (9.8)
cov(1̂) ¼ s2(I�H) differs from the assumption cov(1) ¼ s2I. Thus the residuals
1̂1, 1̂2, . . . ,1̂n are not independent. However, in many cases, especially if n is large,
the hij’s tend to be small (for i = j), and the dependence shown in s2(I 2 H) does
not unduly affect plots and other techniques for model validation. Each 1̂i is seen
to be correlated with each yj in (9.9), but in (9.10) the 1̂i’s are uncorrelated with
the ŷj’s.

Some sample properties of the residuals are given in (9.11)–(9.14). The sample
mean of the residuals is zero, as shown in (9.11). By (9.12), it can be seen that 1̂
and y are correlated in the sample since 1̂0y is the numerator of

r1̂y ¼
1̂0(y� �yj)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(1̂ 01̂)(y� �yj)0(y� �yj)
p ¼ 1̂ 0yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(1̂ 01̂)(y� �yj)0(y� �yj)
p :

However, 1̂ and ŷ are orthogonal by (9.13), and therefore

r1̂ŷ ¼ 0: (9:15)

Similarly, by (9.14), 1̂ is orthogonal to each column of X and

r1̂xi ¼ 0, i ¼ 1, 2, . . . , k: (9:16)
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If the model and attendant assumptions are correct, then by (9.15), a plot of the
residuals versus predicted values, (1̂1, ŷ1), (1̂2, ŷ2), . . . ,(1̂n, ŷn), should show no sys-
tematic pattern. Likewise, by (9.16), the k plots of the residuals versus each of
x1, x2, . . . , xk should show only random variation. These plots are therefore useful
for checking the model. A typical plot of this type is shown in Figure 9.1. It may
also be useful to plot the residuals on normal probability paper and to plot residuals
in time sequence (Christensen 1996, Section 13.2).

If the model is incorrect, various plots involving residuals may show departures
from the fitted model such as outliers, curvature, or nonconstant variance. The
plots may also suggest remedial measures to improve the fit of the model. For
example, the residuals could be plotted versus any of the xi’s, and a simple curved
pattern might suggest the addition of x2

i to the model. We will consider various
approaches for detecting outliers in Section 9.3 and for finding influential
observations in Section 9.4. Before doing so, we discuss some properties of the hat
matrix in Section 9.2.

9.2 THE HAT MATRIX

It was noted following (9.2) that the hat matrix H ¼ X(X0X)�1X0 is symmetric and
idempotent. We now present some additional properties of this matrix. These prop-
erties will be useful in the discussion of outliers and influential observations in
Sections 9.3 and 9.4.

For the centered model

y ¼ ajþ Xcb1 þ 1 (9:17)

in (7.32), ŷ becomes

ŷ ¼ âjþ Xcb̂1, (9:18)

Figure 9.1 Ideal residual plot when model is correct.
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and the hat matrix is Hc ¼ Xc(X0cXc)�1X0c, where

Xc ¼ I� 1
n

J

� �
X1 ¼

x11 � �x1 x12 � �x2 � � � x1k � �xk

x21 � �x1 x22 � �x2 � � � x2k � �xk

..

. ..
. ..

.

xn1 � �x1 xn2 � �x2 � � � xnk � �xk

0
BBBB@

1
CCCCA
:

By (7.36) and (7.37), we can write (9.18) as

ŷ ¼ �yjþ Xc(X0cXc)�1X0cy ¼ 1
n

j0y

� �
jþHcy

¼ 1
n

JþHc

� �
y: (9:19)

Comparing (9.19) and (9.2), we have

H ¼ 1
n

JþHc ¼
1
n

Jþ Xc(X0cXc)�1X0c: (9:20)

We now examine some properties of the elements hij of H.

Theorem 9.2. If X is n� (k þ 1) of rank k þ 1 , n, and if the first column of X is j,
then the elements hij of H ¼ X(X0X)�1X0 have the following properties:

(i) (1=n) � hii � 1 for i ¼ 1, 2, . . . , n:

(ii) �:5 � hij � :5 for all j = i:

(iii) hii ¼ (1=n)þ (x1i � �x1)0(X0cXc)�1(x1i � �x1), where x01i ¼ (xi1, xi2, . . . , xik),
x̄01 ¼ (�x1, �x2, . . . , �xk), and (x1i � �x1)0 is the ith row of the centered matrix Xc:

(iv) tr(H) ¼
Pn

i¼1 hii ¼ k þ 1:

PROOF

(i) The lower bound follows from (9.20), since X0cXc is positive definite. Since H
is symmetric and idempotent, we use the relationship H ¼ H2 to find an upper
bound on hii. Let hi

0 be the ith row of H. Then

hii ¼ h0ihi ¼ (hi1, hi2, . . . ,hin)

hi1

hi2

..

.

hin

0
BBBB@

1
CCCCA
¼
Xn

j¼1

h2
ij

¼ h2
ii þ

X
j=i

h2
ij: (9:21)
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Dividing both sides of (9.21) by hii [which is positive since hii � (1=n)], we
obtain

1 ¼ hii þ

P
j=i

h2
ij

hii
, (9:22)

which implies hii � 1.

(ii) (Chatterjee and Hadi 1988, p. 18.) We can write (9.21) in the form

hii ¼ h2
ii þ h2

ij þ
X
r=i,j

h2
ir

or

hii � h2
ii ¼ h2

ij þ
X
r=i,j

h2
ir:

Thus, h2
ij � hii � h2

ii, and since the maximum value of hii � h2
ii is 1

4, we have
h2

ij � 1
4 for j = i:

(iii) This follows from (9.20); see Problem 9.2b.

(iv) See Problem 9.2c. A

By Theorem 9.2(iv), we see that as n increases, the values of hii will tend to decrease.
The function (x1i � �x1)0(X0cXc)�1(x1i � �x1) in Theorem 9.2(iii) is a standardized

distance. The standardized distance (Mahalanobis distance) defined in (3.27) is for
a population covariance matrix. The matrix X0cXc is proportional to a sample covari-
ance matrix [see (7.44)]. Thus, (x1i � �x1)0(X0cXc)�1(x1i � �x1) is an estimated standar-
dized distance and provides a good measure of the relative distance of each x1i from
the center of the points as represented by �x1:

9.3 OUTLIERS

In some cases, the model appears to be correct for most of the data, but one residual is
much larger (in absolute value) than the others. Such an outlier may be due to an error
in recording or may be from another population or may simply be an unusual obser-
vation from the assumed distribution. For example, if the errors 1i are distributed as
N(0, s2), a value of 1i greater than 3s or less than 23s would occur with frequency
.0027.

If no explanation for an apparent outlier can be found, the dataset could be ana-
lyzed both with and without the outlying observation. If the results differ sufficiently
to affect the conclusions, then both analyses could be maintained until additional data
become available. Another alternative is to discard the outlier, even though no expla-
nation has been found. A third possibility is to use robust methods that accommodate
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the outlying observation (Huber 1973, Andrews 1974, Hampel 1974, Welsch 1975,
Devlin et al. 1975, Mosteller and Turkey 1977, Birch 1980, Krasker and Welsch
1982).

One approach to checking for outliers is to plot the residuals 1̂i versus ŷi or versus
i, the observation number. In our examination of residuals, we need to keep in mind
that by (9.8), the variance of the residuals is not constant:

var(1̂i) ¼ s2(1� hii): (9:23)

By Theorem 9.2(i), hii � 1; hence, var(1̂i) will be small if hii is near 1. By Theorem
9.2(iii), hii will be large if x1i is far from �x1, where x1i ¼ (xi1, xi2, . . . , xik)0 and
�x1 ¼ (�x1, �x2, . . . , �xk)0. By (9.23), such observations will tend to have small residuals,
which seems unfortunate because the model is less likely to hold far from �x1. A small
residual at a point where x1i is far from �x1 may result because the fitted model will
tend to pass close to a point isolated from the bulk of the points, with a resulting
poorer fit to the bulk of the data. This may mask an inadequacy of the true model
in the region of x1i.

An additional verification that large values of hii are accompanied by small
residuals is provided by the following inequality (see Problem 9.4):

1
n
� hii þ

1̂2
i

1̂ 01̂
� 1: (9:24)

For the reasons implicit in (9.23) and (9.24), it is desirable to scale the residuals so
that they have the same variance. There are two common (and related) methods of
scaling.

For the first method of scaling, we use var(1̂i) ¼ s2(1� hii) in (9.23) to obtain the
standardized residuals 1̂i=s

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� hii
p

, which have mean 0 and variance 1. Replacing s

by s yields the studentized residual

ri ¼
1̂i

s
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� hii
p , (9:25)

where s2 ¼ SSE=(n� k � 1) is as defined in (7.24). The use of ri in place of 1̂i

eliminates the location effect (due to hii) on the size of residuals, as discussed follow-
ing (9.23).

A second method of scaling the residuals uses an estimate of s that excludes the ith
observation

ti ¼
1̂i

s(i)
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� hii
p , (9:26)

where s(i) is the standard error computed with the n 2 1 observations remaining after
omitting (yi, x0i) ¼ (yi1, xi1, . . . , xik), in which yi is the ith element of y and x0i is the ith
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row of X. If the ith observation is an outlier, it will more likely show up as such with
the standardization in (9.26), which is called the externally studentized residual or the
studentized deleted residual or R student.

Another option is to examine the deleted residuals. The ith deleted residual, 1(i), is
computed with b̂(i) on the basis of n 2 1 observations with (yi, x0i) deleted:

1̂(i) ¼ yi � ŷ(i) ¼ yi � x0ib̂(i): (9:27)

By definition

b̂(i) ¼ (X0(i)X(i))
�1X0(i)y(i), (9:28)

where X(i) is the (n21)� (k þ 1) matrix obtained by deleting x0i ¼ (1, xi1, . . . , xik),
the ith row of X, and y(i) is the corresponding (n� 1)� 1 y vector after deleting yi.

The deleted vector b̂(i) can also be found without actually deleting (yi, x0i) since

b̂(i) ¼ b̂� 1̂i

1� hii
(X0X)�1xi (9:29)

(see Problem 9.5).
The deleted residual 1̂(i) ¼ yi � x0ib̂(i) in (9.27) can be expressed in terms of 1̂i and

hii as

1̂(i) ¼
1̂i

1� hii
(9:30)

(see Problem 9.6). Thus the n deleted residuals can be obtained without computing
n regressions. The scaled residual ti in (9.26) can be expressed in terms of 1̂(i) in
(9.30) as

ti ¼
1̂(i)ffiffiffiffiffiffiffiffiffiffiffiffiffiffifficvar(1(i))

p (9:31)

(see Problem 9.7).
The deleted sample variance s2

ðiÞ used in (9.26) is defined as s2
(i) ¼ SSE(i)=

(n� k � 2), where SSE(i) ¼ y0(i)y(i) � b̂0(i)X
0
(i)y(i). This can be found without exclud-

ing the ith observation as

s2
(i) ¼

SSE(i)

n� k � 2
¼ SSE� 1̂2

i =(1� hii)
n� k � 2

(9:32)

(see Problem 9.8).
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Another option for outlier detection is to plot the ordinary residuals 1̂i ¼ yi � x0ib̂
against the deleted residuals 1̂(i) in (9.27) or (9.30). If the fit does not change substan-

tially when the ith observation is deleted in computation of b̂, the plotted points
should approximately follow a straight line with a slope of 1. Any points that are rela-
tively far from this line are potential outliers.

If an outlier is from a distribution with a different mean, the model can be
expressed as E(yi) ¼ x0ibþ u, where x0i is the ith row of X. This is called the
mean-shift outlier model. The distribution of ti in (9.26) or (9.31) is t(n 2 k 2 1),
and ti can therefore be used in a test of the hypothesis H0 : u ¼ 0. Since n tests
will be made, a Bonferroni adjustment to the critical values can be used, or we can
simply focus on the largest ti values.

The n deleted residuals in (9.30) can be used for model validation or selection by
defining the prediction sum of squares (PRESS):

PRESS ¼
Xn

i¼1

1̂2
(i) ¼

Xn

i¼1

1̂i

1� hii

� �2

: (9:33)

Thus, a residual 1̂i that corresponds to a large value of hii contributes more to PRESS.
For a given dataset, PRESS may be a better measure than SSE of how well the model
will predict future observations. To use PRESS to compare alternative models when
the objective is prediction, preference would be shown to models with small values of
PRESS.

9.4 INFLUENTIAL OBSERVATIONS AND LEVERAGE

In Section 9.3, we emphasized a search for outliers that did not fit the model. In
this section, we consider the effect that deletion of an observation ( yi, x0i) has on

the estimates b̂ and Xb̂. An observation that makes a major difference on these
estimates is called an influential observation. A point (yi, x0i) is potentially influential
if it is an outlier in the y direction or if it is unusually far removed from the center of
the x’s.

We illustrate influential observations for the case of one x in Figure 9.2. Points 1
and 3 are extreme in the x direction; points 2 and 3 would likely appear as outliers in
the y direction. Even though point 1 is extreme in x, it will not unduly influence the
slope or intercept. Point 3 will have a dramatic influence on the slope and intercept
since the regression line would pass near point 3. Point 2 is also influential, but
much less so than point 3.

Thus, influential points are likely to be found in areas where little or no other data
were collected. Such points may be fitted very well, sometimes to the detriment of the
fit to the other data.

9.4 INFLUENTIAL OBSERVATIONS AND LEVERAGE 235



To investigate the influence of each observation, we begin with ŷ ¼ Hy in (9.2),
the elements of which are

ŷi ¼
Xn

j¼1

hijyj ¼ hiiyi þ
X
j=i

hijyi: (9:34)

By (9.22), if hii is large (close to 1), then the h0ijs, j = i, are all small, and yi contrib-
utes much more than the other y’s to ŷi. Hence, hii is called the leverage of yi. Points
with high leverage have high potential for influencing regression results. In general, if
an observation (yi, x0i) has a value of hii near 1, then the estimated regression equation
will be close to yi; that is, ŷi � yi will be small.

By Theorem 9.2(iv), the average value of the hii’s is (k þ 1)/n. Hoaglin and
Welsch (1978) suggest that a point with hii . 2(k þ 1)=n is a high leverage point.
Alternatively, we can simply examine any observation whose value of hii is unusually
large relative to the other values of hii.

In terms of fitting the model to the bulk of the data, high leverage points can be
either good or bad, as illustrated by points 1 and 3 in Figure 9.2. Point 1 may
reduce the variance of b̂0 and b̂1. On the other hand, point 3 will drastically alter
the fitted model. If point 3 is not the result of a recording error, then the researcher
must choose between two competing fitted models. Typically, the model that fits
the bulk of the data might be preferred until additional points can be observed in
other areas.

To formalize the influence of a point ( yi, x0i), we consider the effect of its deletion

on b and ŷ ¼ Xb̂. The estimate of b obtained by deleting the ith observation (yi, x0i)

is defined in (9.28) as b̂(i) ¼ (X0(i)X(i))�1X0(i)y(i). We can compare b̂(i) to b̂ by means

Figure 9.2 Simple linear regression showing three outliers.
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of Cook’s distance, defined as

Di ¼
(b̂(i) �b̂)0X0X(b̂(i) �b̂)

(k þ 1)s2
: (9:35)

This can be rewritten as

Di ¼
(Xb̂(i) � Xb̂)0(Xb̂(i) � Xb̂)

(k þ 1)s2

¼
(ŷ(i) � ŷ)0(ŷ(i) � ŷ)

(k þ 1)s2
, (9:36)

in which Di is proportional to the ordinary Euclidean distance between ŷ(i) and ŷ.

Thus if Di is large, the observation (yi, x0i) has substantial influence on both b̂ and
ŷ. A more computationally convenient form of Di is given by

Di ¼
r2

i

k þ 1
hii

1� hii

� �
(9:37)

TABLE 9.1 Residuals and Influence Measures for the Chemical Data
with Dependent Variable y1

Observation yi ŷi 1̂i hii ri ti Di

1 41.5 42.19 20.688 0.430 20.394 20.383 0.029
2 33.8 31.00 2.798 0.310 1.457 1.520 0.239
3 27.7 27.74 20.042 0.155 20.020 20.019 0.000
4 21.7 21.03 0.670 0.139 0.313 0.303 0.004
5 19.9 19.40 0.495 0.129 0.230 0.222 0.002
6 15.0 12.69 2.307 0.140 1.076 1.082 0.047
7 12.2 12.28 20.082 0.228 20.040 20.039 0.000
8 4.3 5.57 21.270 0.186 20.609 20.596 0.021
9 19.3 20.22 20.917 0.053 20.408 20.396 0.002

10 6.4 4.76 1.642 0.233 0.811 0.801 0.050
11 37.6 35.68 1.923 0.240 0.954 0.951 0.072
12 18.0 13.09 4.906 0.164 2.320 2.800 0.264
13 26.3 27.34 21.040 0.146 20.487 20.474 0.010
14 9.9 13.51 23.605 0.245 21.795 21.956 0.261
15 25.0 26.93 21.929 0.250 20.964 20.961 0.077
16 14.1 15.44 21.342 0.258 20.674 20.661 0.039
17 15.2 15.44 20.242 0.258 20.121 20.117 0.001
18 15.9 19.54 23.642 0.217 21.780 21.937 0.220
19 19.6 19.54 0.058 0.217 0.028 0.027 0.000
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(see Problem 9.9). Muller and Mok (1997) discuss the distribution of Di and provide a
table of critical values.

Example 9.4. We illustrate several diagnostic tools for the chemical reaction data of
Table 7.4 using y1. In Table 9.1, we give 1̂i, hii, and some functions of these from
Sections 9.3 and 9.4.

The guideline for hii in Section 9.4 is 2(k þ 1)=n ¼ 2(4)=19 ¼ :421. The only
value of hii that exceeds .421 is the first, h11 ¼ :430. Thus the first observation has
potential for influencing the model fit, but this influence does not appear in
t1 ¼ �:383 and D1 ¼ :029. Other relatively large values of hii are seen for obser-
vations 2, 11, 14, 15, 16, and 17. Of these only observation 14 has a very large (absol-
ute) value of ti. Observation 12 has large values of 1̂i, ri, ti and Di and is a potentially
influential outlier.

The value of PRESS as defined in (9.33) is PRESS ¼ 130.76, which can be
compared to SSE ¼ 80.17. A

PROBLEMS

9.1 Verify the following properties of the residual vector 1̂ as given in (9.7)–(9.14):

(a) E(1̂) ¼ 0

(b) cov(1̂) ¼ s2(I�H)

(c) cov(1̂ , y) ¼ s2(I�H)

(d) cov(1̂ , ŷ) ¼ O

(e) �̂1 ¼
Pn

i¼1 1̂i=n ¼ 0

(f) 1̂ 0y ¼ y0(I�H)y

(g) 1̂ 0ŷ ¼ 0

(h) 1̂ 0X ¼ 00

9.2 (a) In the proof of Theorem 9.2(ii), verify that the maximum value of hii � h2
ii

is 1
4.

(b) Prove Theorem 9.2(iii).

(c) Prove Theorem 9.2(iv).

9.3 Show that an alternative expression for hii in Theorem 9.2(iii) is the following:

hii ¼
1
n
þ (x1i � �x1)0(x1i � �x1)

Xk

r¼1

1
lr

cos2 uir,

where uir is the angle between x1i � �x1 and ar, the rth eigenvector of X0cXc

(Cook and Weisberg 1982, p. 13). Thus hii is large if (x1i � �x1)0(x1i � �x1) is
large or if uir is small for some r.
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9.4 Show that 1
n � hii þ 1̂2

i =1̂
01̂ � 1 as in (9.24). The following steps are

suggested:

(a) Let H� be the hat matrix corresponding to the augmented matrix (X, y).
Then

H� ¼ (X, y)[(X, y)0(X, y)]�1(X, y)0

¼ (X, y)
X0X X0y

y0X y0y

� ��1 X0

y0

� �
:

Use the inverse of a partitioned matrix in (2.50) with A11 ¼ X0X,
a12 ¼ X0y, and a22 ¼ y0y to obtain

H� ¼ Hþ 1
b

[X(X0X)�1X0yy0X(X0X)�1X0 � yy0X(X0X)�1X0

� X(X0X)�1X0yy0 þ yy0]

¼ Hþ 1
b

[Hyy0H� yy0H�Hyy0 þ yy0],

where b ¼ y0y� y0X(X0X)�1X0y.

(b) Show that the above expression factors into

H� ¼ Hþ (I�H)yy0(I�H)
y0(I�H)y

¼ Hþ 1̂ 1̂ 0

1̂ 01̂
,

which gives h�ii ¼ hii þ 1̂2
i =1̂

01̂.

(c) The proof is easily completed by noting that H� is a hat matrix and there-
fore (1=n) � h�ii � 1 by Theorem 9.2(i).

9.5 Show that b̂(i) ¼ b̂� 1̂i(X0X)�1xi=(1� hii) as in (9.29). The following steps
are suggested:

(a) Show that X0X ¼ X0(i)X(i) þ xix0i and that X0y ¼ X0(i)y(i) þ xiyi.

(b) Show that (X0X)�1X0(i)y(i) ¼ b̂� (X0X)�1xiyi.

(c) Using the following adaptation of (2.53)

(B� cc0)�1 ¼ B�1 þ B�1cc0B�1

1� c0B�1c
:

show that

b̂(i) ¼ (X0X)�1 þ (X0X)�1xix0i(X
0X)�1

1� hii

� �
X0(i)y(i):
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(d) Using the result of parts (b) and (c), show that

b̂(i) ¼ b̂� 1̂i

1� hii
(X0X)�1xi:

9.6 Show that 1̂(i) ¼ 1̂i=(1� hii) as in (9.30).

9.7 Show that ti ¼ 1̂(i)
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffifficvar(1̂(i))
p

in (9.31) is the same as ti ¼ 1̂i=s(i)
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� hii
p

in
(9.26). The following steps are suggested:

(a) Using 1̂(i) ¼ 1̂i=(1� hii) in (9.30), show that var(1̂(i)) ¼ s2=(1� hii).

(b) If var(1̂(i)) in part (a) is estimated by cvar(1̂(i)) ¼ s2
(i)=(1� hii), show that

1̂(i)=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffifficvar(1(i))

p
¼ 1̂i=s(i)

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� hii
p

.

9.8 Show that SSE(i) ¼ y0(i)y(i) � y0(i)X(i)b̂(i) can be written in the form

SSE(i) ¼ SSE� 1̂2
i =(1� hii)

as in (9.32). One way to do this is as follows:

(a) Show that y0(i)y(i) ¼ y0y� y2
i .

(b) Using Problem 9.5a,d, we have

y0(i)X(i)b̂(i) ¼ (y0X� yix
0
i) b̂� 1̂i

1� hii
(X0X)�1xi

� �
:

Show that this can be written as

y0(i)X(i)b̂(i) ¼ y0Xb̂� y2
i þ

1̂2
i

1� hii
:

(c) Show that

SSE(i) ¼ SSE� 1̂2
i =(1� hii):

9.9 Show that Di ¼ r2
i hii=(k þ 1)(1� hii) in (9.37) is the same as Di in (9.35).

This may be done by substituting (9.29) into (9.35).

9.10 For the gas vapor data in Table 7.3, compute the diagnostic measures
ŷi, 1̂i, hii, ri, ti, and Di. Display these in a table similar to Table 9.1. Are
there outliers or potentially influential observations? Calculate PRESS and
compare to SSE.

9.11 For the land rent data in Table 7.5, compute the diagnostic measures
ŷi, 1̂i, hii, ri, ti, and Di. Display these in a table similar to Table 9.1. Are
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there outliers or potentially influential observations? Calculate PRESS and
compare to SSE.

9.12 For the chemical reaction data of Table 7.4 with dependent variable y2,
compute the diagnostic measures ŷi, 1̂i, hii, ri, ti, and Di. Display these in a
table similar to Table 9.1. Are there outliers or potentially influential obser-
vations? Calculate PRESS and compare to SSE.
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10 Multiple Regression: Random x’s

Throughout Chapters 7–9 we assumed that the x variables were fixed; that is, that
they remain constant in repeated sampling. However, in many regression appli-
cations, they are random variables. In this chapter we obtain estimators and test stat-
istics for a regression model with random x variables. Many of these estimators and
test statistics are the same as those for fixed x’s, but their properties are somewhat
different.

In the random-x case, k þ 1 variables y, x1, x2, . . . , xk are measured on each of
the n subjects or experimental units in the sample. These n observation vectors
yield the data

y1 x11 x12 . . . x1k

y2 x21 x22 . . . x2k

..

. ..
. ..

. ..
.

yn xn1 xn2 . . . xnk:

(10:1)

The rows of this array are random vectors of the second type described in Section 3.1.
The variables y, x1, x2, . . . , xk in a row are typically correlated and have different var-
iances; that is, for the random vector (y, x1, . . . , xk) ¼ (y, x0), we have

cov

y
x1

..

.

xk

0
BBB@

1
CCCA ¼ cov

y
x

� �
¼ S,

where S is not a diagonal matrix. The vectors themselves [rows of the array in (10.1)]
are ordinarily mutually independent (uncorrelated) if they arise from a random
sample.

Linear Models in Statistics, Second Edition, by Alvin C. Rencher and G. Bruce Schaalje
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In Sections 10.1–10.5 we assume that y and the x variables have a multivariate
normal distribution. Many of the results in Sections 10.6–10.8 do not require a
normality assumption.

10.1 MULTIVARIATE NORMAL REGRESSION MODEL

The estimation and testing results in Sections 10.1–10.5 are based on the assumption
that (y, x1, . . . , xk) ¼ (y, x0) is distributed as Nkþ1(m,S) with

m ¼

my

m1

..

.

mk

0
BBBB@

1
CCCCA
¼

my

mx

� �

S ¼

syy sy1 . . . syk

s1y s11 � � � s1k

..

. ..
. ..

.

sky sk1 � � � skk

0
BBBBBB@

1
CCCCCCA
¼

syy s0yx

syx Sxx

� �
, (10:3)

where mx is the mean vector for the x’s, syx is the vector of covariances between y and
the x’s, and Sxx is the covariance matrix for the x’s.

From Corollary 1 to Theorem 4.4d, we have

E( yjx) ¼ my þ s0yxS
�1
xx (x� mx) (10:4)

¼ b0 þ b01x, (10:5)

where

b0 ¼ my � s0yxS
�1
xx mx, (10:6)

b1 ¼ S�1
xx syx: (10:7)

From Corollary 1 to Theorem 4.4d, we also obtain

var(yjx) ¼ syy � s0yxS
�1
xx syx ¼ s2: (10:8)

The mean, E( yjx) ¼ my þ s0yxS
�1
xx (x� mx), is a linear function of x, but the variance,

s2 ¼ syy � s0yxS
�1
xx syx, is not a function x. Thus under the multivariate normal
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assumption, (10.4) and (10.8) provide a linear model with constant variance, which is
analogous to the fixed-x case. Note, however, that E(yjx) ¼ b0 þ b01x in (10.5) does
not allow for curvature such as E(y) ¼ b0 þ b1xþ b2x2. Thus E(yjx) ¼ b0 þ b01x
represents a model that is linear in the x’s as well as the b’s. This differs from the
linear model in the fixed-x case, which requires only linearity in the b’s.

10.2 ESTIMATION AND TESTING IN MULTIVARIATE
NORMAL REGRESSION

Before obtaining estimators of b0, b1, and s2 in (10.6)–(10.8), we must first estimate
m and S. Maximum likelihood estimators of m and S are given in the following
theorem.

Theorme 10.2a. If (y1, x01), (y2, x02), . . . , (yn, x0n) [rows of the array in (10.1)] is a
random sample from Nkþ1(m,S), with m and S as given in (10.2) and (10.3), the
maximum likelihood estimators are

m̂ ¼
m̂y

m̂x

� �
¼

�y

�x

� �
, (10:9)

Ŝ ¼ n� 1
n

S ¼ n� 1
n

syy s0yx

syx Sxx

� �
, (10:10)

where the partitioning of m̂ and S is analogous to the partitioning of m and S in (10.2)
and (10.3). The elements of the sample covariance matrix S are defined in (7.40) and
in (10.14).

PROOF. Denote (yi, x0i) by v0i, i ¼ 1, 2, . . . , n. As noted below (10.1), v1, v2, . . . , vn

are independent because they arise from a random sample. The likelihood function
( joint density) is therefore given by the product

L(m,S) ¼
Yn

i¼1

f (vi; m,S)

¼
Yn

i¼1

1

(
ffiffiffiffiffiffi
2p
p

)kþ1jSj1=2
e�(vi�m)0S�1(vi�m)=2

¼ 1

(
ffiffiffiffiffiffi
2p
p

)n(kþ1)jSjn=2
e�
Pn

i¼1
(vi�m)0S�1(vi�m)=2: (10:11)

Note that L(m,S) ¼
Qn

i¼1 f (vi ;m,S) is a product of n multivariate normal densities,
each involving k þ 1 random variables. Thus there are n(k þ 1) random variables as
compared to the likelihood L(b,s2) in (7.50) that involves n random variables
y1, y2, . . . , yn [the x’s are fixed in (7.50)].
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To find the maximum likelihood estimator for m, we expand and sum the exponent
in (10.11) and then take the logarithm to obtain

ln L(m,S) ¼ �n(k þ 1) ln
ffiffiffiffiffiffi
2p
p

� n

2
ln jSj � 1

2

X
i

v0iS
�1vi

þ m0S�1
X

i

vi �
n

2
m0S�1m: (10:12)

Differentiating (10.12) with respect to m using (2.112) and (2.113) and setting the
result equal to 0, we obtain

@ ln L(m,S)
@m

¼ �0� 0� 0þ S
�1
X

i

vi �
2n

2
S
�1m ¼ 0,

which gives

m̂ ¼ 1
n

Xn

i¼1

vi ¼ �v ¼ �y
�x

� �
,

where �x ¼ (�x1, �x2, . . . , �xk)0 is the vector of sample means of the x’s. To find the
maximum likelihood estimator of S, we rewrite the exponent of (10.11) and then
take the logarithm to obtain

ln L(m,S�1) ¼ �n(k þ 1) ln
ffiffiffiffiffiffi
2p
p

þ n

2
ln jS�1j � 1

2

X
i

(vi � �v)0S�1(vi � �v)

� n

2
(�v� m)0S�1(�v� m)

¼ �n(k þ 1) ln
ffiffiffiffiffiffi
2p
p

þ n

2
ln jS�1j � 1

2
tr S�1

X
i

(vi � �v)(vi � �v)0
" #

� n

2
tr[S�1(�v� m)(�v� m)0]:

Differentiating this with respect to S�1 using (2.115) and (2.116), and setting the
result equal to 0, we obtain

@ ln L(m,S�1)

@S�1 ¼ nS� n

2
diag(S)�

X
i

(vi� �v)(vi� �v)0 þ 1
2

diag
X

i

(vi� �v)(vi� �v)

" #

� n(�v�m)(�v�m)0 þ n

2
diag[(�v�m)(�v�m)0]¼ 0:
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Since m̂ ¼ �v, the last two terms disappear and we obtain

Ŝ ¼ 1
n

Xn

i¼1

(vi � �v)(vi � �v)0 ¼ n� 1
n

S: (10:13)

See Problem 10.1 for verification that
P

i (vi � �v)(vi � �v)0 ¼ (n� 1)S: A

In partitioned form, the sample covariance matrix S can be written as in (10.10)

S ¼
syy s0yx

syx Sxx

� �
¼

syy sy1 . . . syk

s1y s11 . . . s1k

..

. ..
. ..

.

sky sk1 . . . skk

0
BBBB@

1
CCCCA

, (10:14)

where syx is the vector of sample covariances between y and the x’s and Sxx is the
sample covariance matrix for the x’s. For example

sy1 ¼
Pn

i¼1 (yi � �y)(xi1 � �x1)
n� 1

,

s11 ¼
Pn

i¼1 (xi1 � �x1)2

n� 1
,

s12 ¼
Pn

i¼1 (xi1 � �x1)(xi2 � �x2)
(n� 1)

[see (7.41)–(7.43)]. By (5.7), E(syy) ¼ syy and E(s jj) ¼ s jj. By (5.17), E(syj) ¼ syj

and E(sij) ¼ sij. Thus E(S) ¼ S, where S is given in (10.3). The maximum likeli-

hood estimator Ŝ ¼ (n� 1)S=n is therefore biased.
In order to find maximum likelihood estimators of b0, b1, and s2 we first note the

invariance property of maximum likelihood estimators.

Theorem 10.2b. The maximum likelihood estimator of a function of one or more
parameters is the same function of the corresponding estimators; that is, if û is the
maximum likelihood estimator of the vector or matrix of parameters u, then g(û) is
the maximum likelihood estimator of g(u).

PROOF. See Hogg and Craig (1995, p. 265). A

Example 10.2. We illustrate the use of the invariance property in Theorem 10.2b by
showing that the sample correlation matrix R is the maximum likelihood estimator of
the population correlation matrix Pr when sampling from the multivariate normal
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distribution. By (3.30), the relationship between Pr and S is given by
Pr ¼ D�1

s SD�1
s , where Ds ¼ [diag(S)]1=2, so that

D�1
s ¼ diag

1ffiffiffi
s
p

11

,
1ffiffiffi
s
p

22

, . . . ,
1ffiffiffi
s
p

pp

 !
:

The maximum likelihood estimator of 1=
ffiffiffiffiffiffi
s jj
p

is 1=
ffiffiffiffiffiffi
ŝ jj

p
, where

ŝ jj ¼ (1=n)Sn
i¼1( yij � �yj)

2. Thus D̂�1
s ¼ diag(1=

ffiffiffiffiffiffiffi
ŝ11
p

, 1=
ffiffiffiffiffiffiffi
ŝ22
p

, . . . , 1=
ffiffiffiffî
s
p

pp, and
we obtain

P̂r ¼ D̂�1
s ŜD̂�1

s ¼
ŝ jkffiffiffiffiffiffi
ŝ jj

p ffiffiffiffiffiffiffi
ŝkk
p

 !

¼
P

i ( yij � �yj)( yik � �yk)=nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i ( yij � �yj)

2=n
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i ( yik � �yk)2=n
q

0
B@

1
CA

¼
P

i ( yij � �yj)( yik � �yk)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i ( yij � �yj)

2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i ( yik � �yk)2
q

0
B@

1
CA

¼ (r jk) ¼ R: A

Maximum likelihood estimators of b0,b1, and s2 are now given in the following
theorem.

Theorem 10.2c. If ( y1, x01), ( y2, x02), . . . , ( yn, x0n), is a random sample from
Nkþ1(m,S), where m and S are given by (10.2) and (10.3), the maximum likelihood
estimators for b0, b1, and s2 in (10.6)–(10.8) are as follows:

b̂0 ¼ �y� s0yxS�1
xx x̄, (10:15)

b̂1 ¼ S�1
xx syx, (10:16)

ŝ2 ¼ n� 1
n

s2 where s2 ¼ syy � s0yxS�1
xx syx: (10:17)

The estimator s2 is a bias-corrected estimator of s2.

PROOF. By the invariance property of maximum likelihood estimators (Theorem
10.2b), we insert (10.9) and (10.10) into (10.6), (10.7), and (10.8) to obtain the
desired results (using the unbiased estimator S in place of Ŝ). A
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The estimators b̂0, b1, and s2 have a minimum variance property analogous to that
of the corresponding estimators for the case of normal y’s and fixed x’s in Theorem
7.6d. It can be shown that m̂ and S in (10.9) and (10.10) are jointly sufficient for m
and S (see Problem 10.2). Then, with some additional properties that can be demon-
strated, it follows that b̂0, b1, and s2 are minimum variance unbiased estimators for
b0, b1, and s2 (Graybill 1976, p. 380).

The maximum likelihood estimators b̂0 and b̂1 in (10.15) and (10.16) are the same
algebraic functions of the observations as the least-squares estimators given in (7.47)
and (7.46) for the fixed-x case. The estimators in (10.15) and (10.16) are also identical
to the maximum likelihood estimators for normal y’s and fixed x’s in Section 7.6.2
(see Problem 7.17). However, even though the estimators in the random-x case and
fixed-x case are the same, their distributions differ. When y and the x’s are multi-
variate normal, b̂1 does not have a multivariate normal distribution as it does in
the fixed-x case with normal y’s [Theorem 7.6b(i)]. For large n, the distribution is
similar to the multivariate normal, but for small n, the distribution has heavier tails
than the multivariate normal.

In spite of the nonnormality of b̂1 in the random-x model, the F tests and t tests
and associated confidence regions and intervals of Chapter 8 (fixed-x model) are
still appropriate. To see this, note that since the conditional distribution of y for
a given value of x is normal (Corollary 1 to Theorem 4.4d), the conditional
distribution of the vector of observations y ¼ ( y1, y2, . . . , yn)0 for a given value
of the X matrix is multivariate normal. Therefore, a test statistic such as (8.35)
is distributed conditionally as an F for the given value of X when H0 is true.
However, the central F distribution depends only on degrees of freedom; it does
not depend on X. Thus under H0, the statistic has (unconditionally) an F distri-
bution for all values of X, and so tests can be carried out exactly as in the
fixed-x case.

The main difference is that when H0 is false, the noncentrality parameter is a func-
tion of X, which is random. Hence the noncentral F distribution does not apply to the
random-x case. This only affects such things as power calculations.

Confidence intervals for the bj’s in Section 8.6.2 and for linear functions of
the bj’s in Section 8.6.3 are based on the central t distribution [e.g., see (8.48)].
Thus they also remain valid for the random-x case. However, the expected width
of the interval differs in the two cases (random x’s and fixed x’s) because of random-
ness in X.

In Section 10.5, we obtain the F test for H0 :b1 ¼ 0 using the likelihood ratio
approach.

10.3 STANDARDIZED REGRESSION COEFFICENTS

We now show that the regression coefficient vector b̂1 in (10.16) can be expressed in
terms of sample correlations. By analogy to (10.14), the sample correlation matrix
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can be written in partitioned form as

R ¼ 1 r0yx
ryx Rxx

� �
¼

1 ry1 ry2 . . . ryk

r1y 1 r12 . . . r1k

r2y r21 1 . . . r2k

..

. ..
. ..

. ..
.

rky rk1 rk2 . . . 1

0
BBBBBB@

1
CCCCCCA

, (10:18)

where ryx is the vector of correlations between y and the x’s and Rxx is the correlation
matrix for the x’s. For example

ry2 ¼
sy2ffiffiffiffiffiffiffiffi
s2

ys2
2

q ¼
Pn

i¼1 ( yi � �y)(xi2 � �x2)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ( yi � �y)2Pn

i¼1 (xi2 � �x2)2
q ,

r12 ¼
s12ffiffiffiffiffiffiffiffi
s2

1s2
2

p ¼
Pn

i¼1 (xi1 � �x1)(xi2 � �x2)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 (xi1 � �x1)2Pn

i¼1 (xi2 � �x2)2
q :

By analogy to (3.31), R can be converted to S by

S ¼ DRD,

where D ¼ [diag(S)]1=2, which can be written in partitioned form as

D ¼

sy 0 0 . . . 0

0
ffiffiffiffiffiffi
s11
p

0 . . . 0
0 0

ffiffiffiffiffiffi
s22
p

. . . 0

..

. ..
. ..

. ..
.

0 0 0 . . .
ffiffiffiffiffiffi
skk
p

0
BBBBBB@

1
CCCCCCA
¼ sy 00

0 Dx

� �
:

Using the partitioned form of S in (10.14), S ¼ DRD can be written as

S ¼ syy s0yx
syx Sxx

� �
¼ s2

y syr0yxDx

syDxryx DxRxxDx

� �
, (10:19)

so that

Sxx ¼ DxRxxDx, (10:20)

syx ¼ syDxryx, (10:21)
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where Dx ¼ diag(s1, s2, . . . , sk) and sy ¼
ffiffiffiffi
s2

y

q
¼ ffiffiffiffiffiffi

syy
p

is the sample standard devi-

ation of y. When (10.20) and (10.21) are substituted into (10.16), we obtain an
expression for b̂1 in terms of correlations:

b̂1 ¼ syD�1
x R�1

xx ryx: (10:22)

The regression coefficients b̂1, b̂2, . . . , b̂k in b̂1 can be standardized so as to show
the effect of standardized x values (sometimes called z scores). We illustrate this for
k ¼ 2. The model in centered form [see (7.30) and an expression following (7.38)] is

ŷi ¼ �yþ b̂1(xi1 � �x1)þ b̂2(xi2 � �x2):

This can be expressed in terms of standardized variables as

ŷi � �y

sy
¼ s1

sy
b̂1

xi1 � �x1

s1

� �
þ s2

sy
b̂2

xi2 � �x2

s2

� �
, (10:23)

where sj ¼
ffiffiffiffiffi
s jj
p

is the standard deviation of xj. We thus define the standardized coef-
ficients as

b̂�j ¼
sj

sy
b̂j:

These coefficients are often referred to as beta weights or beta coefficients. Since they
are used with standardized variables (xij � �xj)=sj in (10.23), the b̂�j ’s can be readily
compared to each other, whereas the b̂j’s cannot be so compared. [Division by sy

in (10.23) is customary but not necessary; the relative values of s1b̂1 and s2b̂2 are
the same as those of s1b̂1=sy and s2b̂2=sy.]

The beta weights can be expressed in vector form as

b̂�1 ¼
1
sy

Dxb̂1:

Using (10.22), this can be written as

b̂�1 ¼ R�1
xx ryx: (10:24)

Note that b̂�1 in (10.24) is not the same as b̂�1 from the reduced model in (8.8). Note

also the analogy of b̂�1 ¼ R�1
xx ryx in (10.24) to b̂1 ¼ S�1

xx syx in (10.16). In effect, Rxx

and rxy are the covariance matrix and covariance vector for standardized variables.
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Replacing S�1
xx and syx by R�1

xx and ryx leads to regression coefficients for standardized
variables.

Example 10.3. The following six hematology variables were measured on 51
workers (Royston 1983):

y ¼ lymphocyte count x3 ¼ white blood cell count (�:01)
x1 ¼ hemoglobin concentration x4 ¼ neutrophil count
x2 ¼ packed-cell volume x5 ¼ serum lead concentration

The data are given in Table 10.1.
For �y, �x, Sxx and syx, we have

�y ¼ 22:902, �x0 ¼ (15:108, 45:196, 53:824, 25:529, 21:039),

Sxx ¼

0:691 1:494 3:255 0:422 �0:268

1:494 5:401 10:155 1:374 1:292

3:255 10:155 200:668 64:655 4:067

0:422 1:374 64:655 56:374 0:579

�0:268 1:292 4:067 0:579 18:078

0
BBBBBB@

1
CCCCCCA

,

syx ¼

1:535

4:880

106:202

3:753

3:064

0
BBBBBB@

1
CCCCCCA
:

By (10.15) to (10.17), we obtain

b̂1 ¼ S�1
xx syx ¼

�0:491

�0:316

0:837

�0:882

0:025

0
BBBBBB@

1
CCCCCCA

,

b̂0 ¼ �y� s0yxS�1
xx �x ¼ 22:902� 1:355 ¼ 21:547,

s2 ¼ syy � s0yxS�1
xx syx ¼ 90:2902� 83:3542 ¼ 6:9360:
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TABLE 10.1 Hematology Data

Observation
Number y x1 x2 x3 x4 x5

1 14 13.4 39 41 25 17
2 15 14.6 46 50 30 20
3 19 13.5 42 45 21 18
4 23 15.0 46 46 16 18
5 17 14.6 44 51 31 19
6 20 14.0 44 49 24 19
7 21 16.4 49 43 17 18
8 16 14.8 44 44 26 29
9 27 15.2 46 41 13 27

10 34 15.5 48 84 42 36
11 26 15.2 47 56 27 22
12 28 16.9 50 51 17 23
13 24 14.8 44 47 20 23
14 26 16.2 45 56 25 19
15 23 14.7 43 40 13 17
16 9 14.7 42 34 22 13
17 18 16.5 45 54 32 17
18 28 15.4 45 69 36 24
19 17 15.1 45 46 29 17
20 14 14.2 46 42 25 28
21 8 15.9 46 52 34 16
22 25 16.0 47 47 14 18
23 37 17.4 50 86 39 17
24 20 14.3 43 55 31 19
25 15 14.8 44 42 24 29
26 9 14.9 43 43 32 17
27 16 15.5 45 52 30 20
28 18 14.5 43 39 18 25
29 17 14.4 45 60 37 23
30 23 14.6 44 47 21 27
31 43 15.3 45 79 23 23
32 17 14.9 45 34 15 24
33 23 15.8 47 60 32 21
34 31 14.4 44 77 39 23
35 11 14.7 46 37 23 23
36 25 14.8 43 52 19 22
37 30 15.4 45 60 25 18
38 32 16.2 50 81 38 18
39 17 15.0 45 49 26 24
40 22 15.1 47 60 33 16
41 20 16.0 46 46 22 22
42 20 15.3 48 55 23 23

(Continued)
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The correlations are given by

Rxx ¼

1:000 0:774 0:277 0:068 �0:076
0:774 1:000 0:308 0:079 0:131
0:277 0:308 1:000 0:608 0:068
0:068 0:079 0:608 1:000 0:018
�0:076 0:131 0:068 0:018 1:000

0
BBBB@

1
CCCCA

, ryx ¼

0:194
0:221
0:789
0:053
0:076

0
BBBB@

1
CCCCA
:

By (10.24), the standardized coefficient vector is given by

b̂�1 ¼ R�1
xx ryx ¼

�0:043
�0:077

1:248
�0:697

0:011

0
BBBB@

1
CCCCA
:

A

10.4 R2 IN MULTIVARIATE NORMAL REGRESSION

In the case of fixed x’s, we defined R2 as the proportion of variation in y due to
regression [see (7.55)]. In the case of random x’s, we obtain R as an estimate of a
population multiple correlation between y and the x’s. Then R2 is the square of this
sample multiple correlation.

The population multiple correlation coefficient ryjx is defined as the correlation

between y and the linear function w ¼ my þ s0yxS
�1
xx (x� mx):

ryjx ¼ corr( y, w) ¼ syw

sysw
: (10:25)

TABLE 10.1 Continued

Observation
Number y x1 x2 x3 x4 x5

43 20 14.5 41 62 36 21
44 26 14.2 41 49 20 20
45 40 15.0 45 72 25 25
46 22 14.2 46 58 31 22
47 61 14.9 45 84 17 17
48 12 16.2 48 31 15 18
49 20 14.5 45 40 18 20
50 35 16.4 49 69 22 24
51 38 14.7 44 78 34 16
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(We use the subscript yjx to distinguish ryjx from r, the correlation between y and x in
the bivariate normal case; see Sections 3.2, 6.4, and 10.5). By (10.4), w is equal to

E( yjx), which is the population analogue of ŷ ¼ b̂0 þ b̂01x1, the sample predicted
value of y. As x varies randomly, the population predicted value w ¼ myþ
s0yxS

�1
xx (x� mx) becomes a random variable.

It is easily established that cov( y, w) and var(w) have the same value:

cov( y, w) ¼ var(w) ¼ s0yxS
�1
xx syx: (10:26)

Then the population multiple correlation ryjx in (10.25) becomes

ryjx ¼
cov( y, w)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var( y)var(w)
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s0yxS

�1
xx syx

syy

s
,

and the population coefficient of determination or population squared multiple
correlation r2

yjx is given by

r2
yjx ¼

s0yxS
�1
xx syx

syy
: (10:27)

We now list some properties of ryjx and r2
yjx.

1. ryjx is the maximum correlation between y and any linear function of x:

ryjx ¼ max
a

ry,a0x: (10:28)

This is an alternative definition of ryjx that is not based on the multivariate
normal distribution as is the definition in (10.25).

2. r2
yjx can be expressed in terms of determinants:

r2
yjx ¼ 1� jSj

syyjSxxj
, (10:29)

where S and Sxx are defined in (10.3).

3. r2
yjx is invariant to linear transformations on y or on the x’s; that is, if u ¼ ay and

v ¼ Bx, where B is nonsingular, then

r2
ujv ¼ r2

yjx: (10:30)

(Note that v here is not the same as vi used in the proof of Theorem 10.2a.)
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4. Using var(w) ¼ s0yxS
�1
xx syx in (10.26), r2

yjx in (10.27) can be written in the
form

r2
yjx ¼

var(w)
var( y)

: (10:31)

Since w ¼ my þ s0yxS
�1
xx (x� mx) is the population regression equation, r2

yjx in

(10.31) represents the proportion of the variance of y that can be attributed to
the regression relationship with the variables in x. In this sense, r2

yjx is analo-

gous to R2 in the fixed-x case in (7.55).

5. By (10.8) and (10.27), var( yjx) can be expressed in terms of r2
yjx:

var( yjx) ¼ syy � s0yxS
�1
xx syx ¼ syy � syyr

2
yjx

¼ syy(1� r2
yjx):

(10:32)

6. If we consider y 2 w as a residual or error term, then y 2 w is uncorrelated with
the x’s

cov( y� w, x) ¼ 00 (10:33)

(see Problem 10.8).
We can obtain a maximum likelihood estimator for r2

yjx by substituting esti-
mators from (10.14) for the parameters in (10.27):

R2 ¼
s0yxS�1

xx syx

syy
(10:34)

We use the notation R2 rather than r̂2
yjx because (10.34) is recognized as having the same

form as R2 for the fixed-x case in (7.59). We refer to R2 as the sample coefficient of deter-
mination or as the sample squared multiple correlation. The square root of R2

R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s0yxS�1

xx syx

syy

s
(10:35)

is the sample multiple correlation coefficient.
We now list several properties of R and R2, some of which are analogous to prop-

erties of r2
yjx above.

1. R is equal to the correlation between y and ŷ ¼ b̂ 0 þ b̂ 1x1 þ � � � þ b̂ kxk ¼
b̂ 0 þb̂01x:

R ¼ ryŷ: (10:36)

2. R is equal to the maximum correlation between y and any linear combination of
the x’s, a0x:

R ¼ max
a

ry, a0x: (10:37)
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3. R2 can be expressed in terms of correlations:

R2 ¼ r0yxR�1
xx ryx, (10:38)

where ryx and Rxx are from the sample correlation matrix R partitioned as in
(10.18).

4. R2 can be obtained from R�1:

R2 ¼ 1� 1
ryy

, (10:39)

where ryy is the first diagonal element of R�1. Using the other diagonal
elements of R�1, this relationship can be extended to give the multiple corre-
lation of any xj with the other x’s and y. Thus from R21 we obtain multiple
correlations, as opposed to the simple correlations in R.

5. R2 can be expressed in terms of determinants:

R2 ¼ 1� jSj
syyjSxxj

(10:40)

¼ 1� jRjjRxxj
, (10:41)

where Sxx and Rxx are defined in (10.14) and (10.18).

6. From (10.24) and (10.38), we can express R2 in terms of beta weights:

R2 ¼ r0yxb̂
�
1, (10:42)

where b̂�1 ¼ R�1
xx ryx. This equation does not imply that R2 is the sum of squared

partial correlations (Section 10.8).

7. If r2
yjx ¼ 0, the expected value of R2 is given by

E(R2) ¼ k

n� 1
: (10:43)

Thus R2 is biased when r2
yjx is 0 [this is analogous to (7.57)].

8. R2 � maxj r2
yj, where ryj is an element of r0yx ¼ (ry1, ry2, . . . , ryk).

9. R2 is invariant to full rank linear transformations on y or on the x’s.

Example 10.4. For the hematology data in Table 10.1, Sxx, syx, Rxx, and ryx were
obtained in Example 10.3. Using either (10.34) or (10.38), we obtain

R2 ¼ :9232: A
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10.5 TESTS AND CONFIDENCE INTERVALS FOR R2

Note that by (10.27), r2
yjx ¼ 0 becomes

r2
yjx ¼

s0yxS
�1
xx syx

syy
¼ 0,

which leads to syx ¼ 0 since Sxx is positive definite. Then by (10.7),

b1 ¼ S
�1
xx syx ¼ 0, and H0 : r2

yjx ¼ 0 is equivalent to H0 :b1 ¼ 0.

The F statistic for fixed x’s is given in (8.5), (8.22), and (8.23) as

F ¼ (b̂0X0y� n�y2)=k

(y0y� b̂0X0y)=(n� k � 1)

¼ R2=k

(1� R2)=(n� k � 1)
: (10:44)

The test statistic in (10.44) can be obtained by the likelihood ratio approach in the
case of random x’s (Anderson 1984, pp. 140–142):

Theorem 10.5. If ( y1, x01), ( y2, x02), . . . , ( yn, x0n) is a random sample from
Nkþ1(m,S), where m and S are given by (10.2) and (10.3), the likelihood ratio test
for H0 :b1 ¼ 0 or equivalently H0 : r2

yjx ¼ 0 can be based on F in (10.44). We

reject H0 if F � Fa, k, n�k�1.

PROOF. Using the notation v0i ¼ ( yi, x0i), as in the proof of Theorem 10.2a, the likeli-
hood function L(m,S) ¼

Qn
i¼1 f (vi; m,S) is given by (10.11), and the likelihood

ratio is

LR ¼ maxH0 L(m,S)
maxH1 L(m,S)

:

Under H1, the parameters m and S are essentially unrestricted, and we have

max
H1

L(m,S) ¼ max L(m,S) ¼ L(m̂, Ŝ),

where m̂ and Ŝ are the maximum likelihood estimators in (10.9) and (10.10).
Since (vi � m)0S�1(vi � m) is a scalar, the exponent of L(m,S) in (10.11) can be
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written as

Pn
i¼1 tr (vi � m)0S�1(vi � m)

h i

2
¼
Pn

i¼1 tr S�1(vi � m)(vi � m)0
h i

2

¼
tr S�1Pn

i¼1 (vi � m)(vi � m)0
h i

2
:

Then substitution of m̂ and Ŝ for m and S in L(m, S) gives

max
H1

L(m,S) ¼ L(m̂, Ŝ) ¼ 1

(
ffiffiffiffiffiffi
2p
p

)n(kþ1)jŜjn=2
e�tr(Ŝ�1nŜ=2)

¼ e�n(kþ1)=2

(
ffiffiffiffiffiffi
2p
p

)n(kþ1)jŜjn=2
:

Under H0 : r2
yjx ¼ 0, we have syx ¼ 0, and S in (10.3) becomes

S0 ¼
syy 00

0 Sxx

� �
; (10:45)

whose maximum likelihood estimator is

Ŝ0 ¼
ŝyy 00

0 Ŝxx

 !
: (10:46)

Using Ŝ0 in (10.46) and m̂ ¼ �v in (10.9), we have

max
H0

L(m,S) ¼ L(m̂, Ŝ0) ¼ 1

(
ffiffiffiffiffiffi
2p
p

)n(kþ1)jŜ0jn=2
e�tr(Ŝ�1

0 nŜ0=2):

By (2.74), this becomes

L(m̂, Ŝ0) ¼ e�n(kþ1)=2

(
ffiffiffiffiffiffi
2p
p

)n(kþ1)ŝ
n=2
yy jŜxxjn=2

: (10:47)

Thus

LR ¼ jŜjn=2

ŝ
n=2
yy jŜxxjn=2:

(10:48)
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Substituting Ŝ ¼ (n� 1)S=n and using (10.40), we obtain

LR ¼ (1� R2)n=2: (10:49)

We reject H0 for (1� R2)n=2 � c, which is equivalent to

F ¼ R2=k

(1� R2)=(n� k � 1)
� Fa, k, n�k�1,

since R2=(1� R2) is a monotone increasing function of R2 and F is distributed as
F(k, n 2 k 2 1) when H0 is true (Anderson 1984, pp. 138–139). A

When k ¼ 1, F in (10.44) reduces to F ¼ (n 2 2)r2/(1 2 r2). Then, by
Problem 5.16

t ¼
ffiffiffiffiffiffiffiffiffiffiffi
n� 2
p

rffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2
p

[see (6.20)] has a t distribution with n 2 2 degrees of freedom (df) when ( y, x) has a
bivariate normal distribution with r ¼ 0.

If ( y, x) is bivariate normal and r= 0, then var(r) ¼ (1� r2)2=n and the function

u ¼
ffiffiffi
n
p

(r � r)
1� r2

(10:50)

is approximately standard normal for large n. However, the distribution of u
approaches normality very slowly as n increases (Kendall and Stuart 1969, p. 236).
Its use is questionable for n , 500.

Fisher (1921) found a function of r that approaches normality much faster than
does (10.50) and can thereby be used with much smaller n than that required for
(10.50). In addition, the variance is almost independent of r. Fisher’s function is

z ¼ 1
2

ln
1þ r

1� r
¼ tanh�1r, (10:51)

where tanh21r is the inverse hyperbolic tangent of r. The approximate mean and
variance of z are

E(z) ffi 1
2

ln
1þ r

1� r
¼ tanh�1r, (10:52)

var(z) ffi 1
n� 3

: (10:53)
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We can use Fisher’s z transformation in (10.51) to test hypotheses such as H0 : r ¼ r0
or H0 : r1 ¼ r2. To test H0 : r ¼ r0 vs. H1 : r = r0, we calculate

v ¼ z� tanh�1r0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=(n� 3)

p , (10:54)

which is approximately distributed as the standard normal N(0, 1). We reject H0 if
jvj � za=2, where z ¼ tanh�1r and za=2 is the upper a=2 percentage point of the stan-
dard normal distribution. To test H0 : r1 ¼ r2 vs. H1 : r1 = r2 for two independent
samples of sizes n1 and n2 yielding sample correlations r1 and r2, we calculate

v ¼ z1 � z2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=(n1 � 3)þ 1=(n2 � 3)

p (10:55)

and reject H0 if jvj � za=2, where z1 ¼ tanh�1r1 and z2 ¼ tanh�1r2. To test
H0 : r1 ¼ � � � ¼ rq for q . 2, see Problem 10.18.

To obtain a confidence interval for r, we note that since z in (10.51) is approxi-
mately normal, we can write

P �za=2 �
z� tanh�1r

1=
ffiffiffiffiffiffiffiffiffiffiffi
n� 3
p � za=2

� �
ffi 1� a: (10:56)

Solving the inequality for r, we obtain the approximate 100(12a)% confidence
interval

tanh z�
za=2ffiffiffiffiffiffiffiffiffiffiffi
n� 3
p

� �
� r � tanh zþ

za=2ffiffiffiffiffiffiffiffiffiffiffi
n� 3
p

� �
: (10:57)

A confidence interval for r2
yjx was given by Helland (1987).

Example 10.5a. For the hematology data in Table 10.1, we obtained R2 in Example
10.4. The overall F test of H0 :b1 ¼ 0 or H0 : r2

yjx ¼ 0 is carried out using F in
(10.44):

F ¼ R2=k

(1� R2)=(n� k � 1)

¼ :9232=5
(1� :9232)=45

¼ 108:158:

The p value is less than 10216. A
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Example 10.5b. To illustrate Fisher’s z transformation in (10.51) and its use to
compare two independent correlations in (10.55), we divide the hematology data in
Table 10.1 into two subsamples of sizes n1 ¼ 26 and n2 ¼ 25 (the first 26 obser-
vations and the last 25 observations). For the correlation between y and x1 in each
of the two subsamples, we obtain r1 ¼ .4994 and r2 ¼ .0424. The z transformation
in (10.51) for each of these two values is given by

z1 ¼ tanh�1r1 ¼ :5485,

z2 ¼ tanh�1r2 ¼ :0425:

To test H0 : r1 ¼ r2, we use the approximate test statistic (10.55) to obtain

v ¼ :5485� :0425ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=(26� 3)þ 1=(25� 3)

p ¼ 1:6969:

Since 1.6969 , z.025 ¼ 1.96, we do not reject H0.
To obtain approximate 95% confidence limits for r1, we use (10.57):

Lower limit for r1 : tanh :5485� 1:96ffiffiffiffiffi
23
p

� �
¼ :1389,

Upper limit for r1 : tanh :5485þ 1:96ffiffiffiffiffi
23
p

� �
¼ :7430:

For r2, the limits are given by

Lower limit for r2 : tanh :0425� 1:96ffiffiffiffiffi
22
p

� �
¼ �:3587,

Upper limit for r2 : tanh :0425þ 1:96ffiffiffiffiffi
22
p

� �
¼ :4303:

A

10.6 EFFECT OF EACH VARIABLE ON R2

The contribution of a variable xj to the multiple correlation R will, in general, be
different from its bivariate correlation with y; that is, the increase in R2 when xj is
added is not equal to r2

yxj
. This increase in R2 can be either more or less than r2

yxj
.

It seems clear that relationships with other variables can render a variable partially
redundant and thereby reduce the contribution of xj to R2, but it is not intuitively
apparent how the contribution of xj to R2 can exceed r2

yxj
. The latter phenomenon

has been illustrated numerically by Flury (1989) and Hamilton (1987).
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In this section, we provide a breakdown of the factors that determine how much
each variable adds to R2 and show how the increase in R2 can exceed r2

yxj

(Rencher 1993). We first introduce some notation. The variable of interest is
denoted by z, which can be one of the x’s or a new variable added to the x’s. We
make the following additional notational definitions:

R2
yw ¼ squared multiple correlation between y and w ¼ (x1, x2, . . . , xk, z)0:

R2
yx ¼ squared multiple correlation between y and x ¼ (x1, x2, . . . , xk)0:

R2
zx ¼ s0zxS

�1
xx szx=s2

z ¼ squared multiple correlation between z and x:

ryz ¼ simple correlation between y and z :

ryx ¼ (ryx1 , ryx2 , . . . , ryxk )
0 ¼ vector of correlations between y and x:

rzx ¼ (rzx1 , rzx2 , . . . , rzxk )
0 ¼ vector of correlations between z and x:

b̂�zx ¼ R�1
xx rzx is the vector of standardized regression coefficients (beta weights)

of z regressed on x [see (10.24)]:

The effect of z on R2 is formulated in the following theorem.

Theorem 10.6. The increase in R2 due to z can be expressed as

R2
yw � R2

yx ¼
(r̂yz � ryz)2

1� R2
zx

, (10:58)

where r̂yz ¼ b̂�
0

zxryx is a “predicted” value of ryz based on the relationship of z to
the x’s.

PROOF. See Problem 10.19. A

Since the right side of (10.58) is positive, R2 cannot decrease with an additional
variable, which is a verification of property 3 in Section 7.7. If z is orthogonal to x
(i.e., if rzx ¼ 0), then b̂�zx ¼ 0, which implies that r̂yz ¼ 0 and R2

zx ¼ 0. In this case,
(10.58) can be written as R2

yw ¼ R2
yx þ r2

yz, which verifies property 5 of Section 7.7.
It is clear in Theorem 10.6 that the contribution of z to R2 can either be less than or

greater than r2
yz. If r̂yz is close to ryz, the contribution of z is less than r2

yz. There are
three ways in which the contribution of z can exceed r2

yz: (1) r̂yz is substantially
larger in absolute value than ryz, (2) r̂yz and ryz are of opposite signs, and (3) R2

zx

is large.
In many cases, the researcher may find it helpful to know why a variable contrib-

uted more than expected or less than expected. For example, admission to a university
or professional school may be based on previous grades and the score on a standar-
dized national test. An applicant for admission to a university with limited enrollment
would submit high school grades and a national test score. These might be entered
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into a regression equation to obtain a predicted value of first-year grade-point average
at the university. It is typically found that the standardized test increases R2 only
slightly above that based on high school grades alone. This small increase in R2

would be disappointing to admissions officials who had hoped that the national
test score might be a more useful predictor than high school grades. The designers
of such standardized tests may find it beneficial to know precisely why the test
makes such an unexpectedly small contribution relative to high school grades.

In Theorem 10.6, we have available the specific information needed by the
designer of the standardized test. To illustrate the use of (10.58), let y be the
grade-point average for the first year at the university, let z be the score on the stan-
dardized test, and let x1, x2, . . . , xk be high school grades in key subject areas. By
(10.58), the increase in R2 due to z is (r̂yz � ryz)2=(1� R2

zx), in which we see that z
adds little to R2 if r̂yz is close to ryz. We could examine the coefficients in

r̂yz ¼ b̂�0zxryx to determine which of the ryxj ’s in ryx have the most effect. This infor-
mation could be used in redesigning the questions so as to reduce these particular
ryxj ’s. It may also be possible to increase the contribution of z to R2

yw by increasing
R2

zx (thereby reducing 1 2 R2
zx). This might be done by designing the questions in

the standardized test so that the test score z is more correlated with high school
grades, x1, x2, . . ., xq.

Theil and Chung (1988) proposed a measure of the relative importance of a vari-
able in multiple regression based on information theory.

Example 10.6. For the hematology data in Table 10.1, the overall R2
yw was found in

Example 10.4 to be .92318. From Theorem 10.6, the increase in R2 due to a variable z
has the breakdown R2

yw � R2
yx ¼ (r̂yz � ryz)2=(1� R2

zx), where z represents any one of
x1, x2, . . . , x5, and x represents the other four variables. The values of r̂yz, ryz, R2

zx,
R2

yw � R2
yx, and F are given below for each variable in turn as z:

z r̂yz ryz R2
zx R2

yw 2 R2
yx F p value

x1 .2101 .1943 .6332 .00068 0.4 .53

x2 .2486 .2210 .6426 .00213 1.25 .26

x3 .0932 .7890 .4423 .86820 508.6 0

x4 .4822 .0526 .3837 .29945 175.4 0

x5 .0659 .0758 .0979 .00011 0.064 .81

The F value is from the partial F test in (8.25), (8.37), or (8.39) for the significance of
the increase in R2 due to each variable.

An interesting variable here is x4, whose value of ryz is .0526, the smallest among
the five variables. Despite this small individual correlation with y, x4 contributes
much more to R2

yw than do all other variables except x3 because r̂yz is much greater
for x4 than for the other variables. This illustrates how the contribution of a variable
can be augmented in the presence of other variables as reflected in r̂yz.

The difference between the two major contributors x3 and x4 may be very revealing
to the researcher. The contribution of x3 to R2

yw is due mostly to its own correlation
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with y, whereas virtually all the effect of x4 comes from its association with the other
variables as reflected in r̂yz. A

10.7 PREDICTION FOR MULTIVARIATE NORMAL OR
NONNORMAL DATA

In this section, we consider an approach to modeling and estimation in the random-x
case that is somewhat reminiscent of least squares in the fixed-x case. Suppose that
( y, x0) ¼ ( y, x1, x2, . . . , xk) is not necessarily assumed to be multivariate normal
and we wish to find a function t(x) for predicting y. In order to find a predicted
value t(x) that is expected to be “close” to y, we will choose the function t(x) that
minimizes the mean squared error E[ y� t(x)]2, where the expectation is in the
joint distribution of y, x1, . . . ,xk. This function is given in the following theorem.

Theorem 10.7. For the random vector ( y, x0), the function t(x) that minimizes the
mean squared error E[ y� t(x)]2 is given by E( yjx).

PROOF. For notational simplicity, we use k ¼ 1. By (4.28), the joint density g( y, x)
can be written as g( y, x) ¼ f ( yjx)h(x). Then

E[ y� t(x)]2 ¼
ð ð

[ y� t(x)]2g( y, x) dy dx

¼
ð ð

[ y� t(x)]2f ( yjx)h(x) dy dx

¼
ð

h(x)
ð

[ y� t(x)]2f ( yjx) dy

� �
dx:

To find the function t(x) that minimizes E( y 2 t)2, we differentiate with respect to t
and set the result equal to 0 [for a more general proof not involving differentiation,
see Graybill (1976, pp. 432–434) or Christensen (1996, p. 119)]. Assuming that
we can interchange integration and differentiation, we obtain

@E[y� t(x)]2

@t
¼
ð

h(x)
ð

2(�1)[ y� t(x)] f ( yjx)dy

� �
dx ¼ 0,

which gives

2
ð

h(x)
ð

yf ( yjx)dy�
ð

t(x)f ( yjx)dy

� �
dx ¼ 0,

2
ð

h(x)[E( yjx)� t(x)	dx ¼ 0:

The left side is 0 if

t(x) ¼ E( yjx):
A
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In the case of the multivariate normal, the prediction function E( yjx) is a linear
function of x [see (10.4) and (10.5)]. However, in general, E( yjx) is not linear. For
an illustration of a nonlinear E( yjx), see Example 3.2, in which we have
E( yjx) ¼ 1

2 (1þ 4x� 2x2).
If we restrict t(x) to linear functions of x, then the optimal result is the same linear

function as in the multivariate normal case [see (10.6) and (10.7)].

Theorem 10.7b. The linear function t(x) that minimizes E[ y� t(x)]2 is given by
t(x) ¼ b0 þ b01x, where

b0 ¼ my � s0yxS
�1
xx mx, (10:59)

b1 ¼ S�1
xx syx: (10:60)

PROOF. See Problem 10.21. A

We can find estimators b̂0 and b̂1 for b0 and b1 in (10.59) and (10.60) by mini-
mizing the sample mean squared error,

Pn
i¼1 ( yi � b̂0 � b̂01xi)2=n. The results are

given in the following theorem.

Theorem 10.7c. If ( y1, x01), ( y2, x02), . . . , ( yn, x0n) is a random sample with mean
vector and covariance matrix

m̂ ¼ �y
�x

� �
; S ¼ syy s0yx

syx Sxx

� �
,

then the estimators b̂0 and b̂1 that minimize
Pn

i¼1 ( yi � b̂0 � b̂01xi)2=n are given by

b̂0 ¼ �y� s0yxS�1
xx �x, (10:61)

b̂1 ¼ S�1
xx syx: (10:62)

PROOF. See Problem 10.22. A

The estimators b̂0 and b̂1 in (10.61) and (10.62) are the same as the maximum like-
lihood estimators in the normal case [see (10.15) and (10.16)].

10.8 SAMPLE PARTIAL CORRELATIONS

Partial correlations were introduced in Sections 4.5 and 7.10. Assuming multivariate
normality, the population partial correlation rij�rs���q is the correlation between yi and yj

in the conditional distribution of y given x, where yi and yj are in y and the
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subscripts r, s, . . . ,q represent all the variables in x. By (4.36), we obtain

rij � rs ... q ¼
sij � rs ... qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sii � rs ... qs jj � rs ... q
p , (10:63)

where sij � rs ��� q; is the (ij) element of Sy�x ¼ cov(yjx). For normal populations, Sy�x is

given by (4.27) as Sy�x ¼ Syy � SyxS
�1
xx Sxy, where Syy,Syx,Sxx, and Syx are from

the partitioned covariance matrix

cov
y
x

� �
¼ S ¼ Syy Syx

Sxy Sxx

� �

[see (3.33)]. The matrix of (population) partial correlations rij � rs ... q can be found by
(4.37):

Py�x ¼ D�1
y�xSy�xD�1

y�x ¼ D�1
y�x (Syy � SyxS

�1
xx Sxy)D

�1
y�x , (10:64)

where Dy�x ¼ [diag(Sy�x)]1=2:
To obtain a maximum likelihood estimator Ry�x ¼ (rij�rs ... q) of Py�x ¼ (rij�rs ... q) in

(10.64), we use the invariance property of maximum likelihood estimators (Theorem
10.2b) to obtain

Ry�x ¼ D�1
s (Syy � SyxS�1

xx Sxy)D�1
s , (10:65)

where

Ds ¼ [diag(Syy � SyxS�1
xx Sxy)]1=2:

The matrices Syy, Syx, Sxx, and Sxy are from the sample covariance matrix parti-
tioned by analogy to S above

S ¼ Syy Syx

Sxy Sxx

� �
,

where

Syy ¼

s2
y1

sy1y2 � � � sy1yp

sy2y1 s2
y2
� � � sy2yp

..

. ..
. ..

.

sypy1 sypy2 � � � s2
yp

0
BBBBB@

1
CCCCCA

and

Syx ¼

sy1x1 sy1x2 � � � sy1xq

sy2x1 sy2x2 � � � sy2xq

..

. ..
. ..

.

sypx1 sypx2 � � � sypxq

0
BBBB@

1
CCCCA
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are estimators of Syy and Syx. Thus the maximum likelihood estimator of rij� rs ... q in
(10.63) is rij � rs ... q, the (ij) th element of Ry�x in (10.65).

We now consider two other expressions for partial correlation and show that they
are equivalent to rij � rs ... q in (10.65). To simplify exposition, we illustrate with r12�3.
The sample partial correlation of y1 and y2 with y3 held fixed is usually given as

r12�3 ¼
r12 � r13r23ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(1� r2
13)(1� r2

23)
p , (10:66)

where r12, r13, and r23 are the ordinary correlations between y1 and y2, y1 and y3, and
y2 and y3, respectively. In the following theorem, we relate r12�3 to two previous defi-
nitions of partial correlation.

Theorem 10.8a. The expression for r12�3 in (10.66) is equivalent to an element of
Ry�x in (10.65) and is also equal to ry1�ŷ1, y2�ŷ2 from (7.94), where y1 � ŷ1 and
y2 � ŷ2 are residuals from regression of y1 on y3 and y2 on y3.

PROOF. We first consider ry1�ŷ1, y2�ŷ2 , which is not a maximum likelihood estimator
and can therefore be used when the data are not normal. We obtain ŷ1 and ŷ1 by
regressing y1 on y3 and y2 on y3. Using the notation in Section 7.10, we indicate
the predicted value of y1 based on regression of y1 on y3 as ŷ1( y3). With a similar
definition of ŷ2( y3), the residuals can be expressed as

u1 ¼ y1 � ŷ1( y3) ¼ y1 � (b̂01 þ b̂11y3),

u2 ¼ y2 � ŷ2( y3) ¼ y2 � (b̂02 þ b̂12y3),

where, by (6.5), b̂ 11 and b̂ 12 are the usual least-squares estimators

b̂ 11 ¼
Pn

i¼1 ( y1i � �y1)( y3i � �y3)Pn
i¼1 ( y3i � �y3)2 , (10:67)

b̂12 ¼
Pn

i¼1 ( y2i � �y2)( y3i � �y3)Pn
i¼1 ( y3i � �y3)2 : (10:68)

Then the sample correlation between u1 ¼ y1 � ŷ1( y3) and u2 ¼ y2 � ŷ2( y3) [see
(7.94)] is

ru1u2 ¼ ry1�ŷ1, y2�ŷ2

¼ dcov(u1, u2)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifficvar(u1)cvar(u2)
p : (10:69)
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Since the sample mean of the residuals u1 and u2 is 0 [see (9.11)], ru1u2 can be
written as

ru1u2 ¼
Pn

i¼1 u1iu2iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 u2

1i

Pn
i¼1 u2

2i

p

¼
Pn

i¼1 ( y1i � ŷ1i)( y2i � ŷ2i)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ( y1i � ŷ1i)2Pn

i¼1 ( y2i � ŷ2i)2
q : (10:70)

We now show that ru1u2 in (10.70) can be expressed as an element of Ry�x in
(10.65). Note that in this illustration, Ry�x is 2� 2. The numerator of (10.70) can
be written as

Xn

i¼1

u1iu2i ¼
Xn

i¼1

( y1i � ŷ1i)( y2i � ŷ2i)

¼
Xn

i¼1

( y1i � b̂01 � b̂11y3i)( y2i � b̂02 � b̂12y3i):

Using b̂01 ¼ �y1 � b̂11�y3 and b̂02 ¼ �y2 � b̂12�y3, we obtain

Xn

i¼1

u1iu2i ¼
Xn

i¼1

[ y1i � �y1 � b̂11( y3i � �y3)][ y2i � �y2 � b̂12( y3i � �y3)]

¼
X

i

( y1i � �y1)( y2i � �y2)� b̂11b̂12

X
i

( y3i � �y3)2: (10:71)

The other two terms in (10.71) sum to zero. Using (10.67) and (10.68), the second
term on the right side of (10.71) can be written as

b̂11b̂12

X
i

( y3i � �y3)2 ¼ [Pn
i¼1 ( y1i � �y1)( y3i � �y3)][Pn

i¼1 ( y2i � �y2)( y3i � �y3)]Pn
i¼1 ( y3i � �y3)2:

(10:72)

If we divide (10.71) by n� 1, divide numerator and denominator of (10.72) by n� 1,
and substitute (10.72) into (10.71), we obtain

dcov(u1, u2) ¼dcov( y1 � ŷ1, y2 � ŷ2) ¼ s12 �
s13s23

s33
:
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This is the element in the first row and second column of Syy � SyxS�1
xx Sxy in (10.65),

where Syy ¼
s11 s12

s21 s22

� �
, Syx ¼ syx ¼

s13

s23

� �
, Sxx ¼ s33, and Sxy ¼ s0yx. In this case,

the 2� 2 matrix Syy � SyxS�1
xx Sxy is given by

Syy � SyxS�1
xx Sxy ¼

s11 s12

s21 s22

� �
� 1

s33

s13

s23

� �
(s13, s23)

¼
s11 s12

s21 s22

� �
� 1

s33

s2
13 s13s23

s23s13 s2
23

 !
:

Thus ru1u2 , as based on residuals in (10.69), is equivalent to the maximum likelihood
estimator in (10.65).

We now use (10.71) to convert ru1u2 in (10.69) into the familiar formula for r12�3
given in (10.66). By (10.70), we obtain

ru1u2 ¼
P

i u1iu2iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i u2

1i

P
i u2

2i

p : (10:73)

By an extension of (10.71), we further obtain

Xn

i¼1

u2
1i ¼

X
i

( y1i � �y1)2 � b̂2
11

X
i

( y3i � �y3)2, (10:74)

Xn

i¼1

u2
2i ¼

X
i

( y2i � �y2)2 � b̂2
12

X
i

( y3i � �y3)2: (10:75)

Then (10.73) becomes

ru1u2 ¼
P

i ( y1i � �y1)( y2i � �y2)� b̂11b̂12

P
i ( y3i � �y3)2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
[Pi ( y1i � �y1)2 � b̂2

11

P
i ( y3i � �y3)2][Pi ( y2i � �y2)2 � b̂2

12

P
i ( y3i � �y3)2]

q :

(10:76)

We now substitute for b̂11 and b̂12 as defined in (10.67) and (10.68) and divide

numerator and denominator by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i ( y1i � �y1)2P
i ( y2i � �y2)2

q
to obtain

ru1u2 ¼ r12�3 ¼
r12 � r13r23ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(1� r2
13)(1� r2

23)
p : (10:77)

Thus ru1u2 based on residuals as in (10.69) is equivalent to the usual formulation r12�3
in (10.66). A
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For the general case rij � rs ... q, where i and j are subscripts pertaining to y and r, s, . . . , q
are all the subscripts associated with x, we define a residual vector yi � ŷi(x), where ŷi(x)
is the vector of predicted values from the regression of y on x. [Note that i is used
differently in rij � rs ... q and yi � ŷi(x).] In Theorem 10.8a, r12�3 was found to be equal
to ry1�ŷ1, y2�ŷ2 , the ordinary correlation of the two residuals, and to be equivalent to
the partial correlation defined as an element of Ry�x in (10.65). In the following
theorem, this is extended to the vectors y and x.

Theorem 10.8b. The sample covariance matrix of the residual vector yi � ŷi(x) is
equivalent to Syy � SyxS�1

xx Sxy in (10.65), that is, Sy�ŷ ¼ Syy � SyxS�1
xx Sxy.

PROOF. The sample predicted value ŷi(x) is an estimator of E(yjxi) ¼ myþ
SyxS

�1
xx (xi � mx) given in (4.26). For ŷi(x), we use the maximum likelihood estimator

of E(yjxi):

ŷi(x) ¼ �yþ SyxS�1
xx (xi � �x): (10:78)

[The same result can be obtained without reference to normality; see Rencher (1998,
p. 304).]

Since the sample mean of yi � ŷi(x) is 0 (see Problem 10.26), the sample covari-
ance matrix of yi � ŷi(x) is defined as

Sy�ŷ ¼
1

n� 1

Xn

i¼1

[yi � ŷi(x)][yi � ŷi(x)]0 (10:79)

(see Problem 10.1).We first note that by extension of (10.13), we have Syy ¼
P

i

(yi � �y)(yi � �y)0=(n� 1), Syx ¼
P

i (yi � �y)(xi � �x)0=(n� 1), and Sxx ¼
P

i (xi � �x)
(xi � �x)0=(n� 1) (see Problem 10.27). Using these expressions, after substituting
(10.78) in (10.79), we obtain

Sy�ŷ ¼
1

n� 1

Xn

i¼1

[yi � �y� SyxS�1
xx (xi � �x)][yi � �y� SyxS�1

xx (xi � �x)]0

¼ 1
n� 1

Xn

i¼1

(yi � �y)(yi � �y)0 �
Xn

i¼1

(yi � �y)(xi � �x)0S�1
xx Sxy

"

�SyxS�1
xx

Xn

i¼1

(xi � �x)(yi � �y)0 þ SyxS�1
xx

Xn

i¼1

(xi � �x)(xi � �x)0S�1
xx Sxy

#

¼ Syy � SyxS�1
xx Sxy � SyxS�1

xx Sxy þ SyxS�1
xx SxxS�1

xx Sxy

¼ Syy � SyxS�1
xx Sxy:

Thus the covariance matrix of residuals gives the same result as the maximum like-
lihood estimator of conditional covariances and correlations in (10.65). A
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Example 10.8. We illustrate some partial correlations for the hematology data in
Table 10.1. To find ry1�2345, for example, we use (10.65), Ry�x ¼ D�1

s (Syy�
SyxS�1

xx Sxy)D�1
s . In this case, y ¼ ( y, x1)0 and x ¼ (x2, x3, x4, x5)0. The matrix S is

therefore partitioned as

S ¼

90:290 1:535 4:880 106:202 3:753 3:064

1:535 0:691 1:494 3:255 0:422 �0:268

4:880 1:494 5:401 10:155 1:374 1:292
106:202 3:255 10:155 200:668 64:655 4:067

3:753 0:422 1:374 64:655 56:374 0:579
3:064 �0:268 1:292 4:067 0:579 18:078

0
BBBBBBBBB@

1
CCCCCCCCCA

¼
Syy Syx

Sxy Sxx

� �
:

The matrix Ds ¼ [diag(Syy � SyxS�1
xx Sxy)]1=2 is given by

Ds ¼
2:645 0

0 :503

� �
,

and we have

Ry�x ¼
1:0000 �0:0934
�0:0934 1:000

� �
:

Thus, ry1�2345 ¼ �:0934. On the other hand, ry1 ¼ :1934.
To find ry2�1345, we have y ¼ ( y, x2)0 and x ¼ (x1, x3, x4, x5)0. Thus

Syy ¼
90:290 4:880
4:880 5:401

� �
,

and there are corresponding matrices for Syx, Sxy, and Sxx. The diagonal matrix Ds is
given by Ds ¼ diag(2:670, 1:389), and we have

Ry�x ¼
1:000 �0:164
�0:164 1:000

� �
:

Thus, ry2�1345 ¼ �:164, which can be compared with ry2 ¼ :221.
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To find ry3�45, we have y ¼ ( y, x1, x2, x3)0 and x ¼ (x4, x5)0. Then, for example, we
obtain

Syy ¼

90:290 1:535 4:880 106:202
1:535 0:691 1:494 3:255
4:880 1:494 5:401 10:155

106:202 3:255 10:155 200:668

0
BB@

1
CCA:

The diagonal matrix Ds is given by

Ds ¼ diag(9:462, :827, 2:297, 11:219),

and we have

Ry�x ¼

1:000 0:198 0:210 0:954
0:198 1:000 0:792 0:304
0:210 0:792 1:000 0:324
0:954 0:304 0:324 1:000

0
BB@

1
CCA:

Thus, for example, ry1�45 ¼ :198, ry3�45 ¼ :954, r12�45 ¼ :792, and r23�45 ¼ :324. In
this case, Ry�x is little changed from Ryy:

Ryy ¼

1:000 0:194 0:221 0:789
0:194 1:000 0:774 0:277
0:221 0:774 1:000 0:308
0:789 0:277 0:308 1:000

0
BB@

1
CCA:

A

PROBLEMS

10.1 Show that S in (10.14) can be found as S ¼
Pn

i¼1 (vi � �v)(vi � �v)0=(n� 1) as
in (10.13).

10.2 Show that m̂ and S in (10.9) and (10.10) are jointly sufficient for m and S, as
noted following Theorem 10.2c.

10.3 Show that S ¼ DRD gives the partitioned result in (10.19).

10.4 Show that cov( y, w) ¼ s0yxS
�1
xx syx and var(w) ¼ s0yxS

�1
xx syx as in (10.26),

where w ¼ my þ s0yxS
�1
xx (x� mx):

10.5 Show that r2
yjx in (10.27) is the maximum squared correlation between y and

any linear function of x, as in (10.28).

10.6 Show that r2
yjx can be expressed as r2

yjx ¼ 1� jSj=(syyjSxxj) as in (10.29).

10.7 Show that r2
yjx is invariant to linear transformations u ¼ ay and v ¼ Bx, where

B is nonsingular, as in (10.30).

PROBLEMS 273



10.8 Show that cov( y� w, x) ¼ 00 as in (10.33).

10.9 Verify that R2 ¼ r2
yŷ, as in (10.36), using the following two definitions of r2

yŷ:

(a) r2
yŷ ¼

Pn
i¼1 ( yi � ŷi)(ŷi � �̂y)

	 
2
=
Pn

i¼1 (yi � �y)2Pn
i¼1 (ŷi � �̂y)2

	 

(b) ryŷ ¼ syŷ=(sysŷ)

10.10 Show that R2 ¼ maxar2
y;a0x as in (10:37).

10.11 Show that R2 ¼ r0yxR�1
xx ryx as in (10:38) .

10.12 Show that R2 ¼ 1� 1=ryy as in (10.39), where ryy is the upper left-hand diag-
onal element of R�1, with R partitioned as in (10.18).

10.13 Verify that R2 can be expressed in terms of determinants as in (10.40) and
(10.41).

10.14 Show that R2 is invariant to full-rank linear transformations on y or the x’s, as
in property 9 in Section 10.4.

10.15 Show that Ŝ0 in (10.46) is the maximum likelihood estimator of S0 in (10.45)
and that maxH0 Lðm;SÞ is given by (10.47).

10.16 Show that LR in (10.48) is equal to LR ¼ ð1� R2Þn=2 in (10.49).

10.17 Obtain the confidence interval in (10.57) from the inequality in (10.56).

10.18 Suppose that we have three independent samples of bivariate normal data.
The three sample correlations are r1, r2, and r3 based, respectively, on
sample sizes n1, n2, and n3.

(a) Find the covariance matrix V of z ¼ (z1 z2 z3)0 where
zi ¼ 1

2 ln[(1þ ri)=(1� ri)].

(b) Let m0z ¼ (tanh�1r1; tanh�1r2; tanh�1r3), and let

C ¼ 1 �1 0
1 0 �1

� �
:

Find the distribution of [C(z� mz)]
0 [CVC0]�1[C(z� mz)].

(c) Using (b), propose a test for H0 : r1 ¼ r2 ¼ r3 or equivalently
H0 : Cmz ¼ 0.

10.19 Prove Theorem 10.6.

10.20 Show that if z were orthogonal to the x’s, (10.58) could be written in the form
R2

yw ¼ R2
yx þ r2

yz, as noted following Theorem 10.6.

10.21 Prove Theorem 10.7b.

10.22 Prove Theorem 10.7c.
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10.23 Show that
Pn

i¼1 u1iu2i ¼
Pn

i¼1 ( y1i � �y1)( y2i ��y2)� b̂11b̂12

Pn
i¼1 (y3i � �y3)2

as in (10.71).

10.24 Show that
Pn

i¼1 u2
1i ¼

Pn
i¼1 (y1i � �y1)2 �b̂2

11

Pn
i¼1 ( y3i � �y3)2 as in (10.74).

10.25 Obtain r12�3 in (10.77) from ru1u2 in (10.76).

10.26 Show that Sn
i¼1[yi � ŷi(x)] ¼ 0, as noted following (10.78).

10.27 Show that Syy ¼
P

i (yi � �y)(yi � �y)0=(n� 1); Syx ¼
P

i (yi � �y)(xi � �x)0=
(n� 1), and Sxx ¼

P
i (xi � �x)(xi � �x)0=(n� 1), as noted following (10.79).

10.28 In an experiment with rats, the concentration of a particular drug in the liver
was of interest. For 19 rats the following variables were observed:

y ¼ percentage of the dose in the liver

x1 ¼ body weight

x2 ¼ liver weight

x3 ¼ relative dose

The data are given in Table 10.2 (Weisberg 1985, p. 122).

(a) Find Sxx; syx; b̂1; b̂0; and s2.

(b) Find Rxx; ryx, and b̂�1.

(c) Find R2.

(d) Test H0 : b1 ¼ 0:

10.29 Use the hematology data in Table 10.1 as divided into two subsamples of
sizes 26 and 25 in Example 10.5b (the first 26 observations and the last 25
observations). For each pair of variables below, find r1 and r2 for the two sub-
samples, find z1 and z2 as in (10.51), test H0 : r1 ¼ r2 as in (10.55), and find
confidence limits for r1 and r2 as in (10.57).

(a) y and x2

(b) y and x3

TABLE 10.2 Rat Data

y x1 x2 x3 y x1 x2 x3

.42 176 6.5 0.88 .27 158 6.9 .80

.25 176 9.5 0.88 .36 148 7.3 .74

.56 190 9.0 1.00 .21 149 5.2 .75

.23 176 8.9 0.88 .28 163 8.4 .81

.23 200 7.2 1.00 .34 170 7.2 .85

.32 167 8.9 0.83 .28 186 6.8 .94

.37 188 8.0 0.94 .30 164 7.3 .73

.41 195 10.0 0.98 .37 181 9.0 .90

.33 176 8.0 0.88 .46 149 6.4 .75

.38 165 7.9 0.84
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(c) y and x4

(d) y and x5

10.30 For the rat data in Table 10.2, check the effect of each variable on R2 as in
Section 10.6.

10.31 Using the rat data in Table 10.2.

(a) Find ry1�23 and compare to ry1.

(b) Find ry2�13

(c) Find Ry�x, where y ¼ ( y; x1; x2)0 and x ¼ x3, in order to obtain ry1�3; ry2�3,
and r12�3.
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11 Multiple Regression: Bayesian
Inference

We now consider Bayesian estimation and prediction for the multiple linear
regression model in which the x variables are fixed constants as in Chapters 7–9.
The Bayesian statistical paradigm is conceptually simple and general because infer-
ences involve only probability calculations as opposed to maximization of a function
like the log likelihood. On the other hand, the probability calculations usually entail
complicated or even intractable integrals. The Bayesian approach has become popular
more recently because of the development of computer-intensive approximations to
these integrals (Evans and Swartz 2000) and user-friendly programs to carry out
the computations (Gilks et al. 1998). We discuss both analytical and computer-
intensive approaches to the Bayesian multiple regression model.

Throughout Chapters 7 and 8 we assumed that the parameters b and s2 were
unknown fixed constants. We couldn’t really do otherwise because to this point (at
least implicitly) we have only allowed probability distributions to represent variability
due to such things as random sampling or imprecision of measurement instruments.
The Bayesian approach additionally allows probability distributions to represent con-
jectural uncertainty. Thus b and s2 can be treated as if they are random variables
because we are uncertain about their values. The technical property that allows one
to treat parameters as random variables is exchangeability of the observational
units in the study (Lindley and Smith 1972).

11.1 ELEMENTS OF BAYESIAN STATISTICAL INFERENCE

In Bayesian statistics, uncertainty about the value of a parameter is expressed using
the tools of probability theory (e.g., a density function—see Section 3.2). Density
functions of parameters like b and s

2 reflect the current credibility of possible
values for these parameters. The goal of the Bayesian approach is to use data to
update the uncertainty distributions for parameters, and then draw sensible
conclusions using these updated distributions.

Linear Models in Statistics, Second Edition, by Alvin C. Rencher and G. Bruce Schaalje
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The Bayesian approach can be used in any inference situation. However, it seems
especially natural in the following type of problem. Consider an industrial process in
which it is desired to estimate b0 and b1 for the straight-line relationship in (6.1)
between a response y and a predictor x for a particular batch of product. Suppose
that it is known from experience that b0 and b1 vary randomly from batch to
batch. Bayesian inference allows historical (or prior) knowledge of the distributions
of b0 and b1 among batches to be expressed in probabilistic form, and then to be com-
bined with (x, y) data from a specific batch in order to give improved estimates of b0

and b1 for that specific batch.
Bayesian inference is based on two general equations. In these equations as pre-

sented below, u is a vector of m continuous parameters, y is a vector of n continuous
observations, and f, g, h, k, p, q, r and t are probability density functions.

We begin with the definition of the conditional density of u given y [see (3.18)]

g(u j y) ¼ k(y,u )
h(y)

, (11:1)

where k(y, u ) is the joint density of y1, y2, . . . , yn and u1,u2, . . . ,um. Using the defi-
nition of the conditional density f (y j u), we can write k( y,u ) ¼ f (y ju ) p(u ), and
(11.1) becomes

g(u jy) ¼ f (yj u) p(u )
h(y)

, (11:2)

an expression that is commonly referred to as Bayes’ theorem. By an extension of
(3.13), the marginal density h(y) can be obtained by integrating u out of
k(y,u) ¼ f (y ju ) p(u) so that (11.2) becomes

g(ujy) ¼ f (yju)p(u)
Ð1
�1

� � �
Ð1
�1

f (yju)p(u)du

¼ cf (yju)p(u), (11:3)

where du ¼ du1 � � � dum. In this expression, p(u) is known as the prior density of u,
and g(u jy) is called the posterior density of u. The definite integral in the denomi-
nator of (11.3) is often replaced by a constant (c) because after integration, it no
longer involves the random vector u. This definite integral is often very complicated,
but can sometimes be obtained by noting that c is a normalizing constant, that is, a
value such that the posterior density integrates to 1. Rearranging this expression and
reinterpreting the joint density function f (y ju) of the data as the likelihood function
L(u jy) (see Section 7.6.2), we obtain

g(u jy) ¼ cp (u )L(u jy): (11:4)
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Thus (11.2), the first general equation of Bayesian inference, merely states that the
posterior density of u given the data (representing the updated uncertainty in u) is pro-
portional to the prior density of u times the likelihood function. Point and interval
estimates of the parameters are taken as mathematical features of this joint posterior
density or associated marginal posterior densities of individual parameters ui. For
example, the mode or mean of the marginal posterior density of a parameter may
be used as a point estimate of the parameter. A central or highest density interval
(Gelman et al. 2004, pp. 38–39) over which the marginal posterior density of a par-
ameter integrates to 1 2 v may be taken as a 100(1 2 v)% interval estimate of the
parameter.

For the second general equation of Bayesian inference, we consider a future obser-
vation y0. In the Bayesian approach, y0 is not independent of y as was assumed in
Section 8.6.5 because its density depends on u, a random vector whose current uncer-
tainty depends on y. Since y0, y and u are jointly distributed, the posterior predictive
density of y0 given y is obtained by integrating u out of the joint conditional density
of y0 and u given y:

r( y0jy) ¼
ð1

�1

� � �
ð1

�1

t(y0, ujy)du

¼
ð1

�1

� � �
ð1

�1

q(y0ju, y)g(ujy)du [by (4:28)]

where q( y0ju, y) is the conditional density function of the sampling distribution for
a future observation y0. Since y0 is dependent on y only through u, q(y0ju, y)
simplifies, and we have

r( y0jy) ¼
ð1

�1

� � �
ð1

�1

q( y0ju )g(u jy) du: (11:5)

Equation (11.5) expresses the intuitive idea that uncertainty associated with the pre-
dicted value of a future observation has two components: sampling variability and
uncertainty in the parameters. As before, point and interval predictions can be
taken as mathematical features (such as the mean, mode, or specified integral) of
this posterior predictive density.

11.2 A BAYESIAN MULTIPLE LINEAR REGRESSION MODEL

Bayesian multiple regression models are similar to the classical multiple regression
model (see Section 7.6.1) except that they include specifications of the prior
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distributions for the parameters. Prior specification is an important part of the art and
practice of Bayesian modeling, but since the focus of this text is the basic theory of
linear models, we discuss only one set of prior specifications—one that is chosen for
its mathematical convenience rather than actual prior information.

11.2.1 A Bayesian Multiple Regression Model with a Conjugate Prior

Although not necessary, it is often convenient to parameterize Bayesian models using
precision (t) rather than variance (s2), where

t ¼ 1
s 2

:

Using this parameterization, as an example of a Bayesian linear regression model, let

yjb, t be Nn Xb,
1
t

I

� �
,

bjt be Nkþ1 f,
1
t

V

� �
,

t be gamma(a, d):

The second and third distributions here are prior distributions, and we assume that f,
V, a, and d (the parameters of the prior distributions), are known. Although we will
not do so here, this model could be extended by specifying hyperprior distributions
for f, V, a, and d (Lindley and Smith 1972).

As in previous chapters, the number of predictor variables is denoted by k (so that
the rank of X is k þ1) and the number of observations by n. The prior density
function for b jt is, using (4.9)

p1(b jt) ¼ 1

(2p)(kþ1)=2jt�1Vj
1
2

e�t(b�f)0V�1(b�f)=2: (11:6)

The prior density function for t is the gamma density (Gelman et al. 2004,
pp. 574–575)

p2(t) ¼ da

G(a)
ta�1e�dt, (11:7)

where a . 0, d . 0, and by definition

G(a) ¼
ð1

0

xa�1e�xdx (11:8)
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(see any advanced calculus text). For the gamma density in (11.7),

E(t) ¼ a

d
and var(t) ¼ a

d2 :

These prior distributions could be formulated with small enough variances that the
prior knowledge strongly influences posterior distributions of the parameters in
the model. If so, they are called informative priors. On the other hand, both of
these priors could be formulated with large variances so that they have very little
effect on the posterior distributions. If so, they are called diffuse priors. The priors
would be diffuse if, for example, V in (11.6) were a diagonal matrix with very
large diagonal elements, and if d in (11.7) were very close to zero.

The prior specifications in (11.6) and (11.7) are flexible and reasonable, and they
also have nice mathematical properties, as will be shown in Theorem 11.2a. Other
specifications for the prior distributions could be used. However, even the minor
modification of proposing a prior distribution for b that is not conditional on t

makes the model far less mathematically tractable.
The joint prior for b and t in our model is called a conjugate prior because its use

results in a posterior distribution of the same form as the prior. We prove this in the
following theorem.

Theorem 11.2a. Consider the Bayesian multiple regression model in which yjb, t
is Nn(Xb, t�1I), bjt is Nkþ1(f, t�1V), and t is gamma(a, d). The joint prior distri-
bution is conjugate, that is, g(b, tjy) is of the same form as p(b, t).

PROOF. Combining (11.6) and (11.7), the joint prior density is

p(b, t) ¼ p1(bjt)p2(t)

¼ c1t
(kþ1=)2e�t(b�f)0V�1(b�f)=2ta�1e�dt

¼ c1t
(a�þkþ1)=2e�t[(b�f)0V�1(b�f)þd�]=2, (11:9)

where a� ¼ 2a� 2, d� ¼ 2d and all the factors not involving random variables are
collected into the normalizing constant c1. Using (11.4), the joint posterior density
is then

g(b, t jy) ¼ cp(b, t)L(b, t j y)

¼ c2t
(a�þkþ1)=2e�t[(b�f)0V�1(b�f)þd�]=2tn=2e�t(y�Xb)0(y�Xb)=2

¼ c2t
(a��þkþ1)=2e�t[(b�f)0V�1(b�f)þ(y�Xb)0(y�Xb)þd�]=2,

where a�� ¼ 2a� 2þ n, and all the factors not involving random variables are col-
lected into the normalizing constant c2. By expanding and completing the square in
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the exponent (Problem 11.1), we obtain

g(b, t j y) ¼ c2t
(a��þkþ1)=2e�t[(b�f�)0V�1

� (b�f�)þd��]=2, (11:10)

where V� ¼ (V�1 þ X0X)�1f� ¼ V�(V�1f þ X0y) , and d�� ¼ �f0�V�1
� f�þ

f0V�1f þ y
0
y þ d�. Hence the joint posterior density has exactly the same form

as the joint prior density in (11.9). A

It might seem odd to include terms like X0y and y0y in the “constants” of a prob-
ability distribution, while considering parameters like b and t to be random, but this
is completely characteristic of Bayesian inference. In this sense, inference in a
Bayesian linear model is opposite to inference in the classical linear model.

11.2.2 Marginal Posterior Density of b

In order to carry out inferences for b, the marginal posterior density of b [see (3.13)]
must be obtained by integrating t out of the joint posterior density in (11.10). The
following theorem gives the form of this marginal distribution.

Theorem 11.2b. Consider the Bayesian multiple regression model in which yjb, t
is Nn(Xb, t�1I), bjt is Nkþ1(f, t�1V), and t is gamma(a , d). The marginal posterior
distribution u(bjy) is a multivariate t distribution with parameters (nþ 2a, f�, W�),
where

f� ¼ (V�1 þ X0X)�1(V�1fþ X0y) (11:11)

and

W� ¼
(y� Xf)0(Iþ XVX0)�1(y� Xf)þ 2d

nþ 2a

� �
(V�1 þ X0X)�1: (11:12)

PROOF. The marginal distribution of bjy is obtained by integration as

u(bjy) ¼
ð1

0

g(b, tjy)dt:

By (11.10), this becomes

u(bjy) ¼ c2

ð1

0

t(a��þkþ1)=2e�t[(b�f�)0V�1
� (b�f�)þd��]=2dt:
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Using (11.8) together with integration by substitution, the integral in this expression
can be solved (Problem 11.2) to give the posterior distribution of bjy as

u(bjy)¼ c2G
a��þ2þkþ1

2

� �
(b�f�)

0V�1
� (b�f�)þd��

2

� ��(a��þ2þkþ1)=2

¼ c3[(b�f�)
0V�1
� (b�f�)�f0�V

�1
� f�þf0V�1fþy0yþd�]

�(a��þ2þkþ1)=2:

To show that this is the multivariate t density, several algebraic steps are required as
outlined in Problems 11.3a–c and 11.4. See also Seber and Lee (2003, pp. 100–110).
After these steps, the preceding expression becomes

u(bjy)¼ c3[(b�f�)
0V�1
� (b�f�)þ (y�Xf)0(IþXVX0)�1(y�Xf)

þ2d]�(a��þ2þkþ1)=2:

Dividing the expression in square brackets by (y�Xf)0(IþXVX0)�1(y�Xf)þ2d,
modifying the normalizing constant accordingly, and replacing a�� by 2a�2þ n, we
obtain

u(bjy)¼ c4 1þ (b�f�)
0V�1
� (b�f�)=(nþ2a)

[(y�Xf)0(IþXVX0)�1(y�Xf)þ2d]=(nþ2a)

� ��(nþ2aþkþ1)=2

¼ c4
1þ (b�f�)

0W�1
� (b�f�)

nþ2a

� ��(nþ2aþkþ1)=2

, (11:13)

where W� is as given in (11.12). The expression in (11.13) can now be recognized as
the density function of the multivariate t distribution (Gelman et al. 2004, pp. 576–
577; Rencher 1998, p. 56) with parameters (nþ2a,f�, W�). Note that f� is the
mean vector and [(nþ2a)=(nþ2a�2)]W� is the covariance matrix of bjy. A

As a historical note, the reasoning in this section is closely related to the work of
W. S. Gosset or “Student” (Pearson et al. 1990, pp. 49–53, 72–73) on the small-
sample distribution of

t ¼ �y

s
:

Gosset used Bayesian reasoning (“inverse probability”) with a uniform prior distri-
bution (“equal distribution of ignorance”) to show through a combination of proof,
conjecture, and simulation that the posterior density of t is related to what we now
call Student’s t distribution with n 2 1 degrees of freedom.
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11.2.3 Marginal Posterior Densities of t and s2

Inferences regarding t and s2 require knowledge of the marginal posterior distri-
bution of tjy. We derive the posterior density of tjy in the following theorem.

Theorem 11.2c. Consider the Bayesian multiple regression model in which yjb,t
is Nn(Xb, t�1I), bjt is Nkþ1(f, t�1V), and t is gamma (a, d). The marginal
posterior distribution v(tjy) is a gamma distribution with parameters aþ n=2
and (�f0�V�1

� f� þf0V�1fþ y0yþ 2d)=2, where V� ¼ (V�1 þ X0X)�1 and
f� ¼ V�(V�1fþ X0y).

PROOF. The marginal distribution of tjy is obtained by integration as

v(tjy) ¼
ð1

�1

� � �
ð1

�1

g(b, tjy)db

¼ c2

ð1

�1

� � �
ð1

�1

t(a��þkþ1)=2e�t[(b�f�)0V��1(b�f�)þd��]=2db

¼ c2t
(a��þkþ1)=2e�td��=2

ð1

�1

� � �
ð1

�1

e�t[(b�f�)0V�1
� (b�f�)]=2db

where all the factors not involving random variables are collected into the normaliz-
ing constant c2 as in (11.10). Since the integral in the preceding expression is
proportional to the integral of a joint multivariate normal density, we obtain

v(tjy) ¼ c2t
(a��þkþ1)=2e�(d��=2)t(2p)(kþ1)=2jV�j1=2

t�(kþ1)=2

¼ c5t
(a��þkþ1)=2�(kþ1)=2e�(d��=2)t

¼ c5t
(aþn)=2�1e�[(�f0�V�1

� f�þf0V�1fþy0yþ2d)=2]t, (11:14)

which is the density function of the specified gamma distribution. A

The marginal posterior density of s2 can now be obtained by the univariate
change-of-variable technique (4.2) as

w(s2jy) ¼ c6(s2)�(aþn)=2�1e�[(�f0�V�1
� f�þf0V�1fþy0yþ2d)=2]=s2

(11:15)

which is the density function of the inverse gamma distribution with parameters
aþ n=2 and (�f0�V�1

� f� þf0V�1fþ y0yþ 2d)=2 (Gelman et al. 2004,
pp. 574–575).
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11.3 INFERENCE IN BAYESIAN MULTIPLE
LINEAR REGRESSION

11.3.1 Bayesian Point and Interval Estimates of Regression Coefficients

A sensible Bayesian point estimator of b is the mean of the marginal posterior density
in (11.13)

f� ¼ (V�1 þ X0X)�1(V�1fþ X0y), (11:16)

and a sensible 100(1 2 v)% Bayesian confidence region for b is the highest-density
region V such that

c4

ð
V

� � �
ð

1þ (b�f�)
0W�1
� (b�f�)

nþ 2a

� ��(nþ2aþkþ1)=2

db ¼ 1� v: (11:17)

A convenient property of the multivariate t distribution is that linear functions of
the random vector follow the (univariate) t distribution. Thus, given y,

a0b� a0f�
a0W�a

is t(nþ 2a)

and, as an important special case,

bi � f�i
w�ii

is t(nþ 2a), (11:18)

where f� i is the ith element of f� and w
*ii is the ith diagonal element of W�. Thus a

Bayesian point estimate of bi is f� i and a 100(1 2 v)% Bayesian confidence interval
for bi is

f�i + tv=2,nþ2aw�ii: (11:19)

One very appealing aspect of Bayesian inference is that intervals like (11.19) have
a natural interpretation. Instead of the careful classical interpretation of a confidence
interval in terms of hypothetical repeated sampling, one can simply and correctly say
that the probability is 1 2 v that bi is in (11.19).

An interesting final note on Bayesian estimation of b is that the Bayesian estimator
f� in (11.16) can be obtained as the generalized least-squares estimator of b in
(7.63). To see this, consider adding the prior information to the data as if it constituted
a set of additional observations. The idea is to augment y with f, and to consider the

mean vector and covariance matrix of the augmented vector
y
f

� �
to be, respectively

X
Ikþ1

� �
b and

1
t

I O
O V

� �
:
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Generalized least squares estimation expressed in terms of these partitioned
matrices then gives f� in (11.16) as an estimate of b (Problem 11.6). The implication
of this is that prior information on the regression coefficients can be incorporated into
a multiple linear regression model by the intuitive informal process of “adding”
observations.

11.3.2 Hypothesis Tests for Regression Coefficients in
Bayesian Inference

Classical hypothesis testing is not a natural part of Bayesian inference (Gelman et al.
2004, p. 162). Nonetheless, if the question addressed by a classical hypothesis test is
whether the data support the conclusion (i.e., alternative hypothesis) that bi is greater
than bi0, a sensible approach is to use the posterior distribution (in this case the
t distribution with nþ 2a degrees of freedom) to compute the probability

P
�

t(nþ 2a) .
bi0 � f�i

w�ii

�
:

The larger this probability is, the more credible is the hypothesis that bi . bi0.
If, alternatively, classical hypothesis testing is used to select a model from a set of

candidate models, the corresponding Bayesian approach is to compute an information
statistic for each model in question. For example, Schwarz (1978) proposed the
Bayesian Information Criterion (BIC) for multiple linear regression models, and
Spiegelhalter et al. (2002) proposed the Deviance Information Criterion (DIC) for
more general Bayesian models. The model with the lowest value of the information
criterion is selected. Model selection in Bayesian analysis is an area of current research.

11.3.3 Special Cases of Inference in Bayesian Multiple
Regression Models

Two special cases of inference in this Bayesian linear model are of particular interest.
First, consider the use of a diffuse prior. Let f ¼ 0, let V be a diagonal matrix with
all diagonal elements equal to a large constant (say, 106), and let a and d both be
equal to a small constant (say, 1026). In this case, V21 is close to O, and so f�,
the Bayesian point estimate of b in (11.16), is approximately equal to

(X0X)�1X0y,

the classical least-squares estimate. Also, since (Iþ XVX0)�1 ¼ I� X(X0XþV�1)�1X0

(see Problem 11.3a), the covariance matrix W� approaches

W� ¼
y0[I� X(X0X)�1X0]y

n
(X0X)�1

¼ n� 1
n

s2(X0X)�1 [by (7:26)]:
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Thus, in the case of diffuse priors, the Bayesian confidence region (11.17)
reduces to a region similar to (8.46), and Bayesian confidence intervals for the
regression coefficients in (11.19) are similar to classical confidence intervals in
(8.47); the only differences are the multiplicative factor (n 2 1)/n and the use of
the t distribution with n degrees of freedom rather than n 2 k 2 1 degrees of
freedom. If a Bayesian multiple linear regression model with independent uniformly
distributed priors for b and ln (t�1) is considered, Bayesian confidence intervals for
the regression coefficients are exactly equal to classical confidence intervals
(Problem 11.5). One result of this is that simple Bayesian interpretations can be
validly applied to confidence intervals for the classical linear model. In fact, most
inferences for the classical linear model can be stated in terms of properties of pos-
terior distributions.

The second special case of inference in this Bayesian linear model is the case in
which f ¼ 0 and V is a diagonal matrix with a constant on the diagonal. Thus
V ¼ aI, where a is a positive number, and the Bayesian estimator of b in (11.16)
becomes

X0Xþ 1
a

I

� ��1

X0y:

For the centered model (Section 7.5) this estimator is also known as the “ridge
estimator” (Hoerl and Kennard 1970). It was originally proposed as a method for
dealing with collinearity, the situation in which the columns of the X matrix have
near-linear dependence so that X0X is nearly singular. However, the estimator
may also be understood as a “shrinkage estimator” in which prior information
causes the estimates of the coefficients to be shrunken toward zero (Seber and
Lee 2003, pp. 321–322). The use of a Bayesian linear model with hyperpriors
(prior distributions for the parameters of the prior distributions) leads to a reasonable
choice of value for a in terms of variances of the prior and hyperprior distributions
(Lindley and Smith 1972).

11.3.4 Bayesian Point and Interval Estimation of s2

A possible Bayesian point estimator of s2 is the mean of the marginal inverse gamma
density in (11.15)

(�f0�V�1
� f� þf0V�1fþ y0yþ 2d)=2

aþ n=2� 1

and a 100(1 2 v)% Bayesian confidence interval for s2 is given by the 12v/2 and
v/2 quantiles of the appropriate inverse gamma distribution.

As a special case, note that if a and d are both close to 0, f ¼ 0, and V is a diag-
onal matrix with all diagonal elements equal to a large constant so that V21 is close
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to O, then the Bayesian point estimator of s2 is approximately

(y0y�f0�V
�1
� f�)=2

n=2� 1
¼ y0y� y0X(X0X)�1X0y

n� 2

¼ y0[I� X(X0X)�1X0]y
n� 2

¼ n� k � 1
n� 2

s2,

and the centered Bayesian confidence limits are the 12v/2 quantile and the v/2
quantile of the inverse gamma distribution with parameters n/2 and
y0[I� X(X0X)�1X0]y=2.

11.4 BAYESIAN INFERENCE THROUGH MARKOV CHAIN
MONTE CARLO SIMULATION

The inability to derive a closed-form marginal posterior distribution for a parameter is
extremely common in Bayesian inference (Gilks et al. 1998, p. 3). For example, if the
Bayesian multiple regression model of Section 11.2.1 had involved a prior distri-
bution for b that was not conditional on t, closed-form marginal distributions for
the parameters could not have been derived (Lindley and Smith 1972). In actual prac-
tice, the exception in Bayesian inference is to be able to derive closed-form marginal
posterior distributions. However, this difficulty turns out to be only a minor hindrance
when modern computing resources are available.

If it were possible, an ideal solution would be to draw a large number of samples
from the joint posterior distribution. Then marginal means, marginal highest density
intervals, and other properties of the posterior distribution could be approximated
using sample statistics. Furthermore, functions of the sampled values could be calcu-
lated in order to approximate marginal posterior distributions of these functions. The
big question, of course, is how it would be possible to draw samples from a distri-
bution for which a familiar closed-form joint density function is not available.

A general approach for accomplishing this is referred to as Markov Chain Monte
Carlo (MCMC) simulation (Gilks et al. 1998). A Markov Chain is a special sequence
of random variables (Ross 2006, p. 185). Probability laws for general sequences of
random variables are specified in terms of the conditional distribution of the
current value in the sequence, given all past values. A Markov Chain is a simple
sequence in which the conditional distribution of the current value is completely
specified, given only the most recent value.

Markov Chain Monte Carlo simulation in Bayesian inference is based on sequences of
alternating random draws from conditional posterior distributions of each of the par-
ameters in the model given the most recent values of the other parameters. This
process generates a Markov Chain for each parameter. Moreover, the unconditional dis-
tribution for each parameter converges to the marginal posterior distribution of the
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parameter, and the unconditional joint distribution of the vector of parameters for any
complete iteration of MCMC converges to the joint posterior distribution. Thus after dis-
carding a number of initial draws (the “burn-in”), draws may be considered to constitute
sequences of samples from marginal posterior distributions of the parameters. The
samples are not independent, but the nonindependence can be ignored if the number
of draws is sufficiently large. Plots of sample values can be examined to determine
whether a sufficiently large number of draws has been obtained (Gilks et al. 1998).

When the prior distributions are conjugate, closed-form density functions of the
conditional posterior distributions of the parameters are available regardless of
whether closed-form marginal posterior distributions can be derived. In the case of
conjugate priors, a simple form of MCMC called “Gibbs sampling” (Gilks et al.
1998, Casella and George 1992) can be used by which draws are made successively
from each of the conditional distributions of the parameters, given the current draws
for the other parameters.

We now illustrate this procedure. Consider again the Bayesian multiple regression
model in which yjb, t is Nn(Xb, t�1I), bjt is Nkþ1(f, t�1V), and t is gamma(a, d).
The joint posterior density function is given in (11.10). The conditional posterior
density (or “full conditional”) of bjt, y can be obtained by picking the terms out
of (11.10) that involve b, and considering everything else to be part of the normal-
izing constant. Thus, the conditional density of bjt, y is

w(bjt, y) ¼ c6e�t(b�f�)0V�1
� (b�f�)=2:

Clearly bjt, y is Nkþ1(f�, t
�1V�): Similarly, the conditional posterior density for

tjb, y is

c(tjb, y) ¼ c7t
[(a��þkþ3)=2]�1e�t[(b�f�)0V�1

� (b�f�)þd��]=2

so that tjb, y can be seen to be gamma {(a�� þ k þ 3)=2,

[(b�f�)
0V�1
� (b�f�)þ d��]=2}:

Gibbs sampling for this model proceeds as follows:

† Specify a starting value t0 [possibly 1/s2 from (7.23)].
† For i ¼ 1 to M: draw bi from Nkþ1(f�, t

�1
i�1V�), draw ti from gamma

{(a�� þ k þ 3)=2, [(bi �f�)
0V�1
� (bi �f�)þ d��]=2}:

† Discard the first Q draws (as burn-in), and consider the last M 2 Q draws (bi, ti)
to be draws from the joint posterior distribution. For this model, using the start-
ing value of 1/s2, Q would usually be very small (say, 0), and M would be large
(say, 10,000).

Bayesian inferences for all parameters of the model could now be carried out using
sample statistics of this empirical joint posterior distribution. For example, a Bayesian
point estimate of t could be calculated as the sample mean or median of the draws of t
from the joint posterior distribution. If we calculate (or “monitor”) 1/t on each iter-
ation, a Bayesian point estimate of s2 ¼ 1/t could be calculated as the mean or
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median of 1/t. A 95% Bayesian interval estimate of s2 could be computed as the
central 95% interval of the sample distribution of s2. Other inferences could similarly
be drawn on the basis of sample draws from the joint posterior distribution.

Example 11.4. Table 11.1 contains body fat data for a sample of 20 females aged
25–34 (Kutner et al. 2005, p. 256). The response variable was body fat ( y), and
two predictor variables were triceps skinfold thickness (x1) and midarm circumfer-
ence (x2). The data were analyzed using the Bayesian multiple regression model of
Section 11.2.1 with diffuse priors in which f0 ¼ (0, 0, 0), V ¼ 106I3, a ¼ 0.0001,
and d ¼ 0.0001. Density functions of the marginal posterior distributions of b0,
b1, and b2 from (11.13) as well as the marginal posterior density of s2 from
(11.15) are graphed in Figure 11.1. Superimposed on these (and almost indistinguish-
able from them) are smooth estimates (Silverman 1999) of the same posterior den-
sities based on Gibbs sampling with Q ¼ 0 and M ¼ 10,000. A

11.5 POSTERIOR PREDICTIVE INFERENCE

As a final aspect of Bayesian inference for the multiple regression model, we consider
Bayesian prediction of the value of the response variable for a future individual. If we
again use the Bayesian multiple regression model of Section 11.2.1 in which yjb, t is
Nn(Xb, t�1I), bjt is Nkþ1(f, t�1V), and t is gamma(a, d), the posterior
predictive density for a future observation y0 with predictor variables x0 can be

TABLE 11.1 Body Fat Data

y x1 x2

11.9 19.5 29.1
22.8 24.7 28.2
18.7 30.7 37.0
20.1 29.8 31.1
12.9 19.1 30.9
21.7 25.6 23.7
27.1 31.4 27.6
25.4 27.9 30.6
21.3 22.1 23.2
19.3 25.5 24.8
25.4 31.1 30.0
27.2 30.4 28.3
11.7 18.7 23.0
17.8 19.7 28.6
12.8 14.6 21.3
23.9 29.5 30.1
22.6 27.7 25.7
25.4 30.2 24.6
14.8 22.7 27.1
21.1 25.2 27.5
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expressed using (11.5) as

r( y0jy) ¼
ð1

0

ð1

�1

� � �
ð1

�1

q( y0jb, t)g(b, tjy)db dt

¼ c

ð1

0

ð1

�1

� � �
ð1

�1

t1=2e�t(y0�x00b)2=2t (a��þkþ1)=2

� e�t[(b�f�)0V�1
� (b�f�)þd��]=2db dt

¼ c

ð1

�1

� � �
ð1

�1

[(b�f�)
0V�1
� (b�f�)

þ (y0 � x00b)2 þ d��]
�(a��þkþ4)=2db:

Further analytical progress with this integral is difficult. Nonetheless, Gibbs
sampling as in Section 11.4 can be easily extended to simulate the posterior predictive
distribution of y0 as follows:

† Specify a starting value t0 [possibly 1/s2 from (7.23)].
† For i ¼ 1 to M: draw bi from Nkþ1(f�,t

�1
i�1V�), draw ti from

gamma{(a�� þ k þ 3)=2, [(bi �f�)
0V�1
� (bi �f�)þ d��]=2}, draw y0i from

N(x00bi, t
�1
i ):

Figure 11.1 Posterior densities of parameters for the fat data in Table 11.1.

11.5 POSTERIOR PREDICTIVE INFERENCE 291



† Discard the first Q draws (as burn-in), and consider the last M 2 Q draws of y0i

to be draws from the posterior predictive distribution.

Example 11.5. Example 11.4(continued). Consider a new individual with x1 ¼ 20
and x2 ¼ 25. Thus x00 ¼ (1, 20, 25). Figure 11.2 gives a smooth estimate of
the posterior predictive density of y0 based on Gibbs sampling with Q ¼ 0 and
M ¼ 10,000. A

The approximate Bayesian 95% prediction interval derived from this density is
(11.83, 20.15), which may be compared to the 95% prediction interval (10.46,
21.57) for the same future individual using the non-Bayesian approach (8.62).

This chapter gives a small taste of the calculations associated with the modern
Bayesian multiple regression model. With very little additional work, many aspects
of the model can be modified and customized, especially if the MCMC approach
is used. Versatility is one of the great advantages of the Bayesian approach.

PROBLEMS

11.1 As in Theorem 11.2a, show that (b�f)0V�1(b�f) þ(y� Xb)0

(y� Xb)þ d� ¼ (b�f�)
0V�1
� (b� f�)þd��, where V� ¼ (V�1þX0X)�1,

f� ¼V�(V�1fþX0y), and d�� ¼�f0�V�1
� f�þ f0V�1fþy0yþd�:

11.2 As used in the proof to Theorem 11.2b, show that

ð1

0
tae�btdt ¼ b�(aþ1)G(aþ 1):

Figure 11.2 Approximate posterior predictive density using Gibbs sampling for a future
observation y0 with x00 ¼ (1, 20, 25) for the fat data in Table 11.1.
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(a) Show that (Iþ XVX0)�1 ¼ I� X(X0Xþ V�1)�1X0:

(b) Show that (Iþ XVX0)�1X ¼ X(X0Xþ V�1)�1V�1:

(c) Show that V�1 � V�1(X0Xþ V�1)�1V�1 ¼ X0(Iþ XVX0)�1X:

11.4 As in the proof to Theorem 11.2b, show that y0yþf0V�1f�f0�V
�1
� f�

¼ ðy� XfÞ0ðIþ XVX0Þ�1ðy� XfÞ, where V� ¼ ðX0Xþ V�1Þ�1 and
f� ¼ V�ðX0yþ V�1fÞ:

11.5 Consider the Bayesian multiple linear regression model in which yjb, t is
NnðXb, t�1IÞ, b is uniform (Rkþ1) [i.e., uniform over (k þ 1) -dimensional
space], and ln(t21) is uniform (21, 1). Show that the marginal posterior
distribution of bjy is the multivariate t distribution with parameters

½n� k � 1, b̂, s2ðX0XÞ�1�, where b̂ and s2 are defined in the usual way
[see (7.6) and (7.23)]. These prior distributions are called improper priors
because uniform distributions must be defined for bounded sets of values.
Nonetheless, the sets can be very large, and so we can proceed as if they
were unbounded.

11.6 Consider the augmented data vector
y
f

� �
with mean vector

X
Ikþ1

� �
b and

covariance matrix

1
t

I O

O
1
t

V

0
B@

1
CA:

Show that the generalized least-squares estimator of b is the Bayesian estima-

tor in (11.16), ðV�1 þ X0XÞ�1ðV�1fþ X0yÞ:

11.7 Given that t is gamma(a, d) as in (11.7), find E(t) and var(t).

11.8 Use the Bayesian multiple regression model in which yjb, t is
NnðXb, t�1IÞ,bjt is Nkþ1ðf, t�1VÞ, and t is gamma(a, d). Derive the mar-
ginal posterior density function for s2jy; where s2 ¼ 1=t:

11.9 Consider the Bayesian simple linear regression model in which yijb0,b1,
is Nðb0 þ b1xi, 1=tÞ for i ¼ 1, . . . , n, b0jt is N(a,s2

0=t), b1jt is
N(b,s2

1=t), cov(b0,b1jt) ¼ s12, and t is gamma(a, d).

(a) Find the marginal posterior density of b1jy: (Do not simplify the results.)

(b) Find Bayesian point and interval estimates of b1.

11.10 Consider the Bayesian multiple regression model in which yjb, t is
Nn(Xb, t�1I), b is Nkþ1(f, V), and t is gamma(a, d). Note that this is
similar to the model of Section 11.2 except that the prior distribution of b
is not conditional on t.

(a) Find the joint posterior density of b, tjy up to a normalizing constant.
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(b) Find the conditional posterior density of bjt, y up to a normalizing
constant.

(c) Find the conditional posterior density of tjb, y up to a normalizing
constant.

(d) Develop a Gibbs sampling procedure for estimating the marginal pos-
terior distributions of bjy and (1=t)jy:

11.11 Use the land rent data in Table 7.5.
(a) Find 95% Bayesian confidence intervals for b1, b2, and b3 using (11.19)

in connection with the model in which yjb, t is Nn(Xb, t�1I), bjt is
Nkþ1(f, t�1V), and t is gamma(a, d), where f ¼ 0, V ¼
100I, a ¼ :0001, and d ¼ .0001.

(b) Repeat part (a), but use Gibbs sampling to approximate the confidence
intervals.

(c) Use Gibbs sampling to obtain a 95% Bayesian posterior prediction inter-
val for a future individual with x00 ¼ (1, 15, 30, :5):

(d) Repeat part (b), but use the model in which

yjb, t is Nn(Xb, t�1I),

b is Nkþ1(f, V),

t is gamma(a, d) (11:20)

where f ¼ 0, V ¼ 100I, a ¼ 0:0001, and d ¼ 0:0001:

11.12 As in Section 11.5, show that

ð1

0

ð1

�1

� � �
ð1

�1

t1=2e�t(y0�x00b)2=2t(a��þkþ1)=2e�t[(b�f�)0V�1
� (b�f�)þd��]=2db dt

¼ c

ð1

�1

� � �
ð1

�1

[(b�f�)
0V�1
� (b�f�)þ (y0 � x00b)2 þ d��]

(�a��þkþ4)=2db:
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12 Analysis-of-Variance Models

In many experimental situations, a researcher applies several treatments or treatment
combinations to randomly selected experimental units and then wishes to compare
the treatment means for some response y. In analysis-of-variance (ANOVA), we
use linear models to facilitate a comparison of these means. The model is often
expressed with more parameters than can be estimated, which results in an X
matrix that is not of full rank. We consider procedures for estimation and testing
hypotheses for such models.

The results are illustrated using balanced models, in which we have an equal
number of observations in each cell or treatment combination. Unbalanced models
are treated in more detail in Chapter 15.

12.1 NON-FULL-RANK MODELS

In Section 12.1.1 we illustrate a simple one-way model, and in Section 12.1.2 we
illustrate a two-way model without interaction.

12.1.1 One-Way Model

Suppose that a researcher has developed two chemical additives for increasing the
mileage of gasoline. To formulate the model, we might start with the notion that
without additives, a gallon yields an average of m miles. Then if chemical 1 is
added, the mileage is expected to increase by t1 miles per gallon, and if chemical
2 is added, the mileage would increase by t2 miles per gallon.

The model could be expressed as

y1 ¼ mþ t1 þ 11, y2 ¼ mþ t2 þ 12,

where y1 is the miles per gallon from a tank of gasoline containing chemical 1 and 11

is a random error term. The variables y2 and 12 are defined similarly. The researcher

Linear Models in Statistics, Second Edition, by Alvin C. Rencher and G. Bruce Schaalje
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would like to estimate the parameters m, t1, and t2 and test hypotheses such as
H0 : t1 ¼ t2.

To make reasonable estimates, the researcher needs to observe the mileage per
gallon for more than one tank of gasoline for each chemical. Suppose that the exper-
iment consists of filling the tanks of six identical cars with gas, then adding chemical
1 to three tanks and chemical 2 to the other three tanks. We can write a model for each
of the six observations as follows:

y11 ¼ mþ t1 þ 111, y12 ¼ mþ t1 þ 112, y13 ¼ mþ t1 þ 113,

y21 ¼ mþ t2 þ 121, y22 ¼ mþ t2 þ 122, y23 ¼ mþ t2 þ 123, (12:1)

or

yij ¼ mþ ti þ 1ij, i ¼ 1, 2, j ¼ 1, 2, 3 (12:2)

where yij is the observed miles per gallon of the jth car that contains the ith chemical
in its tank and 1ij is the associated random error. The six equations in (12.1) can be
written in matrix form as

y11

y12

y13

y21

y22

y23

0
BBBBBB@

1
CCCCCCA
¼

1 1 0
1 1 0
1 1 0
1 0 1
1 0 1
1 0 1

0
BBBBBB@

1
CCCCCCA

m

t1

t2

0
@

1
Aþ

111

112

113

121

122

123

0
BBBBBB@

1
CCCCCCA

(12:3)

or

y ¼ Xbþ 1:

In (12.3), X is a 6 � 3 matrix whose rank is 2 since the first column is the sum of
the second and third columns, which are linearly independent. Since X is not of full
rank, the theorems of Chapters 7 and 8 cannot be used directly for estimating
b ¼ (m, t1, t2)0 and testing hypotheses. Thus, for example, the parameters m, t1,

and t2 cannot be estimated by b̂ ¼ (X0X)�1X0y in (7.6), because (X0X)�1 does not exist.
To further explore the reasons for the failure of (12.3) to be a full-rank model, let

us reconsider the meaning of the parameters. The parameter m was introduced as the
mean before adding chemicals, and t1 and t2 represented the increase due to chemi-
cals 1 and 2, respectively. However, the model yij ¼ mþ ti þ 1ij in (12.2) cannot
uniquely support this characterization. For example, if m ¼ 15, t1 ¼ 1, and t2 ¼ 3,
the model becomes

y1j ¼ 15þ 1þ 11j ¼ 16þ 11j, j ¼ 1, 2, 3,

y2j ¼ 15þ 3þ 12j ¼ 18þ 12j, j ¼ 1, 2, 3:
(12:4)
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However, from y1j ¼ 16þ 11j and y2j ¼ 18þ 12j, we cannot determine that
m ¼ 15, t1 ¼ 1, and t2 ¼ 3, because the model can also be written as

y1j ¼ 10þ 6þ 11j, j ¼ 1, 2, 3,

y2j ¼ 10þ 8þ 12j, j ¼ 1, 2, 3,

or alternatively as

y1j ¼ 25� 9þ 11j, j ¼ 1, 2, 3,

y2j ¼ 25� 7þ 12j, j ¼ 1, 2, 3,

or in infinitely many other ways.
Thus in (12.1) or (12.2), m, t1, and t2 are not unique and therefore cannot be esti-

mated. With three parameters and rank(X) ¼ 2, the model is said to be overpara-
meterized. Note that increasing the number of observations (replications) for each
of the two additives will not change the rank of X.

There are various ways—each with its own advantages and disadvantages—to
remedy this lack of uniqueness of the parameters in the overparameterized model.
Three such approaches are (1) redefine the model using a smaller number of new par-
ameters that are unique, (2) use the overparameterized model but place constraints on
the parameters so that they become unique, and (3) in the overparameterized model,
work with linear combinations of the parameters that are unique and can be unam-
biguously estimated. We briefly illustrate these three techniques.

1. To reduce the number of parameters, consider the illustration in (12.4):

y1j ¼ 16þ 11j and y2j ¼ 18þ 12j:

The values 16 and 18 are the means after the two treatments have been applied.
In general, these means could be labeled m1 and m2 and the model could be
written as

y1j ¼ m1 þ 11j and y2j ¼ m2 þ 12j:

The means m1 and m2 are unique and can be estimated. The redefined model for
all six observations in (12.1) or (12.2) takes the form

y11

y12

y13

y21

y22

y23

0
BBBBBB@

1
CCCCCCA
¼

1 0
1 0
1 0
0 1
0 1
0 1

0
BBBBBB@

1
CCCCCCA

m1
m2

� �
þ

111

112

113

121

122

123

0
BBBBBB@

1
CCCCCCA

,

12.1 NON-FULL-RANK MODELS 297



which we write as

y ¼Wmþ 1:

The matrix W is full-rank, and we can use (7.6) to estimate m as

m̂ ¼ m̂1
m̂2

� �
¼ (W0W)�1W0y:

This solution is called reparameterization.

2. An alternative to reducing the number of parameters is to incorporate con-
straints on the parameters m, t1, and t2. We denote the constrained parameters
as m�, t�1, and t�2. In (12.1) or (12.2), the constraint t�1 þ t�2 ¼ 0 has the specific
effect of defining m� to be the new mean after the treatments are applied and t�1
and t�2 to be deviations from this mean. With this constraint, y1j ¼ 16þ 11j and
y2j ¼ 18þ 12j in (12.4) can be written only as

y1j ¼ 17� 1þ 11j, y2j ¼ 17þ 1þ 12j:

This model is now unique because there is no other way to express it so that
t�1 þ t�2 ¼ 0. Such constraints are often called side conditions. The model
yij ¼ m� þ t�i þ 1ij subject to t�1 þ t�2 ¼ 0 can be expressed in a full-rank
format by using t�2 ¼ �t�1 to obtain y1j ¼ m� þ t�1 þ 11j and
y2j ¼ m� � t�1 þ 1ij. The six observations can then be written in matrix form as

y11

y12

y13

y21

y22

y23

0
BBBBBB@

1
CCCCCCA
¼

1 1
1 1
1 1
1 �1
1 �1
1 �1

0
BBBBBB@

1
CCCCCCA

m�

t�1

� �
þ

111

112

113

121

122

123

0
BBBBBB@

1
CCCCCCA

or

y ¼ X�m� þ 1:

The matrix X� is full-rank, and the parameters m� and t�1 can be estimated.
It must be kept in mind, however, that specific constraints impose specific defi-
nitions on the parameters.

3. As we examine the parameters in the model illustrated in (12.4), we see some
linear combinations that are unique. For example, t1 � t2 ¼ �2, mþ t1 ¼ 16,
and mþ t2 ¼ 18 remain the same for all alternative values of m, t1, and t2.
Such unique linear combinations can be estimated.
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In the following example, we illustrate these three approaches to parameter defi-
nition in a simple two-way model without interaction.

12.1.2 Two-Way Model

Suppose that a researcher wants to measure the effect of two different vitamins and
two different methods of administering the vitamins on the weight gain of chicks.
This leads to a two-way model. Let a1 and a2 be the effects of the two vitamins,
and let b1 and b2 be the effects of the two methods of administration. If the researcher
assumes that these effects are additive (no interaction; see the last paragraph in this
example for some comments on interaction), the model can be written as

y11 ¼ mþ a1 þ b1 þ 111, y12 ¼ mþ a1 þ b2 þ 112,

y21 ¼ mþ a2 þ b1 þ 121, y22 ¼ mþ a2 þ b2 þ 122,

or as

yij ¼ mþ ai þ bj þ 1ij, i ¼ 1, 2, j ¼ 1, 2, (12:5)

where yij is the weight gain of the ijth chick and 1ij is a random error. (To simplify
exposition, we show only one replication for each vitamin–method combination.)

In matrix form, the model can be expressed as

y11

y12

y21

y22

0
BB@

1
CCA ¼

1 1 0 1 0
1 1 0 0 1
1 0 1 1 0
1 0 1 0 1

0
BB@

1
CCA

m

a1

a2

b1

b2

0
BBBB@

1
CCCCA
þ

111

112

121

122

0
BB@

1
CCA (12:6)

or

y ¼ Xbþ 1:

In the X matrix, the third column is equal to the first column minus the second
column, and the fifth column is equal to the first column minus the fourth column.
Thus rank(X) ¼ 3, and the 5 � 5 matrix X0X does not have an inverse. Many of
the theorems of Chapters 7 and 8 are therefore not applicable. Note that if there
were replications leading to additional rows in the X matrix, the rank of X would
still be 3.

Since rank(X) ¼ 3, there are only three possible unique parameters unless side
conditions are imposed on the five parameters. There are many ways to reparameter-
ize in order to reduce to three parameters in the model. For example, consider the par-
ameters g1, g2, and g3 defined as

g1 ¼ mþ a1 þ b1, g2 ¼ a2 � a1, g3 ¼ b2 � b1:
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The model can be written in terms of the g terms as

y11 ¼ (mþ a1 þ b1)þ 111 ¼ g1 þ 111

y12 ¼ (mþ a1 þ b1)þ (b2 � b1)þ 112 ¼ g1 þ g3 þ 112

y21 ¼ (mþ a1 þ b1)þ (a2 � a1)þ 121 ¼ g1 þ g2 þ 121

y22 ¼ (mþ a1 þ b1)þ (a2 � a1)þ (b2 � b1)þ 122 ¼ g1 þ g2 þ g3 þ 122:

In matrix form, this becomes

y11

y12

y21

y22

0
BB@

1
CCA ¼

1 0 0
1 0 1
1 1 0
1 1 1

0
BB@

1
CCA

g1

g2
g3

0
@

1
Aþ

111

112

121

122

0
BB@

1
CCA

or

y ¼ Zgþ 1: (12:7)

The rank of Z is clearly 3, and we have a full-rank model for which g can be esti-
mated by ĝ ¼ (Z0Z)�1Z0y. This provides estimates of g2 ¼ a2 � a1 and
g3 ¼ b2 � b1, which are typically of interest to the researcher.

In Section 12.2.2, we will discuss methods for showing that linear functions such
as mþ a1 þ b1, a2 � a1, and b2 � b1 are unique and estimable, even though
m, a1, a2, b1, b2 are not unique and not estimable.

We now consider side conditions on the parameters. Since rank(X) ¼ 3 and there
are five parameters, we need two (linearly independent) side conditions. If these
two constraints are appropriately chosen, the five parameters become unique and
thereby estimable. We denote the constrained parameters by m�, a�i , and b�j and con-
sider the side conditions a�1 þ a�2 ¼ 0 and b�1 þ b�2 ¼ 0. These lead to unique
definitions of a�i and b�j as deviations from means. To show this, we start by
writing the model as

y11 ¼ m11 þ 111, y12 ¼ m12 þ 112,

y21 ¼ m21 þ 121, y22 ¼ m22 þ 122,
(12:8)

where mij ¼ E( yij) is the mean weight gain with vitamin i and method j. The means
are displayed in Table 12.1, and the parameters a�1, a�2, b�1, b�2 are defined as row (a)
and column (b) effects.

The means in Table 12.1 are defined as follows:

�mi: ¼
mi1 þ mi2

2
, �m:j ¼

m1j þ m2j

2
, �m:: ¼

m11 þ m12 þ m21 þ m22

4
:
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The first row effect, a�1 ¼ �m1: � �m::, is the deviation of the mean for vitamin 1 from
the overall mean (after treatments) and is unique. The parameters a�2, b�1, and b�2 are
likewise uniquely defined. From the definitions in Table 12.1, we obtain

a�1 þ a�2 ¼ �m1: � �m:: þ �m2: � �m:: ¼ �m1: þ �m2: � 2�m::

¼ 2�m:: � 2�m:: ¼ 0,
(12:9)

and similarly, b�1 þ b�2 ¼ 0. Thus with the side conditions a�1 þ a�2 ¼ 0 and
b�1 þ b�2 ¼ 0, the redefined parameters are both unique and interpretable.

In (12.5), it is assumed that the effects of vitamin and method are additive. To
make this notion more precise, we write the model (12.5) in terms of
m� ¼ m::, a�i ¼ �mi: � �m::, and b�j ¼ �m:j � �m:::

mij ¼ �m:: þ (�mi: � �m::)þ (�m:j � �m::)þ (mij � �mi: � �m:j þ �m::)

¼ m� þ a�i þ b�j :

The term mij � �mi: � �m:j þ �m::, which is required to balance the equation, is associ-
ated with the interaction between vitamins and methods. In order for a�i and b�j to
be additive effects, the interaction mij � �mi: � �m:j þ �m:: must be zero. Interaction
will be treated in Chapter 14.

12.2 ESTIMATION

In this section, we consider various aspects of estimation of b in the non-full-rank
model y ¼ Xbþ 1. We do not reparameterize or impose side conditions. These
two approaches to estimation are discussed in Sections 12.5 and 12.6, respectively.
Normality of y is not assumed in the present section.

TABLE 12.1 Means and Effects for the Model in (12.8)

Columns (b)

Rows (a) 1 2 Row Means Row Effects

Row 1 m11 m12 �m1: a�1 ¼ �m1: � �m::
Row 2 m21 m22 �m2: a�2 ¼ �m2: � �m::
Column

means
�m:1 �m:2 �m:: —

Column
effects

b�1 ¼ �m:1 � �m:: b�2 ¼ �m:2 � �m:: — —

12.2 ESTIMATION 301



12.2.1 Estimation of b

Consider the model

y ¼ Xbþ 1,

where E(y) ¼ Xb, cov(y) ¼ s2I, and X is n� p of rank k , p � n. [We will say
“X is n� p of rank k , p � n” to indicate that X is not of full rank; that is,
rank(X) , p and rank(X) , n. In some cases, we have k , n , p.] In this non-
full-rank model, the p parameters in b are not unique. We now ascertain whether
b can be estimated.

Using least-squares, we seek a value of b̂ that minimizes

1̂01̂ ¼ (y� Xb̂)0(y� Xb̂):

We can expand 1̂01̂ to obtain

1̂01̂ ¼ y0y� 2b̂0X0yþ b̂0X0Xb̂, (12:10)

which can be differentiated with respect to b̂ and set equal to 0 to produce the familiar
normal equations

X0Xb̂ ¼ X0y: (12:11)

Since X is not full rank, X0X has no inverse, and (12.11) does not have a unique
solution. However, X0Xb̂ ¼ X0y has (an infinite number of) solutions:

Theorem 12.2a. If X is n� p of rank k , p � n, the system of equations

X0Xb̂ ¼ X0y is consistent.

PROOF. By Theorem 2.8f, the system is consistent if and only if

X0X(X0X)�X0y ¼ X0y, (12:12)

where (X0X)� is any generalized inverse of X0X. By Theorem 2.8c(iii), X0X
(X0X)�X0 ¼ X0, and (12.12) therefore holds. (An alternative proof is suggested in
Problem 12.3.) A

Since the normal equations X0Xb̂ ¼ X0y are consistent, a solution is given by
Theorem 2.8d as

b̂ ¼ (X0X)�X0y, (12:13)

302 ANALYSIS-OF-VARIANCE MODELS



where (X0X)� is any generalized inverse of X0X. For a particular generalized

inverse (X0X)�, the expected value of b̂ is

E(b̂) ¼ (X0X)�X0E(y)

¼ (X0X)�X0Xb: (12:14)

Thus, b̂ is an unbiased estimator of (X0X)�X0Xb. Since (X0X)�X0X = I, b̂ is not an
unbiased estimator of b. The expression (X0X)�X0Xb is not invariant to the choice of

(X0X)�; that is, E(b̂) is different for each choice of (X0X)�. [An implication in
(12.14) is that having selected a value of (X0X)�, we would use that same value of
(X0X)� in repeated sampling.]

Thus, b̂ in (12.13) does not estimate b. Next, we inquire as to whether there are
any linear functions of y that are unbiased estimators for the elements of b; that is,
whether there exists a p� n matrix A such that E(Ay) ¼ b. If so, then

b ¼ E(Ay) ¼ E[A(Xbþ 1)] ¼ E(AXb)þ AE(1) ¼ AXb:

Since this must hold for all b, we have AX ¼ Ip [see (2.44)]. But by Theorem 2.4(i),
rank(AX) , p since the rank of X is less than p. Hence AX cannot be equal to Ip, and
there are no linear functions of the observations that yield unbiased estimators for the
elements of b.

Example 12.2.1. Consider the model yij ¼ mþ ti þ 1ij; i ¼ 1, 2; j ¼ 1, 2, 3 in
(12.2). The matrix X and the vector b are given in (12.3) as

X ¼

1 1 0
1 1 0
1 1 0
1 0 1
1 0 1
1 0 1

0
BBBBBB@

1
CCCCCCA

, b ¼
m

t1

t2

0
@

1
A:

By Theorem 2.2c(i), we obtain

X0X ¼
6 3 3
3 3 0
3 0 3

0
@

1
A:

By Corollary 1 to Theorem 2.8b, a generalized inverse of X0X is given by

(X0X)� ¼
0 0 0
0 1

3 0
0 0 1

3

0
@

1
A:
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The vector X0y is given by

X0y ¼
1 1 1 1 1 1
1 1 1 0 0 0
0 0 0 1 1 1

0
@

1
A

y11

y12

y13

y21

y22

y23

0
BBBBBB@

1
CCCCCCA
¼

y::
y1:

y2:

0
@

1
A,

where y:: ¼
P2

i¼1

P3
j¼1 yij and yi: ¼

P3
j¼1 yij. Then

b̂ ¼ (X0X)�X0y ¼
0 0 0
0 1

3 0
0 0 1

3

0
@

1
A

y::
y1:

y2:

0
@

1
A ¼

0
�y1:
�y2:

0
@

1
A,

where �yi: ¼
P3

j¼1 yij=3 ¼ yi:=3.
To find E(b̂), we need E( �yi:). Since E(1) ¼ 0, we have E(1ij) ¼ 0. Then

E(�yi:) ¼ E
X3

j¼1

yij=3

 !
¼ 1

3

P3
j¼1 E(yij)

¼ 1
3

P3
j¼1 E(mþ ti þ 1ij) ¼ 1

3 (3mþ 3ti þ 0)

¼ mþ ti:

Thus

E(b̂) ¼
0

mþ t1

mþ t2

0
@

1
A:

The same result is obtained in (12.14):

E(b̂) ¼ (X0X)�X0Xb̂

¼
0 0 0

0 1
3 0

0 0 1
3

0
B@

1
CA

6 3 3

3 3 0

3 0 3

0
B@

1
CA

m

t1

t2

0
B@

1
CA

¼
0

mþ t1

mþ t2

0
B@

1
CA: A
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12.2.2 Estimable Functions of b

Having established that we cannot estimate b, we next inquire as to whether we can
estimate any linear combination of the b’s, say, l0b. For example, in Section 12.1.1,
we considered the model yij ¼ mþ ti þ 1ij, i ¼ 1, 2, and found that m, t1, and t2 in
b ¼ (m, t1, t2)0 are not unique but that the linear function t1 � t2 ¼ (0, 1, �1)b is
unique. In order to show that functions such as t1 � t2 can be estimated, we first give
a definition of an estimable function l0b.

A linear function of parameters l0b is said to be estimable if there exists a linear
combination of the observations with an expected value equal to l0b; that is, l0b is
estimable if there exists a vector a such that E(a0y) ¼ l0b.

In the following theorem we consider three methods for determining whether a
particular linear function l0b is estimable.

Theorem 12.2b. In the model y ¼ Xbþ 1, where E(y) ¼ Xb and X is n� p
of rank k , p � n, the linear function l0b is estimable if and only if any one of
the following equivalent conditions holds:

(i) l0 is a linear combination of the rows of X; that is, there exists a vector a such
that

a0X ¼ l0: (12:15)

(ii) l0 is a linear combination of the rows of X0X or l is a linear combination of
the columns of X0X, that is, there exists a vector r such that

r0X0X ¼ l0 or X0Xr ¼ l: (12:16)

(iii) l or l0 is such that

X0X(X0X)�l ¼ l or l0(X0X)�X0X ¼ l0, (12:17)

where (X0X)� is any (symmetric) generalized inverse of X0X.

PROOF. For (ii) and (iii), we prove the “if” part. For (i), we prove both “if” and “only
if.”

(i) If there exists a vector a such that l0 ¼ a0X, then, using this vector a, we have

E(a0y) ¼ a0E(y) ¼ a0Xb ¼ l0b:

Conversely, if l0b is estimable, then there exists a vector a such that
E(a0y) ¼ l0b. Thus a0Xb ¼ l0b, which implies, among other things, that
a0X ¼ l0.
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(ii) If there exists a solution r for X0Xr ¼ l, then, by defining a ¼ Xr, we obtain

E(a0y) ¼ E(r0X0y) ¼ r0X0E(y)

¼ r0X0Xb ¼ l0b:

(iii) If X0X(X0X)�l ¼ l, then (X0X)�l is a solution to X0Xr ¼ l in part(ii). (For
proof of the converse, see Problem 12.4.) A

We illustrate the use of Theorem 12.2b in the following example.

Example 12.2.2a. For the model yij ¼ mþ ti þ 1ij; i ¼ 1, 2; j ¼ 1, 2, 3 in
Example 12.2.1, the matrix X and the vector b are given as

X ¼

1 1 0
1 1 0
1 1 0
1 0 1
1 0 1
1 0 1

0
BBBBBB@

1
CCCCCCA

, b ¼
m

t1

t2

0
@

1
A:

We noted in Section 12.1.1 that t1 � t2 is unique. We now show that t1 � t2 ¼
(0, 1,�1)b ¼ l0b is estimable, using all three conditions of Theorem 12.2b.

(i) To find a vector a such that a0X ¼ l0 ¼ (0, 1,�1), consider a0 ¼
(0, 0, 1,�1, 0, 0), which gives

a0X ¼ (0, 0, 1,�1, 0, 0)X ¼ (1, 1, 0)� (1, 0, 1)

¼ (0, 1,�1) ¼ l0:

There are many other choices for a, of course, that will yield a0X ¼ l0, for
example a0 ¼ (1, 0, 0, 0, 0,�1) or a0 ¼ (2,�1, 0, 0, 1,�2). Note that we can
likewise obtain l0b from E(y):

l0b ¼ a0Xb ¼ a0E(y) ¼ (0, 0, 1,�1, 0, 0)E(y)

¼ (0, 0, 1, �1, 0, 0)

E( y11)

E( y12)

E( y13)

E( y21)

E( y22)

E( y23)

0
BBBBBBBB@

1
CCCCCCCCA

¼ E( y13)� E( y21) ¼ mþ t1 � (mþ t2) ¼ t1 � t2:
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(ii) The matrix X0X is given in Example 12.2.1 as

X0X ¼
6 3 3
3 3 0
3 0 3

0
@

1
A:

To find a vector r such that X0Xr ¼ l ¼ (0, 1,�1)0, consider
r ¼ (0, 1

3 ,� 1
3 )0, which gives

X0Xr ¼
6 3 3
3 3 0
3 0 3

0
@

1
A

0
1
3

� 1
3

0
B@

1
CA ¼

0
1
�1

0
@

1
A ¼ l:

There are other possible values of r, of course, such as r ¼ (�1
3 , 2

3 , 0)0.

(iii) Using the generalized inverse (X0X)� ¼ diag(0, 1
3 , 1

3 ) given in Example
12.2.1, the product X0X(X0X)� becomes

X0X(X0X)� ¼
0 1 1
0 1 0
0 0 1

0
@

1
A:

Then, for l ¼ (0, 1,�1)0, we see that X0X(X0X)�l ¼ l in (12.17) holds:

0 1 1

0 1 0

0 0 1

0
B@

1
CA

0

1

�1

0
B@

1
CA ¼

0

1

�1

0
B@

1
CA: A

A set of functions l01b, l02b, . . . , l0mb is said to be linearly independent if the
coefficient vectors l1, l2, . . . , lm are linearly independent [see (2.40)]. The
number of linearly independent estimable functions is given in the next theorem.

Theorem 12.2c. In the non-full-rank model y ¼ Xbþ 1, the number of linearly
independent estimable functions of b is the rank of X.

PROOF. See Graybill (1976, pp. 485–486). A

From Theorem 12.2b(i), we see that x0ib is estimable for i ¼ 1, 2, . . . , n, where x0i
is the ith row of X. Thus every row (element) of Xb is estimable, and Xb itself can be
said to be estimable. Likewise, from Theorem 12.2b(ii), every row (element) of X0Xb
is estimable, and X0Xb is therefore estimable. Conversely, all estimable functions can
be obtained from Xb or X0Xb:

Thus we can examine linear combinations of the rows of X or of X0X to see what
functions of the parameters are estimable. In the following example, we illustrate the
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use of linear combinations of the rows of X to obtain a set of estimable functions of
the parameters.

Example 12.2.2b. Consider the model in (12.6) in Section 12.1.2 with

X ¼

1 1 0 1 0
1 1 0 0 1
1 0 1 1 0
1 0 1 0 1

0
BB@

1
CCA, b ¼

m

a1

a2

b1

b2

0
BBBB@

1
CCCCA
:

To examine what is estimable, we take linear combinations a0X of the rows of X to
obtain three linearly independent rows. For example, if we subtract the first row of X
from the third row and multiply by b, we obtain (0 �1 1 0 0)b ¼ �a1 þ a2, which
involves only the a’s. Subtracting the first row of X from the third row can be
expressed as a0X ¼ (�1 0 1 0)X ¼ �x01 þ x03, where x01 and x03 are the first and
third rows of X.

Subtracting the first row from each succeeding row in X gives

1 1 0 1 0
0 0 0 �1 1
0 �1 1 0 0
0 �1 1 �1 1

0
BB@

1
CCA:

Subtracting the second and third rows from the fourth row of this matrix yields

1 1 0 1 0
0 0 0 �1 1
0 �1 1 0 0
0 0 0 0 0

0
BB@

1
CCA:

Multiplying the first three rows by b, we obtain the three linearly independent esti-
mable functions

l01b ¼ mþ a1 þ b1, l02b ¼ b2 � b1, l03b ¼ a2 � a1:

These functions are identical to the functions g1, g2, and g3 used in Section 12.1.2 to
reparameterize to a full-rank model. Thus, in that example, linearly independent esti-
mable functions of the parameters were used as the new parameters.

In Example 12.2.2.b, the two estimable functions b2 � b1 and a2 � a1 are such
that the coefficients of the b’s or of the a’s sum to zero. A linear combination of
this type is called a contrast.
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12.3 ESTIMATORS

12.3.1 Estimators of l0b

From Theorem 12.2b(i) and (ii) we have the estimators a0y and r0X0y for l0b, where
a0 and r0 satisfy l0 ¼ a0X and l0 ¼ r0X0X, respectively. A third estimator of l0b is

l0b̂, where b̂ is a solution of X0Xb̂ ¼ X0y. In the following theorem, we discuss

some properties of r0X0y and l0b̂. We do not discuss the estimator a0y because it
is not guaranteed to have minimum variance (see Theorem 12.3d).

Theorem 12.3a. Let l0b be an estimable function of b in the model y ¼ Xbþ 1,

where E(y) ¼ Xb and X is n� p of rank k , p � n. Let b̂ be any solution to the

normal equations X0Xb̂ ¼ X0y, and let r be any solution to X0Xr ¼ l. Then the two

estimators l0b̂ and r0X0y have the following properties:

(i) E(l0b̂) ¼ E(r0X0y) ¼ l0b.

(ii) l0b̂ is equal to r0X0y for any b̂ or any r.

(iii) l0b̂ and r0X0y are invariant to the choice of b̂ or r.

PROOF

(i) By (12.14)

E(l0b̂) ¼ l0E(b̂) ¼ l0(X0X)�X0Xb:

By Theorem 12.2b(iii), l0(X0X)�X0X ¼ l0, and E(l0b̂) becomes

E(l0b̂) ¼ l0b:

By Theorem 12.2b(ii)

E(r0X0y) ¼ r0X0E(y) ¼ r0X0Xb ¼ l0b:

(ii) By Theorem 12.2b(ii), if l0b is estimable, l0 ¼ r0X0X for some r. Multiplying

the normal equations X0Xb̂ ¼ X0y by r0 gives

r0X0Xb̂ ¼ r0X0y:

Since r0X0X ¼ l0, we have

l0b̂ ¼ r0X0y:

(iii) To show that r0X0y is invariant to the choice of r, let r1 and r2 be such that
X0Xr1 ¼ X0Xr2 ¼ l. Then

r01X0Xb̂ ¼ r01X0y and r02X0Xb̂ ¼ r02X0y:
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Since r01X0X ¼ r02X0X, we have r01X0y ¼ r02X0y. It is clear that each is equal to

l0b̂. (For a direct proof thatl0b̂ is invariant to the choice of b̂, see Problem 12.6.)
A

We illustrate the estimators r0X0y and lb̂ in the following example.

Example 12.3.1. The linear function l0b ¼ t1 � t2 was shown to be estimable in
Example 12.2.2a. To estimate t1 � t2 with r0X0y, we use r0 ¼ (0, 1

3 , � 1
3 ) from

Example 12.2.2a to obtain

r0X0y ¼ 0, 1
3 ,� 1

3

� � 1 1 1 1 1 1

1 1 1 0 0 0

0 0 0 1 1 1

0
B@

1
CA

y11

y12

y13

y21

y22

y23

0
BBBBBBBB@

1
CCCCCCCCA

¼ 0, 1
3 , � 1

3

� � y::
y1:

y2:

0
B@

1
CA ¼ y1:

3
� y2:

3
¼ �y1: � �y2:,

where y:: ¼
P2

i¼1

P3
j¼1 yij, yi: ¼

P3
j¼1 yij, and �yi: ¼ yi:=3 ¼

P3
j¼1 yij=3.

To obtain the same result using l0b̂, we first find a solution to the normal

equations X0Xb̂ ¼ X0y

6 3 3
3 3 0
3 0 3

0
@

1
A

m̂

t̂1

t̂2

0
@

1
A ¼

y::
y1:

y2:

0
@

1
A

or

6m̂ þ 3t̂1 þ 3t̂2 ¼ y::
3m̂ þ 3t̂1 ¼ y1:

3m̂ þ 3t̂2 ¼ y2::

The first equation is redundant since it is the sum of the second and third equations.
We can take m̂ to be an arbitrary constant and obtain

t̂1 ¼ 1
3 y1: � m̂ ¼ �y1: � m̂ , t̂2 ¼ 1

3 y2: � m̂ ¼ �y2: � m̂ :

Thus

b̂ ¼
m̂

t̂1

t̂2

0
@

1
A ¼

0
�y1:
�y2:

0
@

1
Aþ m̂

1
�1
�1

0
@

1
A:
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To estimate t1 � t2 ¼ (0, 1,�1)b ¼ l0b, we can set m̂ ¼ 0 to obtain

b̂ ¼ (0, �y1:, �y2:)
0 and l0b̂ ¼ �y1: � �y2:. If we leave m̂ arbitrary, we likewise obtain

l0b̂ ¼ (0, 1,�1)

m̂

�y1: � m̂

�y2: � m̂

0
B@

1
CA

¼ �y1: � m̂ � ( �y2: � m̂) ¼ �y1: � �y2:: A

Since b̂ ¼ (X0X)�X0y is not unique for the non-full-rank model y ¼ Xbþ 1 with
cov(y) ¼ s2I, it does not have a unique covariance matrix. However, for a particular
(symmetric) generalized inverse (X0X)�, we can use Theorem 3.6d(i) to obtain the
following covariance matrix:

cov(b̂) ¼ cov[(X0X)�X0y]

¼ (X0X)�X0(s2I)X[(X0X)�]0

¼ s2(X0X)�X0X(X0X)�: (12:18)

The expression in (12.18) is not invariant to the choice of (X0X)�.
The variance of l0b̂ or of r0X0y is given in the following theorem.

Theorem 12.3b. Let l0b be an estimable function in the model y ¼ Xbþ 1, where
X is n� p of rank k , p � n and cov(y) ¼ s2I. Let r be any solution to X0Xr ¼ l,

and let b̂ be any solution to X0Xb̂ ¼ X0y. Then the variance of l0b̂ or r0X0y has the
following properties:

(i) var(r0X0y) ¼ s2r0X0Xr ¼ s2r0l.

(ii) var(l0b̂) ¼ s2l0(X0X)�l.

(iii) var(l0b̂) is unique, that is, invariant to the choice of r or (X0X)�.

PROOF

(i) var(r0X0y) ¼ r0X0cov(y)Xr [by (3:42)]

¼ r0X0(s2I)Xr ¼ s2r0X0Xr

¼ s2r0l: [by (12:16)]:

(ii) var(l0b̂) ¼ l0cov(b̂)l

¼ s2l0(X0X)�X0X(X0X)�l [by (12:18)]:
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By (12.17), l0(X0X)�X0X ¼ l0, and therefore

var(l0b̂) ¼ s2l0(X0X)�l:

(iii) To show that r0l is invariant to r, let r1 and r2 be such that X0Xr1 ¼ l and
X0Xr2 ¼ l. Multiplying these two equations by r02 and r01, we obtain

r02X0Xr1 ¼ r02l and r01X0Xr2 ¼ r01l:

The left sides of these two equations are equal since they are scalars and are
transposes of each other. Therefore the right sides are also equal:

r02l ¼ r01l:

To show that l0(X0X)�l is invariant to the choice of X0X�, let G1 and G2 be
two generalized inverses of X0X. Then by Theorem 2.8c(v), we have

XG1X0 ¼ XG2X0:

Multiplying both sides by a such that a0X ¼ l0 [see Theorem 12.2b(i)], we
obtain

a0XG1X0a ¼ a0XG2X0a,

l0G1l ¼ l0G2l: A

The covariance of the estimators of two estimable functions is given in the follow-
ing theorem.

Theorem 12.3c. If l01b and l02b are two estimable functions in the model
y ¼ Xbþ 1, where X is n� p of rank k , p � n and cov(y) ¼ s2I, the covariance
of their estimators is given by

cov(l01b̂, l02b̂) ¼ s2r01l2 ¼ s2l01r2 ¼ s2l01(X0X)�l2,

where X0Xr1 ¼ l1 and X0Xr2 ¼ l2.

PROOF. See Problem 12.12. A

The estimators l0b̂ and r0X0y have an optimality property analogous to that in
Corollary 1 to Theorem 7.3d.
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Theorem 12.3d. If l0b is an estimable function in the model y ¼ Xbþ 1, where X
is n� p of rank k , p � n, then the estimators l0b̂ and r0X0y are BLUE.

PROOF. Let a linear estimator of l0b be denoted by a0y, where without loss of general-
ity a0y ¼ r0X0yþ c0y, that is, a0 ¼ r0X0 þ c0, where r0 is a solution to l0 ¼ r0X0X. For
unbiasedness we must have

l0b ¼ E(a0y) ¼ a0Xb ¼ r0X0Xbþ c0Xb ¼ (r0X0Xþ c0X)b:

This must hold for all b, and we therefore have

l0 ¼ r0X0Xþ c0X:

Since l0 ¼ r0X0X, it follows that c0X ¼ 00. Using (3.42) and c0X ¼ 00, we obtain

var(a0y) ¼ a0cov(y)a ¼ a0s2Ia ¼ s2a0a

¼ s2(r0X0 þ c0)(Xrþ c)

¼ s2(r0X0Xrþ r0X0cþ c0Xrþ c0c)

¼ s2(r0X0Xrþ c0c):

Therefore, to minimize var(a0y), we must minimize c0c ¼
P

i c2
i . This is a minimum

when c ¼ 0, which is compatible with c0X ¼ 00. Hence a0 is equal to r0X0, and the
BLUE for the estimable function l0b is a0y ¼ r0X0y: A

12.3.2 Estimation of s2

By analogy with (7.23), we define

SSE ¼ (y� Xb̂)0(y� Xb̂), (12:19)

where b̂ is any solution to the normal equations X0Xb̂ ¼ X0y. Two alternative
expressions for SSE are

SSE ¼ y0y� b̂0X0y, (12:20)

SSE ¼ y0[I� X(X0X)�X0]y: (12:21)
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For an estimator of s2, we define

s2 ¼ SSE
n� k

, (12:22)

where n is the number of rows of X and k ¼ rank(X).
Two properties of s2 are given in the following theorem.

Theorem 12.3e. For s2 defined in (12.22) for the non-full-rank model, we have the
following properties:

(i) E(s2) ¼ s2.

(ii) s2 is invariant to the choice of b̂ or to the choice of generalized inverse
(X0X)�.

PROOF

(i) Using (12.21), we have E(SSE) ¼ E{y0[I� X(X0X)�X0]y}. By Theorem 5.2a,
this becomes

E(SSE) ¼ tr{[I� X(X0X)�X0](s2I)}þ b0X0[I� X(X0X)�X0]Xb:

It can readily be shown that the second term on the right side vanishes. For the
first term, we have, by Theorem 2.11(i), (ii), and (viii)

s2tr[I� X(X0X)�X0] ¼ s2{tr(I)� tr[X0X(X0X)�]}

¼ (n� k)s2,

where k ¼ rank(X0X) ¼ rank(X).

(ii) Since Xb is estimable, Xb̂ is invariant to b̂ [see Theorem 12.3a(iii)], and there-

fore SSE ¼ (y� Xb̂)0(y� Xb̂) in (12.19) is invariant. To show that SSE in
(12.21) is invariant to choice of (X0X)�, we note that X(X0X)�X0 is invariant
by Theorem 2.8c(v). A

12.3.3 Normal Model

For the non-full-rank model y ¼ Xbþ 1, we now assume that

y is Nn(Xb, s2I) or 1 is Nn(0, s2I):

With the normality assumption we can obtain maximum likelihood estimators.
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Theorem 12.3f. If y is Nn(Xb, s2I), where X is n� p of rank k , p � n, then the
maximum likelihood estimators for b and s2 are given by

b̂ ¼ (X0X)�X0y, (12:23)

ŝ2 ¼ 1
n

(y� Xb̂)0(y� Xb̂): (12:24)

PROOF. For the non-full-rank model, the likelihood function L(b, s2) and its logar-
ithm ln L(b, s2) can be written in the same form as those for the full-rank model
in (7.50) and (7.51):

L(b, s2) ¼ 1

(2ps2)n=2
e�(y�Xb)0(y�Xb)=2s2

, (12:25)

ln L(b, s2) ¼ � n

2
ln (2p)� n

2
lns2 � 1

2s2
(y� Xb)0(y� Xb): (12:26)

Differentiation of ln L(b, s2) with respect to b and s2 and setting the results equal to
zero gives

X0Xb̂ ¼ X0y, (12:27)

ŝ2 ¼ 1
n

(y� Xb̂ )0(y� Xb̂ ), (12:28)

where b̂ in (12.28) is any solution to (12.27). If (X0X)� is any generalized inverse of
X0X, a solution to (12.27) is given by

b̂ ¼ (X0X)�X0y: (12:29)

A

The form of the maximum likelihood estimator b̂ in (12.29) is the same as that of
the least-squares estimator in (12.13). The estimator ŝ2 is biased. We often use the
unbiased estimator s2 given in (12.22).

The mean vector and covariance matrix for b̂ are given in (12.14) and (12.18) as

E(b̂ ) ¼ (X0X)�X0Xb and cov(b̂ ) ¼ s2(X0X)�X0X(X0X)�. In the next theorem, we

give some additional properties of b̂ and s2. Note that some of these follow because

b̂ ¼ (X0X)�X0y is a linear function of the observations.
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Theorem 12.3g. If y is Nn(Xb, s2I), where X is n� p of rank k , p � n, then the

maximum likelihood estimators b̂ and s2 (corrected for bias) have the following
properties:

(i) b̂ is Np[(X0X)�X0Xb, s2(X0X)�X0X(X0X)�].

(ii) (n� k)s2=s2 is x2(n� k).

(iii) b̂ and s2 are independent.

PROOF. Adapting the proof of Theorem 7.6b for the non-full-rank case yields the
desired results. A

The expected value, covariance matrix, and distribution of b̂ in Theorem 12.3g are

valid only for a particular value of (X0X)�, whereas, s2 is invariant to the choice of b̂
or (X0X)� [see Theorem 12.3e(ii)].

The following theorem is an adaptation of Corollary 1 to Theorem 7.6d.

Theorem 12.3h. If y is Nn(Xb,s2I), where X is n� p of rank k , p � n, and if l0b

is an estimable function, then l0b̂ has minimum variance among all unbiased
estimators. A

In Theorem 12.3d, the estimator l0b̂ was shown to have minimum variance among
all linear unbiased estimators. With the normality assumption added in Theorem

12.3g, lb̂ has minimum variance among all unbiased estimators.

12.4 GEOMETRY OF LEAST-SQUARES IN THE
OVERPARAMETERIZED MODEL

The geometric approach to least-squares in the overparameterized model is similar to
that for the full-rank model (Section 7.4), but there are crucial differences. The
approach involves two spaces, a p-dimensional parameter space and an n-dimensional
data space. The unknown parameter vector b is an element of the parameter space
with axes corresponding to the coefficients, and the known data vector y is an
element of the data space with axes corresponding to the observations (Fig. 12.1).

The n� p partitioned X matrix of the overparameterized linear model (Section
12.2.1) is

X ¼ (x1, x2, . . . , xp):

The columns of X are vectors in the data space, but since rank(X)¼ k , p, the set of
vectors is not linearly independent. Nonetheless, the set of all possible linear combi-
nations of these column vectors constitutes the prediction space. The distinctive
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geometric characteristic of the overparameterized model is that the prediction space is of
dimension k , p while the parameter space is of dimension p. Thus the product Xu,
where u is any vector in the parameter space, defines a many-to-one relationship
between the parameter space and the prediction space (Fig. 12.1). An infinite number
of vectors in the parameter space correspond to any particular vector in the prediction
space.

As was the case for the full-rank linear model, the overparameterized linear model
states that y is equal to a vector in the prediction space, E( y) ¼ Xb, plus a vector of
random errors 1. Neither b nor 1 is known. Geometrically, least-squares estimation
for the overparametrized model is the process of finding a sensible guess of E(y) in
the prediction space and then determining the subset of the parameter space that is
associated with this guess (Fig. 12.1).

As in the full-rank model, a reasonable geometric idea is to estimate E(y) using ŷ,
the unique point in the prediction space that is closest to y. This implies that the differ-
ence vector 1̂ ¼ y� ŷ must be orthogonal to the prediction space, and thus we seek ŷ
such that

X01̂ ¼ 0,

which leads to the normal equations

X0Xb̂ ¼ X0y:

However, these equations do not have a single solution since X0X is not full-rank.
Using Theorem 2.8e(ii), all possible solutions to this system of equations are given

by b̂ ¼ (X0X)�X0y using all possible values of (X0X)�. These solutions constitute
an infinite subset of the parameter space (Fig. 12.1), but this subset is not a subspace.

Figure 12.1 A geometric view of least-squares estimation in the overparameterized model.
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Since the solutions are infinite in number, none of the b̂ values themselves have any

meaning. Nonetheless, ŷ ¼ Xb̂ is unique [see Theorem 2.8c(v)], and therefore, to be

unambiguous, all further inferences must be restricted to linear functions of Xb̂ rather

than of b̂.
Also note that the n rows of X generate a k-dimensional subspace of p-dimensional

space. The matrix products of the row vectors in this space with b constitute the set of
all possible estimable functions. The matrix products of the row vectors in this space
with any b̂ (these products are invariant to the choice of a generalized inverse) con-
stitute the unambiguous set of corresponding estimates of these functions.

Finally, 1̂ ¼ y� Xb̂ ¼ (I�H)y can be taken as an unambiguous predictor of 1.
Since 1̂ is now a vector in (n� k)-dimensional space, it seems reasonable to estimate
s2 as the squared length (2.22) of 1̂ divided by n� k. In other words, a sensible esti-
mator of s2 is s2 ¼ y0(I�H)y=(n� k), which is equal to (12.22).

12.5 REPARAMETERIZATION

Reparameterization was defined and illustrated in Section 12.1.1. We now formalize
and extend this approach to obtaining a model based on estimable parameters.

In reparameterization, we transform the non-full-rank model y ¼ Xbþ 1, where
X is n� p of rank k , p � n, to the full-rank model y ¼ Zgþ 1, where Z is n� k of
rank k and g ¼ Ub is a set of k linearly independent estimable functions of b. Thus
Zg ¼ Xb, and we can write

Zg ¼ ZUb ¼ Xb, (12:30)

where X ¼ ZU. Since U is k � p of rank k , p, the matrix UU0 is nonsingular by
Theorem 2.4(iii), and we can multiply ZU ¼ X by U0 to solve for Z in terms of X
and U:

ZUU0 ¼ XU0

Z ¼ XU0(UU0)�1: (12:31)

To establish that Z is full-rank, note that rank(Z) � rank(ZU) ¼ rank(X) ¼ k by
Theorem 2.4(i). However, Z cannot have rank greater than k since Z has k
columns. Thus rank(Z) ¼ k, and the model y ¼ Zgþ 1 is a full-rank model. We
can therefore use the theorems of Chapters 7 and 8; for example, the normal equations
Z0Zĝ ¼ Z0y have the unique solution ĝ ¼ (Z0Z)�1Z0y.

In the reparameterized full-rank model y ¼ Zgþ 1, the unbiased estimator of s2

is given by

s2 ¼ 1
n� k

(y� Zĝ)0(y� Zĝ): (12:32)
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Since Zg ¼ Xb, the estimators Zĝ and Xb̂ are also equal

Zĝ ¼ Xb̂,

and SSE in (12.19) and SSE in (12.32) are the same:

(y� Xb̂)0(y� Xb̂) ¼ (y� Zĝ)0(y� Zĝ): (12:33)

The set Ub ¼ g is only one possible set of linearly independent estimable func-
tions. Let Vb ¼ d be another set of linearly independent estimable functions. Then
there exists a matrix W such that y ¼Wdþ 1. Now an estimable function l0b can be
expressed as a function of g or of d:

l0b ¼ b0g ¼ c0d: (12:34)

Hence

dl0b ¼ b0ĝ ¼ c0d̂,

and either reparameterization gives the same estimator of l0b.

Example 12.5. We illustrate a reparameterization for the model yij ¼ mþ tiþ
1ij, i ¼ 1, 2, j ¼ 1, 2. In matrix form, the model can be written as

y ¼ Xbþ 1 ¼

1 1 0
1 1 0
1 0 1
1 0 1

0
BB@

1
CCA

m

t1

t2

0
@

1
Aþ

111

112

121

122

0
BB@

1
CCA:

Since X has rank 2, there exist two linearly independent estimable functions (see
Theorem 12.2c). We can choose these in many ways, one of which is mþ t1 and
mþ t2. Thus

g ¼ g1

g2

� �
¼ mþ t1

mþ t2

� �
¼ 1 1 0

1 0 1

� � m

t1

t2

0
@

1
A ¼ Ub:

To reparameterize in terms of g, we can use

Z ¼

1 0
1 0
0 1
0 1

0
BB@

1
CCA,
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so that Za ¼ Xb:

Zg ¼

1 0
1 0
0 1
0 1

0
BB@

1
CCA

g1
g2

� �
¼

g1

g1
g2

g2

0
BB@

1
CCA ¼

mþ t1

mþ t1

mþ t2

mþ t2

0
BB@

1
CCA:

[The matrix Z can also be obtained directly using (12.31).] It is easy to verify
that ZU ¼ X.

ZU ¼

1 0
1 0
0 1
0 1

0
BB@

1
CCA

1 1 0
1 0 1

� �
¼

1 1 0
1 1 0
1 0 1
1 0 1

0
BB@

1
CCA ¼ X:

A

12.6 SIDE CONDITIONS

The technique of imposing side conditions was introduced and illustrated in Section
12.1 Side conditions provide (linear) constraints that make the parameters unique and
individually estimable, but side conditions also impose specific definitions on the
parameters. Another use for side conditions is to impose arbitrary constraints on
the estimates so as to simplify the normal equations. In this case the estimates
have exactly the same status as those based on a particular generalized inverse
(12.13), and only estimable functions of b can be interpreted.

Let X be n� p of rank k , p � n. Then, by Theorem 12.2b(ii), X0Xb represents
a set of p estimable functions of b. If a side condition were an estimable function of
b, it could be expressed as a linear combination of the rows of X0Xb and would con-

tribute nothing to the rank deficiency in X or to obtaining a solution vector b̂ for

X0Xb̂ ¼ X0y. Therefore, side conditions must be nonestimable functions of b.
The matrix X is n� p of rank k , p. Hence the deficiency in the rank of X is

p� k. In order for all the parameters to be unique or to obtain a unique solution

vector b̂, we must define side conditions that make up this deficiency in rank.

Accordingly, we define side conditions Tb ¼ 0 or Tb̂ ¼ 0, where T is a
(p� k)� p matrix of rank p� k such that Tb is a set of nonestimable functions.

In the following theorem, we consider a solution vector b̂ for both X0Xb̂ ¼ X0y

and Tb̂ ¼ 0.

Theorem 12.6a. If y ¼ Xbþ 1, where X is n� p of rank k , p � n, and if T is a
(p� k)� p matrix of rank p� k such that Tb is a set of nonestimable functions, then

there is a unique vector b̂ that satisfies both X0Xb̂ ¼ X0y and Tb̂ ¼ 0.
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PROOF. The two sets of equations

y ¼ Xbþ 1

0 ¼ Tbþ 0

can be combined into

y
0

� �
¼ X

T

� �
bþ 1

0

� �
: (12:35)

Since the rows of T are linearly independent and are not functions of the rows of X,

the matrix
X
T

� �
is (nþ p� k)� p of rank p. Thus

X
T

� �0
X
T

� �
is p� p of rank p,

and the system of equations

X
T

� �0
X
T

� �
b̂ ¼ X

T

� �0
y
0

� �
(12:36)

has the unique solution

b̂ ¼
X

T

� �0 X

T

� �" #�1
X

T

� �0 y

0

� �

¼ (X0, T0)
X

T

� �� ��1

(X0, T0)
y

0

� �

¼ (X0Xþ T0T)�1(X0yþ T00)

¼ (X0Xþ T0T)�1X0y: (12:37)

This approach to imposing constraints on the parameters does not work for full-rank
models [see (8.30) and Problem 8.19] or for overparameterized models if the con-
straints involve estimable functions. However if Tb is a set of nonestimable func-

tions, the least-squares criterion guarantees that Tb̂ ¼ 0. The solution b̂ in (12.37)

also satisfies the original normal equations X0Xb̂ ¼ X0y, since, by (12.36)

(X0Xþ T0T)b̂ ¼ X0yþ T00

X0Xb̂þ T0Tb̂ ¼ X0y:
(12:38)

But Tb̂ ¼ 0, and (12.38) reduces to X0Xb̂ ¼ X0y. A
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Example 12.6. Consider the model yij ¼ mþ ti þ 1ij, i ¼ 1, 2, j ¼ 1, 2 as in
Example 12.5. The function t1 þ t2 was shown to be nonestimable in Problem
12.5b. The side condition t1 þ t2 ¼ 0 can be expressed as (0, 1, 1)b ¼ 0, and
X0Xþ T0T becomes

4 2 2
2 2 0
2 0 2

0
@

1
Aþ

0
1
1

0
@

1
A 0 1 1ð Þ ¼

4 2 2
2 3 1
2 1 3

0
@

1
A:

Then

(X0Xþ T0T)�1 ¼ 1
4

2 �1 �1
�1 2 0
�1 0 2

0
@

1
A:

With X0y ¼ ( y::, y1:, y2:)0, we obtain, by (12.37)

b̂ ¼ (X0Xþ T0T)�1X0y

¼ 1
4

2y:: � y1: � y2:

2y1: � y::

2y2: � y::

0
B@

1
CA ¼

�y::
�y1: � �y::
�y2: � �y::

0
B@

1
CA,

(12:39)

since y1: þ y2: ¼ y::.
We now show that b̂ in (12.39) is also a solution to the normal

equations X0Xb̂ ¼ X0y:

4 2 2

2 2 0

2 0 2

0
B@

1
CA

�y::
�y1: � �y::
�y2: � �y::

0
B@

1
CA ¼

y::
y1:

y2:

0
B@

1
CA, or

4�y:: þ 2( �y1: � �y::)þ 2( �y2: � �y::) ¼ y::
2�y:: þ 2( �y1: � �y::) ¼ y1:

2�y:: þ 2( �y2: � �y::) ¼ y2:

These simplify to

2�y1: þ 2�y2: ¼ y::
2�y1: ¼ y1:

2�y2: ¼ y2:,

which hold because �y1: ¼ y1:=2, �y2: ¼ y2:=2 and y1: þ y2: ¼ y::. A
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12.7 TESTING HYPOTHESES

We now consider hypotheses about the b’s in the model y ¼ Xbþ 1, where X is
n� p of rank k , p � n. In this section, we assume that y is Nn(Xb, s2I).

12.7.1 Testable Hypotheses

It can be shown that unless a hypothesis can be expressed in terms of estimable func-
tions, it cannot be tested (Searle 1971, pp. 193–196). This leads to the following
definition.

A hypothesis such as H0 :b1 ¼ b2 ¼ � � � ¼ bq is said to be testable if there exists
a set of linearly independent estimable functions l01b, l02b, . . . , l0tb such that H0 is
true if and only if l01b ¼ l02b ¼ � � � ¼ l0tb ¼ 0.

Sometimes the subset of b0s whose equality we wish to test is such that every con-
trast

P
i cibi is estimable (

P
i cibi is a contrast if

P
i ci ¼ 0). In this case, it is easy to

find a set of q� 1 linearly independent estimable functions that can be set equal to
zero to express b1 ¼ � � � ¼ bq. One such set is the following:

l01b ¼ (q� 1)b1 � (b2 þ b3 þ � � � þ bq)

l02b ¼ (q� 2)b2 � (b3 þ � � � þ bq)

..

.

l0q�1b ¼ (1)bq�1 � (bq):

These q� 1 contrasts l01b, . . . ,l0q�1b constitute a set of linearly independent
estimable functions such that

l01b

..

.

l0q�1b

0
BB@

1
CCA ¼

0

..

.

0

0
B@

1
CA

if and only if b1 ¼ b2 ¼ � � � ¼ bq.
To illustrate a testable hypothesis, suppose that we have the model

yij ¼ mþ ai þ bj þ 1ij, i ¼ 1, 2, 3, j ¼ 1, 2, 3, and a hypothesis of interest is
H0:a1 ¼ a2 ¼ a3. By taking linear combinations of the rows of Xb, we can obtain
the two linearly independent estimable functions a1 � a2 and a1 þ a2 � 2a3. The
hypothesis H0:a1 ¼ a2 ¼ a3 is true if and only if a1 � a2 and a1 þ a2 � 2a3 are
simultaneously equal to zero (see Problem 12.21). Therefore, H0 is a testable
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hypothesis and is equivalent to

H0:
a1 � a2

a1 þ a2 � 2a3

� �
¼ 0

0

� �
: (12:40)

We now discuss tests for testable hypotheses. In Section 12.7.2, we describe a pro-
cedure that is based on the full-reduced-model methods of Section 8.2. Since
(12.40) is of the form H0: Cb ¼ 0, we could alternatively use a general linear hypoth-
esis test (see Section 8.4.1). This approach is discussed in Section 12.7.3.

12.7.2 Full-Reduced-Model Approach

Suppose that we are interested in testing H0:b1 ¼ b2 ¼ � � � ¼ bq in the non-full-rank
model y ¼ Xbþ 1, where b is p� 1 and X is n� p of rank k , p � n. If H0 is tes-
table, we can find a set of linearly independent estimable functions
l01b, l02b, . . . , l0tb such that H0: b1 ¼ b2 ¼ � � � ¼ bq is equivalent to

H0: g1 ¼

l01b
l02b

..

.

l0tb

0
BBBB@

1
CCCCA
¼

0
0

..

.

0

0
BBB@

1
CCCA:

It is also possible to find

g2 ¼

l0tþ1b

..

.

l0kb

0
BB@

1
CCA

such that the k functions l01b, . . . , l0tb, l0tþ1b, . . . , l0kb are linearly independent
and estimable, where k ¼ rank(X). Let

g ¼ g1

g2

� �
:

We can now reparameterize (see Section 12.5) from the non-full-rank model
y ¼ Xbþ 1 to the full-rank model

y ¼ Zgþ 1 ¼ Z1g1 þ Z2g2 þ 1,

where Z ¼ (Z1, Z2) is partitioned to conform with the number of elements in g1

and g2.
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For the hypothesis H0:g1 ¼ 0, the reduced model is y ¼ Z2g
�
2 þ 1�. By Theorem

7.10, the estimate of g�2 in the reduced model is the same as the estimate of g2 in the
full model if the columns of Z2 are orthogonal to those of Z1, that is, if Z02Z1 ¼ O.
For the balanced models we are considering in this chapter, the orthogonality will
typically hold (see Section 12.8.3). Accordingly, we refer to g2 and ĝ2 rather than
to g�2 and ĝ�2.

Since y ¼ Zgþ 1 is a full-rank model, the hypothesis H0:g1 ¼ 0 can be tested as
in Section 8.2. The test is outlined in Table 12.2, which is analogous to Table 8.3.
Note that the degrees of freedom t for SS(g1jg2) is the number of linearly indepen-
dent estimable functions required to express H0.

In Table 12.2, the sum of squares ĝ 0Zy is obtained from the full model
y ¼ Zgþ 1. The sum of squares ĝ 02Z02y is obtained from the reduced model
y ¼ Z2g2 þ 1, which assumes the hypothesis is true.

The reparameterization procedure presented above seems straightforward.
However, finding the matrix Z in practice can be time-consuming. Fortunately, this
step is actually not necessary.

From (12.20) and (12.33), we obtain

y0y� b̂0X0y ¼ y0y� ĝ0Zy,

which gives

b̂0X0y ¼ ĝ0Z0y, (12:41)

where b̂ represents any solution to the normal equations X0Xb̂ ¼ X0y. Similarly, cor-
responding to y ¼ Zg�2 þ 1�, we have a reduced model y ¼ X2b

�
2 þ 1� obtained by

setting b1 ¼ b2 ¼ � � � ¼ bq. Then

b̂�
0

2 X02y ¼ ĝ�
0

2 Z02y, (12:42)

where b̂�2 is any solution to the reduced normal equations X02X2b̂
�
2 ¼ X02y. We can

often use side conditions to find b̂ and b̂�2.
We noted above (see also Section 12.8.3) that if Z02Z1 ¼ O holds in a reparame-

terized full-rank model, then by Theorem 7.10, the estimate of g�2 in the reduced

TABLE 12.2 ANOVA for Testing H0: g150 in Reparameterized Balanced Models

Source of Variation df Sum of Squares F Statistic

Due to g1 adjusted for g2 t SS(g1jg2) ¼ ĝ0Z0y� ĝ02Z02y SSðg1jg2Þ=t
SSE=ðn� kÞ

Error n� k SSE ¼ y0y� ĝ0Z0y —
Total n� 1 SST ¼ y0y� n�y2
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model is the same as the estimate of g2 in the full model. The following is an analo-
gous theorem for the non-full-rank case.

Theorem 12.7a. Consider the partitioned model y ¼ Xbþ 1 ¼ X1b1 þ X2b2 þ 1,
where X is n� p of rank k , p � n. If X02X1 ¼ O (see Section 12.8.3), any estimate
of b�2 in the reduced model y ¼ X2b

�
2 þ 1� is also an estimate of b2 in the full model.

PROOF. There is a generalized inverse of

X0X ¼ X01X1 X01X2

X02X1 X02X2

� �

analogous to the inverse of a nonsingular symmetric partitioned matrix in (2.50)
(Harville 1997, pp. 121–122). The proof then parallels that of Theorem 7.10. A

In the balanced non-full-rank models we are considering in this chapter, the ortho-
gonality of X1 and X2 will typically hold. (This will be illustrated in Section

12.8.3) Accordingly, we refer to b2 and b̂2, rather than to b�2 and b̂�2.
The test can be expressed as in Table 12.3, in which b̂0X0y is obtained from the full

model y ¼ Xbþ 1 and b̂02X02y is obtained from the model y ¼ X2b2 þ 1, which has
been reduced by the hypothesis H0 :b1 ¼ b2 ¼ � � � ¼ bq. Note that the degrees of
freedom t for SS(b1jb2) is the same as for SS(g1jg2) in Table 12.2, namely, the
number of linearly independent estimable functions required to express H0.
Typically, this is given by t ¼ q� 1. A set of q� 1 linearly independent estimable
functions was illustrated at the beginning of Section 12.7.1. The test in Table 12.3
will be illustrated in Section 12.8.2.

12.7.3 General Linear Hypothesis

As illustrated in (12.40), a hypothesis such as H0 :a1 ¼ a2 ¼ a3 can be expressed in
the form H0 : Cb ¼ 0. We can test this hypothesis in a manner analogous to that used
for the general linear hypothesis test for the full-rank model in Section 8.4.1 The fol-
lowing theorem is an extension of Theorem 8.4a to the non-full-rank case.

TABLE 12.3 ANOVA for Testing H0: b15b25� � �5bq in Balanced
Non-Full-Rank Models

Source of Variation df Sum of Squares F Statistic

Due to b1 adjusted for b2 t SS(b1jb2) ¼ b̂0X0y� b̂02X02y SSðb1jb2Þ=t
SSE=ðn� kÞ

Error n� k SSE ¼ y0y� b̂0X0y —

Total n� 1 SST ¼ y0y� n�y2 —
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Theorem 12.7b. If y is Nn(Xb,s2I), where X is n� p of rank k , p � n, if C
is m� p of rank m � k such that Cb is a set of m linearly independent estimable

functions, and if b̂ ¼ (X0X)�X0y, then

(i) C(X0X)�C0 is nonsingular.

(ii) Cb̂ is Nm[Cb,s2C(X0X)�C0].

(iii) SSH=s2 ¼ (Cb̂)0[C(X0X)�C0]�1Cb̂=s2 is x2(m, l), where l ¼ (Cb)0

[C(X0X)�C0]�1Cb=2s2.

(iv) SSE=s2 ¼ y0[I� X(X0X)�X0]y=s2 is x2(n� k).

(v) SSH and SSE are independent.

PROOF

(i) Since

Cb ¼

c01b
c02b

..

.

c0mb

0
BBBBB@

1
CCCCCA

is a set of m linearly independent estimable functions, then by Theorem
12.2b(iii) we have c0i(X

0X)�X0X ¼ c0i for i ¼ 1, 2, . . . , m: Hence

C(X0X)�X0X ¼ C: (12:43)

Writing (12.43) as the product

[C(X0X)�X0]X ¼ C,

we can use Theorem 2.4(i) to obtain the inequalities

rank(C) � rank[C(X0X)�X0] � rank(C):

Hence rank[C(X0X)�X0] ¼ rank(C) ¼ m. Now, by Theorem 2.4(iii), which
states that rank(A) ¼ rank(AA0), we can write

rank(C) ¼ rank[C(X0X)�X0]

¼ rank[C(X0X)�X0][C(X0X)�X0]0

¼ rank[C(X0X)�X0X(X0X)�C0]:
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By (12.43), C(X0X)�X0X ¼ C, and we have

rank(C) ¼ rank[C(X0X)�C0]:

Thus the m� m matrix C(X0X)�C0 is nonsingular. [Note that we are assuming
that (X0X)� is symmetric. See Problem 2.46 and a comment following
Theorem 2.8c(v).]

(ii) By (3.38) and (12.14), we obtain

E(Cb̂) ¼ CE(b̂) ¼ C(X0X)�X0Xb:

By (12.43), C(X0X)�X0X ¼ C, and therefore

E(Cb̂) ¼ Cb: (12:44)

By (3.44) and (12.18), we have

cov(Cb̂) ¼ C cov(b̂)C0 ¼ s2C(X0X)�X0X(X0X)�C0:

By (12.43), this becomes

cov(Cb̂) ¼ s2C(X0X)�C0: (12:45)

By Theorem 12.3g(i), b̂ is Np[(X0X)�X0Xb,s2(X0X)�X0X(X0X)�] for a par-
ticular (X0X)�. Then by (12.44), (12.45), and Theorem 4.4a(ii), we obtain

Cb̂ is Nm[Cb,s2C(X0X)�C0]:

(iii) By part (ii), cov(Cb̂) ¼ s2C(X0X)�C0. Since s2[C(X0X)�C0]�1

C(X0X)�C0=s2 ¼ I, the result follows by Theorem 5.5.

(iv) This was established in Theorem 12.3g(ii).

(v) By Theorem 12.3g(iii), b̂ and SSE are independent. Hence SSH ¼ (Cb̂)0

[C(X0X)�C0]�1Cb̂ and SSE are independent [see Seber (1977, pp. 17–18)
for a proof that continuous functions of independent random variables and
vectors are independent]. For a more formal proof, see Problem 12.22. A

Using the results in Theorem 12.7b, we obtain an F test for H0 : Cb ¼ 0, as given
in the following theorem, which is analogous to Theorem 8.4b.
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Theorem 12.7c. Let y be Nn(Xb,s2I), where X is n� p of rank k , p � n, and let

C, Cb, and b̂ be defined as in Theorem 12.7b. Then, if H0 : Cb ¼ 0 is true, the statistic

F ¼ SSH=m

SSE=(n� k)

¼ (Cb̂)0[C(X0X)�C0]�1Cb̂=m

SSE=(n� k)
(12:46)

is distributed as F(m, n� k):

PROOF. This follows from (5.28) and Theorem 12.7b. A

12.8 AN ILLUSTRATION OF ESTIMATION AND TESTING

Suppose we have the additive (no-interaction) model

yij ¼ mþ ai þ bj þ 1ij, i ¼ 1, 2, 3; j ¼ 1, 2,

and that the hypotheses of interest are H0 :a1 ¼ a2 ¼ a3 and H0 :b1 ¼ b2. The six
observations can be written in the form y ¼ Xbþ 1 as

y11

y12

y21

y22

y31

y32

0
BBBBBB@

1
CCCCCCA
¼

1 1 0 0 1 0
1 1 0 0 0 1
1 0 1 0 1 0
1 0 1 0 0 1
1 0 0 1 1 0
1 0 0 1 0 1

0
BBBBBB@

1
CCCCCCA

m

a1

a2

a3

b1

b2

0
BBBBBB@

1
CCCCCCA
þ

111

112

121

122

131

132

0
BBBBBB@

1
CCCCCCA
: (12:47)

The matrix X0X is given by

X0X ¼

6 2 2 2 3 3
2 2 0 0 1 1
2 0 2 0 1 1
2 0 0 2 1 1
3 1 1 1 3 0
3 1 1 1 0 3

0
BBBBBB@

1
CCCCCCA
:

The rank of both X and X0X is 4.
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12.8.1 Estimable Functions

The hypothesis H0:a1 ¼ a2 ¼ a3 can be expressed as H0:a1 � a2 ¼ 0 and
a1 � a3 ¼ 0. Thus H0 is testable if a1 � a2 and a1 � a3 are estimable. To check
a1 � a2 for estimability, we write it as

a1 � a2 ¼ (0, 1,�1, 0, 0, 0)b ¼ l01b

and then note that l01 can be obtained from X as

(1, 0, �1, 0, 0, 0)X ¼ (0, 1, �1, 0, 0, 0)

and from X0X as

(0, 1
2 , �1

2 , 0, 0, 0)X0X ¼ (0, 1, �1, 0, 0, 0)

(see Theorem 12.2b). Alternatively, we can obtain a1 � a2 as a linear combination of
the rows (elements) of E(y) ¼ Xb:

E( y11 � y21) ¼ E( y11)� E( y21)

¼ mþ a1 þ b1 � (mþ a2 þ b1)

¼ a1 � a2:

Similarly, a1 � a3 can be expressed as

a1 � a3 ¼ (0, 1, 0,�1, 0, 0)b ¼ l02b,

and l02 can be obtained from X or X0X:

(1, 0, 0, 0,�1, 0)X ¼ (0, 1, 0,�1, 0, 0),

(0, 1
2 , 0,�1

2 , 0, 0)X0X ¼ (0, 1, 0,�1, 0, 0):

It is also of interest to examine a complete set of linearly independent
estimable functions obtained as linear combinations of the rows of X [see Theorem
12.2b(i) and Example 12.2.2b]. If we subtract the first row from each succeeding
row of X, we obtain

1 1 0 0 1 0
0 0 0 0 �1 1
0 �1 1 0 0 0
0 �1 1 0 �1 1
0 �1 0 1 0 0
0 �1 0 1 �1 1

0
BBBBBB@

1
CCCCCCA
:
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We multiply the second and third rows by 21 and then add them to the fourth row,
with similar operations involving the second, fifth, and sixth rows. The result is

1 1 0 0 1 0
0 0 0 0 1 �1
0 1 �1 0 0 0
0 0 0 0 0 0
0 1 0 �1 0 0
0 0 0 0 0 0

0
BBBBBB@

1
CCCCCCA
:

Multiplying this matrix by b, we obtain a complete set of linearly independent
estimable functions: mþ a1 þ b1, b1 � b2, a1 � a2, a1 � a3. Note that the esti-
mable functions not involving m are contrasts in the a0s or b’s.

12.8.2 Testing a Hypothesis

As noted at the beginning of Section 12.8.1, H0 :a1 ¼ a2 ¼ a3 is equivalent to
H0 :a1 � a2 ¼ a1 � a3 ¼ 0. Since two linearly independent estimable functions
of the a’s are needed to express H0 :a1 ¼ a2 ¼ a3 (see Theorems 12.7b and
12.7c), the sum of squares for testing H0 :a1 ¼ a2 ¼ a3 has 2 degrees of freedom.
Similarly, H0 :b1 ¼ b2 is testable with 1 degree of freedom.

The normal equations X0Xb̂ ¼ X0y are given by

6 2 2 2 3 3
2 2 0 0 1 1
2 0 2 0 1 1
2 0 0 2 1 1
3 1 1 1 3 0
3 1 1 1 0 3

0
BBBBBB@

1
CCCCCCA

m̂

â1

â2

â3

b̂1
b̂2

0
BBBBBB@

1
CCCCCCA
¼

y::
y1:

y2:

y3:

y:1
y:2

0
BBBBBB@

1
CCCCCCA
: (12:48)

If we impose the side conditions â1 þ â2 þ â3 ¼ 0 and b̂1 þ b̂2 ¼ 0, we obtain the
following solution to the normal equations:

m̂ ¼ �y::, â1 ¼ �y1: � �y::, â2 ¼ �y2: � �y::,

â3 ¼ �y3: � �y::, b̂1 ¼ �y:1 � �y::, b̂2 ¼ �y:2 � �y::,
(12:49)

where �y:: ¼
P

ij yij=6, �y1: ¼
P

j y1j=2, and so on.
If we impose the side conditions on both the parameters and the estimates,

equations (12.49) are unique estimates of unique meaningful parameters. Thus, for
example, a1 becomes a�1 ¼ �m1: � �m::, the expected deviation from the mean due to
treatment 1 (see Section 12.1.1), and �y1: � �y:: is a reasonable estimate. On the
other hand, if the side conditions are used only to obtain estimates and are not
imposed on the parameters, then a1 is not unique, and �y1: � �y:: does not estimate a
parameter. In this case, â1 ¼ �y1: � �y:: can be used only together with other elements

in b̂ [as given by (12.49)] to obtain estimates l0b̂ of estimable functions l0b.
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We now proceed to obtain the test for H0 :a1 ¼ a2 ¼ a3 following the outline in

Table 12.3. First, for the full model, we need b̂0X0y ¼ SS(m, a1, a2, a3, b1, b2),
which we denote by SS(m,a,b). By (12.48) and (12.49), we obtain

SS(m, a,b) ¼ b̂0X0y ¼ (m̂ , â1, . . . , b̂2)

y::
y1:

..

.

y:2

0
BBBB@

1
CCCCA

¼ m̂y:: þ â1y1: þ â2y2: þ â3y3: þ b̂1y:1 þ b̂2y:2

¼ �y::y:: þ
X3

i¼1

( �yi: � �y::)yi: þ
X2

j¼1

(�y:j � �y::)y:j

¼ y2
::

6
þ
X3

i¼1

yi:

2
� y::

6

� 	
yi: þ

X2

j¼1

y:j
3
� y::

6

� 	
y:j

¼ y2
::

6
þ

X3

i¼1

y2
i:

2
� y2

::

6

 !
þ

X2

j¼1

y2
:j

3
� y2

::

6

 !
, (12:50)

since
P

i yi: ¼ y:: and
P

j y:j ¼ y::. The error sum of squares SSE is given by

y0y� b̂0X0y ¼
X

ij

y2
ij �

y2
::

6
�

X3

i¼1

y2
i:

2
� y2

::

6

 !
�

X2

j¼1

y2
:j

3
� y2

::

6

 !
:

To obtain b̂2X02y in Table 12.3, we use the reduced model yij ¼ mþ aþ
bj þ 1ij ¼ mþ bj þ 1ij, where a1 ¼ a2 ¼ a3 ¼ a and mþ a is replaced by m.

The normal equations X02X2b̂2 ¼ X02y for the reduced model are

6m̂ þ 3b̂1 þ 3b̂2 ¼ y::

3m̂ þ 3b̂1 ¼ y:1

3m̂ þ 3b̂2 ¼ y:2: (12:51)

Using the side condition b̂1 þ b̂2 ¼ 0, the solution to the reduced normal
equations in (12.51) is easily obtained as

m̂ ¼ �y::, b̂1 ¼ �y:1 � �y::, b̂2 ¼ �y:2 � �y::: (12:52)

By (12.51) and (12.52), we have

SS(m, b) ¼ b̂02X02y ¼ m̂y:: þ b̂1y:1 þ b̂2y:2 ¼
y2
::

6
þ

X2

j¼1

y2
:j

3
� y2

::

6

 !
: (12:53)
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Abbreviating SS(a1,a2,a3jm, b1b2) as SS(ajm,a), we have

SS(ajm,b) ¼ b̂0X0y� b̂02X02y ¼
X

i

y2
i:

2
� y2

::

6
: (12:54)

The test is summarized in Table 12.4. [Note that SS(bjm, a) is not included.]

12.8.3 Orthogonality of Columns of X

The estimates of m, b1, and b2 given in (12.52) for the reduced model are the same as

those of m, b1, and b2 given in (12.49) for the full model. The sum of squares b̂02X02y

in (12.53) is clearly a part of b̂0X0y in (12.50). In fact, (12.54) can be expressed as
SS(ajm,b) ¼ SS(a), and (12.50) becomes SS(m,a,b) ¼ SS(m)þ SS(a)þ SS(b).
These simplified results are due to the essential orthogonality in the X matrix in
(12.47) as required by Theorem 12.7a. There are three groups of columns in the X
matrix in (12.47), the first column corresponding to m, the next three columns corre-
sponding to a1, a2, and a3, and the last two columns corresponding to b1 and b2.
The columns of X in (12.47) are orthogonal within each group but not among
groups as required by Theorem 12.7a. However, consider the same X matrix if
each column after the first is centered using the mean of the column:

(j, Xc) ¼

1 2
3 �1

3 �1
3

1
2 �1

2

1 2
3 �1

3 �1
3 �1

2
1
2

1 �1
3

2
3 �1

3
1
2 �1

2

1 �1
3

2
3 �1

3 �1
2

1
2

1 �1
3 �1

3
2
3

1
2 �1

2

1 �1
3 �1

3
2
3 �1

2
1
2

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

: (12:55)

TABLE 12.4 ANOVA for Testing H0 :a15a25a3

Source of Variation df Sum of Squares F Statistic

Due to a adjusted for m,b 2
SS(ajm,b) ¼

P
i

y2
i:

2
� y2

::

6
P

i

y2
i:

2
� y2

::

6

� �
=2

SSE=2

Error 2 SSE ¼
P

ij y2
ij � b̂0X0y —

Total 5 SST ¼
P

ij y2
ij � y2

::=6 —
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Now the columns are orthogonal among the groups. For example, each of columns 2,
3, and 4 is orthogonal to each of columns 5 and 6, but columns 2, 3, and 4 are not
orthogonal to each other. Note that rank( j, Xc) ¼ 4 since the sum of columns 2, 3,
and 4 is 0 and the sum of columns 5 and 6 is 0. Thus rank( j, Xc) is the same as
the rank of X in (12.47).

We now illustrate the use of side conditions to obtain an orthogonalization that is
full-rank (this was illustrated for a one-way model in Section 12.1.1.). Consider the
two-way model with interaction

yijk ¼ mþ ai þ bj þ gij þ 1ijk, i ¼ 1, 2; j ¼ 1, 2; k ¼ 1, 2: (12:56)

In matrix form, the model is

y111

y112

y121

y122

y211

y212

y221

y222

0
BBBBBBBBBB@

1
CCCCCCCCCCA

¼

1 1 0 1 0 1 0 0 0
1 1 0 1 0 1 0 0 0
1 1 0 0 1 0 1 0 0
1 1 0 0 1 0 1 0 0
1 0 1 1 0 0 0 1 0
1 0 1 1 0 0 0 1 0
1 0 1 0 1 0 0 0 1
1 0 1 0 1 0 0 0 1

0
BBBBBBBBBB@

1
CCCCCCCCCCA

m

a1

a2

b1

b2

g11
g12

g21

g22

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

þ

1111

1112

1121

1122

1211

1212

1221

1222

0
BBBBBBBBBB@

1
CCCCCCCCCCA

: (12:57)

Useful side conditions become apparent in the context of the normal equations,
which are given by

8m̂ þ 4(â1 þ â2)þ 4(b̂1 þ b̂2)þ 2(ĝ11 þ ĝ12 þ ĝ21 þ ĝ22) ¼ y::

4m̂ þ 4âi þ 2(b̂1 þ b̂2)þ 2(ĝi1 þ ĝi2) ¼ yi::, i ¼ 1, 2

4m̂ þ 2(â1 þ â2)þ 4b̂j þ 2(ĝ1j þ ĝ2j) ¼ y:j:, j ¼ 1, 2

2m̂ þ 2âi þ 2b̂j þ 2ĝij ¼ yij:, i ¼ 1, 2, j ¼ 1, 2

(12:58)

Solution of the equations in (12.58) would be simplified by the following side con-
ditions:

â1 þ â2 ¼ 0, b̂1 þ b̂2 ¼ 0,

ĝi1 þ ĝi2 ¼ 0, i ¼ 1, 2,

ĝ1j þ ĝ2j ¼ 0, j ¼ 1, 2:

(12:59)

In (12.57), the X matrix is 8 � 9 of rank 4 since the first five columns are all
expressible as linear combinations of the last four columns, which are linearly inde-
pendent. Thus X0X is 9 � 9 and has a rank deficiency of 9 2 4 ¼ 5. However, there
are six side conditions in (12.59). This apparent discrepancy is resolved by noting that
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there are only three restrictions among the last four equations in (12.59). We can
obtain any one of these four from the other three. To illustrate, we obtain the first
equation from the last three. Adding the third and fourth equations gives
ĝ11 þ ĝ21 þ ĝ12 þ ĝ22 ¼ 0. Then substitution of the second, ĝ21 þ ĝ22 ¼ 0,
reduces this to the first, ĝ11 þ ĝ12 ¼ 0.

We can obtain a full-rank orthogonalization by imposing the side conditions
in (12.59) on the parameters and using these relationships to express redundant
parameters in terms of the four parameters m, a1, b1, and g11. (For exposi-
tional convenience, we do not use * on the parameters subject to side conditions.)
This gives

a2 ¼ �a1, b2 ¼ �b1,

g12 ¼ �g11, g21 ¼ �g11, g22 ¼ g11:
(12:60)

The last of these, for example, is obtained from the side condition g12 þ g22 ¼ 0.
Thus g22 ¼ �g12 ¼ �(�g11):

Using (12.60), we can express the eight yijk values in (12.56) in terms of
m, a1, b1, and g11:

y11k ¼ mþ a1 þ b1 þ g11 þ 111k, k ¼ 1, 2,

y12k ¼ mþ a1 þ b2 þ g12 þ 112k

¼ mþ a1 � b1 � g11 þ 112k, k ¼ 1, 2,

y21k ¼ mþ a2 þ b1 þ g21 þ 121k

¼ m� a1 þ b1 � g11 þ 121k, k ¼ 1, 2,

y22k ¼ mþ a2 þ b2 þ g22 þ 122k

¼ m� a1 � b1 þ g11 þ 122k, k ¼ 1, 2:

The redefined X matrix thus becomes

1 1 1 1
1 1 1 1
1 1 �1 �1
1 1 �1 �1
1 �1 1 �1
1 �1 1 �1
1 �1 �1 1
1 �1 �1 1

0
BBBBBBBBBB@

1
CCCCCCCCCCA

,

which is a full-rank matrix with orthogonal columns. The methods of Chapters 7 and
8 can now be used for estimation and testing hypotheses.
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PROBLEMS

12.1 Show that �m1: þ �m2: ¼ 2�m:: as in (12.9).

12.2 Show that 1̂01̂ in (12.10) is minimized by b̂, the solution to X0Xb̂ ¼ X0y in
(12.11).

12.3 Use Theorem 2.7 to prove Theorem 12.2a.

12.4 (a) Give an alternative proof of Theorem 12.2b(iii) based on Theorem
2.8c(iii).

(b) Give a second alternative proof of Theorem 12.2b(iii) based on Theorem
2.8f.

12.5 (a) Using all three conditions in Theorem 12.2b, show that l0b ¼
mþ t2 ¼ (1, 0, 1)b is estimable (use the model in Example 12.2.2a).

(b) Using all three conditions in Theorem 12.2b, show that l0b ¼
t1 þ t2 ¼ (0, 1, 1)b is not estimable.

12.6 If l0b is estimable and b̂1 and b̂2 are two solutions to the normal equations,

show that l0b̂1 ¼ l0b̂2 as in Theorem 12.3a(iii).

12.7 Obtain an estimate of mþ t2 using r0X0y and l0b̂ from the model in Example
12.3.1.

12.8 Consider the model yij ¼ mþ ti þ 1ij, i ¼ 1, 2, j ¼ 1, 2, 3:

(a) For l0b ¼ (1, 1, 0)b ¼ mþ t1, show that

r ¼ c
�1

1
1

0
@

1
Aþ

0
1
3

0

0
B@

1
CA,

with arbitrary c, represents all solutions to X0Xr ¼ l.

(b) Obtain the BLUE [best linear unbiased estimator] for mþ t1 using r
obtained in part (a).

(c) Find the BLUE for t1 � t2 using the method of parts (a) and (b).

12.9 (a) In Example 12.2.2b, we found the estimable functions
l01b ¼ mþ a1 þ b1, l02b ¼ b1 � b2, and l03b ¼ a1 � a2. Find the
BLUE for each of these using r0X0y in each case.

(b) For each estimator in part (a), show that E(r0iX
0y) ¼ l0ib.

12.10 In the model yij ¼ mþ ti þ 1ij, i ¼ 1, 2, . . . , k; j ¼ 1, 2, . . . , n, show thatPk
i¼1 citi is estimable if and only if

Pk
i¼1 ci ¼ 0, as suggested following

Example 12.2.2b. Use the following two approaches:

(a) In l0b ¼
Pk

i¼1 citi, express l0 as a linear combination of the rows of X.
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(b) Express
Pk

i¼1 citi as a linear combination of the elements of
E(y) ¼ Xb.

12.11 In Example 12.3.1, find all solutions r for X0Xr ¼ l and show that all of
them give r0X0y ¼ �y1: � �y2:.

12.12 Show that cov(l01b̂, l02b̂) ¼ s2r01l2 ¼ s2l01r2 ¼ s2l01(X0X)�l2 as in
Theorem 12.3c.

12.13 (a) Show that (y� Xb̂)0(y� Xb̂) ¼ y0y� b̂0X0y as in (12.20).

(b) Show that y0y� b̂0X0y ¼ y0[I� X(X0X)�X0]y as in (12.21).

12.14 Show that b0X0[I� X(X0X)�X0]Xb ¼ 0, as in the proof of Theorem
12.3e(i).

12.15 Differentiate ln L(b, s2) in (12.26) with respect to b and s2 to obtain (12.27)
and (12.28).

12.16 Prove Theorem 12.3g.

12.17 Show that l0b ¼ b0g ¼ c0d as in (12.34).

12.18 Show that the matrix Z in Example 12.5 can be obtained using (12.31),
Z ¼ XU0(UU0)�1.

12.19 Redo Example 12.5 with the parameterization

g ¼ mþ t1

t1 � t2

� �
:

Find Z and U by inspection and show that ZU ¼ X. Then show that Z can be
obtained as Z ¼ XU0(UU0)�1.

12.20 Show that b̂ in (12.39) is a solution to the normal equations X0Xb̂ ¼ X0y.

12.21 Show that
a1 � a2

a1 þ a2 � 2a3

� �
¼ 0

0

� �
in (12.40) implies a1 ¼ a2 ¼ a3, as

noted preceding (12.40).

12.22 Prove Theorem 12.7b(v).

12.23 Multiply X0X in (12.48) by b̂ to obtain the six normal equations. Show that
with the side conditions â1 þ â2 þ â3 ¼ 0 and b̂1 þ b̂2 ¼ 0, the solution is
given by (12.49).

12.24 Obtain the reduced normal equations X02X2b̂2 ¼ X02y in (12.51) by writing
X2 and X02X2 for the reduced model yij ¼ mþ bj þ 1ij, i ¼ 1, 2, 3, j ¼ 1, 2.

12.25 Consider the model yij ¼ mþ ti þ 1ij, i ¼ 1, 2, 3, j ¼ 1, 2, 3:

(a) Write X, X0X, X0y, and the normal equations.
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(b) What is the rank of X or X0X? Find a set of linearly independent esti-
mable functions.

(c) Define an appropriate side condition, and find the resulting solution to
the normal equations.

(d) Show that H0 : t1 ¼ t2 ¼ t3 is testable. Find b̂0X0y ¼ SS(m, t) and

b̂02X02y ¼ SS(m).

(e) Construct an ANOVA table for the test of H0 : t1 ¼ t2 ¼ t3.

12.26 Consider the model yijk ¼ mþ ai þ bj þ gij þ 1ijk, i ¼ 1, 2, j ¼ 1, 2,
k ¼ 1, 2, 3.

(a) Write X0X, X0y, and the normal equations.

(b) Find a set of linearly independent estimable functions. Are a1 � a2 and
b1 � b2 estimable?

12.27 Consider the model yijk ¼ mþ ai þ bj þ gk þ 1ijk, i ¼ 1, 2, j ¼ 1, 2,
k ¼ 1, 2.

(a) Write X0X, X0y, and the normal equations.

(b) Find a set of linearly independent estimable functions.

(c) Define appropriate side conditions, and find the resulting solution to the
normal equations.

(d) Show that H0 :a1 ¼ a2 is testable. Find b̂0X0y ¼ SS(m, a, b, g) and

b̂02X02y ¼ SS(m, b, g).

(e) Construct an ANOVA table for the test of H0 :a1 ¼ a2.

12.28 For the model yijk ¼ mþ ai þ bj þ gij þ 1ijk, i ¼ 1, 2, j ¼ 1, 2, k ¼ 1, 2 in
(12.56), write X0X and obtain the normal equations in (12.58).
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13 One-Way Analysis-of-Variance:
Balanced Case

The one-way analysis-of-variance (ANOVA) model has been illustrated in Sections
12.1.1, 12.2.2, 12.3.1, 12.5, and 12.6. We now analyze this model more fully. To
solve the normal equations in Section 13.3, we use side conditions as well as a gen-
eralized inverse approach. For hypothesis tests in Section 13.4, we use both the full–
reduced-model approach and the general linear hypothesis. Expected mean squares
are obtained in Section 13.5 using both a full–reduced-model approach and a
general linear hypothesis approach. In Section 13.6, we discuss contrasts on the
means, including orthogonal polynomials. Throughout this chapter, we consider
only the balanced model. The unbalanced case is discussed in Chapter 15.

13.1 THE ONE-WAY MODEL

The one-way balanced model can be expressed as follows:

yij ¼ mþ ai þ 1ij, i ¼ 1, 2, . . . , k, j ¼ 1, 2, . . . , n: (13:1)

If a1,a2, . . . ,ak represent the effects of k treatments, each of which is applied to n
experimental units, then yij is the response of the jth observation among the n units
that receive the ith treatment. For example, in an agricultural experiment, the treat-
ments may be different fertilizers or different amounts of a given fertilizer. On the
other hand, in some experimental situations, the k groups may represent samples
from k populations whose means we wish to compare, populations that are not
created by applying treatments. For example, suppose that we wish to compare the
average lifetimes of several brands of batteries or the mean grade-point averages
for freshmen, sophomores, juniors, and seniors. Three additional assumptions that
form part of the model in (13.1) are

1. E(1ij) ¼ 0 for all i, j.

Linear Models in Statistics, Second Edition, by Alvin C. Rencher and G. Bruce Schaalje
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2. var(1ij) ¼ s2 for all i, j.

3. cov(1ij, 1rs) ¼ 0 for all (i, j) = (r, s).

4. We sometimes add the assumption that 1ij is distributed as N(0,s2).

5. In addition, we often use the constraint (side condition)
Pk

i¼1 ai ¼ 0.

The mean for the ith treatment or population can be denoted by mi. Thus Eij ¼ mi,
and using assumption 1, we have mi ¼ mþ ai. We can thus write (13.1) in the
form

yij ¼ mi þ 1ij, i ¼ 1, 2, . . . , k, j ¼ 1, 2, . . . , n: (13:2)

In this form of the model, the hypothesis H0 : m1 ¼ m2 ¼ � � � ¼ mk is of interest.
In the context of design of experiments, the one-way layout is sometimes called a

completely randomized design. In this design, the experimental units are assigned at
random to the k treatments.

13.2 ESTIMABLE FUNCTIONS

To illustrate the model (13.1) in matrix form, let k ¼ 3 and n ¼ 2. The resulting six
equations, yij ¼ mþ ai þ 1ij, i ¼ 1, 2, 3, j ¼ 1, 2, can be expressed as

y11

y12

y21

y22

y31

y32

0
BBBBBBBB@

1
CCCCCCCCA
¼

mþ a1

mþ a1

mþ a2

mþ a2

mþ a3

mþ a3

0
BBBBBBBB@

1
CCCCCCCCA
þ

111

112

121

122

131

132

0
BBBBBBBB@

1
CCCCCCCCA

¼

1 1 0 0

1 1 0 0

1 0 1 0

1 0 1 0

1 0 0 1

1 0 0 1

0
BBBBBBBB@

1
CCCCCCCCA

m

a1

a2

a3

0
BBB@

1
CCCAþ

111

112

121

122

131

132

0
BBBBBBBB@

1
CCCCCCCCA

, (13:3)

or

y ¼ Xbþ 1:

In (13.3), X is 6 � 4 and is clearly of rank 3 because the first column is the sum of the
other three columns. Thus b ¼ (m,a1,a2,a3)0 is not unique and not estimable; hence
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the individual parameters m,a1,a2,a3 cannot be estimated unless they are subject to
constraints (side conditions). In general, the X matrix for the one-way balanced model
is kn � (k þ 1) of rank k.

We discussed estimable functions l0b in Section 12.2.2. It was shown in
Problem 12.10 that for the one-way balanced model, contrasts in the a’s are esti-
mable. Thus

P
i ciai is estimable if and only if

P
i ci ¼ 0. For example, contrasts

such as a1�a2 and a1�2a2 þ a3 are estimable.
If we impose a side condition on the ai’s and denote the constrained parameters as

m� and a�i , then m�,a�1, . . . ,a�k are uniquely defined and estimable. Under the usual

side condition,
Pk

i¼1 a
�
i ¼ 0, the parameters are defined as m� ¼ �m: and

a�i ¼ mi � �m:, where �m: ¼
Pk

i¼1 mi=k. To see this, we rewrite (13.1) and (13.2) in
the form E(yij) ¼ mi ¼ m� þ a�i to obtain

�m: ¼
Xk

i¼1

mi

k
¼
X

i

m� þ a�i
k

¼ m� þ
X

i

a�i
k
¼ m�: (13:4)

Then, from mi ¼ m� þ a�i , we have

a�i ¼ mi � m� ¼ mi � �m:: (13:5)

13.3 ESTIMATION OF PARAMETERS

13.3.1 Solving the Normal Equations

Extending (13.3) to a general k and n, the one-way model can be written in matrix
form as

y1
y2

..

.

yk

0
BBB@

1
CCCA ¼

j j 0 � � � 0
j 0 j � � � 0

..

. ..
. ..

. ..
.

j 0 0 � � � j

0
BBB@

1
CCCA

m

a1

a2

..

.

ak

0
BBBBB@

1
CCCCCA
þ

11

12

..

.

1k

0
BBB@

1
CCCA, (13:6)

or

y ¼ Xbþ 1,
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where j and 0 are each of size n � 1, and yi and 1i are defined as

yi ¼

yi1

yi2

..

.

yin

0
BBB@

1
CCCA, 1i ¼

1i1

1i2

..

.

1in

0
BBB@

1
CCCA:

For (13.6), the normal equations X0Xb̂ ¼ X0y take the form

kn n n � � � n
n n 0 � � � 0
n 0 n � � � 0

..

. ..
. ..

. ..
.

n 0 0 � � � n

0
BBBBB@

1
CCCCCA

m̂

â1

â2

..

.

âk

0
BBBBB@

1
CCCCCA
¼

y::
y1:

y2:

..

.

yk:

0
BBBBB@

1
CCCCCA

, (13:7)

where y:: ¼
P

ij yij and yi: ¼
P

j yij.
In Section 13.3.1.1, we find a solution of (13.7) using side conditions, and in

Section 13.3.1.2 we find another solution using a generalized inverse of X0X.

13.3.1.1 Side Conditions
The k þ 1 normal equations in (13.7) can be expressed as

knm̂þ nâ1 þ nâ2 þ � � � þ nâk ¼ y::,

nm̂þ nâi ¼ yi:, i ¼ 1, 2, . . . , k: (13:8)

Using the side condition
P

i âi ¼ 0, the solution to (13.8) is given by

m̂ ¼ y::
kn
¼ �y::,

âi ¼
yi:

n
� m̂ ¼ �yi: � �y::, i ¼ 1, 2, . . . , k: (13:9)

In vector form, this solution b̂ for X0Xb̂ ¼ X0y is expressed as

b̂ ¼

�y::
�y1: � �y::

..

.

�yk: � �y::

0
BBB@

1
CCCA: (13:10)

If the side condition
P

i a
�
i ¼ 0 is imposed on the parameters, then the elements

of b̂ are unique estimators of the (constrained) parameters m� ¼ �m: and
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a�i ¼ mi � �m:, i ¼ 1, 2, . . . , k, in (13.4) and (13.5). Otherwise, the estimators in
(13.9) or (13.10) are to be used in estimable functions. For example, by Theorem

12.3a(i), the estimator of l0b ¼ a1 � a2 is given by l0b̂:

l0b̂ ¼ da1 � a2 ¼ â1 � â2 ¼ �y1: � �y:: � (�y2: � �y::) ¼ �y1: � �y2::

By Theorem 12.3d, such estimators are BLUE. If 1ij is N(0, s2), then, by Theorem
12.3h, the estimators are minimum variance unbiased estimators.

13.3.1.2 Generalized Inverse
By Corollary 1 to Theorem 2.8b, a generalized inverse of X0X in (13.7) is given by

ðX0X)� ¼

0 0 � � � 0

0
1
n
� � � 0

..

. ..
. ..

.

0 0 � � � 1
n

0
BBBBBB@

1
CCCCCCA
: (13:11)

Then by (12.13) and (13.7), a solution to the normal equations is obtained as

b̂ ¼ (X0X)�X0y ¼

0
�y1:

..

.

�yk:

0
BBB@

1
CCCA: (13:12)

The estimators in (13.12) are different from those in (13.10), but they give the
same estimates of estimable functions. For example, using b̂ from (13.12) to estimate
l0b ¼ a1�a2, we have

l0b̂ ¼ da1 � a2 ¼ â1 � â2 ¼ �y1: � �y2:,

which is the same estimate as that obtained above in Section 13.3.1.1 using b̂ from
(13.10).

13.3.2 An Estimator for s2

In assumption 2 for the one-way model in (13.1), we have var(1ij) ¼ s2 for all i, j. To
estimate s2, we use (12.22)

s2 ¼ SSE
k(n� 1)

,
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where SSE is as given by (12.20) or (12.21):

SSE ¼ y0y� b̂0X0y ¼ y0½I� X(X0X)�X0�y:

The rank of the idempotent matrix I� X(X0X)�X0 is kn 2 k because rank(X) ¼ k,
tr(I) ¼ kn, and tr[X(X0X)�X0� ¼ k (see Theorem 2.13d). Then s2 ¼ SSE=k(n� 1)
is an unbiased estimator of s2 [see Theorem 12.3e(i)].

Using b̂ from (13.12), we can express SSE ¼ y0y� b̂0Xy in the following form:

SSE ¼ y0y� b̂0X0y ¼
Xk

i¼1

Xn

j¼1

y2
ij �

Xk

i¼1

�yi:yi:

¼
X

ij

y2
ij �

X
i

y2
i:

n
: (13:13)

It can be shown (see Problem 13.4) that (13.13) can be written as

SSE ¼
X

ij

(yij � �yi:)
2: (13:14)

Thus s2 is given by either of the two forms

s2 ¼
P

ij (yij � �yi:)
2

k(n� 1)
(13:15)

¼
P

ij y2
ij �

P
i y2

i:=n

k(n� 1)
: (13:16)

13.4 TESTING THE HYPOTHESIS H0 : m1 5 m2 5 . . . 5 mk

Using the model in (13.2), the hypothesis of equality of means can be expressed as
H0 :m1 ¼ m2 ¼ � � � ¼ mk. The alternative hypothesis is that at least two means are
unequal. Using mi ¼ mþ ai [see (13.1) and (13.2)], the hypothesis can be expressed
as H0 :a1 ¼ a2 ¼ � � � ¼ ak, which is testable because it can be written in terms of
k21 linearly independent estimable contrasts, for example, H0 :a1 � a2 ¼ a1�
a3 ¼ � � � ¼ a1 � ak ¼ 0 (see the second paragraph in Section 12.7.1). In Section
13.4.1 we develop the test using the full–reduced-model approach, and in Section
13.4.2 we use the general linear hypothesis approach. In the model y ¼ Xbþ 1,
the vector y is kn � 1 [see (13.6)]. Throughout Section 13.4, we assume that y is
NknðXb,s2I).

13.4.1 Full–Reduced-Model Approach

The hypothesis

H0 :a1 ¼ a2 ¼ � � � ¼ ak ð13:17)
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is equivalent to

H0 :a�1 ¼ a�2 ¼ � � � ¼ a�k , (13:18)

where the a�i terms are subject to the side condition
P

i a
�
i ¼ 0. With this constraint,

H0 in (13.18) is also equivalent to

H0 :a�1 ¼ a�2 ¼ � � � ¼ a�k ¼ 0: (13:19)

The full model, yij ¼ mþ ai þ 1ij, i ¼ 1, 2, . . . , k, j ¼ 1, 2, . . . , n, is expressed
in matrix form y ¼ Xbþ 1 in (13.6). If the full model is written in terms of m�

and ai
� as yij ¼ m� þ a�i þ 1ij, then the reduced model under H0 in (13.19) is

yij ¼ m� þ 1ij. In matrix form, this becomes y ¼ m�jþ 1, where j is kn � 1. To be
consistent with the full model y ¼ Xbþ 1, we write the reduced model as

y ¼ mjþ 1: (13:20)

For the full model, the sum of squares SS(m,a) ¼ b̂0X0y is given as part of
(13.13) as

SS(m,a) ¼ b̂0X0y ¼
Xk

i¼1

y2
i:

n
,

where the sum of squares SS(m,a1, . . . ,ak) is abbreviated as SS(m, a). For the

reduced model in (13.20), the estimator “b̂ ¼ (X0X)�1X0y” and the sum of squares

“b̂0X0y” become

m̂ ¼ (j0j)�1j0y ¼ 1
kn

y:: ¼ �y::, (13:21)

SS(m) ¼ (m̂)0j0y ¼ �y::y:: ¼
y2
::

kn
, (13:22)

where j is kn � 1.
From Table 12.3, the sum of squares for the a’s adjusted for m is given by

SS(ajm) ¼ SS(m,a)� SS(m) ¼ b̂0X0y� y2
::

kn

¼ 1
n

Xk

i¼1

y2
i: �

y2
::

kn
(13:23)

¼ n
Xk

i¼1

(�yi: � �y::)
2: (13:24)
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The test is summarized in Table 13.1 using SS(ajm) in (13.23) and SSE in (13.13).
The chi-square and independence properties of SS(ajm) and SSE follow from results
established in Section 12.7.2.

To facilitate comparison of (13.23) with the result of the general linear hypothesis
approach in Section 13.4.2, we now express SS(ajm) as a quadratic form in y. By

(12.13), b̂ ¼ ðX0X)�X0y, and therefore b̂0X0y ¼ y0XðX0X)�X0y. Then with (13.21)
and (13.22), we can write

SS(ajm) ¼ b̂
0
X0y� y2

::

kn

¼ y0X(X0X)�X0y� y0jkn( j0knjkn)�1j0kny

¼ y0X(X0X)�X0y� y0
jknj0kn

kn

� �
y

¼ y0[X(X0X)�X0 � 1
kn

Jkn

�
y: (13:25)

Using some results in the answer to Problem 13.3, this can be expressed as

SS(ajm) ¼ y0
1
n

J O � � � O

O J � � � O

..

. ..
. ..

.

O O � � � J

0
BBBB@

1
CCCCA
� 1

kn

J J � � � J

J J � � � J

..

. ..
. ..

.

J J � � � J

0
BBBB@

1
CCCCA

2
66664

3
77775

y (13:26)

¼ 1
kn

y0

(k � 1)J �J � � � �J

�J (k � 1)J � � � �J

..

. ..
. ..

.

�J �J � � � (k � 1)J

0
BBBB@

1
CCCCA

y,

where each J in (13.26) and (13.27) is n � n.

TABLE 13.1 ANOVA for Testing H0 :a1 ¼ a2 ¼ � � � ¼ ak in the One-Way Model

Source of
Variation df Sum of Squares

Mean
Square F Statistic

Treatments k 2 1 SSðajmÞ ¼ 1
n

X
i

y2
i: �

y2
::

kn
SS
ðajmÞ
k � 1

SSðajmÞ=ðk � 1Þ
SSE=kðn� 1Þ

Error k(n 2 1) SSE ¼
X

ij

y2
ij �

1
n

X
i

y2
i:

SSE
kðn� 1Þ —

Total kn 2 1 SST ¼
X

ij

y2
ij �

y2
::

kn
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Example 13.4. Three methods of packaging frozen foods were compared by Daniel
(1974, p. 196). The response variable was ascorbic acid (mg/100g). The data are in
Table 13.2.

To make the test comparing the means of the three methods, we calculate

y2
::

kn
¼ (419:95)2

(3)(7)
¼ 8298:0001,

1
7

X3

i¼1

y2
i: ¼

1
7

(120:06)2 þ (135:18)2 þ (164:71)2
� �

¼ 1
7

(59, 817:4201) ¼ 8545:3457,

X3

i¼1

X7

j¼1

y2
ij ¼ 8600:3127:

The sums of squares for treatments, error, and total are then

SS(ajm) ¼ 1
7

X3

i¼1

y2
i: �

y2
::

21
¼ 8545:3457� 8398:0001 ¼ 147:3456,

SSE ¼
X

ij

y2
ij �

1
7

X
i

y2
i: ¼ 8600:3127� 8545:3457 ¼ 54:9670,

SST ¼
X

ij

y2
ij �

y2
::

21
¼ 8600:3127� 8398:0001 ¼ 202:3126:

These sums of squares can be used to obtain an F test, as in Table 13.3. The p value
for F ¼ 24.1256 is 8.07 � 1026. Thus we reject H0 :m1 ¼ m2 ¼ m3. A

TABLE 13.2 Ascorbic Acid (mg/100g) for Three
Packaging Methods

Method A B C

14.29 20.06 20.04
19.10 20.64 26.23
19.09 18.00 22.74
16.25 19.56 24.04
15.09 19.47 23.37
16.61 19.07 25.02
19.63 18.38 23.27

Totals ( yi.) 120.06 135.18 164.71
Means (�yi) 17.15 19.31 23.53
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13.4.2 General Linear Hypothesis

For simplicity of exposition, we illustrate all results in this section with k ¼ 4. In this
case, b ¼ (m,a1,a2,a3,a4)0, and the hypothesis is H0 :a1 ¼ a2 ¼ a3 ¼ a4. Using
three linearly independent estimable contrasts, the hypothesis can be written in the
form

H0 :
a1 � a2

a1 � a3

a1 � a4

0
@

1
A ¼

0
0
0

0
@

1
A,

which can be expressed as H0 : Cb ¼ 0, where

C ¼
0 1 �1 0 0
0 1 0 �1 0
0 1 0 0 �1

0
@

1
A: (13:28)

The matrix C in (13.28) used to express H0 :a1 ¼ a2 ¼ a3 ¼ a4 is not unique. Other
contrasts could be used in C, for example

C1 ¼
0 1 �1 0 0
0 0 1 �1 0
0 0 0 1 �1

0
@

1
A or C2 ¼

0 1 1 �1 �1
0 1 �1 0 0
0 0 0 1 �1

0
@

1
A:

From (12.13) and Theorem 12.7b(iii), we have

SSH ¼ (Cb̂)0[C(X0X)�C0]�1Cb̂

¼ y0X(X0X)�C0[C(X0X)�C0]�1C(X0X)�X0y: (13:29)

TABLE 13.3 ANOVA for the Ascorbic Acid Data in Table 13.2

Source df
Sum of
Squares

Mean
Square F

Method 2 147.3456 73.6728 24.1256
Error 18 54.9670 3.0537 —

Total 20 202.3126
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Using C in (13.28) and (X0X)� in (13.11), we obtain

C(X0X)�C0 ¼ 1
n

0 1 �1 0 0

0 1 0 �1 0

0 1 0 0 �1

0
B@

1
CA

0 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0
BBBBBB@

1
CCCCCCA

0 0 0

1 1 1

�1 0 0

0 �1 0

0 0 �1

0
BBBBBB@

1
CCCCCCA

¼ 1
n

2 1 1

1 2 1

1 1 2

0
B@

1
CA: (13:30)

To find the inverse of (13.30), we write it in the form

C(X0X)�C0 ¼ 1
n

1 0 0
0 1 0
0 0 1

0
@

1
Aþ

1 1 1
1 1 1
1 1 1

0
@

1
A

2
4

3
5 ¼ 1

n
(I3 þ j3j03):

Then by (2.53), the inverse is

[C(X0X)�C0]�1 ¼ n I3 �
I�1

3 j3j03I�1
3

1þ j03I�1
3 j3

� �

¼ n I3 �
1
4

J3

� �
, (13:31)

where J3 is 3 � 3.
For C(X0X)�X0 in (13.29), we obtain

C(X0X)�X0 ¼ 1
n

j0n �j0n 00 00

j0n 00 �j0n 00

j0n 00 00 �j0n

0
@

1
A ¼ 1

n
A, (13:32)

where j0n and 00 are 1 � n.
Using (13.31) and (13.32), the matrix of the quadratic form for SSH in (13.29) can

be expressed as

X(X0X)�C0[C(X0X)�C0��1C(X0X)�X0 ¼ 1
n

A0n I3 �
1
4

J3

� �
1
n

A

¼ 1
n

A0I3A� 1
4n

A0J3A: (13:33)
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The first term of (13.33) is given by

1
n

A0A ¼ 1
n

jn jn jn

�jn 0 0

0 �jn 0

0 0 �jn

0
BBB@

1
CCCA

j0n �j0n 00 00

j0n 00 �j0n 00

j0n 00 00 �j0n

0
B@

1
CA

¼ 1
n

3Jn �Jn �Jn �Jn

�Jn Jn O O

�Jn O Jn O

�Jn O O Jn

0
BBB@

1
CCCA, (13:34)

since jnj0n ¼ Jn and jn00 ¼ O, where O is n � n. Similarly (see Problem 13.10), the
second term of (13.33) is given by

1
4n

A0J3A ¼ 1
4n

9Jn �3Jn �3Jn �3Jn

�3Jn Jn Jn Jn

�3Jn Jn Jn Jn

�3Jn Jn Jn Jn

0
BB@

1
CCA: (13:35)

Then (13.33) becomes

1
4n

(4A0A)� 1
4n

A0J3A ¼ 1
4n

12Jn �4Jn �4Jn �4Jn

�4Jn 4Jn O O

�4Jn O 4Jn O

�4Jn O O 4Jn

0
BBB@

1
CCCA

� 1
4n

9Jn �3Jn �3Jn �3Jn

�3Jn Jn Jn Jn

�3Jn Jn Jn Jn

�3Jn Jn Jn Jn

0
BBB@

1
CCCA

¼ 1
4n

3Jn �Jn �Jn �Jn

�Jn 3Jn �Jn �Jn

�Jn �Jn 3Jn �Jn

�Jn �Jn �Jn 3Jn

0
BBB@

1
CCCA ¼

1
4n

B: (13:36)

Note that the matrix for SSH in (13.36) is the same as the matrix for SS(ajm) in
(13.27) with k ¼ 4.
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For completeness, we now express SSH in (13.29) in terms of the yij’s. We begin
by writing (13 .36) in the form

1
4n

B ¼ 1
4n

4Jn O O O

O 4Jn O O

O O 4Jn O

O O O 4Jn

0
BBB@

1
CCCA�

1
4n

Jn Jn Jn Jn

Jn Jn Jn Jn

Jn Jn Jn Jn

Jn Jn Jn Jn

0
BBB@

1
CCCA

¼ 1
n

Jn O O O

O Jn O O

O O Jn O

O O O Jn

0
BBB@

1
CCCA�

1
4n

J4n:

Using y0 ¼ (y01, y02, y03, y04) as defined in (13.6), SSH in (13.29) becomes

SSH ¼ y0X(X0X)�C0[C(X0X)�C0��1C(X0X)�X0y

¼ y0
1
4n

B

� �
y

¼ 1
n

(y01; y
0
2; y
0
3; y
0
4)

Jn O O O

O Jn O O

O O Jn O

O O O Jn

0
BBB@

1
CCCA

y1

y2

y3

y4

0
BBB@

1
CCCA�

1
4n

y0J4ny

¼ 1
n

X4

i¼1

y0iJnyi �
1
4n

y0J4ny

¼ 1
n

X4

i¼1

y0ijnj0nyi �
1
4n

y0j4nj04ny

¼ 1
n

X4

i¼1

y2
i: �

1
4n

y2
::,

which is the same as SS(ajm) in (13.23).

13.5 EXPECTED MEAN SQUARES

The expected mean squares for a one-way ANOVA are given in Table 13.4. The
expected mean squares are defined as E[SS(ajm)=(k�1)] and E SSE=k(n� 1)�½ .
The result is given in terms of parameters a�i such that

P
i a
�
i ¼ 0.
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If H0 :a�1 ¼ a�2 ¼ � � � ¼ a�k ¼ 0 is true, both of the expected mean squares
are equal to s2, and we expect F to be close to 1. On the other hand, if H0 is
false, E[SS(ajm)=(k � 1)] . E[SSE=k(n� 1)], and we expect F to exceed 1. We
therefore reject H0 for large values of F.

The expected mean squares in Table 13.4 can be derived using the model
yij ¼ m� þ a�i þ 1ij in E[SS(ajm)] and E(SSE) (see Problem 13.11). In Sections
13.5.1 and 13.5.2, we obtain the expected mean squares using matrix methods
similar to those in Sections 13.4.1 and 13.4.2.

13.5.1 Full–Reduced-Model Approach

For the error term in Table 13.4, we have

E(SSE) ¼ Efy0[I� X(X0X)�X0]yg ¼ k(n� 1)s2; (13:37)

which was proved in Theorem 12.3e(i).
Using a full–reduced-model approach the sum of squares for the a’s adjusted for

m is given by (13.25) as SS(ajm) ¼ y0X(X0X)�X0y� y0[(1=kn)Jkn]y. Thus

E½SS(ajm)� ¼ E[y0X(X0X)�X0y]� E y0
1
kn

Jkn

� �
y

� �
: (13:38)

Using Theorem 5.2a, the first term on the right side of (13.38) becomes

E[y0X(X0X)�X0y] ¼ tr[X(X0X)�X0s2I]þ (Xb)0X(X0X)�X0(Xb)

¼ s2tr[X(X0X)�X0]þ b0X0X(X0X)�X0Xb

¼ s2tr[X(X0X)�X0]þ b0X0Xb [by (2:58)]: (13:39)

By Theorem 2.13f, the matrix X(X0X)�X0 is idempotent. Hence, by Theorems 2.13d
and 2.8c(v), we obtain

tr[X(X0X)�X0] ¼ rank[X(X0X)�X] ¼ rank(X) ¼ k: (13:40)

TABLE 13.4 Expected Mean Squares for One-Way ANOVA

Source of
Variation df

Sum of
Squares

Mean
Square

Expected Mean
Squares

Treatments k 2 1 SSðajmÞ SSðajmÞ
k � 1

s2 þ n
k � 1

Pk
i¼1 a

�2
i

Error k(n 2 1) SSE SSE
kðn� 1Þ

s2

Total kn 2 1
P

ij y2
ij �

y2
::

kn
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To evaluate the second term on the right side of (13.39), we use X0X in (13.7) and
use b0 ¼ (m�,a�1, . . . ,a�k ) subject to

P
i a
�
i ¼ 0. Then

b0X0Xb ¼ n(m�,a�1, . . . ,a�k)

k 1 1 . . . 1

1 1 0 . . . 0

1 0 1 . . . 0

..

. ..
. ..

. ..
.

1 0 0 . . . 1

0
BBBBBBBBB@

1
CCCCCCCCCA

m�

a�1

..

.

a�k

0
BBBBBB@

1
CCCCCCA

¼ n km� þ
X

i

a�i ,m� þ a�1, . . . ,m� þ a�k

 !
m�

a�1

..

.

a�k

0
BBBBBB@

1
CCCCCCA

¼ n km�2 þ
X

i

(m� þ a�i )a�i

" #

¼ n km�2 þ m�
X

i

a�i þ
X

i

a�2i

 !

¼ knm�2 þ n
X

i

a�2i : (13:41)

Hence, using (13.40) and (13.41), E[y0X(X0X)�X0y] in (13.39) becomes

E[y0X(X0X)�X0y] ¼ ks2 þ knm�2 þ n
X

i

a�2i : (13:42)

For the second term on the right side of (13.38), we obtain

E y0
1
kn

Jkn

� �
y

� �
¼ s2tr

1
kn

Jkn

� �
þ b0X0

1
kn

Jkn

� �
Xb

¼ s2kn

kn
þ 1

kn
b0X0jknj0knXb

¼ s2 þ 1
kn

(b0X0jkn)(j0knXb): (13:43)
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Using X as given in (13.6), j0knXb becomes

j0knXb ¼ (j0n, j0n, . . . , j0n)

jn jn 0 � � � 0

jn 0 jn � � � 0

..

. ..
. ..

. ..
.

jn 0 0 � � � jn

0
BBBB@

1
CCCCA

m�

a�1

..

.

a�k

0
BBBB@

1
CCCCA

¼ (kn, n, n, . . . , n)

m�

a�1

..

.

a�k

0
BBBB@

1
CCCCA

(since j0njn ¼ n)

¼ knm� þ n
Xk

i¼1

a�i ¼ knm�
�

since
X

i

a�i ¼ 0

�
:

The second term on the right side of (13.43) is then given by

1
kn

(b0X0jkn)(j0knXb) ¼ 1
kn

( j0Xb)2 ¼ k2n2m�2

kn
¼ knm�2,

so that (13.43) becomes

E y0
1
kn

Jkn

� �
y

� �
¼ s2 þ knm�2: (13:44)

Now, using (13.42) and (13.44), E[SS(ajm)] in (13.38) becomes

E[SS(ajm)] ¼ ks2 þ knm�2 þ n
Xk

i¼1

a�2i � (s2 þ knm�2)

¼ (k � 1)s2 þ n
X

i

a�2i : (13:45)

13.5.2 General Linear Hypothesis

To simplify exposition, we use k ¼ 4 to illustrate results in this section, as was done in
Section 13.4.2. It was shown in Section 13.4.2 that SSH ¼ (Cb̂)0[C(X0X)�C0]�1Cb̂

is the same as SS(ajm) ¼
P

i y2
i:=n� y2

::=kn in (13.23). Note that for k ¼ 4, C is 3 � 5
[see (13.28)] and C(X0X)�C0 is 3 � 3 [see (13.30)]. To obtain E[SS(ajm)],

we first note that by (12.44), (12.45), and (13.31), E(Cb̂) ¼ Cb, cov(Cb̂) ¼
s2C(X0X)�C0, and [C(X0X)�C0]�1 ¼ n(I3 � 1

4 J3).
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Then, by Theorem 5.2a, we have

E[SS(ajm)] ¼ E{(Cb̂)0[C(X0X)�C0]�1Cb̂}

¼ tr{[C(X0X)�C0]�1cov(Cb̂)}þ [E(Cb̂)]0[C(X0X)�C0]�1E(Cb̂)

¼ tr{[C(X0X)�C0]�1s2C(X0X)�C0}þ n(Cb)0[I3 � 1
4 J3]Cb

¼ s2tr(I3)þ nb0C0(I3 � 1
4 J3)Cb

¼ 3s2 þ nb0(C0C� 1
4 C0J3C)b: (13:46)

Using C in (13.28), we obtain

C0C ¼

0 0 0 0 0

0 3 �1 �1 �1

0 �1 1 0 0

0 �1 0 1 0

0 �1 0 0 1

0
BBBBBB@

1
CCCCCCA

, (13:47)

C0J3C ¼

0 0 0 0 0
0 9 �3 �3 �3
0 �3 1 1 1
0 �3 1 1 1
0 �3 1 1 1

0
BBBB@

1
CCCCA
: (13:48)

From (13.47) and (13.48), we have

C0C� 1
4 C0J3C ¼ 1

4 (4C0C� C0J3C)

¼ 1
4

0 0 0 0 0

0 3 �1 �1 �1

0 �1 3 �1 �1

0 �1 �1 3 �1

0 �1 �1 �1 3

0
BBBBBB@

1
CCCCCCA

¼ 1
4

0 0 0 0 0

0 4 0 0 0

0 0 4 0 0

0 0 0 4 0

0 0 0 0 4

0
BBBBBB@

1
CCCCCCA
� 1

4

0 0 0 0 0

0 1 1 1 1

0 1 1 1 1

0 1 1 1 1

0 1 1 1 1

0
BBBBBB@

1
CCCCCCA

¼
0 00

0 I4

� �
� 1

4

0 00

0 J4

� �
:
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Thus the second term on the right side of (13.46) is given by

nb0(C0C� 1
4 C0J3C)b

¼ nb0
0 00

0 I4

� �
b� 1

4 nb0
0 00

0 J4

� �
b

¼ n(m�,a�1,a�2,a�3,a�4)
0 00

0 I4

� �
m�

a�1
a�2
a�3
a�4

0
BBBBBB@

1
CCCCCCA

� 1
4 n(m�,a�1,a�2,a�3,a�4)

0 00

0 J4

� �
m�

a�1
a�2
a�3
a�4

0
BBBBBB@

1
CCCCCCA

¼ n
X4

i¼1

a�2i � 1
4 n 0,

X
i

a�i ,
X

i

a�i ,
X

i

a�i ,
X

i

a�i

 !
m�

a�1
a�2
a�3
a�4

0
BBBBBB@

1
CCCCCCA

¼ n
X4

i¼1

a�2i :

Hence, (13.46) becomes

E[SS(ajm)] ¼ 3s2 þ n
X4

i¼1

a�2i : (13:49)

This result is for the special case k ¼ 4. For a general k, (13.49) becomes

E[SS(ajm)] ¼ (k � 1)s2 þ n
Xk

i¼1

a�2i :

For the case in which b0 ¼ (m,a1, . . . ,ak) is not subject to
P

i ai ¼ 0, see
Problem 13.14.
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13.6 CONTRASTS

We noted in Section 13.2 that a linear combination
Pk

i¼1 ciai in the a’s is estimable if

and only if
Pk

i¼1 ci ¼ 0. In Section 13.6.1, we develop a test of significance for such
contrasts. In Section 13.6.2, we show that if the contrasts are formulated appropri-
ately, the sum of squares for treatments can be partitioned into k 2 1 independent
sums of squares for contrasts. In Section 13.6.3, we develop orthogonal polynomial
contrasts for the special case in which the treatments have equally spaced quantitative
levels.

13.6.1 Hypothesis Test for a Contrast

For the one-way model, a contrast
P

i ciai, where
P

i ci ¼ 0, is equivalent to
P

i cimi

since
X

cimi ¼
X

i

ci(mþ ai) ¼ m
X

i

ci þ
X

i

ciai ¼
X

i

ciai:

A hypothesis of interest is

H0 :
X

ciai ¼ 0 or H0 :
X

cimi ¼ 0, (13:50)

which represents a comparison of means if
P

i ci ¼ 0. For example, the hypothesis

H0 : 3m1 � m2 � m3 � m4 ¼ 0

can be written as

H0 :m1 ¼ 1
3 (m2 þ m3 þ m4),

which compares m1 with the average of m2, m3, and m4.
The hypothesis in (13.50) can be expressed as H0 : c0b ¼ 0, where

c0 ¼ (0, c1, c2, . . . , ck) and b ¼ (m,a1, . . . ,ak)0. Assuming that y is Nkn(Xb, s2I),
H0 can be tested using Theorem 12.7c. In this case, we have m ¼ 1, and the test
statistic becomes

F ¼ (c0b̂)0[c0(X0X)�c]�1c0b̂

SSE=k(n� 1)

¼ (c0b̂)2

s2c0(X0X)�c
(13:51)

¼
Pk

i¼1 ci�yi:

� 	2

s2
Pk

i¼1 c2
i =n

, (13:52)

where s2 ¼ SSE=k(n� 1), and (X0X)� and b̂ are as given by (13.11) and (13.12).

The sum of squares for the contrast is (c0b̂)2=c0(X0X)�c or n(
P

i ci�yi:)
2=(
P

i c2
i ).
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13.6.2 Orthogonal Contrasts

Two contrasts c0ib̂ and c0jb̂ are said to be orthogonal if c0icj ¼ 0. We now show that if

c0ib̂ and c0jb̂ are orthogonal, they are independent. Since we are assuming normality,

c0ib̂ and c0jb̂ are independent if

cov(c0ib̂, c0jb̂) ¼ 0 (13:53)

(see Problem 13.16). By Theorem 12.3c, cov(c0ib̂, c0jb̂) ¼ s2c0i(X
0X)�cj. By (13.11),

(X0X)� ¼ diag[0, (1=n), . . . , (1=n)], and therefore

cov(c0ib̂, c0jb̂) ¼ c0i(X
0X)�cj ¼ 0 if c0icj ¼ 0 (13:54)

(assuming that the first element of ci is 0 for all i). By an argument similar to that used
in the proofs of Corollary 1 to Theorem 5.6b and in Theorem 12.7b(v), the sums of

squares (c0ib̂)2=c0i(X
0X)�ci and (c0jb̂)2=c0j(X

0X)�cj are also independent. Thus, if two
contrasts are orthogonal, they are independent and their corresponding sums of
squares are independent.

We now show that if the rows of C (Section 13.4.2) are mutually orthogonal con-
trasts, SSH is the sum of (c0ib̂)2=c0i(X

0X)�ci for all rows of C.

Theorem 13.6a. In the balanced one-way model, if y is Nkn(Xb, s2I) and if
H0 :a1 ¼ a2 ¼ � � � ¼ ak is expressed as Cb ¼ 0, where the rows of

C ¼

c01
c02

..

.

c0k�1

0
BBB@

1
CCCA

are mutually orthogonal contrasts, then SSH ¼ (Cb̂)0[C(X0X)�C0]�1Cb̂ can be
expressed (partitioned) as

SSH ¼
Xk�1

i¼1

(c0ib̂)2

c0i(X
0X)�ci

, (13:55)

where the sums of squares (c0ib̂)2=c0i(X
0X)�ci, i ¼ 1, 2, . . . , k � 1, are independent.

PROOF. By (13.54), C(X0X)�C0 is a diagonal matrix with c0i(X
0X)�ci,

i ¼ 1, 2, . . . , k � 1, on the diagonal. Thus, with (Cb̂)0 ¼ (c01b̂, c02b̂, . . . , c0k�1b̂),
(13.55) follows. Since the rows c01, c02, . . . , c0k�1 of C are orthogonal, the indepen-
dence of the sums of squares for the contrasts follows from (13.53) and (13.54). A
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An interesting implication of Theorem 13.6a is that the overall F for treatments
(Table 13.1) is the average of the F statistics for each of the orthogonal contrasts:

F ¼ SSH=(k � 1)
s2

¼ 1
k � 1

Xk�1

i¼1

(cib̂)2

s2c0i(XX)�ci

¼ 1
k � 1

Xk�1

i¼1

Fi:

It is possible that the overall F would lead to rejection of the overall H0 while some of
the Fi’s for individual contrasts would not lead to rejection of the corresponding H0’s.
Likewise, since one or more of the Fi’s will be larger than the overall F, it is possible
that an individual H0 would be rejected, while the overall H0 is not rejected.

Example 13.6a. We illustrate the use of orthogonal contrasts with the ascorbic acid
data of Table 13.2. Consider the orthogonal contrasts 2m1 � m2 � m3 and m2 � m3.
By (13.50), these can be expressed as

2m1 � m2 � m3 ¼ 2a1 � a2 � a3 ¼ (0, 2, �1, �1)b ¼ c01b,

m2 � m3 ¼ a2 � a3 ¼ (0, 0, 1, �1)b ¼ c02b:

The hypotheses H01 : c01b ¼ 0 and H02 : c02b ¼ 0 compare the first treatment versus
the other two and the second treatment versus the third.

The means are given in Table 13.2 as �y1: ¼ 17:15, �y2: ¼ 19:31, and �y3: ¼ 23:53.
Then by (13.52), the sums of squares for the two contrasts are

SS1 ¼
n(
P3

i¼1 ci�yi:)
2

P3
i¼1 c2

i

¼ 7[2(17:15)� 19:31� 23:53]2

4þ 1þ 1
¼ 85:0584,

SS2 ¼
7(19:31� 23:53)2

1þ 1
¼ 62:2872:

By (13.52), the corresponding F statistics are

F1 ¼
SS1

s2
¼ 85:0584

3:0537
¼ 27:85, F2 ¼

SS2

s2
¼ 62:2872

3:0537
¼ 20:40,

where s2 ¼ 3:0537 is from Table 13.3. Both F1 and F2 exceed F.05,1,18 ¼ 4.41. The
p values are .0000511and .000267, respectively.

Note that the sums of squares for the two orthogonal contrasts add to the sum of
squares for treatments given in Example 13.4; that is, 147.3456 ¼ 85.0584 þ
62.2872, as in (13.55). A

The partitioning of the treatment sum of squares in Theorem 13.6a is always poss-
ible. First note that SSH ¼ y0Ay as in (13.29), where A is idempotent. We now show
that any such quadratic form can be partitioned into independent components.
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Theorem 13.6b. Let y0 Ay be a quadratic form, let A be symmetric and idempotent
of rank r, let N ¼ kn, and let the N � 1 random vector y be NN(Xb, s2I). Then there
exist r idempotent matrices A1, A2, . . . , Ar such that A ¼

Pr
i¼1 Ai, rank(Ai) ¼ 1 for

i ¼ 1, 2, . . . , r, and AiAj ¼ O for i = j. Furthermore, y0Ay can be partitioned as

y0Ay ¼
Xr

i¼1

y0Aiy, (13:56)

where each y0Aiy in (13.56) is x2(1, li) and y0Aiy and y0Ajy are independent for i = j
(note that li is a noncentrality parameter).

PROOF. Since A is N � N of rank r and is symmetric and idempotent, then by
Theorem 2.13c, r of its eigenvalues are equal to 1 and the others are 0. Using the
spectral decomposition (2.104), we can express A in the form

A ¼
Xr

i¼1

viv
0
i ¼

Xr

i¼1

Ai, (13:57)

where v1, v2, . . . , vr are normalized orthogonal eigenvectors corresponding to the
nonzero eigenvalues and Ai ¼ viv0i. It is easily shown that rank(Ai) ¼ 1, AiAj ¼ O
for i = j, and Ai is symmetric and idempotent (see Problem 13.17). Then by
Corollary 2 to Theorem 5.5 and Corollary 1 to Theorem 5.6b, y0Aiy is x2(1,li)
and y0Aiy and y0Ajy are independent. A

If y0Ay in Theorem 13.6b is used to represent SSH, the eigenvectors correspond-
ing to nonzero eigenvalues of A always define contrasts of the cell means. In other
words, the partitioning of y0Ay in (13.56) is always in terms of orthogonal contrasts.
To see this, note that

SST ¼ SSHþ SSE,

which, in the case of the one-way balanced model, implies that

y0 I� 1
kn

J

� �
y ¼

Xk

i¼1

y0Aiyþ y0[I� X(X0X)�X0]y: (13:58)

If we let

K ¼ 1
n

J 0 � � � 0
0 J � � � 0

..

. ..
. . .

. ..
.

0 0 � � � J

0
BBB@

1
CCCA

as in (13.26), then (13.58) can be rewritten as

y0y ¼ y0
1
kn

Jyþ
Xk

i¼1

y0(viv
0
i)yþ y0(I�K)y: (13:59)

By Theorem 2.13h, each vi must be orthogonal to the columns of (1/n)J and
I 2 K. Orthogonality to (1/n)J implies that vij ¼ 0; that is, vi defines a contrast
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in the elements of y. Orthogonality to I 2 K implies that the elements of vi cor-
responding to units associated with a particular treatment are constants. Together
these results imply that vi defines a contrast of the estimated treatment means.

Example 13.6b. Using a one-way model, we demonstrate that orthogonal contrasts
in the treatment means can be expressed in terms of contrasts in the observations and
that the coefficients in these contrasts form eigenvectors. For simplicity of exposition,
let k ¼ 4. The model is then

yij ¼ mþ ai þ 1ij, i ¼ 1, 2, 3, 4, j ¼ 1, 2, . . . , n:

The sums of squares in (13.59) can be written in the form

y0y ¼ SS(m)þ SS(ajm)þ SSE

¼ y2
::

kn
þ b̂0X0y� y2

::

kn

� �
þ (y0y� b̂0X0y):

With k ¼ 4, the sum of squares for treatments, y0Ay ¼ b̂0X0y� y2
::=4n, has 3 degrees

of freedom. Any set of three orthogonal contrasts in the treatment means will serve to
illustrate. As an example, consider c01b ¼ (0, 1, �1, 0, 0)b, c02b ¼ (0, 1, 1, �2, 0)b,
and c03b ¼ (0, 1, 1, 1, �3)b, where b ¼ (m,a1, a2,a3,a4)0. Thus, we are comparing
the first mean to the second, the first two means to the third, and the first three to the
fourth (see a comment at the beginning of Section 13.4 for the equivalence of
H0 :a1 ¼ a2 ¼ a3 ¼ a4 and H0 :m1 ¼ m2 ¼ m3 ¼ m4). Using the format in (13.55),
we can write the three contrasts as

c01b̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c01(X0X)�c1

p ¼ �y1: � �y2:ffiffiffiffiffiffiffiffi
2=n

p

c02b̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c02(X0X)�c2

p ¼ �y1: þ �y2: � 2�y3:ffiffiffiffiffiffiffiffi
6=n

p

c03b̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c03(X0X)�c3

p ¼ �y1: þ �y2: þ �y3: � 3�y4:ffiffiffiffiffiffiffiffiffiffi
12=n

p ,

where (X0X)� ¼ diag[0, (1=n), . . . , (1=n)] is given in (13.11) and b̂ ¼ (0, �y1:, . . . , �y4:)
0

is from (13.12).
To write these in the form v01y, v02y, and v03y [as in (13.59)] we start with the first:

�y1: � �y2:ffiffiffiffiffiffiffiffi
2=n

p ¼ 1ffiffiffiffiffiffiffiffi
2=n

p
Pn
j¼1

y1j

n
�

Pn
j¼1

y2j

n

0
BB@

1
CCA

¼ 1=nffiffiffiffiffiffiffiffi
2=n

p (1, 1, . . . , 1, �1, �1, . . . , �1, 0, 0, . . . , 0)y

¼ v01y,
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where the number of 1s is n, the number of 21s is n, and the number of 0s is 2n. Thus
v01 ¼ (1=

ffiffiffiffiffi
2n
p

)(j0n, � j0n, 00, 00), and

v01v1 ¼
2n

2n
¼ 1:

Similarly, v02 and v03 can be expressed as v02 ¼ (1=
ffiffiffiffiffi
6n
p

)(j0n, j0n � 2j0n, 00) and
v03 ¼ (1=

ffiffiffiffiffiffiffiffi
12n
p

)(j0n, j0n, j0n, �3j0n). We now show that v1, v2, and v3 serve as eigenvec-
tors in the spectral decomposition [see (2.104)] of the matrix A in SS(ajm) ¼ y0Ay.
Since A is idempotent of rank 3, it has three nonzero eigenvalues, each equal to 1.
Thus the spectral decomposition of A is

A ¼ v1v01 þ v2v02 þ v3v03

¼ 1
2n

jn

�jn

0

0

0
BBB@

1
CCCA(j0n, � j0n, 00, 00)þ 1

6n

jn

jn

�2jn

0

0
BBB@

1
CCCA(j0n, j0n, � 2j0n, 00)

þ 1
12n

jn

jn

jn

�3jn

0
BBB@

1
CCCA(j0n, j0n, j0n, �3j0n)

¼ 1
2n

Jn �Jn O O

�Jn Jn O O

O O O O

O O O O

0
BBB@

1
CCCAþ

1
6n

Jn Jn �2Jn O

Jn Jn �2Jn O

�2Jn �2Jn 4Jn O

O O O O

0
BBB@

1
CCCA

þ 1
12n

Jn Jn Jn �3Jn

Jn Jn Jn �3Jn

Jn Jn Jn �3Jn

�3Jn �3Jn �3Jn 9Jn

0
BBB@

1
CCCA

¼ 1
4n

3Jn �Jn �Jn �Jn

�Jn 3Jn �Jn �Jn

�Jn �Jn 3Jn �Jn

�Jn �Jn �Jn 3Jn

0
BBB@

1
CCCA,

which is the matrix of the quadratic form for SS(ajm) in (13.27) with k ¼ 4.
For SS(m) ¼ y2

::=4n, we have

y2
::

4n
¼ y0

j4nj04n

4n

� �
y ¼ (v00y)2,
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where v00 ¼ j04n=2
ffiffiffi
n
p

. It is easily shown that v00v0 ¼ 1 and that v00v1 ¼ 0. It is also
clear that v0 is an eigenvector of j4nj04n=4n, because j4nj04n=4n has one eigenvalue
equal to 1 and the others equal to 0, so that j4nj04n=4n is already in the form of a spec-
tral decomposition with j4n=2

ffiffiffi
n
p

as the eigenvector corresponding to the eigenvalue
1 (see Problem 13.18b). A

13.6.3 Orthogonal Polynomial Contrasts

Suppose the treatments in a one-way analysis of variance have equally spaced quan-
titative levels, for example, 5, 10, 15, and 20lb of fertilizer per plot of ground. The
researcher may then wish to investigate how the response varies with the level of fer-
tilizer. We can check for a linear trend, a quadratic trend, or a cubic trend by fitting a
third-order polynomial regression model

yij ¼ b0 þ b1xi þ b2x2
i þ b3x3

i þ 1ij, (13:60)

i ¼ 1, 2, 3, 4, j ¼ 1, 2, . . . , n,

where x1 ¼ 5, x2 ¼ 10, x3 ¼ 15, and x4 ¼ 20. We now show that tests on the b0s in
(13.60) can be carried out using orthogonal contrasts on the means �yi: that are esti-
mates of mi in the ANOVA model

yij ¼ mþ ai þ 1ij ¼ mi þ 1ij, i ¼ 1, 2, 3, 4, j ¼ 1, 2, . . . , n: (13:61)

The sum of squares for the full–reduced-model test of H0 :b3 ¼ 0 is

b̂0X0y� b̂�
0

1 X01y, (13:62)

where b̂ is from the full model in (13.60) and b̂�1 is from the reduced model with
b3 ¼ 0 [see (8.9), (8.20), and Table 8.3]. The X matrix is of the form

X ¼

1 x1 x2
1 x3

1

..

. ..
. ..

. ..
.

1 x1 x2
1 x3

1
1 x2 x2

2 x3
2

..

. ..
. ..

. ..
.

1 x2 x2
2 x3

2
1 x3 x2

3 x3
3

..

. ..
. ..

. ..
.

1 x3 x2
3 x3

3
1 x4 x2

4 x3
4

..

. ..
. ..

. ..
.

1 x4 x2
4 x3

4

0
BBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCA

: (13:63)
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For testing H0 :b3 ¼ 0, we can use (8.37)

F ¼ b̂0X0y� b̂
�0
1 X01y

s2
,

or (8.39)

F ¼ b̂2
3

s2g33
, (13:64)

where X1 consists of the first three columns of X in (13.63), s2 ¼ SSE=(n� 3� 1),
and g33 is the last diagonal element of (X0X)�1. We now carry out this full–reduced-
model test using contrasts.

Since the columns of X are not orthogonal, the sums of squares for the b’s ana-
logous to b̂2

3=g33 in (13.64) are not independent. Thus, the interpretation in terms
of the degree of curvature for E(yij) is more difficult. We therefore orthogonalize
the columns of X so that the sums of squares become independent.

To simplify computations, we first transform x1 ¼ 5, x2 ¼ 10, x3 ¼ 15, and
x4 ¼ 20 by dividing by 5, the common distance between them. The x’s then
become x1 ¼ 1, x2 ¼ 2, x3 ¼ 3, and x4 ¼ 4. The transformed 4n� 4 matrix X in
(13.63) is given by

X ¼

1 1 12 13

..

. ..
. ..

. ..
.

1 1 12 13

1 2 22 23

..

. ..
. ..

. ..
.

1 2 22 23

1 3 32 33

..

. ..
. ..

. ..
.

1 3 32 33

1 4 42 43

..

. ..
. ..

. ..
.

1 4 42 43

0
BBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCA

¼ (j, x1, x2, x3),

where j is 4n � 1. Note that by Theorem 8.4c, the resulting F statistics such as (13.64)
will be unaffected by this transformation.

To obtain orthogonal columns, we use the orthogonalization procedure in
Section 7.10 based on regressing columns of X on other columns and taking
residuals. We begin by orthogonalizing x1. Denoting the first column by x0, we use
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(7.97) to obtain

x1�0 ¼ x1 � x0(x00x0)�1x00x1

¼ x1 � j(j0j)�1j0x1 ¼ x1 � j(4n)�1n
X4

i¼1

xi

¼ x1 � �xj: (13:65)

The residual vector x1�0 is orthogonal to x0 ¼ j:

j0x1�0 ¼ j0(x1 � �xj) ¼ j0x1 � �xj0j ¼ 4n�x� 4n�x ¼ 0: (13:66)

We apply this procedure successively to the other two columns of X. To transform the
third column, x2, so that it is orthogonal to the first two columns, we use (7.97) to
obtain

x2�01 ¼ x2 � Z1(Z01Z1)�1Z01x2, (13:67)

where Z1 ¼ (j, x1�0). We use the notation Z1 instead of X1 because x1�0, the second
column of Z1, is different from x1, the second column of X1. The matrix Z01Z1 is
given by

Z01Z1 ¼
j0

x01�0

� �
(j, x1�0)

¼
j0j 0

0 x01�0x1�0

� �
[by (13.66)],

and (13.67) becomes

x2�01 ¼ x2 � Z1(Z01Z1)�1Z01x2

¼ x2 � (j, x1�0)
j0j 0

0 x01�0x1�0

� ��1 j0

x01�0

� �
x2

¼ x2 �
j0x2

j0j
j� x01�0x2

x01�0x1�0
x1�0: (13:68)

The residual vector x2�01 is orthogonal to x0 ¼ j and to x1�0:

j0x2�01 ¼ 0, x01�0x2�01 ¼ 0: (13:69)
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The fourth column of Z becomes

x3�012 ¼ x3 �
j0x3

j0j
j� x01�0x3

x01�0x1�0
x1�0 �

x02�01x3

x02�01x2�01
x2�01, (13:70)

which is orthogonal to the first three columns, j, x1�0, and x2�01.
We have thus transformed y ¼ Xbþ 1 to

y ¼ Zuþ 1, (13:71)

where the columns of Z are mutually orthogonal and the elements of u are functions
of the b’s. The columns of Z are given in (13.65), (13.68), and (13.70):

z0 ¼ j, z1 ¼ x1�0, z2 ¼ x2�01, z3 ¼ x3�012:

We now evaluate z1, z2, and z3 for our illustration, in which
x1 ¼ 1, x2 ¼ 2, x3 ¼ 3, and x4 ¼ 4. By (13.65), we obtain

z1 ¼ x1�0 ¼ x1 � �xj ¼ x1 � 2:5j

¼ �1:5, . . . , �1:5, �:5, . . . , �:5, :5, . . . , :5, 1:5, . . . , 1:5ð Þ0,

which we multiply by 2 so as to obtain integer values:

z1 ¼ x1�0 ¼ �3, . . . , �3, �1, . . . , �1, 1, . . . , 1, 3, . . . , 3ð Þ0: (13:72)

Note that multiplying by 2 preserves the orthogonality and does not affect the F
values.

To obtain z2, by (13.68), we first compute

j0x2

j0j
¼ n

P4
i¼1 x2

i

4n
¼
P4

i¼1 i2

4
¼ 30

4
¼ 7:5,

x01�0x2

x01�0x1�0
¼ n[�3(12)� 1(22)þ 1(32)þ 3(42)]

n[(�3)2 þ (�1)2 þ 12 þ 32]
¼ 50

20
¼ 2:5:
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Then, by (13.68), we obtain

z2 ¼ x2 �
j0x2

j0j
j� x01�0x2

x01�0x1�0
x1�0

¼ x2 � 7:5j� 2:5x1�0

¼

12

..

.

12

22

..

.

22

32

..

.

32

42

..

.

42

0
BBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCA

� 7:5

1

..

.

1

1

..

.

1

1

..

.

1

1

..

.

1

0
BBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCA

� 2:5

�3

..

.

�3

�1

..

.

�1

1

..

.

1

3

..

.

3

0
BBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCA

¼

1

..

.

1

�1

..

.

�1

�1

..

.

�1

1

..

.

1

0
BBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCA

: (13:73)

Similarly, using (13.70), we obtain

z3 ¼ �1, . . . , �1, 3, . . . , 3, �3, . . . , �3, 1, . . . , 1ð Þ0: (13:74)

Thus Z is given by

Z ¼

1 �3 1 �1

..

. ..
. ..

. ..
.

1 �3 1 �1
1 �1 �1 3

..

. ..
. ..

. ..
.

1 �1 �1 3
1 1 �1 �3

..

. ..
. ..

. ..
.

1 1 �1 �3
1 3 1 1

..

. ..
. ..

. ..
.

1 3 1 1

0
BBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCA

:
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Since

Xb ¼ Zu,

we can find the u’s in terms of the b’s or the b’s in terms of the u’s. For our illus-
tration, these relationships are given by (see Problem 13.24)

b0 ¼ u0 � 5u1 þ 5u2 � 35u3, b1 ¼ 2u1 � 5u2 þ
16:7
:3

u3,

b2 ¼ u2 � 25u3, b3 ¼
u3

:3
:

(13:75)

Since the columns of Z ¼ (j, z1, z2, z3) are orthogonal (z0izj ¼ 0 for all i = j), we
have Z0Z ¼ diag(j0j, z01z1, z02z2, z03z3). Thus

û ¼ (Z0Z)�1Z0y ¼

j0y=j0j
z01y=z01z1

z02y=z02z2

z03y=z03z3

0
BB@

1
CCA: (13:76)

The regression sum of squares (uncorrected for u0) is

SS(u) ¼ û 0Z0y ¼
X3

i¼0

(z0iy)2

z0izi
, (13:77)

where z0 ¼ j. By an argument similar to that following (13.54), the sums of squares
on the right side of (13.77) are independent.

Since the sums of squares SS(ui) ¼ (z0iy)2=z0izi, i ¼ 1, 2, 3, are independent, each
SS(ui) tests the significance of ûi by itself (regressing y on zi alone) as well as in
the presence of the other ûi’s; that is, for a general k, we have

SS(uiju0, . . . , ui�1, uiþ1, . . . , uk) ¼ SS(u0, . . . , uk)� SS(u0, . . . , ui�1, uiþ1, . . . , uk)

¼
Xk

j¼0

(z0jy)2

z0jzj
�
X
j=i

(z0jy)2

z0jzj

¼ (z0iy)2

z0izi
¼ SS(ui):

In terms of the b̂i’s, it can be shown that each SS(ui) tests the significance of b̂i in
the presence of b̂0, b̂1, . . . , b̂i�1. For example, for bk (the last b), the sum of squares
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can be written as

SS(uk) ¼ (z0ky)2

z0kzk
¼ b̂0X0y� b̂

�0
1 X01y (13:78)

(see Problem 13.26), where b̂ is from the full model y ¼ Xbþ 1 and b̂�1 is from the
reduced model y ¼ X1b

�
1 þ 1, in which b1 contains all the b’s except bk and X1 con-

sists of all columns of X except the last.
The sum of squares SS(ui) ¼ (z0iy)2=z0izi is equivalent to a sum of squares for a

contrast on the means �y1:, �y2:, . . . , �yk: as in (13.52). For example

z01y ¼ �3y11 � 3y12 � � � � � 3y1n � y21 � � � � � y2n

þ y31 þ � � � þ y3n þ 3y41 þ � � � þ 3y4n

¼ �3
Xn

j¼1

y1j �
Xn

j¼1

y2j þ
Xn

j¼1

y3j þ 3
Xn

j¼1

y4j

¼ �3y1: � y2: þ y3: þ 3y4:

¼ n(�3�y1: � �y2: þ �y3: þ 3�y4:)

¼ n
X4

i¼1

ci�yi:,

where c1 ¼ �3, c2 ¼ �1, c3 ¼ 1, and c4 ¼ 3. Similarly

z01z1 ¼ n(�3)2 þ n(�1)2 þ n(1)2 þ n(3)2

¼ n[(�3)2 þ (�1)2 þ 12 þ 32]

¼ n
X4

i¼1

c2
i :

Then

(z01y)2

z01z1
¼ (n

P4
i¼1 ci�yi:)

2

n
P4

i¼1 c2
i

¼ n(
P4

i¼1 ci�yi:)
2

P4
i¼1 c2

i

,

which is the sum of squares for the contrast in (13.52). Note that the coefficients
�3, �1, 1, and 3 correspond to a linear trend.

Likewise, z02y becomes

z02y ¼ n(�y1: � �y2: � �y3: þ �y4:),
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whose coefficients show a quadratic trend, and z03y can be written as

z03y ¼ n(��y1: þ 3�y2: � 3�y3: þ �y4:)

with coefficients that exhibit a cubic pattern.
These contrasts in the �yi:’s have a meaningful interpretation in terms of the shape

of the response curve. For example, suppose that the �yi:’s fall on a straight line. Then,
for some b0 and b1, we have

�yi: ¼ b0 þ b1xi ¼ b0 þ b1i, i ¼ 1, 2, 3, 4,

since xi ¼ i. In this case, the linear contrast is nonzero and the quadratic and cubic
contrasts are zero:

�3�y1: � �y2: þ �y3: þ 3�y4: ¼
�3(b0 þ b1)� (b0 þ 2b1)þ b0 þ 3b1 þ 3(b0 þ 4b1) ¼ 10b1,

b0 þ b1 � (b0 þ 2b1)� (b0 þ 3b1)þ (b0 þ 4b1) ¼ 0,

�(b0 þ b1)þ 3(b0 þ 2b1)� 3(b0 þ 3b1)þ (b0 þ 4b1) ¼ 0:

This demonstration could be simplified by choosing the linear trend
�y1: ¼ 1, �y2: ¼ 2, �y3: ¼ 3, and �y4: ¼ 4.

Similarly, if the �yi:’s follow a quadratic trend, say

�y1: ¼ 1, �y2: ¼ 2, �y3: ¼ 2, �y4: ¼ 1,

then the linear and cubic contrasts are zero.
In many cases it is not necessary to find the orthogonal polynomial coefficients by

the orthogonalization process illustrated in this section. Tables of orthogonal
polynomials are available [see, e.g., Rencher (2002, p. 587) or Guttman (1982,
pp. 349–354)]. We give a brief illustration of some orthogonal polynomial coeffi-
cients in Table 13.5, including those we found above for k ¼ 4.

TABLE 13.5 Orthogonal Polynomial Coefficients for k 5 3, 4, 5

k ¼ 3 k ¼ 4 k ¼ 5

Linear 21 0 1 23 21 1 3 22 21 0 1 2
Quadratic 1 22 1 1 21 21 1 2 21 22 21 2
Cubic 21 3 23 1 21 2 0 22 1
Quartic 1 24 6 24 1
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In Table 13.5, we can see some relationships among the coefficients for each value
of k. For example, if k ¼ 3 and the three means �y1:, �y2:, �y3: have a linear relationship,
then �y2: � �y1: is equal to �y3: � �y2:; that is

�y3: � �y2: ¼ �y2:��y1:

or

�y3: � �y2: � (�y2: � �y1:) ¼ 0,

�y3: � 2�y2: þ �y1: ¼ 0:

If this relationship among the three means fails to hold, we have a quadratic com-
ponent of curvature.

Similarly, for k ¼ 4, the cubic component, ��y1: þ 3�y2: � 3�y3: þ �y4:, is equal to the
difference between the quadratic component for �y1:, �y2:, �y3: and the quadratic com-
ponent for �y2:, �y3:, �y4::

� �y1: þ 3�y2: � 3�y3: þ �y4: ¼ �y2: � 2�y3: þ �y4: � (�y1: � 2�y2: þ �y3:):

PROBLEMS

13.1 Obtain the normal equations in (13.7) from the model in (13.6).

13.2 Obtain b̂ in (13.12) using (X0X)� in (13.11) and X0y in (13.7).

13.3 Show that SSE ¼ y0[I� X(X0X)�X0]y in (12.21) is equal to SSE ¼
P

ij y2
ij �P

i y2
i:=n in (13.13).

13.4 Show that the expressions for SSE in (13.13) and (13.14) are equal.

13.5 (a) Show that H0 :a1 ¼ a2 ¼ � � � ¼ ak in (13.17) is equivalent to
H0 :a�1 ¼ a�2 ¼ � � � ¼ a�k in (13.18).

(b) Show that H0 :a�1 ¼ a�2 ¼ � � � ¼ a�k in (13.18) is equivalent to
H0 :a�1 ¼ a�2 ¼ � � � ¼ a�k ¼ 0 in (13.19).

13.6 Show that n
Pk

i¼1 (�yi: � �y::)
2 in (13.24) is equal to

P
i y2

i:=n� y2
::=kn in

(13.23).

13.7 Using (13.6) and (13.11), show that X(X0X)�X0 in (13.25) can be written in
terms of J and O as in (13.26).

13.8 Show that for C in (13.28), C(X0X)�C0 is given by (13.30).

13.9 Show that C(X0X)�X0 is given by the matrix in (13.32).

13.10 Show that the matrix (1=4n)A0J3A in (13.33) has the form shown in (13.35).
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13.11 Using the model yij ¼ m� þ a�i þ 1ij with the assumptions E(1ij) ¼
0, var(1ij) ¼ s2, covð1ij, 1i0j0 ) ¼ 0, and the side condition

Pk
i¼1 a

�
i ¼ 0,

obtain the following results used in Table 13.4:

(a) E(12
ij) ¼ s2 for all i, j and E(1ij1i0j0 ) ¼ 0 for i, j = i0, j0.

(b) E½SS(ajm)� ¼ (k � 1)s2 þ n
Pk

i¼1 a
�2
i .

(c) (SSE) ¼ k(n� 1)s2.

13.12 Using C in (13.28), show that C0C is given by the matrix in (13.47)

13.13 Show that C0J3C has the form shown in (13.48).

13.14 Show that if the constraint
P4

i¼1 ai ¼ 0 is not imposed, (13.49) becomes

E[SS(ajm)] ¼ 3s2 þ 4
X4

i¼1

(ai � �a)2:

13.15 Show that F in (13.52) can be obtained from (13.51).

13.16 Express the sums of squares (c0ib̂)2=c0i(X
0X)�ci and (c0jb̂)2=c0j(X

0X)�cj below
(13.54) in Section 13.6.2 as quadratic forms in y, and show that these sums of

squares are independent if cov(c0ib̂, c0jb̂) ¼ 0 as in (13.53).

13.17 In the proof of Theorem 13.6b, show that Ai is symmetric and idempotent that
rank(Ai) ¼ 1, and that AiAj ¼ O.

13.18 (a) Show that J/kn in the first term on the right side of (13.59) is idempotent
with one eigenvalue equal to 1 and the others equal to 0.

(b) Show that j is an eigenvector corresponding to the nonzero eigenvalue of
J/kn.

13.19 In Example 13.6b, show that v00v0 ¼ 1 and v00v1 ¼ 0.

13.20 Show that j0x2�01 ¼ 0 and x00�1x2�01 ¼ 0 as in (13.69).

13.21 Show that x3�012 has the form given in (13.70).

13.22 Show that x3�012 is orthogonal to each of j; x1�0, and x2�01, as noted following
(13.70).

13.23 Show that z3 ¼ (�1, . . . ,�1, 3, . . . , 3,�3, . . . ,�3 , 1, . . . , 1)0 as in (13.74).

13.24 Show that b0 ¼ u0 � 5u1 þ 5u2 � 35u3, b1 ¼ 2u1 � 5u2þ (16:7=:3)u3,
b2 ¼ u2 � 25u3, and b3 ¼ u3=:3, as in (13.75).

13.25 Show that the elements of û ¼ (Z0Z)�1Z0y are of the form z0iy=z0izi as in (13.76).

13.26 Show that SS(uk) ¼ b̂0X0y� b̂�0X01y as in (13.78).

13.27 If the means �y1:, �y2:, �y3:, and �y4: have the quadratic trend �y1: ¼ 1,
�y2: ¼ 2, �y3: ¼ 2, �y4: ¼ 1, show that the linear and cubic contrasts are zero,
but the quadratic contrast is not zero.

372 ONE-WAY ANALYSIS-OF-VARIANCE: BALANCED CASE



13.28 Blood sugar levels (mg/100g) were measured on 10 animals from each of
five breeds (Daniel 1974, p. 197). The results are presented in Table 13.6.

(a) Test the hypothesis of equality of means for the five breeds.

(b) Make the following comparisons by means of orthogonal contrasts:

A, B, C, vs. D, E; A, B, vs. C; A vs. B; D vs. E.

13.29 In Table 13.7, we have the amount of insulin released from specimens of
pancreatic tissue treated with five concentrations of glucose (Daniel 1974,
p. 182).

(a) Test the hypothesis of equality of means for the five glucose
concentrations.

(b) Assuming that the levels of glucose concentration are equally spaced, use
orthogonal polynomial contrasts to test for linear, quadratic, cubic, and
quartic trends.

13.30 A different stimulus was given to each of three groups of 14 animals (Daniel
1974, p. 196). The response times in seconds are given in Table 13.8.

(a) Test the hypothesis of equal mean response times.

(b) Using orthogonal contrasts, make the two comparisons of stimuli: 1
versus 2, 3; and 2 versus 3.

13.31 The tensile strength (kg) was measured for 12 wires from each of nine cables
(Hald 1952, p. 434). The results are given in Table 13.9.

(a) Test the hypothesis of equal mean strengths for the nine cables.

(b) The first four cables were made from one type of raw material and the
other five from another type. Compare these two types by means of a
contrast.

TABLE 13.6 Blood Sugar Levels (mg/100 g) for 10
Animals from Each of Five Breeds (A–E)

A B C D E

124 111 117 104 142
116 101 142 128 139
101 130 121 130 133
118 108 123 103 120
118 127 121 121 127
120 129 148 119 149
110 122 141 106 150
127 103 122 107 149
106 122 139 107 120
130 127 125 115 116
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TABLE 13.7 Insulin Released at Five Different Glucose
Concentrations (1–5)

1 2 3 4 5

1.53 3.15 3.89 8.18 5.86
1.61 3.96 4.80 5.64 5.46
3.75 3.59 3.69 7.36 5.96
2.89 1.89 5.70 5.33 6.49
3.26 1.45 5.62 8.82 7.81
2.83 3.49 5.79 5.26 9.03
2.86 1.56 4.75 8.75 7.49
2.59 2.44 5.33 7.10 8.98

TABLE 13.8 Response Times (in seconds) to Three
Stimuli

Stimulus Stimulus

1 2 3 1 2 3

16 6 8 17 6 9
14 7 10 7 8 11
14 7 9 17 6 11
13 8 10 19 4 9
13 4 6 14 9 10
12 8 7 15 5 9
12 9 10 20 5 5

TABLE 13.9 Tensile Strength (kg) of Wires from Nine Cables (1–9)

1 2 3 4 5 6 7 8 9

345 329 340 328 347 341 339 339 342
327 327 330 344 341 340 340 340 346
335 332 325 342 345 335 342 347 347
338 348 328 350 340 336 341 345 348
330 337 338 335 350 339 336 350 355
334 328 332 332 346 340 342 348 351
335 328 335 328 345 342 347 341 333
340 330 340 340 342 345 345 342 347
333 328 335 337 330 346 336 340 348
335 330 329 340 338 347 342 345 341
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13.32 Four groups of physical therapy patients were given different treatments
(Daniel 1974, p. 195). The scores measuring treatment effectiveness are
given in Table 13.10.

(a) Test the hypothesis of equal mean treatment effects.

(b) Using contrasts, compare treatments 1, 2 versus 3, 4; 1 versus 2; and
3 versus 4.

13.33 Weight gains in pigs subjected to five different treatments are given in
Table 13.11 (Crampton and Hopkins 1934).

(a) Test the hypothesis of equal mean treatment effects.

(b) Using contrasts, compare treatments 1, 2, 3 versus 4; 1, 2 versus 3; and
1 versus 2.

TABLE 13.10 Scores for Physical Therapy Patients
Subjected to Four Treatment Programs (1–14)

1 2 3 4

64 76 58 95
88 70 74 90
72 90 66 80
80 80 60 87
79 75 82 88
71 82 75 85

TABLE 13.11 Weight Gain of Pigs Subjected to Five
Treatments (1–5)

1 2 3 4 5

165 168 164 185 201
156 180 156 195 189
159 180 156 195 189
159 180 189 184 173
167 166 138 201 193
170 170 153 165 164
146 161 190 175 160
130 171 160 187 200
151 169 172 177 142
164 179 142 166 184
158 191 155 165 149
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14 Two-Way Analysis-of-Variance:
Balanced Case

The two-way model without interaction has been illustrated in Section 12.1.2,
Example 12.2.2b, and Section 12.8. In this chapter, we consider the two-way
ANOVA model with interaction. In Section 14.1 we discuss the model and attendant
assumptions. In Section 14.2 we consider estimable functions involving main effects
and interactions. In Section 14.3 we discuss estimation of the parameters, including
solutions to the normal equations using side conditions and also using a generalized
inverse. In Section 14.4 we develop a hypothesis test for the interaction using a full–
reduced model, and we obtain tests for main effects using the general linear hypoth-
esis as well as the full–reduced-model approach. In Section 14.5 we derive expected
mean squares from the basic definition and also using a general linear hypothesis
approach. Throughout this chapter we consider only the balanced two-way model.
The unbalanced case is covered in Chapter 15.

14.1 THE TWO-WAY MODEL

The two-way balanced model can be specified as follows:

yijk ¼ mþ ai þ bj þ gij þ 1ijk (14:1)

i ¼ 1, 2, . . . , a, j ¼ 1, 2, . . . , b, k ¼ 1, 2, . . . , n:

The effect of factor A at the ith level is ai, and the term bj is due to the jth level of
factor B. The term gij represents the interaction AB between the ith level of A and the
jth level of B. If an interaction is present, the difference a1 � a2, for example, is not
estimable and the hypothesis H0: a1 ¼ a2 ¼ . . . ¼ aa cannot be tested. In Section
14.4, we discuss modifications of this hypothesis that are testable.

There are two experimental situations in which the model in (14.1) may arise. In
the first setup, factors A and B represent two types of treatment, for example, various
amounts of nitrogen and potassium applied in an agricultural experiment. We apply
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each of the ab combinations of the levels of A and B to n randomly selected exper-
imental units. In the second situation, the populations exist naturally, for example,
gender (males and females) and political preference (Democrats, Republicans, and
Independents). A random sample of n observations is obtained from each of the ab
populations.

Additional assumptions that form part of the model are the following:

1. E(1ijk) ¼ 0 for all i, j, k.

2. var(1ijk) ¼ s 2 for all i, j, k.

3. cov(1ijk , 1rst) ¼ 0 for (i, j, k) = (r, s, t).

4. Another assumption that we sometimes add to the model is that 1ijk is N(0,s 2)
for all i, j, k.

From assumption 1, we have E(yijk) ¼ mij ¼ mþ ai þ bj þ gij, and we can
rewrite the model in the form

yijk ¼ mij þ 1ijk, (14:2)

i ¼ 1, 2, . . . , a, j ¼ 1, 2, . . . , b, k ¼ 1, 2, . . . , n,

where mij ¼ E( yijk) is the mean of a random observation in the (ij)th cell.
In the next section, we consider estimable functions of the parameters ai, bj,

and gij.

14.2 ESTIMABLE FUNCTIONS

In the first part of this section, we use a ¼ 3, b ¼ 2, and n ¼ 2 for expositional pur-
poses. For this special case, the model in (14.1) becomes

yijk ¼ mþ ai þ bj þ gij þ 1ijk , i ¼ 1, 2, 3, j ¼ 1, 2, k ¼ 1, 2: (14:3)

The 12 observations in (14.3) can be expressed in matrix form as

y111

y112

y121

y122

y211

y212

y221

y222

y311

y312

y321

y322

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

¼

1 1 0 0 1 0 1 0 0 0 0 0
1 1 0 0 1 0 1 0 0 0 0 0
1 1 0 0 0 1 0 1 0 0 0 0
1 1 0 0 0 1 0 1 0 0 0 0
1 0 1 0 1 0 0 0 1 0 0 0
1 0 1 0 1 0 0 0 1 0 0 0
1 0 1 0 0 1 0 0 0 1 0 0
1 0 1 0 0 1 0 0 0 1 0 0
1 0 0 1 1 0 0 0 0 0 1 0
1 0 0 1 1 0 0 0 0 0 1 0
1 0 0 1 0 1 0 0 0 0 0 1
1 0 0 1 0 1 0 0 0 0 0 1

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

m

a1

a2

a3

b1
b2

g11

g12
g21

g22

g31
g32

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

þ

1111

1112

1121

1122

1211

1212

1221

1222

1311

g312

1321

1322

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

(14:4)
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or

y¼ Xbþ 1,

where y is 12 � 1, X is 12 � 12, and b is 12 � 1. (If we added another replication, so
that n ¼ 3, then y would be 18 � 1, X would be 18 � 12, but b would remain 12 � 1.)
The matrix X0X is given by

X0X¼

12 4 4 4 6 6 2 2 2 2 2 2
4 4 0 0 2 2 2 2 0 0 0 0
4 0 4 0 2 2 0 0 2 2 0 0
4 0 0 4 2 2 0 0 0 0 2 2
6 2 2 2 6 0 2 0 2 0 2 0
6 2 2 2 0 6 0 2 0 2 0 2
2 2 0 0 2 0 2 0 0 0 0 0
2 2 0 0 0 2 0 2 0 0 0 0
2 0 2 0 2 0 0 0 2 0 0 0
2 0 2 0 0 2 0 0 0 2 0 0
2 0 0 2 2 0 0 0 0 0 2 0
2 0 0 2 0 2 0 0 0 0 0 2

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

: (14:5)

The partitioning in X0X corresponds to that in X in (14.4), where there is a column for
m, three columns for the three a’s, two columns for the two b’s, and six columns for
the six g’s.

In both X and X0X, the first six columns can be obtained as linear combinations of
the last six columns, which are clearly linearly independent. Hence rank(X)¼
rank(X0X) ¼ 6 [in general, rank(X) ¼ ab].

Since rank(X) ¼ 6, we can find six linearly independent estimable functions of the
parameters (see Theorem 12.2c). By Theorem 12.2b, we can obtain these estimable
functions from Xb. Using rows 1, 3, 5, 7, 9, and 11 of E(y) ¼ Xb, we obtain
E(yijk) ¼ mij ¼ mþ ai þ bj þ gij for i ¼ 1, 2, 3 and j ¼ 1, 2:

m11 ¼ mþ a1 þ b1 þ g11, m12 ¼ mþ a1 þ b2 þ g12

m21 ¼ mþ a2 þ b1 þ g21, m22 ¼ mþ a2 þ b2 þ g22

m31 ¼ mþ a3 þ b1 þ g31, m32 ¼ mþ a3 þ b2 þ g32:

(14:6)

These can also be obtained from the last six rows of X0Xb (see Theorem 12.2b).
By taking linear combinations of the six functions in (14.6), we obtain the follow-

ing estimable functions (e.g., u1 ¼ m11 � m21 and u 01 ¼ m12 � m22):

m11 ¼ mþ a1 þ b1 þ g11

u1 ¼ a1 � a2 þ g11 � g21 or u 01 ¼ a1 � a2 þ g12 � g22

u2 ¼ a1 � a3 þ g11 � g31 or u 02 ¼ a1 � a3 þ g12 � g32

u3 ¼ b1 � b2 þ g11 � g12 or u 03 ¼ b1 � b2 þ g21 � g22

(14:7)
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or u003¼b1�b2þg31�g32

u4¼g11�g12�g21þg22

u5¼g11�g12�g31þg32:

The alternative expressions for u4 and u5 are of the form

gij�gij0 �gi0jþgi0j0 , i, i0 ¼1, 2, 3, j, j0 ¼1, 2, i= i0, j= j0: (14:8)

[For general a and b, we likewise obtain estimable functions of the form of (14.7)
and (14.8).]

In u4 and u5 in (14.7), we see that there are estimable contrasts in the gij’s, but in
u1, u2, and u3 (and in the alternative expressions u1

0, u2
0, u3

0, and u3
00) there are no

estimable contrasts in the a’s alone or b’s alone. (This is also true for the case of
general a and b.)

To obtain a single expression involving a1 � a2 for later use in comparing the a

values in a hypothesis test (see Section 14.4.2b), we average u1 and u1
0:

1
2 (u1 þ u 01) ¼ a1 � a2 þ 1

2 (g11 þ g12)� 1
2 (g21 þ g22)

¼ a1 � a2 þ �g1: � �g2:: (14:9)

For a1 � a3, we have

1
2 (u2 þ u02) ¼ a1 � a3 þ 1

2 (g11 þ g12)� 1
2 (g31 þ g32)

¼ a1 � a3 þ �g1: � �g3:: (14:10)

Similarly, the average of u3, u 03, and u003 yields

1
3 (u3 þ u 03 þ u003) ¼ b1 � b2 þ 1

3 (g11 þ g21 þ g31)� 1
3 (g12 þ g22 þ g32)

¼ b1 � b2 þ �g:1 � �g:2: (14:11)

From (14.1) and assumption 1 in Section 14.1, we have

E(yijk) ¼ E(mþ ai þ bj þ gij þ 1ijk),

i ¼ 1, 2, . . . , a, j ¼ 1, 2, . . . , b, k ¼ 1, 2, . . . , n

or

mij ¼ mþ ai þ bj þ gij (14:12)
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[see also (14.2) and (14.6)]. In Section 12.1.2, we demonstrated that for a simple
additive (no-interaction) model the side conditions on the a’s and b’s led to
redefined a�’s and b�’s that could be expressed as deviations from means, for
example, a�i ¼ �mi: � �m::. We now extend this formulation to an interaction model
for mij:

mij ¼ �m:: þ (�mi: � �m::)þ (�m:j � �m::)þ (mij � �mi: � �m:j þ �m::)

¼ m� þ a�i þ b�j þ g�ij,
(14:13)

where

m� ¼ �m::, a�i ¼ �mi: � �m::, b�j ¼ �m:j � �m::,

g�ij ¼ mij � �mi: � �m:j þ �m:::
(14:14)

With these definitions, it follows that

Xa

i¼1

a�i ¼ 0,
Xb

j¼1

b�j ¼ 0,

Xa

i¼1

g�ij ¼ 0 for all j ¼ 1, 2, . . . , b, (14:15)

Xb

j¼1

g�ij ¼ 0 for all i ¼ 1, 2, . . . , a:

Using (14.12), we can write a�i , b�j , and g�ij in (14.14) in terms of the original
parameters; for example, a�i becomes

a�i ¼ �mi: � �m:: ¼
1
b

Xb

j¼1

mij �
1

ab

X
ij

mij

¼ 1
b

X
j

(mþ ai þ bj þ gij)�
1
ab

X
ij

(mþ ai þ bj þ gij)

¼ 1
b

bmþ bai þ
X

j

bj þ
X

j

gij

 !

� 1
ab

abmþ b
X

i

ai þ a
X

j

bj þ
X

ij

gij

 !

¼ mþ ai þ �b: þ �gi: � m� �a: � �b: � �g::

¼ ai � �a: þ �gi: � �g::: (14:16)
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Similarly

b�j ¼ bj � �b: þ �g:j � �g::, (14:17)

g�ij ¼ gij � �gi: � �g:j þ �g::: (14:18)

14.3 ESTIMATORS OF l0b AND s2

We consider estimation of estimable functions l0b in Section 14.3.1 and estimation
of s2 in Section 14.3.2.

14.3.1 Solving the Normal Equations and Estimating l0b

We discuss two approaches for solving the normal equations X0Xb̂ ¼ X0y and for
obtaining estimates of an estimable function l0b.

14.3.1.1 Side Conditions
From X and y in (14.4), we obtain X0y for the special case a ¼ 3, b ¼ 2, and n ¼ 2:

X0y ¼ (y..., y1::, y2::, y3::, y1::, y:2:, y11:, y12:, y21:, y22:, y31:, y32:)
0: (14:19)

On the basis of X0y in (14.19) and X0X in (14.5), we write the normal equations

X0Xb̂ ¼ X0y in terms of general a, b, and n:

abnm̂þ bn
Xa

i¼1

âi þ an
Xb

j¼1

b̂j þ n
Xa

i¼1

Xb

j¼1

ĝij ¼ y...,

bnm̂þ bnâi þ n
Xb

j¼1

b̂j þ n
Xb

j¼1

ĝij ¼ yi::, i ¼ 1, 2, . . . , a,

anm̂þ n
Xa

i¼1

âi þ anb̂j þ n
Xa

i¼1

ĝij ¼ y:j:, j ¼ 1, 2, . . . , b,

nm̂þ nâi þ nb̂j þ nĝij ¼ yij:, i ¼ 1, 2, . . . , a,

j ¼ 1, 2, . . . , b: (14:20)
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With the side conditions
P

i âi ¼ 0,
P

j b̂j ¼ 0,
P

i ĝij ¼ 0, and
P

j ĝij ¼ 0, the
solution of the normal equations in (14.20) is given by

m̂ ¼ y...

abn
¼ �y...,

âi ¼
yi::

bn
� m̂ ¼ �yi:: � �y...,

b̂j ¼
y:j:
an
� m̂ ¼ �y:j: � �y..., (14:21)

ĝij ¼
yij:

n
� yi::

bn
� y:j:

an
þ y...

abn
,

¼ �yij: � �yi:: � �y:j: þ �y...:

These are unbiased estimators of the parameters m�, a�i , b�j , g�ij in (14.14), subject to
the side conditions in (14.15). If side conditions are not imposed on the parameters,
then the estimators in (14.21) are not unbiased estimators of individual parameters,
but these estimators can still be used in estimable functions. For example, consider
the estimable function l0b in (14.9) (for a ¼ 3, b ¼ 2):

l0b ¼ a1 � a2 þ 1
2 (g11 þ g12)� 1

2 (g21 þ g22):

By Theorem 12.3a and (14.21), the estimator is given by

l0b̂ ¼ â1 � â2 þ 1
2 (ĝ11 þ ĝ12)� 1

2 (ĝ21 þ ĝ22)

¼ �y1:: � �y... � (�y2:: � �y...)þ 1
2 (�y11: � �y1:: � �y:1: þ �y...)

þ 1
2 (�y12: � �y1:: � �y:2: þ �y...)� 1

2 (�y21: � �y2:: � �y:1: þ �y...)

� 1
2 (�y22: � �y2:: � �y:2: þ �y...):

Since �y11: þ �y12: ¼ 2�y1:: and �y21: þ �y22: ¼ 2�y2::, the estimator l0b̂ ¼ â1 � â2þ
1
2 ðĝ11 þ ĝ12Þ � 1

2 ðĝ21 þ ĝ22Þ reduces to

l0b̂ ¼ â1 � â2 þ 1
2 (ĝ11 þ ĝ12)� 1

2 (ĝ21 þ ĝ22) ¼ �y1:: � �y2::: (14:22)

This estimator of a1 � a2 þ 1
2 (g11 þ g12)� 1

2 (g21 þ g22) is the same as the estimator
we would have for a�1 � a�2, using â1 and â2 as estimators of a�1 and a�2:

da�1 � a�2 ¼ â1 � â2 ¼ �y1:: � �y... � (�y2:: � �y...) ¼ �y1:: � �y2:::
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By Theorem 12.3d, such estimators are BLUE. If we also assume that 1ijk is
N(0,s 2), then by Theorem 12.3h, the estimators are minimum variance unbiased
estimators.

14.3.1.2 Generalized Inverse
By Corollary 1 to Theorem 2.8b, a generalized inverse of X0X in (14.5) is given by

(X0X)� ¼ 1
2

O O
O I6

� �
, (14:23)

where the Os are 6 � 6. Then by (12.13) and (14.19), a solution to the normal
equations for a ¼ 3 and b ¼ 2 is given by

b̂ ¼ (X0X)�X0y

¼ (0, 0, 0, 0, 0, 0, �y11:, �y12:, �y21:, �y22:, �y31:, �y32:)
0: (14:24)

The estimators in (14.24) are different from those in (14.21), but they give the same
estimators of estimable functions. For example, for l0b ¼ a1 � a2 þ 1

2 (g11 þ g12)�
1
2 (g21 þ g22) in (14.9), we have

l0b̂ ¼ â1 � â2 þ 1
2 ĝ11 þ ĝ12 � (ĝ21 þ ĝ22)½ �

¼ 0� 0þ 1
2 �y11: þ �y12: � (�y21: þ �y22:)½ �:

It was noted preceding (14.22) that �y11: þ �y12: ¼ 2�y1: and �y21: þ �y22: ¼ 2�y2:. Thus l0b̂
becomes

l0b̂ ¼ 1
2 (2�y1: � 2�y2:) ¼ �y1:: � �y2::,

which is the same estimator as that obtained in (14.22) using b̂ in (14.21).

14.3.2 An Estimator for s2

For the two-way model in (14.1), assumption 2 states that var(1ijk) ¼ s 2 for all i, j, k.
To estimate s 2, we use (12.22), s2 ¼ SSE=ab(n� 1), where abn is the number of
rows of X and ab is the rank of X. By (12.20) and (12.21), we have

SSE ¼ y0y� b̂0X0y ¼ y0 I� X(X0X)�X0½ �y:
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With b̂ from (14.24) and X0y from (14.19), SSE can be written as

SSE ¼ y0y� b̂0X0y

¼
Xa

i¼1

Xb

j¼1

Xn

k¼1

y2
ijk �

Xa

i¼1

Xb

j¼1

�yij:yij:

¼
X

ijk

y2
ijk � n

X
ij

�y2
ij:: (14:25)

It can also be shown (see Problem 14.10) that this is equal to

SSE ¼
X

ijk

(yijk � �yij:)
2: (14:26)

Thus, s2 is given by either of the two forms

s2 ¼
P

ijk (yijk � �yij:)
2

ab(n� 1)
(14:27)

¼
P

ijk y2
ijk � n

P
ij �y

2
ij:

ab(n� 1)
: (14:28)

By Theorem 12.3e, E(s2) ¼ s 2.

14.4 TESTING HYPOTHESES

In this section, we consider tests of hypotheses for the main effects A and B and for
the interaction AB. Throughout this section, we assume that y is Nabn(Xb, s 2I). For
expositional convenience, we sometimes illustrate with a ¼ 3 and b ¼ 2.

14.4.1 Test for Interaction

In Section 14.4.1.1, we express the interaction hypothesis in terms of estimable para-
meters, and in Sections 14.4.1.2 and 14.4.1.3, we discuss two approaches to the
full–reduced-model test.

14.4.1.1 The Interaction Hypothesis
By (14.8), estimable contrasts in the gij’s have the form

gij � gij0 � gi0j þ gi0j0 , i = i0, j = j0: (14:29)

We now show that the interaction hypothesis can be expressed in terms of these esti-
mable functions.

For the illustrative model in (14.3) with a ¼ 3 and b ¼ 2, the cell means in (14.12)
are given in Figure 14.1. The B effect at the first level of A is m11 � m12, the B effect at
the second level of A is m21 � m22, and the B effect at the third level of A is m31 � m32.
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If these three B effects are equal, we have no interaction. If at least one effect differs
from the other two, we have an interaction. The hypothesis of no interaction can
therefore be expressed as

H0: m11 � m12 ¼ m21 � m22 ¼ m31 � m32: (14:30)

To show that this hypothesis is testable, we first write the three differences in terms
of the gij’s by using (14.12). For the first two differences in (14.30), we obtain

m11 � m12 ¼ mþ a1 þ b1 þ g11 � (mþ a1 þ b2 þ g12)

¼ b1 � b2 þ g11 � g12,

m21 � m22 ¼ mþ a2 þ b1 þ g21 � (mþ a2 þ b2 þ g22)

¼ b1 � b2 þ g21 � g22:

Then the equality m11 � m12 ¼ m21 � m22 in (14.30) becomes

b1 � b2 þ g11 � g12 ¼ b1 � b2 þ g21 � g22

or

g11 � g12 � g21 þ g22 ¼ 0: (14:31)

The function g11 � g12 � g21 þ g22 on the left side of (14.31) is an estimable contrast
[see (14.29)]. Similarly, the third difference in (14.30) becomes

m31 � m32 ¼ b1 � b2 þ g31 � g32,

and when this is set equal to m21 � m22 ¼ b1 � b2 þ g21 � g22, we obtain

g21 � g22 � g31 þ g32 ¼ 0: (14:32)

Figure 14.1 Cell means for the model in (14.2) and (14.12).
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By (14.29), the function g21 � g22 � g31 þ g32 on the left side of (14.32) is esti-
mable. Thus the two expressions in (14.31) and (14.32) are equivalent to the inter-
action hypothesis in (14.30), and the hypothesis is therefore testable.

Since the interaction hypothesis can be expressed in terms of estimable functions
of gij’s that do not involve ai’s or bj’s, we can proceed with a full–reduced-model
approach. On the other hand, by (14.7), the a’s and b’s are not estimable without
the g’s. We therefore have to redefine the main effects in order to get a test in the pre-
sence of interaction; see Section 14.4.2.

To get a reduced model from (14.1) or (14.3), we work with g�ij ¼
mij � �mi: � �m:j þ �m:: in (14.14), which is estimable [it can be estimated unbiasedly
by ĝij ¼ �yij: � �yi:: � �y:j: þ �y... in (14.21)]. Using (14.13), the model can be expressed
in terms of parameters subject to the side conditions in (14.15):

yijk ¼ m� þ a�i þ b�j þ g�ij þ 1ijk , ð14:33Þ

We can get a reduced model from (14.33) by setting g�ij ¼ 0.
In the following theorem, we show that H0: g�ij ¼ 0 for all i, j is equivalent to the

interaction hypothesis expressed as (14.30) or as (14.31) and (14.32). Since all three
of these expressions involve a ¼ 3 and b ¼ 2, we continue with this illustrative
special case.

Theorem 14.4a. Consider the model (14.33) for a ¼ 3 and b ¼ 2. The
hypothesis H0: g�ij ¼ 0, i ¼ 1, 2, 3, j ¼ 1, 2, is equivalent to (14.30)

H0:m11 � m12 ¼ m21 � m22 ¼ m31 � m32, (14:34)

and to the equivalent form

H0:
g11 � g12 � g21 þ g22

g21 � g22 � g31 þ g32

� �
¼ 0

0

� �
(14:35)

obtained from (14.31) and (14.32).

PROOF. To establish the equivalence of g�ij ¼ 0 and the first equality in (14.35), we
find an expression for each gij by setting g�ij ¼ 0. For g12 and g�12, for example, we
use (14.18) to obtain

g�12 ¼ g12 � �g1: � �g:2 þ �g::: (14:36)

Then g�12 ¼ 0 gives

g12 ¼ �g1: þ �g:2 � �g:::
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Similarly, from (14.18) and the equalities g�11 ¼ 0, g�21 ¼ 0, and g�22 ¼ 0, we obtain

g11 ¼ �g1: þ �g:1 � �g::, g21 ¼ �g2: þ �g:1 � �g::, g22 ¼ �g2: þ �g:2 � �g:::

When these are substituted into g11 � g12 � g21 þ g22, we obtain

g11 � g12 � g21 þ g22 ¼ �g1: þ �g:1 � �g:: � (�g1: þ �g:2 � �g::)

� (�g2: þ �g:1 � �g::)þ �g2: þ �g:2 � �g::

¼ 0,

which is the first equality in (14.35). The second equality in (14.35) is obtained
similarly.

To show that the first equality in (14.34) is equivalent to the first equality in
(14.35), we substitute mij ¼ mþ ai þ bj þ gij into m11 � m12 ¼ m21 � m22:

0 ¼ m11 � m12 � m21 þ m22

¼ mþ a1 þ b1 þ g11 � (mþ a1 þ b2 þ g12)

� (mþ a2 þ b1 þ g21)þ mþ a2 þ b2 þ g22

¼ g11 � g12 � g21 þ g22:

Similarly, the second equality in (14.34) is equivalent to the second equality in
(14.35). A

In Section 14.4.1.2, we obtain the test for interaction based on the normal
equations, and in Section 14.4.1.3, we give the test based on a generalized inverse.

14.4.1.2 Full–Reduced-Model Test Based on the Normal Equations
In this section, we develop the full–reduced-model test for interaction using the
normal equations. We express the full model in terms of parameters subject to side
conditions, as in (14.33)

yijk ¼ m� þ a�i þ b�j þ g�ij þ 1ijk; ð14:37Þ

where m� ¼ �m::, a
�
i ¼ �mi: � �m::, b

�
j ¼ �m:j � �m::, and g�ij ¼ mij � �mi: ��m:j þ �m:: are as

given in (14.14). The reduced model under H0: g�ij ¼ 0 for all i and j is

yijk ¼ m� þ a�i þ b�j þ 1ijk: (14:38)

Since we are considering a balanced model, the parameters m�, a�i , and b�j (subject
to side conditions) in the reduced model (14.38) are the same as those in the full
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model (14.37) [in (14.44), the estimates in the two models are also shown to be the
same].

Using the notation of Chapter 13, the sum of squares for testing H0: g�ij ¼ 0 is
given by

SS(gjm, a, b) ¼ SS(m, a, b, g)� SS(m, a, b): (14:39)

The estimators m̂, âi, b̂j, ĝij in (14.21) are unbiased estimators of m�, a�i , b�j , g�ij.
Extending X0y in (14.19) from a ¼ 3 and b ¼ 2 to general a and b, we obtain

SS(m, a, b, g) ¼ b̂0X0y

¼ m̂y... þ
Xa

i¼1

âiyi:: þ
Xb

j¼1

b̂jy:j: þ
Xa

i¼1

Xb

j¼1

ĝijyij:

¼ �y...y... þ
X

i

(�yi:: � �y...)yi... þ
X

j

(�y:j: � �y...)y:j:

þ
X

ij

(�yij: � �yi:: � �y:j: þ �y...)yij:

¼ y2
...

abn
þ

X
i

y2
i::

bn
� y2

...

abn

 !
þ

X
j

y2
:j:

an
� y2

...

abn

 !

þ
X

ij

y2
ij:

n
�
X

i

y2
i::

bn
�
X

j

y2
:j:

an
þ y2

...

abn

 !
(14:40)

¼
X

ij

y2
ij:

n
: ð14:41Þ

Note that we would obtain the same result using b̂ in (14.24) (extended to general a
and b).

For the reduced model in (14.38), the X1 matrix and X01y vector for a ¼ 3 and b ¼
2 consist of the first six columns of X in (14.4‘) and the first six elements of X0y in
(14.19). We thus obtain

X01X1 ¼

12 4 4 4 6 6
4 4 0 0 2 2
4 0 4 0 2 2
4 0 0 4 2 2
6 2 2 2 6 0
6 2 2 2 0 6

0
BBBBBB@

1
CCCCCCA

, X01y ¼

y...

y1::

y2::

y3::

y:1:
y:2:

0
BBBBBB@

1
CCCCCCA
: (14:42)
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From the pattern in (14.42), we see that for general a and b the normal equations for
the reduced model become

abnm̂þ bn
Xa

i¼1

âi þ an
Xb

j¼1

b̂j ¼ y...,

bnm̂þ bnâi þ n
Xb

j¼1

b̂j ¼ yi::, i ¼ 1, 2, . . . , a, (14:43)

anm̂þ n
Xa

i¼1

âi þ anb̂j ¼ y:j:, j ¼ 1, 2, . . . , b:

Using the side conditions
P

i âi ¼ 0 and
P

j b̂j ¼ 0, we obtain the solutions

m̂ ¼ y...

abn
¼ �y..., âi ¼

yi::

bn
� m̂ ¼ �yi:: � �y..., b̂j ¼

y:j:
an
� m̂ ¼ �y:j: � �y...: (14:44)

These solutions are the same as those for the full model in (14.21), as expected in the
case of a balanced model.

The sum of squares for the reduced model is therefore

SS(m,a,b) ¼ b̂01X01y

¼ y2
...

abn
þ

X
i

y2
i::

bn
� y2

...

abn

 !
þ

X
j

y2
:j:

an
� y2

...

abn

 !
,

and the difference in (14.39) is

SS(gjm,a,b) ¼ SS(m,a,b, g)� SS(m,a,b)

¼
X

ij

y2
ij:

n
�
X

i

y2
i::

bn
�
X

j

y2
:j:

an
þ y2

...

abn
: (14:45)

The error sum of squares is given by

SSE ¼ y0y� b̂0X0y

¼
X

ijk

y2
ijk �

X
ij

y2
ij:

n
(14:46)

(see Problem 14.13b). In terms of means rather than totals, (14.45) and (14.46)
become

SS(gjm,a,b) ¼ n
X

ij

(�yij: � �yi:: � �y:j: þ �y...)
2, (14:47)

SSE ¼
X

ijk

(yijk � �yij:)
2: (14:48)
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There are ab parameters involved in the hypothesis H0: g�ij ¼ 0, i ¼ 1, 2, . . . , a,
j ¼ 1, 2, . . . , b. However, the a þ b side conditions

P
i g
�
ij ¼ 0 for j ¼ 1, 2, . . . , b

and
P

j g
�
ij ¼ 0 for i ¼ 1, 2, . . . , a impose a� 1 + b� 1 restrictions. With the

additional condition
Pa

i¼1

Pb
j¼1 g

�
ij ¼ 0, we have a total of aþ b� 2þ 1 ¼

aþ b� 1 restrictions. Therefore the degrees of freedom for SS(gjm, a, b) are
ab� (aþ b� 1) ¼ (a� 1)(b� 1) (see Problem 14.14).

To test H0: g�ij ¼ 0 for all i, j, we therefore use the test statistic

F ¼ SS(gjm,a,b)=(a� 1)(b� 1)
SSE=ab(n� 1)

, (14:49)

which is distributed as F[(a� 1)(b� 1), ab(n� 1)] if H0 is true (see Section 12.7.2).

14.4.1.3 Full–Reduced-Model Test Based on a Generalized Inverse
We now consider a matrix development of SSE and SS(gjm, a, b) based on a gener-
alized inverse. By (12.21), SSE ¼ y0[I� X(X0X)�X0]y. For our illustrative model with
a ¼ 3, b ¼ 2, and n ¼ 2, the matrix X0X is given in (14.5) and a generalized inverse
(X0X)� is provided in (14.23). The 12 � 12 matrix X(X0X)�X0 is then given by

X(X0X)�X0 ¼ 1
2

J O � � � O
O J � � � O

..

. ..
. ..

.

O O � � � J

0
BBB@

1
CCCA ¼

1
2

jj0 O � � � O
O jj0 � � � O

..

. ..
. ..

.

O O � � � jj0

0
BBB@

1
CCCA, (14:50)

where J and O are 2 � 2 and j is 2 � 1 (see Problem 14.17). The vector y in (14.4)
can be written as

y ¼

y11
y12
y21
y22
y31
y32

0
BBBBBB@

1
CCCCCCA

, (14:51)

where yij ¼
yij1

yij2

� �
, i ¼ 1, 2, 3, j ¼ 1, 2. By (12.21), (14.50), and (14.51), SSE

becomes

SSE ¼ y0 I� X(X0X)�X0½ �y ¼ y0y� y0X(X0X)�X0y

¼
X

ijk

y2
ijk � 1

2

P
ij y0ijjj

0yij ¼
P

ijk y2
ijk � 1

2

P
ij y2

ij:,

which is the same as (14.46) with n ¼ 2.
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For SS(gjm,a,b), we obtain

SS(gjm,a,b) ¼ SS(m,a,b,g)� SS(m,a,b)

¼ b̂0X0y� b̂01X01y

¼ y0[X(X0X)�X0 � X1(X01X1)�X01]y, (14:52)

where X(X0X)�X0 is as found in (14.50) and X1 consists of the first six columns of X
in (14.4). The matrix X01X1 is given in (14.42), and a generalized inverse of X01X1 is
given by

(X01X1)� ¼ 1
12

�1 0 0 0 0 0
0 3 0 0 0 0
0 0 3 0 0 0
0 0 0 3 0 0
0 0 0 0 2 0
0 0 0 0 0 2

0
BBBBBB@

1
CCCCCCA
: (14:53)

Then

X1(X01X1)�X01 ¼ 1
12

4J 2J J �J J �J
2J 4J �J J �J J

J �J 4J 2J J �J
�J J 2J 4J �J J

J �J J �J 4J 2J
�J J �J J 2J 4J

0
BBBBBB@

1
CCCCCCA

, (14:54)

where J is 2 � 2. For the difference between (14.50) and (14.54), we obtain

X(X0X)�X0 � X1(X01X1)�X01 ¼ 1
12

2J �2J �J J �J J

�2J 2J J �J J �J

�J J 2J �2J �J J

J �J �2J 2J J �J

�J J �J J 2J �2J

J �J J �J �2J 2J

0
BBBBBBBB@

1
CCCCCCCCA

,

(14:55)

where J is 2 � 2.
To show that SS(gjm, a, b) ¼ y0[X(X0X)�X0 � X1(X01X1)�X0]y in (14.52) is

equal to the formulation of SS(gjm, a, b) shown in (14.45), we first write (14.45)
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in matrix notation:

X3

i¼1

X2

j¼1

y2
ij:

2
�
X3

i¼1

y2
i::

4
�
X2

j¼1

y2
:j:

6
þ y2

...

12
¼ y0 1

2 A� 1
4 B� 1

6 Cþ 1
12 D

� �
y: (14:56)

We now find A, B, C, and D. For 1
2

P
ij y2

ij: ¼ 1
2 y0Ay, we have by (14.50) and

(14.51),

1
2

X
ij

y2
ij: ¼ 1

2

X3

i¼1

X2

j¼1

y0ijjj
0yij,

where j is 2 � 1. This can be written as

1
2

X
ij

y2
ij: ¼ 1

2 (y011, y012, . . . , y032)

jj0 O � � � O

O jj0 � � � O

..

. ..
. ..

.

O O � � � jj0

0
BBBB@

1
CCCCA

y11

y12

..

.

y32

0
BBBB@

1
CCCCA

(14:57)

¼ 1
2 y0Ay,

where

A ¼

J O � � � O
O J � � � O

..

. ..
. ..

.

O O � � � J

0
BBB@

1
CCCA,

and J is 2 � 2. Note that by (14.50), we also have 1
2 A ¼ X(X0X)�X0.

For the second term in (14.56), 1
4

P
i y2

i::, we first use (14.51) to write yi:: and
y2

i:: as

yi:: ¼
X

jk

yijk ¼
X

k

yi1k þ
X

k

yi2k ¼ y0i1jþ y0i2j ¼ (y0i1, y0i2)
j

j

� �
,

y2
i:: ¼ (y0i1, y0i2)

j

j

� �
(j0, j0)

yi1

yi2

� �
¼ (y0i1, y0i2)

jj0 jj0

jj0 jj0

� �
yi1

yi2

� �
:
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Thus 1
4

P3
i¼1 y2

i:: can be written as

1
4

X3

i¼1

y2
i:: ¼ 1

4 (y011, y012, . . . , y032)

J J O O O O

J J O O O O

O O J J O O

O O J J O O

O O O O J J

O O O O J J

0
BBBBBBBB@

1
CCCCCCCCA

y11

y12

..

.

y31

0
BBBB@

1
CCCCA

(14:58)

¼ 1
4 y0By:

Similarly, the third term of (14.56), 1
6

P2
j¼1 y2

:j:, can be written as

1
6

X2

j¼1

y2
:j: ¼ 1

6 y0

J O J O J O
O J O J O J
J O J O J O
O J O J O J
J O J O J O
O J O J O J

0
BBBBBB@

1
CCCCCCA

y ¼ 1
6 y0Cy: (14:59)

For the fourth term of (14.56), y2
...=12, we have

y... ¼
X

ijk

yijk ¼ y0j12,

1
12 y2

... ¼ 1
12 y0j12j012y ¼ 1

12 y0J12y ¼ 1
12 y0Dy, (14:60)

where j12 is 12 � 1 and J12 is 12 � 12. To conform with A, B, and C in (14.57),
(14.58), and (14.59), we write D ¼ J12 as

D ¼ J12 ¼

J J J J J J
J J J J J J
J J J J J J
J J J J J J
J J J J J J
J J J J J J

0
BBBBBB@

1
CCCCCCA

,

where J is 2 � 2.
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Now, combining (14.57)–(14.60), we obtain the matrix of the quadratic form in
(14.56):

1
2 A� 1

4 B� 1
6 Cþ 1

12 D ¼ 1
12

2J �2J �J J �J J
�2J 2J J �J J �J
�J J 2J �2J �J J

J �J �2J 2J J �J
�J J �J J 2J �2J

J �J J �J �2J 2J

0
BBBBBB@

1
CCCCCCA

, (14:61)

which is the same as (14.55). Thus the matrix version of SS(gjm, a, b) in (14.52) is
equal to SS(gjm, a, b) in (14.45):

y0[X(X0X)�X0 �X1(X01X1)�X01]y ¼
X

ij

y2
ij

n
�
X

i

y2
i::

bn
�
X

j

y2
:j:

an
þ y2

...

abn
:

14.4.2 Tests for Main Effects

In Section 14.4.2.1, we develop a test for main effects using the full–reduced–model
approach. In Section 14.4.2.2, a test for main effects is obtained using the general
linear hypothesis approach. Throughout much of this section, we use a ¼ 3 and
b ¼ 2, where a is the number of levels of factor A and b is the number of levels of
factor B.

14.4.2.1 Full–Reduced-Model Approach
If interaction is present in the two-way model, then by (14.9) and (14.10), we cannot
test H0:a1 ¼ a2 ¼ a3 (for a ¼ 3) because a1 � a2 and a1 � a3 are not estimable. In
fact, there are no estimable contrasts in the a’s alone or the b’s alone (see Problem
14.2). Thus, if there is interaction, the effect of factor A is different for each level
of factor B and vice versa.

To examine the main effect of factor A, we consider a�i ¼ �mi: � �m::, as defined in
(14.14). This can be written as

a�i ¼ �mi: � �m:: ¼
Xb

j¼1

mij

b
�
Xa

i¼1

Xb

j¼1

mij

ab

¼ 1
b

X
j

mij �
X

i

mij

a

 !

¼ 1
b

X
j

(mij � �m:j): (14:62)

The expression in parentheses, mij � �m:j, is the effect of the ith level of factor A at the
jth level of factor B. Thus in (14.62), a�i ¼ �mi: � �m:: is expressed as the average effect
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of the ith level of factor A (averaged over the levels of B). This definition leads to the
side condition

P
i a
�
i ¼ 0.

Since the a�i ’s are estimable [see (14.21) and the comment following], we can use
them to express the hypothesis for factor A. For a ¼ 3, this becomes

H0: a�1 ¼ a�2 ¼ a�3, (14:63)

which is equivalent to

H0: a�1 ¼ a�2 ¼ a�3 ¼ 0 (14:64)

because
P

i a
�
i ¼ 0.

The hypothesis H0: a�1 ¼ a�2 ¼ a�3 in (14.63) states that there is no effect of factor
A when averaged over the levels of B. Using a�i ¼ �mi: � �m::, we can express
H0: a�1 ¼ a�2 ¼ a�3 in terms of means:

H0: �m1: � �m:: ¼ �m2: � �m:: ¼ �m3: � �m::,

which can be written as

H0: �m1: ¼ �m2: ¼ �m3::

The values for the cell means in Figure 14.2 illustrate a situation in which H0 holds in
the presence of interaction.

Because H0 in (14.63) or (14.64) is based on an average effect, many texts
recommend that the interaction AB be tested first, and if it is found to be significant,
then the main effects should not be tested. However, with the main effect of A defined
as the average effect over the levels of B and similarly for the effect of B, the tests for
A and B can be carried out even if AB is significant. Admittedly, interpretation
requires more care, and the effect of a factor may change if the number of levels
of the other factor is altered. But in many cases useful information can be gained
about the main effects in the presence of interaction.

Figure 14.2 Cell means illustrating �m1: ¼ �m2: ¼ �m3: in the presence of interaction.
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Under H0:a�1 ¼ a�2 ¼ a�3 ¼ 0, the full model in (14.33) reduces to

yijk ¼ m� þ b�j þ g�ij þ 1ijk: (14:65)

Because of the orthogonality of the balanced model, the estimators of m�, b�j , and g�ij

in (14.65) are the same as in the full model. If we use m̂, b̂j, and ĝij in (14.21) and
elements of X0y in (14.19) extended to general a, b, and n, we obtain

SS(m, b, g) ¼ m̂y... þ
Xb

j¼1

b̂jy:j: þ
Xa

i¼1

Xb

j¼1

ĝijyij:,

which, by (14.40), becomes

SS(m, b, g) ¼ y2
...

abn
þ

X
j

y2
:j:

an
� y2

...

abn

 !

þ
X

ij

y2
ij:

n
�
X

i

y2
i::

bn
�
X

j

y2
:j:

an
þ y2

...

abn

 !
: (14:66)

From (14.40) and (14.66), we have

SS(ajm, b, g) ¼ SS(m, a, b, g)� SS(m, b, g)

¼
Xa

i¼1

y2
i::

bn
� y2

...

abn
: (14:67)

For the special case of a ¼ 3, we see by (14.7) that there are two linearly independent
estimable functions involving the three a’s. Therefore, SS(ajm, b, g) has 2 degrees of
freedom. In general, SS(ajm, b, g) has a� 1 degrees of freedom.

In an analogous manner, for factor B we obtain

SS(bjm, a, g) ¼ SS(m, a, b, g)� SS(m, a, g)

¼
Xb

j¼1

y2
:j:

an
� y2

...

abn
, (14:68)

which has b� 1 degrees of freedom.
In terms of means, we can express (14.67) and (14.68) as

SS(ajm, b, g) ¼ bn
Xa

i¼1

(�yi:: � �y...)
2, (14:69)
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SS(bjm, a, g) ¼ an
Xb

j¼1

(�y:j: � �y...)
2: (14:70)

It is important to note that the full–reduced-model approach leading to
SS(ajm, b, g) in (14.67) cannot be expressed in terms of matrices in a manner
analogous to that in (14.52) for the interaction, namely, SS(gjm, a, b) ¼
y0[X(X0X)�X0 � X1(X01X1)�X01]y: The matrix approach is appropriate for the inter-
action because there are estimable functions of the gij’s that do not involve m or
the ai or bj terms. In the case of the A main effect, however, we cannot obtain a
matrix X1 by deleting the three columns of X corresponding to a1, a2, and a3

because contrasts of the form a1 � a2 are not estimable without involving the gij’s
[see (14.9) and (14.10)].

If we add the sums of squares for factor A, B, and the interaction in (14.67),
(14.68), and (14.45), we obtain

P
ij y2

ij:=n� y2
...=abn, which is the overall sum of

squares for “treatments,” SS(a, b, gjm). This can also be seen in (14.40). In the fol-
lowing theorem, the three sums of squares are shown to be independent.

Theorem 14.4b. If y is Nabn(Xb, s 2I), then SS(ajm, b, g), SS(bjm, a, g), and
SS(gjm, a, b) are independent.

PROOF. This follows from Theorem 5.6c; see Problem 14.23. A

Using (14.45), (14.46), (14.67), and (14.68), we obtain the analysis-of-variance
(ANOVA) table given in Table 14.1.

TABLE 14.1 ANOVA Table for a Two-Way Model with Interaction

Source of
Variation df Sum of Squares

Factor A a 2 1 P
i

y2
i::

bn
� y2

...

abn

Factor B b 2 1 P
j

y2
:j:

an
� y2

...

abn

Interaction (a 2 1)(b 2 1)
P

ij

y2
ij:

n
�
X

i

y2
i::

bn
�
X

j

y2
:j:

an
þ y2

...

abn

Error ab(n 2 1)
P

ijk y2
ijk �

P
ij

y2
ij:

n

Total abn 2 1
P

ijk y2
ijk �

y2
...

abn
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The test statistic for factor A is

F ¼ SS(ajm, b, g)=(a� 1)
SSE=ab(n� 1)

, (14:71)

which is distributed as F[a� 1, ab(n� 1)] if H0:a�1 ¼ a�2 ¼ � � � ¼ a�a ¼ 0 is true.
For factor B, we use SS(bjm ,a, g) in (14.68), and the F statistic is given by

F ¼ SS(bjm, a, g)=(b� 1)
SSE=ab(n� 1)

,

which is distributed as F[b� 1, ab(n� 1)] if H0:b�1 ¼ b�2 ¼ � � � ¼ b�b ¼ 0 is true. In
Section 14.4.2.2, these F statistics are obtained by the general linear hypothesis
approach. The F distributions can thereby be justified by Theorem 12.7c.

Example 14.4. The moisture content of three types of cheese made by two methods
was recorded by Marcuse (1949) (format altered). Two cheeses were measured for
each type and each method. If method is designated as factor A and type is factor
B, then a ¼ 2, b ¼ 3, and n ¼ 2. The data are given in Table 14.2, and the totals
are shown in Table 14.3.

The sum of squares for factor A is given by (14.67) as

SS(ajm,b, g) ¼
X2

i¼1

y2
i::

(3)(2)
� y2

...

(2)(3)(2)

¼ 1
6 [(221:98)2 þ (220:81)2]� 1

12 (442:79)2

¼ :114075:

TABLE 14.2 Moisture Content of Two Cheeses from
Each of Three Different Types Made by Two Methods

Method

Type of Cheese

1 2 3

1 39.02 35.74 37.02
38.79 35.41 36.00

2 38.96 35.58 35.70
39.01 35.52 36.04
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Similarly, for factor B we use (14.68):

SS(bjm, a, g) ¼
X3

j¼1

y2
:j:

(2)(2)
� y2

...

12

¼ 1
4 [(155:78)2 þ (142:25)2 þ (144:76)2]� 1

12 (442:79)2

¼ 25:900117:

For error, we use (14.46) to obtain

SSE ¼
X

ijk

y2
ijk � 1

2

P
ij y2

ij:

¼ (39:02)2 þ (38:79)2 þ � � � þ (36:04)2 � 1
2 [(77:81)2 þ � � � þ (71:74)2]

¼ 16,365:56070� 16364:89875 ¼ :661950:

The total sum of squares is given by

SST ¼
X

ijk

y2
ijk �

y2
...

12
¼ 26:978692:

The sum of squares for interaction can be found by (14.45) or by subtracting all other
terms from the total sum of squares:

SS(gjm, a, b) ¼ 26:978692� :114075� 25:900117� :661950

¼ :302550:

With these sums of squares, we can compute mean squares and F statistics as
shown in Table 14.4.

Only the F test for type is significant, since F:05,1,6 ¼ 5:99 and F:05,2,6 ¼ 5:14. The
p value for type is .0000155. The p values for method and the interaction are .3485
and .3233, respectively.

TABLE 14.3 Totals for Data in Table 14.2

B

A 1 2 3 Totals

1 y11. ¼ 77.81 y12. ¼ 71.15 y13. ¼ 73.02 y1.. ¼ 221.98
2 y21. ¼ 77.97 y22. ¼ 71.10 y23. ¼ 71.74 y2.. ¼ 220.81

Totals y.1. ¼ 155.78 y.2. ¼ 142.25 y.3. ¼ 144.76 y... ¼ 442.79
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Note that in Table 14.2, the difference between the two replicates in each cell is
very small except for the cell with method 1 and type 3. This suggests that the repli-
cates may be repeat measurements rather than true replications; that is, the exper-
imenter may have measured the same piece of cheese twice rather than measuring
two different cheeses. A

14.4.2.2 General Linear Hypothesis Approach
We now obtain SS(ajm, b, g) for a ¼ 3 and b ¼ 2 by an approach based on the
general linear hypothesis. Using a�i ¼ ai � �a: þ �gi: � �g:: in (14.16), the hypothesis
H0:a�1 ¼ a�2 ¼ a�3 in (14.63) can be expressed as H0:a1 þ �g1: ¼ a2 þ �g2: ¼
a3 þ �g3: or

H0: a1 þ 1
2 (g11 þ g12) ¼ a2 þ 1

2 (g21 þ g22) ¼ a3 þ 1
2 (g31 þ g32) (14:72)

[see also (14.9) and (14.10)]. The two equalities in (14.72) can be expressed in
the form

H0:
a1 þ 1

2 g11 þ 1
2 g12 � a3 � 1

2 g31 � 1
2 g32

a2 þ 1
2 g21 þ 1

2 g22 � a3 � 1
2 g31 � 1

2 g32

 !
¼ 0

0

� �
:

Rearranging the order of the parameters to correspond to the order in
b ¼ (m, a1, a2, a3, b1, b2, g11, g12, g21, g22, g31, g32)0 in (14.4), we have

H0:
a1 � a3 þ 1

2 g11 þ 1
2 g12 � 1

2 g31 � 1
2 g32

a2 � a3 þ 1
2 g21 þ 1

2 g22 � 1
2 g31 � 1

2 g32

 !
¼ 0

0

� �
, (14:73)

TABLE 14.4 ANOVA for the Cheese Data in Table 14.2

Source of
Variation

Sum of
Squares df

Mean
Square F

Method 0.114075 1 0.114075 1.034
Type 25.900117 2 12.950058 117.381
Interaction 0.302550 2 0.151275 1.371
Error 0.661950 6 0.110325

Total 26.978692 11
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which can now be written in the form H0: Cb ¼ 0 with

C ¼
0 1 0 �1 0 0 1

2
1
2 0 0 � 1

2 � 1
2

0 0 1 �1 0 0 0 0 1
2

1
2 � 1

2 � 1
2

 !
: (14:74)

By Theorem 12.7b(iii), the sum of squares corresponding to H0: Cb ¼ 0 is

SSH ¼ (Cb̂)0[C(X0X)�C0]�1Cb̂: (14:75)

Substituting b̂ ¼ (X0X)�X0y from (12.13), SSH in (14.75) becomes

SSH ¼ y0X(X0X)�C0[C(X0X)�C0]�1C(X0X)�X0y ¼ y0Ay: (14:76)

Using C in (14.74), (X0X)� in (14.23), and X in (14.4), we obtain

C(X0X)�X0 ¼ 1
4

1 1 1 1 0 0 0 0 �1 �1 �1 �1

0 0 0 0 1 1 1 1 �1 �1 �1 �1

� �
, (14:77)

C(X0X)�C0 ¼ 1
4

2 1

1 2

� �
, [C(X0X)�C0]�1 ¼ 4

3

2 �1

�1 2

� �
: (14:78)

Then A ¼ X(X0X)�C0[C(X0X)�C0]�1C(X0X)�X0 in (14.76) becomes

A ¼ 1
12

2J �J �J
�J 2J �J
�J �J 2J

0
@

1
A, (14:79)

where J is 4 � 4. This can be expressed as

A ¼ 1
12

2J �J �J
�J 2J �J
�J �J 2J

0
@

1
A ¼ 1

12

3J O O
O 3J O
O O 3J

0
@

1
A� 1

12

J J J
J J J
J J J

0
@

1
A: (14:80)

To evaluate y0Ay, we redefine y in (14.51) as

y ¼

y11
y12
y21
y22
y31
y32

0
BBBBBB@

1
CCCCCCA
¼

y1
y2
y3

0
@

1
A, where

yi1
yi2

� �
¼ yi: (14:81)
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Then (14.76) becomes

SSH ¼ y0Ay ¼ 1
12 (y01, y02, y03)

3J4 O O

O 3J4 O

O O 3J4

0
B@

1
CA

y1

y2

y3

0
B@

1
CA� 1

12 y0J12y

¼ 3
12

X3

i¼1

y0iJ4yi � 1
12 y0J12y

¼ 1
4

X
i

y0ij4j04yi � 1
12 y0j12j012y

¼
X

i

y2
i::

4
� y2

...

12
,

which is the same as SS(ajm,b,g) in (14.67) with a ¼ 3 and b ¼ n ¼ 2.
The sum of squares for testing the B main effect can be obtained similarly using a

general linear hypothesis approach (see Problem 14.25).

14.5 EXPECTED MEAN SQUARES

We find expected mean squares by direct evaluation of the expected value of sums of
squares and also by a matrix method based on the expected value of quadratic forms.

14.5.1 Sums-of-Squares Approach

The expected mean squares for the tests in Table 14.1 are given in Table 14.5.
Note that these are expressed in terms of a�i , b�j , and g�ij subject to the side

TABLE 14.5 Expected Mean Squares for a Two-Way ANOVA

Source
Sum of
Squares Mean Square Expected Mean Square

A SS(ajm, b, g) SSðajm, b, gÞ
a� 1 s 2 þ bn

P
i

a�2i

a� 1

B SS(bjm,a, g) SSðbjm, a, gÞ
b� 1 s 2 þ an

P
j

b�2j

b� 1

AB SS(gjm, a, b) SSðgjm, a, bÞ
ða� 1Þðb� 1Þ s 2 þ n

P
ij

g�2ij

(a� 1)(b� 1)

Error SSE SSE
ab(n� 1)

s2
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conditions
P

i a
�
i ¼ 0,

P
j b
�
j ¼ 0, and

P
i g
�
ij ¼

P
j g
�
ij ¼ 0. These expected mean

squares can be derived by inserting the model yijk ¼ m� þ a�i þ b�j þ g�ij þ 1ijk in
(14.33) into the sums of squares and then finding expected values. We illustrate
this approach for the first expected mean square in Table 14.5.

To find the expected value of SS(ajm,b,g) ¼
P

i y2
i::=bn� y2

...=abn in (14.67), we
first note that by using assumption 1 in Section 14.1, we can write assumptions 2 and
3 in the form

E(12
ijk) ¼ s 2 for all i, j, k, (14:82)

E(1ijk1rst) ¼ 0 for all (i, j, k) = (r, s, t): (14:83)

Using these results, along with assumption 1 and the side conditions in (14.15), we
can show that E(y2

...) ¼ a2b2n2m�2 þ abns 2 as follows:

E(y2
...) ¼ E

X
ijk

yijk

 !2

¼ E
X

ijk

(m� þ a�i þ b�j þ g�ij þ 1ijk)

" #2

¼ E abnm� þ bn
X

i

a�i þ an
X

j

b�j þ n
X

ij

g�ij þ
X

ijk

1ijk

 !2

¼ E a2b2n2m�2 þ 2abnm�
X

ijk

1ijk þ
X

ijk

1ijk

 !2
2
4

3
5

¼ a2b2n2m�2 þ E
X

ijk

12
ijk

 !
þ E

X
ijk=rst

1ijk1rst

 !

¼ a2b2n2m�2 þ abns 2:

It can likewise be shown that

E
Xa

i¼1

y2
i::

 !
¼ ab2n2m�2 þ b2n2

Xa

i¼1

a�2i þ abns 2 (14:84)

(see Problem 14.27). Thus

E
SS(ajm, b, g)

a� 1

� �
¼ 1

a� 1
E
X

i

y2
i::

bn
� y2

...

abn

 !

¼ 1
a� 1

ab2n2m�2

bn
þ b2n2P

i a
�2
i

bn
þ abns 2

bn
� a2b2n2m�2

abn
� abns 2

abn

� �

¼ 1
a� 1

(a� 1)s 2þ bn
X

i

a�2i

" #
:
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The other expected mean squares in Table 14.5 can be obtained similarly (see
Problem 14.28).

14.5.2 Quadratic Form Approach

We now obtain the first expected mean square in Table 14.2 using a matrix approach.
We illustrate with a ¼ 3, b ¼ 2, and n ¼ 2. By (14.75), we obtain

E[SS(ajm, b, g)] ¼ E{(Cb̂)0[C(X0X)�C0]�1Cb̂}: (14:85)

The matrix C contains estimable functions, and therefore by (12.44) and (12.45), we
have E(Cb̂) ¼ Cb and cov(Cb̂) ¼ s 2C(X0X)�C0. If we define G to be the 2� 2
matrix [C(X0X)�C0]�1, then by Theorem 5.2a, (14.85) becomes

E[SS(ajm, b, g)] ¼ E[(Cb̂)0G(Cb̂)]

¼ tr[G cov(Cb̂)]þ [E(Cb̂)]0G[E(Cb̂)]

¼ tr(Gs 2G�1)þ (Cb)0G(Cb)

¼ 2s 2 þ b0C0[C(X0X)�C0]�1Cb (14:86)

¼ 2s 2 þ b0Lb, (14:87)

where L ¼ C0[C(X0X)�C0]�1C. Using C in (14.74) and [C(X0X)�C0]�1 in (14.78), L
becomes

L ¼ 1
3

0 0 0 0 0 0 0 0 0 0 0 0
0 8 �4 �4 0 0 4 4 �2 �2 �2 �2
0 �4 8 �4 0 0 �2 �2 4 4 �2 �2
0 �4 �4 8 0 0 �2 �2 �2 �2 4 4
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 4 �2 �2 0 0 2 2 �1 �1 �1 �1
0 4 �2 �2 0 0 2 2 �1 �1 �1 �1
0 �2 4 �2 0 0 �1 �1 2 2 �1 �1
0 �2 4 �2 0 0 �1 �1 2 2 �1 �1
0 �2 �2 4 0 0 �1 �1 �1 �1 2 2
0 �2 �2 4 0 0 �1 �1 �1 1 2 2

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

: (14:88)
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This can be written as the difference

L ¼ 1
3

0 0 0 0 0 0 0 0 0 0 0 0

0 12 0 0 0 0 6 6 0 0 0 0

0 0 12 0 0 0 0 0 6 6 0 0

0 0 0 12 0 0 0 0 0 0 6 6

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 6 0 0 0 0 3 3 0 0 0 0

0 6 0 0 0 0 3 3 0 0 0 0

0 0 6 0 0 0 0 0 3 3 0 0

0 0 6 0 0 0 0 0 3 3 0 0

0 0 0 6 0 0 0 0 0 0 3 3

0 0 0 6 0 0 0 0 0 0 3 3

0
BBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCA

� 1
3

0 0 0 0 0 0 0 0 0 0 0 0

0 4 4 4 0 0 2 2 2 2 2 2

0 4 4 4 0 0 2 2 2 2 2 2

0 4 4 4 0 0 2 2 2 2 2 2

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 2 2 2 0 0 1 1 1 1 1 1

0 2 2 2 0 0 1 1 1 1 1 1

0 2 2 2 0 0 1 1 1 1 1 1

0 2 2 2 0 0 1 1 1 1 1 1

0 2 2 2 0 0 1 1 1 1 1 1

0 2 2 2 0 0 1 1 1 1 1 1

0
BBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCA

¼ 1
3

0 00 00 00

0 A11 O A12

0 O O O

0 A21 O A22

0
BBB@

1
CCCA�

1
3

0 00 00 00

0 B11 O B12

0 O O O

0 B21 O B22

0
BBB@

1
CCCA, (14:89)

where A11 ¼ 12I3, B11 ¼ 4j3j03, B12 ¼ 2j3j06, B21 ¼ 2j6j03, B22 ¼ j6j06,

A12 ¼
6j02 00 00

00 6j02 00

00 00 6j02

0
B@

1
CA, A21 ¼

6j2 0 0

0 6j2 0

0 0 6j2

0
B@

1
CA,
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A22 ¼
3j2j02 O O

O 3j2j02 O

O O 3j2j02

0
B@

1
CA:

If we write b in (14.4) in the form

b ¼ (m, a0, b1, b2, g 0)0,

where a 0 ¼ (a1, a2, a3) and g 0 ¼ (g11, g12, g21, g22, g31, g32), then b0Lb in
(14.87) becomes

b 0Lb ¼ 1
3a
0A11aþ 1

3a
0A12gþ 1

3g
0A21aþ 1

3g
0A22g� 1

3a
0B11a

� 1
3a
0B12g� 1

3g
0B21a� 1

3 g
0B22g:

Since A 021 ¼ A12 and B 021 ¼ B12, this reduces to

b 0Lb ¼ 1
3a
0A11aþ 2

3a
0A12gþ 1

3g
0A22g� 1

3a
0B11a

� 2
3a
0B12g� 1

3g
0B22g:

If we partition g as g 0 ¼ (g 01, g 02, g 03), where g 0i ¼ (gi1,gi2), then

2
3a
0A12g ¼ 12

3 a 0
j 02 0 0 0 0

0 0 j 02 0 0

0 0 0 0 j 02

0
B@

1
CA

g1

g2

g3

0
B@

1
CA

¼ 4a 0
j 02g1

j 02g2

j 02g3

0
B@

1
CA ¼ 4

X3

i¼1

aigi::

Now, using the definitions of A11, A22, B11, B12, and B22 following (14.89), we
obtain

b 0Lb ¼ 4a 0aþ 4
X3

i¼1

aigi: þ
X3

i¼1

g 0i j2j 02gi � 4
3a
0j3j 03a

� 4
3 a
0j3j 06g� 1

3 g
0j6j 06g

¼ 4
X3

i¼1

a2
i þ 4

X3

i¼1

aigi: þ
X3

i¼1

g2
i: � 4

3a
2
: � 4

3 a:g:: � 1
3 g

2
:: : (14:90)
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By expressing gi:, a:, and g:: in terms of means, (14.90) can be written in the form

b 0Lb ¼ 4
X3

i¼1

(ai � �a: þ �gi: � �g::)
2 ¼ 4

X3

i¼1

a�2i [by (14:16)]: (14:91)

For an alternative approach leading to (14.91), note that since E(Cb̂) ¼ Cb,
(14.86) can be written as

E[SS(ajm, b, g)] ¼ 2s 2 þ [E(Cb̂)] 0[C(X 0X)�C 0]�1E(Cb̂): (14:92)

By (14.75), SS(ajm,b, g) ¼ SSH ¼ (Cb̂) 0[C(X 0X)�C 0]�1Cb̂. Thus, by (14.92), we

can obtain E[SS(ajm, b, g)] by replacing Cb̂ in SS(ajm, b, g) with Cb and adding
2s 2. To illustrate, we replace �yi:: and �y... with E(�yi::) and E(�y...) in

SS(ajm, b, g) ¼ 4
P3

i¼1 (�yi:: � �y...)
2 in (14.69). We first find E(�yi::):

E(�yi::) ¼ E
�

1
4

X
jk

yijk

	
¼ 1

4

X
jk

E(yijk)

¼ 1
4

X
jk

E(mþ ai þ bj þ gij þ 1ijk)

¼ 1
4

X
jk

(mþ ai þ bj þ gij)

¼ 1
4

�
4mþ 4ai þ 2

X
j

bj þ 2
X

j

gij

	

¼ mþ ai þ �b: þ �gi:: (14:93)

Similarly

E(�y...) ¼ mþ �a: þ �b: þ �g::: (14:94)

Then,

E[SS(ajm, b, g)] ¼ 2s 2 þ 4
X3

i¼1

[E(�yi::)� E(�y...)]
2

¼ 2s 2 þ 4
X

i

(mþ ai þ �b: þ �gi: � m� �a: � �b: þ �g::)
2

¼ 2s 2 þ 4
X

i

(ai � �a: þ �gi: � �g::)
2

¼ 2s 2 þ 4
X

i

a�2i [by (14:16)]:
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PROBLEMS

14.1 Obtain u1 and u5 in (14.7) from (14.6).

14.2 In a comment following (14.8), it is noted that there are no estimable con-
trasts in the a’s alone or b’s alone. Verify this statement.

14.3 Show that 1
3 (u3 þ u 03 þ u 003 ) has the value shown in (14.11).

14.4 Verify the following results in (14.15) using the definitions of a�i , b�j , and g�ij
in (14.14):

(a)
P

i a
�
i ¼ 0

(b)
P

j b
�
j ¼ 0

(c)
P

i g
�
ij ¼ 0, j ¼ 1, 2, . . . , b

(d)
P

j g
�
ij ¼ 0, i ¼ 1, 2, . . . , a

14.5 Verify the following results from (14.15) using the definitions of a�i , b�j , and
g�ij in (14.16), (14.17), and (14.18):

(a)
P

i a
�
i ¼ 0

(b)
P

j b
�
j ¼ 0

(c)
P

i g
�
ij ¼ 0, j ¼ 1, 2, . . . , b

(d)
P

j g
�
ij ¼ 0, i ¼ 1, 2, . . . , a

14.6 (a) Show that b�j ¼ bj � �b: þ �g:j � �g:: as in (14.17).

(b) Show that g�ij ¼ gij � �gi: � �g:j þ �g:: as in (14.18).

14.7 Show that âi and ĝij in (14.21) are unbiased estimators of a�i and g�ij as noted
following (14.21).

14.8 (a) Show that �y11: þ �y12: ¼ 2�y1:: and that �y21: þ �y22: ¼ 2�y2::, as used to obtain
(14.22).

(b) Show that â1 � â2 þ 1
2 (ĝ11 þ ĝ12)� 1

2 (ĝ21 þ ĝ22) ¼ �y1:: � �y2:: as in
(14.22).

14.9 Show that (X 0X)� in (14.23) is a generalized inverse of X0X in (14.5).

14.10 Show that SSE in (14.26) is equal to SSE in (14.25).

14.11 Show that the second equality in (14.34) is equivalent to the second equality
in (14.35); that is, m21 � m22 ¼ m31 � m32 implies g21 � g22�
g31 þ g32 ¼ 0.

14.12 Show that
P

i (�yi:: � �y...)yi:: ¼
P

i y2
i::=bn� y2

...=abn and
that

P
ij (�yij: � �yi:: � �y:j: þ �y...)yij: ¼

P
ij y2

ij:=n�
P

i y2
i::=bn�

P
j y2
:j:=anþ

y2
...=abn, as in (14.40).

14.13 (a) In a comment following (14.41), it was noted that the use of b̂ from
(14.24) would produce the same result as in (14.41), namely,

b̂ 0X 0y ¼
P

ij y2
ij:=n. Verify this.
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(b) Show that SSE ¼
P

ijk y2
ijk � n

P
ij �y

2
ij: in (14.25) is equal to

SSE ¼
P

ijk y2
ijk �

P
ij y2

ij:=n in (14.46).

14.14 Show that (a� 1)(b� 1) is the number of independent g�ij terms in H0: g�ij ¼
0 for i ¼ 1, 2, . . . , a and j ¼ 1, 2, . . . , b, as noted near the end of Section
14.4.1.2.

14.15 Show that SS(gjm,a,b) ¼ n
P

ijk (�yij: � �yi:: � �y:j: þ �y...)
2 in (14.47) is the

same as SS(gjm,a,b) in (14.45).

14.16 Show that SSE ¼
P

ijk (yijk � �yij:)
2 in (14.48) is equal to

SSE ¼
P

ijk y2
ijk �

P
ij y2

ij:=n in (14.46).

14.17 Using X0X in (14.5) and (X 0X)� in (14.23), show that X(X 0X)�X 0 has the
form given in (14.50).

14.18 (a) Show that (X 01X1)� in (14.53) is a generalized inverse of X 01X1 in (14.42).

(b) Show that X1(X 01X1)�X 01 has the form given by (14.54).

14.19 Show that 1
6

P2
j¼1 y2

:j: can be written in the matrix form given in (14.59).

14.20 Show that 1
2 A� 1

4 B� 1
6 Cþ 1

12 D has the value shown in (14.61).

14.21 Show that H0: a�1 ¼ a�2 ¼ a�3 in (14.63) is equivalent to
H0: a�1 ¼ a�2 ¼ a�3 ¼ 0 in (14.64).

14.22 Obtain SS(m,a, g) and show that SS(bjm,a, g) ¼
Pb

j¼1 y2
:j:=bn� y2

...=abn as
in (14.68).

14.23 Prove Theorem 14.4b for the special case a ¼ 3, b ¼ 2, and n ¼ 2.

14.24 (a) Using C in (14.74), (X 0X)� in (14.23), and X in (14.4), show that
C(X 0X)�X 0 is the 2� 12 matrix given in (14.77).

(b) Using C in (14.74) and (X 0X)� in (14.23), show that C(X 0X)�C 0 is the
2� 2 matrix shown in (14.78).

(c) Show that the matrix A ¼ X(X 0X)�C 0[C(X 0X)�C 0]�1C(X 0X)�X 0 has
the form shown in (14.79).

14.25 For the B main effect, formulate a hypothesis H0: Cb ¼ 0 and obtain
SS(bjm,a, g) using SSH in (14.75).

14.26 Using assumptions 1, 2, and 3 in Section 14.1, show that E(12
ijk) ¼ s 2 for all

i, j, k and E(1ijk1rst) ¼ 0 for (i, j, k) = (r, s, t), as in (14.82) and (14.82).

14.27 Show that E(
Pa

i¼1 y2
i::) ¼ ab2n2m�2 þ b2n2Pa

i¼1 a
�2
i þ abns 2 as in (14.84).

14.28 (a) Show that E(
Pb

j¼1 y2
:j:) ¼ a2bn2m�2 þ a2n2

Pb
j¼1 b

�2
j þ abns 2.

(b) Show that E(
P

ij y2
ij:) ¼ abn2m�2 þ bn2

P
i a
�2
i þ an2

P
j b
�2
j þ

n2P
ij g
�2
ij þ abns 2.

(c) Show that E[SS(bjm,a, g)=(b� 1)] ¼ s 2 þ an
P

j b
�2
j =(b� 1).

(d) Show that E[SS(gjm,a,b)=(a� 1)(b� 1)] ¼ s 2þ
n
P

ij g
�2
ij =(a� 1)(b� 1).
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14.29 Using C in (14.74) and (X 0X)� in (14.23), show that
L ¼ C 0[C(X 0X)�C 0]�1C has the form shown in (14.88).

14.30 Expand
P3

i¼1 (ai � �a: þ �gi: � �g::)
2 in (14.91) to obtain (14.90).

14.31 (a) Show that E(�y...) ¼ mþ �a: þ �b: þ �g:: as in (14.94).

(b) Show that E(�y:j:) ¼ mþ �a: þ bj þ �g:j:.

(c) Show that E(�yij:) ¼ mþ ai þ bj þ gij.

14.32 Obtain the following expected values using the method suggested by (14.92)
and illustrated at the end of Section 14.5.2. Use the results of Problem
14.31b, c.

(a) E[SS(bjm,a, g)] ¼ s 2 þ 6
P

j b
�2
j

(b) E[SS(gjm,a,b)] ¼ 2s 2 þ 2
P

ij g
�2
ij

TABLE 14.6 Lactic Acida at Five Successive Time Periods for
Fresh and Wilted Alfalfa Silage

Period

Condition 1 2 3 4 5

Fresh 13.4 37.5 65.2 60.8 37.7
16.0 42.7 54.9 57.1 49.2

Wilted 14.4 29.3 36.4 39.1 39.4
20.0 34.5 39.7 38.7 39.7

aIn mg/g of silage.

TABLE 14.7 Hemoglobin Concentration (g/mL) in Blood of Brown Trouta

Rate: 1 2 3 4

Method: A B A B A B A B

6.7 7.0 9.9 9.9 10.4 9.9 9.3 11.0
7.8 7.8 8.4 9.6 8.1 9.6 9.3 9.3
5.5 6.8 10.4 10.2 10.6 10.4 7.8 11.0
8.4 7.0 9.3 10.4 8.7 10.4 7.8 9.0
7.0 7.5 10.7 11.3 10.7 11.3 9.3 8.4
7.8 6.5 11.9 9.1 9.1 10.9 10.2 8.4
8.6 5.8 7.1 9.0 8.8 8.0 8.7 6.8
7.4 7.1 6.4 10.6 8.1 10.2 8.6 7.2
5.8 6.5 8.6 11.7 7.8 6.1 9.3 8.1
7.0 5.5 10.6 9.6 8.0 10.7 7.2 11.0

aAfter 35 days of treatment at the daily rates of 0, 5, 10, and 15g of sulfamerazine per 100 lb of fish
employing two methods for each rate.
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14.33 A preservative was added to fresh and wilted alfalfa silage (Snedecor 1948).
The lactic acid concentration was measured at five periods after ensiling
began. There were two replications. The results are given in Table 14.6.
Let factor A be condition (fresh or wilted) and factor B be period. Test for
main effects and interactions.

14.34 Gutsell (1951) measured hemoglobin in the blood of brown trout after treat-
ment with four rates of sulfamerazine. Two methods of administering the sul-
famerazine were used. Ten fish were measured for each rate and each method.
The data are given in Table 14.7. Test for effect of rate and method and
interaction.
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15 Analysis-of-Variance: The
Cell Means Model for
Unbalanced Data

15.1 INTRODUCTION

The theory of linear models for ANOVA applications was developed in Chapter 12.
Although all the examples used in that and the following chapters have involved
balanced data (where the number of observations is equal from one cell to
another), the theory also applies to unbalanced data.

Chapters 13 and 14 show that simple and intuitive results are obtained when the
theory is applied to balanced ANOVA situations. Intuitive marginal means are
informative in analysis of the data [e.g., see (14.69) and (14.70)]. When applied to
unbalanced data, however, the general results of Chapter 12 do not simplify to intui-
tive formulas. Even worse, the intuitive marginal means one is tempted to use can be
misleading and sometimes paradoxical. This is especially true for two-way or higher-
way data. As an example, consider the unbalanced two-way data in Figure 15.1. The
data follow the two-way additive model (Section 12.1.2) with no error

yij ¼ mþ ai þ bj, i ¼ 1, 2, j ¼ 1, 2,

where m ¼ 25, a1 ¼ 0, a2 ¼ 220, b1 ¼ 0, b2 ¼ 5. Simple marginal means of the
data are given to the right and below the box.

The true effects of factors A and B are, respectively, a22a1 ¼ 220 and b2 2

b1 ¼ 5. Even for error-free unbalanced data, however, naive estimates of these
effects based on the simple marginal means are highly misleading. The effect of
factor A appears to be 8.75 2 25.125 ¼ 216.375, and even more surprisingly the
effect of factor B appears to be 15 2 20 ¼ 25.

Still other complications arise in the analysis of unbalanced data. For example, it
was mentioned in Section 14.4.2.1 that many texts discourage testing for main effects
in the presence of interactions. But little harm or controversy results from doing so
when the data are balanced. The numerators for the main effect F tests are exactly

Linear Models in Statistics, Second Edition, by Alvin C. Rencher and G. Bruce Schaalje
Copyright # 2008 John Wiley & Sons, Inc.
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the same whether the model with or without interactions is being entertained as the
full model. Such is not the case for unbalanced data. The numerator sums of
squares in these F tests depend greatly on which model is used as the full model,
and, obviously, conclusions can be affected. Several types of sums of squares
[usually types I, II, and III; see Milliken and Johnson (1984, pp. 138–158)] have
been suggested to help clarify this issue.

The issues involved in choosing the appropriate full model for a test are subtle and
often confusing. The use of different full models results in different weightings in the
sums of squares calculations and expected mean squares. But some of the same
weightings also arise for other reasons. For example, the weights might arise
because the data are based on “probability proportional to size” (pps) sampling of
populations (Cochran 1977, pp. 250–251).

Looking at this complex issue from different points of view has led to completely
contradictory conclusions. For example, Milliken and Johnson (1984, p. 158) wrote
that “in almost all cases, type III sums of squares will be preferred,” whereas Nelder
and Lane (1995) saw “no place for types III and IV sums of squares in making infer-
ences from the use of linear models.”

Further confusion regarding the analysis of unbalanced data has arisen from the
interaction of computing advances with statistical practice. Historically, several
different methods for unbalanced data analysis were developed as approximate
methods, suitable for the computing resources available at the time. Looking back,
however, we simply see a confusing array of alternative methods. Some such
methods include weighted squares of means (Yates 1934; Morrison 1983, pp. 407–
412), the method of unweighted means (Searle 1971; Winer 1971), the method of
fitting constants (Rao 1965, pp. 211–214; Searle 1971, p. 139; Snedecor and
Cochran 1967), and various methods of imputing data to make the dataset balanced
(Hartley 1956; Healy and Westmacott 1969; Little and Rubin 2002, pp. 28–30).

The overparameterized (non-full rank) model (Sections 12.2, 12.5, 13.1, and 14.1)
has some advantages in the analysis of unbalanced data, while the cell means
approach (Section 12.1.1) has other advantages. The non-full rank approach builds
the structure (additive two-way, full two-way, etc.) of the dataset into the model
from the start, but relies on the subtle concepts of estimability, testability, and

Figure 15.1 Hypotetical error-free data from an unbalanced two-way model.
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generalized inverses. The cell means model has the advantages of being a full-rank
model, but the structure of the dataset is not an explicit part of the model.
Whichever model is used, hard questions about the exact hypotheses of interest
have to be faced. Many of the complexities are a matter of statistical practice rather
than mathematical statistics.

The most extreme form of imbalance is that in which one or more of the cells have
no observations. In this “empty cells” situation, even the cell means model is an over-
parameterized model. Nonetheless, the cell means approach allows one to deal
specifically with nonestimability problems arising from the empty cells. Such an
approach is almost impossible using the overparameterized approach.

In the remainder of this chapter we discuss the analysis of unbalanced data using
the cell means model. Unbalanced one-way and two-way models are covered in
Sections 15.2 and 15.3. In Section 15.4 we discuss the empty-cell situation.

15.2 ONE-WAY MODEL

The non-full-rank and cell means versions of the one-way unbalanced model are

yij ¼ mþ ai þ 1ij (15:1)

¼ mi þ 1ij, (15:2)

i ¼ 1, 2, . . . , k, j ¼ 1, 2, . . . , ni:

For making inferences, we assume the 1ij’s are independently distributed as N(0, s2).

15.2.1 Estimation and Testing

To estimate the mi’s, we begin by writing the N ¼
P

i ni observations for the model
(15.2) in the form

y ¼Wmþ 1, (15:3)

where

W ¼

1 0 � � � 0

..

. ..
. ..

.

1 0 � � � 0
0 1 � � � 0

..

. ..
. ..

.

0 1 � � � 0

..

. ..
. ..

.

0 0 1

..

. ..
. ..

.

0 0 � � � 1

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

, m ¼

m1
m2

..

.

mk

0
BBB@

1
CCCA:
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The normal equations are given by

W0Wm̂ ¼W0y,

where W0W ¼ diag(n1, n2, . . . , nk) and W0y ¼ (y1:, y2:, . . . , yk:)0, with yi: ¼Pni
j¼1 yij:. Since the matrix W is full rank, we have, by (7.6)

m̂ ¼ ðW0WÞ�1W0y ð15:4Þ

¼ �y ¼

�y1:

�y2:

..

.

�yk:

0
BBBB@

1
CCCCA

, (15:5)

where �yi: ¼
Pni

j¼1 yij=ni.
To test H0 : m1 ¼ m2 ¼ � � � ¼ mk, we compare the full model in (15.2) and (15.3)

with the reduced model yij ¼ mþ 1�ij, where m is the common value of m1, m2, . . . ,mk

under H0. (We do not use the notation m� in the reduced model because there is no m

in the full model yij ¼ mi þ 1ij.) In matrix form, the N observations in the reduced
model become y ¼ mjþ 1�, where j is N � 1. For the full model, we have SS(m1,
m2, . . . , mk) ¼ m̂0W0y, and for the reduced model, we have SS(m) ¼ m̂j0y ¼ N�y2

::,
where N ¼

P
i ni and �y:: ¼

P
ij yij=N. The difference SS(m1, m2, . . . , mk)� SS(m)

is equal to the regression sum of squares SSR in (8.6), which we denote by SSB
for “between” sum of squares

SSB ¼ m̂0W0y� N�y2
:: ¼

Xk

i¼1

�yi:yi: � N�y2
:: (15:6)

¼
Xk

i¼1

y2
i:

ni
� y2

::

N
, (15:7)

where y:: ¼
P

ij yij and �y:: ¼ y::=N. From (15.7), we see that SSB has k 2 1 degrees
of freedom. The error sum of squares is given by (7.24) or (8.6) as

SSE ¼ y0y� m̂0W0y

¼
Xk

i¼1

Xni

j¼1

y2
ij �

Xk

i¼1

y2
i:

ni
, (15:8)

which has N 2 k degrees of freedom. These sums of squares are summarized in
Table 15.1.
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The sums of squares SSB and SSE in Table 15.1 can also be written in the form

SSB ¼
Xk

i¼1

ni(�yi: � �y::)
2, (15:9)

SSE ¼
Xk

i¼1

Xni

j¼1

(yij � �yi:)
2: (15:10)

If we assume that the yij’s are independently distributed as N(mi, s
2), then by

Theorem 8.1d, an F statistic for testing H0: m1 ¼ m2 ¼ � � � ¼ mk is given by

F ¼ SSB=(k � 1)
SSE=(N � k)

: (15:11)

If H0 is true, F is distributed as F(k 2 1, N 2 k).

Example 15.2.1. A sample from the output of five filling machines is given in
Table 15.2 (Ostle and Mensing 1975, p. 359).

The analysis of variance is given in Table 15.3. The F is calculated by
(15.11). There is no significant difference in the average weights filled by the five
machines. A

15.2.2 Contrasts

A contrast in the population means is defined as d ¼ c1m1 þ c2m2 þ � � � þ ckmk,

where
Pk

i¼1 ci ¼ 0. The contrast can be expressed as d ¼ c0m, where

TABLE 15.1 One-Way Unbalanced ANOVA

Source Sum of Squares df

Between SSB ¼
P

i y2
i:=ni � y2

::=N k21
Error SSE ¼

P
ij y2

ij �
P

i y2
i:=ni N2k

Total SST ¼
P

ij y2
ij � y2

::=N N21

TABLE 15.2 Net Weight of Cans Filled by Five
Machines (A–E)

A B C D E

11.95 12.18 12.16 12.25 12.10
12.00 12.11 12.15 12.30 12.04
12.25 12.08 12.10 12.02
12.10 12.02
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SST ¼
P

ij y2
ij � y2

::=N and m ¼ (m1, m2, . . . ,mk)0. The best linear unbiased estimator

of d is given by d̂ ¼ c1�y1: þ c2�y2: þ � � � þ ck�yk: ¼ c0m̂ [see (15.5) and Corollary 1

to Theorem 7.3d]. By (3.42), var(d̂) ¼ s2c0(W0W)�1c, which can be written as

var(d̂) ¼ s2Pk
i¼1 c2

i =ni, since W0W ¼ diag(n1, n2, . . . , nk). By (8.38), the F statistic
for testing H0: d ¼ 0 is

F ¼
(c0m̂)0 c0(W0W)�1c

� ��1
c0m̂

s2
, (15:12)

¼
Pk

i¼1 ci�yi:

� �2
=
�Pk

i¼1 c2
i =ni

�

s2
, (15:13)

where s2 ¼ SSE/(N 2 k) with SSE given by (15.8) or (15.10). We refer to the numera-
tor of (15.13) as the sum of squares for the contrast. If H0 is true, the F statistic in
(15.12) or (15.13) is distributed as F(1, N 2 k), and we reject H0: d ¼ 0 if
F � Fa, 1, N�k or if p � a, where p is the p value.

Two contrasts, say, d̂ ¼
Pk

i¼1 ai�yi: and ĝ ¼
Pk

i¼1 bi�yi:, are said to be orthogonal

if
Pk

i¼1 aibi ¼ 0: However, in the case of unbalanced data, two orthogonal
contrasts of this type are not independent, as they were in the balanced case
(Theorem 13.6a).

Theorem 15.2. If the yij’s are independently distributed as N(mi, s 2) in the unba-

lanced model (15.2), then two contrasts d̂ ¼
Pk

i¼1 ai�yi: and ĝ ¼
Pk

i¼1 bi�yi: are inde-

pendent if and only if
Pk

i¼1 aibi=ni ¼ 0:

PROOF. We express the two contrasts in vector notation as d̂ ¼ a0�y and ĝ ¼ b0�y,
where �y ¼ (�y1:, �y2:, . . . , �yk:)

0. By (7.14), we obtain

cov(�y) ¼ s 2(W0W)�1 ¼ s 2

1=n1 0 . . . 0
0 1=n2 . . . 0

..

. ..
. ..

.

0 0 . . . 1=nk

0
BBB@

1
CCCA ¼ s 2D:

TABLE 15.3 ANOVA for the Fill Data in Table 15.2

Source df
Sum of
Squares

Mean
Square F

p
Value

Between 4 .05943 .01486 1.9291 .176
Error 11 .08472 .00770

Total 15 .14414
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Then by (3.43), we have

cov(d̂, ĝ) ¼ cov(a0�y, b0�y) ¼ a0cov(�y)b ¼ s 2a0Db

¼ s 2
Xk

i¼1

aibi

ni
: (15:14)

Hence, by Theorem 4.4c, d̂ and ĝ are independent if and only if
P

iaibi/ni ¼ 0. A

We refer to contrasts whose coefficients satisfy
P

i aibi/ni ¼ 0 as weighted orthog-
onal contrasts. If we define k 2 1 contrasts of this type, they partition the treatment
sum of squares SSB into k 2 1 independent sums of squares, each with 1 degree of
freedom. Unweighted orthogonal contrasts that satisfy only

P
i aibi ¼ 0 are not inde-

pendent (see Theorem 15.2), and their sums of squares do not add up to the treatment
sum of squares (as they do for balanced data; see Theorem 13.6a).

In practice, weighted orthogonal contrasts are often of less interest than
unweighted orthogonal contrasts because we may not wish to choose the ai’s and
bi’s on the basis of the ni’s in the sample. The ni’s seldom reflect population charac-
teristics that we wish to take into account. However, it is not necessary that the sums
of squares be independent in order to proceed with the tests. If we use unweighted
orthogonal contrasts with

P
i aibi ¼ 0, the general linear hypothesis test based

on (15.12) or (15.13) tests each contrast adjusted for the other contrasts (see
Theorem 8.4d).

Example 15.2.2a. Suppose that we wish to compare the means of three treatments
and that the coefficients of the orthogonal contrasts d ¼ a0m and g ¼ b0m are
given by a0 ¼ (2� 1� 1) and b0 ¼ (0 1�1) with corresponding hypotheses

H01 : m1 ¼
1
2

(m2 þ m3), H02 : m2 ¼ m3:

If the sample sizes for the three treatments are, for example, n1 ¼ 10, n2 ¼ 20, and
n3 ¼ 5, then the two estimated contrasts

d̂ ¼ 2�y1: � �y2: � �y3: and ĝ ¼ �y2: � �y3:

are not independent, and the corresponding sums of squares do not add to the treat-
ment sum of squares.

The following two vectors provide an example of contrasts whose coefficients
satisfy

P
i aibi=ni ¼ 0 for n1 ¼ 10, n2 ¼ 20, and n3 ¼ 5:

a0 ¼ (25� 20� 5) and b0 ¼ (0 1�1): (15:15)
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However, a0 leads to the comparison

H03 : 25m1 ¼ 20m2 þ 5m3 or H03 : m1 ¼
4
5
m2 þ

1
5
m3,

which is not the same as the hypothesis H01 : m1 ¼ 1
2 (m2 þ m3) that we were initially

interested in. A

Example 15.2.2b. We illustrate both weighted and unweighted contrasts for the fill
data in Table 15.2. Suppose that we wish to make the following comparisons of the
five machines:

A, D versus B, C, E
B, E versus D

A versus D
B versus E

Orthogonal (unweighted) contrast coefficients that provide these comparisons are
given as rows of the following matrix:

3 �2 �2 3 �2
0 1 �2 0 1
1 0 0 �1 0
0 1 0 0 �1

0
BB@

1
CCA:

We give the sums of squares for these four contrasts and the F values [see (15.13)] in
Table 15.4.

Since these are unweighted contrasts, the contrast sums of squares do not add up
to the between sum of squares in Table 15.3. None of the p values is less than .05,
so we do not reject H0:

P
i cimi ¼ 0 for any of the four contrasts. In fact, the p

values should be less than .05/4 for familywise significance (see the Bonferroni
approach in Section 8.5.2), since the overall test in Table 15.3 did not reject
H0 : m1 ¼ m2 � � � ¼ m5.

TABLE 15.4 Sums of Squares and F Values for
Contrasts for the Fill Data in Table 15.2

Contrast df
Contrast

SS F
p

Value

A, D versus B, C, E 1 .005763 0.75 .406
B, E versus C 1 .002352 0.31 .592
A versus D 1 .034405 4.47 .0582
B versus E 1 .013333 1.73 .215
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As an example of two weighted orthogonal contrasts that satisfy
P

iaibi/ni, we
keep the first contrast above and replace the second contrast with (0 2 �6 0 4).
Then, for these two contrasts, we have

X
i

aibi

ni
¼ 3(0)

4
� 2(2)

2
� 2(�6)

3
þ 3(0)

3
� 2(4)

4
¼ 0:

The sums of squares and F values [using (15.13)] for the two contrasts are as
follows:

Contrast df Contrast
SS

F p Value

A, D versus B, C, E 1 .005763 .75 .406
B, E versus C 1 .005339 .69 .423

A

15.3 TWO-WAY MODEL

The unbalanced two-way model can be expressed as

yijk ¼ mþ ai þ bj þ gij þ 1ijk (15:16)

¼ mij þ 1ijk , (15:17)

i ¼ 1, 2, . . . , a, j ¼ 1, 2, . . . , b, k ¼ 1, 2, . . . , nij:

The 1ijk’s are assumed to be independently distributed as N(0, s2). In this section we
consider the case in which all nij . 0.

The cell means model for analyzing unbalanced two-way data was first proposed
by Yates (1934). The cell means model has been advocated by Speed (1969),
Urquhart et al. (1973), Nelder (1974), Hocking and Speed (1975), Bryce (1975),
Bryce et al. (1976, 1980b), Searle (1977), Speed et al. (1978), Searle et al. (1981),
Milliken and Johnson (1984, Chapter 11), and Hocking (1985, 1996). Turner
(1990) discusses the relationship between (15.16) and (15.17). In our development
we follow Bryce et al. (1980b) and Hocking (1985, 1996).

15.3.1 Unconstrained Model

We first consider the unconstrained model in which the mij’s are unrestricted. To
accommodate a no-interaction model, for example, we must place constraints on
the mij’s. The constrained model is discussed in Section.

To illustrate the cell means model (15.17), we use a ¼ 2 and b ¼ 3 with the cell
counts nij given in Figure 15.2. This example with N ¼

P
ij nij ¼ 11 will be referred

to throughout the present section and Section 15.3.2.
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For each of the 11 observations in Figure 15.2, the model yijk ¼ mij þ 1ijk is

y111 ¼ m11 þ 1111

y112 ¼ m11 þ 1112

y121 ¼ m12 þ 1121

..

.

y231 ¼ m23 þ 1231

y232 ¼ m23 þ 1232,

or in matrix form

y ¼Wmþ 1, (15:18)

where

y ¼

y111

y112

..

.

y232

0
BBB@

1
CCCA, w ¼

1 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0

..

. ..
. ..

. ..
. ..

. ..
.

0 0 0 0 0 1
0 0 0 0 0 1

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

,

m ¼

m11
m12
m13
m21
m22
m23

0
BBBBBB@

1
CCCCCCA

, 1 ¼

1111

1112

..

.

1232

0
BBB@

1
CCCA:

Each row of W contains a single 1 that corresponds to the appropriate mij in m. For
example, the fourth row gives y131 ¼ (001000)mþ 1131 ¼ m13 þ 1131. In this illus-
tration, y and 1 are 11�1, and W is 11�6. In general, y and 1 are N�1, and
W is N�ab, where N ¼

P
ij nij.

Figure 15.2 Cell counts for unbalanced data illustration.
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Since W is full-rank, we can use the results in Chapters 7 and 8. The analysis is
further simplified because W0W ¼ diag(n11, n12, n13, n21, n22, n23). By (7.6), the
least-squares estimator of m is given by

m̂ ¼ (W0W)�1W0y ¼ �y, (15:19)

where �y ¼ (�y12:, �y13:, �y14:, �y21:, �y22:, �y23:)
0 contains the sample means of the cells,

�yij: ¼
P

k yijk=nij. By (7.14), the covariance matrix for m̂ is

cov(m̂) ¼ s 2(W0W)�1 ¼ s 2diag
1

n11
,

1
n12

, � � � , 1
n23

� �
(15:20)

¼ diag
s 2

n11
,
s 2

n12
, � � � , s 2

n23

� �
:

For general a, b, and N, an unbiased estimator of s2 [see (7.23)] is given by

s2 ¼ SSE
nE
¼ (y�Wm̂)0(y�Wm̂)

N � ab
, (15:21)

where nE ¼
Pa

i¼1

Pb
j¼1 (nij � 1) ¼ N � ab, with N ¼

P
ij nij. In our illustration with

a ¼ 2 and b ¼ 3, we have N 2 ab ¼ 11 2 6 ¼ 5. Two alternative forms of SSE are

SSE ¼ y0[I�W(W0W)�1W0]y [see (7:26)], (15:22)

SSE ¼
Xa

i¼1

Xb

j¼1

Xnij

k¼1

(yijk � �yij:)
2 [see (14:48)]: (15:23)

Using (15.23), we can express s2 as the pooled estimator

s2¼
Pa

i¼1

Pb
j¼1 (nij � 1)s2

ij

N � ab
, (15:24)

where s2
ij is the variance estimator in the (ij)th cell, s2

ij ¼
Pnij

k¼1 (yijk � �yij:)
2=(nij � 1).

The overparameterized model (15.16) includes parameters representing main
effects and interactions, but the cell means model (15.17) does not have such par-
ameters. To carry out tests in the cell means model, we use contrasts to express the
main effects and the interaction as functions of the mij’s in m. We begin with the
main effect of A.

In the vector m ¼ (m11, m12, m13, m21, m22, m23)0, the first three elements corre-
spond to the first level of A and the last three to the second level, as seen in
Figure 15.3. Thus, for the main effect of A, we could compare the average of m11,
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m12, and m13 with the average of m21, m22, and m23. The difference between these
averages (sums) can be conveniently expressed by the contrast

a0m ¼ m11 þ m12 þ m13 � m21 � m22 � m23,

¼ (1, 1, 1, �1, �1, �1)m:

To compare the two levels of A, we can test the hypothesis H0: a0m ¼ 0, which can
be written as H0 : (m11 � m21)þ (m12 � m22)þ (m13 � m23) ¼ 0. In this form, H0

states that the effect of A averaged (summed) over the levels of B is 0. This corre-
sponds to a common main effect definition in the presence of interaction; see com-
ments following (14.62). Note that this test is not useful in model selection. It
simply tests whether the interaction is “symmetric” such that the effect of A, averaged
over the levels of B, is zero.

Factor B has three levels corresponding to the three columns of Figure 15.3. In a
comparison of three levels, there are 2 degrees of freedom, which will require two con-
trasts. Suppose that we wish to compare the first level of B with the other two levels and
then compare the second level of B with the third. To do this, we compare the average
of the means in the first column of Figure 15.3 with the average in the second and third
columns and similarly compare the second and third columns. We can make these com-
parisons using H0 : b01m ¼ 0 and b02m ¼ 0, where b01m and b02m are the following two
orthogonal contrasts:

b01m ¼ 2(m11 þ m21)� (m12 þ m22)� (m13 þ m23) (15:25)

¼ 2m11 � m12 � m13 þ 2m21 � m22 � m23

¼ (2, �1, �1, 2, �1, �1)m,

b02m ¼ (m12 þ m22)� (m13 þ m23) (15:26)

¼ m12 � m13 þ m22 � m23

¼ (0, 1, �1, 0, 1, �1)m:

We can combine b1
0 and b2

0 into the matrix

B ¼ b01
b02

� �
¼ 2 �1 �1 2 �1 �1

0 1 �1 0 1 �1

� �
, (15:27)

Figure 15.3 Cell means corresponding to Figure 15.1.
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and the hypothesis becomes H0: Bm ¼ 0, which, by (15.25) and (15.26), is
equivalent to

H0 : m11 þ m21 ¼ m12 þ m22 ¼ m13 þ m23 (15:28)

(see Problem15.9). In this form, H0 states that the interaction is symmetric such that
the three levels of B do not differ when averaged over the two levels of A. Note that
other orthogonal or linearly independent contrasts besides those in b1

0 and b2
0 would

lead to (15.28) and to the same F statistic in (15.33) below.
By analogy to (14.30), the interaction hypothesis can be written as

H0: m11 � m21 ¼ m12 � m22 ¼ m13 � m23,

which is a comparison of the “A effects” across the levels of B. If these A effects
differ, we have an interaction. We can express the two equalities in H0 in terms of
orthogonal contrasts similar to those in (15.25) and (15.26):

c01m ¼ 2(m11 � m21)� (m12 � m22)� (m13 � m23) ¼ 0,

c02m ¼ (m12 � m22)� (m13 � m23) ¼ 0:

Thus H0 can be written as H0 : Cm ¼ 0, where

C ¼ c01
c02

� �
¼ 2 �1 �1 �2 1 1

0 1 �1 0 �1 1

� �
:

Note that c1 can be found by taking products of corresponding elements of a and b1

and c2 can be obtained similarly from a and b2, where a, b1, and b2 are the coefficient
vectors in a0m, b1

0m and b2
0m. Thus

c01 ¼ [(1)(2), (1)(�1), (1)(�1), (�1)(2), (�1)(�1), (�1)(�1)]

¼ (2, �1, �1, �2, 1, 1),

c02 ¼ [(1)(0), (1)(1), (1)(�1), (�1)(0), (�1)(1), (�1)(�1)]

¼ (0, 1, �1, 0, �1, 1):

The elementwise multiplication of these two vectors (the Hadamard product — see
Section 2.2.4) produces interaction contrasts that are orthogonal to each other and to
the main effect contrasts.

We now construct tests for the general linear hypotheses H0: a0m ¼ 0, H0: Bm ¼
0, and H0: Cm ¼ 0 for the main effects and interaction. The hypothesis H0: a0m ¼ 0
for the main effect of A, is easily tested using an F statistic similar to (8.38) or (15.12):

F ¼ (a0m̂)0[a0(W0W)�1a]�1(a0m̂)
s2

¼ SSA
SSE=nE

, (15:29)
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where s2 is given by (15.21) and nE ¼ N 2 ab. [For our illustration, N 2 ab ¼ 11 2

(2)(3) ¼ 5.]
If H0 is true, F in (15.29) is distributed as F(1, N 2 ab).

The F statistic in (15.29) can be written as

F ¼ (a0m̂)2

s2a0(W0W)�1a
(15:30)

¼
P

ij aij�yij:

� �2

s2
P

ij a2
ij=nij

, (15:31)

which is analogous to (15.13). Since t2(nE) ¼ F(1, nE) (see Problem 5.16), a t statistic
for testing H0: a0m ¼ 0 is given by the square root of (15.30)

t ¼ a0m̂

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0(W0W)�1a

p ¼ a0m̂� 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifficvar(a0m̂)
p , (15:32)

which is distributed as t(N 2 ab) when H0 is true. Note that the test based on either of
(15.29) or (15.32) is a full–reduced-model test (see Theorem 8.4d) and therefore tests
for factor A “above and beyond” (adjusted for) factor B and the interaction.

By Theorem 8.4b, a test statistic for the factor B main effect hypothesis H0: Bm¼0
is given by

F ¼ (Bm̂)0[B(W0W)�1B0]�1Bm̂=nB

SSE=nE
¼ SSB=nB

SSE=nE
, (15:33)

where nE ¼ N 2 ab and nB is the number of rows of B. (For our illustration, nE ¼ 5
and nB ¼ 2.) When H0 is true, F in (15.33) is distributed as F(nB, nE).

A test statistic for the interaction hypothesis H0: Cm ¼ 0 is obtained similarly:

F ¼ (Cm̂)0[C(W0W)�1C0]�1Cm̂=nAB

SSE=nE
¼ SSAB=nAB

SSE=nE
, (15:34)

which is distributed as F(nAB, nE), where nAB, the degrees of freedom for interaction,
is the number of rows of C. (In our illustration, nAB ¼ 2.)

Because of the unequal nij’S, the three sums of squares SSA, SSB, and SSAB do
not add to the overall sum of squares for treatments and are not statistically indepen-
dent, as in the balanced case [see (14.40) and Theorem 14.4b]. Each of SSA, SSB,
and SSAB is adjusted for the other effects; that is, the given effect is tested “above
and beyond” the others (see Theorem 8.4d).

Example 15.3a. Table 15.5 contains dressing percentages of pigs in a two-way
classification (Snedecor and Cochran 1967, p. 480). Let factor A be gender and
factor B be breed.
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We arrange the elements of the vector m to correspond to a row of Table 15.5, that is

m ¼ (m11, m12, m21, m22, . . . , m52)0,

where the first subscript represents breed and the second subscript is associated with
gender.

The vector m is 10 � 1, the matrix W is 75 � 10, the vector a is 10 � 1, and the
matrices B and C are each 4 � 10. We show a, B, and C:

a0 ¼ (1,�1, 1,�1, 1,�1, 1,�1, 1,�1),

B ¼

3 3 3 3 �2 �2 �2 �2 �2 �2

1 1 �1 �1 0 0 0 0 0 0

0 0 0 0 1 1 �2 �2 1 1

0 0 0 0 1 1 0 0 �1 �1

0
BBB@

1
CCCA,

C ¼

3 �3 3 �3 �2 2 �2 2 �2 2

1 �1 �1 1 0 0 0 0 0 0

0 0 0 0 1 �1 �2 2 1 �1

0 0 0 0 1 �1 0 0 �1 1

0
BBB@

1
CCCA:

TABLE 15.5 Dressing Percentages (Less 70%) of 75 Swine Classified
by Breed and Gender

Breed

1 2 3 4 5

Male Female Male Female Male Female Male Female Male Female

13.3 18.2 10.9 14.3 13.6 12.9 11.6 13.8 10.3 12.8
12.6 11.3 3.3 15.3 13.1 14.4 13.2 14.4 10.3 8.4
11.5 14.2 10.5 11.8 4.1 12.6 4.9 10.1 10.6
15.4 15.9 11.6 11.0 10.8 15.2 6.9 13.9
12.7 12.9 15.4 10.9 14.7 13.2 10.0
15.7 15.1 14.4 10.5 12.4 11.0
13.2 11.6 12.9 12.2
15.0 14.4 12.5 13.3
14.3 7.5 13.0 12.9
16.5 10.8 7.6 9.9
15.0 10.5 12.9
13.7 14.5

10.9
13.0
15.9
12.8
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(Note that other sets of othogonal contrasts could be used in B, and the value of FB

below would be the same.) By (15.19), we obtain

m̂ ¼ �y ¼ (14:08, 14:60, 11:75, 12:06, 10:40, 13:65, 13:28, 11:03, 11:01, 11:14)0:

By (15.22) or (15.23) we obtain SSE ¼ 425.08895, with nE ¼ 65. Using (15.29),
(15.33), and (15.34), we obtain

FA ¼ :30337, FB ¼ 3:47318, FC ¼ :95095:

The sums of squares leading to these Fs are given in Table 15.6. Note that the sums
of squares for A, B, AB, and error do not add up to the total sum of squares because
the data are unbalanced. (These are the type III sums of squares referred to in
Section 15.1.) A

15.3.2 Constrained Model

To allow for additivity or other restrictions, constraints on the mij’s must be added to
the cell means model (15.17) or (15.18). For example, the model

yijk ¼ mij þ 1ijk

cannot represent the no-interaction model

yijk ¼ mþ ai þ bj þ 1ijk (15:35)

unless we specify some relationships among the mij’s.
In our 2 � 3 illustration in Section 15.3.1, the two interaction contrasts are expres-

sible as

Cm ¼ 2 �1 �1 �2 1 1
0 1 �1 0 �1 1

� �
m:

If we wish to use a model without interaction, then Cm ¼ 0 is not a hypothesis to be
tested but an assumption to be included in the statement of the model.

TABLE 15.6 ANOVA for Unconstrained Model

Source df
Sum of
Squares

Mean
Square F

p
Value

A (gender) 1 1.984 1.984 0.303 .584
B (breed) 4 90.856 22.714 3.473 .0124
AB 4 24.876 6.219 0.951 .440
Error 65 425.089 6.540

Total 74 552.095
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In general, for constraints Gm ¼ 0, the model can be expressed as

y ¼Wmþ 1 subject to Gm ¼ 0: (15:36)

We now consider estimation and testing in this constrained model. [For the case
Gm ¼ h, where h = 0, see Bryce et al. (1980b).]

To incorporate the constraints Gm ¼ 0 into y ¼Wm þ 1, we can use the
Lagrange multiplier method (Section 2.14.3). Alternatively, we can reparameterize
the model using the matrix

A ¼ K
G

� �
, (15:37)

where K specifies parameters of interest in the constrained model. For the no-inter-
action model (15.35), for example, G would equal C, the first row of K could corre-
spond to a multiple of the overall mean, and the remaining rows of K could include
the contrasts for the A and B main effects. Thus, we would have

K ¼

1 1 1 1 1 1

1 1 1 �1 �1 �1

2 �1 �1 2 �1 �1

0 1 �1 0 1 �1

0
BBB@

1
CCCA,

G ¼ C ¼
2 �1 �1 �2 1 1

0 1 �1 0 �1 1

� �
:

The second row of K is a0 and corresponds to the average effect of A. The third and
fourth rows are from B and represent the average B effect.

If the rows of G are linearly independent of the rows of K, then the matrix A in
(15.37) is of full rank and has an inverse. This holds true in our example, in which
we have G ¼ C. In our example, in fact, the rows of G are orthogonal to the rows
of K. We can therefore insert A21A ¼ I into (15.36) to obtain the reparameterized
model

y ¼WA�1Amþ 1 subject to Gm ¼ 0
¼ Zdþ 1 subject to Gm ¼ 0,

(15:38)

where Z ¼W A21 and d ¼ Am.
In the balanced two-way model, we obtained a no-interaction model by simply

inserting gij
� ¼ 0 into yijk ¼ mþ a�i þ b�j þ g�ij þ 1ij [(see 14.37) and (14.38)]. To

analogously incorporate the constraint Gm ¼ 0 directly into the model in the
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unbalanced case, we partition d into

d ¼ Am ¼ K
G

� �
m ¼ Km

Gm

� �
¼ d1

d2

� �
:

With a corresponding partitioning on the columns of Z, the model can be written as

y ¼ Zdþ 1 ¼ (Z1, Z2)
d1

d2

� �
þ 1

¼ Z1d1 þ Z2d2 þ 1 subject to Gm ¼ 0: (15:39)

Since d2 ¼ Gm, the constraint Gm ¼ 0 gives d2 ¼ 0 and the constrained model in
(15.39) simplifies to

y ¼ Z1d1 þ 1: (15:40)

An estimator of d1 [see (7.6)] is given by

d̂1 ¼ (Z01Z1)�1Z01y:

To obtain an expression for m subject to the constraints, we multiply

Am ¼ d1

d2

� �
¼ d1

0

� �

by

A�1 ¼ (K�, G�):

If the rows of G are orthogonal to the rows of K, then

(K�, G�) ¼ [K0(KK0)�1, G0(GG0)�1] (15:41)

(see Problem15.13). If the rows of G are linearly independent of (but not necessarily
orthogonal to) the rows of K, we obtain

K� ¼ HGK0(KHGK0)�1, (15:42)

where

HG ¼ I�G0(GG0)�1G,

and G� is similarly defined (see Problem15.14). In any case, we denote the product of
K� and d1 by mc:

mc ¼ K�d1:

We estimate mc by

m̂c ¼ K�d̂1 ¼ K�(Z01Z1)�1Z01y, (15:43)
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which has covariance matrix

cov(m̂c) ¼ s2K�(Z01Z1)�1K�0: (15:44)

To test for factor B in the constrained model, the hypothesis is H0: Bmc ¼ 0. The
covariance matrix of Bm̂c is obtained from (3.44) and (15.44) as

cov(Bm̂c) ¼ s2BK�(Z01Z1)�1K�0B0:

Then, by Theorem 8.4b, the test statistic for H0: Bmc ¼ 0 in the constrained model
becomes

F ¼ (Bm̂c)0[BK�(Z01Z1)�1K�0B0]�1Bm̂c=nB

SSEc=nEc

, (15:45)

where SSEc (subject to Gm ¼ 0) is obtained using m̂c [from (15.43)] in (15.21). (In
our example, where G ¼ C for interaction, SSEc effectively pools SSE and SSAB
from the unconstrained model.) The degrees of freedom nEc is obtained as
nEc ¼ nE þ rank(G), where nE ¼ N � ab is for the unconstrained model, as
defined following (15.21). [In our example, rank(G) ¼ 2 since there are 2 degrees
of freedom for SSAB.] We reject H0: Bmc ¼ 0 if F � Fa,nB,nEc

, where Fa is the
upper a percentage point of the central F distribution.

For H0: a0mc ¼ 0, the F statistic becomes

F ¼ (a0m̂c)0[a0K�(Z01Z1)�1K�0a]�1(a0m̂c)
SSEc=nEc

, (15:46)

which is distributed as F(1, nEc ) if H0 is true.

Example 15.3b. For the pigs data in Table 15.5, we test for factors A and B in a no-
interaction model, where factor A is gender and factor B is breed. The matrix G is the
same as C in Example 15.3a. For K we have

K ¼
j0

a0

B

0
@

1
A ¼

1 1 1 1 1 1 1 1 1 1
1 �1 1 �1 1 �1 1 �1 1 �1
3 3 3 3 �2 �2 �2 �2 �2 �2
1 1 �1 �1 0 0 0 0 0 0
0 0 0 0 1 1 �2 �2 1 1
0 0 0 0 1 1 0 0 �1 �1

0
BBBBBB@

1
CCCCCCA

By (15.43), we obtain

m̂c ¼ (14:16, 14:42, 11:77, 12:03, 11:40, 11:65, 12:45, 12:70, 10:97, 11:22):0
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For SSEc, we use m̂c in place of m̂ in (15.21) to obtain SSEc ¼ 449.96508. For nEc ,
we have

nEc ¼ nE þ rank(G) ¼ 65þ 4 ¼ 69:

Then by (15.45), we obtain FBc ¼ 3:8880003. The sums of squares leading to FBc and
FAc are given in Table 15.7. A

15.4 TWO-WAY MODEL WITH EMPTY CELLS

Possibly the greatest advantage of the cell means model in the analysis of unbalanced
data is that extreme situations such as empty cells can be dealt with relatively easily.
The cell means approach allows one to deal specifically with nonestimability pro-
blems arising from the empty cells (as contrasted with nonestimability arising from
overparameterization of the model). Much of our discussion here follows that of
Bryce et al. (1980a).

Consider the unbalanced two-way model in (15.17), but allow nij to be equal to 0
for one or more (say m) isolated cells; that is, the empty cells do not constitute a
whole row or whole column. Assume also that the empty cells are missing at
random (Little and Rubin 2002, p. 12); that is, the emptiness of the cells is indepen-
dent of the values that would be observed in those cells.

In the empty cells model, W is non-full-rank in that it has m columns equal to 0.
To simplify notation, assume that the columns of W have been rearranged with the
columns of 0 occurring last. Hence

W ¼ (W1, O),

where W1 is an n � (ab 2 m) matrix and O is n � m. Correspondingly

m ¼ mo

me

� �
,

where mo is the vector of cell means for the occupied cells while me is the vector of
cell means for the empty cells. The model is thus the non-full-rank model

y ¼ (W1, O)
mo

me

� �
þ 1: (15:47)

TABLE 15.7 ANOVA for Constrained Model

Source df
Sum of
Squares

Mean
Square F

p
Value

A (gender) 1 1.132 1.132 0.17 .678
B (breed) 4 101.418 25.355 3.89 .00660
Error 69 449.965 6.521

Total 74 552.0955
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The first task in the analysis of two-way data with empty cells is to test for the
interaction between the factors A and B. To test for the interaction when there are iso-
lated empty cells, care must be exercised to ensure that a testable hypothesis is being
tested (Section 12.6). The full–reduced-model approach [see (8.31)] is useful here. A
sensible full model is the unconstrained cell means model in (15.47). Even though W
is not full-rank

SSEu ¼ y0[I�W(W0W)�W0]y (15:48)

is invariant to the choice of a generalized inverse (Theorem 12.3e). The reduced
model is the additive model, given by

y ¼WA�1Amþ 1 subject to Gm ¼ 0,

where

A ¼ K
G

� �
,

in which K is a matrix specifying the overall mean and linearly independent main
effect contrasts for factors A and B, and the rows of G are linearly independent inter-
action contrasts (see Section 15.3.2) such that A is full-rank. We define Z1 as WK�

[see (15.41)]. Because the empty cells are isolated, Z1 is full-rank even though some
of the constraints in Gm ¼ 0 are nonestimable. The error sum of squares for the addi-
tive model is then

SSEa ¼ y0[I� Z1(Z01Z1)�1Z01]y, (15:49)

and the test statistic for the interaction is

F ¼ (SSEa � SSEu)=[(a� 1)(b� 1)� m]
SSEu=(n� abþ m)

: (15:50)

Equivalently the interaction could be tested by the general linear hypothesis
approach in (8.27). However, a maximal set of nonestimable interaction side con-
ditions involving me must first be imposed on the model. For example, the side con-
ditions could be specified as

Tm ¼ 0, (15:51)

where T is an m � ab matrix with rows corresponding to the contrasts mij � mi:�
m:j þ m:: for all m empty cells (Henderson and McAllister 1978). Using (12.37),
we obtain

m̂ ¼ (W0Wþ T0T)�1W0y (15:52)
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and

cov(m̂) ¼ s2(W0Wþ T0T)�1W0W(W0Wþ T0T)�1: (15:53)

The interaction can then be tested using the general linear hypothesis test of
H0: Cm ¼ 0 where C is the full matrix of (a 2 1)(b 2 1) interaction contrasts.
Even though some of the rows of Cm are not estimable, the test statistic can be com-
puted using a generalized inverse in the numerator as

F ¼ (Cm̂)0{C[cov(m̂)=s 2]C0}�(Cm̂)=[(a� 1)(b� 1)� m]
SSE=(n� abþ m)

: (15:54)

The error sum of squares for this model, SSE, turns out to be the same as SSEu in
(15.48). By Theorem 2.8c(v), the numerator of this F statistic is invariant to the
choice of a generalized inverse (Problem 15.16).

Both versions of this additivity test involve the unverifiable assumption that
the means of the empty cells follow the additive pattern displayed by the means of
the occupied cells. If there are relatively few empty cells, this is usually a reasonable
assumption.

If the interaction is not significant and is deemed to be negligible, the additive
model can be used as in Section 15.3.2 without any modifications. The isolated
empty cells present no problems for the use of the additive model.

If the interaction is significant, it may be possible to partially constrain the inter-
action in an attempt to render all cell means (including those in me) estimable. This is
not always possible, because it requires a set of constraints that are both a priori
reasonable and such that they render m estimable. Nonetheless, it is often advisable
to make this attempt because no new theoretical results are needed. The greatest chal-
lenges are practical, in that sensible constraints must be used. Many constraints will
do the job mathematically, but the results are meaningless unless the constraints are
reasonable. Unlike many other methods associated with linear models, the validity of
this procedure depends on the parameterization of the model and the specific con-
straints that are chosen.

We proceed in this attempt by proposing partial interaction constraints

Gm ¼ 0

for the empty cells model in (15.47). We choose K such that its rows are linearly
independent of the rows of G so that

A ¼ K
G

� �

is nonsingular. Thus A21 ¼ (K� G�) as in the comments following (15.41). Suppose
that the constraints are realistic, and that they are such that the constrained model is
not the additive model; that is, at least a portion of the interaction is unconstrained.
Then, if Z1 ¼WK� is full-rank, all the cell means (including me) can be estimated as

m̂ ¼ K�(Z01Z1)�1Z01y, (15:55)
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and cov(m̂) is given by (15.44). Further inferences about linear combinations of the
cell means can then be readily carried out. If Z1 is not full-rank, care must be exer-
cised to ensure that only estimable functions of m are estimated and that testable
hypotheses involving m are tested (see Section 12.2).

A simple way to quickly check whether Z1 is full-rank (and thus all cell means are
estimable) is given in the following theorem.

Theorem 15.4. Consider the constrained empty cells model in (15.47) with m empty
cells. Partition A as

A ¼ K
G

� �
¼ K1 K2

G1 G2

� �

conformal with the partitioned vector

m ¼ mo

me

� �
:

The elements of m are estimable (equivalently Z1 is full-rank) if and only if
rank(G 2) ¼ m.

PROOF. We prove this theorem for the special case in which G has m rows so that G2

is m � m. We partition A21 as

K�1 G�1
K�2 G2

�

� �
,

with submatrices conforming to the partitioning of A. Then

Z1 ¼ (W1, O)
K�1
K�2

� �
¼W1K�1:

Since W1 is full-rank and each of its rows consists of one 1 with several 0s, W1K�1
contains one or more copies of all of the rows of W1. Thus rank(Z1) ¼ rank(K�1).
Since A�1 is nonsingular, K��1

1 exists if K�1 is full rank. If so, the product

I O
�K�2K1

��1 I

� �
K�1 G�1
K�2 G�2

� �
¼ K�1 G�1

O G�2 �K�2K��1
1 G�1

� �

is defined and is nonsingular by Theorem 2.4(ii). By Corollary 1 to Theorem 2.9b,
G�2 �K�2K��1

1 G�1 is also nonsingular. But by equation (2.50), (G�2�K�2K��1
1

G�1)�1 ¼ G2. Thus, if A�1 is nonsingular, nonsingularity of K�1 implies nonsingular-
ity of G2. Analogous reasoning leads to the converse. Thus K�1 is full-rank if and only
if G2 is full-rank. Furthermore, Z1 is full-rank if and only if rank(G2) ¼ m. A

Example 15.4a. For the second-language data of Table 15.8, we test for the inter-
action of native language and gender. There are two empty cells, and thus W is a
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281 � 16 matrix with two columns of 0. For the unconstrained model we use (15.48)
to obtain

SSEu ¼ 113:235:

Numbering the cells of Table 15.8 from 1 to 8 for the first column and from 9 to 16
for the second column, we now define

A ¼ K
G

� �
(15:56)

TABLE 15.8 Comfort in Using English as a Second
Language for Students at BYU-Hawaiia

Native
Gender

Language Male Female

Samoan 24 28
3.20 3.38
0.66 0.68

Tongan 25 39
3.03 3.10
0.69 0.61

Hawaiian 4 2
3.47 3.13
0.68 0.47

Fijian 1 —
3.79 —
— —

Pacific Islands English 26 49
3.71 3.13
0.58 0.73

Maori 3 1
4.07 3.04
0.061 —

Mandarin 15 43
3.33 3.14
0.74 0.61

Cantonese — 21
— 3.00
— 0.54

a Brigham Young University–Hawaii; data classified by gender and
native language. Key to table entries: number of observations, mean,
and standard deviation.
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where

K¼

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 �1 �1 �1 �1 �1 �1 �1 �1

1 �1 0 0 0 0 0 0 1 �1 0 0 0 0 0 0

0 0 1 0 �1 0 0 0 0 0 1 0 �1 0 0 0

0 0 0 1 �1 0 0 0 0 0 0 1 �1 1 0 0

0 0 0 0 �1 1 0 0 0 0 0 0 �1 �1 0 0

2 2 �1 �1 �1 �1 0 0 2 2 �1 �1 �1 �1 0 0

0 0 0 0 0 0 1 �1 0 0 0 0 0 0 �1 1

1 1 1 1 1 1 �3 �3 1 1 1 1 1 1 �3 �3

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

and

G¼

1 �1 0 0 0 0 0 0 1 �1 0 0 0 0 0 0

0 0 1 0 �1 0 0 0 0 0 �1 0 1 0 0 0

0 0 0 1 �1 0 0 0 0 0 0 �1 1 0 0 0

0 0 0 0 �1 1 0 0 0 0 0 0 1 �1 0 0

2 2 �1 �1 �1 �1 0 0 �2 �2 1 1 1 1 0 0

0 0 0 0 0 0 1 �1 0 0 0 0 0 0 �1 1

1 1 1 1 1 1 �3 �3 �1 �1 �1 �1 �1 �1 3 3

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

The overall mean and main effect contrasts are specified by K while interaction con-
trasts are specified by G. Using (15.49), SSEa ¼ 119:213. The full–reduced F test for
additivity (15.50) yields the test statistic

F ¼ (119:213� 113:235)=5
119:213=267

¼ 2:82,

which is larger than the critical value of F:05, 5, 267 ¼ 2:25.
As an alternative approach to testing additivity, we impose the nonestimable side

conditions m8,1 � m8: � m:1 þ m:: ¼ 0 and m4, 2 � m4: � m:2 þ m:: ¼ 0 on the model
by setting

T ¼
�1 �1 �1 �1 �1 �1 �1 7 1 1 1 1 1 1 1 �7

�1 �1 �1 7 �1 �1 �1 �1 1 1 1 �7 1 1 1 1

� �
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in (15.51) and

C ¼

1 �1 0 0 0 0 0 0 �1 1 0 0 0 0 0 0
1 0 �1 0 0 0 0 0 �1 0 1 0 0 0 0 0
1 0 0 �1 0 0 0 0 �1 0 0 1 0 0 0 0
1 0 0 0 �1 0 0 0 �1 0 0 0 1 0 0 0
1 0 0 0 0 �1 0 0 �1 0 0 0 0 1 0 0
1 0 0 0 0 0 �1 0 �1 0 0 0 0 0 1 0
1 0 0 0 0 0 0 �1 �1 0 0 0 0 0 0 1

0
BBBBBBBB@

1
CCCCCCCCA

in (15.54). The F statistic for the general linear hypothesis test of additivity (15.54) is
again equal to 2.82.

Since the interaction is significant for this dataset, we partially constrain the inter-
action with contextually sensible estimable constraints in an effort to make all of the
cell means estimable. We use A as defined in (15.56), but repartition it so that

K¼

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 �1 �1 �1 �1 �1 �1 �1 �1

1 �1 0 0 0 0 0 0 1 �1 0 0 0 0 0 0

0 0 1 0 �1 0 0 0 0 0 1 0 �1 0 0 0

0 0 0 1 �1 0 0 0 0 0 0 1 �1 0 0 0

0 0 0 0 �1 1 0 0 0 0 0 0 �1 1 0 0

2 2 �1 �1 �1 �1 0 0 2 2 �1 �1 �1 �1 0 0

0 0 0 0 0 0 1 �1 0 0 0 0 0 0 1 �1

1 1 1 1 1 1 �3 �3 1 1 1 1 1 1 �3 �3

0 0 1 0 �1 0 0 0 0 0 �1 0 1 0 0 0

0 0 0 0 �1 1 0 0 0 0 0 0 1 �1 0 0

2 2 �1 �1 �1 �1 0 0 �2 �2 1 1 1 1 0 0

1 1 1 1 1 1 �3 �3 �1 �1 �1 �1 �1 �1 3 3

0
BBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCA

and

G¼
1 �1 0 0 0 0 0 0 �1 1 0 0 0 0 0 0
0 0 0 1 �1 0 0 0 0 0 0 �1 1 0 0 0
0 0 0 0 0 0 1 �1 0 0 0 0 0 0 �1 1

0
@

1
A:

The partial interaction constraints specified by Gm ¼ 0 seem sensible in that they
specify that the male–female difference is the same for Samoan and Tongan speak-
ers, for Fijian and Hawaiian speakers, and for Mandarin and Cantonese speakers.
Because the empty cells are the eighth and twelfth cells, we have

G2 ¼
0 0
0 �1
�1 0

0
@

1
A
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which obviously has rank ¼ 2. Thus, by Theorem 15.4, all the cell means are
estimable. Using (15.55) to compute the constrained estimates and (15.44) to
compute their standard errors, we obtain the results in Table 15.9. A

PROBLEMS

15.1 For the model y ¼Wm þ 1 in (15.2.1), find W0W and W0y and show that
(W0W)21 W0y ¼ ȳ as in (15.5).

15.2 (a) Show that for the reduced model yij ¼ mþ 1�ij in Section 15.3,
SS(m) ¼ N�y2

:: as used in (15.6).

(b) Show that SSB ¼
Pk

i¼1 �yi:yi: � N�y2
:: as in (15.6).

(c) Show that (15.6) is equal to (15.7), that is, SSB ¼
P

i �yi:yi:�
N�y2

:: ¼
P

i y2
i:=ni � y2

::=N:

15.3 (a) Show that SSB in (15.9) is equal to SSB in (15.7), that is,
Pk

i¼1 ni(�yi:�
�y::)

2 ¼
Pk

i¼1 y2
i:=ni � y2

::=N.

(b) Show that SSE in (15.10) is equal to SSE in (15.8), that is,Pk
i¼1

Pni
j¼1 (yij � �yi:)

2 ¼
Pk

i¼1

Pni
j¼1 y2

ij �
Pk

i¼1 y2
i:=ni.

15.4 Show that F ¼ ðSici�yi:)
2=(s2P

i c2
i =niÞ in (15.13) follows from (15.12).

15.5 Show that a0 and b0 in (15.15) provide contrast coefficients that satisfy the
property

P
i aibi=ni ¼ 0.

15.6 Show that m̂ ¼ ȳ as in (15.19).

15.7 Obtain (15.23) from (15.21); that is, show that (y�Wm̂)0(y�Wm̂) ¼Pa
i¼1

Pb
j¼1

Pnij

k¼1 (yijk � �yij:)
2.

TABLE 15.9 Estimated Mean Comfort in Using English as Second
Language (with Standard Error) for Students at BYU-Hawaiia

Native
Gender

Language Male Female

Samoan 3.23 (.11) 3.35 (.11)
Tongan 3.00 (.11) 3.12 (.09)
Hawaiian 3.47 (.33) 3.13 (.46)
Fijian 3.79 (.65) 3.20 (.67)
Pacific Islands English 3.71 (.03) 3.13 (.09)
Maori 4.07 (.38) 3.04 (.65)
Mandarin 3.33 (.17) 3.14 (.10)
Cantonese 3.19 (.24) 3.00 (.14)

a On the basis of a constrained empty-cells model.
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15.8 Obtain (15.24) from (15.23); that is, show that
Pnij

k¼1 (yijk � �yij:)
2 ¼

(nij � 1)s2
ij.

15.9 Show that H0: Bm ¼ 0, where B is given in (15.27), is equivalent to
H0: m11 þ m21 ¼ m12 þ m22 ¼ m13 þ m23 in (15.28).

15.10 Obtain F ¼
P

ij aij�yij:

� �2
= s2P

ij a2
ij=nij

� �
in (15.31) from F ¼ (a0m̂)2=

[s2a0(W0W)�1a] in (15.30).

15.11 Evaluate a0(W0W)�1a in (15.29) or (15.30) for a0 ¼ (1, 1, 1, �1, �1, �1):
Use the W matrix for the 11 observations in the illustration in Section 15.3.1.

15.12 Evaluate B(W0W)�1B0 in (15.33) for the matrices B and W used in the illus-
tration in Section 15.3.1.

15.13 Show that AA21 ¼ I, where A ¼ K
G

� �
as in (15.37) and A21 ¼

[K0(KK0)21, G0(GG0)21] as in (15.41).

15.14 Obtain G� analogous to K� in (15.42).

15.15 Show that cov(m̂c) ¼ s 2K0(KK0)�1(Z01Z1)�1(KK0)�1K, thus verifying
(15.44).

15.16 Show that the numerator of the F statistic in (15.54) is invariant to the choice
of a generalized inverse.

15.17 In a feeding trial, chicks were given five protein supplements. Their final
weights at 6 weeks are given in Table 15.10 (Snedecor 1948, p. 214).

(a) Calculate the sums of squares in Table 15.1 and the F statistic in (15.11).

(b) Compare the protein supplements using (unweighted) orthogonal con-
trasts whose coefficients are the rows in the matrix

3 �2 �2 �2 3
0 1 �2 1 0
0 1 0 �1 0
1 0 0 0 �1

0
BB@

1
CCA:

Thus we are making the following comparisons:

L, C versus So, Su, M
So, M versus Su

So versus M
L versus C

(c) Replace the second contrast with a weighted contrast whose coefficients
satisfy

P
i aibi=ni ¼ 0 when paired with the first contrast. Find sums of

squares and F statistics for these two contrasts.
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15.18 (a) Carry out the computations to obtain m̂, SSE, FA, FB, and FC in Example
15.3a.

(b) Carry out the computations to obtain m̂c, SSEc, FAc , and FBc in Example
15.3b.

(c) Carry out the tests in parts (a) and (b) using a software package such as
SAS GLM.

15.19 Table 15.11 lists weight gains of male rats under three types of feed and two
levels of protein.

(a) Let factor A be level of protein and factor B be type of feed. Define a
vector a corresponding to factor A and matrices B and C for factor B
and interaction AB, respectively, as in Section 15.3.1. Use these to con-
struct general linear hypothesis tests for main effects and interaction as
in (15.29), (15.33), and (15.34).

(b) Test the main effects in the no-interaction model (15.35) using the con-
strained model (15.36). Define K and G and find m̂c in (15.43), SSEc,
and F for H0: a0mc ¼ 0 and H0: Bmc ¼ 0 in (15.45).

(c) Carry out the tests in parts (a) and (b) using a software package such as
SAS GLM.

15.20 Table 15.12 lists yields when five varieties of plants and four fertilizers were
tested. Test for main effects and interaction.

TABLE 15.10 Final Weights (g) of Chicks at 6 Weeks

Protein Supplement

Linseed Soybean Sunflower Meat Casein

309 243 423 325 368
229 230 340 257 390
181 248 392 303 379
141 327 339 315 260
260 329 341 380 404
203 250 226 153 318
148 193 320 263 352
169 271 295 242 359
213 316 334 206 216
257 267 322 344 222
244 199 297 258 283
271 177 318 332

158
248
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TABLE 15.11 Weight Gains (g) of Rats under
Six Diet Combinations

High Protein Low Protein

Beef Cereal Pork Beef Cereal Pork

73 98 94 90 107 49
102 74 79 76 95 82
118 56 96 90 97 73
104 111 98 64 80 86
81 95 102 86 98 81
107 88 102 51 74 97
100 82 72 106
87 77 90

86 95
92 78

Source: Snedecor and Cochran (1967, p. 347).

TABLE 15.12 Yield from Five Varieties of Plants
Treated with Four Fertilizers

Variety

Fertilizer 1 2 3 4 5

1 57 26 39 23 48
46 38 — 36 35
— 20 — 18 —

2 67 44 57 74 61
72 68 61 47 —
66 64 — 69 —

3 95 92 91 98 78
90 89 82 85 89
89 — — — 95

4 92 96 98 99 99
88 95 93 90 —
— — 98 98 —

Source: Ostle and Mensing (1975, p. 368).
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16 Analysis-of-Covariance

16.1 INTRODUCTION

In addition to the dependent variable y, there may be one or more quantitative
variables that can also be measured on each experimental unit (or subject) in an
ANOVA situation. If it appears that these extra variables may affect the outcome
of the experiment, they can be included in the model as independent variables (x’s)
and are then known as covariates or concomitant variables. Analysis of covariance
is sometimes described as a blend of ANOVA and regression.

The primary motivation for the use of covariates in an experiment is to gain
precision by reducing the error variance. In some situations, analysis of covariance
can be used to lessen the effect of factors that the experimenter cannot effectively
control, because an attempt to include various levels of a quantitative variable as a
full factor may cause the design to become unwieldy. In such cases, the variable
can be included as a covariate, with a resulting adjustment to the dependent variable
before comparing means of groups. Variables of this type may also occur in exper-
imental situations in which the subjects cannot be randomly assigned to treatments.
In such cases, we forfeit the causality implication of a designed experiment, and
analysis of covariance is closer in spirit to descriptive model building.

In terms of a one-way model with one covariate, analysis of covariance will be
successful if the following three assumptions hold.

1. The dependent variable is linearly related to the covariate. If this assumption
holds, part of the error in the model is predictable and can be removed to reduce
the error variance. This assumption can be checked by testing H0:b ¼ 0, where
b is the slope from the regression of the dependent variable on the covariate.
Since the estimated slope b̂ will never be exactly 0, analysis of covariance
will always give a smaller sum of squares for error than the corresponding
ANOVA. However, if b̂ is close to 0, the small reduction in error sum of
squares may not offset the loss of a degree of freedom [see (16.27) and a
comment following]. This problem is more likely to arise with multiple covari-
ates, especially if they are highly correlated.

Linear Models in Statistics, Second Edition, by Alvin C. Rencher and G. Bruce Schaalje
Copyright # 2008 John Wiley & Sons, Inc.
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2. The groups (treatments) have the same slope. In assumption 1 above, a
common slope b for all k groups is implied (assuming a one-way model
with k groups). We can check this assumption by testing H0 :b1 ¼ b2 ¼
� � � ¼ bk, where bi is the slope in the ith group.

3. The covariate does not affect the differences among the means of the groups
(treatments). If differences among the group means were reduced when the
dependent variable is adjusted for the covariate, the test for equality of group
means would be less powerful. Assumption 3 can be checked by performing
an ANOVA on the covariate.

Covariates can be either fixed constants (values chosen by the researcher) or
random variables. The models we consider in this chapter involve fixed covariates,
but in practice, the majority are random. However, the estimation and testing pro-
cedures are the same in both cases, although the properties of estimators and tests
are somewhat different for fixed and random covariates. For example, in the fixed-
covariate case, the power of the test depends on the actual values chosen for the cov-
ariates, whereas in the random-covariate case, the power of the test depends on the
population covariance matrix of the covariates.

As an illustration of the use of analysis of covariance, suppose that we wish to
compare three methods of teaching language. Three classes are available, and we
assign a class to each of the teaching methods. The students are free to sign up for
any one of the three classes and are therefore not randomly assigned. One of the
classes may end up with a disproportionate share of the best students, in which case
we cannot claim that teaching methods have produced a significant difference in
final grades. However, we can use previous grades or other measures of performance
as covariates and then compare the students’ adjusted scores for the three methods.

We give a general approach to estimation and testing in Section 16.2 and then
cover specific balanced models in Sections 16.3–16.5. Unbalanced models are dis-
cussed briefly in Section 16.6. We use overparameterized models for the balanced
case in Sections 16.2–16.5. and use the cell means model in Section 16.6.

16.2 ESTIMATION AND TESTING

We introduce and illustrate the analysis of covariance model in Section 16.2.1 and
discuss estimation and testing for this model in Sections 16.2.2 and 16.2.3.

16.2.1 The Analysis-of-Covariance Model

In general, an analysis of covariance model can be written as

y ¼ Zaþ Xbþ 1, (16:1)

where Z contains 0s and 1s, a contains m and parameters such as ai, bi, and gij repre-
senting factors and interactions (or other effects); X contains the covariate values; and
b contains coefficients of the covariates. Thus the covariates appear on the right
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side of (16.1) as independent variables. Note that Za is the same as Xb in the
ANOVA models in Chapters 12–14, whereas in this chapter, we use Xb to represent
the covariates in the model.

We now illustrate (16.1) for some of the models that will be considered in this
chapter. A one-way (balanced) model with one covariate can be expressed as

yij ¼ mþ ai þ bxij þ 1ij, i ¼ 1, 2, . . . , k, j ¼ 1, 2, . . . , n, (16:2)

where ai is the treatment effect, xij is a covariate observed on the same sampling unit
as yij, and b is a slope relating xij to yij. [If (16.2) is viewed as a regression model, then
the parameters mþ ai i ¼ 1, 2, . . . , k, serve as regression intercepts for the k
groups.] The kn observations for (16.2) can be written in the form
y ¼ Zaþ Xbþ 1 as in (16.1), where

Z ¼

1 1 0 � � � 0
..
. ..

. ..
. ..

.

1 1 0 � � � 0
1 0 1 � � � 0
..
. ..

. ..
. ..

.

1 0 0 � � � 1

0
BBBBBBB@

1
CCCCCCCA

, a ¼

m

a1

..

.

ak

0
BBB@

1
CCCA, X ¼ x ¼

x11

..

.

x1n

x2n

..

.

xkn

0
BBBBBBB@

1
CCCCCCCA

, (16:3)

and b ¼ b. In this case, Z is the same as X in (13.6).
For a one-way (balanced) model with q covariates, the model is

yij ¼ mþ ai þ b1xij1 þ � � � þ bqxijq þ 1ij, i ¼ 1, 2, . . . , k, j ¼ 1, 2, . . . , n:

(16:4)

In this case, Z and a are as given in (16.3), and Xb has the form

Xb ¼

x111 x112 � � � x11q

x121 x122 � � � x12q

..

. ..
. ..

.

xkn1 xkn2 � � � xknq

0
BBB@

1
CCCA

b1
b2

..

.

bq

0
BBB@

1
CCCA: (16:5)

For a two-way model with one covariate

yijk ¼ mþ ai þ dj þ gij þ bxijk þ 1ijk, (16:6)

Za has the form given in (14.4), and Xb is

Xb ¼ xb ¼

x111

x112

..

.

xabn

0
BBB@

1
CCCAb:

The two-way model in (16.6) could be extended to include several covariates.
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16.2.2 Estimation

We now develop estimators of a and b for the general case in (16.1),
y ¼ Zaþ Xbþ 1. We assume that Z is less than full rank as in overparameterized
ANOVA models and that X is full-rank as in regression models. We also assume that

E(1) ¼ 0 and cov(1) ¼ s2I:

The model can be expressed as

y ¼ Zaþ Xbþ 1

¼ (Z, X)
a

b

� �
þ 1

¼ Uuþ 1, (16:7)

where U ¼ (Z, X) and u ¼ a
b

� �
. The normal equations for (16.7) are

U0Uû ¼ U0y,

which can be written in partitioned form as

Z0

X0

� �
(Z, X)

â

b̂

� �
¼

Z0

X0

� �
y,

Z0Z Z0X

X0Z X0X

� �
â

b̂

� �
¼

Z0y

X0y

� �
: (16:8)

We can express (16.8) as two sets of equations in â and b̂:

Z0Zâþ Z0Xb̂ ¼ Z0y, (16:9)

X0Zâþ X0Xb̂ ¼ X0y: (16:10)

Using a generalized inverse of Z0Z, we can solve for â in (16.9):

â ¼ (Z0Z)�Z0y� (Z0Z)�Z0Xb̂

¼ â0 � (Z0Z)�Z0Xb̂, (16:11)

where â0 ¼ (Z0Z)�Z0y is a solution for the normal equations for the model
y ¼ Zaþ 1 without the covariates [see (12.13)].

To solve for b̂, we substitute (16.11) into (16.10) to obtain

X0Z[(Z0Z)�Z0y� (Z0Z)�Z0Xb̂]þ X0Xb̂ ¼ X0y
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or

X0Z(Z0Z)�Z0yþ X0[I� Z(Z0Z)�Z0]Xb̂ ¼ X0y: (16:12)

Defining

P ¼ Z(Z0Z)�Z0, (16:13)

we see that (16.12) becomes

X0(I� P)Xb̂ ¼ X0y� X0Py ¼ X0(I� P)y:

Since the elements of X typically exhibit a pattern unrelated to the 0s and 1s in Z, we
can assume that the columns of X are linearly independent of the columns of Z. Then

X0(I� P)X is nonsingular (see Problem 16.1), and a solution for b̂ is given by

b̂ ¼ [X0(I� P)X]�1X0(I� P)y (16:14)

¼ E�1
xx exy, (16:15)where

Exx ¼ X0(I� P)X and exy ¼ X0(I� P)y: (16:16)

For the analysis-of-covariance model (16.1) or (16.7), we denote SSE as SSEy�x.
By (12.20), SSEy�x can be expressed as

SSEy�x ¼ y0y� û 0U0y ¼ y0y� (â0, b̂0)
Z0y

X0y

� �

¼ y0y� â0Z0y� b̂0X0y

¼ y0y� [â00 � b̂0X0Z(Z0Z)�]Z0y� b̂0X0y [by (16:11)]

¼ y0y� â00Z0y� b̂0X0[I� Z(Z0Z)�Z0]y

¼ SSEy � b̂0X0(I� P)y, (16:17)

where â0 is as defined in (16.11), P is defined as in (16.13), and SSEy ¼ y0y� â00Z0y
is the same as the SSE for the ANOVA model y ¼ Zaþ 1 without the covariates.
Using (16.16), we can write (16.17) in the form

SSEy�x ¼ eyy � e0xyE�1
xx exy, (16:18)

where

eyy ¼ SSEy ¼ y0(I� P)y: (16:19)
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In (16.18), we see the reduction in SSE that was noted in the second paragraph of
Section 16.1. The proof that Exx ¼ X0(I� P)X is nonsingular (see Problem 16.1) can
be extended to show that Exx is positive definite. Therefore, e0xyE�1

xx exy . 0, and
SSEy�x , SSEy.

16.2.3 Testing Hypotheses

In order to test hypotheses, we assume that 1 in (16.1) is distributed as Nn(0,s2I),
where n is the number of rows of Z or X. Using the model (16.7), we can express a
hypothesis about a in the form H0: Cu ¼ 0, where C ¼ (C1, O), so that H0 becomes

H0: (C1, O)
a
b

� �
¼ 0 or H0: C1a ¼ 0:

We can then use a general linear hypothesis test. Alternatively, we can incorporate the
hypothesis into the model and use a full–reduced-model approach.

Hypotheses about b can also be expressed in the form H0: Cu ¼ 0:

H0:Cu ¼ (O, C2)
a
b

� �
¼ 0 or H0 : C2b ¼ 0:

A basic hypothesis of interest is H0 :b ¼ 0, that is, that the covariate(s) do not belong
in the model (16.1). In order to make a general linear hypothesis test of H0:b ¼ 0, we

need cov(b̂), where b̂ is given by (16.14) as b̂ ¼ [X0(I� P)X]�1X0(I� P)y. Since

I� P is idempotent (see Theorems 2.13e and 2.13f), cov(b̂) can readily be found
from (3.44) as

cov(b̂) ¼ [X0(I� P)X]�1X0(I� P)s2I(I� P)X[X0(I� P)X]�1

¼ s2[X0(I� P)X]�1: (16:20)

Then SSH for testing H0 :b ¼ 0 is given by Theorem 8.4a(ii) as

SSH ¼ b̂0X0(I� P)Xb̂: (16:21)

Using (16.16), we can express this as

SSH ¼ e0xyE�1
xx exy: (16:22)

Note that SSH in (16.22) is equal to the reduction in SSE due to the covariates; see
(16.17), (16.18), and (16.19).
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We now discuss some specific models, beginning with the one-way model in
Section 16.3.

16.3 ONE-WAY MODEL WITH ONE COVARIATE

We review the one-way model in Section 16.3.1, consider estimators of parameters in
Section 16.3.2, and discuss tests of hypotheses in Section 16.3.3.

16.3.1 The Model

The one-way (balanced) model was introduced in (16.2):

yij ¼ mþ ai þ bxij þ 1ij, i ¼ 1, 2, . . . , k, j ¼ 1, 2, . . . , n: (16:23)

All kn observations can be written in the form of (16.1)

y ¼ Zaþ Xbþ 1 ¼ Zaþ xbþ 1,

where Z, a, and x are as given in (16.3).

16.3.2 Estimation

By (16.11), (13.11), and (13.12), an estimator of a is obtained as

â ¼ â0 � (Z0Z)�Z0Xb̂ ¼ â0 � (Z0Z)�Z0xb̂

¼

0

�y1:

�y2:

..

.

�yk:

0
BBBBBBB@

1
CCCCCCCA
�

0

b̂�x1:

b̂�x2:

..

.

b̂�xk:

0
BBBBBBB@

1
CCCCCCCA
¼

0

�y1: � b̂�x1:

�y2: � b̂�x2:

..

.

�yk: � b̂�x2:

0
BBBBBBB@

1
CCCCCCCA

(16:24)

(see Problem 16.4). In this case, with a single x, Exx and exy reduce to scalars, along
with eyy:

Exx ¼ exx ¼
Xk

i¼1

Xn

j¼1

(xij � �xi:)
2,

exy ¼ exy ¼
X

ij

(xij � �xi:) ( yij � �yi:),

eyy ¼
X

ij

( yij � �yi:)
2:

(16:25)
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Now, by (16.15), the estimator of b is

b̂ ¼ exy

exx
¼
P

ij (xij � �xi:)( yij � �yi:)P
ij (xij � �xi:)2 : (16:26)

By (16.18), (16.19), and the three results in (16.25), SSEy�x is given by

SSEy�x ¼ eyy � e0xyE�1
xx exy ¼ eyy �

e2
xy

exx

¼
X

ij

( yij � �yi:)
2 �

�P
ij (xij � �xi:)( yij � �yi:)

�2
P

ij (xij � �xi:)2 , (16:27)

which has k(n� 1)� 1 degrees of freedom. Note that the degrees of freedom of
SSEy�x are reduced by 1 for estimation of b, since SSEy ¼ eyy has k(n� 1) degrees
of freedom and e2

xy=exx has 1 degree of freedom. In using analysis of covariance,
the researcher expects the reduction from SSEy to SSEy�x to at least offset the loss
of a degree of freedom.

16.3.3 Testing Hypotheses

For testing hypotheses, we assume that the 1ij’s in (16.23) are independently distrib-
uted as N(0,s 2). We begin with a test for equality of treatment effects.

16.3.3.1 Treatments
To test

H01:a1 ¼ a2 ¼ � � � ¼ ak

adjusted for the covariate, we use a full–reduced-model approach. The full model is
(16.23), and the reduced model (with a1 ¼ a2 ¼ � � � ¼ ak ¼ a) is

yij ¼ mþ aþ bxij þ 1ij

¼ m� þ bxij þ 1ij, i ¼ 1, 2, . . . , k, j ¼ 1, 2, . . . , n: 16:28)

This is essentially the same as the simple linear regression model (6.1). By (6.13),
SSE for this reduced model (denoted by SSErd) is given by

SSErd ¼
Xk

i¼1

Xn

j¼1

( yij � �y::)
2 �

�P
ij (xij � �x::)( yij � �y::)

�2
P

ij (xij � �x::)2 , (16:29)

which has kn� 1� 1 ¼ kn� 2 degrees of freedom.
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Using a notation adapted from Sections 8.2, 13.4, and 14.4, we express the sum of
squares for testing H01 as

SS(ajm,b) ¼ SS(m,a,b)� SS(m,b):

In (16.27), SSEy�x is for the full model, and in (16.29), SSErd is for the reduced model.
They can therefore be written as SSEy�x ¼ y0y� SS(m,a,b) and
SSErd ¼ y0y� SS(m,b). Hence

SS(ajm,b) ¼ SSErd � SSEy�x, (16:30)

which has kn� 2� [k(n� 1)� 1] ¼ k � 1 degrees of freedom. The test statistic for
H01:a1 ¼ a2 ¼ � � � ¼ ak is therefore given by

F ¼ SS(ajm,b)=(k � 1)
SSEy�x=[k(n� 1)� 1]

, (16:31)

which is distributed as F[k � 1, k(n� 1)� 1] when H01 is true.
By (16.30), we have

SSErd ¼ SS(ajm, b)þ SSEy�x:

Hence, SSErd functions as the “total sum of squares” for the test of treatment effects
adjusted for the covariate. We can therefore denote SSErd by SSTy�x, so that the
expression above becomes

SSTy�x ¼ SS(ajm, b)þ SSEy�x: (16:32)

To complete the analogy with SSEy�x ¼ eyy � e2
xy=exx in (16.27), we write (16.29) as

SSTy�x ¼ tyy �
t2
xy

txx
, (16:33)

where

SSTy�x ¼ SSErd, tyy ¼
X

ij

( yij � �y::)
2, txy ¼

X
ij

(xij � �x::)( yij � �y::),

txx ¼
X

ij

(xij � �x::)
2: (16:34)

Note that the procedure used to obtain (16.30) is fundamentally different from that
used to obtain SSEy�x and SSErd in (16.27) and (16.29). The sum of squares
SS(ajm, b) in (16.30) is obtained as the difference between the sums of squares
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for full and reduced models, not as an adjustment to SS(ajm) ¼ n
P

i (�yi: � �y::)
2 in

(13.24) analogous to the adjustment used in SSEy�x and SSTy�x in (16.27) and
(16.33). We must use the full–reduced-model approach to compute SS(ajm,b),
because we do not have the same covariate values for each treatment and the
design is therefore unbalanced (even though the n values are equal). If SS(ajm,b)
were computed in an “adjusted” manner as in (16.27) or (16.33), then
SS(ajm,b)þ SSEy�x would not equal SSTy�x as in (16.32). In Section 16.4, we will
follow a computational scheme similar to that of (16.30) and (16.32) for each term
in the two-way (balanced) model.

We display the various sums of squares for testing H0:a1 ¼ a2 ¼ � � � ¼ ak in
Table 16.1.

16.3.3.2 Slope
We now consider a test for

H02 :b ¼ 0:

By (16.22), the general linear hypothesis approach leads to SSH ¼ e0xyE�1
xx exy for

testing H0:b ¼ 0. For the case of a single covariate, this reduces to

SSH ¼
e2

xy

exx
, (16:35)

where exy and exx are as found in (16.25). The F statistic is therefore given by

F ¼
e2

xy=exx

SSEy�x=[k(n� 1)� 1]
, (16:36)

which is distributed as F[1, k(n� 1)� 1] when H02 is true.

16.3.3.3 Homogeneity of Slopes
The tests of H01:a1 ¼ a2 ¼ � � � ¼ ak and H02:b ¼ 0 assume a common slope for all
k groups. To check this assumption, we can test the hypothesis of equal slopes in the
groups

H03:b1 ¼ b2 ¼ � � � ¼ bk, (16:37)

where bi is the slope in the ith group. In effect, H03 states that the k regression lines are
parallel.

TABLE 16.1 Analysis of Covariance for Testing H0:a1 ¼ a2 ¼ � � � ¼ ak in
the One-Way Model with One Covariate

Source SS Adjusted for Covariate Adjusted df

Treatments SS(ajm,b) ¼ SSTy�x � SSEy�x k 2 1
Error SSEy�x ¼ eyy � e2

xy=exx k(n 2 1) 2 1

Total SSTy�x ¼ tyy � t2
xy=txx kn 2 2
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The full model allowing for different slopes becomes

yij ¼ mþ ai þ bixij þ 1ij, i ¼ 1, 2, . . . , k, j ¼ 1, 2, . . . , n: (16:38)

The reduced model with a single slope is (16.23). In matrix form, the nk observations
in (16.38) can be expressed as y ¼ Zaþ Xbþ 1, where Z and a are as given in
(16.3) and

Xb ¼

x1 0 � � � 0
0 x2 � � � 0

..

. ..
. ..

.

0 0 � � � xk

0
BBB@

1
CCCA

b1

b2

..

.

bk

0
BBB@

1
CCCA, (16:39)

with xi ¼ (xi1, xi2, . . . , xin)0. By (16.14) and (16.15), we obtain

b̂ ¼ E�1
xx exy ¼ [X0(I� P)X]�1X0(I� P)y:

To evaluate Exx and exy, we first note that by (13.11), (13.25), and (13.26)

I� P ¼ I� Z(Z0Z)�Z0

¼

I� 1
n

J O � � � O

O I� 1
n

J � � � O

..

. ..
. ..

.

O O � � � I� 1
n

J

0
BBBBBBBBBB@

1
CCCCCCCCCCA

, (16:40)

where I in I� P is kn� kn and I in I� ð1=nÞJ is n� n. Thus

Exx ¼ X0(I� P)X ¼

x01

�
I� 1

n
J
�

x1 0 � � � 0

0 x02

�
I� 1

n
J
�

x2 � � � 0

..

. ..
. ..

.

0 0 � � � x0k

�
I� 1

n
J
�

xk

0
BBBBBBBBBB@

1
CCCCCCCCCCA

¼

P
j (x1j � �x1:)2 0 � � � 0

0
P

j (x2j � �x2:)2 � � � 0

..

. ..
. ..

.

0 0 � � �
P

j (xkj � �xk:)2

0
BBBBBB@

1
CCCCCCA

(16:41)
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¼

exx,1 0 � � � 0
0 exx,2 � � � 0

..

. ..
. ..

.

0 0 � � � exx,k

0
BBB@

1
CCCA, (16:42)

where exx,i ¼
P

j (xij � �xi:)2. To find exy, we partition y as y ¼ (y01, y02, . . . , y0k)0,
where y0i ¼ ( yi1, yi2, . . . , yin). Then

exy ¼ X0(I� P)y

¼

x01 00 � � � 00

00 x02 � � � 00

..

. ..
. ..

.

00 00 � � � x0k

0
BBBBB@

1
CCCCCA

I� 1
n

J O � � � O

O I� 1
n

J � � � O

..

. ..
. ..

.

O O � � � I� 1
n

J

0
BBBBBBBBBB@

1
CCCCCCCCCCA

y1

y2

..

.

yk

0
BBBBB@

1
CCCCCA

¼

x10
�

I� 1
n

J
�

y1

x20
�

I� 1
n

J
�

y2

..

.

x0k

�
I� 1

n
J
�

yk

0
BBBBBBBBBB@

1
CCCCCCCCCCA

¼

P
j (x1j � �x1:)( y1j � �y1:)P
j (x2j � �x2:)( y2j � �y2:)

..

.

P
j (xkj � �xk:)( ykj � �yk:)

0
BBBBB@

1
CCCCCA

(16:43)

¼

exy,1

exy,2

..

.

exy,k

0
BBB@

1
CCCA, (16:44)
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where exy, i ¼
P

j (xij � �xi:)( yij � �yi:). Then, by (16.15), we obtain

b̂ ¼ E�1
xx exy ¼

exy,1=exx,1

exy,2=exx,2

..

.

exy,k=exx,k

0
BBB@

1
CCCA: (16:45)

By analogy with (16.30), we obtain the sum of squares for the test of H03 in
(16.37) by subtracting SSEy�x for the full model from SSEy�x for the reduced
model, that is, SSE(R)y�x � SSE(F)y�x. For the full model in (16.38), SSE(F)y�x is
given by (16.18), (16.44), and (16.45) as

SSE(F)y�x ¼ eyy � e0xyE�1
xx exy ¼ eyy � e0xyb̂

¼ eyy � (exy,1, exy,2, . . . , exy,k)

exy,1=exx,1

exy,2=exx,2

..

.

exy,k=exx,k

0
BBBBB@

1
CCCCCA

¼ eyy �
Xk

i¼1

e2
xy,i

exx,i
, (16:46)

which has k(n� 1)� k ¼ k(n� 2) degrees of freedom. The reduced model in which
H03:b1 ¼ b2 ¼ � � � ¼ bk ¼ b is true is given by (16.23), for which SSE(R)y�x is
found in (16.27) as

SSE(R)y�x ¼ eyy �
e2

xy

exx
, (16:47)

which has k(n� 1)� 1 degrees of freedom. Thus, the sum of squares for testing H03 is

SSE(R)y�x � SSE(F)y�x ¼
Xk

i¼1

e2
xy,i

exx,i
�

e2
xy

exx
, (16:48)

which has k(n� 1)� 1� k(n� 2) ¼ k � 1 degrees of freedom. The test statistic is

F ¼
Pk

i¼1 e2
xy,i=exx,i � e2

xy=exx

h i
=(k � 1)

SSE(F)y�x=k(n� 2)
, (16:49)

which is distributed as F[k � 1, k(n� 2)] when H03:b1 ¼ b2 ¼ � � � ¼ bk is true.
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If the hypothesis of equal slopes is rejected, the hypothesis of equal treatment
effects can still be tested, but interpretation is more difficult. The problem is some-
what analogous to that of interpretation of a main effect in a two-way ANOVA in
the presence of interaction. In a sense, the term bixij in (16.38) is an interaction.
For further discussion of analysis of covariance with heterogeneity of slopes, see
Reader (1973) and Hendrix et al. (1982).

Example 16.3. To investigate the effect of diet on maturation weight of guppy fish
(Poecilia reticulata), three groups of fish were fed different diets. The resulting
weights y are given in Table 16.2 (Morrison 1983, p. 475) along with the initial
weights x.

We first estimate b, using x as a covariate. By the three results in (16.25), we have

exx ¼ 350:2857, exy ¼ 412:71429, eyy ¼ 1465:7143:

Then by (16.26), we obtain

b̂ ¼ exy

exx
¼ 412:7143

350:2857
¼ 1:1782:

We now test for equality of treatment means adjusted for the covariate,
H0:a1 ¼ a2 ¼ a3. By (16.27), we have

SSEy�x ¼ eyy �
e2

xy

exx
¼ 1465:7143� (412:7143)2

350:2857

¼ 979:4453

with 17 degrees of freedom. By (16.29) and (16.33), we have

SSTy�x ¼ 1141:4709

TABLE 16.2 Maturation Weight and Initial Weight (mg) of Guppy Fish

Feeding Group

1 2 3

y x y x y x

49 35 68 33 59 33
61 26 70 35 53 36
55 29 60 28 54 26
69 32 53 29 48 30
51 23 59 32 54 33
38 26 48 23 53 25
64 31 46 26 37 23
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with 19 degrees of freedom. Thus by (16.30), we have

SS(ajm,b) ¼ SSTy�x � SSEy�x ¼ 1141:4709� 979:4453

¼ 162:0256

with 2 degrees of freedom. The F statistic is given in (16.31) as

F ¼ SS(ajm,b)=(k � 1)
SSEy�x=[k(n� 1)� 1]

¼ 162:0256=2
979:4453=17

¼ 1:4061:

The p value is .272, and we do not reject H0:a1 ¼ a2 ¼ a3.
To test H0:b ¼ 0, we use (16.36):

F ¼
e2

xy=exx

SSEy�x=[k(n� 1)� 1]
¼ (412:7143)2=350:2857

979:4453=17

¼ 8:4401:

The p-value is .0099, and we reject H0 :b ¼ 0.
To test the hypothesis of equal slopes in the groups, H0:b1 ¼ b2 ¼ b3, we first

estimate b1,b2, and b3 using (16.45):

b̂1 ¼ :7903, b̂2 ¼ 1:9851, b̂3 ¼ :8579:

Then by (16.46) and (16.47),

SSE(F)y�x ¼ 880:5896, SSE(R)y�x ¼ 979:4453:

The difference SSE(R)y�x � SSE(F)y�x is used in the numerator of the F statistic in
(16.49):

F ¼ (979:4453� 880:5896)=2
880:5896=(3)(5)

¼ :8420:

The p value is .450, and we do not reject H0:b1 ¼ b2 ¼ b3. A

16.4 TWO-WAY MODEL WITH ONE COVARIATE

In this section, we discuss the two-way (balanced) fixed-effects model with one
covariate. The model was introduced in (16.6) as

yijk ¼ mþ ai þ gj þ dij þ bxijk þ 1ijk , (16:50)

i ¼ 1, 2, . . . , a, j ¼ 1, 2, . . . , c, k ¼ 1, 2, . . . , n,
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where ai is the effect of factor A, gj is the effect of factor C, dij is the AC interaction
effect, and xijk is a covariate measured on the same experimental unit as yijk.

16.4.1 Tests for Main Effects and Interactions

In order to find SSEy�x, we consider the hypothesis of no overall treatment effect, that
is, no A effect, no C effect, and no interaction (see a comment preceding Theorem
14.4b). By analogy to (16.28), the reduced model is

yijk ¼ m� þ bxijk þ 1ijk: (16:51)

By analogy to (16.29), SSE for the reduced model is given by

SSErd ¼
Xa

i¼1

Xc

j¼1

Xn

k¼1

( yijk � �y...)
2 �

P
ijk (xijk � �x...)( yijk � �y...)

h i2

P
ijk (xijk � �x...)2

¼
X

ijk

y2
ijk �

y2
...

acn
�
P

ijk (xijk � �x...)( yijk � �y...)
h i2

P
ijk (xijk � �x...)2 : (16:52)

By analogy to (16.27), SSE for the full model in (16.50) is

SSEy�x ¼
X

ijk

( yijk � �yij:)
2 �

P
ijk (xijk � �xij:)( yijk � �yij:)

h i2

P
ijk (xijk � �xij:)2

¼
X

ijk

y2
ijk �

X
ij

y2
ij:

n
�
P

ijk (xijk � �xij:)( yijk � �yij:)
h i2

P
ijk (xijk � �xij:)2 , (16:53)

which has ac(n� 1)� 1 degrees of freedom. Note that the degrees of freedom for
SSEy�x have been reduced by 1 for the covariate adjustment.

Now by analogy to (16.30), the overall sum of squares for treatments is

SS(a, g, djm,b) ¼ SSErd � SSEy�x

¼
X

ij

y2
ij:

n
� y2

...

acn
þ
P

ijk (xijk � �xij:)( yijk � �yij:)
h i2

P
ijk (xijk � �xij:)2

�
P

ijk (xijk � �x...)( yijk � �y...)
h i2

P
ijk (xijk � �x...)2 , (16:54)

which has ac� 1 degrees of freedom.
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Using (14.47), (14.69), and (14.70), we can partition the term
P

ij y2
ij:=n� y2

...=acn
in (16.54), representing overall treatment sum of squares, as in (14.40):

X
ij

y2
ij:

n
� y2

...

acn
¼ cn

X
i

( �yi:: � �y...)
2 þ an

X
j

( �y:j: � �y...)
2

þ n
X

ij

( �yij: � �yi:: � �y:j: þ �y...)
2

¼ SSAy þ SSCy þ SSACy: (16:55)

To conform with this notation, we define

SSEy ¼
X

ijk

( yijk � �yij:)
2:

We have an analogous partitioning of the overall treatment sum of squares for x:

X
ij

x2
ij:

n
� x2

...

acn
¼ SSAx þ SSCx þ SSACx, (16:56)

where, for example

SSAx ¼ cn
Xa

i¼1

(�xi:: � �x...)
2:

We also define

SSEx ¼
X

ijk

(xijk � �xij:)
2:

The “overall treatment sum of products”
P

ij xij:yij:=n� x...y...=acn can be parti-
tioned in a manner analogous to that in (16.55) and (16.56) (see Problem 16.8):

X
ij

xij:yij:

n
� x...y...

acn
¼ cn

X
i

(�xi:: � �x...)( �yi:: � �y...)þ an
X

j

(�x:j: � �x...)( �y:j: � �y...)

þ n
X

ij

(�xij: � �xi:: � �x:j: þ �x...)( �yij: � �yi:: � �y:j: þ �y...)

¼ SPAþ SPCþ SPAC: (16:57)
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We also define

SPE ¼
X

ijk

(xijk � �xij:)( yijk � �yij:):

We can now write SSEy�x in (16.53) in the simplified form

SSEy�x ¼ SSEy �
(SPE)2

SSEx
:

We display these sums of squares and products in Table 16.3.
We now proceed to develop hypothesis tests for factor A, factor C, and the inter-

action AC. The orthogonality of the balanced design is lost when adjustments are
made for the covariate [see comments following (16.34); see also Bingham and
Feinberg (1982)]. We therefore obtain a “total” for each term (A, C, or AC ) by
adding the error SS or SP to the term SS or SP for each of x, y and xy (see the
entries for Aþ E, C þ E, and AC þ E in Table 16.3). These totals are analogous
to SSTy�x ¼ SS(ajm,b)þ SSEy�x in (16.32) for the one-way model. The totals are
used to obtain sums of squares adjusted for the covariate in a manner analogous to
that employed in the one-way model [see (16.30) or the “treatments” line in
Table 16.1]. For example, the adjusted sum of squares SSAy�x for factor A is obtained
as follows:

SS(Aþ E)y�x ¼ SSAy þ SSEy �
(SPAþ SPE)2

SSAx þ SSEx
, (16:58)

SSEy�x ¼ SSEy �
(SPE)2

SSEx
, (16:59)

SSAy�x ¼ SS(Aþ E)y�x � SSEy�x: (16:60)

From inspection of (16.58), (16.59), and (16.60), we see that SSAy�x has a21 degrees
of freedom. The statistic for testing H01:a1 ¼ a2 ¼ � � � ¼ aa, corresponding to the

TABLE 16.3 Sums of Squares and Products for x and y in a Two-Way Model

SS and SP Corrected for the Mean

Source y x xy

A SSAy SSAx SPA
C SSCy SSCx SPC
AC SSACy SSACx SPAC

Error SSEy SSEx SPE
A þ E SSAy þ SSEy SSAx þ SSEx SPA þ SPE
C þ E SSCy þ SSEy SSCx þ SSEx SPC þ SPE
AC þ E SSACy þ SSEy SSACx þ SSEx SPAC þ SPE

460 ANALYSIS-OF-COVARIANCE



main effect of A, is then given by

F ¼ SSAy�x=(a� 1)
SSEy�x=[ac(n� 1)� 1]

, (16:61)

which is distributed as F[a� 1, ac(n� 1)� 1] if H01 is true. Tests for factor C and
the interaction AC are developed in an analogous fashion.

Example 16.4a. In each of three counties in Iowa, a sample of farms was taken from
farms for which landlord and tenant are related and also from farms for which
landlord and tenant are not related. Table 16.4 gives the data for y ¼ value of
crops produced and x ¼ size of farm.

We first obtain the sums of squares and products listed in Table 16.3, where factor
A is relationship status and factor C is county. These are given in Table 16.5, where,

TABLE 16.4 Value of Crops y and Size x of Farms in Three Iowa Counties

County

Landlord–
Tenant

1 2 3

y x y x y x

Related 6399 160 2490 90 4489 120
8456 320 5349 154 10026 245
8453 200 5518 160 5659 160
4891 160 10417 234 5475 160
3491 120 4278 120 11382 320

Not related 6944 160 4936 160 5731 160
6971 160 7376 200 6787 173
4053 120 6216 160 5814 134
8767 280 10313 240 9607 239
6765 160 5124 120 9817 320

Source: Ostle and Mensing (1975, p. 480).

TABLE 16.5 Sums of Squares and Products for x and y

SS and SP Corrected for the Mean

Source y x xy

A 2,378,956.8 132.30 17,740.8
C 8,841,441.3 7724.47 249,752.8
AC 1,497,572.6 2040.20 41,440.3

Error 138,805,865 106,870 3,427,608.6
A þ E 141,184,822 107,002.3 3,445,349.4
C þ E 147,647,306 114,594.5 3,677,361.4
AC þ E 140,303,437 108,910.2 3,469,048.9
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for example, SSAy ¼ 2378956.8, SSAy þ SSEy ¼ 141,184,822, and SPAC þ
SPE ¼ 3,469,048.9.

By (16.58), (16.59), and (16.60), we have

SS(Aþ E)y�x ¼ 30,248,585, SSEy�x ¼ 28,873,230,

SSAy�x ¼ 1,375,355:1:

Then by (16.61), we have

F ¼ SSAy�x=(a� 1)
SSEy�x=[ac(n� 1)� 1]

¼ 1,375,355:1=1
28,873,230=23

¼ 1,375,355:1
1,255,357:8

¼ 1:0956:

The p value is .306, and we do not reject H0:a1 ¼ a2.
Similarly, for factor C, we have

F ¼ 766,750:1=2
1,255,357:8

¼ :3054

with p ¼ .740. For the interaction AC, we obtain

F ¼ 932,749:5=2
1,255,357:8

¼ :3715

with p ¼ .694. A

16.4.2 Test for Slope

To test the hypothesis H02:b ¼ 0, the sum of squares due to b is (SPE)2=SSEx, and
the F statistic is given by

F ¼ (SPE)2=SSEx

SSEy�x=[ac(n� 1)� 1]
, (16:62)

which (under H02 and also H03 below) is distributed as F[1, ac(n� 1)� 1].

Eample 16.4b. To test H0:b ¼ 0 for the farms data in Table 16.4, we use SPE and
SSEx from Table 16.5 and SSEy�x in Example 16.4a. Then by (16.62), we obtain

F ¼ (SPE)2=SSEx

SSEy�x=[ac(n� 1)� 1]

¼ (3,427,608:6)2=106,870
1,255,357:8

¼ 87:5708:

The p value is 2:63� 10�9, and H0:b ¼ 0 is rejected. A
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16.4.3 Test for Homogeneity of Slopes

The test for homogeneity of slopes can be carried out separately for factor A, factor C,
and the interaction AC. We describe the test for homogeneity of slopes among the
levels of A. The hypothesis is

H03:b1 ¼ b2 ¼ � � � ¼ ba;

that is, the regression lines for the a levels of A are parallel. The intercepts, of course,
may be different. To obtain a slope estimator b̂i for the ith level of A, we define SSEx

and SPE for the ith level of A:

SSEx,i ¼
Xc

j¼1

Xn

k¼1

(xijk � �xij:)
2, SPEi ¼

X
jk

(xijk � �xij:)( yijk � �yij:): (16:63)

Then b̂i is obtained as

b̂i ¼
SPEi

SSEx,i
,

and the sum of squares due to bi is (SPEi)2=SSEx,i.
By analogy to (16.46), the sum of squares for the full model in which the bi’s are

different is given by

SS(F) ¼ SSEy �
Xa

i¼1

(SPEi)2

SSEx,i
,

and by analogy to (16.47), the sum of squares in the reduced model with a common
slope is

SS(R) ¼ SSEy �
(SPE)2

SSEx
:

Our test statistic for H03:b1 ¼ b2 ¼ � � � ¼ ba is then similar to (16.49):

F ¼ [SS(R)� SS(F)]=(a� 1)
SS(F)=[ac(n� 1)� 1]

¼
Pa

i¼1 (SPEi)2=SSEx,i � (SPE)2=SSEx

� �
=(a� 1)

[SSEy �
Pa

i¼1 (SPEi)2=SSEx,i]=[ac(n� 1)� a]
, (16:64)

which (under H03) is distributed as F[a� 1, ac(n� 1)� a]. The tests for homo-
geneity of slopes for C and AC are constructed in a similar fashion.
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Example 16.4c. To test homogeneity of slopes for factor A, we first find b̂1 and b̂2

for the two levels of A:

b̂1 ¼
SPE1

SSEx,1
¼ 2,141,839:8

61,359:2
¼ 34:9066,

b̂2 ¼
SPE2

SSEx,2
¼ 1,285,768:8

45,510:8
¼ 28:2519:

Then

SS(F) ¼ SSEy �
X2

i¼1

(SPEi)2

SSEx,i
¼ 27,716,088:7,

SS(R) ¼ SSEy �
(SPE)2

SSEx
¼ 28,873,230:

The difference is SS(R)2SS(F ) ¼ 1,157,140.94. Then by (16.64), we obtain

F ¼ 1,157,140:94=1
27,716,088:7=22

¼ :9185:

The p value is .348, and we do not reject H0:b1 ¼ b2.
For homogeneity of slopes for factor C, we have

b̂1 ¼ 23:2104, b̂2 ¼ 50:0851, b̂3 ¼ 31:6693,

F ¼ 9,506,034:16=2
19,367,195:5=21

¼ 5:1537

with p ¼ .0151. A

16.5 ONE-WAY MODEL WITH MULTIPLE COVARIATES

16.5.1 The Model

In some cases, the researcher has more than one covariate available. Note, however,
that each covariate decreases the error degrees of freedom by 1, and therefore the
inclusion of too many covariates may lead to loss of power.

For the one-way model with q covariates, we use (16.4):

yij ¼ mþ ai þ b1xij1 þ b2xij2 þ � � � þ bqxijq þ 1ij

¼ mþ ai þ b0xij þ 1ij, (16:65)

i ¼ 1, 2, . . . , k, j ¼ 1, 2, . . . , n,
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where b0 ¼ (b1,b2, . . . ,bq) and xij ¼ (xij1, xij2, . . . , xijq)0. For this model, we wish to
test H01:a1 ¼ a2 ¼ � � � ¼ ak and H02:b ¼ 0. We will also extend the model to allow
for a different b vector in each of the k groups and test equality of these b vectors.

The model in (16.65) can be written in matrix notation as

y ¼ Zaþ Xbþ 1,

where Z and a are given following (16.3) and Xb is as given by (16.5):

Xb ¼

x111 x112 � � � x11q

x121 x122 � � � x12q

..

. ..
. ..

.

xkn1 xkn2 � � � xknq

0
BBB@

1
CCCA

b1

b2

..

.

bq

0
BBB@

1
CCCA:

The vector y is kn� 1 and the matrix X is kn� q. We can write y and Xb in parti-
tioned form corresponding to the k groups:

y ¼

y1
y2

..

.

yk

0
BBB@

1
CCCA, Xb ¼

X1

X2

..

.

Xk

0
BBB@

1
CCCAb, (16:66)

where

yi ¼

yi1

yi2

..

.

yin

0
BBB@

1
CCCA and Xi ¼

xi11 xi12 � � � xi1q

xi21 xi22 � � � xi2q

..

. ..
. ..

.

xin1 xin2 � � � xinq

0
BBB@

1
CCCA:

16.5.2 Estimation

We first obtain Exx, exy, and eyy for use in b̂ and SSEy�x. By (16.16), Exx can be
expressed as

Exx ¼ X0 I� Pð ÞX:

Using X partitioned as in (16.66) and I2P in the form given in (16.40), Exx becomes

Exx ¼
Xk

i¼1

X0i I� 1
n

J

� �
Xi (16:67)
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(see Problem 16.10). Similarly, using y partitioned as in (16.66), exy is given by
(16.16) as

exy ¼ X0(I� P)y ¼
Xk

i¼1

X0i I� 1
n

J

� �
yi: (16:68)

By (16.19) and (16.40), we have

eyy ¼ y0(I� P)y ¼
Xk

i¼1

y0i I� 1
n

J

� �
yi: (16:69)

The elements of Exx, exy, and eyy are extensions of the sums of squares and products
found in the three expressions in (16.25).

To examine the elements of the matrix Exx, we first note that I 2 (1/n)J is
symmetric and idempotent and therefore X0i[I� (1=n)J)]Xi in (16.67) can be
written as

X0i(I� (1=n)J)Xi ¼ X0i(I� (1=n)J)0(I� (1=n)J)Xi

¼ X0ciXci,
(16:70)

where Xci ¼ [I� (1=n)J]Xi is the centered matrix

Xci ¼

xi11 � �xi:1 xi12 � �xi:2 � � � xi1q � �xi:q

xi21 � �xi:1 xi22 � �xi:2 � � � xi2q � �xi:q

..

. ..
. ..

.

xin1 � �xi:1 xin2 � �xi:2 � � � xinq � �xi:q

0
BBBBB@

1
CCCCCA

(16:71)

[see (7.33) and Problem 7.15], where �xi:2, for example, is the mean of the second
column of Xi, that is, �xi:2 ¼

Pn
j¼1 xij2=n. By Theorem 2.2c(i), the diagonal elements

of X0ciXci are

Xn

j¼1

(xijr � �xi:r)
2, r ¼ 1, 2, . . . , q, (16:72)

and the off-diagonal elements are

Xn

j¼1

(xijr � �xi:r)(xijs � �xi:s), r = s: (16:73)

By (16.67) and (16.72), the diagonal elements of Exx are

Xk

i¼1

Xn

j¼1

(xijr � �xi:r)
2, r ¼ 1, 2, . . . , q, (16:74)
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and by (16.67) and (16.73), the off-diagonal elements are

Xk

i¼1

Xn

j¼1

(xijr � �xi:r)(xijs � �xi:s), r = s: (16:75)

These are analogous to exx ¼
P

ij (xij � �xi:)2 in (16.25).
To examine the elements of the vector exy, we note that by an argument similar to

that used to obtain (16.70), X0i[I� (1=n)J]yi in (16.68) can be written as

X0i[I� (1=n)J)yi ¼ X0i[I� (1=n)J]0[I� (1=n)J]yi ¼ X0ciyci,

where Xci is as given in (16.71) and

yci ¼

yi1 � �yi:

yi2 � �yi:

..

.

yin � �yi:

0
BBB@

1
CCCA

with �yi: ¼
Pn

j¼1 yij=n. Thus the elements of X0ciyci are of the form

Xn

j¼1

(xijr � �xi:r)( yij � �yi:) r ¼ 1, 2, . . . , q,

and by (16.68), the elements of exy are

Xk

i¼1

Xn

j¼1

(xijr � �xi:r)( yij � �yi:) r ¼ 1, 2, . . . , q:

Similarly, eyy in (16.69) can be written as

eyy ¼
Xk

i¼1

y0i I� 1
n

J

� �0
I� 1

n
J

� �
yi ¼

Xk

i¼1

y0ciyci

¼
Xk

i¼1

Xn

j¼1

( yij � �yi:)
2:

(16:76)

By (16.15), we obtain

b̂ ¼ E�1
xx exy,
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where Exx is as given by (16.67) and exy is as given by (16.68). Likewise, by (16.18),
we have

SSEy�x ¼ eyy � e0xyE�1
xx exy, (16:77)

where eyy is as given in (16.69) or (16.76). The degrees of freedom of SSEy�x are
k(n� 1)� q.

By (16.11) and (13.12), we obtain

â ¼ â0 � (Z0Z)�Z0Xb̂

¼

0

�y1:

�y2:

..

.

�yk:

0
BBBBBBB@

1
CCCCCCCA
�

0

b̂0�x1:

b̂0�x2:

..

.

b̂0�xk:

0
BBBBBBB@

1
CCCCCCCA
¼

0

�y1: � b̂0�x1:

�y2: � b̂0�x2:

..

.

�yk: � b̂0�xk:

0
BBBBBBB@

1
CCCCCCCA

(16:78)

¼

�y1: � (b̂1�x1:1 þ b̂2�x1:2 þ � � � þ b̂q�x1:q)

�y2: � (b̂1�x2:1 þ b̂2�x2:2 þ � � � þ b̂q�x2:q)

..

.

�yk: � (b̂1�xk:1 þ b̂2�xk:2 þ � � � þ b̂q�xk:q)

0
BBBB@

1
CCCCA
: (16:79)

16.5.3 Testing Hypotheses

16.5.3.1 Treatments
To test

H01:a1 ¼ a2 ¼ � � � ¼ ak

adjusted for the q covariates, we use the full–reduced-model approach as in Section
16.3.3.1. The full model is given by (16.65), and the reduced model (with
a1 ¼ a2 ¼ � � � ¼ ak ¼ a) is

yij ¼ mþ aþ b0xij þ 1ij

¼ m� þ b0xij þ 1ij, (16:80)

which is essentially the same as the multiple regression model (7.3). By (7.37) and
(7.39) and by analogy with (16.33),

SSErd ¼ SSTy�x ¼ tyy � t0xyT�1
xx txy, (16:81)
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where tyy is

tyy ¼
X

ij

( yij � �y::)
2,

the elements of txy are

X
ij

(xijr � �x::r)( yij � �y::), r ¼ 1, 2, . . . , q,

and the elements of Txx are

X
ij

(xijr � �x::r)(xijs � �x::s), r ¼ 1, 2, . . . , q, s ¼ 1, 2, . . . , q:

Thus, by analogy with (16.30), we use (16.81) and (16.77) to obtain

SS(ajm,b) ¼ SSTy�x � SSEy�x

¼ tyy � t0xyT�1
xx txy � eyy þ e0xyE�1

xx exy

¼
X

ij

( yij � �y::)
2 �

X
ij

( yij � �yi:)
2 � t0xyT

�1
xx txy þ e0xyE�1

xx exy

¼ n
X

i

(�yi: � �y::)
2 � t0xyT�1

xx txy þ e0xyE�1
xx exy, (16:82)

which has k21 degrees of freedom (see Problem 16.13). We display these sums of
squares and products in Table 16.6.

The test statistic for H01:a1 ¼ a2 ¼ � � � ¼ ak is

F ¼ SS(ajm,b)=(k � 1)
SSEy�x=[k(n� 1)� q]

, (16:83)

which (under H01) is distributed as F[k � 1, k(n� 1)� q].

TABLE 16.6 Analysis-of-Covariance Table for Testing H01:a1 ¼ a2 ¼ � � � ¼ ak in
the One-Way Model with q Covariates

Source SS Adjusted for the Covariate Adjusted df

Treatments SS(ajm,b) ¼ SSTy�x � SSEy�x k 2 1
Error SSEy�x ¼ eyy � e0xyE�1

xx exy k(n 2 1) 2 q

Total SSTy�x ¼ tyy � t0xyT
�1
xx txy kn� q� 1
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16.5.3.2 Slope Vector
To test

H02:b ¼ 0,

the sum of squares is given by (16.22) as

SSH ¼ e0xyE�1
xx exy,

where Exx is as given by (16.67) and exy is the same as in (16.68). The F statistic is
then

F ¼
e0xyE�1

xx exy=q

SSEy�x=[k(n� 1)� q]
, (16:84)

which is distributed as F[q, k(n� 1)� q] if H02:b ¼ 0 is true.

16.5.3.3 Homogeneity of Slope Vectors
The tests of H01:a1 ¼ a2 ¼ � � � ¼ ak and H02:b ¼ 0 assume a common coefficient
vector b for all k groups. To check this assumption, we can extend the model (16.65)
to obtain a full model allowing for different slope vectors:

yij ¼ mþ ai þ b0ixij þ 1ij, i ¼ 1, 2, . . . , k, j ¼ 1, 2, . . . , n: (16:85)

The reduced model with a single slope vector is given by (16.65). We now develop a
test for the hypothesis

H03:b1 ¼ b2 ¼ � � � ¼ bk,

that is, that the k regression planes (for the k treatments) are parallel.
By extension of (16.46) and (16.47), we have

SSE(F)y�x ¼ eyy �
Xk

i¼1

e0xy, iE
�1
xx, iexy, i, (16:86)

SSE(R)y�x ¼ eyy � e0xyE�1
xx exy, (16:87)

where

Exx, i ¼ X0i[I� (1=n)J]Xi and exy, i ¼ X0i[I� (1=n)J]yi

are terms in the summations in (16.67) and (16.68). The degrees of freedom
for SSE(F)y�x and SSE(R)y�x are k(n� 1)� kq ¼ k(n� q� 1) and k(n� 1)� q,
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respectively. Note that SSE(R)y�x in (16.87) is the same as SSEy�x in (16.77). The
estimator of bi for the ith group is

b̂i ¼ E�1
xx, iexy, i: (16:88)

By analogy to (16.48), the sum of squares for testing H03:b1 ¼ b2 ¼ � � � ¼ bk is

SSE(R)y�x � SSE(F)y�x ¼
Pk

i¼1 exy, iE
�1
xx, iexy, i � e0xyE�1

xx exy, which has k(n� 1)�
q� [k(n� 1)� kq] ¼ q(k � 1) degrees of freedom. The test statistic for H03:b1 ¼
b2 ¼ � � � ¼ bk is

F ¼
[SSE(R)y�x � SSE(F)y�x]=q(k � 1)

SSE(F)y�x=k(n� q� 1)
, (16:89)

which is distributed as F[q(k � 1), k(n� q� 1)] if H03 is true. Note that if n is not
large, n2q21 may be small, and the test will have low power.

Example 16.5. In Table 16.7, we have instructor rating y and two course ratings x1

and x2 for five instructors in each of three courses (Morrison 1983, p. 470).
We first find b̂ and SSEy�x. Using (16.67), (16.68), and (16.69), we obtain

Exx ¼
1:0619 0:6791
0:6791 1:2363

� �
, exy ¼

1:0229
1:9394

� �
, exy ¼ 3:6036:

Then by (16.15), we obtain

b̂ ¼ E�1
xx exy ¼

�0:0617
1:6026

� �
:

By (16.77) and (16.81), we have

SSEy�x ¼ :5585, SSTy�x ¼ :7840:

TABLE 16.7 Instructor Rating y and Two Course Ratings x1

and x2 in Three Courses

Course

1 2 3

y x1 x2 y x1 x2 y x1 x2

2.14 2.71 2.50 2.77 2.29 2.45 1.11 1.74 1.82
1.34 2.00 1.95 1.23 1.83 1.64 2.41 2.19 2.54
2.50 2.66 2.69 1.37 1.78 1.83 1.74 1.40 2.23
1.40 2.80 2.00 1.52 2.18 2.24 1.15 1.80 1.82
1.90 2.38 2.30 1.81 2.14 2.11 1.66 2.17 2.35
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Then by (16.82), we see that

SS(ajm,b) ¼ SSTy�x � SSEy�x ¼ :2254:

The F statistic for testing H0:a1 ¼ a2 ¼ a3 is given by (16.83) as

F ¼ SS(ajm,b)=(k � 1)
SSEy�x=[k(n� 1)� q]

¼ :2254=2
:5585=10

¼ 2:0182, p ¼ :184:

To test H02:b ¼ 0, we use (16.84) to obtain

F ¼
e0xyE�1

xx exy=q

SSEy�x=[k(n� 1)� q]
¼ 27:2591, p ¼ 8:95� 10�5:

Before testing homogeneity of slope vectors, H0:b1 ¼ b2 ¼ b3, we first obtain
estimates of b1, b2, and b3 using (16.88):

b̂1 ¼ E�1
xx, 1exy, 1 ¼

:4236 :1900

:1900 :4039

� ��1 :2786

:6254

� �
¼
�0:0467

1:5703

� �
,

b̂2 ¼
:2037 :2758

:2758 :4161

� ��1 :4370

:6649

� �
¼
�0:1781

1:7159

� �
,

b̂3 ¼
:4346 :2133

:2133 :4163

� ��1 :3073

:6492

� �
¼
�0:0779

1:5993

� �
:

Then by (16.86) and (16.87), we obtain

SSE(F)y�x ¼ eyy �
X3

i¼1

e0xy, iE
�1
xx, iexy, i ¼ :55725,

SSE(R)y�x ¼ eyy � e0xyE�1
xx exy ¼ :55855:

The F statistic for testing H0:b1 ¼ b2 ¼ b3 is then given by (16.89) as

F ¼
[SSE(R)y�x � SSE(F)y�x]=q(k � 1)

SSE(F)y�x=k(n� q� 1)

¼ :0012993=4
:55725=6

¼ :003498:

A
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16.6 ANALYSIS OF COVARIANCE WITH UNBALANCED MODELS

The results in previous sections are for balanced ANOVA models to which covariates
have been added. The case in which the ANOVA model is itself unbalanced before
the addition of a covariate was treated by Hendrix et al. (1982), who also discussed
heterogeneity of slopes. The following approach, based on the cell means model of
Chapter 15, was suggested by Bryce (1998).

For an analysis-of-covariance model with a single covariate and a common slope
b, we extend the cell means model (15.3) or (15.18) as

y ¼ (W, x)
m
b

� �
þ 1 ¼Wmþ bxþ 1: (16:90)

This model allows for imbalance in the nij’s as well as the inherent imbalance in
analysis of covariance models [see Bingham and Feinberg (1982) and a comment
following (16.34)]. The vector m contains the means for a one-way model as in
(15.2), a two-way model as in (15.17), or some other model. Hypotheses about
main effects, interactions, the covariate, or other effects can be tested by using

contrasts on
m
b

� �
as in Section 15.3.

The hypothesis H02:b ¼ 0 can be expressed in the form

H02: (0, . . . , 0, 1)
m
b

� �
¼ 0. To test H02, we use a statistic analogous to (15.29) or

(15.32). To test homogeneity of slopes, H03:b1 ¼ b2 ¼ � � � ¼ bk for a one-way
model (or H03:b1 ¼ b2 ¼ � � � ¼ ba for the slopes of the a levels of factor A in a
two-way model, and so on), we expand the model (16.90) to include the bi’s

y ¼ (W, Wx)
m
b

� �
þ 1 ¼WmþWxbþ 1, (16:91)

where b ¼ (b1,b2, . . . ,bk)0 and Wx has a single value of xij in each row and all other
elements are 0s. (The xij in Wx is in the same position as the corresponding 1 in W.)

Then H03:b1 ¼ b2 ¼ � � � ¼ bk can be expressed as H03: (O, C)
m
b

� �
¼ Cb ¼ 0,

where C is a (k � 1)� k matrix of rank k � 1 such that Cj ¼ 0. We can test
H03: Cb ¼ 0 using a statistic analogous to (15.33).

Constraints on the m’s and the b’s can be introduced by inserting nonsingular
matrices A and Ax into (16.91):

y ¼WA�1AmþWxA�1
x Axbþ 1: (16:92)

The matrix A has the form illustrated in (15.37) for constraints on the m’s. The matrix
Ax provides constraints on the b’s. For example, if

Ax ¼
j0

C

� �
,
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where C is a (k � 1)� k matrix of rank k � 1 such that Cj ¼ 0 as above, then the
model (16.92) has a common slope. In some cases, the matrices A and Ax would
be the same.

PROBLEMS

16.1 Show that if the columns of X are linearly independent of those of Z, then
X0(I� P)X is nonsingular, as noted preceding (16.14).

16.2 (a) Show that SSEy�x ¼ eyy � e0xyE�1
xx exy as in (16.18).

(b) Show that eyy ¼ y0(I� P)y as in (16.19).

16.3 Show that for H0:b ¼ 0, we have SSH ¼ b̂0X0(I� P)Xb̂ as in (16.21).

16.4 Show that â ¼ (0, �y1: � b̂�x1:, . . . , �yk: � b̂�xk:)0 as in (16.24).

16.5 Show that exx ¼
P

ij (xij � �xi:)2, exy ¼
P

ij (xij � �xi:)( yij � �yi:), and eyy ¼P
ij ( yij � �yi:)

2, as in (16.25).

16.6 (a) Show that Exx has the form shown in (16.41).

(b) Show that exy has the form shown in (16.43).

16.7 Show that the sums of products in (16.52) and (16.53) can be written asP
ijk (xijk � �xij:)( yijk � �yij:) ¼

P
ijk xijkyijk � n

P
ij �xij:�yij: and

P
ijk (xijk � �x...)

( yijk � �y...) ¼
P

ijk xijkyijk � acn�x...�y...:

16.8 Show that the “treatment sum of products”
P

ij xij:yij:=n� x...y...=acn can be
partitioned into the three sums of products in (16.57).

16.9 (a) Express the sums of squares and test statistic for factor C in a form ana-
logous to those for factor A in (16.58), (16.60), and (16.61).

(b) Express the sums of squares and test statistic for the interaction AC in a
form analogous to those for factor A in (16.58), (16.60), and (16.61).

16.10 (a) Show that Exx ¼
Pk

i¼1 X0i[I� (1=n)J]Xi as in (16.67).

(b) Show that exy ¼
Pk

i¼1 X0i[I� (1=n)J]yi as in (16.68).

(c) Show that eyy ¼
Pk

i¼1 y0i[I� (1=n)J]yi as in (16.69).

16.11 Show that the elements of X0icXic are given by (16.72) and (16.73).

16.12 Show that â has the form given in (16.78).

16.13 Show that
P

ij ( yij � �y::)
2 �

P
ij ( yij � �yi:)

2 ¼ n
P

i (�yi: � �y::)
2 as in (16.82).

16.14 In Table 16.8 we have the weight gain y and initial weight x of pigs under
four diets (treatments).

(a) Estimate b.

(b) Test H0:a1 ¼ a2 ¼ a3 ¼ a4 using F in (16.31).
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(c) Test H0:b ¼ 0 using F in (16.36).

(d) Estimate b1, b2, b3, and b4 and test homogeneity of slopes H0:b1 ¼
b2 ¼ b3 ¼ b4 using F in (16.49).

16.15 In a study to investigate the effect of income and geographic area of residence
on daily calories consumed, three people were chosen at random in each of
the 18 income–zone combinations. Their daily caloric intake y and age x are
recorded in Table 16.9.

(a) Obtain the sums of squares and products listed in Table 16.3, where zone
is factor A and income group is factor C.

(b) Calculate SS(Aþ E)y�x, SSEy�x, and SSAy�x using (16.58), (16.59), and
(16.60). For factor A calculate F by (16.61) for H0:a1 ¼ a2 ¼ a3.
Similarly, obtain the F statistic for factor C and the interaction.

(c) Using SPE, SSEx, and SSEy�x from parts (a) and (b), calculate the F stat-
istic to test H0:b ¼ 0.

(d) Calculate the separate slopes for the three levels of factor A, find SS(F)
and SS(R), and test for homogeneity of slopes. Repeat for factor C.

16.16 In a study to investigate differences in ability to distinguish aurally between
environmental sounds, 10 male subjects and 10 female subjects were
assigned randomly to each of two levels of treatment (experimental and
control). The variables were x = pretest score and y = posttest score on audi-
tory discrimination. The data are given in Table 16.10.

We use the posttest score y as the dependent variable and the pretest score x
as the covariate. This gives the same result as using the gain score (post–pre)
as the dependent variable and the pretest as the covariate (Hendrix et al.
1978).

(a) Obtain the sums of squares and products listed in Table 16.3, where treat-
ment is factor A and gender is factor C.

TABLE 16.8 Gain in Weight y and Initial Weight x
of Pigs

Treatment

1 2 3 4

y x y x y x y x

165 30 180 24 156 34 201 41
170 27 169 31 189 32 173 32
130 20 171 20 138 35 200 30
156 21 161 26 190 35 193 35
167 33 180 20 160 30 142 28
151 29 170 25 172 29 189 36

Source: Ostle and Malone (1988, p. 445).
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TABLE 16.9 Caloric Intake y and Age x for People
Classified by Geographic Zone and Income Group

Income
Group

Zone 1 Zone 2 Zone 3

y x y x y x

1 1911 46 1318 80 1127 74
1560 66 1541 67 1509 71
2639 38 1350 73 1756 60

2 1034 50 1559 58 1054 83
2096 33 1260 74 2238 47
1356 44 1772 44 1599 71

3 2130 35 2027 32 1479 56
1878 45 1414 51 1837 40
1152 59 1526 34 1437 66

4 1297 68 1938 33 2136 31
2093 43 1551 40 1765 56
2035 59 1450 39 1056 70

5 2189 33 1183 54 1156 47
2078 36 1967 36 2660 43
1905 38 1452 53 1474 50

6 1156 57 2599 35 1015 63
1809 52 2355 64 2555 34
1997 44 1932 79 1436 54

Source: Ostle and Mensing (1975, p. 482).

TABLE 16.10 Pretest Score x and Posttest Score y on
Auditory Discrimination

Male Female

Exp.a Control Exp. Control

x y x y x y x y

58 71 35 49 64 71 68 70
57 69 31 69 39 71 52 64
63 71 54 69 69 71 53 67
66 70 65 65 56 76 43 63
45 65 54 63 67 71 54 63
51 69 37 55 39 65 35 53
62 69 64 66 32 66 62 65
58 66 69 69 62 70 67 69
52 61 70 69 64 68 51 68
59 63 39 57 66 68 42 61

aExperimental.
Source: Hendrix (1967, pp. 154–157).
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(b) Calculate SS(Aþ E)y�x, SSEy�x, and SSAy�x using (16.58), (16.59), and
(16.60). For factor A calculate F by (16.61) for H0:a1 ¼ a2.
Similarly, obtain the F statistic for factor C and the interaction.

(c) Using SPE, SSEx, and SSEy�x from parts (a) and (b), calculate the F stat-
istic to test H0:b ¼ 0.

(d) Calculate the separate slopes for the two levels of factor A, find SS(F)
and SS(R), and test for homogeneity of slopes. Repeat for factor C.

16.17 In an experiment comparing four diets (treatments), the weight gain y
(pounds per day) of pigs was recorded along with two covariates, initial
age x1 (days) and initial weight x2 (pounds). The data are presented in
Table 16.11.

(a) Using (16.67), (16.68), and (16.69), find Exx, exy, and eyy. Find b̂.

(b) Using (16.77), (16.81), and (16.82), find SSEy�x, SSTy�x, and SS(ajm,b).
Then test H0:a1 ¼ a2 ¼ a3 ¼ a4, adjusted for the covariates, using the
F statistic in (16.83).

(c) Test H0:b ¼ 0 using (16.84).

(d) Find b̂1, b̂2, b̂3, and b̂4 using (16.88). Find SSE(F)y�x and SSE(R)y�x
using (16.86) and (16.87). Test H0:b1 ¼ b2 ¼ b3 ¼ b4 using (16.89).

TABLE 16.11 Initial Age x1, Initial Weight x2, and Rate of Gain y of 40 Pigs

Treatment 1 Treatment 2 Treatment 3 Treatment 4

x1 x2 y x1 x2 y x1 x2 y x1 x2 y

78 61 1.40 78 74 1.61 78 80 1.67 77 62 1.40
90 59 1.79 99 75 1.31 83 61 1.41 71 55 1.47
94 76 1.72 80 64 1.12 79 62 1.73 78 62 1.37
71 50 1.47 75 48 1.35 70 47 1.23 70 43 1.15
99 61 1.26 94 62 1.29 85 59 1.49 95 57 1.22
80 54 1.28 91 42 1.24 83 42 1.22 96 51 1.48
83 57 1.34 75 52 1.29 71 47 1.39 71 41 1.31
75 45 1.55 63 43 1.43 66 52 1.39 63 40 1.27
62 41 1.57 62 50 1.29 67 40 1.56 62 45 1.22
67 40 1.26 67 40 1.26 67 40 1.36 67 39 1.36

Source: Snedecor and Cochran (1967, p. 440).
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17 Linear Mixed Models

17.1 INTRODUCTION

In Section 7.8 we briefly considered linear models in which the y variables are
correlated or have nonconstant variances (or both). We used the model

y ¼ Xbþ 1, E(1) ¼ 0, cov(1) ¼ S ¼ s 2V, (17:1)

where V is a known positive definite matrix, and developed estimators for b in (7.63)
and s2 in (7.65). Hypothesis tests and confidence intervals were not given, but they
could have been developed by adding the assumption of normality and modifying the
approaches of Chapter 8 (see Problems 17.1 and 17.2).

Correlated data are commonly encountered in practice (Brown and Prescott 2006,
pp. 1–3; Fitzmaurice et al. 2004, p. xvi; Mclean et al. 1991). We can use the methods
of Section 7.8 as a starting point in approaching such data, but those methods are
actually of limited practical use because we rarely, if ever, know V. On the other
hand, the structure of V is often known and in many cases can be specified up to rela-
tively few unknown parameters. This chapter is an introduction to linear models for
correlated y variables where the structure of S ¼ s2V can be specified.

17.2 THE LINEAR MIXED MODEL

Nonindependence of observations may result from serial correlation or clustering of
the observations (Diggle et al. 2002). Serial correlation, which will not be discussed
further in this chapter, is present when a time- (or space-) varying stochastic process is
operating on the units and the units are repeatedly measured over time (or space).
Cluster correlation is present when the observations are grouped in various ways.
The groupings might be due, for example, to repeated random sampling of subgroups
or repeated measuring of the same units. Examples are given in Section 17.3. In many
cases the covariance structure of cluster-correlated data can be specified using an
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extension of the standard linear model (7.4) resembling the partitioned linear model
(7.78). If y is an n � 1 vector of responses, the model is

y ¼ Xbþ Z1a1 þ Z2a2 þ � � � þ Zmam þ 1, (17:2)

where E(1) ¼ 0 and cov(1) ¼ s2In as usual. Here X is an n � p known, possibly non-
full-rank matrix of fixed predictors as in Chapters 7, 8, 11, 12, and 16. It could be
used to specify a multiple regression model, analysis-of-variance model, or analysis
of covariance model. It could be as simple as vector of 1s. As usual, b is an n � 1
vector of unknown fixed parameters.

The Z i’s are known n � ri full-rank matrices of fixed predictors, usually used to
specify membership in the various clusters or subgroups. The major innovation in
this model is that the a i’s are ri � 1 vectors of unknown random quantities similar
to 1. We assume that E(a i) ¼ 0 and cov(ai) ¼ s 2

i Iri for i ¼ 1, . . . , m. For simplicity
we further assume that cov(ai, aj) ¼ O for i = j, where O is ri � rj, and that
cov(a i, 1) ¼ O for all i, where O is ri � n. These assumptions are often reasonable
(McCulloch and Searle 2001, pp. 159–160).

Note that this model is very different from the random-x model of Chapter 10.
In Chapter 10 the predictors in X were random while the parameters in b were
fixed. Here the opposite scenario applies; predictors in each Z i are fixed while the
elements of a i are random. On the other hand, this model has much in common
with the Bayesian linear model of Chapter 11. In fact, if the normality assumption
is added, the model can be stated in a form reminiscent of the Bayesian linear
model as

yja1, a2, . . . , am is Nn(Xbþ Z1a1 þ Z2a2 þ � � � þ Zmam,s 2In),

ai is Nni (0,si
2Iri ) for i ¼ 1, . . . , m:

The label linear mixed model seems appropriate to describe (17.2) because the
model involves a mixture of linear functions of fixed parameters in b and linear func-
tions of random quantities in the a i’s. The special case in which X ¼ j (so that there is
only one fixed parameter) is sometimes referred to as a random model. The si

2’s
(including s2) are referred to as variance components.

We now investigate E(y) and cov(y) ¼ S under the model in (17.2).

Theorem 17.2. Consider the model y ¼ Xbþ
Pm

i¼1 Ziai þ 1, where X is a known
n � p matrix, the Zi’s are known n � ri full-rank matrices, b is a p � 1 vector of
unknown parameters, 1 is an n � 1 unknown random vector such that E(1) ¼ 0
and cov(1) ¼ s 2In, and the ai

0s are ri � 1 unknown random vectors such that
E(ai) ¼ 0 and cov(ai) ¼ si

2Iri . Furthermore, cov(ai, aj) ¼ O for i = j, where O is
ri � rj, and cov(ai, 1) ¼ O for all i, where O is ri � n. Then E(y) ¼ Xb and
cov(y) ¼ S ¼

Pm
i¼1 s

2
i ZiZ

0
i þ s 2In:
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PROOF

E(y)¼ E Xbþ
Xm

i¼1

Ziaiþ 1

 !

¼ XbþE
Xm

i¼1

Ziaiþ 1

 !

¼ Xbþ
Xm

i¼1

ZiE(ai)þE(1) [by (3:21) and (3:38)]

¼ Xb:

cov(y)¼ cov Xbþ
Xm

i¼1

Ziaiþ 1

 !

¼ cov
Xm

i¼1

Ziaiþ 1

 !

¼
Xm

i¼1

cov(Ziai)þ cov(1)þ
X
i=j

cov(Ziai, Zjaj)

þ
Xm

i¼1

cov(Ziai, 1)þ
Xm

i¼1

cov(1, Ziai) [see Problem 3:19]

¼
Xm

i¼1

Zicov(ai)Z
0
iþ cov(1)þ

X
i=j

Zicov(ai, aj)Z
0
j

þ
Xm

i¼1

Zicov(ai, 1)þ
Xm

i¼1

cov(1, ai)Z
0
i [by Theorem 3.6d and Theorem 3.6e]

¼
Xm

i¼1

si
2ZiZ

0
iþs 2In: A

Note that the z’s only enter into the covariance structure while the x’s only determine
the mean of y.

17.3 EXAMPLES

We illustrate the broad applicability of the model in (17.2) with several simple
examples.

Example 17.3a (Randomized Blocks). An experiment involving three treatments
was carried out by randomly assigning the treatments to experimental units within
each of four blocks of size 3. We could use the model

yij ¼ mþ ti þ aj þ 1ij,
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where i ¼ 1, . . . , 3, j ¼ 1, . . . , 4, aj is N(0,s 2
1 ), 1ij is N(0, s 2), and cov(aj, 1ij) ¼ 0.

If we assume that the observations are sorted by blocks and treatments within
blocks, we can express this model in the form of (17.2) with

m ¼ 1, X ¼

j3 I3

j3 I3

j3 I3

j3 I3

0
BB@

1
CCA, and Z1 ¼

j3 03 03 03

03 j3 03 03

03 03 j3 03

03 03 03 j3

0
BB@

1
CCA:

Then

s ¼ s1
2Z1Z01 þ s 2I12 ¼

S1 O O O

O S1 O O

O O S1 O

O O O S1

0
BBB@

1
CCCA,

where S1 ¼
s 2

1 þ s 2 s 2
1 s 2

1

s 2
1 s 2

1 þ s 2 s 2
1

s 2
1 s 2

1 s 2
1 þ s 2

0
B@

1
CA:

A

Example 17.3b (Subsampling). Five batches were produced using each of two pro-
cesses. Two samples were obtained and measured from each of the batches.
Constraining the process effects to sum to zero, the model is

yijk ¼ mþ ti þ aij þ 1ijk,

where i ¼ 1, 2; j ¼ 1, . . . , 5; k ¼ 1, 2; t2 ¼ �t1; aij is N(0,s2
1); 1ijk is N(0,s2); and

cov(aij, 1ijk) ¼ 0. If the observations are sorted by processes, batches within pro-
cesses, and samples within batches, we can put this model in the form of (17.2) with

m ¼ 1, X ¼ j10 j10
j10 �j10

� �
and Z1 ¼

j2 02 � � � 02

02 j2 � � � 02

..

. ..
. ..

.

02 02 � � � j2

0
BBB@

1
CCCA:

Hence

S ¼ s 2
1 Z1Z01 þ s 2I20 ¼

S1 O � � � O

O S1 � � � O

..

. ..
. ..

.

O O � � � S1

0
BBBB@

1
CCCCA

,

where S1 ¼
s 2

1 þ s 2 s 2
1

s 2
1 s 2

1 þ s 2

 !
:

A
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Example 17.3c (Split-Plot Studies). A 3 � 2 factorial experiment (with factors A
and B, respectively) was carried out using six main units, each of which was subdi-
vided into two subunits. The levels of A were each randomly assigned to two of the
main units, and the levels of B were randomly assigned to subunits within main units.
An appropriate model is

yijk ¼ mþ ti þ dj þ uij þ aik þ 1ijk,

where i ¼ 1, . . . , 3; j ¼ 1, 2; k ¼ 1, 2; aik is N(0, s1
2); 1ijk is N(0, s 2) and

cov(aik, 1ijk) ¼ 0. If the observations are sorted by levels of A, main units within
levels of A, and levels of B within main units, we can express this model in the
form of (17.2) with

m ¼ 1, X ¼

1 1 0 0 1 0 1 0 0 0 0 0

1 1 0 0 0 1 0 1 0 0 0 0

1 1 0 0 1 0 1 0 0 0 0 0

1 1 0 0 0 1 0 1 0 0 0 0

1 0 1 0 1 0 0 0 1 0 0 0

1 0 1 0 0 1 0 0 0 1 0 0

1 0 1 0 1 0 0 0 1 0 0 0

1 0 1 0 0 1 0 0 0 1 0 0

1 0 0 1 1 0 0 0 0 0 1 0

1 0 0 1 0 1 0 0 0 0 0 1

1 0 0 1 1 0 0 0 0 0 1 0

1 0 0 1 0 1 0 0 0 0 0 1

0
BBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCA

, and

Z1 ¼

1 0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 1

0
BBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCA

:
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Then

S ¼ s1
2Z1Z01 þ s 2I12 ¼

S1 O � � � O

O S1 � � � O

..

. ..
. ..

.

O O � � � S1

0
BBBBB@

1
CCCCCA

, where

S1 ¼
s1

2 þ s2 s 2
1

s 2
1 s1

2 þ s 2

 !
:

A

Example 17.3d (One-Way Random Effects). A chemical plant produced a large
number of batches. Each batch was packaged into a large number of containers.
We chose three batches at random, and randomly selected four containers from
each batch from which to measure y. The model is

yij ¼ mþ ai þ 1ij,

where i ¼ 1, . . . , 3; j ¼ 1, . . . , 4; aj is N(0, s1
2); 1ij is N(0, s 2); and cov(aj, 1ij) ¼ 0.

If the observations are sorted by batches and containers within batches, we can
express this model in the form of (17.2) with

m ¼ 1, X ¼ j12, and Z1 ¼
j4 04 04

04 j4 04

04 04 j4

0
@

1
A:

Thus

S ¼ s1
2Z1Z01 þ s 2I12 ¼

S1 O O

O S1 O

O O S1

0
B@

1
CA, where

S1 ¼

s1
2 þ s 2 s 2

1 s 2
1 s 2

1

s 2
1 s1

2 þ s 2 s 2
1 s 2

1

s 2
1 s 2

1 s1
2 þ s 2 s 2

1

s 2
1 s 2

1 s 2
1 s1

2 þ s 2

0
BBB@

1
CCCA:

A

Example 17.3e (Independent Random Coefficients). Three pups from each of
four litters of mice were used in an experiment. One pup from each litter was
exposed to one of three quantitative levels of a carcinogen. The relationship
between weight gain ( y) and carcinogen level is a straight line, but slopes and
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intercepts vary randomly and independently among litters. The three levels of the
carcinogen are denoted by x. The model is

yij ¼ b0 þ ai þ b1xj þ bixj þ 1ij,

where i ¼ 1, . . . , 4; j ¼ 1, . . . , 3; ai is N(0, s1
2); bi is N(0, s2

2); 1ij is N(0, s 2), and
all the random effects are independent. If the data are sorted by litter and carcinogen
levels within litter, we can express this model in the form of (17.2) with

m ¼ 2, X ¼

j3 x
j3 x
j3 x
j3 x

0
BB@

1
CCA, Z1 ¼

j3 03 03 03

03 j3 03 03

03 03 j3 03

03 03 03 j3

0
BB@

1
CCA, and

Z2 ¼

x 03 03 03

03 x 03 03

03 03 x 03

03 03 03 x

0
BB@

1
CCA:

Then

S ¼ s1
2Z1Z01 þ s2

2Z2Z02 þ s 2I12 ¼

S1 O O O

O S1 O O

O O S1 O

O O O S1

0
BBB@

1
CCCA,

where S1 ¼ s1
2J3 þ s2

2xx0 þ s 2I3:
A

Example 17.3f (Heterogeneous Variances). Four individuals were randomly
sampled from each of four groups. The groups had different means and different
variances. We assume here that s 2 ¼ 0. The model is

yij ¼ mi þ 1ij,

where i ¼ 1, . . . , 4; j ¼ 1, . . . , 4; 1ij is N(0, si
2). If the data are sorted by groups and

individuals within groups, we can express this model in the form of (17.2) with

m ¼ 4, X ¼

I4

I4

I4

I4

0
BBB@

1
CCCA, Z1 ¼

I4

O4

O4

O4

0
BBB@

1
CCCA, Z2 ¼

O4

I4

O4

O4

0
BBB@

1
CCCA, Z3 ¼

O4

O4

I4

O4

0
BBB@

1
CCCA,

and Z4 ¼

O4

O4

O4

I4

0
BBB@

1
CCCA:
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Hence

S¼s1
2Z1Z01þs2

2Z2Z02þs3
2Z3Z03þs4

2Z4Z04¼
s1

2I4 O4 O4 O4

O4 s2
2I4 O4 O4

O4 O4 s3
2I4 O4

O4 O4 O4 s4
2I4

0
BB@

1
CCA:

A

These models can be generalized and combined to yield a rich set of models appli-
cable to a broad spectrum of situations (see Problem 17.3). All the examples involved
balanced data for convenience of description, but model (17.2) applies equally well to
unbalanced situations. Allowing the covariance matrices of the ai’s and 1 to be non-
diagonal (providing for such things as serial correlation) increases the scope of appli-
cation of these models even more, with only moderate increases in complexity (see
Problem 17.4).

17.4 ESTIMATION OF VARIANCE COMPONENTS

After specifying the appropriate model, the next task in using the linear mixed model
(17.2) in the analysis of data is to estimate the variance components. Once the var-
iance components have been estimated, S can be estimated and the estimate used
in the approximate generalized least-squares estimation of b and other inferences
as suggested by the results of Section 7.8.

Several methods for estimation of the variance components have been proposed
(Searle et al. 1992, pp. 168–257). We discuss one of these approaches, that of
restricted (or residual) maximum likelihood (REML) (Patterson and Thompson
1971). One reason for our emphasis of REML is that in standard linear models,
the usual estimate s2 in (7.22) is the REML estimate. Also, REML is general; for
example, it can be applied regardless of balance. In certain balanced situations the
REML estimator has closed form. It is often the best (minimum variance) quadratic
unbiased estimator (see Theorem 7.3g).

To develop the REML estimator, we add the normality assumption. Thus the
model is

y is Nn(Xb, S), where S ¼
Xm

i¼1

si
2ZiZ

0
i þ s 2In, (17:3)

where X is n� p of rank r � p, and S is a positive definite n� n matrix. To simplify
the notation, we let s 2

0 ¼ s 2 and Z0 ¼ In so that (17.3) becomes

y is Nn(Xb, S), where S ¼
Xm

i¼0

si
2ZiZ

0
i: (17:4)
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The idea of REML is to carry out maximum likelihood estimation for data Ky
rather than y, where K is chosen so that the distribution of Ky involves only the var-
iance components, not b. In order for this to occur, we seek a matrix K such that
KX ¼ O. Hence E(Ky) ¼ KX ¼ 0. For simplicity we require that K be of full-
rank. We also want Ky to contain as much information as possible about the variance
components, so K must have the maximal number of rows for such a matrix.

Theorem 17.4a. Let X be as in (17.3). A full-rank matrix K with maximal number of
rows such that KX ¼ O, is an (n� r)� n matrix. Furthermore, K must be of the form
K ¼ C(I�H) ¼ C[I� X(X0X)�X0] where C specifies a full-rank transformation of
the rows of I�H.

PROOF. The rows k0i of K must satisfy the equations k0iX ¼ 00 or equivalently
X0ki ¼ 0. Using Theorem 2.8e, solutions to this system of equations are given by
ki ¼ (I� X�X)c for all possible p� 1 vectors c. In other words, the solutions
include all possible linear combinations of the columns of I� X�X.

By Theorem 2.8c(i), rank(X�X) ¼ rank(X) ¼ r. Also, by Theorem 2.13e,
I� X�X is idempotent. Because of this idempotency, rank(I� X�X) ¼
tr(I� X�X) ¼ tr(I)� tr(X�X) ¼ n� r. Hence by the definition of rank (see
Section 2.4), there are n� r linearly independent vectors ki that satisfy X0ki ¼ 0
and thus the maximal number of rows in K is n� r.

Since ki ¼ (I� X�X)c, K ¼ C(I� X�X) for some full-rank (n� r)� n matrix
C that specifies n� r linearly independent linear combinations of the rows of the
symmetric matrix I� X�X. By Theorem 2.8c(iv)–(v), K can also be written as
C(I�H) ¼ C[I� X(X0X)�X0]. A

There are an infinite number of such Ks, and it does not matter which is used.
Also, note that (I�H)y gives the ordinary residual vector 1̂ in (9.5), so that
Ky ¼ C(I�H)y is a vector of linear combinations of these residuals. Thus the
designation residual maximum likelihood is appropriate.

The distribution of Ky for any K defined as in Theorem 17.4a is given in the
following theorem.

Theorem 17.4b. Consider the model in which y is Nn(Xb, S), where
S ¼

Pm
i¼0 s

2
i ZiZ

0
i, and let K be specified as in Theorem 17.4a. Then

Ky is Nn�r(0, KSK0) or Nn�r 0, K
Xm

i¼0

s 2
i ZiZ

0
i

 !
K0

" #
: (17:5)

PROOF. Since KX ¼ O, the theorem follows directly from Theorem 4.4a(ii). A

Thus the distribution of the transformed data Ky involves only the mþ 1 variance
components as unknown parameters. In order to estimate the variance components,
the next step in REML is to maximize the likelihood of Ky with respect to these
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variance components. We now develop a set of estimating equations by taking partial
derivatives of the log likelihood with respect to the variance components, and setting
them to zero.

Theorem 17.4c. Consider the model in which y is Nn(Xb, S), where
S ¼

Pm
i¼0 si

2ZiZ
0
i, and let K be specified as in Theorem 17.4a. Then a set of

mþ 1 estimating equations for s 2
0 , . . . ,s 2

m is given by

tr[K0(KSK0)�1KZiZ
0
i] ¼ y0K0(KSK0)�1KZiZ

0
iK
0(KSK0)�1Ky (17:6)

for i ¼ 0, . . . , m.

PROOF. Since E(Ky) ¼ 0, the log likelihood of Ky is

ln L(s 2
0 , . . . ,s 2

m) ¼ n� r

2
ln (2p)� 1

2
ln jKSK0j � 1

2
y0K0(KSK0)�1Ky

¼ n� r

2
ln (2p)� 1

2
ln K

Xm

i¼0

si
2ZiZ

0
i

 !
K0

�����

�����

� 1
2

y0K0 K
Xm

i¼0

si
2ZiZ

0
i

 !
K0

" #�1

Ky

Using (2.117) and (2.118) to take the partial derivative of ln L(s 2
0 , . . . ,s 2

m) with
respect to each of the si

2’s, we obtain

@

@si
2

ln L(s 2
0 , . . . ,s 2

m) ¼ � 1
2

tr (KSK0)�1 @

@si
2

(KSK0)

� �� �

þ 1
2

y0K0(KSK0)�1 @

@si
2

(KSK0)

� �
(KSK0)�1Ky

¼ � 1
2

tr[(KSK0)�1KZiZ
0
iK
0]

þ 1
2

y0K0(KSK0)�1KZiZ
0
iK
0(KSK0)�1Ky

¼ � 1
2

tr[K0(KSK0)�1KZiZ
0
i]

þ 1
2

y0K0(KSK0)�1KZiZ
0
iK
0(KSK0)�1Ky

Setting these equations to zero, the result follows. A
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It is interesting to note that using Theorem 5.2a, the expected value of the quad-
ratic form on the right side of (17.6) is given by the left side of (17.6).

Applying Theorem 17.4c, we obtain mþ 1 equations in mþ 1 unknown si
2’s. In

some cases these equations can be simplified to yield closed-form estimating
equations. In most cases, numerical methods have to be used to solve the equations
(McCulloch and Searle 2001, pp. 263–269).

If the solutions to the equations are nonnegative, the solutions are REML estimates
of the variance components. If any of the solutions are negative, the log likelihood
must be examined to find values of the variance components within the parameter
space (i.e., nonnegative values) that maximize the function.

Example 17.4 (One-Way Random Effects). This is an extension of Example
17.3(d). Four containers are randomly selected from each of three batches produced
by a chemical plant. Hence

X ¼ j12, Z0 ¼ I12, Z1 ¼
j4 04 04

04 j4 04

04 04 j4

0
B@

1
CA and S ¼ s 2

0 I12 þ s 2
1 Z1Z01:

Then I�H ¼ I12 � 1
12 J12, a suitable C would be C ¼ (I12, 012), and K ¼ C(I�H).

Inserting these matrices into (17.6), it can be shown that we obtain the two estimating
equations

9s 2
0 ¼ y0(I12 � 1

4 Z1Z01)y,

2(4s 2
1 þ s 2

0 ) ¼ y0( 1
4 Z1Z01 � 1

12 J12)y:

From these we obtain the closed-form solutions

ŝ2
0 ¼

y0 I12 � 1
4 Z1Z01

� �
y

9
,

ŝ 2
1 ¼

y0 1
4 Z1Z01 � 1

12 J12
� �

y=2� ŝ 2
0

4
:

If both ŝ 2
0 and ŝ 2

1 are positive, they are the REML estimates of s 2
0 and s 2

1 . Because
(I12 � 1

4 Z1Z01) is positive definite, ŝ 2
0 will always be positive. However, ŝ 2

1 could be
negative. In such a case, the REML estimates become

ŝ 2
0 ¼

y0 I12 � 1
12 J12

� �
y

11
,

ŝ 2
1 ¼ 0:

A
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In practice, the equations in (17.6) are seldom used directly to obtain solutions.
The usual procedure involves any of a number of iterative methods (Rao 1997
pp. 104–105, McCulloch and Searle 2001, pp. 265–269) To motivate one of
these methods, note that the system of mþ 1 equations generated by (17.6) can be
written as

Ms ¼ q, (17:7)

where s ¼ (s 2
0s

2
1 � � �s 2

m)0, M is a nonsingular (mþ 1)� (mþ 1) matrix with (ij)th
element tr[K0(KSK0)�1KZiZ

0
iK
0(KSK0)�1KZjZ

0
j], and q is an (mþ 1)� 1 vector

with ith element y0K0(KSK0)�1KZiZ
0
iK
0(KSK0)�1Ky (Problem 17.6). Equation

(17.7) is more complicated than it looks because both M and q are themselves func-
tions of s. Nonetheless, the equation is useful for stepwise improvement of an initial
guess s(1). The method proceeds by computing M(t) and q(t) using s(t) at step t. Then

let s(tþ1) ¼M�1
(t) q(t). The procedure continues until s(t) converges.

17.5 INFERENCE FOR b

17.5.1 An Estimator for b

Estimates of the variance components can be inserted into S to obtain

Ŝ ¼
Pm

i¼0 ŝ
2
i ZiZ

0
i. A sensible estimator for b is then obtained by replacing s 2V

in equation (7.64) by its estimate, Ŝ. Generalizing the model to accommodate non-
full-rank X matrices, we obtain

b̂ ¼ (X0Ŝ�1X)�X0Ŝ�1y: (17:8)

This estimator, sometimes called the estimated generalized least-squares (EGLS)
estimator, is a nonlinear function of y (since Ŝ is a nonlinear function of y). Even

if X is full-rank, b̂ is not in general a (minimum variance) unbiased estimator
(MVUE) or normally distributed. However, it is always asymptotically MVUE and
normally distributed (Fuller and Battese 1973).

Similarly, a sensible approximate covariance matrix for b̂ is, by extension of
(12.18), as follows:

cov(b̂) ¼ (X0Ŝ�1X)�X0Ŝ�1X(X0Ŝ�1X)�: (17:9)

Of course, if X is full-rank, the expression in (17.9) simplifies to

cov(b̂) ¼ (X0Ŝ�1X)�1:
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17.5.2 Large-Sample Inference for Estimable Functions of b

Carrying the procedure of replacing s 2V by its estimate Ŝ a bit further, it seems
reasonable to extend Theorem 12.7c(ii) and conclude that for a known full-rank
g� p matrix L whose rows define estimable functions of b

Lb̂ is approximately Ng[Lb, L(X0Ŝ�1X)�L0] (17:10)

and therefore by (5.35)

(Lb̂� Lb)0[L(X0Ŝ�1X)�L0]�1(Lb̂� Lb) is approximately x 2(g): (17:11)

If so, an approximate general linear hypothesis test for the testable hypothesis
H0 : Lb ¼ t is carried out using the test statistic

G ¼ (Lb̂� t)0[L(X0Ŝ�1X)�L0]�1(Lb̂� t): (17:12)

If H0 is true, G is approximately distributed as x 2(g). If H0 is false, G is approxi-

mately distributed as x 2(g,l) where l ¼ (Lb� t)0[L(X0S�1X)�L0]�1(Lb� t).
The test is carried out by rejecting H0 if G � x 2

a, g.
Similarly, an approximate 100(1� a)% confidence interval for a single estimable

function c0b is given by

c0b̂+ za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c0(X0Ŝ�1X)�c

q
: (17:13)

Approximate joint confidence regions for b, approximate confidence intervals for
individual bj’s, and approximate confidence intervals for E(y) can be similarly pro-
posed using (17.10) and (17.11).

17.5.3 Small-Sample Inference for Estimable Functions of b

The inferences of Section 17.5.2 are not satisfactory for small samples. Exact small-
sample inferences based on the t distribution and F distribution are available in rare
cases, but are not generally available for mixed models. However, much work has
been done on approximate inference for small sample mixed models.

First we discuss the exact small-sample inferences that are available in rare cases,
usually involving balanced designs, nonnegative solutions to the REML equations,
and certain estimable functions. In order for this to occur, [L(X0Ŝ�1X)�L0]�1 must
be of the form (d=w)Q, where w is a central chi-square random variable with d

degrees of freedom, and independently (Lb̂� t)0Q(Lb̂� t) must be distributed as
a (possibly noncentral) chi-square random variable with g degrees of freedom.
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Under these conditions, by (5.30), the statistic

(Lb̂� t)0Q(Lb̂� t)
g

w

d
¼ (Lb̂� t)0[L(X0Ŝ�1X)�L0]�1(Lb̂� t)

g

is F-distributed. We demonstrate this with an example.

Example 17.5 (Balanced Split-Plot Study). Similarly to Example 17.3c, consider a
3� 2 balanced factorial experiment carried out using six main units, each of which is
subdivided into two subunits. The levels of A are each randomly assigned to two of
the main units, and the levels of B are randomly assigned to subunits within main
units. We assume that the data are sorted by replicates (with two complete replicates
in the study), levels of A, and then levels of B. We use the cell means parameterization
as in Section 14.3.1. The means in b are sorted by levels of A and then levels of B.
Hence

X ¼
I6

I6

� �
and S ¼

S1 O O O O O

O S1 O O O O

O O S1 O O O

O O O S1 O O

O O O O S1 O

O O O O O S1

0
BBBBBBBB@

1
CCCCCCCCA
; where

S1 ¼
s 2

1 þ s 2 s 2
1

s 2
1 s 2

1 þ s 2

 !
:

We test the no-interaction hypothesis H0 : Lb ¼ 0, where

L ¼ 1 �1 �1 1 0 0
1 �1 0 0 �1 1

� �
:

Assuming that the REML estimating equations yield nonnegative solutions, ŝ 2 is
given by

ŝ2 ¼ 1
12 y0

R O O �R O O
O R O O �R O
O O R O O �R
�R O O R O O

O �R O O R O
O O �R O O R

0
BBBBBB@

1
CCCCCCA

y where R ¼ 1 �1
�1 1

� �
:
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Multiplying and simplifying, we obtain

X0Ŝ�1X ¼ 2
Ŝ�1

1 O O

O Ŝ�1
1 O

O O Ŝ
�1
1

0
B@

1
CA:

By (2.52), we have

(X0Ŝ�1X)�1 ¼ 1
2

Ŝ�1
1 O O

O Ŝ�1
1 O

O O Ŝ�1
1

0
B@

1
CA:

Thus

[L(X0Ŝ�1X)�1L0]�1

¼ 1
2

1 �1 �1 1 0 0

1 �1 0 0 �1 1

� � Ŝ1 O O

O Ŝ1 O

O O Ŝ1

0
B@

1
CA

1 1

�1 �1

�1 0

1 0

0 �1

0 1

0
BBBBBBBB@

1
CCCCCCCCA

2
666666664

3
777777775

�1

¼ � 3
3ŝ 2=ŝ 2

1
3s 2

2 �1

�1 2

� �� �

¼ 3
w

Q,

where

w ¼ 3ŝ 2

s 2
and Q ¼ 1

3s 2

2 �1
�1 2

� �
: (17:14)

Also note that in this particular case, the EGLS estimator is equal to the ordinary
least-squares estimator for b since

b̂ ¼ (X0Ŝ�1X)�1X0Ŝ�1y

¼ 1
2

Ŝ1 O O

O Ŝ1 O

O O Ŝ1

0
B@

1
CA

Ŝ�1
1 O O Ŝ�1

1 O O

O Ŝ�1
1 O O Ŝ�1

1 O

O O Ŝ
�1
1 O O Ŝ

�1
1

0
BBB@

1
CCCAy

¼ 1
2 I6 I6ð Þy

¼ (X0X)�1X0y:
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Hence

(Lb̂)0Q(Lb̂) ¼ y0X(X0X)�1L0QL(X0X)�1X0y:

It can be shown that X(X0X)�1L0QL(X0X)�1X0S is idempotent, and thus

(Lb̂)0Q(Lb̂) is distributed as a chi-square with 2 degrees of freedom. It can similarly
be shown that w is a chi-square with 3 degrees of freedom. Furthermore, w and

(Lb̂)0Q(Lb̂) are independent chi-squares because of Theorem 5.6b. Thus we can

test H0 : Lb ¼ 0 using the test statistic (Lb̂)0[L(X0Ŝ�1X)�1L0]�1(Lb̂)=2 because
its distribution is exactly an F distribution.

If even one observation of this design is missing, exact small-sample inferences
are not available for Lb. Exact inferences are not available even when the
design is balanced for estimable functions such as c0b where
c0 ¼ 1 0 0 �1 0 0ð Þ. A

In most cases, approximate small-sample methods must be used. The exact distri-
bution of

t ¼ c0b̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c0(X0Ŝ�1X)�c

q (17:15)

is unknown in general (McCulloch and Searle 2001, p. 167). However, a satisfactory
small-sample test of H0 : c0b ¼ 0 or confidence interval for c0b is available by
assuming that t approximately follows a t distribution with unknown degrees of
freedom d (Giesbrecht and Burns 1985). To calculate d, we follow the premise of
Satterthwaite (1941) to assume, analogously to Theorem 8.4aiii, that

d[c0(X0Ŝ�1X)�c]

c0(X0S�1X)�c
(17:16)

approximately follows the central chi-square distribution. Equating the variance of
the expression in (17.16)

var
d[c0(X0Ŝ�1X)�c]

c0(X0S�1X)�c

" #
¼ d

c0(X0S�1X)�c

� �2

var[c0(X0Ŝ�1X)�c],

to the variance of a central chi-square distribution, 2d (Theorem 5.3a), we obtain the
approximation

d 8
2[c0(X0Ŝ�1X)�c]2

var[c0(X0Ŝ�1X)�c]
: (17:17)
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This approximation cannot be used, of course, unless var[c0(X0Ŝ�1X)�c] is known

or can be estimated. We obtain an estimate of var[c0(X0Ŝ�1X)�c] using the multi-
variate delta method (Lehmann 1999, p. 315). This method uses the first-order multi-
variate Taylor series (Harville 1997, p. 288) to approximate the variance of any
scalar-valued function of a random vector, say, f (u). By this method var[ f (u)] is
approximated as

var [ f (u)] 8
@f (u)
@u

����
0

u¼û
Ŝû

@f (u)
@u

����
u¼û

where

@f (u)
@u

����
u¼û

is the vector of partial derivatives of f (u) with respect to u evaluated at û and Ŝû

denotes an estimate of the covariance matrix of û. In the case of inference for c0b

in the mixed linear model (17.4), let u ¼ s and f (s) ¼ [c0(X0S�1X)�c]. Then

@f (s)
@s

����
s¼ŝ
¼ �

c0(X0Ŝ�1X)�X0Ŝ�1Z0Z00Ŝ
�1X(X0Ŝ�1X)�c

c0(X0Ŝ�1X)�X0Ŝ�1Z1Z01Ŝ
�1X(X0Ŝ�1X)�c

..

.

c0(X0Ŝ�1X)�X0Ŝ�1ZmZ0mŜ
�1X(X0Ŝ�1X)�c

0
BBBB@

1
CCCCA
:

Also Ŝŝ, an estimate of the covariance matrix of ŝ, can be obtained as the inverse of
the negative Hessian [the matrix of second derivatives — see Harville (1997, p. 288)]
of the restricted log-likelihood function (Theorem 17.4c) evaluated at ŝ (Pawitan
2001, pp. 226, 258).

We now generalize this idea obtain the approximate small-sample distribution of

F ¼ (Lb̂� Lb)0[L(X0Ŝ�1X)�L0]�1(Lb̂� Lb)
g

(17:18)

in order to develop tests for H0 : Lb ¼ t and joint confidence regions for Lb. We
obtain these inferences by assuming that the distribution of F is approximately an
F distribution with numerator degrees of freedom g, and unknown denominator
degrees of freedom n (Fai and Cornelius 1996). The method involves the spectral

decomposition (see Theorem 2.12b) of [L(X0Ŝ�1X)�L0]�1 to yield

P0[L(X0Ŝ�1X�L0]�1P ¼ D,
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where D ¼ diag(l1, l2, . . . , lm) is the diagonal matrix of eigenvalues and
P ¼ ( p1, p2, . . . , pm) is the orthogonal matrix of normalized eigenvectors of

[L(X0Ŝ�1X)�L0]�1. Using this decomposition, G ¼ gF can be written as

G ¼
Xg

i¼1

(p0iLb̂)2

li
¼
Xg

i¼1

t2
i (17:19)

where the ti’s are approximate independent t-variables with respective degrees of
freedom ni.

We compute the ni values by repeatedly applying equation (17.16). Then we find n

such that F ¼ g�1G is distributed approximately as Fg,n. Since the square of a t-dis-
tributed random variable with ni degrees of freedom is an F-distributed random vari-
able with 1 and ni degrees of freedom:

EðG) ¼ E
Xg

i¼1

t2
i

 !

¼
Xg

i¼1

ni

ni � 2
[by (5:34)]:

Now, since E(F) ¼ 1=g E(G) ¼ n=(n� 2),

n ¼ 2E(G)
E(G)� g

¼ 2
Xg

i¼1

ni

ni � 2

 !, Xg

i¼1

ni

ni � 2

 !
� g

" #
: (17:20)

A method due to Kenward and Roger (1997) provides further improvements for
small-sample inferences in mixed models.

1. The method adjusts for two sources of bias in L(X0Ŝ�1X)�L0 as an estimator of

the covariance matrix of Lb̂ in small-sample situations, namely, that

L(X0S�1X)�L0 does not account for the variability in ŝ, and that

L(X0Ŝ�1X)�L0 is a biased estimator of L(X0S�1X)�L0. Kackar and Harville
(1984) give an approximation to the first source of bias, and Kenward and
Roger (1997) propose an adjustment for the second source of bias. Both adjust-
ments are based on a Taylor series expansion around s (Kenward and Roger
1997, McCulloch and Searle 2001, pp. 164–167). The adjusted approximate

covariance matrix of Lb̂ is

Ŝ �Lb̂ ¼ L[X0S�1X)� þ 2(X0S�1X)�
Xm

i¼0

Xm

j¼0

sij(Qij � PiŜb̂Pj)

( )

� (X0S�1X)�]L0

(17:21)
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where sij is the (i, j)th element of Ŝŝ,

Qij ¼ X0
@Ŝ�1

@si
2
Ŝ
@Ŝ

@si
2

X, and Pi ¼ X0
@Ŝ�1

@si
2

X:

2. Kenward and Roger (1997) assume that

F� ¼ dFKR ¼
d

g
(Lb̂)0Ŝ�Lb̂(Lb̂) (17:22)

is approximately F-distributed with two (rather than one) adjustable constants,
a scale factor d, and the denominator degrees of freedom n. They use a second-
order Taylor series expansion (Harville 1997, p. 289) of Ŝ �Lb̂

�1 around s and
conditional expectation relationships to yield E(FKR) and var(FKR) approxi-
mately. After equating these to the mean (5.29) and variance of the F distri-
bution to solve for d and n, they obtain

n ¼ 4þ gþ 2
gg� 1

and

d ¼ n

E(FKR)(n� 2)

where

g ¼ var(FKR)

2E(FKR)2 :

These small-sample methods result in confidence coefficients and type I error rates
closer to target values than do the large-sample methods. However, they involve
many approximations, and it is therefore not surprising that simulation studies have
shown that their statistical properties are not universally satisfactory (Schaalje et al.
2002, Gomez et al. 2005, Keselman et al. 1999).

Another approach to small-sample inferences in mixed linear models is the
Bayesian approach (Chapter 11). Bayesian linear mixed models are not much
harder to specify than Bayesian linear models, and Markov chain Monte Carlo
methods can be used to draw samples from exact small-sample posterior distributions
(Gilks et al. 1998, pp. 275–320).

17.6 INFERENCE FOR THE ai

A new kind of estimation problem sometimes arises for the linear mixed model in
(17.2)

y ¼ Xbþ
Xm

i¼1

Ziai þ 1, (17:23)
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namely, the problem of estimation of realized values of the random components (the
ai’s) or linear functions of them. For simplicity, and without loss of generality, we
rewrite (17.22) as

y ¼ Xbþ Zaþ 1, (17:24)

where Z ¼ (Z1Z2 . . . Zm), a ¼ (a01a02 . . . a0m)0, 1 is N(0, s 2In), a is N(0, G) where

G ¼

s 2
1 In1 O � � � O
O s 2

2 In2 � � � O

..

. ..
. . .

. ..
.

O O � � � s 2
mInm

0
BBB@

1
CCCA,

and cov(1, a) ¼ 0. Then the problem can be expressed as that of estimating a or a
linear function Ua. To differentiate this problem from inference for an estimable func-
tion of b, the current problem is often referred to as prediction of a random effect.

Prediction of random effects dates back at least to the pioneering work of
Henderson (1950) on prediction of the “value” of a genetic line of animals or
plants, where the line is viewed as a random selection from a population of such
lines. In education the specific effects of randomly chosen schools might be of inter-
est, in medical research the effect of a randomly chosen clinic may be desired, and in
agriculture the effect of a specific year on crop yields may be of interest. The phenom-
enon of regression to the mean (Stigler 2000) for repeated measurements is closely
related to prediction of random effects.

The general problem is that of predicting a for a given value of the observation
vector y. Note that because of the model in (17.23), a and y are jointly multivariate
normal, and

cov(a, y) ¼ cov(a, Xbþ Zaþ 1)

¼ cov(a, Zaþ 1)

¼ cov(a, Za)þ cov(a,1) (see Problem 3.19)

¼ GZ0 þO

¼ GZ0:

By extension of Theorem 10.6 to the case of a random vector a, the predictor based
on y that minimizes the mean squared error is E(ajy). To be more precise, the vector
function t(y) that minimizes E[a� t(y)]0[a� t(y)] is given by t(y) ¼ E(ajy).

Since a and y are jointly multivariate normal, we have, by (4.26)

E(ajy) ¼ E(a)þ cov(a, y)[cov(y)]�1[y� E(y)]

¼ 0þGZ0S�1(y� Xb)

¼ GZ0S�1(y� Xb):

(17:25)
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If b and S were known, this predictor would be a linear function of y. It is
therefore sometimes called the best linear predictor (BLP) of a. More generally,
the BLP of Ua is

E(Uajy) ¼ UGZ0S�1(y� Xb): (17:26)

Because the BLP is a linear function of y, the covariance matrix of E(Uajy) is

cov[E(Uajy)] ¼ UGZ0S�1ZGU0: (17:27)

Replacing b by b̂ in (17.8), and replacing G and S by Ĝ and Ŝ (based on the REML
estimates of the variance components), we obtain

Ê(Uajy) ¼ UĜZ
0
Ŝ
�1(y� Xb̂): (17:28)

This predictor is neither unbiased nor a linear function of y. Nonetheless, it is an
approximately unbiased estimate of a linear predictor, so it is often referred to as the
estimated best linear unbiased predictor (EBLUP). Ignoring the randomness in Ĝ

and Ŝ, we obtain

cov[Ê(Uajy)] 8 cov[UGZ0S�1(y� Xb̂)]

¼ cov{UGZ0S�1[I� X(X0S�1X)�X0S�1]y}

¼ UGZ0S�1[I� X(X0S�1X)�X0S�1]S[I� S
�1X(X0S�1X)�X0]

� S�1ZGU0

¼ UGZ0[S�1 � Ŝ
�1X(X0S�1X)�X0S�1]ZGU0

8 UĜZ0[S�1 � Ŝ�1X(X0Ŝ�1X)�X0Ŝ�1]ZĜU0: (17:29)

Small-sample improvements to (17.28) have been suggested by Kackar and Harville
(1984), and approximate degrees of freedom for inferences based on EBLUPs have
been investigated by Jeske and Harville (1988).

Example 17.6 (One-Way Random Effects). To illustrate EBLUP, we continue with
the one-way random effects model of Examples 17.3d and 17.4 involving four con-
tainers randomly selected from each of three batches produced by a chemical plant. In
terms of the linear mixed model in (17.23), we obtain

X ¼ j12, b ¼ m, Z ¼
j4 04 04

04 j4 04

04 04 j4

0
B@

1
CA, G ¼ s 2

1 I3, and

S ¼ s 2I12 þ s 2
1 ZZ0 ¼

s 2I4 þ s 2
1 J4 O4 O4

O4 s 2I4 þ s 2
1 J4 O4

O4 O4 s 2I4 þ s 2
1 J4

0
B@

1
CA:
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By (2.52) and (2.53),

S
�1 ¼ 1

s 2

I4 �
s 2

1

s 2 þ 4s 2
1

J4 O4 O4

O4 I4 �
s 2

1

s 2 þ 4s 2
1

J4 O4

O4 O4 I4 �
s 2

1

s2 þ 4s 2
1

J4

0
BBBBBBB@

1
CCCCCCCA
:

To predict a, which in this case is the vector of random effects associated with the
three batches, by (17.27) and using the REML estimates of the variance components,
we obtain

EBLUP(a)¼ĜZ0Ŝ�1(y�Xb̂)¼ ŝ2
1I3

j04 004 004
004 j04 004
004 004 j04

0
B@

1
CAŜ

�1(y�m̂j12)

¼ ŝ2
1

ŝ2

j04�
4ŝ2

1

ŝ2þ4ŝ2
1

j04 004 004

004 j04�
4ŝ2

1

ŝ2þ4ŝ2
1

j04 004

004 004 j04�
4ŝ2

1

ŝ2þ4ŝ2
1

j04

0
BBBBBBB@

1
CCCCCCCA

(y�m̂j12)

¼ ŝ2
1

ŝ2þ4ŝ2
1

j04 004 004
004 j04 004
004 004 j04

0
B@

1
CA(y�m̂j12)

¼ ŝ2
1

ŝ 2þ4ŝ 2
1

y1:�4m̂

y2:�4m̂

y3:�4m̂

0
B@

1
CA¼ 4ŝ 2

1

ŝ 2þ4ŝ 2
1

�y1:��y::
�y2:��y::
�y3:��y::

0
B@

1
CA:

Thus

EBLUP(ai) ¼
4ŝ 2

1

ŝ 2 þ 4ŝ 2
1

(�yi: � �y::): (17:30)

If batch had been considered a fixed factor, and the one-way ANOVA model in (13.1)
had been used with the constraint

P
i
ai ¼ 0, we showed in (13.9) that

âi ¼ (�yi: � �y::):

Thus EBLUP(ai) ¼ câi where 0 � c � 1. For this reason, EBLUPs are sometimes
referred to as shrinkage estimators.
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The approximate covariance matrix of the EBLUPs in (17.29) can be derived
using (17.28), and confidence intervals can then be computed or hypothesis tests
carried out. A

An extensive development and discussion of EBLUPs is given by Searle et al.
(1992, pp. 258–289).

17.7 RESIDUAL DIAGNOSTICS

The assumptions of the linear mixed model in (17.2) and (17.3) are independence,
normality, and constant variance of the elements of each of the ai vectors, as well
as independence, normality, and constant variance of the elements of 1. These
assumptions are harder to check than for the standard linear model, and the usefulness
of various types of residual plots for mixed model diagnosis is presently not fully
understood (Brown and Prescott 1999, p. 77).

As a first step, we can examine each of the EBLUP (ai) vectors as in (17.27) for
normality, constant variance and independence (see Section 9.1). This makes sense
because, using (4.25) and assuming for simplicity that S (and therefore G) are
known, we have

cov(ajy) ¼ G�GZ0S�1ZG:

Thus if U ¼ (O . . . OIni O . . . O),

cov(Uajy) ¼ cov(aijy)

¼ UGU0 � UGZ0S�1ZGU0

¼ si
2Ini � si

4Z0iS
�1Zi

¼ si
2(Ini � si

2Z0iS
�1Zi): (17:31)

As was the case for the hat matrix in Section 9.1, the off-diagonal elements of the
second term in (17.31) are often small in absolute value. Hence the elements of
EBLUP(ai) should display normality, constant variance, and approximate indepen-
dence if the model assumptions are met. It turns out, however, that constant variance
and normality of the EBLUP(a i) vectors is a necessary rather than a sufficient con-
dition for the model assumptions to hold. Simulation studies (Verbeke and
Molenberghs 2000, pp. 83–87) have shown that EBLUPs tend to reflect the distribu-
tional assumptions of the model rather than the actual distribution of random effects
in some situations.

The next step is to consider the assumptions of independence, normality, and con-
stant variance for the elements of 1. The simple residual vector y� Xb̂ is seldom
useful for this purpose because, assuming that S is known, we have

cov(y� Xb̂) ¼ cov{[I� X(X0S�1X)�X0S�1]y}

¼ [I� X(X0S�1X)�X0S�1]S[I� S�1X(X0S�1X)�X0],
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which may not exhibit constant variance or independence. However, the vector

Ŝ�1=2(y� Xb̂), where Ŝ�1=2 is the inverse of the square root matrix of Ŝ (2.109),
does have the desired properties.

Theorem 17.7. Consider the model in which y is Nn(Xb,S), where S ¼ s 2IþPm
i¼1 si

2ZiZ
0
i. Assume that S is known, and let b̂ ¼ (X0S�1X)�X0S�1y. Then

cov[S�1=2(y� Xb̂)] ¼ I�H� (17:32)

where H� ¼ S�1=2X(X0S�1X)�X0S�1=2.

PROOF

cov[S�1=2(y� Xb̂)] ¼ cov{S�1=2[I� X(X0S�1X)�X0S�1]y}

¼ S�1=2[I� X(X0S�1X)�X0S�1]

� S[I� S�1X(X0S�1X)�X0]S�1=2

¼ S�1=2SS�1=2 � S�1=2X(X0S�1X)�X0S�1=2:

Now, since S�1=2 ¼ (CD1=2C0)�1 where C is orthogonal as in Theorem 2.12d, and
D1/2 is a diagonal matrix as in (2.109), we obtain

S�1=2SS�1=2 ¼ (CD
1
2

C0)�1CDC0(CD
1
2

C0)�1

¼ CD�1=2C0CDC0CD�1=2C0

¼ CD�1=2DD�1=2C0

¼ CC0 ¼ I

and the result follows. A

Thus the vector Ŝ�1=2(y� Xb̂) can be examined for constant variance, normality
and approximate independence to verify the assumptions regarding 1.

A more common approach (Verbeke and Molenberghs 2000, p. 132; Brown and
Prescott 1999, p. 77) to verifying the assumptions regarding 1 is to compute and
examine y� Xb̂� Zâ. To see why this makes sense, assume that S and b are
known. Then

cov(y� Xb� Za) ¼ cov(y)� cov(y, Za)� cov(Za, y)þ cov(Za)

¼ S� ZGZ0 � ZGZ0 þ ZGZ0

¼ S� ZGZ0

¼ (ZGZ0 þ s 2I)� ZGZ0

¼ s 2I:
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PROBLEMS

17.1 Consider the model y ¼ Xb þ 1, where 1 is Nn(0, s 2V), V is a known posi-
tive definite n� n matrix, and X is a known n� (k þ 1) matrix of rank k þ 1.
Also assume that C is a known q� (k þ 1) matrix and t is a known q� 1

vector such that Cb ¼ t is consistent. Let b̂ ¼ (X0V�1X)�1X0V�1y. Find
the distribution of

F ¼ (Cb̂� t)0[C(X0V�1X)�1C0]�1(Cb̂� t)=q

y0[V�1 � V�1(X0V�1X)�1X0V�1]y=(n� k � 1)

(a) Assuming that H0 : Cb ¼ t is false.

(b) Assuming that H0 : Cb ¼ t is true.

(Hint: Consider the model for P21y, where P is a nonsingular matrix such
that PP0 ¼ V.)

17.2 For the model described in Problem 17.1, find a 100(1 2 a)% confidence
interval for a0b.

17.3 An exercise science experiment was conducted to investigate how ankle roll
( y) is affected by the combination of four casting treatments (control, tape
cast, air cast, and tape and brace) and two exercise levels (preexercise and
postexercise). Each of the 16 subjects used in the experiment was assigned
to each of the four casting treatments in random order. Five ankle roll
measurements were made preexercise and five measurements were made
post exercise for each casting treatment. Thus a total of 40 observations
were obtained for each subject. This study can be regarded as a randomized
block split-plot study with subsampling. A sensible model is

yijkl ¼ mþ ti þ dj þ uij þ ak þ bik þ cijk þ 1ijkl,

where i ¼ 1, . . . , 4; j ¼ 1, 2; k ¼ 1, . . . , 16; l ¼ 1, . . . , 5; ak is N(0, s 2
1 ); bijk

is N(0, s 2
2 ); cijk is N(0, s 2

3 ); 1ijkl is N(0, s 2), and all of the random effects are
independent. If the data are sorted by subject, casting treatment, and exercise
level, sketch out the X and Zi matrices for the matrix form of this model as in
(17.2).

17.4 (a) Consider the model y ¼ Xbþ
Pm

i¼1 Ziai þ 1 where X is a known n� p
matrix, the Zi’s are known n � ri full-rank matrices, b is a p� 1 vector of
unknown parameters, 1 is an n� 1 unknown random vector such that
E(1) ¼ 0 and cov(1) ¼ R = s 2In, and the ai’s are ri � 1 unknown
random vectors such that E(ai) ¼ 0 and cov(ai) ¼ Gi = si

2Iri . As
usual, cov(ai, aj) ¼ O for i = j, where O is ri � rj, and cov(ai,1) ¼ O
for all i, where O is ri � n. Find cov(y).
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(b) For the model in part (a), let Z ¼ (Z1Z2 . . . Zm) and a ¼ (a01a02 . . . a0m)0 so
that the model can be written as y ¼ Xbþ Zaþ 1 and

cov(a) ¼ G ¼

G1 O . . . O O
O G2 . . . O O

..

. ..
. . .

. ..
. ..

.

O O . . . Gm�1 O
O O . . . O Gm

0
BBBBB@

1
CCCCCA
:

Express covðyÞ in terms of Z, G, and R.

17.5 Consider the model in which y is Nn(Xb, S), where S ¼
Pm

i¼0 s
2
i ZiZ

0
i, and

let K be a full-rank matrix of appropriate dimensions as in Theorem 17.4c.
Show that for any i,

E[y0K0(KSK0)�1KZiZ
0
iK
0(KSK0)�1Ky] ¼ tr[K0(KSK0)�1KZiZ

0
i]:

17.6 Show that that the system of mþ 1 equations generated by (17.6) can be
written as Ms ¼ q, where s ¼ (s2

0 s 2
1 . . .s2

m)0, M is an (mþ 1)� (mþ 1)
matrix with ijth element tr[K0(KSK0)�1KZiZ

0
iK
0(KSK0)�1KZjZ

0
j], and q

is an (mþ 1)� 1 vector with ith element
y0K0(KSK0)�1KZiZ

0
iK
0(KSK0)�1Ky.

17.7 Consider the model in which y is Nn(Xb,S), and let L be a known full-rank
g� p matrix whose rows define estimable functions of b.

(a) Show that L(X0S�1X)�L0 is nonsingular.

(b) Show that (Lb̂� Lb)0[L(X0S�1X)�L0]�1(Lb̂� Lb) is x 2(g).

17.8 For the model described in Problem 17.7, develop a 100(12)% confidence
interval for E(y0) ¼ x00b.

17.9 Refer to Example 17.5. Show that

(X0Ŝ�1X)�1 ¼ 1
2

Ŝ1 O O

O Ŝ1 O

O O Ŝ1

0
B@

1
CA:

17.10 Refer to Example 17.5. Show that the solution to the REML estimating
equations is given by

ŝ 2 ¼ 1
12y
0

R O O �R O O

O R O O �R O

O O R O O �R

�R O O R O O

O �R O O R O

O O �R O O R

0
BBBBBBBB@

1
CCCCCCCCA

y, where R¼
1 �1

�1 1

� �
:
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17.11 Refer to Example 17.5. Show that X(X0X)�1L0QL(X0X)�1X0S is
idempotent.

17.12 Refer to Example 17.5. Show that w and (Lb̂)0Q(Lb̂) are independent
chi-square variables.

17.13 Refer to Example 17.5. Let c0 ¼ 1 0 0 �1 0 0ð Þ, let w be as in
(17.14), and let d ¼ 3. Show that if n is such that v(w=d) ¼
[c0(X0Ŝ�1X)�c]�1 then n is not distributed as a central chi-square random
variable.

17.14 To motivate Satterthwaite’s approximation in expression (17.16), consider
the model in which y is Nn(Xb,S), where X is n � p of rank k, S ¼ s 2I

and Ŝ ¼ s2I. If c0b is an estimable function, show that

(n� k)[c0(X0Ŝ�1X)�c]=[c0(X0S�1X)�c], is distributed as x 2(n� k).

17.15 Given f (s) ¼ [c0(X0S�1X)�c], where s ¼ (s 2
0s

2
1 � � �s 2

m)0 and

S ¼
Pm
i¼0

si
2ZiZ

0
i, show that

@f (s)
@s

¼ �

c0(X0S�1X)�X0S�1Z0Z00S
�1X(X0S�1X)�c

c0(X0S�1X)�X0S�1Z1Z01S
�1X(X0S�1X)�c

..

.

c0(X0S�1X)�X0S�1ZmZ0mS
�1X(X0S�1X)�c

0
BBB@

1
CCCA:

17.16 Consider the model in which y is Nn(Xb,S), let L be a known full-rank

g� p matrix whose rows define estimable functions of b, and let Ŝ be the
REML estimate of S. As in (17.19), let D ¼ diag(l1, l2, . . . , lm) be the
diagonal matrix of eigenvalues and P ¼ (p1, p2, . . . , pm) be the orthogonal

matrix of normalized eigenvectors of [L(X0Ŝ�1X)�L0]�1.

(a) Show that (Lb̂� Lb)0[L(X0Ŝ�1X)�L0]�1(Lb̂� Lb) ¼
Pg
i¼1

p0i(Lb̂� Lb)
h i2

=li.

(b) Show that (p0iLb̂)2=li is of the form c0b̂=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c0(X0Ŝ�1X)�c

q
as in (17.14).

(c) Show that cov(p0iLb̂,p0i0Lb̂) ¼ 0 for i = i0.

17.17 Consider the model in which y ¼ Xbþ Zaþ 1, where 1 is N(0, s2In) and a
is N(0, G) as in (17.24).

(a) Show that the linear function B(y 2 X) that minimizes

E[a� B(y� X)]0[a� B(y� X)] is GZ0S�1(y� Xb).

(b) Show that B ¼ GZ0S�1(y� Xb) also “minimizes”
E[a� B(y� X)][a� B(y� X)]0: By “minimize,” we mean that any
other choice for B adds a positive definite matrix to the result.
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17.18 Show that [I� X(X0S�1X)�X0S�1]S[I� X(X0S�1X)�X0S�1]0 ¼ S�
X(X0S�1X)�X0 as in (17.29).

17.19 Consider the model described in Problem 17.17.

(a) Show that the best linear predictor of Ua is

E(Uajy) ¼ UGZ0S�1(y� Xb).

(b) Show that cov[E(Uajy)] ¼ UGZ0S�1ZGU0.

(c) Given b̂ ¼ (X0S�1X)�X0S�1y, show that

cov[UGZ0S�1(y�Xb̂)]¼ UGZ0[S�1�S�1X(X0S�1X)�X0S�1]ZGU0:

17.20 Consider the one-way random effects model of Example 17.6. Use (2.52) and
(2.53) to derive the expression for S21.

17.21 Using (17.29), derive the covariance matrix for EBLUP(a) where ai is
defined as in (17.30).

17.22 Consider the model described in Problem 17.17. Use (4.27) and assume that
S and G are known to show that

cov(ajy) ¼ G�GZ0S�1ZG:

17.23 Use the model of Example 17.3b (subsampling). Find the covariance matrix
of the predicted batch effects using (17.31). Comment on the magnitudes of
the off-diagonal elements of this matrix.

17.24 Use the model of Example 17.3b. Find the covariance matrix of the trans-
formed residuals Ŝ�1=2( y� xb̂ ) using (17.32). Comment on the off-diagonal
elements of this matrix.
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18 Additional Models

In this chapter we briefly discuss some models that are not linear in the parameters or
that have an error structure different from that assumed in previous chapters.

18.1 NONLINEAR REGRESSION

A nonlinear regression model can be expressed as

yi ¼ f (xi,b)þ 1i, i ¼ 1, 2, . . . , n, (18:1)

where f (x i, b) is a nonlinear function of the parameter vector b. The error term 1i is
sometimes assumed to be distributed as N(0, s2). An example of a nonlinear model is
the exponential model

yi ¼ b0 þ b1eb2xi þ 1i:

Estimators of the parameters in (18.1) can be obtained using the method of least
squares. We seek the value of b̂ that minimizes

Q(b̂) ¼
Xn

i¼1

[yi � f (xi, b̂)]2: (18:2)

A simple analytical solution for b̂ that minimizes (18.2) is not available for nonlinear
f (xi, b̂). An iterative approach is therefore used to obtain a solution. In general, the
resulting estimators in b̂ are not unbiased, do not have minimum variance, and are
not normally distributed. However, according to large-sample theory, the estimators
are almost unbiased, have near-minimum variance, and are approximately normally
distributed.

Linear Models in Statistics, Second Edition, by Alvin C. Rencher and G. Bruce Schaalje
Copyright # 2008 John Wiley & Sons, Inc.
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Inferential procedures, including confidence intervals and hypothesis tests, are
available for the least-squares estimator b̂ obtained by minimizing (18.2).
Diagnostic procedures are available for checking on the model and on the suitability
of the large-sample inferential procedures.

For details of the above procedures, see Gallant (1975), Bates and Watts (1988),
Seber and Wild (1989), Ratkowsky (1983, 1990), Kutner et al. (2005, Chapter 13),
Hocking (1996, Section 11.2), Fox (1997, Section 14.2), and Ryan (1997,
Chapter 13).

18.2 LOGISTIC REGRESSION

In some regression situations, the response variable y has only two possible out-
comes, for example, high blood pressure or low blood pressure, developing cancer
of the esophagus or not developing it, whether a crime will be solved or not
solved, and whether a bee specimen is a “killer” (africanized) bee or a domestic
honey bee. In such cases, the outcome y can be coded as 0 or 1 and we wish to
predict the outcome (or the probability of the outcome) on the basis of one or
more x’s.

To illustrate a linear model in which y is binary, consider the model with one x:

yi ¼ b0 þ b1xi þ 1i; yi ¼ 0, 1; i ¼ 1, 2, . . . , n: (18:3)

Since yi is 0 or 1, the mean E( yi) for each xi becomes the proportion of observations at
xi for which yi ¼ 1. This can be expressed as

E( yi) ¼ P( yi ¼ 1) ¼ pi,

1� E( yi) ¼ P( yi ¼ 0) ¼ 1� pi:
(18:4)

The distribution P( yi ¼ 0) ¼ 1 2 pi and P( yi ¼ 1) ¼ pi in (18.4) is known as the
Bernoulli distribution. By (18.3) and (18.4), we have

E( yi) ¼ pi ¼ b0 þ b1xi: (18:5)

For the variance of yi, we obtain

var( yi) ¼ E[yi � E( yi)]
2

¼ pi(1� pi): (18:6)

By (18.5) and (18.6), we obtain

var( yi) ¼ (b0 þ b1xi)(1� b0 � b1xi),
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and the variance of each yi depends on the value of xi. Thus the fundamental assump-
tion of constant variance is violated, and the usual least-squares estimators b̂0 and b̂1

computed as in (6.5) and (6.6) will not be optimal (see Theorem 7.3d).
To obtain optimal estimators of b0 and b1, we could use generalized least-squares

estimators

b̂ ¼ (X0V�1X)�1X0V�1y

as in Theorem 7.8a, but there is an additional challenge in fitting the linear model
(18.5). Since E( yi) ¼ pi is a probability, it is limited by 0 � pi � 1. If we fit (18.5)
by generalized least squares to obtain

p̂i ¼ b̂0 þ b̂1xi,

then p̂i may be less than 0 or greater than 1 for some values of xi. A model for E( yi)
that is bounded between 0 and 1 and reaches 0 and 1 asymptotically (instead of
linearly) would be more suitable. A popular choice is the logistic regression model.

pi ¼ E( yi) ¼
eb0þb1xi

1þ eb0þb1xi
¼ 1

1þ e�b0�b1xi
: (18:7)

This model is illustrated in Figure 18.1. The model in (18.7) can be linearized by the
simple transformation

ln
pi

1� pi

� �
¼ b0 þ b1xi, (18:8)

sometimes called the logit transformation.

Figure 18.1 Logistic regression function.
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The parameters b0 and b1 in (18.7) and (18.8) are typically estimated by
the method of maximum likelihood (see Section 7.2). For a random sample y1, y2,
. . . , yn from the Bernoulli distribution with P( yi ¼ 0) ¼ 12 pi and P( yi ¼ 1) ¼ pi,
the likelihood function becomes

L(b0,b1) ¼ f ( y1, y2, . . . , yn; b0,b1) ¼
Yn

i¼1

fi( yi; b0,b1)

¼
Yn

i¼1

pyi
i (1� pi)

1�yi : (18:9)

Taking the logarithm of both sides of (18.9) and using (18.8), we obtain

ln L(b0,b1) ¼
Xn

i¼1

yi(b0 þ b1xi)�
Xn

i¼1

ln (1þ eb0þb1xi ): (18:10)

Differentiating (18.10) with respect to b0 and b1 and setting the results equal to
zero gives

Xn

i¼1

yi ¼
Xn

i¼1

1

1þ e�b̂0�b̂1xi
(18:11)

Xn

i¼1

xiyi ¼
Xn

i¼1

xi

1þ e�b̂0�b̂1xi
: (18:12)

These equations can be solved iteratively for b̂0 and b̂1.
The logistic regression model in (18.7) can be readily extended to include more

than one x. Using the notation b ¼ (b0, b1, . . . , bk)0 and xi ¼ (1, xi1, xi2, . . . , xik)0,
the model in (18.7) becomes

pi ¼ E( yi) ¼
ex0ib

1þ ex0ib
¼ 1

1þ e�x0ib
,

and (18.8) takes the form

ln
pi

1� pi

� �
¼ x0ib, (18:13)

where x0ib ¼ b0 þ b1xi1 þ b2xi2 þ � � � þ bkxik: For binary yi (yi¼ 0, 1; i¼ 1, 2, . . . , n),
the mean and variance are given by (18.4) and (18.6). The likelihood function and
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the value of b that maximize it are found in a manner analogous to the approach
used to find b0 and b1. Confidence intervals, tests of significance, measures of
fit, subset selection procedures, diagnostic techniques, and other procedures
are available.

Logistic regression has been extended from binary to a polytomous logistic
regression model in which y has several possible outcomes. These may be ordinal
such as large, medium, and small, or categorical such as Republicans, Democrats,
and Independents. The analysis differs for the ordinal and categorical cases.

For details of these procedures, see Hosmer and Lemeshow (1989), Hosmer et al.
(1989), McCullagh and Nelder (1989), Myers (1990, Section 7.4), Kleinbaum
(1994), Stapleton (1995, Section 8.8), Stokes et al. (1995, Chapters 8 and 9),
Kutner et al. (2005), Chapter 14, Hocking (1996, Section 11.4), Ryan (1997,
Chapter 9), Fox (1997, Chapter 15), Christensen (1997), and McCulloch and
Searle (2001, Chapter 5).

18.3 LOGLINEAR MODELS

In the analysis of categorical data, we often use loglinear models. To illustrate a log-
linear model for categorical data, consider a two-way contingency table with frequen-
cies (counts) designated as yij as in Table 18.1, with yi: ¼

Ps
j¼1 yij and y:j ¼

Pr
i¼1 yij:

The corresponding cell probabilities pij are given in Table 18.2, with pi: ¼
Ps

j¼1 pij

and pj ¼
Pr

i¼1 pij.
The hypothesis that A and B are independent can be expressed as H0 : pij ¼ pi:p:j

for all i, j. Under H0, the expected frequencies are

E( yij) ¼ npi:p:j:

This becomes linear if we take the logarithm of both sides:

ln E( yij) ¼ ln nþ ln pi: þ ln p:j:

TABLE 18.1 Contingency Table Showing Frequencies yij (Cell Counts) for
an r 3 s Classification of Two Categorical Variables A and B

Variable B1 B2 . . . Bs Total

A1 y11 y12 . . . y1s y1.
A2 y21 y22 . . . y2s y2.

..

. ..
. ..

. ..
. ..

.

Ar yr1 yr2 . . . yrs yr.

Total y.1 y.2 . . . y.s y.. ¼ n
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To test H0: pij ¼ pi:p:j, we can use the likelihood ratio test. The likelihood function
is given by the multinomial density

L( p11, p12, . . . , prs) ¼
n!

y11!y12! � � � yrs!
p y11

11 p y12
12 � � � p yrs

rs :

The unrestricted maximum likelihood estimators of pij (subject to
P

ij pij ¼ 1) are
p̂ij ¼ yij=n, and the estimators under H0 are p̂ij ¼ yi:y:j=n2 (Christensen 1997,
pp. 42–46). The likelihood ratio is then given by

LR ¼
Yr

i¼1

Ys

j¼1

yi:y:j
nyij

� �yij

:

The test statistic is

�2 ln LR ¼ 2
X

ij

yij ln
nyij

yi:y:j

� �
,

which is approximately distributed as x2[(r � 1)(s� 1)].
For further details of loglinear models, see Ku and Kullback (1974), Bishop et al.

(1975), Plackett (1981), Read and Cressie (1988), Santner and Duffy (1989), Agresti
(1984, 1990) Dobson (1990, Chapter 9), Anderson (1991), and Christensen (1997).

18.4 POISSON REGRESSION

If the response yi in a regression model is a count, the Poisson regression model may
be useful. The Poisson probability distribution is given by

f ( y) ¼ mye�m

y!
, y ¼ 0, 1, 2, . . . :

TABLE 18.2 Cell Probabilities for an r 3 s Contingency Table

Variable B1 B2 . . . Bs Total

A1 p11 p12 . . . p1s p1.

A2 p21 p22 . . . p2s p2.

..

. ..
. ..

. ..
. ..

.

Ar pr1 pr2 . . . prs pr.

Total p.1 p.2 . . . p.s p.. ¼ 1
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The Poisson regression model is

yi ¼ E( yi)þ 1i, i ¼ 1, 2, . . . , n,

where the yi’s are independently distributed as Poisson random variables and mi ¼

E( yi) is a function of x0ib ¼ b0 þ b1xi1 þ � � � þ bkxik. Some commonly used func-
tions of x0ib are

mi ¼ x0ib, mi ¼ ex0ib, mi ¼ ln (x0ib): (18:14)

In each of the three cases in (18.14), the values of mi must be positive.
To estimate b, we can use the method of maximum likelihood. Since yi has a

Poisson distribution, the likelihood function is given by

L(b) ¼
Yn

i¼1

f ( yi) ¼
Yn

i¼1

m
yi
i e�mi

yi!
,

where mi is typically one of the three forms in (18.14). Iterative methods can be used
to find the value of b̂ that maximizes L(b). Confidence intervals, tests of hypotheses,
measures of fit, and other procedures are available. For details, see Myers (1990,
Section 7.5) Stokes et al. (1995, pp. 471–475), Lindsey (1997), and Kutner et al.
(2005, Chapter 14).

18.5 GENERALIZED LINEAR MODELS

Generalized linear models include the classical linear regression and ANOVA models
covered in earlier chapters as well as logistic regression in Section 18.2 and some
forms of nonlinear regression in Section 18.1. Also included in this broad family
of models are loglinear models for categorical data in Section 18.3 and Poisson
regression models for count data in Section 18.4. This expansion of traditional
linear models was introduced by Wedderburn (1972).

A generalized linear model can be briefly characterized by the following three
components.

1. Independent random variables y1, y2, . . . , yn with expected value E( yi) ¼ mi

and density function from the exponential family [described below in (18.15)].

2. A linear predictor

x0ib ¼ b0 þ b1xi1 þ � � � þ bkxik:
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3. A link function that describes how E( yi) ¼ mi relates to x0ib:

g(mi) ¼ x0ib:

4. The link function g(mi) is often nonlinear.

A density f ( yi, ui) belongs to the exponential family of density functions if
f ( yi, ui) can be expressed in the form

f ( yi, ui) ¼ exp[ yiui þ b(ui)þ c( yi)]: (18:15)

A scale parameter such as s2 in the normal distribution can be incorporated into
(18.15) by considering it to be known and treating it as part of ui. Alternatively, an
additional parameter can be inserted into (18.15). The exponential family of
density functions provides a unified approach to estimation of the parameters in gen-
eralized linear models.

Some common statistical distributions that are members of the exponential family
are the binomial, Poisson, normal, and gamma [see (11.7)]. We illustrate three of
these in Example 18.5.

Example 18.5. The binomial probability distribution can be written in the form of
(18.15) as follows:

f ( yi, pi) ¼
ni

yi

� �
pyi

i (1� pi)
ni�yi

¼ exp yi ln pi � yi ln (1� pi)þ ni ln (1� pi)þ ln
ni

yi

� �� �

¼ exp yi ln
pi

1� pi

� �
þ ni ln (1� pi)þ ln

ni

yi

� �� �

¼ exp yiui þ b(ui)þ c( yi)½ �, (18:16)

where ui¼ ln [ pi/(1 2 pi)], b(ui)¼ ni ln (1�pi )¼�ni ln (1þeui ), and c(yi)¼ ln
ni

yi

� �
.

The Poisson distribution can be expressed in exponential form as follows:

f ( yi,mi) ¼
m

yi
i e�mi

yi!
¼ exp[yi lnmi � mi � ln ( yi!)]

¼ exp[ yiui þ b(ui)þ c( yi)],

where ui ¼ lnmi, b(ui) ¼ �mi ¼ �eui , and c( yi) ¼ � ln( yi!).
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The normal distribution N(mi, s
2) can be written in the form of (18.15 ) as

follows:

f ( yi,mi) ¼
1

(2ps2)1=2
e�( yi�mi)

2=2s2

¼ 1

(2ps2)1=2
e�( y2

i �2yimiþm2
i )=2s2

¼ exp � y2
i

2s2
þ yimi

s2
� m2

i

2s2
� 1

2
ln (2ps2)

� �

¼ exp[ yiui þ b(ui)þ c( yi)],

where ui ¼ mi=s
2, b(ui) ¼ s2u2

i =2, and c( yi) ¼ �y2
i =2s2 � 1

2 ln (2ps2). A

To obtain an estimator of b in a generalized linear model, we use the method of
maximum likelihood. From (18.15), the likelihood function is given by

L(b) ¼
Yn

i¼1

exp[ yiui þ b(ui)þ c( yi)]:

The logarithm of the likelihood is

ln L(b) ¼
Xn

i¼1

yiui þ
Xn

i¼1

b(ui)þ
Xn

i¼1

c( yi): (18:17)

For the exponential family in (18.15), it can be shown that

E( yi) ¼ mi ¼ �b0(ui),

where b0(ui) is the derivative with respect to ui. This relates ui to the link function

g(mi) ¼ x0ib:

Differentiating (18.17) with respect to each bi, setting the results equal to zero, and
solving the resulting (nonlinear) equations iteratively (iteratively reweighted least
squares) gives the estimators b̂i. Confidence intervals, tests of hypotheses, measures
of fit, subset selection techniques, and other procedures are available. For details, see
McCullagh and Nelder (1989), Dobson (1990), Myers (1990, Section 7.6), Hilbe
(1994), Lindsey (1997), Christensen (1997, Chapter 9), and McCulloch and Searle
(2001, Chapter 5).
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PROBLEMS

18.1 For the Bernoulli distribution, P( yi ¼ 0) ¼ 1� pi and P( yi ¼ 1) ¼ pi in
(18.4), show that E( yi) ¼ pi and var( yi) ¼ pi(1� pi) as in (18.5) and (18.6).

18.2 Show that ln [ pi=(1� pi)] ¼ b0 þ b1xi in (18.8) can be obtained from (18.7).

18.3 Verify that ln L(b0,b1) has the form shown in (18.10), where L(b0,b1) is as
given by (18.9).

18.4 Differentiate ln L(b0,b1) in (18.10) to obtain (18.11) and (18.12).

18.5 Show that b(ui) ¼ �n ln (1þ eui ), as noted following (18.16).
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APPENDIX A

Answers and Hints to the Problems

Chapter 2

2.1 Part (i) follows from the commutativity of real numbers, aij þ bij ¼ bij þ aij:
For part (ii), let C ¼ A þ B. Then, by (2.3), C0 ¼ (cij)0 ¼ (cij) ¼
(a ji þ b ji) ¼ (a ji)þ (b ji) ¼ A0 þ B0:

2.2 (a) A0 ¼
7 4
�3 9

2 5

0
@

1
A:

(b) (A0)0 ¼
7 4
�3 9

2 5

0
@

1
A
0

¼ 7 �3 2
4 9 5

� �
¼ A:

(c) A0A ¼
65 15 34
15 90 39
34 39 29

0
@

1
A, AA0 ¼ 62 11

11 122

� �
:

2.3 (a) AB ¼ 10 2
5 �6

� �
, BA ¼ �1 13

5 5

� �
:

(b) jAj ¼ 10, jBj ¼ �7, jABj ¼ �70 ¼ (10)(�7):

(c) jBAj ¼ �70 ¼ jABj:

(d) (AB)0 ¼ 10 5
2 �6

� �
, B0A0 ¼ 10 5

2 �6

� �
:

(e) tr(AB) ¼ 4, tr(BA) ¼ 4:

(f) For AB, l1 ¼ 10:6023,l2 ¼ �6:6023: For BA, l1 ¼ 10:6023,
l2 ¼ 6:6023:

Linear Models in Statistics, Second Edition, by Alvin C. Rencher and G. Bruce Schaalje
Copyright # 2008 John Wiley & Sons, Inc.
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2.4 (a) Aþ B ¼ 4 1 1
11 2 9

� �
, A� B ¼ �2 5 �9

�1 �16 5

� �
:

(b) A0 ¼
1 5
3 �7
�4 2

0
@

1
A, B0 ¼

3 6
�2 9

5 7

0
@

1
A:

(c) (Aþ B)0 ¼
4 11
1 2
1 9

0
@

1
A, A0 þ B0 ¼

4 11
1 2
1 9

0
@

1
A:

2.5 The (ij)th element of E ¼ Bþ C is eij ¼ bij þ cij: The (ij)th element
of AE is

P
k aikekj ¼

P
k aik(bkj þ ckj) ¼

P
k (aikbkj þ aikckj) ¼

P
k aikbkjþP

k aikckj, which is the (ij)th element of AB þ AC.

2.6 (a) AB ¼ 35 33
1 37

� �
, BA ¼

�26 19 �29
10 44 0
56 �2 54

0
@

1
A:

(b) Bþ C ¼
�1 7

0 8
8 0

0
@

1
A, AC

13 47
�23 �11

� �
, A(BþC) ¼ 48 80

�22 26

� �
,

ABþAC ¼ 48 80
�22 26

� �
:

(c) (AB)0 ¼ 35 1
33 37

� �
, B0A0 ¼ 35 1

33 37

� �
:

(d) tr(AB) ¼ 72, tr(BA) ¼ 72:

(e) (a01B) ¼ (35 33) , (a02B) ¼ (1 37) , AB ¼ 35 33
1 37

� �
:

(f) (Ab1) ¼ 35
1

� �
, Ab2 ¼

33
37

� �
, AB ¼ 35 33

1 37

� �
:

2.7 (a) AB ¼
0 0 0
0 0 0
0 0 0

0
@

1
A ¼ O:

(b) x ¼ any multiple of
1
�1
�1

0
@

1
A:

(c) rank(A) ¼ 1, rank(B) ¼ 1:

2.8 (a) By (2.17), a0j ¼ a1 � 1þ a2 � 1þ � � � þ an � 1 ¼
Pn

i¼1 ai:

(b) If A ¼

a01
a02
..
.

a0n

0
BBB@

1
CCCA, then Aj ¼

a01j
a02j

..

.

a0nj

0
BBB@

1
CCCA ¼

P
j a1jP
j a2j

..

.
P

j anj

0
BBB@

1
CCCA:
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2.9 By (2.16), (ABC)0 ¼ [(AB)C]0¼C0(AB)0 ¼ C0B0A0.

2.10 (iii) (A0A0) ¼ A0(A0)0 ¼ A0A:

(iv) The ith diagonal element of A0A is ai
0ai, where ai is the ith column of A.

Since a0iai ¼
P

j a2
ij ¼ 0, we have ai ¼ 0:

2.11 D1A ¼ 24 9 21
4 �10 6

� �
, AD2 ¼

40 9 42
�10 5 �18

� �
:

2.12 DA ¼
a 2b 3c

4a 5b 6c
7a 8b 9c

0
@

1
A, DAD ¼

a2 2ab 3ac
4ab 5b2 6cb
7ac 8bc 9c2

0
@

1
A:

2.13 y0Ay ¼ a11y2
1 þ a22y2

2 þ a33y2
3þ 2a12y1y2 þ 2a13y1y3 þ 2a23y2y3:

2.14 (a) Bx ¼
26
20
19

0
@

1
A: (h) xy0 ¼

9 6 12
�3 �2 �4

6 4 8

0
@

1
A:

(b) y0B ¼ (40,�16, 29): (i) B0B ¼
89 �11 28
�11 14 �21

28 �21 34

0
@

1
A:

(c) x0Ax ¼ 108. ( j) yz0 ¼
6 15
4 10
8 20

0
@

1
A:

(d) x0Cz¼229. (k) zy0 ¼ 6 4 8
15 10 20

� �
:

(e) x0x ¼ 14. (l)
ffiffiffiffiffiffi
y0y
p

¼
ffiffiffiffiffi
29
p

:

(f) x0y ¼ 15. (m) C0C ¼ 14 �7
�7 26

� �
:

(g) xx0 ¼
9 �3 6
�3 1 �2

6 �2 4

0
@

1
A:

2.15 (a) xþ y ¼
6
1
6

0
@

1
A, x� y ¼

0
�3

2

0
@

1
A:

(b) tr(A) ¼ 13, tr(B) ¼ 12, Aþ B
11 �3 6
6 2 2
5 �1 12

0
@

1
A, tr(Aþ B) ¼ 25:

(c) AB ¼
29 �20 30
5 �3 7

46 �25 44

0
@

1
A, BA ¼

41 �2 35
34 �6 23
28 5 35

0
@

1
A:

(d) tr(AB) ¼ 70, tr(BA) ¼ 70:

(e) jABj ¼ �403, jBAj ¼ �403:
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(f) (AB)0 ¼
29 5 46
�20 �3 �25

30 7 44

0
@

1
A, B0A0 ¼

29 5 46
�20 �3 �25

30 7 44

0
@

1
A:

2.16 Bx¼3
6
7
2

0
@
1
A�1

�2
1
�3

0
@

1
Aþ2

3
0
5

0
@
1
A¼

18
21
6

0
@

1
Aþ

2
�1

3

0
@

1
Aþ

6
0

10

0
@

1
A¼

26
20
19

0
@

1
A:

2.17 (a) (AB)0 ¼
27 16
�12 �6

19 11

0
@

1
A, B0A0 ¼

27 16
�12 �6

19 11

0
@

1
A:

(b) AI ¼
2 5

1 3

� �
1 0

0 1

� �
¼

2 5

1 3

� �
¼ A,

IB ¼
1 0

0 1

� �
1 �6 2

5 0 3

� �
¼

1 �6 2

5 0 3

� �
¼ B:

(c) jAj ¼ 1:

(d) A�1 ¼ 3 �5
�1 2

� �
:

(e) (A�1)�1 ¼ 3 �5
�1 2

� ��1

¼ 2 5
1 3

� �
¼ A:

(f) (A0)�1 ¼ 2 1
5 3

� ��1

¼ 3 �1
�5 2

� �
, (A�1)0 ¼ 3 �1

�5 2

� �
:

2.18 (a) If C ¼ AB, then by (2.35), we obtain

C11 ¼ A11B11 þ A12B21

¼
2 1

3 2

� �
1 1 1

2 1 1

� �
þ

2

0

� �
(2 3 1)

¼
4 3 3

7 5 5

� �
þ

4 6 2

0 0 0

� �
¼

8 9 5

7 5 5

� �
:

Continuing in this fashion, we obtain

AB ¼
8 9 5 6
7 5 5 4

3 4 2 2

0
@

1
A:

(b) AB ¼
8 9 5 6
7 5 5 4
3 4 2 2

0
@

1
A when found in the usual way.
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2.19 (a) AB ¼ a1b01 þ A2B2 ¼
2 2 2 0
3 3 3 0
1 1 1 0

0
@

1
Aþ

6 7 3 6
4 2 2 4
2 3 1 2

0
@

1
A

¼
8 9 5 6
7 5 5 4
3 4 2 2

0
@

1
A:

2.20 Ab ¼ 2
5

7

� �
þ 4

�2

3

� �
� 3

3

1

� �
¼
�7

23

� �
,

Ab ¼
�7

23

� �
when found in the usual way:

2.21 By (2.26), AB ¼ (Ab1, Ab2 , . . . , Abp). By (2.37) each Abi can be expressed
as a linear combination of the columns of A, with coefficients from bi.

2.22

�2

3

1

2

0
B@

1
CAþ 3

0

�1

1

0
B@

1
CAþ

2

1

0

0
B@

1
CA, � 1

3

1

2

0
B@

1
CAþ

0

�1

�1

0
B@

1
CA�

2

1

0

0
B@

1
CA

2
64

3
75

¼
�6

�2

�4

0
B@

1
CAþ

0

�3

3

0
B@

1
CAþ

2

1

0

0
B@

1
CA,

�3

�1

�2

0
B@

1
CAþ

0

�1

1

0
B@

1
CA�

2

1

0

0
B@

1
CA

2
64

3
75

¼
�4 �5

�4 �3

�1 �1

0
B@

1
CA ¼ AB:

2.23 Suppose ai ¼ 0 in the set of vectors a1, a2 , . . . , an. Then c1a1þ . . . þ ci0 þ
. . . þcnan ¼ 0, where c1 ¼ c2 ¼ . . . ¼ ci21¼ciþ1 ¼ . . . ¼ cn¼0 and ci=0.
Hence, by (2.40), a1, a2, . . . , an are linearly dependent.

2.24 If one of the two matrices, say, A, is nonsingular, multiply AB ¼ O by A21 to
obtain B ¼ O. Otherwise, they are both singular. In fact, as noted following
Example 2.3, the columns of AB are linear combinations of the columns of
A, with coefficients from bj.

AB ¼ (b11a1 þ � � � þ bn1an, b12a1 þ � � � þ bn2an, . . . )

¼ (0, 0, . . . , 0):

Since a linear combination of the columns of A is 0, A is singular [see (2.40)].
Similarly, by a comment following (2.38), the rows of AB are linear combi-
nations of the rows of B, and B is singular.
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2.25 AB¼ 3 5
1 4

� �
, CB¼ 3 5

1 4

� �
, rank(A)¼2, rank(B)¼2, rank(C)¼2:

2.26 (a) AB ¼ 8 5
1 1

� �
, CB ¼ 2c11 þ c13 c11 þ 2c12

2c21 þ c23 c21 þ 2c22

� �
: C is not unique.

An example is C ¼ 1 2 6
�1 1 3

� �
:

(b)
3 1 2
1 0 �1

� � x1

x2

x3

0
@

1
A ¼ 0

0

� �
gives two equations in three unknowns

with solution vector x1

1
�5

1

0
@

1
A, where x1 is an arbitrary constant. We

can’t do the same for B because the columns of B are linearly independent.

2.27 (a) An example is B ¼
2 2 3
1 4 4
�1 �1 3

0
@

1
A. Although A and B can be non-

singular, A 2 B must be singular so that (A 2 B)x ¼ 0.

(b) An example is C ¼
�1 1 1

1 �4 1
2 1 �4

0
@

1
A. In the expression Cx ¼ 0, we

have a linear combination of the columns of C that is equal to 0, which is
the definition of linear dependence. Therefore, C must be singular.

2.28 A0 is nonsingular by definition because its rows are the columns of A. To
show that (A0)21 ¼ (A21)0, transpose both sides of AA21 ¼ I to obtain
(AA21)0 ¼ I0, (A21)0A0 ¼ I. Multiply both sides on the right by (A0)21.

2.29 (AB)21 exists by Theorem 2.4(ii). Then

AB(AB)�1 ¼ I,

A�1AB(AB)�1 ¼ A�1,

B�1B(AB)�1 ¼ B�1A�1:

2.30 AB ¼ 23 1
13 1

� �
, B�1 ¼ 1

10
1 2
�3 4

� �
, (AB)�1 ¼ 1

10
1 �1

�13 23

� �
,

B�1A�1 ¼ 1
10

1 �1
�13 23

� �
.

2.31 Multiply A by A21 in (2.48) to get I.

2.32 Multiply A by A21 in (2.49) to get I.

2.33 Muliply B þ cc0 by (B þ cc0)21 in (2.50) to get I.
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2.34 Premultiply both sides of the equation by A þ PBQ. The left side obviously
equals I. The right side becomes

(Aþ PBQ)[A�1 � A�1PB(Bþ BQA�1PB)�1BQA�1]

¼ AA�1 þ PBQA�1 � AA�1PB(Bþ BQA�1PB)�1BQA�1

� PBQA�1PB(Bþ BQA�1PB)�1BQA�1

¼ Iþ P[I� B(Bþ BQA�1PB)�1 � BQA�1PB(Bþ BQA�1PB)�1]BQA�1

¼ Iþ P[I� (Bþ BQA�1PB)(Bþ BQA�1PB)�1]BQA�1

¼ Iþ P[I� I]BQA�1

¼ I:

2.35 Since y0A0y is a scalar and is therefore equal to its transpose, we have
y0A0y ¼ (y0A0y)0 ¼ y0(A)0(y0)0 ¼ y0Ay. Then 1

2 y0(Aþ A0)y ¼ 1
2 y0Ay þ

1
2 y0A0y ¼ 1

2 y0Ayþ 1
2 y0Ay.

2.36 Use the proof of part (i) of Theorem 2.6b, substituting � 0 for .0.

2.37 Corollary 1: y0BAB0y ¼ (B0y)0A(B0y) . 0 if B0y= 0 since A is positive defi-
nite. Then B0y ¼ y1b1þ. . . þ ykbk, where bi is the ith column of B0; that is , bi

0

is the ith row of B. Since the rows of B are linearly independent, there is no
nonzero vector y such that B0y ¼ 0.

2.38 We must show that if A is positive definite, then A¼P0P, where P is non
singular. By Theorems 2.12d and 2.12f, A ¼ CDC0, where C is orthogonal
and D ¼ diag(l1,l2, . . . , ln) with all li . 0. Then A ¼ CDC0 ¼ CD1=2

D1=2C0 ¼ (D1=2C0)(D1=2C0) ¼ P0P, where D1=2 ¼ diag(
ffiffiffiffiffi
l1
p

,
ffiffiffiffiffi
l2
p

, . . . ,ffiffiffiffiffi
lp

p
). Show that P ¼ D21/2C0 is nonsingular.

2.39 This follows by Theorems 2.6c and 2.4(ii).

2.40 (a) rank(A, c) ¼ rank(A) ¼ 3. Solution x1 ¼ 7
6 , x2 ¼ �5

6 , x3 ¼ 13
6 .

(b) rank(A) ¼ 2, rank(A, c) ¼ 3. No solution.

(c) rank(A, c) ¼ rank(A) ¼ 2. Solution x1 ¼ 7, x2 þ x3 þ x4 ¼ 1.

2.41 By definition, AA2A ¼ A. If A is n�m, then for conformability of multipli-
cation, A2 must be m � n.

2.42 AA�1

1 1 0
0 1 0
1 1 0

0
@

1
A, AA�1 A ¼

2 2 3
1 0 1
3 2 4

0
@

1
A:

2.43 A11
2 2
1 0

� �
, A�1

11 ¼ � 1
2

0 �2
�1 2

� �
¼ 0 1

1
2 �1

� �
.
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2.44 Let C be the lower left 2 � 2 matrix C ¼ 1 0
3 2

� �
. Then C�1 ¼

1
2

2 0
�3 1

� �
¼ 1 0
� 3

2
1
2

� �
and (C�1)0 ¼ 1 � 3

2
0 1

2

� �
.

2.45 (i) By Theorem 2.4(i), rank(A2A) � rank(A) and rank(A) ¼ rank
(AA2A) � rank (A2A). Hence rank (A2A) ¼ rank(A).

(ii) (AA2A)0 ¼ A0(A2)0A0

(iii) Let W ¼ A[I2 (A0A)2A0A]. Show that

W0W ¼ [I� (A0A)�A0A][A0A� A0A(A0A)�A0A]

¼ [I� (A0A)�A0A]O ¼ O:

Then by Theorem 2.2c(ii), W ¼ O.

(iv) A[(A0A)2A0]A ¼ A(A0A)2A0A ¼ A, by part (iii).

(v) (Searle 1982, p. 222) To show that A(A0A)2A0 is invariant to the choice
of (A0A)2, let B and C be two values of (A0A)2. Then by part (iii), A ¼
ABA0A and A ¼ ACA0A, so that ABA0A ¼ ACA0A. To demonstrate
that this implies ABA0 ¼ ACA0, show that

(ABA0A� ACA0A)(B0A0 � C0A0) ¼ (ABA0 � ACA0)

� (ABA0 � ACA0)0:

The left side is O because ABA0A ¼ ACA0A. The right side is then O,
and by Theorem 2.2c(ii), ABA02ACA0 ¼ O. To show symmetry, let S
be a symmetric generalized inverse of A0A (see Problem 2.46). Then
ASA0 is symmetric and ASA0 ¼ ABA0 since ABA0 is invariant to
(A0A)2. Thus ABA0 is also symmetric. To show that
rank[A(A0A)2A0] ¼ r, use parts (i) and (iv).

2.46 If A is symmetric and B is a generalized inverse of A, show that ABA ¼
AB0A. Then show that 1

2(B þ B)0) and BAB0 are symmetric generalized
inverses of A.

2.47 (i) By Corollary 1 to Theorem 2.8b, we obtain

A� ¼
0 0 0
0 1

2 0
0 0 1

2

0
@

1
A:

(ii) Using the five-step approach following Theorem 2.8b, with

C ¼ 2 2
2 0

� �
defined as the upper right 2�2 matrix, we obtain

C�1 ¼ 0 1
2

1
2 � 1

2

� �
and A� ¼

0 0 0
0 1

2 0
1
2 � 1

2 0

0
@

1
A.

2.48 (b) By definition, AA2A ¼ A. Multiplying on the left by A0 gives
A0AA2A¼A0A. Show that (A0A)21 exists and multiply on the left by it.
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2.49 (iv) If A is positive definite, then by Theorem 2.6d, A can be expressed as
A ¼ P0P, where P is nonsingular. By Theorem 2.9c, we obtain

jAj ¼ jP0Pj ¼ jP0jjPj [by (2:74)]

¼ jPjjPj [by (2:63)]

¼ jPj2 . 0 [by (2:61)]

(vi) jA�1Aj ¼ jIj ¼ 1

jA�1jjAj ¼ 1 ½by (2:74)�

jA�1j ¼ 1=jAj:
2.50 jAj ¼

2 5

1 3

����
���� ¼ 1 = 0, note that A is nonsingular

jA0j ¼
2 1

5 3

����
���� ¼ 1 ¼ jAj

A�1 ¼
3 �5

�1 2

� �
, jA�1j ¼

3 �5

�1 2

����
���� ¼ 1,

1
2 5

1 3

����
����
¼ 1,

2.51 (a) 10
2 5

1 3

� �
¼

20 50

10 30

� �
,

20 50

10 30

����
���� ¼ 100,

102 2 5

1 3

����
���� ¼ 100(1) ¼ 100

(b) jcAj ¼ jcIAj ¼ jcIjjAj ¼ cnjAj

2.52 Corollary 4. Let A11 ¼ B, A22 ¼ 1, A21 ¼ c0, and A12 ¼ c: Then equate the
right sides of (2.68) and (2.69).

2.53 jABj ¼ jAjjBj ¼ jBjjAj ¼ jBAj,

jA2j ¼ jAAj ¼ jAjjAj ¼ jA2j

2.54 (a) jAj ¼ 1, jBj ¼ 4 �2
3 1

����
���� ¼ 10, AB ¼ 23 1

13 1

� �
, jABj ¼ 10:

(b) jA2j ¼ 1, A2 ¼ 9 25
5 14

� �
, jA2j ¼ 1:

2.55 Define B ¼ A�1
11 O

�A21A�1
11 I

� �
: Then

BA ¼ I A�1
11 A12

O A22 � A21A�1
11 A12

� �
:
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By Corollary 1 to Theorem 2.9b, jBAj ¼ jA22 � A21A�1
11 A12j: By Theorem

2.9c. jBAj ¼ jBjjAj: By Corollary 1 to Theorem 2.9b and (2.64),
jBj ¼ jA�1

11 j ¼ 1=jA11j:

2.56 We first show that sine c0icj ¼ 0 for all i= j, the columns of C are linearly
independent. Suppose that there exist a1, a2, . . . , ap such that a1c1þ
a2c2 þ � � � þ a pcp ¼ 0: Multiply by c1

0 to obtain a1c01c1 þ a2c01c2 þ � � � þ
apc01cp ¼ c010 ¼ 0 or a1c01c1 ¼ 0, which implies that a1 ¼ 0. In a similar
manner, we can show that a2 ¼ a3 ¼ � � � ¼ ap ¼ 0: Thus the columns of C
are linearly independent and C is nonsingular. Multiply C0C ¼ I on the
left by C and on the right by C21.

2.57 (a) C ¼
1=

ffiffiffi
3
p

�1=
ffiffiffi
2
p

1=
ffiffiffi
6
p

�1=
ffiffiffi
3
p

0 2=
ffiffiffi
6
p

1=
ffiffiffi
3
p

1=
ffiffiffi
2
p

1=
ffiffiffi
6
p

0
@

1
A:

2.58 (i) jIj ¼ jC0Cj ¼ jC0jjCj ¼ jCjjCj ¼ jCj2: Thus jCj2 ¼ 1 and jCj ¼+1:

(ii) By (2.75), jC0ACj ¼ jACC0j ¼ jAIj ¼ jAj:
(iii) Since c0ici ¼ 1 for all i, we have c0ici ¼

P
j c2

ij ¼ 1, and the maximum
value of any c2

ij is 1.

2.59 (i) The ith diagonal element of A þ B is aii þ bii: Hence tr(Aþ B) ¼P
i (aii þ bii) ¼

P
i aii þ

P
i bii ¼ tr(A)þ tr(B):

(iv) By Theorem 2.2c(ii), the ith diagonal element of AA0 is a0iai, where a0i
is the ith row of A.

(v) By (iii), tr(A0A) ¼
P

i a0iai ¼
P

i

P
j a2

ij, where a0i ¼ (ai1, ai2, . . . , aip):

(vii) By (2.84), tr(C0AC) ¼ tr(CC0A) ¼ tr(IA) ¼ tr(A):

2.60 B ¼
2 1

0 2

1 0

0
B@

1
CA, B0B ¼

5 2

2 5

� �
, BB0 ¼

5 2 2

2 4 0

2 0 1

0
B@

1
CA,

tr(B0B) ¼ 5þ 5 ¼ 10, tr(BB0) ¼ 5þ 4þ 1 ¼ 10:

(iii) Let bi be the ith column of B. Then

X2

i¼1

b0ibi ¼ (2, 0, 1)
2
0
1

0
@

1
Aþ (1, 2, 0)

1
2
0

0
@

1
A ¼ 5þ 5 ¼ 10:

(iv) Let b0i be the ith row of B. Then

X3

i¼1

b0ibi ¼ (2, 1)
2

1

� �
þ (0, 2)

0

2

� �
þ (1, 0)

1

0

� �

¼ 5þ 4þ 1 ¼ 10:
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2.61 A¼
3 1 2

1 0 �1

� �
, A0A¼

10 3 5

3 1 2

5 2 5

0
B@

1
CA, AA0 ¼

14 1

1 2

� �
,

tr(A0A)¼ 16, tr(AA0)¼ 16,
X

ij
a2

ij ¼ 32þ 12þ 22þ 12þ 02þ (� 1)2 ¼ 16:

2.62 (A�A)2 ¼ A�AA�A ¼ A�A since AA�A ¼ A by definition. Hence A�A
is idempotent and tr(A�A) ¼ rank(A�A) ¼ r ¼ rank(A) by Theorem
2.8c(i). Show that tr(AA�) ¼ r by a similar argument.

2.63 A ¼
2 2 3

1 0 1

3 2 4

0
B@

1
CA, A� ¼

0 1 0

0 � 3
2

1
2

0 0 0

0
B@

1
CA, A�A ¼

1 0 1

0 1 1
2

0 0 0

0
B@

1
CA,

tr(A�A) ¼ 2,

AA� ¼
0 �1 1

0 1 0

0 0 1

0
B@

1
CA, tr(AA�) ¼ 2, rank(A�A) ¼ rank(AA�) ¼ 2:

2.64 l2 ¼ 2, (A� l2I)x2 ¼ 0,
1� 2 2

�1 4� 2

� �
x1

x2

� �
¼

0

0

� �
,

�x1 þ 2x2 ¼ 0,

�x1 þ 2x2 ¼ 0,

x1 ¼ 2x2,

x2 ¼
x1

x2

� �
¼

2x2

x2

� �
¼ x2

2

1

� �
:

Use x2 ¼ 1=
ffiffiffi
5
p

to normalize x2:

x2 ¼
2=

ffiffiffi
2
p

1=
ffiffiffi
5
p

 !
:

2.65 From A2x ¼ l2x, we obtain AA2x ¼ l2Ax ¼ l2lx ¼ l3x: By induction
AAk�1x ¼ lk�1Ax ¼ lk�1lx ¼ lkx:

2.66 By (2.98) and (2.101), Ak ¼ CDkC0, where C is an orthogonal matrix con-
taining the normalized eigenvectors of A and Dk ¼ diag(lk

1, lk
2, . . . , lk

p):
If 21 , li , 1 for all i, then D k ! O and Ak ! O.

2.67 (AB� lI)x ¼ 0,

(BAB� lB)x ¼ 0,

(BA� lI)Bx ¼ 0:
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2.68 0 ¼ jP�1AP� lIj ¼ jP�1AP� lP�1Pj

¼ jP�1(A� lI)Pj ¼ j(A� lI)P�1Pj
¼ jA� lIj:

Thus P21 AP and A have the same characteristic equation, as in (2.93).

2.69 Writing (2.92) for xi and xj, we have Axi ¼ lixi and Axj ¼ ljxj: Multiplying
by xj and x0i gives

x0jAxi ¼ lix
0
jxi, (1)

x0iAxj ¼ ljx
0
ixj: (2)

Since A is symmetric, we can transpose (1) to obtain (x0jAxi)0 ¼ li(x0jxi)0 or
x0iAxj ¼ lix0ixj: This has the same left side as (2), and thus lix0ix j ¼ ljx0ix j or
(li � lj)x0ix j ¼ 0. Since li � lj = 0, we have x0ix j ¼ 0:

2.70 By (2.101), A ¼ CDC0. Since C is orthogonal, we multiply on the left by C0

and on the right by C to obtain C0AC ¼ C0CDC0C ¼ D.

2.71 C ¼
�:5774 :8165 0
:5774 :4082 �:7071
:5774 :4082 :7071

0
@

1
A:

2.72 (i) By Theorem 21.2d, jAj ¼ jCDC0j: By (2.75), jCDC0j ¼ jC0CDj ¼ jDj:
By (2.59), jDj ¼

Qn
i¼1 li:

2.73 (a) Eigenvalues of A: 1, 2, 21

Eigenvectors: x1 ¼
:8018
:5345
:2673

0
@

1
A, x2 ¼

:3015
:9045
:3015

0
@

1
A, x3 ¼

:7071
0
:7071

0
@

1
A:

(b) tr(A) ¼ 1þ 2� 1 ¼ 2, jAj ¼ (1)(2)(� 1) ¼ �2:

2.74 In the proof of part (i), if A is positive semidefinite, x0iAxi � 0, while
x0ixi . 0. By Corollary 1 to Theorem 2.12d C0AC ¼ D, where D ¼
diag(l1, l2, . . . ,ln): Since C is orthogonal and nonsingular, then by
Theorem 2.4(ii), the rank of D is the same as the rank of A. Since D is diag-
onal, the rank is the number of nonzero elements on the diagonal, that is, the
number of nonzero eigenvalues.

2.75 (a) jAj ¼ 1:

(b) The eigenvalues of A are .2679, 1, and 3.7321, all of which are positive.
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2.76 (a) (A1=2)0 ¼ (CD1=2C0)0 ¼ (C0)0(D1=2)0C0 ¼ CD1=2C0 ¼ A1=2:

(b) (A1=2)2 ¼ A1=2A1=2 ¼ CD1=2C0CD1=2C0 ¼ CD1=2D1=2C0 ¼ CDC0 ¼ A:

2.77 l1 ¼ 3, l2 ¼ 1, x1 ¼
ffiffiffi
2
p

=2
�

ffiffiffi
2
p

=2

� �
, x2 ¼

ffiffiffi
2
p

=2ffiffiffi
2
p

=2

� �
:

A1=2 ¼ CD1=2C ¼
ffiffiffi
2
p

2

� �2
1 1

�1 1

� � ffiffiffi
3
p

0

0 1

 !
1 �1

1 1

� �

¼ 1
2

1þ
ffiffiffi
3
p

1�
ffiffiffi
3
p

1�
ffiffiffi
3
p

1þ
ffiffiffi
3
p

 !
:

2.78 (i) (I� A)2 ¼ I� 2Aþ A2 ¼ I� 2Aþ A ¼ I� A:

(ii) A(I� A) ¼ A� A2 ¼ A� A ¼ O:

(iii) (P�1AP)2 ¼ P�1APP�1AP ¼ P�1A2P ¼ P�1AP:

(iv) (C0AC)2 ¼ C0ACC0AC ¼ C0A2C ¼ C0AC,
(C0AC)0 ¼ C0A0(C0)0 ¼ C0AC if A ¼ A0:

2.79 (A�A)2 ¼ A�AA�A ¼ A�A, since AA�A ¼ A:
[A(A0A)�A0]2 ¼ A(A0A)�A0A(A0A0)�A0 ¼ A(A0A)�A0, since A ¼
A(A0A)�A0A by Theorem 2.8c(iii).

2.80 (a) 2, (e) 2, (f) 1, 1, 0.

2.81 By (2.107), tr(A) ¼
Pp

i¼1 li:By case 3 of Section 2.12.2 and (2.107), tr(A2) ¼Pp
i¼1 l

2
i : Then [tr(A)]2 ¼

Pp
i¼1 l

2
i þ 2

P
i=j lilj ¼ tr(A2)þ 2

P
i=j lilj:

2.82
@H

@x
¼ @B0(BAB0)�1B

@x
,

¼ B0
@(BAB0)�1

@x
B,

¼ B0(BAB0)�1 @BAB0

@x
(BAB0)�1B,

¼ �B0(BAB0)�1B
@A

@x
B0(BAB0)�1B,

¼ �H
@A

@x
H:

2.83 Let X ¼ a b
b c

� �
such that ac . b2. Then,

@ ln jXj
@X

¼ @ ln (ac� b2)
@X

,
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¼
@ ln (ac�b2)

@a
@ ln (ac�b2)

@b

@ ln (ac�b2)
@b

@ ln (ac�b2)
@c

0
@

1
A,

¼ 1

ac� b2

c �2b

�2b a

� �
,

¼ 2

ac� b2

c �2b

�2b a

� �
� 1

ac� b2

c 0

0 a

� �
,

¼ 2X�1 � diagX�1:

2.84 The constraints can be expressed as h(x) ¼ Cx2t where C ¼
1 0
1 1
0 1

0
@

1
A and

t ¼ 2
3

� �
: The Lagrange equations are 2Ax þ C0l ¼ 0 and Cx ¼ t, or

2A C0

C O

� �
x
l

� �
¼ 0

t

� �
:

The solution to this system of equations is

x
l

� �
¼ 2A C0

C O

� ��1
0
t

� �
:

Subsituting and simplifying using (2.50) we obtain

x ¼
1=6
11=6
7=6

0
@

1
A and l ¼ �1=3

�7

� �
:

Chapter 3

3.1 By (3.3) we have

E(ay) ¼
ð1

�1

ay f (y) dy ¼ a

ð1

�1

y f (y) dy ¼ aE(y):

3.2 E(y� m)2 ¼ E(y2 � 2myþ m2)

¼ E(y2)� 2mE(y)þ m2 [by (3:4) and (3:5)]

¼ E(y2)� 2m2 þ m2 ¼ E(y2)� m2:

3.3 var(ay) ¼ E(ay� am)2 [by (3:6)]

¼ E[a(y� m)]2 ¼ E[a2(y� m)2]

¼ a2E(y� m)2 [by (3:4)]:
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3.4 The solution is similar to the answer to Problem 3.2.

3.5 E( yiyj) ¼
ð1

�1

ð1

�1

yiyj f ( yiyj) dyi dyj

¼
ð ð

yiyj fi( yi) fj( yj) dyidyj ½by ( 3:12)�

¼
ð

yj fj( yj)
ð

yi fi( yi) dyi

� �
dyj

¼ E( yi)
ð

yj fj( yj) dyj ¼ E( yi)E( yj):

3.6 cov( yi, yj) ¼ E( yiyj)� mimj [by ( 3:11)]

¼ mimj � mimj [by ( 3:14)]:

3.7 (a) Using the quadratic formula to solve for x in y ¼ 1 þ 2x 2 x2 and
y¼2x 2 x2, we obtain x ¼ 1 + 1

ffiffiffiffiffiffiffiffiffiffiffi
2� y
p

and x ¼ 1 +
ffiffiffiffiffiffiffiffiffiffiffi
1� y
p

, respecti-
vely, which become the limits of integration in 3.16 and 3.17.

3.8 (a) Area =
Ð 2

1

Ð x
x�1 dy dxþ

Ð 3
2

Ð 4�x
3�x dy dx ¼ 2:

(b) f1( x) ¼
ðx

x�1

1
2 dy ¼ 1

2 , 1 � x � 2,

f1( x) ¼
ð4�x

3�x

1
2 dy ¼ 1

2 , 2 � x � 3:

Hence, f1( x) ¼ 1
2 , 1 � x � 3:

f2( y) ¼
ðyþ1

1

1
2 dxþ

ð3

3�y

1
2 , 0 � dx ¼ y � 1,

f2( y) ¼
ð4�y

y

1
2 dx ¼ 2� y, 1 � y � 2,

E( x) ¼
ð3

1
x( 1

2 )dx ¼ 2,

E( y) ¼
ð1

0
y( y)dyþ

ð2

1
y( 2� y)dy ¼ 1

3þ 2
3 ¼ 1,

E( xy) ¼
ð2

1

ðx

x�1
xy( 1

2 )dy dxþ
ð3

2

ð4�x

3�x
xy ( 1

2 )dy dx ¼ 2,

sxy ¼ 2� 2( 1) ¼ 0:
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(c) f ( yjx) ¼ f ( x, y)
f1( x)

¼
1
2
1
2

¼ 1,

E( yjx) ¼
ðx

x�1
y( 1)dy ¼ x� 1

2, 1 � x � 2,

E( yjx) ¼
ð4�x

3�x
y( 1)dy ¼ 7

2� x, 2 � x � 3:

3.9 E( xþ y) ¼ E

x1 þ y1

x2 þ x2

..

.

xp þ yp

0
BBBBB@

1
CCCCCA
¼

E( x1 þ y1)

E( x2 þ y2)

..

.

E( xp þ yp)

0
BBBBB@

1
CCCCCA

¼

E( x1)þ E( y1)

E( x2)þ E( y2)

..

.

E( xp)þ E( yp)

0
BBBBB@

1
CCCCCA
¼

E( x1)

E( x2)

..

.

E( xp)

0
BBBBB@

1
CCCCCA
þ

E( y1)

E( y2)

..

.

E( yp)

0
BBBBB@

1
CCCCCA

¼ E

x1

x2

..

.

xp

0
BBBBB@

1
CCCCCA
þ E

y1

y2

..

.

yp

0
BBBBB@

1
CCCCCA
:

3.10 E[( y� m)( y� m)0] ¼ E[yy0 � ym0 � my0 þ mm0]

¼ E( yy0)� E( y)m0 � mE( y0)þ E(mm0) [by ( 3:21)

and ( 3:36)]

¼ E( yy0)� mm0 � mm0 þ mm0:

3.11 Use the square root matrix S1/2 defined in (2.107) to write (3.27) as

( y� m)0S�1( y� m) ¼ ( y� m)0(S1=2S1=2)�1( y� m)

¼ [(S1=2)�1( y� m)]0[(S1=2)�1( y� m)] ¼ z0z, say:

Show that cov( z) ¼ I (see Problem 5.17).
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3.13 cov( z) ¼ cov
y

x

� �
¼ E[( z� mz)( z� mz)

0] [by ( 3:24)]

¼ E
y

x

� �
�

my

mx

� �� �
y

X

� �
�

my

mx

� �� �0
[by ( 3:32)]

¼ E
y� my

x� mx

� �
[( y� my)

0, ( x� mx)0]

¼ E
( y� my)( y� my)0 ( y� my)( x� mx)0

( x� mx)( y� my)0 ( x� mx)( x� mx)0

" #

¼
E[( y� my)( y� my)0] E[( y� my)( x� mx)0]

E[( x� mx)( y� my)0] E[( x� mx)( x� mx)0]

" #

¼
Syy Syx

Sxy Sxx

� �
: [by ( 3:34)]

3.14 (i) If we write A in terms of its rows, then

Ay ¼

a01
a02
..
.

a0k

0
BBB@

1
CCCA, y ¼

a01y
a02y

..

.

ak0y

0
BBB@

1
CCCA

Then, by Theorem 3.6a, E( a0iy) ¼ a0iE( y), and the result follows by
(3.20).

(ii) Write X in terms of its columns xi as X ¼ ( x1, x2, . . . , xp). Since Xb is a
random vector, we have, by Theorem 3.6a

E( a0Xb) ¼ a0E( Xb)

¼ a0E( b1x1 þ b2x2 þ � � � þ bpxp) [by ( 2:37)]

¼ a0[b1E( x1)þ b2E( x2)þ � � � þ bpE( xp)]

¼ a0[E( x1), E( x2), . . . , E( xp)]b [by ( 2:37)]

¼ a0E( X)b:

(iii) E( AXB) ¼ E

a01
a02

..

.

a0k

0
BBBBB@

1
CCCCCA

X( b1, b2, . . . , bp)

2
666664

3
777775
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¼ E

a01Xb1 a01Xb2 � � � a01Xbp

a02Xb1 a02Xb2 � � � a02Xbp

..

. ..
. ..

.

a0kXb1 a0kXb2 � � � a0kXbp

0
BBBBB@

1
CCCCCA

¼

a01E( X)b1 a01E( X)b2 � � � a01E( X)bp

a02E( X)b1 a02E( X)b2 � � � a02E( X)bp

..

. ..
. ..

.

a0kE( X)b1 a0kE( X)b2 � � � a0kE( X)bp

0
BBBBB@

1
CCCCCA

¼

a01
a02

..

.

a0k

0
BBBBB@

1
CCCCCA

E( X)( b1, b2, . . . , bp) ¼ AE( X)B:

3.15 By (3.21), E( Ayþ b) ¼ E( Ay)þ E( b) ¼ AE( y)þ b. Show that E( b) ¼ b:
if b is a constant vector.

3.16 By (3.10) and Theorem 3.6a, we obtain

cov( a0y, b0y) ¼ E[( a0y� a0m)( b0y� b0m)]

¼ E[( a0( y� m)( y� m)0b] [by ( 2:18)]

¼ a0E[( y� m)( y� m)0]b [by Theorem 3:6b (ii)]

¼ a0Sb [by ( 3:24)]:

3.17 (i) By Theorem 3.6b parts (i) and (iii), we obtain

cov( Ay) ¼ E[( Ay� Am)( Ay� Am)0]

¼ E[( A( y� m)( y� m)0A0]

¼ AE[( y� m)( y� m)0]A0

¼ ASA0 [by ( 3:24)]:

(ii) By (3.34) and Theorem 3.6b(i), cov( Ay,By) ¼ E½( Ay� Am)( By�
Bm)0�. Show that this is equal to ASB0.
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3.18 By (3.24) and (3.41), we have

cov( Ayþ b) ¼ E[Ayþ b� ( Amþ b)][Ayþ b� ( Amþ b)]0

¼ E[Ay� Am][Ay� Am]0:

Show that this is equal to ASA0.

3.19 Let z ¼

y
x
v
w

0
BB@

1
CCA, K ¼

A O O O
O B O O
O O C O
O O O D

0
BB@

1
CCA, L ¼

�
I I O O

	
, and M ¼

�
O O I I

	
. Then cov(Ay þ Bx, Cv þ Dw)

¼ LK cov(z) K0M0

¼
�

A B O O
	

Syy Sxy Syv Sym

Sxy Sxx Sxv Sxw

Svy Svx Svv Svw

Swy Swx Swv Sww

0
BBB@

1
CCCA

O0

O0

C0

D0

0
BBB@

1
CCCA

¼ ASyvC0 þ BSxvC0 þ ASywD0 þ BSxwD0:

3.20 (a) E( z) ¼ 8, var( z) ¼ 2:

(b) E( z) ¼ 3
�4

� �
, cov( z) ¼ 21 �14

�14 45

� �
:

3.21 (a) E( w) ¼
6

�10
6

0
@

1
A, cov( w) ¼

6 �14 18
�14 67 �49

18 �49 57

0
@

1
A:

(b) cov( z, w) ¼ 11 �25 34
�8 53 �31

� �
:

Chapter 4

4.1 Use (3.2) and (3.8) and integrate directly.

4.2 By (2.67) jS�1=2j ¼ j(S1=2)�1j ¼ jS�1=2j�1: We now use (2.77) to

obtain jSj ¼ jS1=2
S

1=2j ¼ jS1=2jjS1=2j ¼ jS1=2j2, form which it follows

that jS1=2j ¼ jSj1=2:
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4.3 Using Theorem 2.14a and the chain rule for differentiation (and assuming that
we can interchange integration and differentiation), we obtain

@et0y

@t
¼ et0y @t0y

@t
¼ yet0y,

@My( t)
@t

¼ @

@t

ð
� � �
ð

et0yf ( y)dy ¼
ð
� � �
ð
@

@t
et0yf ( y)dy,

@My( 0)
@t

¼
ð
� � �
ð

yf ( y)dy ¼ E( y) ½by ( 3:2) and ( 3:20)�:

4.4 @2et0y

@tr@ts
¼ @

@tr
et0y @t0y

@ts

� �
¼ @

@tr
( yse

t0y) ¼ yryse
t0y:

4.5 Multiply out the third term on the right side in terms of y2m and St.

4.6 My�m( t) ¼ E½et0( y�m)� ¼ E( et0y�t0m) ¼ e�t0mE( et0y) ¼ e�t0met0mþ( 1=2)t0St:

4.7 E( et0Ay) ¼ E( e( A0t)0y). Now use Theorem 4.3 with A0t in place of t to
obtain

E( et0Ay) ¼ e( A0t)0mþ(1=2)( A0t)SA0t ¼ et0( Am)þ(1=2)t0( ASA0)t:

4.8 Let K( t) ¼ ln½M( t)�. Then K 0( t) ¼ M0( t)
M( t) and K 00( t) ¼ M00( t)

M( t) �
M0( t)
M( t)

h i2
. Since

M( 0) ¼ 1, K 00( 0) ¼ M00( 0)� ½M0( 0)�2 ¼ s2.

4.9 CSC0 ¼ C(s2I )C0 ¼ s2CC0 ¼ s2I: Use Theorem 4.4a (ii).

4.10 The moment generating function for z ¼ Ayþ b is

MzðtÞ ¼ Eðet0zÞ ¼ Eðet0ðAyþbÞÞ ¼ Eðet0ðAyþt0bÞÞ ¼ et0bEðet0AyÞ

¼ et0bet0ðAmÞþt0ðASA0Þt=2 ½by ð4:25Þ�

¼ et0ðAmþbÞþt0ðASA0Þt=2,

which is the moment generating function for a multivariate normal random
vector with mean vector Amþ b and covariance matrix ASA0.
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4.11 Use (2.35) and (2.36).

4.12 By Theorem 3.6d(ii), cov( Ay, By) ¼ ASB0:

4.13 Write g(y, x) in terms of
my

mx

� �
and S ¼ Syy Syx

Sxy Sxx

� �
. For jSj and S

�1, see

(2.72) and (2.50). After canceling h(x) in (4.28), show that f ( yjx) can be
written in the form

f ( yjx) ¼ 1

( 2p) p=2jSy�xj1=2
e�( y�my�x)0S�1

y�x ( y�my�x)=2,

where my�x ¼ my þ SyxS
�1
xx ( x� mx) and Sy�x ¼ Syy � SyxS

�1
xx Sxy:

4.14 cov( y� Bx, x) ¼ cov ( I, � B)
y
x

� �
, ( O, I)

y
x

� �� �
: Use Theorem 3.6d(ii)

4.16 (a)
y1

y3

� �
is N2

1
3

� �
,

4 �1
�1 5

� �� �
:

(b) y2 is N(2, 6).

(c) z is N(24, 79).

(d) z ¼ z1

z2

� �
is N2

2
9

� �
,

11 �6
�6 154

� �� �
:

(e) f ( y1, y2jy3, y4) ¼ N2
1þ y3 þ 3

2 y4

y3 þ 1
2 y4

� �
,

2 2
2 4

� �� �
.

(f) E( y1, y3jy2, y4) ¼ 1
3

� �
þ 2 2

3 �4

� �
6 �2
�2 4

� ��1
y2 � 2
y4 þ 2

� �
,

cov( y1, y2jy2, y4)¼ 4 �1
�1 5

� �
� 2 2

3 �4

� �
6 �2
�2 4

� ��1
2 3
2 �4

� �
:

Thus

f ( y1, y3jy2, y4)¼ N2

7
5þ 3

2 y2þ 4
5 y4

4
5þ 1

5 y2� 9
10 y4

 !
,

6
5

2
5

2
5

4
5

 !" #
:

(g) r13 ¼ �1=2
ffiffiffi
5
p

.

(h) r13�24 ¼ 1=
ffiffiffi
6
p

. Note that r13�24 is opposite in sign to r13.

(i) Using the partitioning

m ¼
1
2
3
�2

0
B@

1
CA, S ¼

4 2 �1 2
2 6 3 �2
�1 3 5 �4

2 �2 �4 4

0
BB@

1
CCA,
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we have

E( y1jy2, y3, y4) ¼ 1þ ( 2 � 1 2)

6 3 �2

3 5 �4

�2 �4 4

0
B@

1
CA
�1 y2 � 2

y3 � 3

y4 þ 2

0
B@

1
CA

¼ 1þ ( 2 � 1 2)

1=4 �1=4 �1=8

� 1
4

5=4 9=8

1=8 9=8 21=16

0
BBB@

1
CCCA

y2 � 2

y3 � 3

y4 þ 2

0
B@

1
CA

¼ y2

2
þ y3

2
þ 5y4

4
þ 1

var( y1jy2, y3, y4) ¼ 4� ( 2 � 1 2)

1=4 �1=4 �1=8

�1=4 5=4 9=8

1=8 9=8 21=16

0
B@

1
CA

2

�1

2

0
B@

1
CA

¼ 4� 3 ¼ 1:

Thus f ( y1 jy2, y3, y4) ¼ N 1þ 1=2y2 þ 1=2y3 þ 5=4y4, 1ð Þ:

4.17 (a) N(17, 79).

(b) N2
6
0

� �
,

5 4
4 23

� �� �
:

(c) f ( y2jy1, y3) ¼ N � 5
2þ 1

4 y1 þ 1
3 y3, 17=12

� 	
.

(d) f ( y1 jy2, y3) ¼ N2
2

�2þ 1
3 y3

� �
,

4 1
1 5

3

� �� �
.

(e) r12 ¼
ffiffiffi
2
p

=4 ¼ :3536, r12�3 ¼
ffiffiffiffiffiffiffiffiffiffi
3=20

p
¼ :3873.

4.18 y1 and y2 are independent, y2 and y3 are independent.

4.19 y1 and y2 are independent, ( y1, y2) and ( y3, y4) are independent.

4.20 Using the expression in (4.38) for Syx in terms of its rows six, show that

SyxS
�1
xx Sxy ¼

s01xS
�1
xx s1x s01xS

�1
xx s2x . . . s01xS

�1
xx s px

s02xS
�1
xx s1x s02xS

�1
xx s2x . . . s02xS

�1
xx s px

..

. ..
. ..

.

s0pxS
�1
xx s1x s0pxS

�1
xx s2x . . . s0pxS

�1
xx s px

0
BBBB@

1
CCCCA
:
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Chapter 5

5.1
Xn

i¼1

(yi��y)2¼
Xn

i¼1

(y2
i �2�yyiþ�y2)¼

Xn

i¼1

y2
i �2�y

X
i

yiþn�y2¼
X

i

y2
i �2n�y2þn�y2

5.2 By (2.23)½( 1=n)J�2 ¼ ( 1=n2)jj0jj0 ¼ ( 1=n2)j( n)j0 ¼ ( 1=n)jj0 ¼ ( 1=n)J:

5.3 (a) By Theorem 5.2b we obtain

var( s2) ¼ 1

( n� 1)2

� �
var y0 I� 1

n
J

� �
y

� �

¼ 1

( n� 1)2

� �
2tr I� 1

n
J

� �
s 2I

� �2

þ 4m2s 2j0 I� 1
n

J

� �
j

( )

¼ 1

( n� 1)2

� �
2s4tr I� 1

n
J

� �
þ 4m2s 2( n� n)

� �
¼ 2s4

n� 1
:

(b) var( s2) ¼ var
s2u

n� 1

� �
¼ s4

( n� 1)2

� �
var( u)

¼ s4

( n� 1)2

� �
( 2)( n� 1) ¼ 2s4

n� 1

5.4 Note that u0V�1 ¼ m0S�1. Because of symmetry of V and S, we have

V�1u ¼ S
�1m. Substituting into the expression on the left we obtain

Sj j�1=2 I� 2tASj j�( 1=2) S�1
���

���
�( 1=2)

e�½m
0S�1m�m0( I�2AS)�1S�1m�=2

¼ I�2tASj j�( 1=2)e�m
0 ½I�( I�2tAS)�1�S�1m=2:

5.5 Expanding the second expression we obtain e�½m
0S�1m�u0V�1uþy0V�1y�2u0V�1yþ

u0V�1u�=2: Substituting u 0 and V21, simplifying, and noting that u 0V�1 ¼
m0S�1, we obtain the first expression.

5.6 k0( t) ¼ � 1
2

1
jCj

djCj
dt
� 1

2
m0C�1 dC

dt
C�1S�1m: Using the chain rule,

k00( t) ¼ � 1
2

1

jCj2
djCj
dt

� �2

� 1
2

1
jCj

d2jCj
dt2
þ 1

2
m0C�1 dC

dt
C�1 dC

dt
C�1S

�1m

� 1
2
m0C�1 d2C

dt2
C�1S�1mþ 1

2
m0C�1 dC

dt
C�1 dC

dt
C�1S�1m:
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5.7 y0Ay ¼ ( y� mþ m)0A( y� mþ m)

¼ ( y� m)0A( y� m)þ ( y� m)0Amþ m0A( y� m)þ m0Am

¼ ( y� m)0A( y� m)þ 2( y� m)0Amþ m0Am

5.8 To show that E½( y� m)( y� m)0 A( y� m)� ¼ 0, we need to show that all
central third moments of the multivariate normal are zero. This can be
done by differentiating My�m( t) from Corollary 1 to Theorem 4.3a. Show that

@3My�m( t)
@tr@ts@tu

¼ e( 1=2)t0St sur

X
j

tjssj

 !
þ ssr

X
j

tjsuj

 !"

þ
X

j

tjsuj

 ! X
j

tjssj

 ! X
j

tjsrj

 !
þ sus

X
j

tjsrj

 !#

Since there is a tj in every term, @3My�m( t)=@tr @ts @tu ¼ 0 for t ¼ 0 and
E½( yr � mr)( ys � ms)( yu � mu)� ¼ 0 for all r, s, u.
For the second term, we have [by (3.40)]

2E½( y� m)( y� m)0Am� ¼ 2{E½( y� m)( y� m)0�}Am

¼ 2SAm :

For the third term, we have

E½( y� m)tr( AS)� ¼ ½E( y� m�½tr( AS)� ¼ 0½tr( AS)� ¼ 0:

5.9 By definition

cov( By, y0Ay) ¼ E{[By� E( By)][y0Ay� E( y0Ay)]}

¼ E{[B( y� m)][y0Ay� E( y0Ay)]}

¼ BE{( y� m)][y0Ay� E( y0Ay)]}

¼ B cov( y, y0Ay) ¼ 2BSAm:

5.10 In (3.34), we have Syx ¼ E½( y� my)( x� mx)0�. Show that E( yx0) ¼
Syx þ mym

0
x. Then

E( x0Ay) ¼ E[tr( x0Ay)] ¼ E[tr(Ayx0)]

¼ tr[E( Ayx0)] ¼ tr[AE( yx0)]

¼ tr[A(Syx þ mym
0
x)] ¼ tr( ASyx þ Amym

0
x)

¼ tr( ASyx)þ tr( Amym
0
x) ¼ tr( ASyx)þ tr(m0xAmy)

¼ tr( ASyx)þ m0xAmy:
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5.11 (a)
Pn

i¼1 (xi��x)(yi��y)¼
Pn

i¼1 (xiyi��xyi��yxiþ�x�y)¼
Pn

i¼1 xiyi��x
P

i yi�
�y
P

i xiþn�x�y¼
P

i xiyi�n�x�y�n�x�yþn�x�y:

(b) With x ¼ ( x1, x2, . . . , xn)0, y ¼ ( y1, y2, . . . , yn)0, �x ¼ ( 1=n)j0x, and
�y ¼ ( 1=n)j0y, we have

n�x�y ¼ n
1
n

� �2

j0xj0y ¼ 1
n

x0jj0y ¼ x0
1
n

J

� �
y,

Xn

i¼1

xiyi � n�x�y ¼ x0y� x0
1
n

J

� �
y ¼ x0 I� 1

n
J

� �
y:

5.12 Apply (5.5), (5.9), and (5.8) with m ¼ 0, A ¼ I, and S ¼ I. The results follow.

5.13 By (5.9), var( y0Ay) ¼ 2tr( AS)2 þ 4m0ASAm. In this case, we seek var(y0y),
where y is Nn(m, I). Hence, A ¼ S ¼ I, and

var( y0y) ¼ 2tr( I)2 þ 4m0m ¼ 2nþ 8l:

Since I is n � n, tr(I) ¼ n, and by (5.24), 4m0m ¼ 8l:

5.14 ln Mv( t) ¼ �( n=2) ln ( 1� 2t)� l½1� ( 1� 2t)�1�,
d ln Mv( t)

dt
¼ n

1� 2t
� l½�2( 1� 2t)�2�,

d ln Mv( 0)
dt

¼ nþ 2l,

d2 ln Mv( t)
dt2

¼ 2n

( 1� 2t)2 þ 8l( 1� 2t)�3,

d2 ln Mv( 0)
dt2

¼ 2nþ 8l:

5.15 Since v1, v2 , . . . , vk are independent, we have

MSivi
( t) ¼ E( etSivi ) ¼ E( etv1 etv2 . . . etvk )

¼ E( etv1 )E( etv2 ) . . . E( etvk )

¼
Yk

i¼1

Mvi ( t)
Yk

i¼1

1

( 1� 2t)ni=2
e�li½1�1=( 1�2t)�

¼ 1

( 1� 2t)Sini=2
e�½1�1=( 1�2t)�Sili :

Thus by (5.25), Sivi is x2 Sini, Silið Þ.
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5.16 (a) t2 ¼ x2=( u=p) is F(1, p) since z2 is x2 (1), u is x2( p), and z2 and u are
independent.

(b) t2 ¼ y2=( u=p) is F( 1, p, 1
2m

2) since y2 is x2( 1, 1
2m

2), u is x2( p), and y2

and u are independent.

5.17 E½S�1=2( y�m)� ¼S�1=2½E( y)�m� ¼ 0: cov½S�1=2( y�m)� ¼S�1=2cov( y�
m)S�1=2 ¼S

�1=2
SS

�1=2 ¼S
�1=2

S
1=2

S
1=2

S
�1=2 ¼ I. Then by Theorem

4.4a(ii), S�1=2( y�m) is Nn(0, I).

5.18 (a) In this case, S ¼ s2I and A is replace by A/s2. We thus have (A/s2)
(s2I ) ¼ A, which is indempotent.

(b) By Theorem 5.5, y0( A=s2)y is x2( r, l) if (A/s2)S is idempotent. In this
case, S ¼ s2I, so ( A=s2)S ¼ ( A=s2)(s2I) ¼ A. For l, we have
l ¼ 1

2m
0( A=s2)m ¼ m0Am=2s2.

5.19 By Theorem 5.5, ( y� m)0S�1( y� m) is x2(n) because AS ¼ S
�1
S ¼ I

(which is idempotent) and E( y� m) ¼ 0. The distribution of y0S�1y is

x2(n, l), where l ¼ 1
2m
0S�1m.

5.20 All of these are direct applications of Theorem 5.5.

(a) l ¼ 1
2m
0Am ¼ 1

2 00A0 ¼ 0.
(b) AS ¼ ( I=s2)(s2I) ¼ I, which is idempotent. l ¼ 1

2m
0( I=s2)m ¼

m0m=2s2:

(c) In this case “AS” becomes ( A=s2)(s2S) ¼ AS.

5.21 BSA ¼ B(s2I)A ¼ s2BA, which is O if BA ¼ O.

5.22 j0½I� ( 1=n)J� ¼ j0½I� ( 1=n)jj0� ¼ j0 � ( 1=n)j0jj0 ¼ j0 � ( 1=n)( n)j0 ¼ 00:

5.23 ASB ¼ A(s2I)B ¼ s2AB, which is O if AB ¼ O.

5.24 (a) Use Theorem 4.4a(i). In this case a ¼ j/n.

(b) t ¼ zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u=( n� 1)

p ¼ ( �y� m)=(s=
ffiffiffi
n
p

)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½( n� 1)s2=s2=( n� 1)�

p . Show that

z ¼ ( �y� m)=(s=
ffiffiffi
n
p

) is N(0, 1).

(c) Let v ¼ ( �y� m0)=(s=
ffiffiffi
n
p

). Then E( v) ¼ (m� m0)=(s=
ffiffiffi
n
p

) ¼ d, say,
and var( v) ¼ [1=(s2=n)] var(�y) ¼ 1. Hence v is N(d, 1), and by (5.29),
we obtain

vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
( n� 1)s2=s2

n� 1

r ¼ �y� m0

s=
ffiffiffi
n
p is t( n� 1, d):

Thus d ¼ (m� m0)=(s=
ffiffiffi
n
p

):
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5.25 By Problem 5.2, (1/n)J and I2(1/n)J are idempotent and [I 2 (1/n)J]
[(1/n)J] ¼ O. By Example 5.5,

Pn
i¼1 ( yi � �y)2=s2 ¼ y0½I� ( 1=n)J�y=s2

is x2(n21). Show that n�y2=s2 ¼ y0½( 1=n)J�y=s2 is x2(1, l), where
l ¼ 1

2m
0Am ¼ nm2=2s2. Since ½I� ( 1=n)J( 1=n)J� ¼ O, the quadratic

forms y0½( 1=n)J�y and y0½I� ( 1=n)J�y are independent. Thus by (5.26),
n�y2=½

Pn
i¼1 ( yi � �y)2=( n� 1)� is F( 1, n� 1, l), where l ¼ nm2=2s2. If

m ¼ 0 (H0 is true), then l ¼ 0 and n�y2=½
Pn

i¼1 ( yi � �y)2=( n� 1)� is
F(1, n 2 1).

5.26 (b) Since

Pn
i¼1 ( yi � �y)2

s2( 1� r)
¼ y0½I� ( 1=n)J�y

s2( 1� r)
¼ y0

A

s2( 1� r)

� �
y,

we have

A

s2( 1� r)
S ¼ s2

s2( 1� r)
¼ ½I� ( 1=n)J�½( 1� r)Iþ rJ�:

Show that this equals ( I� 1
n J), which is idempotent.

5.27 (a) E( y0Ay) ¼ tr( AS)þ m0Am ¼ �16:

(b) var( y0Ay) ¼ 2tr ( AS)2 þ 4m0ASAm ¼ 21,138:

(c) Check to see if AS is indepotent.

(d) Check to see if A is idempotent.

5.28 A ¼ S�1 ¼ diag 1
2 , 1

4 , 1
3

� 	
, 1

2m
0Am ¼ 2:9167.

5.29 A ¼ S�1, 1
2m
0Am ¼ 27.

5.30 (a) Show that A is idempotent of rank 2, which is equal to tr (A). Therefore,
y0Ay=s2 is x2( 2, m0Am=2s2), where 1

2 m
0Am ¼ 1

2 ( 12:6) ¼ 6:3:

(b) BA ¼ 0 0 0
1 0 �1

� �
= O. Hence y0Ay and By are not independent.

(c) y1 þ y2 þ y3 ¼ j0y. Show that j0A ¼ 00. Hence y0Ay and y1 þ y2 þ y3 are
independent.

5.31 (a) Show that B is idempotent of rank 1. Therefore, y0By=s2 is
x2( 1, m0Bm=2s2). Find 1

2m
0Bm.

(b) Show that BA ¼ O. Therefore, y0By and y0Ay are independent.

5.32 (a) A2 ¼ X( X0X)�1X0X( X0X)�1X0 ¼ X( X0X)�1X0 ¼ A: By Theorem 2.13d
rank( A)¼ tr ( A)¼ tr [X( X0X)�1X0]. By Theorem 2.11(ii), this
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becomes tr [X( X0X)�1X0]¼ tr( Ip)¼ p: Similarly, rank tr ( I�A)¼
n� p:

(b) tr[A(s2I)]¼tr[s2X(X0X)�1X0]¼ps2:m0Am¼(Xb)0X(X0X)�1X0(Xb)¼
b0X0Xb: Thus E[y0Ay]¼ps2þb0X0Xb. Show that tr [( I� A)(s2I)] ¼
s2(n�p) and m0(I�A)m¼ 0, if m¼Xb. Hence E½y0(I�A)y� ¼ (n�
p)s2.

(c) y0Ay=s2 is x2( p, l), where l ¼ m0Am=2s2 ¼ b0X0Xb=2s2:

y0( I� A)y=s2 is x2(n2p).

(d) Show that X( X0X)�1X0½I� X( X0X)�1X0� ¼ O: Then, by Corollary 1 to
Theorem 5.6b, y0Ay and y0( I� A)y are independent.

(e) F( p, n� p, l), where l ¼ b0X0Xb=2s2.

Chapter 6

6.1 Equations (6.3) and (6.4) can be written as

Xn

i¼1

yi � nb̂0 � b̂1

Xn

i¼1

xi ¼ 0,

Xn

i¼1

xiyi � b̂0

Xn

i¼1

xi � b̂1

Xn

i¼1

x2
i ¼ 0:

Solving for b̂0 from the first equation gives b̂0 ¼
P

i yi=n� b̂1

P
i xi=n ¼

�y� b̂1�x. Substituting this into the second equation gives the result for b̂1.

6.2 (a) Show that
Pn

i¼1 ( xi � �x)( yi � �y) ¼
Pn

i¼1 ( xi � �x)yi: Then b̂1 ¼
P

i

( xi � �x)yi=c, where c ¼
P

i ( xi � �x)2. Now, using E( yi) ¼ b0 þ b1xi

from assumption 1 in Section 6.1, we obtain (assuming that the x’s are
constants)

E( b̂1)¼ E
Xn

i¼1

(xi��x)yi=c

" #
¼
X

i

(xi��x)E(yi)=c

¼
X

i

(xi��x)(b0þb1xi)=c

¼b0

X
i

(xi��x)=cþb1

X
i

(xi��x)xi=c

¼ 0þb1

X
i

(xi��x)(xi��x)=c¼b1

X
i

(xi��x)2=
X

i

(xi��x)2¼b1:
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(b) E( b̂0) ¼ E( �y� b̂1�x) ¼ E
Xn

i¼1

yi=n

 !
� ½E( b̂1)��x

¼
X

i

E( yi)=n� b1�x ¼
X

i

(b0 þ b1xi)=n� b1�x

¼
X

i

b0=nþ b1

X
i

xi=n� b1�x ¼ nb0=nþ b1�x� b1�x ¼ b0:

6.3 (a) Using b̂1 ¼
Pn

i¼1 ( xi � �x)yi=c, as in the answer to Problem 6.2, and
assuming var( yi) ¼ s2 and cov( yi, yj) ¼ 0, we have

var( b̂1) ¼ 1
c2

Xn

i¼1

( xi � �x)2var( yi) ¼
1
c2

Xn

i¼1

( xi � �x)2s2

¼ s2Pn
i¼1 ( xi � �x)2

Pn
i¼1 ( xi � �x)2


 �2 ¼
s2

Pn
i¼1 ( xi � �x)2 :

(b) Show that b̂0 can be written in the form b̂0 ¼
Pn

i¼1 yi=n�
�x
Pn

i¼1 ( xi � �x)yi=c: Then

var( b̂0) ¼ var
Xn

i¼1

1
n
� �x( xi � �x)

c

� �
yi

( )

¼
Xn

i¼1

1
n
� �x( xi � �x)

c

� �2

var( yi)

¼
Xn

i¼1

1
n2
� 2�x( xi � �x)

nc
þ �x2( xi � �x)2

c2

� �
s2

¼ s2 n

n2
� 2�x

nc

Xn

i¼1

( xi � �x)þ �x2

c2

Xn

i¼1

( xi � �x)2

" #

¼ s2 1
n
� 0þ �x2Pn

i¼1 ( xi � �x)2

½
Pn

i¼1 ( xi � �x)2�2

" #

¼ s2 1
n
þ �x2

Pn
i¼1 ( xi � �x)2

� �
:
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6.4 Suppose that k of the xi’s are equal to a and the remaining n2k xi’s are equal
to b. Then

�x ¼ kaþ ( n� k)b
n

,

Xn

i¼1

( xi � �x)2 ¼ k a� kaþ ( n� k)b
n

� �2

þ( n� k) b� kaþ ( n� k)b
n

� �2

¼ k
n( a� b)� k( a� b)

n

� �2

þ( n� k)
k( b� a)

n

� �2

¼ k

n2
½( n� k)( a� b)�2 þ n� k

n2
½�k( a� b)�2

¼ ( a� b)2

n2
½k( n� k)2 þ k2( n� k)�

¼ ( a� b)2

n2
k( n� k)( n� k þ k) ¼ ( a� b)2k( n� k)

n
:

We then differentiate with respect to k and set the results equal to 0 to solve
for k.

@
Pn

i¼1 ( xi � �x)2

@k
¼ ( a� b)2

n
½k( � 1)þ n� k� ¼ 0,

k ¼ n

2
:

6.5
SSE ¼

Xn

i¼1

( yi � ŷi)
2 ¼

X
i

( yi � b̂0 � b̂1xi)
2

¼
X

i

( yi � �yþ b̂1�x� b̂1xi)
2 ¼

X
i

½yi � �y� b̂1( xi � �x)�2

¼
X

i

( yi � �y)2 � 2b̂1

X
( yi � �y)( xi � �x)þ b̂ 2

1

X
i

( xi � �x)2:

Substitute b̂1 from (6.5) to obtain the result.

6.6 Show that SSE ¼
P

( yi � �y)2 � b̂ 2
1

P
( xi � �x)2:Show that �y ¼ b0 þ b1�xþ �1,

where �1 ¼
Pn

i¼1 1i=n: Show that E
Pn

i¼1 ( yi � �y)2

 �

¼ E{
P

i½b1( xi � �x) þ
1i � �1�2} ¼ b2

1

P
i ( xi � �x)2 þ ( n� 1)s2 þ 0: By (3.8), E( b̂ 2

1 ) ¼ var( b̂1)þ
½E( b̂1)�2 ¼ s2=

P
i ( xi � �x)2 þ b2

1:

6.8 To test H0 : b1 ¼ c versus H1 : b1 = c, we use the test statistic

t ¼ b̂1 � c

s=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 ( xi � �x)2
q
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and reject H0 if jtj � ta=2,n�2. Show that t is distributed as t(n22, d), where

d ¼ b1 � c

s=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i ( xi � �x)2
q

6.9 (a) To test H0: b0 ¼ a versus H1: b0=a, we use the test statistic

t ¼ b̂0 � a

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
þ �x2

Pn
i¼1 ( xi � �x)2

s

and reject H0 if jtj . ta=2,n�2:. Show that t is distributed as t(n22, d),
where

d ¼ b0 � a

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
þ �x2

P
i ( xi � �x)2

s

(b) A 100 (12a)% confidence interval for b0 is given by

b̂ + ta=2,n�2s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
þ �x2

P
i ( xi � �x)2 :

s

6.10 We add and subtract ŷi to obtain
Pn

i¼1 ( yi � �y)2 ¼
Pn

i¼1 ( yi � ŷi þ ŷi � �y)2:
Squaring the right side gives

X
i

( yi � �y)2 ¼
X

i

( yi � ŷi)
2 þ

X
i

( ŷi � �y)2 þ 2
X

i

( yi � ŷi)( ŷi � �y):

In the third term on the right side, substitute ŷi ¼ b̂0 þ b̂1xi and then
b̂0 ¼ �y� b̂1�x to obtain
X

i

( yi � ŷi)( ŷi � �y) ¼
X

i

( yi � b̂0 � b̂1xi)( b̂0 þ b̂1xi � �y)

¼
X

i

( yi � �yþ b̂1�x� b̂1xi)( �y� b̂1�xþ b̂1xi � �y)

¼
X

i

[( yi � �y� b̂1( xi � �x)][b̂1( xi � �x)]

¼ b̂1

X
i

( yi � �y)( xi � �x)� b̂ 2
1

X
i

( xi � �x)2:
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This is equal to 0 by (6.5).

6.11
Xn

i¼1

( ŷi � �y)2 ¼
X

i

( b̂0 þ b̂1xi � �y)2 ¼
X

i

( �y� b̂1�xþ b̂1xi � �y)2

¼ b̂ 2
1

X
i

( xi � �x)2

Substituting this into (6.16) and using (6.5) gives the desired result.

6.12 Since x� �xj ¼ ( x1 � �x, x2 � �x, . . . , xn � �x)0 and y� �yj ¼ ( y1 � �y, y2�
�y, . . . , yn � �y)0, (6.18) can be written as

r ¼ ( x� �xj)0( y� �yj)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½( x� �xj)0( x� �xj)�½( y� �yj)0( y� �yj)�

p :

By (2.81), this is the cosine of u, the angle between the vectors x� �xj
and y� �yj.

6.13

t ¼ b̂1

s=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i ( xi � �x2
p ¼ b̂1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i ( xi � �x)2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SSE=( n� 2)

p

¼ b̂1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i ( xi � �x)2

q ffiffiffiffiffiffiffiffiffiffiffi
n� 2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i ( yi � �y2 � b̂ 2

1

P
i ( xi � �x)2

q

¼ b̂1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i ( xi � �x)2

q ffiffiffiffiffiffiffiffiffiffiffi
n� 2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

i ( yi � �y)2 �
P

i ( xi � �x)( yi � �y)

 �2P

i ( xi � �x)2

P
i ( xi � �x)2


 �2

vuut

¼
P

i ( xi � �x)( yi � �y)P
i ( xi � �x)2

:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i ( xi � �x)2

q ffiffiffiffiffiffiffiffiffiffiffi
n� 2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

i
( yi � �y)2 1�

P
i ( xi � �x)( yi � �y)


 �2
P

i ( yi � �y)2P
i ( xi � �x)2

" #vuut

¼
ffiffiffiffiffiffiffiffiffiffiffi
n� 2
p

rffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2
p :

6.14 (a) b̂0 ¼ 31:752, b̂1 ¼ 11:368:

(b) t ¼ 11:109, p ¼ 4:108� 10�15:

(c) 11:368 + 2:054, ( 9:313, 13:422):

(d) r2 ¼ SSR
SST

¼ 6833:7663
9658:0755

¼ :7076:
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Chapter 7

7.1 By (2.18), b̂0 þ b̂ixi1 þ � � � þ b̂kxik ¼ x0ib̂ . By (2.20) and (2.27), we obtain

Xn

i¼1

( yi � x0ib̂)2 ¼ ( y1 � x0ib̂, y2 � x02b̂, . . . , yn � x0nb̂)

y1 � x01b̂

y2 � x02b̂

..

.

yn � x0nb̂

0
BBBBBB@

1
CCCCCCA

¼ ( y� Xb̂)0( y� Xb̂):

This can also be seen directly by using estimates in the model y ¼ Xbþ 1.

Thus 1̂ ¼ y� Xb̂, and 1̂ 01̂ ¼ ( y� Xb̂)0( y� Xb̂).

7.2 Multiply (7.9) using (2.17). Keep y 2 Xb̂ together and Xb̂2Xb together.
Factor X out of Xb̂2Xb.

7.3 In (7.12), we obtain

b̂1 ¼
n
P

i xiyi � ð
P

i xiÞð
P

i yiÞ
n
P

i x2
i � ð

P
i xiÞ2

¼ n½
P

i xiyi � ( n�x)( n�y)=n�
n½
P

i x2
i � ( n�x)2=n�

¼
P

i xiyi � n�x�yP
i x2

i � n�x2 ,

which is (6.5). For b̂0, we start with (6.6):

b̂0 ¼ �y� b̂1�x ¼
P

i yi

n
�

P
i xiyi � n�x�yP
i x2

i � n�x2

� �P
i xi

n

¼
P

i yi

� 	 P
i x2

i � n�x2
� 	

n
P

i x2
i � n�x2

� 	 �
P

i xiyi � n�x�yP
i x2

i � n�x2

� �P
i xi

n

¼
P

i
x2

i

P
i
yi�n
P

i
yi

P
i
xi=nð Þ2�

P
i
xið Þ
P

i
xiyið Þþn

P
i
xi=nð Þ

P
i
yi=nð Þ

P
i
xið Þ

n
P

i
x2

i �n�x2ð Þ
:

The second and fourth terms in the numerator add to 0.
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7.5 Starting with (6.10), we have

var( b̂0) ¼ s2 1
n
þ �x2

P
i ( xi � �x)2

� �
¼ s2

P
i ( xi � �x)2 þ n�x2

n
P

i ( xi � �x)2

� �

¼ s2

P
i x2

i � n�x2 þ n�x2

n
P

i ( xi � �x)2

� �
:

7.6 The two terms missing in (7.17) are

½A� ( X0X)�1X0�½( X0X)�1X0�0 þ ½( X0X)�1X0�½A� ( X0X)�1X0�0:

Using AX ¼ I, the first of these becomes

AX( X0X)�1 � ( X0X)�1X0X( X0X)�1 ¼ ( X0X)�1 � ( X0X)�1 ¼ O:

7.7 (a) For the linear estimator c0y to be unbiased for all possible b, we have
E( c0y) ¼ c0Xb ¼ a0b, which requires c0X ¼ a0. To express var( c0y) in

terms of var( a0b̂) ¼ var½a0( X0X)�1X0y�, we write var( c0y) ¼ s2c0c ¼
s2[c� X( X0X)�1aþ X( X0X)�1a�1]0[c� X( X0X)�1aþ X( X0X)�1a] .
Show that with c0X ¼ a0, this becomes [c� X( X0X)�1a]0

[c� X( X0X)�1a]þ a0( X0X)�1a, which is minimized by c ¼ X( X0X)�1a.

(b) To minimize var(c’y) subject to c’X ¼ a’, we differentiate v ¼ s2c0c�
( c0X� a0)l with respect to c and l (see Section 2.14.3):

@v=@l ¼ �X0cþ a ¼ 0 gives a ¼ X0c:

@v=@c ¼ 2s2c� Xl ¼ 0 gives c ¼ Xl=2s2:

Substituting c ¼ Xl=2s2 into a ¼ X0c gives a ¼ X0Xl=2s2, or l ¼
2s2( X0X)�1a. Thus c ¼ Xl=2s2 ¼ X( X0X)�1a.

7.9
b̂z ¼ ( Z0Z)�1Z0y ¼ ( H0X0XH)�1H0X0y

¼ H�1( X0X)�1( H0)�1H0X0y

¼ H�1( X0X)�1X0y ¼ H�1b̂:

For the ith row of Z ¼ XH, we have z0i ¼ x0iH, or zi ¼ H0xi. Thus in general,
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z ¼ H0x, and

ŷ ¼ b̂
0
zz ¼ ( H�1b̂ )0H0x ¼ b̂

0
( H�1)0H0x

¼ b̂
0
( H0)�1H0x ¼ b̂

0
x:

7.10 Since b̂0x ¼ x0b̂ is invariant to changes of scale on the x0s, x0ib̂ is invariant,
where xi

0 is the ith row of X. Therefore, Xb̂ is invariant, and it follows that

s2 ¼ ( y� Xb̂)0( y� Xb̂)=( n� k � 1) is invariant.

7.11 ( y� Xb̂)0( y� Xb̂) ¼ y0y� y0Xb̂� b̂0X0yþ b̂0X0X b̂. Use (7.8).

7.12 By (7.8), b̂0( X0y) ¼ b̂0( X0Xb̂). By Theorem 5.2a, E( y0y) ¼ E( y0Iy) ¼
tr( Is2I)þ Eðy0ÞIEðyÞ ¼ ns2 þ b0X0Xb. By Theorems 7.3b and 7.3c,

E( b̂) ¼ b and cov( b̂) ¼ s2( X0X)�1. Thus E( b̂0X0Xb̂) ¼ tr½( X0X)

s2( X0X)�1� þ b̂0X0Xb:

7.13 Let X1 and b̂1 represent a reduced model with k21 x’s, and let X and b̂
represent the full model with k x’s. Then show that SSE for the full model
can be expressed as

SSEk ¼ ( y0y� b̂01X01y)� ( b̂0X0y� b̂01X01y)

¼ SSEk�1 � ( a positive term):

It is shown in Theorem 8.2d and problem 8.10 that b̂0X0y� b̂01X01y is a
positive definite quadratic form.

7.15 First show that (1/n)j0X1 ¼ x̄, where x̄ ¼ (x̄1, x̄2, . . ., x̄k), which contains the
means of the columns of X1. Then

I� 1
n

J

� �
X1 ¼ X1 �

1
n

JX1 ¼ X1 �
1
n

jj0X1 ¼ X1 � j�x0

¼

x11 x12 � � � x1k

x21 x22 . . . x2k

..

. ..
. ..

.

xn1 xn2 � � � xnk

0
BBBBB@

1
CCCCCA
�

�x1 �x2 � � � �xk

�x1 �x2 � � � �xk

..

. ..
. ..

.

�x1 �x2 � � � �xk

0
BBBBB@

1
CCCCCA
:
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7.16 By a comment following (2.25), j0Xc contains the column sums of Xc. The
sum of the second column, for example, is

Pn
i¼1 ( xi2 � �x2) ¼Pn

i¼1 xi2 � n�x2 ¼ n�x2 � n�x2 ¼ 0. Alternatively, j0Xc ¼ j0½I� ( 1=n)J�
X1 ¼ ½j0 � ( 1=n)j0jj0�X1 ¼ 00X1 ¼ 00 since j0j ¼ n.

7.17 (a) Partition X and b̂ as X¼( j, X1) and b̂ ¼ b̂0
b̂1

� �
. Then show

that the normal equations X0Xb̂ ¼ X0y in (7.8) become

j0j j0X1

X01j X01X1

� �
b̂0

b̂1

� �
¼ j0y

X01y

� �
,

from which we obtain

nb̂0 þ j0X1b̂1 ¼ n�y (1)

X01jb̂0 þ X01X1b̂1 ¼ X01y: (2)

Show that (1) becomes b̂0 þ �x0b̂1 ¼ �y, or â ¼ �y. Show that (2) becomes

n�xb̂0 þ X01X1b̂1 ¼ X01y: ( 3)

By (7.33), Xc ¼ ½I� ( 1=n)J�X1. Show that X0cXc ¼ X01X1 � ( 1=n)X01
JX1 ¼ X01X01 � n�x�x0. Similarly, show that X0cy ¼ X01y� ( 1=n)
X01Jy ¼ X01y� n�x�y. Now show that the normal equations in (7.34) for
the centered model can be written in the form

n 00

0 X0cXc

� �
â

b̂1

� �
¼ n�y

X0cy

� �
,

which becomes
nâ ¼ n�y, (4)

X0cXcb̂1 ¼ X0cy: (5)

Thus (4) is the same as (1). Using �x0b̂1 ¼ â � b̂0, show that (5) is the
same as (3).

(b) Using (2.50) with A11 ¼ n, A12 ¼ n�x0, A21 ¼ n�x, A22 ¼ X01X1, and
X0cXc ¼ X01X1 � n�x�x0, show that

( X0X)�1 ¼
n j0X1

X01j X1X1

� ��1

¼
n n�x0

n�x X01X1

� ��1

¼
1
n
þ �x0( X0cXc)�1�x ��x0( X0cXc)�1

�( X0cXc)�1�x ( X0cXc)�1

0
B@

1
CA
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and verify by multiplication that ( X0X)�1X0X ¼ I. With this partitioned
form of ( X0X)�1, show that

b̂ ¼ ( X0X)�1X0y ¼ ½( j, X1)0( j, X1)��1 j0y

X01y

� �

¼ �y� �x0( X0cXc)�1X0cy

( X0cXc)�1X0cy

 !
¼ �y� ^̂b01�x

( X0cXc)�1X0cy

 !
,

which is the same as (7.37) and (7.38).

7.18 Substitute x1 ¼ �x1, x2 ¼ �x2, . . . , xk ¼ �xk in �y ¼ �yþ b̂1( x1 � �x1)þ � � � þ
b̂k( xk � �xk) to obtain ŷ ¼ �y.

7.19 y0y� b̂0X0y ¼ y0y� ( b̂0, b̂01)( j, X1)0y

¼ y0y� ( b̂0, b̂01)
j0y

X01y

� �

¼ y0y� b̂0n�y� b̂01X01y

¼ y0y� ( �y� b̂01�x)n�y� b̂ 01X01y

¼ y0y� n�y2 � b̂01( X01y� n�y�x)

¼
Xn

i¼1

( yi � �y)2 � b̂01X0cy:

7.20 (a) By Theorem 2.2c(i), Xc
0Xc is obtained as products of columns of Xc. By

(7.33), these products are of the form illustrated in the numerators of
(7.41) and (7.42).

(b) By (7.43), the numerator of the second element of syx is
Pn

i¼1
( xi2 � �x2)( yi � �y). This can be written as

P
i ( xi2 � �x2)yi �P

i ( xi2 � �x)�y, the second term of which vanishes. Note thatP
i ( xi2 � �x2)yi is the second element of X0cy.

7.21 (b) Expand the last term of ln L(b,s2) in (7.51) to obtain

ln L(b,s2) ¼ � n

2
ln ( 2p)� n

2
lns2 � 1

2s2
( y0y� 2y0Xbþ b̂0X0Xb):

Then

@ ln L(b,s2)
@b

¼ �0� 0� n

2s2
( 0� 2X0yþ 2X0Xb):

Setting this equal to 0 gives (7.48)
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(c) Use ln L(b,s2) as in (7.51), to obtain

@ ln L(b,s2)
@s2

¼ �0� n

2s2
þ 1

2(s2)2 ( y� Xb)0( y� Xb):

Setting this equal to 0 (and substituting b̂ from @ ln L=@b ¼ 0) yields
(7.49).

7.22 (ii) By (7.26), SSE ¼ y0½I� X( X0X)�1X0�y. Show that I� X( X0X)�1X0 is
idempotent of rank n� k � 1, given that X is n� ( k þ 1) of rank k þ 1.
Then by Corollary 2 to Theorem 5.5a, SSE/s2 is x2( n� k � 1,l), where
l ¼ m0Am=2s2 ¼ ( Xb)0½I� X( X0X)�1X0�( Xb=2s2). Show that l¼0.

(iii) Show that ( X0X)�1X0½I� X( X0X)�1X0� ¼ O. Then by Corollary 1 to
Theorem 5.6a, b̂ ¼ ( X0X)�1X0y and SSE ¼ y0½I� X( X0X)�1X0�y are
independent.

7.23 The two missing terms in (7.52) are

� (y� Xb̂)0X(b̂� b)� (b̂� b)0X0(y� Xb̂)

¼ �(X0y� X0Xb̂)0( b̂� b)� ( b̂� b)0( X0y� X0Xb̂)

¼ �00(b̂� b)� (b̂� b)00:

Note that X0y� X0Xb̂ ¼ 0 by the normal equations X0Xb̂ ¼ X0y in (7.8).

7.25 b̂0X0y ¼ b̂ 0

b̂1

� �0
(j, X1)0y ¼ (b̂ 0, b̂01)

j0

X01

� �
y ¼ nb̂ 0�yþ b̂01X01y:

With b̂ 0¼�y� b̂
0
1�x from (7.38) and Xc¼½I� (1=n)J�X1 from (7.33), this

becomes
b̂
0
X0y¼n(�y� b̂

0
1�x)�yþ b̂

0
1 X0cþ

1
n

X01J

� �
y

¼n�y2�n(b̂
0
1�x)�yþ b̂

0
1X0cyþ1

n
b̂
0
1X01Jy:

The last term can be written as (1=n)b̂
0
1X01Jy¼ (1=n)b̂

0
1 X01jj0y¼ (1=n)

b̂
0
1n2�x�y, so that b̂

0
X0y¼n�y2þ b̂

0
1X0cy:

7.26 If b̂1 ¼ b̂2 ¼ � � � ¼ b̂k ¼ 0, then b̂ 1 ¼ 0 and b̂
0
1X0cXcb̂ 1 ¼ 0. If yi ¼ ŷi,

i ¼ 1, 2, . . . , n, then y ¼ ŷ ¼ Xb̂ and b̂
0
X0y� n�y2 ¼ y0y� n�y2: Also see

formulas below (7.61).

7.27 This follows from the statement following Theorem 7.3f, which notes that an
additional x reduces SSE (see Problem 7.13).

7.28 (a) A set of full-rank linear transformations on the x’s can be represented by
W ¼ XH, where H is a nonsingular matrix. Show that b̂w ¼ ( W0W)�1

W0y ¼ H�1( X0X)�1X0y ¼ H�1b̂x: Show that b̂
0
wW0y ¼ b̂

0
xW0y: Then

R2
w¼ (b̂

0
wW0y�n�y2)=(y0y�n�y2)¼ (b̂

0
xX0y�n�y2)=(y0y�n�y2)¼R2

x :
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(b) Replacing y by z ¼ cy, we have �z¼ (1=n)j0z¼ (1=n)j0cy¼ c�y and

b̂z¼ (X0X)�1X0z¼ (X0X)�1X0cy¼ cb̂ y: Then

R2
z ¼

b̂
0
zX
0z�n�z2

z0z�n�z2 ¼
cb̂
0
yX0cy�n(c�y)2

(cy)0(cy)�n(c�y)2¼
c2

c2
R2

y :

7.30
Xn

i¼1

ŷi=n ¼ j0ŷ

n
¼ j0Xb̂

n
¼

j0( j, X1)
b̂0

b̂ 1

 !

n

¼ n
b̂0

n
þ j0X1b̂ 1

n
¼ b̂0 þ �x0b̂1 ¼ b̂0 þ ( �y� b̂0),

by (7.38)

7.31 By (7.61), we obtain

cos2 u ¼ ŷ0ŷ� �yŷ0j� �yj0ŷþ �y2j0jPn
i¼1 ( yi � �y)2 ¼ b̂0X0Xb̂� n�y2

P
i ( yi � �y)2 ,

since j0ŷ ¼ nȳ by Problem 7.30. By (7.8), b̂0X0Xb̂ ¼ b̂0X0y.

7.33 (a) Using b̂ ¼ ( X0V�1X)�1X0V�1y, expand ( y� Xb̂ )0V�1( y� Xb̂ ) to
obtain y0V�1y� y0V�1X( X0V�1X)�1X0V�1y, the second term of
which appears twice more with opposite signs.

(b) Use Theorem 5.2a with A ¼ V�1 � V�1X( X0V�1X)�1X0V�1, S ¼ s2V,
and m ¼ Xb.

7.34 ln L(b, s2) ¼ � n

2
ln( 2p)� n

2
lns2 � 1

2
lnjVj � 1

2s2
( y� Xb)0V�1( y� Xb):

Expand the last term to obtain

1
2s2

( y0V�1y� y0V�1Xb� b0X0V�1yþ b0X0V�1Xb):

Differentiate to obtain

@ ln L(b, s2)
@b

¼ �0� 0� 0� 1
2s2

( 0� 2X0V�1yþ 2X0V�1Xb),

@ ln L(b, s2)
@s2

¼ �0� n

2s2
� 0þ 1

2(s2)2 ( y� Xb)0V�1( y� Xb):

Setting these equal to 0 and 0, respectively, gives the results.
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7.35 Show that J2 ¼ nJ. Then multiply V by V21 to get I, where V and V21 are
given by (7.67) and (7.68) respectively.

7.36 (a) j0V�1j ¼ aj0(I� brJ)j ¼ aj0j� abrj0jj0j ¼ an� abr2n2 ¼ an(1� brn).
Substitute for a and b to show that this is equal to n/[1 þ (n21)r] ¼ bn.
Then j0V�1Xc¼ aj0(I�brJ)Xc¼ aj0Xc�abrj0jj0Xc¼ 00 because j0Xc¼

00. Show that X0cV
21Xc ¼ aX0cXc.

7.37 cov(b̂�) ¼ (X0X)�1X0cov(y)X(X0X)�1 ¼ s2(X0X)�1X0VX(X0X)�1.

7.38 (a) (X0V�1X)�1X0V�1y¼
P

i

1
xi

n

n
P

i xi

0
B@

1
CA
�1 P

i

yi

xiP
i yi

0
@

1
A

¼ 1
P

i xi
P

i

1
xi
� n2

P
i xi �n

�n
P

i

1
xi

0
B@

1
CA

P
i

yi

xiP
i yi

0
@

1
A:

7.40 (a) var

P
i (xi � �x)yiP
i (xi � �x)2

� �
¼ 1

½
P

i (xi � �x)2�2
X

i

(xi � �x)2var(yi)

¼ 1

½
P

i (xi � �x)2�2
X

i

(xi � �x)2s2xi:

7.42 cov(b̂
�
1 ) ¼ E½b̂�1 � E(b̂

�
1 )�½b̂�1 � E(b̂

�
1 )�0: Using E(b̂

�
1 ) ¼ b1 þ Ab2 from

(7.80), we have

b̂
�
1 � E(b̂

�
1 ) ¼ b̂

�
1 � b1 � (X01X1)�1X01X2b2

¼ (X01X1)�1X01y� (X01X1)�1X01X2b2 � b1

¼ (X01X1)�1X01(y� X2b2)� b1:
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Show that this can be written as (X01X1)�1X01(y� X1b1 � X2b2), so that

cov(b̂
�
1) ¼ E½(X01X1)�1X01(y� Xb)(y� Xb)0X1(X01X1)�1�:

7.43 Use Theorem 7.9a and note that

x00b ¼ (x001, x002)
b1

b2

� �
¼ x001b1 þ x002b2:

7.44 Multiply out (X01 � A0X01)0G22(X01 � A0X01), substitute A ¼ G�1
11 G12, and

use (2.50).

7.45 E(X001b̂
�
1 )¼ x001(b1 þ Ab2) = X001b1:

7.46 var(x01b̂1) � var(x01b̂
�
1 )

¼ s2(x001G11x01 � x001G�1
11 x01)

¼ s2x001(G11 �G�1
11 )x01

� 0 because G11 �G�1
11 ¼ AB�1A which is positive definite

[see Theorem 7.9c(ii)]:

7.47 tr½I� X1(X01X1)�1X01� ¼ tr(I)� tr½X01X1(X01X1)�1� ¼ n� ( pþ 1),

b0X0½I� X1(X01X1)�1X01�Xb ¼ (b01X01 þ b02X02)½I� X1(X01X1)�1X01�
(X1b1 þ X2b2):

Show that three of the resulting four terms vanish, leaving the desired result.

7.48 @
Pn

i¼1 (yi � b̂
�
1 xi)2

@b̂
�
1

¼ 0;

2
X

i

(yi � b̂
�
1 xi)(� xi) ¼ 0:

7.49 For the full model yi ¼ b0 þ b1xi þ 1i, we have

X ¼
1 x1

..

. ..
.

1 xn

0
B@

1
CA:
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For the reduced model yi ¼ b�1 xi þ 1�i , we have X1 ¼ (x1, x2, . . . , xn)0. Thus,
X2 ¼ (1, 1, . . . , 1)0. Then from (7.80), we obtain

E(b̂
�
1 ) ¼ b1 þ Ab2 ¼ b1 þ (X01X1)�1X01X2b2

¼ b1 þ
Xn

i¼1

x2
i

 !�1Xn

i¼1

xi � b0:

7.50 (a)

X ¼

1 �3 9 �27
1 �2 4 �8
1 �1 1 �1
1 0 0 0
1 1 1 1
1 2 4 8
1 3 9 27

0
BBBBBBBB@

1
CCCCCCCCA
:

The first two columns constitute X1, and the last two columns become X2.
Then by (7.80), we obtain

E(b̂
�
1 ) ¼ b1 þ (X01X1)�1X01X2b2:

Show that this gives

E(b̂
�
1 ) ¼

b0

b1

� �
þ

7 0

0 28

� ��1 28 0

0 196

� �
b2

b3

� �

¼
b0

b1

� �
þ

4 0

0 7

� �
b2

b3

� �
,

so that E(b̂
�
0 ) ¼ b0 þ 4b2 and E(b̂

�
1 ) ¼ b1 þ 7b3.

7.51 X01X2:1 ¼ X01½X2 � X1(X01X1)�1X01X2� ¼ X01X2 � X01X1(X01X1)�1X01X2:

7.52 In the partitioned form, the normal equations X0Xb̂ ¼ X0y become

X01
X02

� �
(X1, X2) b̂1

b̂2

� �
¼ X01

X02

� �
y,

X01 X1 X01 X2

X02X1 X02 X2

� �
b̂1

b̂2

� �
¼ X01y

X02y

� �
,

X01 X1b̂1 þ X01 X2b̂2 ¼ X01y, (1)

X02 X1b̂1 þ X02 X2b̂2 ¼ X02y: (2)
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Solve for b̂1 from (1) to obtain b̂1 ¼ (X01X1)�1(X01y� X01X2b̂2), and
substitute this into (2) to obtain

½X02X2 � X02X1(X01X1)�1X01X2�b̂2 ¼ X02y� X02X1(X01X1)�1X01y: (3)

Multiplying (7.98) by X02.1, we obtain b̂2 ¼ (X02:1X2:1)�1X02:1½ŷ� ŷ(X1)�.
Show that this is the same as (3).

7.53 (a) b̂ ¼

1:0150
�0:0286

0:2158
�4:3201

8:9749

0
BBBB@

1
CCCCA

, s2 ¼ 7:4529:

(b) s2(X0X)�1 ¼

3:4645 :0145 �:0638 �1:1620 1:0723
0:0145 :0082 �:0019 �0:1630 0:0784
�0:0638 �:0019 :0046 0:1039 �0:1250
�1:1620 �:1630 :1039 8:1280 �7:2045

1:0723 :0784 �:1250 �7:2045 7:6875

0
BBBB@

1
CCCCA
:

(c) b̂1 ¼ S�1
xx syx ¼

380:6684 237:6684 27:0709 25:3549

237:6684 247:5071 17:8557 18:3362

27:0709 17:8557 2:1090 1:9909

25:3549 18:3362 1:9909 1:9369

0
BBB@

1
CCCA

�1

�

151:0121

134:0444

11:8365

12:0140

0
BBB@

1
CCCA ¼

�0:0286

0:2158

�4:3201

8:9749

0
BBB@

1
CCCA:

b̂0 ¼ �y� b̂
0
1�x ¼ 31:125� (� 0:0286, 0:2158,� 4:3201, 8:9749)

�

57:9063

55:9063

4:4222

4:3238

0
BBB@

1
CCCA ¼ 1:0150:

(d) R2 ¼ :9261, R2
a ¼ :9151:
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7.54 (a) b̂ ¼

332:111
�1:546
�1:425
�2:237

0
BB@

1
CCA, s2 ¼ 5:3449:

(b) cov(b̂) ¼ s2(X0X)�1

¼ 5:3449

65:37550 �:33885 �:31252 �:02041
�0:33885 :00184 :00127 �:00043
�0:31252 :00127 :00408 �:00176
�0:02041 �:00043 �:00176 :02161

0
BB@

1
CCA:

(c) R2 ¼ :9551, R2
a ¼ :9462:

(d) b̂ ¼

964:929
�7:442
�11:508
�2:140

0:012
0:033
�0:294

0:054
0:038
�0:102

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

, s2 ¼ 5:1342:

(e) R2 ¼ :9741, R2
a ¼ :9483:

7.55 (a) b̂ ¼

:6628
:7803
:5031

�17:1002

0
BB@

1
CCA s2 ¼ 67:9969:

(b) b̂1 ¼ S�1
xx syx ¼

504:2783 9:4698 �1:7936

9:4698 201:9399 1:0617

�1:7936 1:0617 0:0235

0
B@

1
CA
�1 428:9086

90:8333

�1:2667

0
B@

1
CA

¼
0:7803

0:5031

�17:1002

0
B@

1
CA

b̂0 ¼ �y� b̂
0
1�x ¼ 41:1553� (:7803, :5031, � 17:1002)

�
42:945

20:169

0:185

0
B@

1
CA ¼ :6628:

(c) R2 ¼ :8667, R2
a ¼ :8534:
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Chapter 8

8.1 Substitute b̂1 ¼ (X0cXc)�1X0cy into SSR ¼ b̂
0
1X0cy.

8.2 (a) Hc I� 1
n

J

� �
¼ Hc �

1
n

HcJ

¼ Xc(X0cXc)
�1X0c �

1
n

Xc(X0cXc)�1X0cjj0

¼ Xc(X0cXc)
�1X0c �O

since X0cjj0 ¼ Oj0 ¼ O:

(b) Show that H2
c ¼ Hc, where Hc ¼ Xc(X0cXc)�1X0c. Then, since Hc is

idempotent, rank (Hc) ¼ tr(Hc) by Theorem 2.13d. The centered
matrix Xc is n�k of rank k [see (7.33)].

(c)
I� 1

n
J�Hc

� �2

¼ I� 1
n

J

� �2

� I� 1
n

J

� �
Hc�Hc I� 1

n
J

� �
þH2

c

¼ I� 1
n

J�Hc�HcþHc:

Then rank I� 1
n

J�Hc

� �
¼ tr I� 1

n
J�Hc

� �
:

(d)
Hc I� 1

n
J�Hc

� �
¼ Hc I� 1

n
J

� �
�H2

c ¼ Hc �Hc ¼ O:

8.3 m0Hcm ¼ b0X0Xc(X0cXc)�1X0cXb: By (7.32), we have Xb ¼ ajþ Xcb1.
Hence m0Hcm ¼ (aj0 þ b01X0c)Xc(X0cXc)�1X0c(a jþ Xcb1). Three of the
resulting four terms vanish because j0Xc ¼ 00 (see Problem 7.16).

8.4 By corollary 2 to Theorem 5.5a, SSE=s2 is x2(n� k � 1, l2). Also l2 ¼
m0½I� 1

n
J�Hc�m=s2 ¼ (aj0 þ b01X0c)½I� 1

n
J�Hc�(ajþ Xcb1)=s2. Show

that all terms involving either j0½I� 1
n

J� or j0Hc vanish. Show that

b01X0c½I�
1
n

J�Xcb1 ¼ b01X0cXcb1 and that b01X0cHcXcb1 ¼ b01X0cXcb1.

8.6 Most of these results are proved in Problem 5.32, with the adjustment kþ
1 ¼ p.

8.7 By (8.14), HH1 ¼ X(X0X)�1X0X1(X01X1)�1X01 ¼ X1(X01X1)�1X01 ¼ H1:
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8.9 m0(H�H1)m ¼ b0X0(H�H1)Xb

¼ b0X0X(X0X)�1X0Xb� b0X0X1(X01X1)�1X01Xb

¼ b0X0Xb� b0X0X1(X01X1)�1X01Xb

¼ (b01X01 þ b02X02)(X1b1 þ X2b2)

� (b01X01 þ b02X02)X1(X01X1)�1X01(X1b1 þ X2b2):

8.10 Denote the matrix X0X by G. Then in partitioned form, we have

G ¼ X0X ¼ (X1, X2)0(X1, X2) ¼
X01
X02

� �
(X1, X2)

¼
X01X1 X01X2

X02X1 X02X2

� �
¼

G11 G12

G21 G22

� �
:

If we denote the four corresponding blocks of G21 by G ij, then by (2.48),
G22 ¼ (G222G21G21

11 G12)21. By Theorem 2.6e, G21 is positive definite.
By Theorem 2.6f, G22 is positive definite. By Theorem 2.6e, (G22)21 ¼

G22 2 G21G21
11 G12 ¼ X02X2 2 X02X1(X01X1)21X01X2 is positive definite.

8.11 By Theorem 8.2b(ii), SS(b2jb1)=s2 is x2(h, l1). Then E½SS(b2jb1)=s2� ¼
hþ 2l1 by (5.23).

8.12 s2 þ b2
k ½x0kxk � x0kX1(X01X1)�1X01xk�.

8.13 For the reduced model y ¼ b�0 jþ 1� , we have b̂�0 ¼ (j0j)�1j0y ¼
(1=n)

Pn
i¼1 yi ¼ �y and SS(b�0 ) ¼ b̂�0 j0y ¼ �y

P
i yi ¼ n�y2.

8.14 After multiplying to obtain eight terms, three of the first four terms cancel
three of the last four terms. For example, the second of the last four is

b̂01X01X1A b̂2 ¼ b01X01X1(X01X1)�1X01X2b̂2 ¼ b̂
0
1X01X2b̂2, which is the same

as the second of the first four terms.

8.15 Add and substract n�y2 in both numerator and denominator of (8.24) and then
divide numerator and denominator by y0y� n�y2.

8.16 Express SSH as a quadratic form in y by substituting b̂ ¼ (X0X)�1X0y. Then
use Corollary 1 to Theorem 5.6b.

8.17 This follows from Corollary 1 to Theorem 2.6b.

8.18 By the answer to Problem 7.28, b̂0wW0y ¼ b̂0X0y. Thus SSE ¼ y0y� b̂0X0y is
invariant to the full-rank transformation W ¼ XH. For the numerator of
(8.27), we note that C is transformed the same way as is X, so

that Cwb̂w ¼ CHH�1b̂x ¼ Cb̂ . Thus the numerator of (8.27) becomes

(Cwb̂w)0½Cw(W0W)�1C0w�
�1Cwb̂w ¼ (Cb̂)0{CH½(XH)0XH��1(CH)0}�1Cb̂

¼ (Cb̂)0{CH½H0(X0X)H��1H0C0}�1Cb̂
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¼ (Cb̂)0½CHH�1(X0X)�1(H0)�1H0C0��1Cb̂

¼ (Cb̂)0½C(X0X)�1C0��1Cb̂:

Show that the transformation z ¼ cy also leaves F unchanged.

8.19 (a) See Section 2.14.3 . @u

@l
¼ Cb. Setting this equal to 0 gives Cb̂c¼0.

(b) u ¼ y0y� y0Xb� b0X0yþ b0X0Xbþ l0Cb

¼ y0y� 2b0X0yþ b0X0Xbþ l0Cb,

¼ @u

@b
¼ 0� 2X0yþ 2X0Xbþ C0l:

Setting this equal to 0 gives

b̂c ¼ (X0X)�1X0y� 1
2(X
0X)�1C0l

¼ b̂� 1
2(X
0X)�1C0l: (1)

(c) Cb̂c ¼ Cb̂� 1
2C(X0X)�1C0l ¼ 0,

l ¼ 2½C(X0X)�1C0��1Cb̂:

Substituting this into (1) in part (b) gives the result.

8.20 b̂
0
cX0Xb̂c ¼ b̂

0
cX0X{b̂

0 � (X0X)�1C0½C(X0X)�1C0��1Cb̂}

¼ b̂
0
cX0Xb̂� b̂

0
cC0½C(X0X)�1C0��1Cb̂

¼ b̂
0
cX0y� 00½C(X0X)�1C0��1Cb̂:

Show that b̂
0
cC0 ¼ 00.

8.21 Substituting b̂
0
c in (8.30) into SSH ¼ b̂

0
X0y� b̂

0
cX
0y in (8.31) gives

SSH ¼ b̂
0
X0y� {b̂

0 � b̂
0
C0½C(X0X)�1C0��1C(X0X)�1}X0y

¼ b̂
0
X0y� b̂

0
X0yþ b̂

0
C0½C(X0X)�1C0��1Cb̂,

since b̂ ¼ (X0X)�1X0y.

8.22 In Theorem 8.4e(ii), we have

cov(b̂c) ¼ cov{I� (X0X)�1C0½C(X0X)�1C0��1C}b̂

¼ cov(Ab̂) ¼ A cov(b̂)A0 ¼ s2A(X0X)�1A0:

Show that A(X0X)�1A0 ¼ (X0X)�1 � (X0X)�1C0½C(X0X)�1C0��1C(X0X)�1.
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8.23 Replace b̂ by (X0X)21X0y in SSH in Theorem 8.4d(ii) to obtain SSH ¼
[C(X0X)21X0y 2 t]0[C(X0X)21C0]21[C(X0X)21X0y 2 t]. Show that
C(X0X)21X0y 2 t ¼ C(X0X)21X0[y2XC0(CC0)21t], so that SSH becomes
SSH¼[y2XC0(C0C)21t]0A[y2XC0(CC0)21t], where A ¼ X(X0X)21C0

[C(X0X)21C0]21C(X0X)21X0. Show that SSE ¼ [y2XC0(CC0)21t]0B[y2

XC0(CC0)21t], where B ¼ I2X(X0X)21X0. Show that AB ¼ O. Show that
y2XC0(CC0)21t is Nn[Xb2XC0(CC0)21t, s2I]. Then by Corollary 1 to
Theorem 5.6b, SSH and SSE are independent.

8.24 See Section 2.14.3. Follow the steps in Problems 8.19 using

u ¼ (y� Xb)0(y� Xb)þ l0(Cb� t)

¼ y0y� 2b0Xyþ b0X0Xbþ l0(Cb� t):

Differentiating with respect to l and b, we obtain

@u

@l
¼ Cb� t,

@u

@b
¼ 0� 2X0yþ 2X0Xbþ C0l:

Setting those equal to 0 gives Cb̂c ¼ t and

b̂c ¼ b̂� 1
2(X
0X)�1C0l: (1)

Multiplying (1) by C and using Cb̂c ¼ t gives l ¼ 2 [C(X0X)21

C0]21(Cb̂2t). Substituting this into (1) gives the result.

8.25 By Theorem 8.4d, we can use the general linear hypothesis test. Use a0¼
(0, . . . , 0,1) in place of C in (8.30) to obtain

b̂c ¼ b̂� (X0X)�1a½a0(X0X)�1a��1a0b̂

¼ b̂� (X0X)�1aa0b̂

gkk
:

By (2.37), (X0X)21 a is a linear combination of the columns of (X0X)21. Thus

b̂c ¼ b̂� gkb̂k

gkk
,

where gkk is the kth diagonal element of (X0X)21 and gk is the kth column of
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(X0X)21. Substituting this expression for b̂c into b̂
0
X0y� b̂

0
cX0y, we obtain

b̂
0
X0y� b̂

0
cX0y ¼ b̂

0
X0y� b̂

0
X0y� b̂k

gkk
g0kX0y

 !

¼ b̂kb̂k

gkk
¼ b̂

2
k

gkk
,

since ĝ0k X0y is the kth element of b̂.

8.26
P �ta=2,n�k�1 �

a0b̂� a0b

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0(X0X)�1a

p � ta=2,n�k�1

" #
¼ 1� a

Solve the inequality for a0b.

8.27 In the answer to Problem 7.17b, we have

(X0X)�1 ¼
1
n
þ �x01(X0cXc)�1�x1 ��x01(X0cXc)�1

�(X0cXc)�1�x1 (X0cXc)�1

0
@

1
A,

where �x1 ¼ (�x1, �x2, . . . , �xk)0. Using this form of (X0X)21, show that

X00(X0X)�1x0 ¼ (1, x001)(X0X)�1 1

x01

� �

¼ 1
n
þ (x01 � �x1)0(X0cXc)

�1(x01 � �x1):

8.28 In this case, x012x̄1¼x02x̄ and

Xc ¼

x1 � �x
x2 � �x

..

.

xn � �x

0
BBB@

1
CCCA:

8.29 E(y0� ŷ0)¼ E(y0� x00b̂)¼ x00b� x00b¼ 0. By (8.59), var (y0� ŷ0)¼ s2½1þ
x00(X0X)�1x0�. Therefore, (y0� ŷ0)=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2½1þ x00(X0X)�1x0

q
� is N(0,1) by

Theorems 7.6b(i) and 4.4a(i). By Theorem 7.6b(ii), (n� k� 1)s2=s2 is
x2(n� k� 1). By Theorem 7.6b(iii), ŷ0 and s2 are independent. Use (5.33) to

show that t ¼ (y0� ŷ0)=s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x00(X0X)�1x0

q
is distributed as t(n� k� 1).

8.30 (a) Show that E(�y0 � ŷ0) ¼ E(�y0 � x00b̂) ¼ 0 and that var(�y0 � ŷ0) ¼
s2½1=qþ x00(X0X)�1x0�. For the remaining steps, follow the answer to
Problem 8.29.
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8.31 Invert (take the reciprocal of) all three numbers of the inequality (which
changes the directions of the two inequalities) and multiply by (n� k � 1)s2.

8.32 Let y0 ¼ (y01, y02, . . . ,y0d)0 be the vector of d future observations, and let

Xd ¼
x001

..

.

x00d

0
B@

1
CA

be the d � (k þ 1) matrix of corresponding values x01, x02, . . . ,x0d. Show that

y0 � Xdb̂ is Nd(0, s2Vd), where Vd ¼ Id þ Xd(X0X)�1X0d and X is the X
matrix for the original n observations. Show that

(y0 � Xdb̂)0V�1
d (y0 � Xdb̂)

ds2
is F(d, n� k � 1)

[for the distribution of the numerator, see (5.27) or Problem 5.12e]. By
Theorem 8.5 and (8.71) with kþ1 ¼ d, we have the simultaneous intervals

� s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
da0V�1

d aFa,d,n�k�1

q
� a0(y0 � Xdb̂) � s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
da0V�1

d aFa,d,n�k�1,
q

which hold for all a with confidence coefficient 12a. Setting
a01 ¼ (1, 0, . . . , 0), . . . , a0d ¼ (0, . . . , 0, 1), we obtain

x00ib̂� s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d½1þ x00i(X

0X)�1x0i�Fa,d,n�k�1

q

� y0i � x00ib̂þ s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d½1þ x00i(X

0X)�1x0i�Fa,d,n�k�1

q
:

These intervals hold with confidence coefficient at least 12a.

8.33 For (8.77), we have

@ ln L (0, s2)
@s2

¼ @

@s2
ln

1

(2ps2)n=2
e�y0y=2s2

� �

¼ @

@s2
� n

2
ln 2p� n

2
lns2 � y0y=2s2

h i

¼ �0� n

2s2
þ y0y

2(s2)2 ¼ 0;

ŝ2
0 ¼

y0y

n
:

566 ANSWERS AND HINTS TO THE PROBLEMS



For (8.78), we have

max
Ho

L(b,s2) ¼ max L(0,s2) ¼ L(0,ŝ 2
0)

¼ 1

ð2pŝ 2
0)n=2

e�y0y=2ŝ2
0

¼ 1

ð2pÞn=2ðy0y=nÞn=2
e�y0y=2ðy0y=nÞ

¼ nn=2e�n=2

ð2pÞn=2ðy0yÞn=2

For (8.79), we have

(y� Xb̂)0(y� Xb̂)
y0y

" #n=2

¼ y0y� b̂0X0y

y0y� b̂
0
X0yþ b̂0X0y

" #n=2

¼ 1

1þ b̂
0
X0y=y0y� b̂

0
X0y

" #n=2

:

8.34 Expanding (y 2 Xb)0(y 2 Xb), we have v ¼ �(n=2) ln (2p)� (n=2) lns2�
½y0y� 2y0Xbþ b0X0Xb�=2s2 þ l0Cb. Differentiation with respect to
b gives the result.

8.35 From (8.80), we obtain

b̂0 ¼ (X0X)�1X0yþ ŝ2
0 (X0X)�1C0l: (1)

Multiplying b̂0 by C gives Cb̂0 ¼ Cb̂þ ŝ2
0 C(X0X)�1C0l. By (8.77),

Cb̂0 ¼ 0, and we have

l ¼ �½C(X0X)�1C0��1 Cb̂

ŝ2
0

:

Substituting this into (1) gives

b̂0 ¼ b̂� (X0X)�1C0½C(X0X)�1C0��1Cb̂,

where b̂ ¼ (X0X)�1X0y.
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8.36 Substituting (8.83) into (8.84) gives

(y�Xb̂0)0(y�Xb0)¼ y�Xb̂þX(X0X)�1C0½C(X0X)�1C0��1Cb̂
n o0

� y�Xb̂þX(X0X)�1C0½C(X0X)�1C0��1Cb̂
n o

¼ (y�Xb̂)0(y�Xb̂)þ0þ0þ (Cb̂)0½C(X0X)�1C0��1Cb̂:

Show that the second and third terms vanish and the fourth term is equal to

(Cb̂)0½C(X0X)�1C0��1Cb̂ as indicated.

8.37 (a)

Source df SS MS F p Value

Due to b1 4 2520.2724 630.0681 84.540 7:216� 10�15

Error 27 201.2276 7.4529
Total 31 2721.5000

(This p value would typically be reported as p,.0001). The F value can also
be found using (8.23):

F ¼ R2=k

(1� R2)=(n� k � 1)
¼ :9261=4

(1� :9261)=27
¼ 84:540:

(b) For the reduced model yi ¼ b�0 þ b�2 xi2 þ b�4 xi4 þ 1�i , we obtain

b̂
�0
1 X01y� n�y2 ¼ 2483:1136. From the analysis of variance table in

part (a), we have b̂
0
X0y� n�y2 ¼ 2520:2724. The difference is

b̂0X0y� b̂
�0
1 X01y ¼ 37:1588. By (8.17), we have

F ¼ 37:1588=2
7:4529

¼ 2:4929,

with p ¼ .102.

(c) The values of tj ¼ b̂j=s
ffiffiffiffiffi
gjj
p

in (8.39) are given in the following table:

Variable b̂j
s
ffiffiffiffiffi
gjj
p

tj p Value

x1 20.0286 .0906 20.316 .755
x2 0.2158 .0677 3.187 .00362
x3 24.3201 2.8510 21.515 .141
x4 8.9749 2.7726 3.237 .00319

Comparing each (two-sided) p value to .05, we would reject H0: b j ¼ 0
for b2 and b4. Comparing each p value to the Bonferroni value of
:05=4 ¼ :0125, we reject H0 for b2 and b4 also.

568 ANSWERS AND HINTS TO THE PROBLEMS



(d) To test H0: b1 ¼ b2 ¼ 12b3 ¼ 12b4, we write H0: Cb ¼ 0 where

C ¼
0 1 �1 0 0
0 0 1 �12 0
0 0 0 1 �1

0
@

1
A:

We test H0 using (8.26). For H01: b1 ¼ b2, H02: b2 ¼ 12b3, and
H03: b3 ¼ b4, we test each row of C separately using (8.37). For
H04: b1 ¼ b2 and b3 ¼ b4, we use the first and third rows of C and
test with (8.26). The results are as follows:

H0 F ¼ 236:3268=3
201:2276=27

¼ 10:5698 p ¼ 0:0000899

H01 F ¼ 26:7486
7:4529

¼ 3:5890 p ¼ 0:0689

H02 F ¼ 17:2922
7:4529

¼ 2:3202 p ¼ 0:139

H03 F ¼ 43:5851
7:4529

¼ 5:8481 p ¼ 0:0226

H04 F ¼ 206:2962=2
7:4529

¼ 13:8400 p ¼ 0:0000729

(e) For v ¼ 27, we have t.025,27 ¼ 2.0518 and t.00625,27 ¼ 2.6763. Using
(8.45) and (8.65) and the values in the answer to part (c), we obtain
the following lower and upper confidence limits:

b̂j + t:025 s
ffiffiffiffiffi
gjj
p

b̂j + t:00625 s
ffiffiffiffiffi
gjj
p

20.2145 0.1573 20.2711 0.2139
0.0769 0.3548 0.0346 0.3970

210.1698 1.5297 211.9500 3.3099
3.2859 14.6639 1.5546 16.3952

8.38 (a)

Source df SS MS F p Value

Due to b1 3 13266.8574 4422.2858 65.037 3.112�10213

Error 30 2039.9062 67.9969
Total 33 15306.7636

The F value can also be found using (8.23):

F ¼ R2

(1� R2)=(n� k � 1)
¼ :8667=3

(1:8667)=30
¼ 65:037
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(b) The values of tj ¼ b̂j=s
ffiffiffiffiffi
gjj
p

in (8.39) are given in the following table:

Variable b̂j

ffiffiffiffiffi
gjj
p

tj p Value

x1 0.7803 0.0810 9.631 1.09�10210

x2 0.5031 0.1251 4.020 0.000361
x3 217.1002 13.5954 21.258 0.218

Comparing each (two-sided) p value to .05, we would reject H0: bj ¼ 0
for b1 and b2. Comparing each p value to the Bonferroni value of
.05/3¼.0167, we reject H0 for b1 and b2 also.

(c) For v ¼ 30, we have t.025,30 ¼ 2.0423 and t.00833,30 ¼ 2.5357. Using
(8.47) and (8.67) and the values in the answer to part (b), we obtain
the following lower and upper confidence limits:

b̂j + t:025 s
ffiffiffiffiffi
gjj
p

b̂j + t:00833 s
ffiffiffiffiffi
gjj
p

0.6148 0.9457 0.5748 0.9857
0.2475 0.7587 0.1858 0.8204
244.8656 10.6652 251.5745 17.3740

(d) Using (8.52), we have

x00b̂+ ta=2,n�k�1s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x00(X0X)�1X0

q

18:9103 + 2:0423(8:2460)
ffiffiffiffiffiffiffiffiffiffiffi
:1615
p

18:9103 + 6:7677;

(12:1426, 25:6780)

(e) Using (8.61), we have

x00b̂+ ta=2,n�k�1s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x00(X0X)�1X0

q

18:9103 + 2:0423(8:2460)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:1615
p

18:9103 + 18:1496;

(:7609, 37:0599)

8.39 (a) x00b̂+ t:025,15s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x00(X0X)�1X0

q

55:2603 + (2:1314)(4:0781)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:19957
p

55:2603 + 3:8849,

(51:3754, 59:1451)
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(b) x00b̂+ t:025,15s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x00(X0X)�1X0

q

55:2603 + (2:1314)(4:0781)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:19975
p

55:2603 + 9:5205,

(45:7394, 64:7811)

(c) Using C ¼ 0 1 �1 0
0 0 2 �1

� �
, we obtain Cb̂ ¼ :1116

�:4478

� �
,

C(X0X)�1C0 ¼ :003366 �:006943
�:006943 :044974

� �
, F ¼ :1577, p ¼ :856:

8.40 (a) b̂
0
X0y� n�y2 � (b̂ �01 X01y� nŷ2) ¼ 1741:1233� 1707:1580,

F ¼ 5:6609
5:1343

¼ 1:1026, p ¼ :430

(b) F ¼ :9741� :9551=6
1� :9741=9

¼ 1:1026

(c) b0: 332:1110 + 39:8430
(292:2679, 371:9540);

b1: �1:5460 + :21109
(�1:7571, �1:3349),

b2: �1:4246 + :3147
(1:7393, � 1:1098),

b3: �2:2374 + :7243
(2:9617, � 1:5130)

(d) b1: �1:5460 + :2668
(�1:8127, �1:2792);

b2: �1:4246 + :3977
(�1:8223, �1:0268),

b3: �2:2347 + :9154
(�3:1528, �1:3220)

(e) 20:2547 + 2:2024
(18:0524, 22:4571)

(f) 20:2547 + 5:3975
(14:8573, 25:6522)
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Chapter 9

9.1 (a) By (9.5), we obtain

E(1̂) ¼ E½(I�H)y� ¼ (I�H)E(y)

¼ ½I� X(X0X0)�1X0�Xb ¼ Xb� Xb:

(b) We first note that I 2 H is symmetric and idempotent [see Theorem
2.13e(i)]. Then by Theorem 3.6d(i), we obtain

cov(1̂) ¼ cov½(I�H)y� ¼ (I�H)s2I(I�H)0

¼ s2(I�H)2 ¼ s2(I�H):

(c) By Theorem 3.6d(ii), we have

cov(1̂ , y) ¼ cov½(I�H)y, Iy�

¼ (I�H)(s2I)I ¼ s2(I�H):

(d) cov(1̂ , y) ¼ cov½(I�H)y, Hy� ¼ (I�H)(s2I)H

¼ s2(H�H2) ¼ s2(H�H)

(e) �̂1 ¼
Pn

i¼1 1̂i=n ¼ 1̂ 0j=n: By (9.4) and (9.5), 1̂0j ¼ y0(I�H)j ¼ y0(j� j):

(f) By (9.5), 1̂0y ¼ y0(I�H)y:

(g) By (9.2) and (9.5), 1̂0ŷ¼ y0(I�H)Hy ¼ y0(H�H2)y ¼ y0(H�H)y:

(h) By (9.3) and (9.5), 1̂0X ¼ y0(I�H)X ¼ y0(X�HX) ¼ y0(X� X):

9.2 (a) d

dh
(h� h2) ¼ 1� 2h ¼ 0, h ¼ 1

2
,

1
2
� 1

2

� �2

¼ 1
4
:
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(b) Let Xc ¼ A and (X0cXc)�1 ¼ B. Then

ABA0 ¼

a01
a02

..

.

a0n

0
BBBBB@

1
CCCCCA

B(a1, a2, . . . , an)

¼

a01
a02

..

.

a0n

0
BBBBB@

1
CCCCCA

(Ba1, Ba2, . . . , Ban)

¼

a01Ba1 a01Ba2 . . . a01Ban

a02Ba1 a02Ba2 . . . a02Ban

..

. ..
. ..

.

a0nBa1 a0nBa2 . . . a0nBan

0
BBBBB@

1
CCCCCA
:

(c) tr(H) ¼ tr½X(X0X)�1X0� ¼ tr½(X0X)�1X0X� ¼ tr(Ikþ1) ¼ k þ 1:

9.3 By Theorem 9.2(iii), hii ¼ (1=n)þ (x1i � �x1)0(X0cXc)�1(x1i � �x1):

By (2.101) and (2.104), this can be written as

hii ¼
1
n
þ (x1i � �x1)0

Xk

r¼1

1
lr

ara
0
r

 !
(x1i � �x1)

¼
Xk

r¼1

1
lr
½(x1i � �x1)0ar�½a0r(x1i � �x1)�

¼
X

r

1
lr
½(x1i � �x1)0ar�2,

where lr is the rth eigenvalue of X0cXc and ar is the corresponding (normalized)
eigenvector of X0cXc. By (2.81), the consine of the angle uir between x1i � �x1
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and ar is

cosuir ¼
(x1i � �x1)0arffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½(x1i � �x1)0(x1i � �x1)�(a0rar)
p

¼ (x1i � �x1)0arffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x1i � �x1)0(x1i � �x1)

p

since a0rar ¼ 1. Thus, if we multiply and divide by (x1i � �x1)0(x1i � �x1), we can
express hii as

hii ¼
1
n
þ (x1i � �x1)0(x1i � �x1)

Xk

r¼1

1
lr

½(x1i � �x1)0ar�2

(x1i � �x1)0(x1i � �x1)

¼ 1
n
þ (x1i � �x1)0(x1i � �x1)

X
r

1
lr

cos2uir:

9.4 (a) Using (2.51), we obtain

H� ¼ (X,y)
X0Xþ (X0X)�1X0yy0X(X0X)�1

b

�(X0X)�1X0y

b
�y0X(X0X)�1

b

1
b

0
BB@

1
CCA

X0

y0

� �
,

where b ¼ y0y� y0X(X0X)�1X0y. Show that b ¼ y0(I�H)y ¼ 1̂ 01̂ . Show
that

H� ¼ X(X0X)�1X0 þ X(X0X)�1X0yy0X(X0X)�1X0

b

� yy0X(X0X)�1X0

b
� X(X0X)�1X0yy0

b
þ yy0

b

¼ Hþ 1
b

(Hyy0H� yy0H�Hyy0 þ yy0):

(b) H� ¼ Hþ 1
b
½(Hyy0 � yy0)Hþ yy0 �Hyy0�

¼ Hþ 1
b
½(yy0 �Hyy0)(I�H)�

¼ Hþ 1
b
½(I�H)yy0(I�H)�

¼ Hþ 1̂ 1̂ 0

1 01
½by (9:5)�:
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By (2.21), the diagonal elements of 1̂ 1̂ 0 are 1̂2
1, 1̂2

2, . . . , 1̂2
n. Therefore,

h�ii ¼ hii þ 1̂2
i =1̂

01̂ .

(c) Since H� is a hat matrix, we have by Theorem 9.2(i),
1
n
� h�ii � 1.

Therefore, (1=n) � hii þ 1̂2
i =1̂

01̂ � 1.

9.5 (a)

X0X ¼

x01
x02

..

.

x0n

0
BBBBB@

1
CCCCCA

0 x01
x02

..

.

x0n

0
BBBBB@

1
CCCCCA
¼ (x1, x2, . . . , xn)

x01
x02

..

.

x0n

0
BBBBB@

1
CCCCCA

¼
Xn

j¼1

xjx
0
j ¼

X
j=i

xjx
0
j þ xix

0
i ¼ X0(i)X(i) þ xix

0
i

X0y ¼ (x1, x2, . . . , xn)

y1

y2

..

.

yn

0
BBBBB@

1
CCCCCA
¼
Xn

j¼1

xjyj

¼
X
j=1

xjyj þ xiyi ¼ X0(i)y(i) þ xiyi:

(b) b̂ ¼ (X0X)�1X0y ¼ (X0X)�1(X0(i)y(i) þ xiyi)

¼ (X0X)�1X0(i)y(i) þ (X0X)�1xiyi:

(c) From H ¼ X(X0X)�1X0, we have hii ¼ x0i(X
0X)�1xi, where x0i is the ith

row of X. Then using the result of part (a) and the inverse in the statement
of the problem, we obtain

b̂(i) ¼ (X0(i)X(i))
�1X0(i)y(i)

¼ (X0X� x0ixi)
�1X0(i)y(i)

¼ (X0X)�1 þ (X0X)�1xix0i(X
0X)�1

1� x0i(X
0X)�1xi

� �
X0(i)y(i)

¼ (X0X)�1 þ (X0X)�1xix0i(X
0X)�1

1� hii

� �
X0(i)y(i):
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(d) From parts (b) and (c), we have

b̂ (i) ¼ (X0X)�1X0(i)y(i) þ
(X0X)�1xix0i(X

0X)�1X0(i)y(i)

1� hii

¼ b̂ � (X0X)�1xiyi þ
(X0X)�1xix0i½b̂ � (X0X)�1xiy�

1� hii
:

With x0ib̂ ¼ ŷi and x0i(X
0X)�1xi ¼ hii, we have

b̂(i) � b̂ ¼ �(X0X)�1xiyi

1� hii
þ (X0X)�1xiŷi

1� hii

¼ ŷi � yi

1� hii
(X0X)�1xi ¼ �

1̂i

1� hii
(X0X)�1xi:

9.6 By (9.27) and (9.29), we obtain

1̂(i) ¼ yi � x0ib̂(i) ¼ yi � x0i b̂� 1̂i

1� hii
(X0X)�1xi

� �

¼ yi � x0ib̂þ
1̂i

1� hii
x0i(X

0X)�1xi

¼ yi � ŷi þ
1̂ihii

1� hii

¼ 1̂i þ
1̂ihii

1� hii
¼ 1̂i

1� hii
:

9.7 (a) Assuming that X is fixed (constant), we have

var(1̂(i)) ¼ var
1̂i

1� hii

� �
¼ 1

(1� hii)2 var(1̂i) ¼
s2(1� hii)

(1� hii)2 :

9.8 (a) y0y ¼
Pn

j¼1 y2
j ¼

P
j=i y2

j þ y2
i ¼ y0(i)y(i) þ y2

i .

(b) y0(i)X(i)b̂(i) ¼ y0Xb̂� yix
0
ib̂�

1̂i

1� hii
y0X(X0X)�1xi

þ 1̂i

1� hii
yi

x0i(X
0X)�1xi

1� hii

¼ y0Xb̂� yiŷi �
1̂i

1� hii
b̂0xi þ

1̂i

1� hii
yihii

¼ y0Xb̂� yiŷi �
1̂iŷi

1� hii
þ 1̂i

1� hii
yihii:
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Substituting ŷi ¼ yi � 1̂i, this becomes

y0(i)X(i)b̂(i) ¼ y0Xb̂þ�yi( yi � 1̂i)(1� hii)� 1̂i( yi � 1̂i)þ 1̂iyihii

1� hii

¼ y0Xb̂þ�(1� hii)y2
i þ 1̂2

i

1� hii
:

(c) SSE(i) ¼ y0y� y2
i � y0Xb̂� y2

i þ
1̂2

i

1� hii

� �

¼ y0y� y0Xb̂� 1̂2
i

1� hii
:

9.9 Substituting (9.29) into (9.35) gives

Di ¼
1̂2

i

(1� hii)2

x0i(X
0X)�1X0X(X0X)�1xi

(k þ 1)s2

¼ 1̂2
i

(1� hii)2

hii

(k þ 1)s2
:

By (9.25), this becomes

Di ¼
r2

i

k þ 1
hii

1� hii
:

9.10 Residuals and Influence Measures for the Gas Vapor Data in Table 7.3a

Observations yi ŷi 1̂i hii ri ti Di

1 29 27.86 1.139 .197 0.466 0.459 .011
2 24 23.76 0.236 .219 0.098 0.096 .001
3 26 25.88 0.120 .179 0.049 0.048 .000
4 22 23.96 21.961 .289 20.852 20.848 .059
5 27 28.42 21.419 .128 20.557 20.550 .009
6 21 21.67 20.672 .121 20.262 20.258 .002
7 33 31.78 1.222 .053 0.460 0.453 .002
8 34 34.22 20.218 .042 20.082 20.080 .000
9 32 31.98 0.017 .055 0.006 0.006 .000

10 34 33.33 0.666 .039 0.249 0.244 .000
11 20 21.54 21.544 .124 20.604 20.597 .010
12 36 32.15 3.846 .040 1.438 1.468 .017
13 34 33.73 0.271 .072 0.103 0.101 .000
14 23 23.98 20.982 .191 20.400 20.394 .008
15 24 19.71 4.287 .418 2.058 2.200 .609
16 32 32.84 20.841 .060 20.318 20.312 .001

Continued
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Observations yi ŷi 1̂i hii ri ti Di

17 40 40.76 20.762 .285 20.330 20.324 .009
18 46 44.39 1.614 .493 0.831 0.826 .134
19 55 52.92 2.083 .243 0.877 0.873 .049
20 52 52.02 20.018 .224 20.007 20.007 .000
21 29 32.38 23.377 .177 21.364 1.387 .080
22 22 23.15 21.155 .169 20.464 20.457 .009
23 31 36.59 25.586 .227 22.328 22.555 .319
24 45 47.91 22.909 .185 21.180 21.190 .063
25 37 32.61 4.391 .087 1.683 1.746 .054
26 37 31.89 5.106 .109 1.981 2.103 .096
27 33 30.22 2.775 .124 1.086 1.090 .033
28 27 31.59 24.593 .102 21.775 21.854 .071
29 34 34.40 20.399 .068 20.151 20.149 .000
30 19 19.32 20.324 .091 20.124 20.122 .000
31 16 19.62 23.623 .102 21.400 21.427 .044
32 22 19.39 2.607 .086 0.999 0.999 .019

aPRESS¼310.443, SSE¼201.228.

9.11 Residuals and Influence Measures for the Land Rent data of Table 7.5a

Observations yi ŷi 1̂i hii ri ti Di

1 18.38 17.332 1.048 0.080 0.132 0.130 .000
2 20.00 23.948 23.948 0.062 20.494 20.488 .004
3 11.50 13.855 22.355 0.141 20.308 20.303 .004
4 25.00 26.242 21.242 0.070 20.156 20.154 .000
5 52.50 68.180 215.680 0.186 22.107 22.245 .253
6 82.50 66.431 16.069 0.083 2.035 2.156 .094
7 25.00 32.920 27.920 0.067 20.994 20.994 .018
8 30.67 32.642 21.792 0.068 20.248 20.244 .001
9 12.00 7.715 4.285 0.187 0.576 0.570 .019

10 61.25 57.481 3.769 0.103 0.483 0.476 .007
11 60.00 50.208 9.792 0.058 1.224 1.234 .023
12 57.50 68.846 211.346 0.100 21.451 21.479 .059
13 31.00 31.768 20.768 0.076 20.097 20.095 .000
14 60.00 61.864 21.864 0.067 20.234 20.230 .001
15 72.50 66.773 5.727 0.109 0.736 0.730 .017
16 60.33 66.702 26.372 0.168 20.847 20.843 .036
17 49.75 59.663 29.913 0.114 21.278 21.292 .053
18 8.50 10.790 22.290 0.192 20.309 20.304 .006
19 36.50 24.643 11.857 0.068 1.489 1.522 .040
20 60.00 65.606 25.606 0.181 20.751 20.746 .031
21 16.25 18.016 21.766 0.505 20.304 20.300 .024
22 50.00 47.424 2.576 0.035 0.318 0.313 .001
23 11.50 19.366 24.866 0.118 20.628 20.622 .013

Continued

578 ANSWERS AND HINTS TO THE PROBLEMS



Observations yi ŷi 1̂i hii ri ti Di

24 35.00 38.577 23.577 0.064 20.448 20.442 .003
25 75.00 61.694 13.306 0.063 1.667 1.702 .047
26 31.56 35.257 23.697 0.035 20.456 20.450 .002
27 48.50 24.200 6.300 0.063 0.789 0.784 .010
28 77.50 69.889 7.611 0.242 1.060 1.062 .089
29 21.67 22.063 20.393 0.060 20.049 20.048 .000
30 19.75 21.221 21.471 0.096 20.188 20.185 .001
31 56.00 48.174 7.826 0.051 0.974 0.974 .013
32 25.00 41.300 216.300 0.217 22.234 22.406 .346
33 40.00 26.907 16.093 0.214 1.791 1.864 .219
34 56.67 56.585 0.085 0.060 0.011 0.010 .000

bPRESS ¼ 2751.18, SSE ¼ 2039.91.

9.12 Residuals and Influence Measures for the Chemical Data with Dependent
Variable y2

a

Observations yi ŷi 1̂i hii ri ti Di

1 45.9 49.34 23.442 0.430 21.118 21.128 .235
2 53.3 54.51 21.211 0.310 20.358 20.347 .014
3 57.5 53.46 4.039 0.155 1.078 1.084 .053
4 58.8 56.56 2.238 0.139 0.592 0.578 .014
5 60.6 56.04 4.559 0.129 1.198 1.271 .053
6 58.0 59.14 21.143 0.140 20.302 20.293 .004
7 58.6 57.51 1.094 0.228 0.305 0.296 .007
8 52.4 60.61 28.208 0.186 22.231 22.638 .258
9 56.9 56.30 0.598 0.053 0.151 0.146 .000

10 55.4 60.35 24.947 0.233 21.385 21.433 .146
11 46.9 52.26 25.356 0.240 21.507 21.580 .179
12 57.3 57.77 20.467 0.164 20.125 20.121 .001
13 55.0 54.84 0.163 0.146 0.043 0.042 .000
14 58.9 59.40 20.503 0.245 20.142 20.137 .002
15 50.3 53.20 22.900 0.250 20.821 20.812 .056
16 61.1 58.15 2.950 0.258 0.840 0.831 .061
17 62.9 58.15 4.750 0.258 1.352 1.394 .159
18 60.0 56.41 3.592 0.217 0.996 0.955 .069
19 60.6 56.41 4.192 0.217 1.162 1.177 .094

cPRESS ¼ 416.039, SSE ¼ 249.462.

Chapter 10

10.1 Since (vi � �v)0 ¼ (yi � �y, xi1 � �x1, . . . ,xik � �xk ), the element in the (1, 1)
position of (vi � �v)(vi � �v)0 is ( yi � �y)2. When this is summed over i as
in (10.13), we have

Pn
i¼1 (yi � �y)2 ¼ (n� 1)syy as in (10.14). Similarly,

the (1, 2) element of (vi � �v)(vi � �v)0 is ( yi � �y)(xi1 � �x1), which sums to
(n� 1)sy1, and the (2, 3) element of (vi � �v)(vi � �v)0 is
(xi1 � �x1)(xi2 � �x2), which sums to (n� 1)s12.

ANSWERS AND HINTS TO THE PROBLEMS 579



10.2 By a note following Theorem 7.6b, m̂ and S are jointly sufficient for m and
S, if the likelihood function ( joint density) in (10.11) factors as
L(m, S) ¼ g(m̂ , S, m,S)h(v1,v2, . . . ,vn), where v0i ¼ ( yi, x0i), as in the
proof of Theorem 10.2a. Noting that a scalar is equal to its trace, we write
the exponent in (10.11) in the form

Xn

i¼1

(vi � m)0S�1(vi � m) ¼
Xn

i¼1

tr(vi � m)0S�1(vi � m)

¼ tr S�1
Xn

i¼1

(vi � m)(vi � m)0
" #

:

Adding and subtracting v̄, the sum becomes

Xn

i¼1

(vi � m)(vi � m)0 ¼
Xn

i¼1

(vi � �vþ �v� m)(vi � �vþ �v� m)0

¼
Xn

i¼1

(vi � �v)(vi � �v)0 þ n(�v� m)(�v� m)0

¼ (n� 1)Sþ n(�v� m)(�v� m)0:

Show that the other two terms vanish. Then show that L(m,S) can be written
as

L(m,S) ¼ 1

(
ffiffiffiffiffiffi
2p
p

)n(kþ1)jSjn=2
e�½(n�1)tr(S�1S)þn(�v�m)0S�1(v�m)�=2:

10.3 DRD ¼
sy 00

0 Dx

� �
1 r0yx

ryx Rxx

� �
sy 00

0 Dx

� �

¼
sy syr0yx

Dxryx DxRxx

� �
sy 00

0 Dx

� �

¼
s2

y syr0yxDx

syDxryx DxRxxDx

 !
:

10.4 Express y and w in terms of
y
x

� �
as follows: y = (1, 0, . . . , 0)

y
x

� �
¼ a0

y
x

� �
, w ¼ (0,s0yxS

�1
xx )

y
x

� �
+ constant = b0

y
x

� �
þ constant.

Then use (3.42) and (3.43) with S partitioned as in (10.3).
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10.5 Express w and y as w ¼ (0,a0)
y
x

� �
and y ¼ (1,0, . . . ,0)

y
x

� �
. Then

cov(y, w) ¼ cov (1,0, . . . ,0)
y

x

� �
, (0,a0)

y

x

� �� �

¼ (1, 0 , . . . , 0)
syy s0yx

syx Sxx

� �
0

a

� �

¼ (syy,s0yx)
0

a

� �
¼ s0yxa,

r2
yw ¼

½cov(y, w)�2

var(y) var(w)
¼ (a0syx)2

syy(a0Sxxa)
: (1)

Differentiate ryw
2 with respect to a and set the result equal to 0 to obtain

a ¼ (a0Sxxa=a
0syx)S�1

xx syx, with can be substituted into (1) to obtain

maxar2
yw ¼ s0yxS

�1
xx syx=syy.

10.6 Show that for S partitioned as in (10.3), (2.75) becomes jSj ¼ jSxxj
(syy � s0yxS

�1
xx syx). Solve for s0yxS

�1
xx syx and substitute into (10.27).

10.7
s0uv ¼ cov(u, v) ¼ cov(ay, Bx) ¼ cov (a, 0, . . . ,0)

y

x

� �
, (0, B)

y

x

� �� �

¼ (a, 0, . . . ,0)
s2

y s0yx

syx Sxx

 !
00

B0

� �
¼ as0yxB0,

Svv ¼ cov(Bx) ¼ BSxxB0,

suu ¼ a2syy,

r2
ujv ¼

s0uvS
�1
vv suv

suu
¼

as0yxB0(BSxxB0)�1aBsyx

a2syy

¼
a2s0yxB0(B0)�1S�1

xx B�1Bsyx

a2syy
:
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10.8 y� w ¼ y� my � s0yxS
�1
xx (x� mx)

¼ (1, �s0yxS
�1
xx )

y

x

� �
þ constant

¼ a0
y

x

� �
þ constant,

x ¼ (0, I)
y

x

� �
¼ B

y

x

� �
,

cov(y� w, x) ¼ a0SB0 ¼ (1,�s0yxS
�1
xx )

s2
y s0yx

syx Sxx

 !
00

I

� �

¼ (s2
y � s0yxS

�1
xx syx,s0yx � s0yxS

�1
xx Sxx)

00

I

� �

¼ 00:

10.9 (a) By definition, r2
yŷ ¼ ½

Pn
i¼1 (yi � �y)(ŷi � �̂y)�2=

Pn
i¼1 (yi � �y)2

Pn
i¼1 (ŷi � �̂y)2. Show that �̂y ¼ �y by using X0 ¼ j0

X01

� �
in X0Xb̂ ¼ X0y

to obtain j0Xb̂ ¼ j0y, from which,
Pn

i¼1 ŷi ¼
Pn

i¼1 yi. Show

that
Pn

i¼1 (yi � �y)(ŷi � �̂y) ¼
P

i yiŷi � n�y2 ¼ y0ŷ� n�y2 ¼ y0Xb̂� n�y2.

Show that
P

i (ŷi � �̂y)2 ¼
P

i ŷ2
i � n�y2 ¼ ŷ0ŷ� n�y2 ¼ b̂X0Xb̂� n�y2 ¼

b̂0X0y� n�y2. Use (7.54).

(b) This follows directly from estimation of (10.25) and the expression
following (10.26):

ryŷ ¼
syŷ

sysŷ
¼

s0yxS�1
xx syx

sy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s0yxS�1

xx syx

q

10.10 r2
y,a0x ¼ (sy,a0x)2=s2

ys2
a0x. Express y and a0x as y ¼ (1, 0, . . . , 0)

y
x

� �
and

a0x ¼ (0, a0)
y
x

� �
. By analogy with (3.40), show that sy,a0x ¼

(1, 0, . . . , 0)S
0
a

� �
¼ s0yxa, where S is partitioned as in (10.10). Similarly,

by analogy with (3.42) show that s2
a0x ¼ a0Sxxa. Solve

(@=@a)(s0yxa)2=s2
ya0Sxxa ¼ 0 for a and substitute back into r2

y,a0x above to

show that maxar2
y,a0x ¼ R2.

10.11 Substitute (10.20) and (10.21) into (10.34).
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10.12 Adapt (2.51) to obtain

a b0

b C

� ��1

¼ 1=d �b0C�1=d
�C�1b=d C�1 þ C�1bb0C�1=d

� �
; (1)

where C is symmetric and d ¼ a� b0C�1b. Apply (1) to R partitioned as in
(10.18),

R ¼ 1 r0yx
ryx Rxx

� �
:

Then

ryy ¼ 1
d
¼ 1

a� b0C�1b

¼ 1

1� r0yxR�1
xx ryx

¼ 1
1� R2

:

10.13 Use (2.71) to show that for S partitioned as in (10.14), (2.75) can be adapted
to the form jSj ¼ jSxxj(syy � s0yxS�1

xx syx). Solve for s0yxS�1
xx syx and substitute

into (10.34).

10.14 As in Problem 10.4, define u ¼ ay and v ¼ Bx, so that s0uv ¼ as0yxB0,
Svv ¼ BSxxB0, and suu ¼ a2syy. Then by Theorem 10.2c, the maximum

likelihood estimators of these are s0uv ¼ as0yxB0, Svv ¼ BSxxB0, and

suu ¼ a2syy, respectively. Substitute these into

R2
u,v ¼

s0uvS�1
vv suv

suu
:

10.15 L(m̂, S0) ¼ 1

(
ffiffiffiffiffiffi
2p
p

)n(kþ1)jS0jn=2
e�
Pn

i¼1
(vi�m̂)0

P�1

0
(vi�m̂)=2:

Using vi ¼
yi

xi

� �
, m̂ in (10.9), amd S0 in (10.45), show that L(m̂, S0)

becomes

L(m̂, S0) ¼ 1

(
ffiffiffiffiffiffi
2p
p

)ns
n=2
yy

e�
Pn

i¼1
(yi��y)2=2syy

� 1

(
ffiffiffiffiffiffi
2p
p

)knjSxxjn=2
e�
Pn

i¼1
(xi��x)0

P�1

xx
(xi��x)=2:

The first factor is maximized by ŝyy and the second factor by Ŝxx. Show that
when these are substituted in L(m̂,S0), the result is given by (10.47).
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10.16
jŜj ¼ n� 1

n
S

����
���� ¼

n� 1
n

� �kþ1

jSj, jŜxxj ¼
n� 1

n

� �k

jSxxj:

10.17 Multiply by 1=
ffiffiffiffiffiffiffiffiffiffiffi
n� 3
p

, subtract z, multiply by 21 (which reverses the direc-
tion of the inequalities), then take tanh (hyperbolic tangent) of all three
members.

10.18 (a) V ¼

1
n1�3 0 0

0 1
n2�3 0

0 0 1
n3�3

0
B@

1
CA

(b) Using Theorem 4.4a(ii) and (5.35), ½C(z� mz)�
0½CVC0��1

½C(z� mz)� is x2 (2).

(c) Calculate u ¼ z0C0½CVC0��1Cz. Reject if u � x2
2,1�a:

10.19 The sample covariance matrix involving y and w can be expressed in the
form

S ¼ s2
y s0yw

syw Sww

� �
,

and syw and Sww can be further partitioned as

syw ¼
syx

syz

� �
and Sww ¼

Szx szx

s0zx s2
ẑ

� �
: (1)

By (10.34), the squared multiple correlation of y regressed on w can be
written as

R2
yw ¼

s0ywS�1
wwsyw

s2
y

: (2)

Using (2.51) for the inverse of the partitioned matrix Sww in (1), show that

s0ywS�1
wwsyw ¼

1
s2

z�x
(s2

z�xs0yxS�1
xx syx þ s0yxS�1

xx szxs
0
zxS�1

xx syx

� syzs
0
zxS
�1
xx syx � syzs

0
yxS�1

xx szx þ s2
yz)

¼ 1
s2

z�x
s2

z�xs
2
yR2

yx þ (b̂0zxsyx � syz)
2

h i
,

where s2
z�x ¼ s2

z � s0zxS�1
xx szx and b̂zx ¼ S�1

xx szx is the vector of regression
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coefficients of z regressed on the x’s. Then show that (2) becomes

R2
yw ¼ R2

yx þ
(b̂0zxsyx � syz)2

s2
ys2

z (1� R2
zx)

: (3)

Simplify (3) to the correlation form shown in (10.58).

10.20 If z is orthogonal to the x’s, then szx ¼ 0. Show that this leads to
r̂yx ¼ 0 and R2

zx ¼ 0.

10.21 For a linear function b0 þ b01x, the mean squared error is given by
m ¼ E(y� b0 � b01x)2. Adding and subtracting my and b0mx leads to

m ¼ E½(y� my)� (b0 � my þ b01mx)� b01(x� mx)�2:

Show that this becomes

m ¼ s2
y þ (b0 � my þ b01mx)

2 þ b01Sxxb1 � 2b01syx:

Differentiate m with respect to b0 and with respect to b1 and set the results
equal to zero.

10.22 Follow the steps in the answer to Problem 10.19 using �y, �x, Sxx, and syx in
place of my, mx, Sxx, and syx and using a sample mean in place of
expectation.

10.23 From the expression preceding (10.71), we obtain

Xn

i¼1

w1iw2i ¼
X

i

(y1i � �y1)(y2i � �y2)� b̂12

X
i

(y1i � �y1)(y3i � �y3)

� b̂11

X
i

(y3i � �y3)(y2i � �y2)þ b̂11b̂12

X
i

(y3i � �y3)2:

Using (10.67) and (10.68), this becomes

Xn

i¼1

w1iw2i ¼
X

i

(y1i � �y1)(y2i � �y2)� b̂12b̂11

X
i

(y3i � �y3)2

� b̂11b̂12

X
i

(y3i � �y3)2 þ b̂11b̂12

X
i

(y3i � �y3)2:

10.24 Follow the steps in the answer to Problem 10.23.
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10.25 Denote yki � �yk by y�ki, k ¼ 1, 2, 3. Then by (10.76), we obtain

rw1w2 ¼
P

i y�1iy
�
2i � b̂11b̂12

P
i y�23iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i y�21i � b̂ 2
11

P
i y�23i

� 	 P
i y�22i � b̂ 2

12

P
i y�23i

� 	q

Substituting for b̂11 and b̂12 from (10.67) and (10.68), we have

rw1w2 ¼

P
i y�1iy

�
2i �

P
i
y�1iy

�
3iP

i
y�23i

� � P
i
y�2iy

�
3iP

i
y�23i

� � P
i y�23i

� 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

i y�21i �
P

i
y�1iy

�
3iP

i
y�23i

� �2

(
P

i y�23i )

" #
P

i y�22i �
P

i
y�2iy

�
3iP

i
y�23i

� �2

(
P

i y�23i )

" #vuut
:

Dividing numerator and denominator by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i y�21i

P
i y�22i

p
, we obtain

rw1w2 ¼

P
i
y�1iy

�
2iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i
y�21i

P
i
y�22i

p �
P

i
y�1iy

�
3iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i
y�21i

P
i
y�23i

p
P

i
y�2iy

�
3iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i
y�22i

P
i
y�23i

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i
y�21iP

i
y�21i

� (
P

i
y�1iy

�
3i)

2P
i
y�21i

P
i
y�23i

� � P
i
y�22iP

i
y�22i

� (
P

i
y�2iy

�
3i)

2P
i
y�22i

P
i
y�23i

� �s

¼ r12 � r13r23ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1� r2

13)(1� r2
23)

p :

10.26 By (10.78),

Xn

i¼1

[yi � ŷi(x)] ¼
Xn

i¼1

[yi � �y� SyxS�1
xx (xi � �x)]

¼
X

i

(yi�y)� SyxS�1
xx

X
i

(xi � �x)

¼ 0� SyzS
�1
xx 0:
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10.27 By definition, the partitioned S can be written as

S ¼
Syy Syx

Sxy Sxx

� �
¼ 1

n� 1

Xn

i¼1

yi

xi

� �
�

�y

�x

� �� �
yi

xi

� �
�

�y

�x

� �� �

¼ 1
n� 1

X
i

yi � �y

xi � �x

� �
yi � �y

xi � �x

� �

¼ 1
n� 1

X
i

yi � �y

xi � �x

� �
[(yi � �y)0,(xi � �x)0]

¼ 1
n� 1

X
i

(yi � �y)(yi � �y)0 (yi � �y)(xi � �x)0

(xi � �x)(yi � �y)0 (xi � �x)(xi � �x)0

� �
:

10.28
(a) Sxx ¼

271:9298 10:0830 1:4011

10:0830 1:4954 0:0514

1:4011 0:0514 0:0074

0
B@

1
CA, syx ¼

:2204

:0220

:0017

0
B@

1
CA,

b̂1 ¼
�0:0212

0:0143

4:1781

0
B@

1
CA, b̂0 ¼ :2659, s2 ¼ :004978

(b) Rxx ¼
1:000 0:500 0:990

0:500 1:000 0:490

0:990 0:490 1:000

0
B@

1
CA, ryx ¼

:151

:203

:228

0
B@

1
CA,

b̂
�
1 ¼

�3:960

0:198

4:052

0
B@

1
CA

(c) R2 ¼ :3639

(d) F ¼ R2=3
(1� R2)=15

¼ 2:86045, p ¼ :072

10.29 (a) x2 : r1 ¼ .5966, r2 ¼ .0721 z1 ¼ .6878, z2 ¼ .722, v ¼ 2.0642, limits for
r1 are .2721 and .7992, limits for r2 are 2.3325 and .4543.

(b) x3 : r1 ¼ .7012, r2 ¼ .8209, z1 ¼ .8697, z2 ¼ 1.1594, v ¼ 2.9716, limits
fo r1 are .4309 and .8561, limits for r2 are .6301 and .9182.

(c) x4 : r1 ¼ .0400, r2 ¼ .0714, z1 ¼ .04002, z2 ¼ .07154, v ¼ 2.1057,
limits for r1 are 2.3528 and .4208, limits for r2 are 2.3331 and .4537.

(d) x5 : r1 ¼ .3391, r2 ¼ .2683, z1 ¼ .3531, z2 ¼ .2751, v ¼ .2617, limits for
r1 are 2.0555 and .6421, limits for r2 are 2.1418 and .5999.
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10.30
z r̂yz ryz Rzx

2 Ryw
2 2Ryx

2 F p Value

x1 .227 .0228 .9808 .3010 7.099 .018
x2 .055 .0413 .2513 .0292 .689 .417
x3 .149 .0518 .9806 .3193 7.531 .015

10.31

(a) To find ry1�23, the sample covariance matrix is partitioned as

S ¼

:0078 :2204 :0220 :0017
:2204 271:9298 10:0830 1:4011

:0220 10:0830 1:4954 :0514

:0017 1:4011 :0514 :0074

0
BBB@

1
CCCA ¼

Syy Syx

Sxy Sxx

� �
,

where y ¼ ( y, x1)’ and x ¼ (x2, x3)’. From Syy, Syx, Sxy, and Sxx, we obtain

Ds ¼
:0856 0

0 2:2846

� �
, Ry�x ¼

1:000 �:567
�:567 1:000

� �
:

Thus ry1�23 ¼2.567, as compared to ry1 ¼ .151.

(b) For ry2�13, we have y ¼ (y, x2)0 and x ¼ (x1, x3)0,

Syy ¼
:0078 0:0220

:0220 1:4954

� �
, Ds ¼

0 1:0581

:0722 0

� �
,

Ry�x ¼
1:000 0:2097

0:2097 1:000

� �
:

(c) For Ry:x corresponding to y ¼ (y, x1, x2)0 and x ¼ x3, we have

Syy ¼
:0078 :2204 :0220

:2204 271:9298 10:0830

:0220 10:0830 1:4954

0
B@

1
CA,

Ds ¼
:0861 0 0

0 2:3015 0

0 0 1:0660

0
B@

1
CA

Ry�x ¼
1:000 �0:546 0:108

�0:546 1:000 0:121

1:108 0:121 1:000

0
B@

1
CA
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Chapter 11

11.1 (b�f)0V�1(b�f)þ (y�Xb)0(y�Xb)þ d�

¼ b0V�1b� 2b0V�1fþf0V�1fþ y0y� 2b0X0yþbX0Xbþ d�

¼ b0(V�1þX0X)b� 2b0(V�1þX0X)(V�1þX0X)�1(V�1fþX0y)

þ (V�1fþX0y)0(V�1þX0X)�1(V�1þX0X)(V�1þX0X)�1

� (V�1fþX0y)� (V�1fþX0y)0(V�1þX0X)�1(V�1þX0X)

(V�1þX0X)�1(V�1fþX0y)þf0V�1fþ y0yþ d�

¼ b0V�1
� b� 2b0V�1

� f� þf0�V
�1
� f� �f0�V

�1
� f�

þf0V�1fþ y0yþ d�

¼ (b�f�)
0V�1
� (b�f�)þ d��:

11.2
ð1

0

tae�btdt ¼ b�a
ð1

0

(bt)ae�(bt)dt

¼ b�a
ð1

0

(bt)ae�(bt)d(bt)

¼ b�(aþ1)
ð1

0

sae�sds (letting s ¼ bt)

¼ b�(aþ1)G(aþ 1) ½by definition of G(aþ 1)�:

11.3 (a) Use (2.54) with A ¼ I, P ¼ XV, B ¼ V21, and Q ¼ VX0.
(b) (Iþ XVX0)�1X� X(X0Xþ V�1)�1V

¼ ½I� X(X0Xþ V�1)�1X0�X� X(X0Xþ V�1)�1V�1 (Problem 11.3a)

¼ X� X(X0Xþ V�1)�1X0X� X(X0Xþ V�1)�1V

¼ X� X(X0Xþ V�1)�1(X0Xþ V�1)

¼ X� X

¼ O:
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(c) V�1 � V�1(X0Xþ V�1)�1V�1

¼ ½Vþ (X0X)�1(X0X)(X0X)�1��1 [use (2.54) in reverse]

¼ ½(X0X)�1 þ V��1 (simplify)

¼ X0X� X0X(X0Xþ V�1)�1X0X [use (2.54)]

¼ X0½I� X(X0Xþ V�1)�1X0�X (factor)

¼ X0(Iþ XVX0)�1X (Problem 11.3a).

11.4 y0yþf0V�1f�f0�V
�1
� f�

¼ (y� Xf)0(Iþ XVX0)�1(y� Xf)� (y� Xf)0

� (Iþ XVX0)�1(y� Xf)þ y0yþf0V�1f�f0�V
�1
� f�

¼ (y� Xf)0(Iþ XVX0)�1(y� Xf)� y0(Iþ XVX0)�1yþ 2y0(Iþ XVX0)�1

� Xf�f0X0(Iþ XVX0)�1Xfþ y0yþf0V�1f� (X0yþ V�1f)0

� (X0Xþ V�1)�1(X0Xþ V�1)(X0Xþ V�1)�1(X0yþ V�1f)

¼ (y� Xf)0(Iþ XVX0)�1(y� Xf)þ y0½I� (Iþ XVX0)�1

� X(X0Xþ V�1)�1X0�yþ 2y0½(Iþ XVX0)�1X� X(X0Xþ V�1)�1V�1�f

þf0½V�1 � X0(Iþ XVX0)�1X� V�1(X0Xþ V�1)�1V�1�f

¼ (y� Xf)0(Iþ XVX0)�1(y� Xf)þ y0Oyþ 2y0Ofþf0Of

(see Problems 11.3a, b, and c)

¼ (y� Xf)0(Iþ XVX0)�1(y� Xf):

11.5 The prior density for b is p1(b) ¼ c1. Since the prior density for
ln(t21) is uniform, the prior density for t is p2(t) ¼ c2t

21. The like-
lihood for yjb, t is the multivariate normal density with mean Xb
and covariance matrix t21I. Using Bayes theorem in (11.4), the joint
posterior density is

g(b, tj y) ¼ c4c1c2t
�1c3t

n=2e�t(y�Xb)0(y�Xb)=2

¼ c5t
(n�2)=2e�t(y�Xb)0(y�Xb)=2:
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The marginal posterior density of bjy is

u(bjy) ¼ c5

ð1

0

t(n�2)=2e�t(y�Xb)0(y�Xb)=2dt

¼ c5G(n=2)½(y� Xb)0(y� Xb)=2��n=2 (Problem 11.2)

¼ c6½(n� k � 1)s2 þ (b� b̂)0(X0X)(b� b̂)��n=2

(proof to Theorem 7.6c)

¼ c7½1þ (b� b̂)0(X0X)(b� b̂)=(n� k � 1)s2��n=2

¼ c7½1þ (b� b̂)0½s2(X0X)�1��1(b� b̂)=(n� k � 1)��½(n�k�1)þ(kþ1)�=2

which is the density function of the multivariate t-distribution (Gelman,
et al. 2004, pp. 576–577) with parameters (n� k � 1, b̂, s2(X0X)�1):

11.6 Using (7.64), the generalized least squares estimate of b for the augmented
data is

X

I

� �0 I O

O V

� ��1 X

I

� �" #�1
X

I

� �0 I O

O V

� ��1 y

f

� �

¼ (X0 I0 )
I O

O V

� ��1 X

Y

� �" #�1

X0 I0ð Þ
I O

O V

� ��1 y

f

� �

¼ (X0Xþ V�1)�1(X0yþ V�1f):
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11.7

E(t) ¼
ð1

0

t
da

G(a)
ta�1e�dtdt

¼ da

G(a)

ð1

0

tae�dtdt

¼ da

G(a)
d�(aþ1)G(aþ 1) [using prob. 11.2]

¼ a

d
:

var(t) ¼
ð1

0

t 2 da

G(a)
ta�1e�dtdt� a

d

� 
2

¼ da

G(a)

ð1

0

taþ1e�dtdt� a

d

� 
2

¼ da

G(a)
d�(aþ2)G(aþ 2)� a

d

� 
2

¼ da

G(a)
d�(aþ2)G(aþ 2)� a

d

� 
2

¼ (aþ 1)(a)

d2 � a

d

� 
2

¼ a

d2 :

11.8 The density function of tjy is given in (11.14). Using the change-of-variable
technique, the marginal posterior density of s2jy is

w(s2jy) ¼ c5(s�2)(aþn=2)�1e�½(�f
0
�V
�1
� f�þf0V�1fþy0yþ2d)=2�(s�2)(s2)�2

¼ c6(s2)�(aþn=2)�1e�½(�f
0
�V
�1
� f�þf0V�1fþy0yþ2d)=2�=s�2

:

11.9 (a) This is the model of Section 11.2.1, with k ¼ 1, f ¼ 0
0

� �
,

and V ¼ s 2
0 0

0 s 2
1

� �
.

Using Theorem 11.2b and the expression in (11.18), b1jt is t-distributed
with parameters nþ 2a,f�2, and w�22 where

f�2 ¼
(s�2

0 þ n)
P

i xiyi �
P

i yi
P

i xi

(s�2
0 þ n)(s�2

1 þ
P

i x2
i )� (

P
i xi)2
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and

w�22 ¼
y0(I� XVX0)�1yþ 2d

nþ 2a
(s�2

0 þ n)

(s�2
0 þ n)(s�2

0 þ
P

i x2
i )� (

P
i xi)2 :

(b) A point estimate is given by f*2 and a (12v)�100% confidence interval
is given by f�2 + tv=2,nþ2av�22:

11.10 (a) The joint prior density is

p(b, t) ¼ p1(bjt)p2(t)

¼ c1e�(b�f)0V�1(b�f)=2ta�1e�dt

¼ c1t
a�1e�(b�f)0V�1(b�f)=2�dt:

Using (11.4), the joint posterior density is

g(b, tjy) ¼ cp(b, t) L(b, tjy)

¼ c2t
a�1e�(b�f)0V�1(b�f)=2�dttn=2e�t(y�Xb)0(y�Xb)=2

¼ c2t
n=2þa�1e�½(b�f)0V�1(b�f)þt(y�Xb)0(y�Xb)�=2�dt:

(b) Picking the terms out of the joint density g(b, tjy) that involve b, and
considering everything else to be part of the normalizing constant, the
conditional posterior density of bjt, y is

w(bjt, y) ¼ c3 e�½(b�f)0V�1(b�f)þt(y�Xb)0(y�Xb)�=2

¼ c3 e�t(t�1b0V�1b�2t�1b0V�1fþt�1f0V�1fþy0y�2b0X0yþb0X0Xb)=2

¼ c4 e�t½b
0(X0Xþt�1V�1)b�2b0(X0yþt�1V�1f)�=2

¼ c4 e�t½b
0(X0Xþt�1V�1)b�2b0(X0Xþt�1V�1)(X0Xþt�1V�1)�1(X0yþt�1V�1f)�=2

¼ c5 e�t(b0V�1
n b�2b0V�1

n fnþf0nV�1
n fn)=2

where Vn ¼ (X0Xþ t�1V�1)�1 and fn ¼ Vn(X0yþ t�1V�1f)

¼ c5 e�t½(b�fn)0V�1
n (b�fn)�=2:

Hence bjt, y is Nkþ1(fn,t�1Vn).

(c) Picking the terms out of the joint density g(b, tjy) that involve t, and
considering everything else to be part of the normalizing constant, the
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conditional posterior density of tjb, y is

c(tjb, y) ¼ c6 tn=2þa�1e�t (y�Xb)0(y�Xb)=2þdt

¼ c6t
n=2þa�1e�½(y�Xb)0(y�Xb)=2þd�t:

Hence tjb, y is Gamma½n=2þ a, (y� Xb)0(y� Xb)=2þ d�.
(d)

† Specify 1/s2 from (7.23) as a starting value t0.
† For i ¼ 1 to M:

calculate Vn,i�1 ¼ (X0Xþ t�1
i�1V�1)�1,

calculate fn,i�1 ¼ Vn,i�1(X0yþ t�1
i�1V�1f),

draw bi from Nkþ1(fn,i�1,t�1
i�1Vn,i�1),

draw ti from Gamma½n=2þ a,(y� Xbi)
0(y� Xbi)=2þ d�,

calculate t�1
i

† Consider all draws (bi,t
�1
i ) to be from the joint posterior distribution.

11.11 (a) Bayesian estimates of b1, b2, and b3 are 0.7820, 0.5007, 216.6443.
Lower 95% confidence limits are 0.6281, 0.2627, 242.2511. Upper
95% confidence limits are 0.9358, 0.7386, 8.9625.

(b) Answers will vary. We obtained Bayesian estimates of 0.7817, 0.4990,
216.5490, lower 95% confidence limits of 0.6332, 0.2627, 242.6158,
and upper 95% confidence limits of 0.9358, 0.7358, 9.5144.

(c) Answers will vary. We obtained a Bayesian prediction of 18.9113, with
lower and upper 95% limits of 2.3505 and 35.7526.

(d) Answers will vary. We obtained Bayesian estimates of 0.8170, 0.4399,
26.1753, lower 95% confidence limits of 0.6831, 0.2142, 221.4675,
and upper 95% confidence limits of 0.9523, 0.6567, 9.7605.

11.12 Use Problem 11.2 with t ¼ t, a ¼ (a�� þ k þ 2)=2, and
b ¼ ½(b�f�)

0V�1
� (b�f�)þ (y0 � x00b)2 þ d���=2.

Chapter 12

12.1
�m1: þ �m2: ¼

m11 þ m12

2
þ m21 þ m22

2
¼ m11 þ m12 þ m21 þ m22

2

¼ 2
m11 þ m12 þ m21 þ m22

4

� 

¼ 2�m::
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12.2 The deficiency in the rank of X does not affect the differentiation of 1̂01̂ in
(12.10). Thus

@1̂ 01̂

@b̂
¼ 0� 2X0yþ 2X0Xb̂ ¼ 0,

which yields (12.11).

12.3 For Theorem 2.7a, the coefficient matrix is A ¼ X0X, and the augmented
matrix is B ¼ (X0X, X0y). We can write B as X0(X, y). which leads to
rank(B) � rank(X0) ¼ rank(A). On the other hand, rank(B) � rank(A)
because augmenting a matrix by a column vector cannot decrease
the column rank. Hence rank(B) ¼ rank(A); that is, rank(X0X,X0y) ¼
rank(X0X), and the system is consistent.

12.4 (a) We can obtain l0X0X(X0X)� ¼ l0 from the expression X(X0X)�X0X ¼ X
given in Theorem 2.8c(iii). Since l0 ¼ a0X, multiplying by a0 gives the
result; that is, a0X(X0X)�X0X ¼ a0X implies l0(X0X)�X0X ¼ l0.

(b) The condition X0X(X0X)�l ¼ l follows from Theorem 2.8f, which
states that Ax ¼ c has a solution if and only if AA2c ¼ c for any gener-
alized inverse of A. Thus, X0Xr ¼ l, has a solution if and only if
X0X(X0X)�l ¼ l.

12.5 (a) a0X ¼ (0, 0, 0, 1, 0, 0)X ¼ (1, 0, 1). X0Xr ¼ l, where r ¼ (0, 0, 1
3 )0.

Show that X0X(X0X)�l ¼ (1, 0, 1)0. These values of a and r are illustra-
tive. Many others are possible.

(b) We attempt to find a vector a such that a0X ¼ l0 ¼ (0, 1, 1). Since X has
only two distinct rows, a0X is of the form a1(1, 1, 0)þ
a2(1, 0, 1) ¼ (a1 þ a2, a1, a2) which must equal (0, 1, 1). This gives
a1 þ a2 ¼ 0, a1 ¼ 1, and a2 ¼ 1, which is clearly impossible. By
Theorem 2.8f, the system of equations X0Xr ¼ l has a solution if and
only if X0X(X0X)�l ¼ l. This is also condition (iii) of Theorem
11.2b. We find that

X0X(X0X)�l ¼
0 1 1
0 1 0
0 0 1

0
@

1
A

0
1
1

0
@

1
A ¼

2
1
1

0
@

1
A,

which is not equal to l.

ANSWERS AND HINTS TO THE PROBLEMS 595



12.6 Multiply the two sets of normal equations by r0, where r0X0X ¼ l0:

r0X0Xb̂1 ¼ r0X0y

r0X0Xb̂2 ¼ r0X0y:

Since the right sides are equal, we obtain r0X0Xb̂1 ¼ r0X0Xb̂2, or

l0b̂1 ¼ l0b̂2.

12.7 In the answer to Problem 11.5a, a solution to X0Xr ¼ l is given as
r ¼ (0, 0, 1

3 )0. Thus

r0X0y ¼ (0, 0, 1
3 )

y::
y1:

y2:

0
@

1
A ¼ y2:

3
¼ �y2::

For l0b̂, we use

b̂ ¼
m̂

�y1: � m̂

�y2: � m̂

0
@

1
A

from Example 12.3.1. Then

l0b̂ ¼ (1, 0, 1)
m̂

�y1: � m̂

�y2: � m̂

0
@

1
A ¼ m̂ þ �y2: � m̂ ¼ �y2::

12.8 (a) X0Xr ¼ l is given by

6 3 3

3 3 0

3 0 3

0
B@

1
CA

r1

r2

r3

0
B@

1
CA ¼

1

1

0

0
B@

1
CA, or

6r1 þ 3r2 þ 3r3 ¼ 1

3r1 þ 3r2 ¼ 1

3r1 þ 3r3 ¼ 0

Using the last two equations, we obtain

r1 ¼ �r3

r2 ¼ r3 þ 1
3 ,
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or

r ¼
r1

r2

r3

0
@

1
A ¼

�r3

r3 þ 1
3

r3

0
@

1
A ¼ r3

�1
1
1

0
@

1
Aþ

0
1
3
0

0
@

1
A,

where r3 is an arbitrary constant that we can denote by c.

(b) The BLUE, r0X0y, is given by

r0X0y ¼ (�c, cþ 1
3 , c)

y::
y1:

y2:

0
B@

1
CA

¼ �cy:: þ cy1: þ 1
3 y1: þ cy2:

¼ �c(y1: þ y2:)þ cy1: þ 1
3 y1: þ cy2: ¼ 1

3 y1::

Show that y:: ¼ y1: þ y2:

12.9 (a) From Example 12.2.2(b), we have

b ¼

m

a1

a2

b1

b2

0
BBBB@

1
CCCCA

, mþ a1 þ b1 ¼ (1, 1, 0, 1, 0)b ¼ l01b:

Show that

X0X ¼

4 2 2 2 2
2 2 0 1 1
2 0 2 1 1
2 1 1 2 0
2 1 1 0 2

0
BBBB@

1
CCCCA

, X0y ¼

y::
y1:

y2:

y:1
y:2

0
BBBB@

1
CCCCA
:

The value r0 ¼ (0, 1
2 , 0, 1

4 , � 1
4 ) gives r0X0X ¼ l01. Then

r0X0y ¼ y1:

2
þ y:1

4
� y:2

4
:

For l02b ¼ b1 � b2 ¼ (0, 0, 0, 1,�1)b, a convenient value for r is
r0 ¼ (0, 0, 0, 1

2 , � 1
2 ), which gives r0X0y ¼ 1

2 y:1 � 1
2 y:2 ¼ �y:1 � �y:2. The

function l03b ¼ a1 � a2 ¼ (0, 1,�1, 0, 0)b can be obtained using
r0 ¼ (0, 1

2 , � 1
2 , 0, 0), which leads to r0X0y ¼ 1

2 y1: � 1
2 y2: ¼ �y1: � �y2:
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(b) E(r01X0y) ¼ E
y1:

2
þ y:1

4
� y:2

4

� 


¼ 1
4 E½2(y11 þ y12)þ (y11 þ y21)� (y12 þ y22)�

¼ 1
4 E(3y11 þ y12 þ y21 � y22)

¼ 1
4 ½3(mþ a1 þ b1)þ mþ a1

þ b2 þ mþ a2 þ b1 � (mþ a2 þ b2)�
¼ 1

4 (4mþ 4a1 þ 4b1) ¼ mþ a1 þ b1 ¼ l01b:

12.10 (a) The function l0b ¼ (0, c1, c2, . . . , ck)b ¼
Pk

i¼1 citi is estimable if there
exists a vector a such that l0 ¼ a0X. The k distinct rows of X are of the
form x0i ¼ (1, 0, . . . , 0, 1, 0, . . . , 0), so that

l0 ¼ a0X ¼
Xk

i¼1

aix
0
i ¼

X
i

ai, a1, a2, . . . , ak

 !
:

Equating this to l0 ¼ (0, c1, c2, . . . , ck), we obtainPk
i¼1 ai ¼ 0, ai ¼ ci i ¼ 1, 2, . . . , k. Thus

P
i ci ¼ 0.

(b) Any estimable function can be found as a0Xb, which gives

a0Xb ¼ a0E(y) ¼
Xk

i¼1

Xn

j¼1

aijE(yij)

¼
X

i

X
j

aij(mþ ti) ¼
X

i

(mþ ti)
X

j

aij

" #

¼
X

i

(mþ ti)ai: ¼ m
X

i

ai: þ
X

i

ai:ti

¼ m
X

i

ci þ
X

i

citi,

where ci ¼ ai: ¼
P

j aij. Thus
P

i citi is estimable if and only ifP
i ci ¼ 0.

12.11 In Example 12.2.2(a), part (ii), we have

X0X ¼
6 3 3
3 3 0
3 0 3

0
@

1
A:
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Then for l ¼ (0, 1,�1)0, X0Xr ¼ l becomes

6r1 þ 3r2 þ 3r3 ¼ 0

3r1 þ 3r2 ¼ 1

3r1 þ 3r3 ¼ �1:

Show that all solutions are given by

r ¼ c
1
�1
�1

0
@

1
Aþ 1

3

0
1
�1

0
@

1
A,

where c is arbitrary. Show that r0X0y ¼ �y1: � �y2: for all values of c.

12.12 Use to Corollary 2 Theorem 3.6d(ii) to obtain cov(r01X0y, r02X0y) ¼
r01X0cov(y)Xr2 and cov(l01b̂,l02b̂) ¼ l01cov(b̂)l2.

12.13 (a) ( y� Xb̂)0(y� Xb̂) ¼ y0y� y0Xb̂� b̂
0
X0yþ b̂

0
X0Xb̂. Since y0Xb̂ is a

scalar, it is equal to its transpose b̂
0
X0y. The last term, b̂X0Xb̂,

becomes b̂
0
X0y because X0Xb̂ ¼ X0y.

(b) Using b̂ ¼ (X0X)�X0y, we have

y0y� b̂
0
X0y ¼ y0y� y0X½(X0X)��0X0y
¼ y0y� y0X(X0X)�X0y

by Theorem 2.8c(ii).

12.14 b0X0½I� X(X0X)�X0�Xb ¼ b0X0Xb� b0X0X(X0X)�X0Xb:

By (2.58), X0X(X0X)�X0X ¼ X0X.

12.15 Follow the steps in the answer to Problem 7.21. Is there any step that must be
altered because X is not full-rank?

12.16 (a) Since b̂ ¼ (X0X)�X0y is a linear function of y for a particular choice of
(X0X)�, we can use Theorem 4.4a(ii) directly.

(b) Show that I� X(X0X)�X0 is idempotent. Then use Corollary 2 to
Theorem 5.5.

(c) Show that (X0X)�X0½I� X(X0X)�X0� ¼ O, and then invoke Corollary 1
to Theorem 5.6a.

12.17 Since g ¼ Ub and Xb ¼ Zg, we have l0b ¼ a0Xb ¼ a0Zg ¼ b0g. Thus
dl0b ¼ cb0g ¼ b0ĝ. Similarly, with d ¼ Vb and Xb ¼Wd, we have

l0b ¼ a0Xb ¼ a0Wd ¼ c0d and dl0b ¼ cc0d ¼ c0d̂.
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12.18

XU0 ¼

2 1
2 1
1 2
1 2

0
BB@

1
CCA, UU0 ¼ 2 1

1 2

� �
:

12.19 Z ¼

1 0
1 0
1 �1
1 �1

0
BB@

1
CCA, U ¼ 1 1 0

0 1 �1

� �
:

12.20 The normal equations are given by

4m̂ þ 2t̂1 þ 2t̂2 ¼ y::
2m̂ þ 2t̂1 ¼ y1:

2m̂ þ 2t̂2 ¼ y2:

Substituting b̂ in (12.39) into the first of these, for example, gives

4�y:: þ 2(�y1: � �y::)þ 2(�y2: � �y::) ¼ y::

4y::
4
þ 2

y1:

2
� y::

4

� 

þ 2

y2:

2
� y::

4

� 

¼ y::

y:: þ y1: þ y2: � y:: ¼ y::
y:: ¼ y::

12.21 a1 � a2 ¼ 0 gives a1 ¼ a2. Substituting this into a1 þ a2 � 2a3 ¼ 0 gives
2a2 � 2a3 ¼ 0 or a2 ¼ a3.

12.22 Express SSH as a quadratic form in y by substituting b̂ ¼ (X0X)�X0y. Show
that SSH is independent of SSE in (12.21) by use of Corollary 1 to Theorem
5.6b. Use either C(X0X)�X0X ¼ C or X0X(X0X)�X0 ¼ X0.

12.23 The first normal equation, for example, is 6m̂ þ 2â1 þ 2â2 þ 2â3 þ 3b̂1þ
3b̂2 ¼ y::, which simplifies to 6m̂ ¼ y:: when we use the two side
conditions.
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12.24

X2 ¼

1 1 0
1 1 0
1 1 0
1 0 1
1 0 1
1 0 1

0
BBBBBB@

1
CCCCCCA

, X02X2 ¼
6 3 3
3 3 0
3 0 3

0
@

1
A, b2 ¼

m

b1
b2

0
@

1
A,

X02y ¼
y::
y:1
y:2

0
@

1
A:

Then X02X2b̂2 ¼ X02y gives the result in (12.51).

12.25 (a)

X ¼

1 1 0 0

1 1 0 0

1 1 0 0

1 0 1 0

1 0 1 0

1 0 1 0

1 0 0 1

1 0 0 1

1 0 0 1

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

, X0X ¼

9 3 3 3

3 3 0 0

3 0 3 0

3 0 0 3

0
BBB@

1
CCCA,

X0y ¼

y::
y1:

y2:

y3:

0
BBB@

1
CCCA:

The normal equations are given by

9 3 3 3

3 3 0 0

3 0 3 0

3 0 3 0

0
BBB@

1
CCCA

m̂

t̂1

t̂2

t̂3

0
BBB@

1
CCCA ¼

y::

y1:

y2:

y3:

0
BBB@

1
CCCA, or

9m̂ þ 3t̂1 þ 3t̂2 þ 3t̂3 ¼ y::
3m̂ þ 3t̂i ¼ yi: i ¼ 1, 2, 3
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(b) Three possible sets of linearly independent estimable functions are

{mþ t1, mþ t2, mþ t3}

{3mþ t1 þ t2 þ t3, t1 � t2, t2 � t3}

{mþ t1, t1 � t2, t2 � t3}:

(c) The side condition t̂1 þ t̂2 þ t̂3 ¼ 0 gives

m̂ ¼ y::
9
¼ �y::

t̂i ¼ 1
3 yi: � 1

9 y:: ¼ �yi: � �y:: i ¼ 1, 2, 3:

(d) The hypothesis H0:t1 ¼ t2 ¼ t3 is equivalent to H0:t1 � t2 ¼ 0 and
t1 � t3 ¼ 0; hence H0 is testable:

SS(m, t) ¼ b̂
0
X0y ¼ m̂y:: þ

X3

i¼1

t̂iyi:

¼ �y::y:: þ
X3

i¼1

yi:

3
� y::

9

� 

yi:

¼ y2
::

9
þ
X3

i¼1

y2
i:

3
� y2

::

9
¼
X3

i¼1

y2
i:

3
:

The reduced model is yij þ mþ 1ij, the X2 matrix reduces to a single
column of 1’s, and the normal equations become

9m̂ ¼ y::

m̂ ¼ y::
9
¼ �y:::

Hence

SS(m) ¼ b̂
0
2X02y ¼ �y::y:: ¼

y2
::

9
:

(e)
Analysis of Variance for H0 : t15t25t3

Sum of Squares df F Statistic

SS(tjm) ¼
P3

i¼1
y2

i:

3
� y2

::

9

2 SS(tjm)=2
SSE=6

SSE ¼
P

ij y2
ij �

P
i

y2
i:

3

6

SST ¼
P

ij y2
ij �

y2
::

9

8
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12.26 (a) The normal equations X0Xb̂ ¼X0y are given by

12 6 6 6 6 3 3 3 3

6 6 0 3 3 3 3 0 0

6 0 6 3 3 0 0 3 3

6 3 3 6 0 3 0 3 0

6 3 3 0 6 0 3 0 3

3 3 0 3 0 3 0 0 0

3 0 3 3 0 0 0 3 0

3 0 3 0 3 0 0 0 3

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

, or

m̂

â1

â2

b̂1

b̂2

ĝ11

ĝ12

ĝ21

ĝ22

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

¼

y...

y1::

y2::

y:1:
y:2:
y11:

y12:

y21:

y22:

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

, or

12m̂ þ 6
X2

i¼1

âi þ 6
X2

j¼1

b̂j þ 3
X

ij

ĝij ¼ y::

6m̂ þ 6âi þ 3
X2

j¼1

b̂j þ 3
X2

j¼1

ĝij ¼ yi:: i ¼ 1, 2

6m̂ þ 3
X2

i¼1

âi þ 6b̂j þ 3
X2

i¼2

ĝij ¼ y:j: j ¼ 1, 2

3m̂ þ 3âi þ 3b̂j þ 3ĝij ¼ yij: i ¼ 1, 2 j ¼ 1, 2

(b) The rank of X0X is 4. From the last four rows, which are linearly indepen-
dent, we obtain

mþ a1 þ b1 þ g11

mþ a1 þ b2 þ g12

mþ a2 þ b1 þ g21

mþ a2 þ b2 þ g22

or

mþ a1 þ b1 þ g11

a1 � a2 þ g11 � g21 (or a1 � a2 þ g12 � g22)

b1 � b2 þ g11 � g12 (or b1 � b2 þ g21 � g22)

g11 � g12 � g21 þ g22:
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12.27 (a) The normal equations are

8 4 4 4 4 4 4
4 4 0 2 2 2 2
4 0 4 2 2 2 2
4 2 2 4 0 2 2
4 2 2 0 4 2 2
4 2 2 2 2 4 0
4 2 2 2 2 0 4

0
BBBBBBBB@

1
CCCCCCCCA

m̂

â1

â2

b̂1

b̂2
ĝ1
ĝ2

0
BBBBBBBB@

1
CCCCCCCCA
¼

y...

y1::

y2::

y:1:
y:2:
y::1
y::2

0
BBBBBBBB@

1
CCCCCCCCA

(b)
mþ a1 þ b1 þ g1

a1 � a2

b1 � b2

g1 � g2

(c) Using the side conditions â1 þ â2 ¼ 0, b̂1 þ b̂2 ¼ 0, ĝ1 þ ĝ2 ¼ 0, we
obtain m̂ ¼ �y..., âi ¼ �yi:: � �y..., b̂j ¼ �y:j: � �y..., ĝk ¼ �y::k � �y....

(d)

SS(m,a,b, g) ¼ b̂
0
X0y ¼ �y...y... þ

X
i

(�yi:: � �y...)yi::

þ
X

j

(�y:j: � �y...)y:j: þ
X

k

(�y::k � �y...)y::k

¼ y2
...

8
þ
X

i

y2
i::

4
� y2

...

8
þ
X

j

y2
:j:

4
� y2

...

8
þ
X

k

y2
::k

4
� y2

...

8

¼ SS(m)þ SS(a)þ SS(b)þ SS(g):

Using this same notation, the reduced normal equations under
H0 :a1 = a2 become SS(m,b,g)þ SS(m)þ SS(b)þ SS(g).

(e)
Analysis of Variance for H0: t15t25t3

Source df Sum of Squares F

SS(ajm,b, g) 1 SS(m,a,b, g)� SS(m,b, g) ¼ SS(a) SS(ajm,b, g)
SSE=4

Error 4 SSE ¼
P

ijk y2
ijk � SSE(m,a,b, g)
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12.28

X0X ¼

8 4 4 4 4 2 2 2 2
4 4 0 2 2 2 2 0 0
4 0 4 2 2 0 0 2 2
4 0 2 4 0 2 0 2 0
4 2 2 0 4 0 2 0 2
2 2 0 2 0 2 0 0 0
2 2 0 0 2 0 2 0 0
2 0 2 2 0 0 0 2 0
2 0 2 0 2 0 0 0 2

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

:

Chapter 13

13.1

X0X ¼

kj0j j0j j0j . . . j0j

j0j j0j 0 . . . 0

j0j 0 j0j . . . 0

..

. ..
. ..

. ..
.

j0j 0 0 . . . j0j

0
BBBBBBB@

1
CCCCCCCA
¼

kn n n . . . n

n n 0 . . . 0

n 0 n . . . 0

..

. ..
. ..

. ..
.

n 0 0 . . . n

0
BBBBBBB@

1
CCCCCCCA

,

X0y ¼

P
i j0yi

j0y1

j0y2

..

.

j0yk

0
BBBBBBB@

1
CCCCCCCA
¼

P
i yi:

y1:

y2:

..

.

yk:

0
BBBBBBB@

1
CCCCCCCA
¼

y::

y1:

y2:

..

.

yk:

0
BBBBBBB@

1
CCCCCCCA
:

13.2

b̂¼ (X0X)�X0y¼

0 0 . . . 0
0 1=n . . . 0

..

. ..
. ..

.

0 0 . . . 1=n

0
BBB@

1
CCCA

y::
y1:

..

.

yk:

0
BBB@

1
CCCA¼

0
y1:=n

..

.

yk:=n

0
BBB@

1
CCCA¼

0
�y1:

..

.

�yk:

0
BBB@

1
CCCA:

13.3

X
ij

(yij � �yi:)
2 ¼

Xk

i¼1

Xn

j¼1

(y2
ij � 2yij�yi: þ �y2

i:)

¼
X

ij

y2
ij � 2

X
i

yi:

n

X
j

yij

 !
þ n

X
i

y2
i:

n2

¼
X

ij

y2
ij � 2

X
i

y2
i:

n
þ
X

i

y2
i:

n
:
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13.4

X(X0X)�X0 ¼

j j 0 . . . 0

j 0 j . . . 0

..

. ..
. ..

. ..
.

j 0 0 . . . j

0
BBBBB@

1
CCCCCA

0 0 0 . . . 0

0 1=n 0 . . . 0

0 0 1=n . . . 0

..

. ..
. ..

. ..
.

0 0 0 . . . 1=n

0
BBBBBBB@

1
CCCCCCCA

�

j0 j0 j0 . . . j0

j0 00 00 . . . 00

00 j0 00 . . . 00

..

. ..
. ..

. ..
.

00 00 00 . . . j0

0
BBBBBBB@

1
CCCCCCCA

¼

0 1
n j 0 . . . 0

0 0 1
n j . . . 0

..

. ..
. ..

. ..
.

0 0 0 ..
.

1
n j

0
BBBBBB@

1
CCCCCCA

j0 j0 j0 . . . j0

j0 00 00 . . . 00

00 j0 00 . . . 00

..

. ..
. ..

. ..
.

00 00 00 . . . j0

0
BBBBBBB@

1
CCCCCCCA

¼ 1
n

jj0 O . . . O

O jj0 . . . O

..

. ..
. ..

.

O O . . . jj0

0
BBBBB@

1
CCCCCA

,

y0½I� X(X0X)�X0�y ¼ y0y� y0X(X0X)�X0y

¼
X

ij

y2
ij �

1
n

(y01, y02, . . . , y0k)

jj0 O . . . O

O jj0 . . . O

..

. ..
. ..

.

O O . . . jj0

0
BBBBB@

1
CCCCCA

y1

y2

..

.

yk

0
BBBBB@

1
CCCCCA

¼
X

ij

y2
ij �

1
n

Xk

i¼1

y0ijj
0yi ¼

X
ij

y2
ij �

1
n

X
i

y2
i:

13.5 (a) With a�i ¼ mi � �m: in (13.5), H0: a�i ¼ a�2 ¼ � � � ¼ a�k in (13.18)
becomes H0 :m1 � �m: ¼ m2 � �m: ¼ � � � ¼ mk � �m: or H0 :m1 ¼
m2 ¼ � � �mk, which is equivalent to (13.7).

(b) Denote by a� the common value of a�i in H0 :a�1 ¼ a�2 ¼ � � � ¼ a�k in

(13.18). Then
P

i a
�
i ¼ 0 give a� ¼ 0, since

Pk
i¼1 a

� ¼ a�i ¼ 0, i ¼
1, 2, . . . , k. Thus, a�i ¼ 0, i ¼ 1, 2, . . . , k:
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13.6
n
Xk

i¼1

(�yi: � �y::)
2 ¼ n

X
i

(y2
i: � 2�yi:�y:: þ �y2

::)

¼ n
X

i

�y2
i: � 2n�y::

X
i

�yi: þ kn�y2
::

¼ n
X

i

yi:

n

� 
2
�2n

y::
kn

X
i

yi:

n
þ kn

y::
kn

� 
2

¼ 1
n

X
i

y2
i: � 2

y::
k

y::
n
þ y2

::

kn
:

13.7 See the first part of the answer to Problem 13.3.

13.9 Using X in (13.6), we have

C(X0X)�X0 ¼
0 1 �1 0 0

0 1 0 �1 0

0 1 0 0 �1

0
B@

1
CA

0 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0
BBBBBB@

1
CCCCCCA

�
jn jn 0 0 0

jn 0 jn 0 0

jn 0 0 0 jn

0
B@

1
CA
0

¼
0 1 �1 0 0

0 1 0 �1 0

0 1 0 0 �1

0
B@

1
CA

j0n j0n j0n j0n
j0n 00 00 00

00 j0n 00 00

00 00 j0n 00

00 00 00 j0n

0
BBBBBB@

1
CCCCCCA

¼
j0n �j0n 00 00

j0n 00 �j0n 00

jn 0 00 �j0n

0
B@

1
CA:
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13.10 By (2.37), we obtain

Aj3 ¼

jn jn jn

�jn 0 0

0 �jn 0

0 0 �jn

0
BBB@

1
CCCA

1

1

1

0
B@

1
CA

¼

jn

�jn

0

0

0
BBB@

1
CCCAþ

jn

0

�jn

0

0
BBB@

1
CCCAþ

jn

0

0

�jn

0
BBB@

1
CCCA ¼

3jn

�jn

�jn

�jn

0
BBB@

1
CCCA,

AJ3A0 ¼ Aj3j03A0 ¼

3jn

�j0n
�j0n
�j0n

0
BBB@

1
CCCA(3jn, �jn,�jn, �jn)

¼

9Jn �3Jn �3Jn �3Jn

�3Jn Jn Jn Jn

�3Jn Jn Jn Jn

�3Jn Jn Jn Jn

0
BBB@

1
CCCA:

13.11 (a)

E(1ij)
2 ¼ E(1ij � 0)2 ¼ E½1ij � E(1ij)�2 ¼ var(1ij) ¼ s2,

E(1ij1i0j0 ) ¼ E½1ij � 0)(1i0j0 � 0)�
¼ E½1ij � E(1ij)�½1i0j0 � E(1i0j0 )�
¼ cov(1ij, 1i0j0 ) ¼ 0:

(b)

E(y2
::) ¼ E

Xn

ij

yij

 !2

¼ E
Xn

i¼1

Xn

j¼1

(m� þ a�i þ 1ij)

" #2

¼ E knm� þ n
X

i

a�i þ
X

ij

1ij

" #2

¼ E k2n2m�2 þ
X

ij

1ij

 !2

þ2knm�
X

ij

1ij

2
4

3
5

¼ E k2n2m�2 þ
X

ij

12
ij þ

X
ij=lm

1ij1lm þ 2knm�
X

ij

1ij

 !

¼ k2n2m�2 þ kns2,
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E
Xk

i¼1

y2
i :

 !
¼ E

Xk

i¼1

Xn

j¼1

yij

 !2
2
4

3
5

¼ E
X

i

X
j

(m� þ a�i þ 1ij)

" #2
8<
:

9=
;

¼ E
X

i

nm� þ na�i þ
X

j

1ij

 !2
2
4

3
5

¼ E
X

i

n2m�2 þ n2a�2i þ
X

j

1ij

 !2

þ2n2m�a�i

2
4

8<
:

þ 2nm�
X

j

1ij þ 2n
X

j

a�i 1ij

#)

¼ E kn2m�2 þ n2
X

i

a�2i þ
X

i

X
j

12
ij þ

X
j=1

1ij1il

 !"

þ 2n2m�
X

i

a�i þ 2nm�
X

ij

1ij þ 2n
X

i

X
j

a�i 1ij

#

¼ kn2m�2 þ n2
X

i

a�2i þ kns2,

E½SS(ajm)� ¼ E
1
n

X
i

y2
i: �

1
kn

y2
::

 !

¼ 1
n

kn2m�2 þ n2
X

i

a�2i þ kns2

 !
� 1

kn
(k2n2m�2 þ kns2)

¼ knm�2 þ n
X

i

a�2i þ ks2 � knm�2 � s2

¼ (k � 1)s2 þ n
X

i

a�2i :

(c)

E
Xk

i¼1

Xn

j¼1

y2
ij

 !
¼ E

X
ij

(m� þ a�i þ 1ij)
2

" #

¼ E
X

ij

(m�2 þ a�2i þ 12
ij þ 2m�a�i þ 2m�1ij þ 2a�i 1ij)

" #
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¼ E knm�2 þ n
X

i

a�2i þ
X

ij

12
ij þ 2nm�

X
i

a�i

"

þ2m�
X

ij

1ij þ 2
X

ij

a�i 1ij

#

¼ knm�2 þ n
X

i

a�2i þ kns2,

E(SSE) ¼ E
X

ij

y2
ij �

1
n

X
i

y2
i:

 !

¼ knm�2 þ n
X

i

a�2i þ kns2 � knm�2 � n
X

i

a�2i � ks2

¼ k(n� 1)s2:

13.13 By (2.37),

C0j3¼

0 0 0
1 1 1
�1 0 0

0 �1 0
0 0 �1

0
BBBB@

1
CCCCA

1
1
1

0
@

1
A¼

0
1
�1

0
0

0
BBBB@

1
CCCCA
þ

0
1
0
�1

0

0
BBBB@

1
CCCCA
þ

0
1
0
0
�1

0
BBBB@

1
CCCCA
þ

0
3
�1
�1
�1

0
BBBB@

1
CCCCA
:

Thus

C0J3¼C0( j3, j3, j3)¼ (C0j3, C0j3, C0j3)¼

0 0 0

3 3 3

�1 �1 �1

�1 �1 �1

�1 �1 �1

0
BBBBBB@

1
CCCCCCA

,

C0J3C¼

0 0 0

3 3 3

�1 �1 �1

�1 �1 �1

�1 �1 �1

0
BBBBBB@

1
CCCCCCA

0 1 �1 0 0

0 1 0 �1 0

0 1 0 0 �1

0
B@

1
CA

¼

0 0 0 0 0

0 9 �3 �3 �3

0 �3 1 1 1

0 �3 1 1 1

0 �3 1 1 1

0
BBBBBB@

1
CCCCCCA
:

610 ANSWERS AND HINTS TO THE PROBLEMS



13.15 Using (X0X)2 in (13.11) and b̂ in (13.12), we obtain

c0b̂ ¼ (0, c1, c2, . . . , ck)

0

�y1:

�y2:

..

.

�yk:

0
BBBBBBB@

1
CCCCCCCA
¼
Xk

i¼1

ci�y1:,

c0(X0X)�c ¼ (0, c1, c2, . . . , ck)

0 0 . . . 0

0 1=n . . . 0

..

. ..
. ..

.

0 0 . . . 1=n

0
BBBB@

1
CCCCA

0

c1

c2

..

.

ck

0
BBBBBB@

1
CCCCCCA
¼
Xk

i¼1

c2
i

n
:

13.16 Using b̂ ¼ (X0X)�X0y, the sum of squares for the contrast c0ib̂ can be
expressed as

(c0ib̂)2

c0i(X
0X)�ci

¼ b̂
0
cic0ib̂

c0i(X
0X)�ci

¼ y0X(X0X)�cic0i(X
0X)�X0y

c0i(X
0X)�ci

,

with a similar expression for the sum of squares for c0jb̂. By Corollary 1 to
Theorem 5.6b, these two quadratic forms are independent if

X(X0X)�cic
0
i(X
0X)�X0X(X0X)�cjc

0
j(X
0X)�X0 ¼ O:

This holds if c0i(X
0X)�X0X(X0X)�cj ¼ 0, which reduces to c0i(X

0X)�cj ¼ 0,
since cib is an estimable function and therefore by Theorem 11.2b(iii), we
have c0i(X

0X)�X0X ¼ c0i. Now by Theorem 12.3c, we obtain

cov(c0ib̂, c0jb̂) ¼ s2c0i(X
0X)�cj:

13.17 (Ai)
0 ¼ (viv

0
i)
0 ¼ (v0i)

0v0i ¼ viv
0
i ¼ Ai:

(Ai)
2 ¼ viv

0
iviv

0
i ¼ viv

0
i ¼ Ai since v0ivi ¼ 1:

By Theorem 2.4(iii), rank(Ai) ¼ rank(vivi
0) ¼ rank(vi) ¼ 1.

AiAj ¼ vi v0ivj v0j ¼ O because v0ivj ¼ 0 by Theorem 2.12c(ii).
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13.18 (a)
J

abn

� �2

¼ ( jj0)2

(abn)2 ¼
jj0 jj0

(abn)2 ¼
j(abn) j0

(abn)2 ¼
J

abn
:

(b)
J

abn

� �
x1 ¼ l1x1 ¼ x1, since l1 ¼ 1

jj0x1

abn
¼ x1:

Clearly x1 ¼ j is a solution, since j0j ¼ abn.

13.19 v00v0 ¼
j04n j4n

4n
¼ 4n

4n
¼ 1,

v00v1 ¼
1ffiffiffiffiffi

4n
p ffiffiffiffiffi

2n
p ( j0n, j0n, j0n, j0n)

jn

� jn

0
0

0
BB@

1
CCA ¼ 0:

13.20 j0x2:01 ¼ j0x2 �
j0x2

j0 j
j0 j� x01:0x2

x01:0x1:0
j0x1:0

¼ j0x2 � j0x2 � 0 ½by (13:66)�,

x01:0x2:01 ¼ x01:0x2 �
j0x2

j0 j
x01:0 j� x01:0x2

x01:0x1:0
x01:0x1:0

¼ x01:0x2 � 0� x01:0x2 ½by (13:66)�:

13.21 By (7.97), we have x3:012 ¼ x3 � Z1(Z01Z1)�1Z01x3, where Z1 ¼
( j, x1:0, x2:01). Thus

x3:012 ¼ x3 � ( j, x1:0, x2:01)

j0 j 0 0

0 x01:0x1:0 0

0 0 x02:01x2:01

0
B@

1
CA
�1

j0x3

x01:0x3

x02:01x3

0
B@

1
CA

¼ x3 �
j0x3

j0 j
j� x01:0x3

x01:0x1:0
x1:0 �

x02:01x3

x02:01x2:01
x2:01:

13.22 Using (13.66) and (13.69), we have

j0x3:012 ¼ j0x3 �
j0x3

j0 j
j0 j� x01:0x3

x01:0x1:0
j0x1:0 �

x02:01x3

x02:01x2:01
j0x2:01

¼ j0x3 � j0x3 � 0� 0,

x01:0x3:012 ¼ x01:0x3 �
j0x3

j0 j
x01:0 j� x01:0x3

x01:0x1:0
x01:0x1:0 �

x02:01x3

x02:01x2:01
x01:0x2:01:
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13.23 Show that the coefficients in (13.70) are given by

j0x3

j0 j
¼ 100n

4n
¼ 25,

x01:0x3

x01:0x1:0
¼ 208

20
¼ 10:4,

x02:01x3

x02:01x2:01
¼ 30

4
¼ 7:5:

Then by (13.70).

z3 ¼ x3 � 25 j� 10:4x1:0 � 7:5x2:01

¼ (�:3, . . . ,�:3, :9, . . . , :9,�:9, . . . ,�:9, :3, . . . , :3)0,

which we divide by .3 to obtain

z3 ¼ (�1, . . .�1, 3, . . . 3,�3, . . . ,�3, 1, . . . , 1)0:

13.24 z0 ¼ x0 ¼ j,

z1 ¼ x1:0 ¼ 2(x1 � 2:5j),

z2 ¼ x2:01 ¼ x2 � 7:5j� 2:5x1:0 ¼ x2 � 7:5j� 2:5½2(x1 � 2:5j)�
¼ x2 þ 5j� 5x1,

z3 ¼
x3 � 25j� 10:4x1:0 � 7:5x2:01

:3

¼ x3 � 25j� 10:4(2x1 � 5j)� 7:5(x2 þ 5j� 5x1)
:3

¼ x3

:3
� 35jþ 16:7

:3

� �
x1 � 25x2:

Then Xb ¼ Zu can be written as

b0jþ b1x1 þ b2x2 þ b3x3 ¼ u0jþ u1z1 þ u2z2 þ u3z3

¼ u0jþ u1(2x1 � 5j)þ u2(x2 þ 5j� 5x1)

þ u3
x3

:3

� 

� 35jþ 16:7

:3

� �
x1 � 25x2

� �

¼ (u0 � 5u1 þ 5u2 � 35u3)j

þ 2u1 � 5u2 þ
16:7
:3

� �
u3

� �
x1

þ (u2 � 25u3)x2 þ
u3

:3

� �
x3:
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Thus

b0 ¼ u� 5u1 þ 5u2 � 35u3

b1 ¼ 2u1 � 5u2 þ
16:7
:3

� �
u3

b2 ¼ u2 � 25u3

b3 ¼
u3

:3
:

13.25 Z0y ¼ ( j, z1, z2, z3)0y ¼

j0

z01
z02
z03

0
BBB@

1
CCCAy ¼

j0y

z01y

z02y

z03y

0
BBB@

1
CCCA,

û ¼ (Z0Z)�1Z0y ¼

j0j 0 0 0

0 z01z1 0 0

0 0 z02z2 0

0 0 0 z03z3

0
BBB@

1
CCCA

�1 j0y

z01y

z02y

z03y

0
BBB@

1
CCCA

¼

j0y=j0j

z01y=z01z1

z02y=z02z2

z03y=z03z3

0
BBB@

1
CCCA:

13.26 Since the columns of Z are linear transformations of the columns of X [see
(13.65), (13.68), and (13.70)], we can write Z ¼ XH and Z1 ¼ X1H1, where
H and H1 are nonsingular. Thus

b̂ 0X0y� b̂�0X01y ¼ y0X(X0X)�1X0y� y0X1(X01X1)�1X01y

¼ y0ZH�1½(ZH�1)0(ZH�1)��1(ZH�1)0y

� y0Z1H�1
1 ½(Z1H�1

1 )0(Z1H�1
1 )��1(Z1H�1

1 )0y:

Show that this reduces to (z0ky)2=z0kzk.

13.27 Linear: �3(1)� (2)þ 2þ 3(1) ¼ 0

Quadratic: 1� 2� 2þ 1 ¼ �2

Cubic: � 1þ 3(2)� 3(2)þ 1 ¼ 0
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13.28 The orthogonal contrasts that can be used in H0:
Pk

i¼1 cimi ¼ 0 in part
(b) are

2m1 þ 2m2 þ 2m3 � 3m4 � 3m5 ¼ 0

2m1 � m2 � m3 ¼ 0

m2 � m3 ¼ 0

m4 � m5 ¼ 0:

The results for parts (a) and (b) are given in the following ANOVA table.

Source df
Sum of
Squares

Mean
Square F p Value

Breed 4 4,276.1327 1069.0332 8.47 .000033
Contrasts

A, B, C vs.
D, E

1 211.7289 211.7289 1.68 .202

A, B, vs. C 1 370.6669 370.6669 2.94 .0933
A vs. B 1 708.0500 708.0500 5.61 .0221
D vs. E 1 2,885.4545 2885.4545 22.86 .0000182

Error 46 5,806.4556 126.2273
Total 50 10,082.5882

13.29 The orthogonal polynomial contrast coefficients are the rows of the follow-
ing matrix see Table (13.5):

�2 �1 0 1 2
2 �1 �2 �1 2
�1 2 0 �2 1

1 �4 6 �4 1

0
BB@

1
CCA:

The results for parts (a) and (b) are given in the following ANOVA table.

Source df
Sum of
Squares

Mean
Square F p Value

Glucose 4 154.9210 38.7303 29.77 7.902�10211

Contrasts
Linear 1 140.1587 140.1587 107.74 3.168�10212

Quadratic 1 0.0065 0.0065 0.006 .944
Cubic 1 14.7319 14.7319 11.32 .002
Quartic 1 0.0241 0.0241 0.021 .893

Error 35 45.5322 1.3009
Total 39 200.4532
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The means for the five glucose concentrations are 2.66, 2.69, 4.94, 7.09, and
7.10. From the Fs we see that there is a large linear effect and a small cubic
effect.

13.30 The contrast coefficients are given in the following matrix:

2 �1 �1
0 1 �1

� �
:

The results for parts (a) and (b) are given in the following ANOVA table.

Source df
Sum of
Squares

Mean
Square F p Value

Stimulus 2 561.5714 280.7857 67.81 2.018�10213

Contrasts
1 vs. 2, 3 1 525.0000 252.0000 126.78 8.005�10214

2 vs. 3 1 36.5714 36.5714 8.83 .00505
Error 39 161.5000 4.1410

Total 41 723.0714

13.31 For contrast coefficients comparing the two types of raw materials, we can
use those in the vector (5, 5, 5, 5,24,24,24,24,24). The results for parts
(a) and (b) are in the following ANOVA table.

Source df
Sum of
Squares

Mean
Square F p Value

Cable 8 1924.2963 240.5370 9.07 2.831�1029

Contrast 1 1543.6463 1543.6463 58.18 1.493�10211

Error 99 2626.9167 26.5345
Total 107 4551.2130

13.32 Contrast coefficients are given in the following matrix:

1 1 �1 �1
1 �1 0 0
0 0 1 �1

0
@

1
A:

The results for parts (a) and (b) are given in the following ANOVA table.
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Source df
Sum of
Squares

Mean
Square F p Value

Treatments 3 1045.4583 348.8461 6.03 .0043
Contrasts

1, 2 vs. 3,
4

1 7.0417 7.0417 0.12 .731

1 vs. 2 1 30.0833 30.0833 0.52 .479
3 vs. 4 1 1008.3333 1008.3333 17.44 .0005

Error 20 1156.5000 57.8250
Total 23 2201.9583

13.33 Contrast coefficients are given in the following matrix:

1 1 1 �3
1 1 �2 0
1 �1 0 0

0
@

1
A:

The results for parts (a) and (b) are given in the following ANOVA table.

Source df Sum of
Squares

Mean
Square

F p
Value

Treatments 3 3462.500 1154.167 6.71 .00103
Contrasts

1, 2, 3 vs.
4

1 1968.300 1968.300 11.44 .00175

1, 2 vs. 3 1 66.150 66.150 .385 .539
1 vs. 2 1 1428.050 1428.050 8.30 .0066

Error 36 6193.400 172.039
Total 39 9655.900

Chapter 14

14.1 u1 ¼ m11 � m21 ¼ mþ a1 þ b1 þ g11 � (mþ a2 þ b1 þ g21)

u5 ¼ m11 � m12 � m31 þ m32

14.2 By Theorem 12.2b, all estimable functions can be obtained from mij ¼
mþ ai þ bj þ gij. To obtain an estimable contrast of the form

P
i ciai,

ANSWERS AND HINTS TO THE PROBLEMS 617



where
P

i ci ¼ 0, we consider

Xa

i¼1

cimij ¼
Xa

i¼1

cimi þ
X

i

ciai þ
X

i

cibj þ
X

i

cigij

¼
X

i

ciai þ
X

i

cigij:

Thus an estimable function of the a’s also involves the g’s.

14.3 1
3 (u3 þ u03 þ u003) ¼ 1

3 (b1 � b2 þ g11 � g12 þ b1 � b2 þ g21 � g22

þ b1 � b2 þ g31 � g32)

¼ 1
3 (3b1 � 3b2 þ g11 þ g21 þ g31 � g12 � g22 � g32):

14.4 (a)
Xa

i¼1

a�i ¼
X

i

(�mi: � �m::) ¼
X

i

�mi: � a�m::

¼
X

i

mi:

b
� am::

ab
¼ m::

b
� m::

b

(c) Xa

i¼1

g�ij ¼
X

i

(mij � �mi: � �m:j þ �m::)

¼
X

i

mij �
X

i

�mi: � a�m:j þ a�m::

¼ m:j �
X

i

mi:

b
�

am:j
a
þ am::

ab

¼ m:j �
m::
b
� m:j þ

m::
b
:

14.5 (a) Xa

i¼1

a�i ¼
X

i

(ai � �a: þ �gi: � �g::)

¼
X

i

(ai � �a:)þ
X

i

(�gi: � �g::)

¼ a: � a
a:

a
þ
X

i

gi:

b
� g::

ab

� 


¼ a: � a: þ
g::
b
� a

g::
ab
:

(c)
Xa

i¼1

g�ij ¼
X

i

(gij � �gi: � �g:j þ �g::) ¼
X

i

gij �
gi:

b
�
g:j

a
þ g::

ab

� 


¼ g:j �
g::
b
� a

g:j

a
þ a

g::
ab
:
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14.6 (b) g�ij ¼ mij � �mi: � �m:j þ �m::

¼ mij �
1
b

Xb

j¼1

mij �
1
a

Xa

i¼1

mij þ
1
ab

Xa

i¼1

Xb

j¼1

mij

¼ mþ ai þ bj þ gij �
1
b

Xb

j¼1

(mþ ai þ bj þ gij)

� 1
a

Xa

i¼1

(mþ ai þ bj þ gij)þ
1
ab

X
ij

(mþ ai þ bj þ gij)

¼ mþ ai þ bj þ gij � m� ai �
1
b

X
j

bj �
1
b

X
j

gij

� m� 1
a

X
i

ai � bj �
1
a

X
i

gij þ mþ 1
a

X
i

ai

þ 1
b

X
j

bj þ
1
ab

X
ij

gij

¼ gij � �gi: � �g:j þ �g:::

14.7 E(âi) ¼ E(�yi:: � �y...) ¼ E
yi::

bn

� 

� E

y...

abn

� 


¼ E

P
jk yijk

bn

� �
� E

P
ijk yijk

abn

� �

¼
P

jk E(yijk)

bn
�
P

ijk E(yijk)

abn

¼
P

jk (m� þ a�i þ b�j þ g�ij)

bn
�
P

ijk (m� þ a�i þ b�j þ g�ij)

abn

¼
bnm� þ bna�i þ n

P
j b
�
j þ n

P
j g
�
ij

bn

¼
abnm� þ bn

P
i a
�
i þ an

P
j b
�
j þ n

P
ij g
�
ij

abn

¼ m� þ a�i � m�:

14.8 (a) For b ¼ 2 and n ¼ 2, we have

�y11: þ �y12: ¼
1
2

X
k

y11k þ
1
2

X
k

y12k ¼
1
2

X
jk

y1jk

¼ 1
2

4
X

jk

y1jk

4

 !
¼ 2�y1::
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14.9 Write X0X as X0X ¼ A11 A12

A21 2I

� �
. Then

X0X(X0X)� ¼
A11 A12

A21 2I

� �
O O

O 1
2 I

� �
¼ O 1

2 A12

O I

� �
,

X0X(X0X)�X0X ¼
1
2 A12A21 A12

A21 2I

� �
:

Show that 1
2 A12A21 ¼ A11; that is, show that

1
2

2 2 2 2 2 2
2 2 0 0 0 0
0 0 2 2 0 0
0 0 0 0 2 2
2 0 2 0 2 0
0 2 0 2 0 2

0
BBBBBB@

1
CCCCCCA

2 2 0 0 2 0
2 2 0 0 0 2
2 0 2 0 2 0
2 0 2 0 0 2
2 0 0 2 2 0
2 0 0 2 0 2

0
BBBBBB@

1
CCCCCCA

¼

12 4 4 4 6 6
4 4 0 0 2 2
4 0 4 0 2 2
4 0 0 4 2 2
6 2 2 2 6 0
6 2 2 2 0 6

0
BBBBBB@

1
CCCCCCA
:

14.10 X
ijk

( yijk � �yij:)
2 ¼

X
ijk

( y2
ijk � 2yijk�yij: þ �y2

ij:)

¼
X

ijk

y2
ijk � 2

X
ij

�yij:

X
k

yijk þ n
X

ij

�y2
ij:

¼
X

ijk

y2
ijk � 2

X
ij

�yij:n�yij: þ n
X

ij

�y2
ij::

14.11 From m21 � m22 ¼ m31 � m32, we have

0 ¼ m21 � m22 � m31 þ m32

¼ mþ a2 þ b1 þ g21 � (mþ a2 þ b2 þ g22)

� (mþ a3 þ b1 þ g31)þ mþ a3 þ b2 þ g32

¼ g21 � g22 � g31 þ g32:

620 ANSWERS AND HINTS TO THE PROBLEMS



14.12 X
i

(�yi:: � �y...)yi:: ¼
X

i

yi::

bn
� y...

abn

� 

yi:: ¼

X
i

y2
i::

bn
� y...

abn

X
i

yi::

¼
X

i

y2
i::

bn
� y2

...

abn
,

X
ij

(�yij: � �yi:: � �y:j: þ �y...)yij: ¼
X

ij

yij:

n
� yi::

bn
� y:j:

an
þ y...

abn

� 

yij:

¼
X

ij

y2
ij:

n
�
X

i

yi::

X
j

yij:

bn

 !

�
X

j

y:j:
X

i

yij:

an

 !
þ y...

X
ij

yij:

abn

¼
X

ij

y2
ij:

n
�
X

i

y2
i::

bn
�
X

j

y2
:j:

an
þ y2

...

abn
:

14.13 (a) Using b̂ from (14.24) and X0y from (14.19) (both extended to general a
and b), we obtain

b̂
0
X0y ¼

X
ij

�yij:yij: ¼
X

ij

yij:

n

� 

yij: ¼

X
ij

y2
ij:

n
:

(b) n
X

ij

�y2
ij: ¼ n

X
ij

yij:

n

� 
2
¼ n

X
ij

y2
ij:

n2

14.14 In the following array, we see that the gij
�’s in the margins can all be obtained

from the remaining (a21)(b21) gij
�’s by using side conditions:

g�11 g�12 . . . g�1, b�1 g�1b
g�21 g�22 . . . g�2, b�1 g�2b

..

. ..
. ..

. ..
.

g�a�1, 1 g�a�1, 2 . . . g�a�1, b�1 g�a�1, b

g�a1 g�a2 . . . g�a, b�1 g�ab
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14.15 By (5.1),
Pn

i¼1 ( yi � �y)2 ¼
Pn

i¼1 y2
i � n�y2. Then

n
X

ij

( �yij: � �yi:: � �y:j: þ �y...)
2

¼ n
X

ij

½( �yij: � �yi::)� ( �y:j: � �y...)�2

¼ n
X

ij

( �yij: � �yi::)
2 þ an

X
j

( �y:j: � �y...)
2 � 2n

X
ij

( �yij: � �yi::)( �y:j: � �y...)

¼ n
X

ij

�y2
ij: � bn

X
i

�y2
i:: þ an

X
j

�y2
:j: � abn�y2

...

� 2n
X

j

y:j:
an
� y...

abn

� 
X
i

yij:

n
� yi::

bn

� 
" #

¼ n
X

ij

y2
ij:

n2
� bn

X
i

y2
i::

b2n2
þ an

X
j

y2
:j:

a2n2
� abn

y2
...

a2b2n2

� 2n
X

j

y:j:
an
� y...

abn

� 
 y:j:
n
� y...

bn

� 
h i

¼
X

ij

y2
ij

n
�
X

i

y2
i::

bn
þ
X

j

y2
:j:

an
� y2

...

abn
� 2

an

X
j

y2
:j: �

2y...y:j:
b
þ y2

...

b2

� �

¼
X

ij

y2
ij

n
�
X

i

y2
i::

bn
þ
X

j

y2
:j:

an
� y2

...

abn
� 2

an

X
j

y2
:j: þ

2y2
...

abn

¼
X

ij

y2
ij

n
�
X

i

y2
i::

bn
�
X

j

y2
:j:

an
þ y2

...

abn
:

14.16 By (5.1), we obtain

SSE ¼
X

ijk

( yijk � �yij:)
2 ¼

X
ij

X
k

( yijk � �yij:)
2

¼
X

ij

X
k

y2
ijk � n�y2

ij:

 !

¼
X

ij

X
k

y2
ijk �

y2
ij:

n

 !

¼
X

ijk

y2
ijk �

X
ij

y2
ij:

n
:
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14.17 Partitioning X into X ¼ (X1, X2), where X1 contains the first six columns and
X2 constitutes the last six columns, we have

X(X0X)�X0 ¼ 1
2 (X1, X2)

O O

O I

� �
X01
X02

� �

¼ 1
2 (O, X2)

X01
X02

� �
¼ 1

2 X2X02:

We can express X2 as

X2 ¼

j 0 . . . 0
0 j . . . 0

..

. ..
. ..

.

0 0 . . . j

0
BBB@

1
CCCA,

where j and 0 are 2 � 1. Hence 1
2 X2X02 assumes the form given in (14.50).

14.18 (a)

X01X1(X01X1)� ¼

�1 1 1 1 1 1
� 1

3 1 0 0 1
3

1
3

� 1
3 0 1 0 1

3
1
3

� 1
3 0 0 1 1

3
1
3

� 1
2

1
2

1
2

1
2 1 0

� 1
2

1
2

1
2

1
2 0 1

0
BBBBBB@

1
CCCCCCA

Multiply by X01X1 on the right to show that X01X1(X01X1)�X01X1 ¼ X01X1.

(b)

X1(X01X1)� ¼ 1
12

�1 3 0 0 2 0
�1 3 0 0 2 0
�1 3 0 0 0 2
�1 3 0 0 0 2
�1 0 3 0 2 0
�1 0 3 0 2 0
�1 0 3 0 0 2
�1 0 3 0 0 2
�1 0 0 3 2 0
�1 0 0 3 2 0
�1 0 0 3 0 2
�1 0 0 3 0 2

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

Multiply on the right side by X1
0 to obtain X1(X01X1)�X01 in (14.54).
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14.19 We first consider y.1. and y2
.1.:

y:1: ¼
X

ik

yi1k ¼
X

k

y11k þ
X

k

y21k þ
X

k

y31k

¼ y011jþ y021jþ y031j

¼ (y011, y012, y021, y022, y031, y032)

j

0

j

0

j

0

0
BBBBBBBB@

1
CCCCCCCCA

,

y2
:1: ¼ y0

j

O

j

O

j

O

0
BBBBBBBB@

1
CCCCCCCCA

(j0, O0, j0, O0, j0, O0)y ¼ y0

J O J O J O

O O O O O O

J O J O J O

O O O O O O

J O J O J O

O O O O O O

0
BBBBBBBB@

1
CCCCCCCCA

y:

Similarly

y2
:2: ¼ y0

O
j
O
j
O
j

0
BBBBBB@

1
CCCCCCA

(O0, j0, O0, j0, O0, j0)y ¼ y0

O O O O O O
O J O J O J
O O O O O O
O J O J O J
O O O O O O
O J O J O J

0
BBBBBB@

1
CCCCCCA

y:

If we denote the above matrices as C1 and C2, we have

1
6

P2
j¼1

y2
:j: ¼ 1

6 y2
:1: þ 1

6 y2
:2: ¼ 1

6 y0C1yþ 1
6 y0C2y ¼ 1

6 y0(C1 þ C2)y:

Then

C ¼ C1 þ C2 ¼

J O J O J O
O J O J O J
J O J O J O
O J O J O J
J O J O J O
O J O J O J

0
BBBBBB@

1
CCCCCCA

y:
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14.20 We show the result of 1
2 A� 1

4 B� 1
6 Cþ 1

12 D for the first two “rows”:

1
2

J O O O O O

O J O O O O

� �
� 1

4

J J O O O O

J J O O O O

� �

� 1
6

J O J O J O

O J O J O J

� �
þ 1

12

J J J J J J

J J J J J J

� �

¼ 1
12

2J �2J �J J �J J

�2J 2J J �J J �J

� �

since

6
12 J� 3

12 J� 2
12 Jþ 1

12 J ¼ 2
12 J,

O� 3
12 J�Oþ 1

12 J ¼ � 2
12 J,

O�O� 2
12 Jþ 1

12 J ¼ � 1
12 J,

and so on.

14.21 If a�1 ¼ a�2 ¼ a�3 ¼ a�, say, then
P3

i¼1 a
�
i ¼ 0 implies 0 ¼

P3
i¼1 a

�
i ¼P3

i¼1 a
� ¼ 3a�, or a� ¼ 0.

14.22

SS(m,a,g)¼ m̂y...þ
Xa

i¼1

âiyi::þ
Xa

i¼1

Xb

j¼1

ĝijyij::

¼ y2
...

abn
þ

X
i

y2
i::

bn
� y2

...

abn

 !
þ

X
ij

y2
ij:

n
�
X

i

y2
i::

bn
�
X

j

y2
:j:

an
þ y2

...

abn

 !
:

14.23 As noted preceding Theorem 14.4b, SS(a, b,gjm) ¼ SS(ajm, b, g) þ
SS(bjm,a, g) þ SS(g jm,a,b), where SS(a,b,gjm) ¼

P
ij y2

ij:=n� y2
...=

abn: For a ¼ 3, b ¼ 2, and n ¼ 2, we have by (14.57)
and (14.60), SS(a, b, gjm) ¼ y0( 1

2 A� 1
12 D)y, where

A ¼

J O O O O O
O J O O O O
O O J O O O
O O O J O O
O O O O J O
O O O O O J

0
BBBBBB@

1
CCCCCCA

, D ¼ J12 ¼

J J J J J J
J J J J J J
J J J J J J
J J J J J J
J J J J J J
J J J J J J

0
BBBBBB@

1
CCCCCCA

,

and J and O are 2 � 2. Show that 1
2A21

2D is idempotent, so that condition
(c) of Theorem 5.6c is satisfied. To show that condition (d) holds, note that
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the degrees of freedom of
P

ij y2
ij:=n� y2

...=abn are ab 2 1, which is easily
shown to equal (a� 1)þ (b� 1)þ (a� 1)(b� 1).

14.25 For b ¼ 2, the sum of squares has only 1 degree of freedom and C has only
one row. From (14.11), we obtain H0: b�1 � b�2 ¼ 0 or H0: b1 � b2þ
1
3 g11 þ 1

3 g21 þ 1
3 g31 � 1

3 g12 � 1
3 g22 � 1

3 g32 ¼ 0. Thus C ¼ c0 ¼ (0, 0, 0,

0, 1, �1, 1
3 , � 1

3 , 1
3 , � 1

3 , 1
3 , � 1

3 ), c0(X0X)�c ¼ 1=3, ½c0(XX)�c��1 ¼ 3,
and

X(X0X)�c½c0(XX)�c��1c0(X0X)�X0 ¼ 1
12

J �J J �J J �J
�J J �J J �J J
J �J J �J J �J
�J J �J J �J J
J �J J �J J �J
�J J �J J �J J

0
BBBBBB@

1
CCCCCCA
:

where J is 2 � 2. This can be expressed as

1
12

2J O 2J O 2J O
O 2J O 2J O 2J
2J O 2J O 2J O
O 2J O J O 2J
2J O 2J O 2J O
O 2J O 2J O 2J

0
BBBBBB@

1
CCCCCCA
� 1

12 J12 ¼ 1
12 B� 1

12 J12:

Since 1
12 B is the same as 1

6 C in (14.59), the result is obtained.

14.26
E(12

ijk) ¼ E(1ijk � 0)2 ¼ E½1ijk � E(1ijk)�2 ¼ var(1ijk) ¼ s2,

E(1ijk1lmn) ¼ E½(1ijk � 0)(1lmn � 0)� ¼ Ef½1ijk � E(1ijk)�½1lmn � E(1lmn)�g
¼ cov(1ijk , 1lmn) ¼ 0:
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14.27

E
X

i

y2
i::

 !
¼ E

X
i

X
jk

yijk

 !2
2
4

3
5

¼ E
X

i

X
jk

(m� þ a�i þ b�j þ g�ij þ 1ijk)

" #2
8<
:

9=
;

¼ E
X

i

bnm� þ bna�i þ n
X

j

b�j þ n
X

j

g�ij þ
X

jk

1ijk

" #2
8<
:

9=
;

¼ E
X

i

b2n2m�2 þ b2n2a�2i þ
X

jk

1ijk

 !2

þ2b2n2m�a�i

2
4

8<
:

þ2bnm�
X

jk

1ijk þ 2bna�i
X

jk

1ijk

#)

¼ E ab2n2m�2 þ b2n2
X

i

a�2i þ
X

ijk

12
ijk þ

X
i

X
jk=lm

1ijk1ilm

 !(

þ2b2n2m�
X

i

a�i þ 2bnm�
X

ijk

1ijk þ 2bn
X

i

a�i
X

jk

1ijk

 !)

¼ ab2n2m�2 þ b2n2
X

i

a�2i þ abns2:

14.30 Using a: ¼ 3�a:, gi: ¼ 2�gi:, and g:: ¼ 6�g::, (14.90) becomes b0Hb ¼ 4
P

i

a2
i þ 8

P
i ai�giþ 4

P
i �gi: � 12�a2

: � 24�a: �g:: � 12�g2
::. Show that the 10

terms of 4
P

i (ai � �a:þ �gi: � �g::)
2 in (14.91) collapse to the same

expression for b0Hb involving 6 terms.

14.31 (c)
E( �yij:) ¼ E 1

2

Pn
k¼1

yijk

� �
¼ 1

2

P
k

E( yijk)

¼ 1
2

P
k

(mþ ai þ bj þ gij) ¼ 1
2 (2mþ 2ai þ 2bj þ 2gij):
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14.32 (b) By (14.47), (14.93), (14.94) and Problem 14.31(b, c), we have

E½SS(gjm, a, b)� ¼ 2s2 þ 2
X

ij

½E( �yij:)� E( �yi::)� E( �y:j:)þ E( �y::)�2

¼ 2s2 þ 2
X

ij

½mþ ai þ bj þ gij � m� ai � �b: � �gi:

� m� �a: � bj � �g:j þ mþ �a: þ �b: þ �g::�2

¼ 2s2 þ 2
X

ij

(gij � �gi: � �g:j þ �g::)
2:

14.33
Analysis of Variance for the Lactic Acid Data in Table 13.5

Source
Sum of
Squares df

Mean
Square F

A 533.5445 1 533.5445 30.028
B 2974.0180 4 746.5045 41.844
AB 441.1580 4 110.2895 6.207
Error 177.6850 10 17.7685

Total 4126.4055 19

The p values for these three F’s are .0003, .000003, and .009.

14.34
Analysis of Variance for the Hemoglobin Data in Table 13.7

Source
Sum of
Squares df

Mean
Square F

Rate 90.560375 3 30.186792 19.469
Method 2.415125 1 2.415125 1.380
Interaction 4.872375 3 1.624125 1.558
Error 111.637000 72 1.550514

Total 209.484875 79

The p value for the first F is 2.404 � 1029. The other two p values are
.2161 and .3769.
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Chapter 15

15.1

W0W ¼

n1 0 . . . 0

0 n2 . . . 0

..

. ..
. ..

.

0 0 . . . nk

0
BBBBB@

1
CCCCCA

, W0y ¼

y1:

y2:

..

.

yk:

0
BBBBB@

1
CCCCCA

,

(W0W)�1W0y ¼

y1:=n1

y2:=n2

..

.

yk:=nk

0
BBBBB@

1
CCCCCA
¼

�y1:

�y2:

..

.

�yk

0
BBBBB@

1
CCCCCA
:

15.2 (a) The reduced model yij ¼ mþ 1�ij can be written in matrix form as
y ¼ mjþ 1�, from which we have m̂ ¼ �y:: and m̂j0y ¼ �y::y:: ¼
y2
::=N ¼ N�y2

:::

(b) SSB ¼ m̂ 0W0y� N�y2
:: ¼ (�y1:, �y2:, . . . , �yk:)

y1:

..

.

yk

0
B@

1
CA� N�y�2

:: :

(c)
Pk

i¼1 �yi:yi: � N�y2
:: ¼

P
i

yi:

ni
yi: � N

y::
N

� 
2
:

15.3 (a)
Xk

i¼1

ni( �yi: � �y::)
2 ¼

X
i

(ni�y
2
i: � 2ni�yi:�y:: þ ni�y

2
::)

¼
X

i

ni�y
2
i: � 2�y::

X
i

ni�yi: þ �y2
::

X
i

ni

¼
X

i

ni
yi:

ni

� �2

� 2y::
N

X
i

niyi:

ni
þ N

y::
N

� 
2

¼
X

i

y2
i:

ni
� 2y2

::

N
þ y2

::

N
:

(b) Xk

i¼1

Xni

j¼1

( yij � �yi:)
2 ¼

X
i

X
j

(y2
ij � 2yij�yi: þ �y2

i:)

¼
X

ij

y2
ij � 2

X
i

yi:

ni

X
j

yij

 !
þ
X

i

X
j

yi:

ni

� �2

¼
X

ij

y2
ij � 2

X
i

y2
i:

ni
þ
X

i

ni
y2

i:

n2
i

¼
X

ij

y2
ij �

X
i

y2
i:

ni
:
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15.4 (c0m̂)0½c0(W0W)�1c��1c0m̂=s2 ¼
P

i ci�yi:

� 	 P
i c2

i =ni

� 	�1P
i ci�yi:=s2:

15.5
P

i
aibi
ni
¼ (25)(0)

10 þ
(�20)(1)

20 þ (�5)(�1)
5 ¼ �1þ 1 ¼ 0.

15.6 (W0W)�1W0y ¼

n11 0 . . . 0
0 n12 . . . 0
..
. ..

. ..
.

0 0 . . . n23

0
BBB@

1
CCCA

�1 y11:

y12:

..

.

y23:

0
BBB@

1
CCCA ¼

�y11:
�y12:

..

.

�y23:

0
BBB@

1
CCCA:

15.7 Wm̂ ¼ (�y11:, �y11:, �y12:, �y13:, �y13:, . . . , �y23:)
0: Note that m̂ is 6 � 1 and Wm̂ is

11 � 1.

15.8 This follows by definition; see, for example, (7.41).

15.9 Since Bm ¼ 0, that is b01m ¼ 0, we can equate b01m and b02m to obtain
2m11 � m12 � m13 þ 2m21 � m22 � m23 ¼ m12 � m13 þ m22 � m23, which
reduces to 2m11 þ 2m21 ¼ 2m12 þ 2m22. We can obtain m12 þ m22 ¼
m13 þ m23 from b02m ¼ 0.

15.10 a0m̂ ¼
P

ij aij�yij: and a0(W0W)�1a ¼
P

ij a2
ij=nij:

15.11 a0(W0W)�1a ¼ 3.833.

15.12 B(W0W)�1B0 ¼ 1
3

25 �1
�1 7

� �
.

15.13 Show that KG0 ¼ O.

15.14 By (3.42), cov(m̂c) ¼ K0(KK0)�1cov(d̂c)(KK0)�1K.

15.15 (a)
Analysis of Variance for the Weight Data of Table 14.6

Source df
Sum of
Squares

Mean
Square F p Value

Protein 4 111,762.28 27940.57 8.36 .0000169
Error 56 181,256.71 3236.73

Total 60 293,018.98

(b)
F Tests for Unweighted Contrasts

Contrasts df Contrast SS F p Value

L, C vs. So, Su, M 1 2,473.61 0.76 .386
So, M vs Su 1 36,261.93 11.20 .00147
So vs. M 1 5,563.22 1.72 .195
L vs. C 1 65,940.17 20.37 .0000332
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(c)
F Tests for Two Weighted Contrasts

Contrasts df
Contrast

SS F p Value

L, C vs. So, Su, M 1 2,473.61 0.76 .386
So, M vs. Su 1 31,673.79 9.79 .00278

15.17 (a) m ¼ (m11,m12, m13, m21, m22, m23)0, W is 47 � 6, a is 6 � 1, B and C
are each 2 � 6.

a ¼ (1, 1, 1, �1, �1)

B ¼
1 �2 1 1 �2 1

1 0 �1 1 0 �1

� �

C ¼
1 �2 1 �1 2 �1

1 0 �1 �1 �1 1

� �

m̂ ¼ �y ¼ (96:50, 85:90, 95:17, 79:20, 91:83, 82:00)0

SSE ¼ 8436:1667, nE ¼ 41

FA ¼ 3:65104, FB ¼ :022053, FC ¼ 2:90567:

(b) G is the same as C in part (a)

K ¼
j0

a0

B

0
B@

1
CA ¼

1 1 1 1 1 1

1 1 1 �1 �1 �1

1 �2 1 1 �2 1

1 0 �1 1 0 �1

0
BBB@

1
CCCA

m̂c ¼ (91:61, 91:31, 92:66, 83:11, 82:81, 84:15)0

SSEc ¼ 9631:9072, nEc ¼ 43

FAc ¼ 3:687, FBc ¼ :03083:

(c)
Analysis of Variance for Unconstrained Model

Source df
Sum of
Squares

Mean
Square F p Value

Level 1 751.238 751.238 3.65 .0630
Type 2 9.075 4.538 .02 .978
Level � type 2 1195.7406 597.870 2.91 .0661
Error 41 8436.167 205.760

Total 46 10474.851
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Analysis of Variance for Constrained Model

Source df
Sum of
Squares

Mean
Square F p Value

Level 1 826.544 826.544 3.69 .0614
Type 2 13.810 6.905 0.03 .970
Error 43 9,631.907 223.998

Total 46 10,474.851

15.18 Analysis of Variance for Data in Table 15.12

Source df
Sum of
Squares

Mean
Square F p Value

Fertilizer 3 20,979.042 9663.014 111.52 5:773� 10�15

Variety 4 306.621 76.655 1.22 0.325
Fertilizer �

variety
12 997.589 83.132 1.33 0.263

Error 26 1,630.333 62.705
Total 45 28,486.370

Chapter 16

16.1 Verify that I 2 P is symmetric and idempotent. Then X0(I 2 P)X ¼ X0(I 2

P)0(I 2 P)X, and by Theorem 2.4(iii), rank[X0(I 2 P)X] ¼ rank [(I 2 P)X].
The matrix (I 2 P)X is n� q. To show that rank [(I 2 P)X ¼ q, we demon-
strate that the columns are linearly independent. By the definition of linear
independence in (2.40), the columns of (I 2 P)X are lineraly independent
if (X 2 PX)a ¼ 0 implies a ¼ 0. Suppose that there is a vector a=0 such
that (X 2 PX)a ¼ 0. Then

Xa ¼ PXa ¼ Z(Z0Z)�Z0Xa:

By Theorem 2.8c(iii), a solution to this is Xa ¼ zi, where zi is the ith column
of Z. But this is impossible since the columns of Z are linearly independent
of those of X. We therefore have Xa ¼ 0, which implies that a ¼ 0, since X
is full-rank. This contradicts the possibility that a = 0.

16.2 (a) By (16.11) and (16.14) to (16.17), we obtain

SSEy:x ¼ y0y� y0Z(Z0Z)�Z0y� b̂0X0(I� P)y

¼ y0(I� P)y� e0xyE�1
xx exy ¼ eyy � e0xyE�1

xx exy:

(b) By (12.21), SSEy¼y0[I 2 Z(Z0Z)2Z0]y, which, by (16.13), equals
y0(I 2 P)y.
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16.3 By Theorem 8.4a(ii), SSH ¼ (Cb̂)0A(Cb̂), where A ¼ [cov(Cb̂)]�1=s2. In

this case, C ¼ I and by (15.19) cov(b̂) ¼ s2[X(I� P)X0]�1.

16.4 By (13.12), a solution â0 is given by â0 ¼ (0, �y1:, . . . , �yk:)
0. By analogy to

(13.7), Z0x ¼ (x::, x1:, . . . , xk:)0, and by (13.11), a generalized inverse is
(Z0Z)- ¼ diag(0, 1=n, . . . , 1=n). Then (Z0Z)�Z0x ¼ (0, �x1:, . . . , �xk:)0.

16.5 By (16.13) and (16.16), exx ¼ x0(I� P)x ¼ x0x� x0Z(Z0Z)�Z0x. From the
answer to Problem 16.4, x0Z¼ (x::, x1:, . . . , xk:) and

(Z0Z)�Z0x ¼ (0, �x1:, . . . , �xk:)0. Thus x0Z(Z0Z)�Z0x ¼
Pk

i¼1 xi:�xi:

¼ n
P

i �x
2
i:, and exx ¼

P
ij x2

ij � n
P

i �x
2
i:. Show that exx can be written as

exx ¼
P

ij (xij � �xi:)2. The quantities exy and eyy can be found in an analogous
manner.

16.6 (a) By (16.39) and (16.40), we have

X0(I� P) ¼

x01 00 . . . 00

00 x02 . . . 00

..

. ..
. ..

.

00 00 . . . x0k

0
BBBBB@

1
CCCCCA

I� 1
n

J O . . . O

O I� 1
n

J . . . O

..

. ..
. ..

.

O O . . . I� 1
n

J

0
BBBBBBBBBB@

1
CCCCCCCCCCA

¼

x01(I� 1
n

J) 00 . . . 00

00 x02(I� 1
n

J) . . . 00

..

. ..
. ..

.

00 00 . . . x0k(I� 1
n

J)

0
BBBBBBBBBB@

1
CCCCCCCCCCA

,

X0(I� P)X ¼

x01(I� 1
n

J)x1 0 . . . 0

0 x02(I� 1
n

J)x2 . . . 0

..

. ..
. ..

.

0 0 . . . x0k(I� 1
n

J)xk

0
BBBBBBBBBB@

1
CCCCCCCCCCA

:
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To show that this equal to (16.41), we have, for example

x02 I� 1
n

J

� �
x2 ¼ x02x2 �

x2jj0x2

n
¼
X

j

x2
2j �

x2
2:

n:

Show that this equals
P

j (x2j � �x2:)2:

(b) Using X0(I� P) from part (a), we have

X0(I� P)y ¼

x01 I� 1
n

J

� �
00 . . . 00

00 x02 I� 1
n

J

� �
. . . 00

..

. ..
. ..

.

00 00 . . . x0k I� 1
n

J

� �

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

y1

y2

..

.

yk

0
BBBBB@

1
CCCCCA

¼

x01 I� 1
n

J

� �
y1

x02(I� 1
n

J)y2

..

.

x0k I� 1
n

J

� �
yk

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

:

The elements of this vector are, for example

x02 I� 1
n

J

� �
y2 ¼ x02y2 �

x02jj0y2

n
¼
X

j

x2jy2j �
�x2:�y2:

n:

Show that this equals
P

j (x2j � �x2:)( y2j � �y2:).
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16.7

X
ijk

(xijk � �xij:)(yijk � �yij:) ¼
X

ijk

xijkyijk �
X

ijk

xijk�yij: �
X

ijk

�xij:yijk

þ n
X

ij

�xij:�yij:

¼
X

ijk

xijkyijk �
X

ij

�yij:

X
k

xijk

 !

�
X

ij

�xij:

X
k

yijk

 !
þ n

X
ij

�xij:�yij:

¼
X

ijk

xijkyijk � n
X

ij

�xij:�yij:

� n
X

ij

�xij:�yij: þ n
X

ij

�xij:�yij::

16.8 In (14.40) and (14.41), we have

X
ij

y2
ij:

n
� y2

...

abn
¼

X
i

y2
i::

bn
� y2

...

abn

 !
þ

X
j

y2
:j:

an
� y2

...

abn

 !

þ
X

ij

y2
ij:

n
�
X

i

y2
i::

bn
�
X

j

y2
:j:

an
þ y2

...

abn

 !
:

By an analogous identity, we have (note that b is replaced by c)

X
ij

xij:yij:

n
� x...y...

acn
¼

X
i

xi::yi::

cn
� x...y...

acn

 !
þ

X
j

x:j:y:j:
an
� x...y...

acn

 !

þ
X

ij

xij:yij:

n
�
X

i

xi::yi::

cn
�
X

j

x:j:y:j:
an
þ x...y...

acn

 !
:

Show that the right side is equal to

cn
X

i

(�xi:: � �x...)( �yi:: � �y...)þ an
X

j

(�x:j: � �x...)( �y:j: � �y...)

þ n
X

ij

(�xij: � �x̂i:: � �x:j: þ �x...)( �yij: � �yi:: � �y:j: þ �y...)

¼ SPAþ SPCþ SPAC:
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16.9 (a)
SS(C þ E)y:x ¼ SSCŷ þ SSEy �

(SPCþ SPE)2

SSCx þ SSEx

SSCy:x ¼ SS(C þ E)y:x � SSEy:x

F ¼ SSACy:x=(c� 1)
SSEy:x=½ac(n� 1)� 1� :

The F statistic is distributed as F[c21, ac(n21)21] if H0 is true.

(b)
SS(AC þ E)y:x ¼ SSACy þ SSEy �

(SPACþ SPE)2

SSACx þ SSEx

SSACy:x: ¼ SS(AC þ E)y:x � SSEy:x:

F ¼ SSACy:x:=(a� 1)(c� 1)
SSEy:x=½ac(n� 1)� 1� :

The F statistic is distributed as F[(a21) (c21), ac (n21)21] if H0 is
true.

16.10 (a) Exx ¼ X0(I� P)X

¼ (X01, X02, . . . , X0k)

I� 1
n

J O . . . O

O I� 1
n

J . . . O

..

. ..
. ..

.

O O . . . I� 1
n

J

0
BBBBBBBBBB@

1
CCCCCCCCCCA

X1

X2

..

.

Xk

0
BBBBB@

1
CCCCCA

¼ X01 I� 1
n

J

� �
, X02 I� 1

n
J

� �
, . . . , X0k I� 1

n
J

� �� �
X1

X2

..

.

Xk

0
BBBBB@

1
CCCCCA

¼
Xk

i¼l

X0i I� 1
n

J

� �
Xi

16.11 By Theorem 2.2c(i), the diagonal elements of X0ciXci are products of
columns of Xci. Thus, for example, the seond diagonal element of X0ciXci

in (16.70) is

(xi12 � �xi:2, . . . , xin2 � �xi:2)

xi12 � �xi:2

..

.

xin2 � �xi:2

0
B@

1
CA ¼

Xn

j¼1

(xij2 � �xi:2)2:
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Similarly, the (1,2) element of Xci
0Xci is

(xi11 � �xi:1, . . . , xin1 � �xi:1)

xi12 � �xi:2

..

.

xin2 � �xi:2

0
B@

1
CA ¼

Xn

j¼1

(xij1 � �xi:1)(xij2 � �xi:2):

16.12

(Z0Z)�Z0Xb̂ ¼

0 0 . . . 0

0
1
n

. . . 0

..

. ..
. ..

.

0 0 . . .
1
n

0
BBBBBBBB@

1
CCCCCCCCA

j0 j0 . . . j0

j0 00 . . . 00

00 j0 . . . 00

..

. ..
. ..

.

00 00 . . . j0

0
BBBBBBB@

1
CCCCCCCA

X1

X2

..

.

Xk

0
BBBBB@

1
CCCCCA
b̂

¼ 1
n

00 00 . . . 00

j 00 . . . 00

00 j0 . . . 00

..

. ..
. ..

.

00 00 . . . j0

0
BBBBBBB@

1
CCCCCCCA

X1

X2

..

.

Xk

0
BBBBB@

1
CCCCCA
b̂

¼ 1
n

j0X1

j0X2

..

.

j0Xk

0
BBBBB@

1
CCCCCA
b̂ ¼

�x01
�x02

..

.

�x0k

0
BBBBB@

1
CCCCCA
b̂ ¼

�x01b̂

�x02b̂

..

.

�x0kb̂

0
BBBBBB@

1
CCCCCCA
:

16.13 X
ij

( yij � �y::)
2 �

X
ij

(yij � �yi:)
2

¼
X

ij

y2
ij � 2�y::

X
ij

yij þ kn�y2
::

�
X

ij

y2
ij � 2

X
i

�yi:

X
j

yij

 !
þ n

X
i

�y2
i:

" #

¼
X

ij

y2
ij � kn�y2

:: �
X

ij

y2
ij þ 2n

X
i

�y2
i: � n

X
i

�y2
i:

¼ n
X

i

�y2
i: � kn�y2

:: ¼ n
X

i

(�yi: � �y::)
2:

16.14
(a) exx ¼ 358:1667, exy ¼ 488:5000, eyy ¼ 5937:8333, b̂ ¼ 1:3639:

(b) SSEy�x ¼ 5271:5730 with 19df, SSTy�x ¼ 6651:1917 with 22 df,
SS(ajm, b) ¼ 1379:6188 with 3df, F ¼ 1:6575, p ¼ :210:
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(c) F ¼ 2:4014, p ¼ :138:

(d) b̂1 ¼ 1:9950, b̂2 ¼ �:9878, b̂3 ¼ �1:2687, b̂4 ¼ 3:1646,

F ¼ (5271:5730� 4178:2698)=3
4178:2698=16

¼ 1:3955, p ¼ :280:

16.15 (a)
Sum of Squares and Products for x and y

Source

SS and SP Corrected for the Mean

y x xy

A 268,043.37 811.11 14,627.22
C 588,510.81 2485.11 1,468.89
2AC 1,789,999.1 2411.11 22,736.222
Error 7,717,172.7 5632.67 2168,409.7

A þ C 7,985,216 6443.78 2183,036.9
C þ E 8,305,683.5 8117.78 2 182,678.6
AC þ E 950,7171.7 8043.78 2 171,145.9

(b)
SS(AþE)y�x ¼ 2,786014, SSEy�x ¼ 2,681,934:9, SSAy:x ¼ 104,079:06:

For factor A, F ¼ 104,079:06=2
2,681,934:92=35

¼ :6791, p¼ :514:

For factor C, F ¼ 1,512,838:46=5
2,681,934:92=35

¼ 3:9486, p¼ :0061:

For interaction AC, F ¼ 3,183,799:17=10
2,681,934:92=35

¼ 4:1549, p¼ :000783:

(c) F ¼ (SPE)2=SSEx

SSEy�x=½ac(n� 1)� 1� ¼
(�168, 409:7)2=5632:67

2, 681, 934:92=35

¼ 65:7113, p ¼ 1:516� 10�9:

(d) For factor A

b̂1 ¼
SPE1

SSEx, 1
¼ �50,869:67

1, 274:67
¼ �39:9082,

b̂2 ¼
SPE2

SSEx, 2
¼ �37,796:33

1,987:33
¼ �19:0187,

b̂3 ¼
SPE3

SSEx, 3
¼ �79,743:67

2,370:67
¼ �33:6377,

SS(F) ¼ SSEy �
X3

i¼1

(SPEi)2

SSEx,i
¼ 2, 285, 831:3,

SS(R) ¼ SSEy �
(SPE)2

SSE2
¼ 2, 681, 934:9:
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By (16.64), we obtain

F ¼ (2, 681, 934:9� 2, 285, 831:3)=2
2, 285, 831:3=33

¼ 2:8592, p ¼ :0716:

For factor C

b̂1 ¼ �32:8195, b̂2 ¼ �30:3492, b̂3 ¼ �26:2928, b̂4 ¼ �27:8251,

b̂5 ¼ �53:1667, b̂6 ¼ �28:2191,

F ¼ 156, 728:91=5
2, 525,206:01=30

¼ :3724, p ¼ :864:

16.16
(a)

Sums of Squares and Products for x and y

Source

SS and SP Corrected for the Mean

y x xy

A 235.225 176.4 203.70
C 30.625 0.400 23.50
AC 3.025 12.10 26.05
Error 867.500 5170.2 1253.10

Aþ E 1102.725 5346.6 1456.80
C þ E 898.125 5170.6 1249.60
AC þ E 870.525 5182.3 1247.05

(b) SS(Aþ E)y�x ¼ 705:7875, SSEy�x ¼ 563:7865, SSAy�x ¼ 142:0010:

For factor A, F ¼ 142:0010=1
563:7865=35

¼ 8:8155, p ¼ :0054:

For factor C, F ¼ 32:3426=1
563:7865=35

¼ 2:0078, p ¼ :165:

For interaction AC, F ¼ 6:6529=1
563:7865=35

¼ :4130, p ¼ :525:

(c) F ¼ (SPE)2=SSEx

SSEy�x=½ac(n� 1)� 1� ¼
(1253:10)2=5170:200

563:7865=35

¼ 18:8546, p ¼ :000115:
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(d) For factor A

b̂1 ¼
SPE1

SSEx,1
¼ 996:10

3109:7
¼ :3203,

b̂2 ¼
SPE2

SSEx,2
¼ 257:00

2060:50
¼ :1247,

SS(F) ¼ SSEy �
X2

i¼1

(SPEi)2

SSEx,i
¼ 516:3741,

SS(R) ¼ SSEy �
(SPE)2

SSEx
¼ 563:7865:

By (16.64),

F ¼ (563:7865� 516:3741)=1
516:3741=34

¼ 3:1218, p ¼ :0862:

For factor C, b̂1 ¼ :2034, b̂2 ¼ :2870,

F ¼ 8:9930=1=554:7935=34 ¼ :5511, p ¼ :463:

16.17 (a) Exx ¼
4548:2 2877:4

2877:4 4876:9

� �
, exy

5:623

26:219

� �

eyy ¼ :8452, b̂ ¼
�:003454

:007414

� �
:

(b) SSEy�x ¼ :67026, SSTy�x ¼ :84150,

SS(ajm, b) ¼ SSTy�x � SSEy�x ¼ :17124,

F ¼ :17124=3
:67026=34

¼ 2:8955, p ¼ :0493:

(c) To test H0 :b ¼ 0, we use (16.84):

F ¼
e0xyE�1

xx exy=q

SSEy�x=½k(n� 1)� q� ¼ 4:4378, p ¼ :0194:
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(d) b̂1 ¼
1268:9 983:4

983:4 1076:4

� ��1 2:984

5:694

� �
¼
�:00599

:01076

� �
,

b̂2 ¼
1488:4 836:0

836:0 1512:0

� ��1 �2:636

3:95

� �
¼
�:004697

:005209

� �
,

b̂3 ¼
502:9 513:0

513:0 1552:0

� ��1 1:735

12:94

� �
¼
�:00763

:01086

� �
,

b̂4 ¼
1288:0 545:0

545:0 736:5

� ��1 3:540

3:635

� �
¼

:000961

:004224

� �

SSE(F)y�x ¼ eyy �
X4

i¼1

e0xy,iE
�1
xx, iexy, i ¼ :62284,

SSE(R)y�x ¼ eyy � e0xyE�1
xx exy ¼ :67026:

By (16.89)

F ¼
½SSE(R)y�x � SSE(F)y�x�=q(k � 1)

SSE(F)y�x=k(n� q� 1)

¼ :047425=6
:62284=28

¼ :3553, p ¼ :901:

Chapter 17

17.1 If V ¼ PP0, let v ¼ P21 y and W ¼ P21 X. Then v is N(Wb, s2I), b̂ ¼
(W0W)21 W0y, and

F ¼ (Cb̂� t)0½C(W0W)�1C0�(Cb̂� t)=q

v0(I�W(W0W)�1W0)v=(n� k � 1)
:

(a) By Theorem 8.4g(ii), F is F(q, n 2 k 2 1).

(b) By Theorem 8.4g(i), F is F(q, n 2 k 2 1, (Cb̂� t)0½C(W0W)�1C0��1

(C2t)/2).

17.2 As in Problem 17.1 and using (8.49), the confidence interval is

a0b̂+ ta=2, n�k�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0(W0W)�1a

q

or a0b̂+ ta=2, n�k�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0(X0(X0V�1X)�1a

q

where s is given by (7.67)
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17.3 Let X0¼

j5 j5 0 0 0 j5 0 j5 0 0 0 0 0 0 0

j5 j5 0 0 0 0 j5 0 j5 0 0 0 0 0 0

j5 0 j5 0 0 j5 0 0 0 j5 0 0 0 0 0

j5 0 j5 0 0 0 j5 0 0 0 j5 0 0 0 0

j5 0 0 j5 0 j5 0 0 0 0 0 j5 0 0 0

j5 0 0 j5 0 0 j5 0 0 0 0 0 j5 0 0

j5 0 0 0 j5 j5 0 0 0 0 0 0 0 j5 0

j5 0 0 0 j5 0 j5 0 0 0 0 0 0 0 j5

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

:

Then X¼

X0

X0

..

.

X0

0
BBBBB@

1
CCCCCA

, Z1¼

j40 0 ��� 0

0 j40 ��� 0

..

. ..
. ..

.

0 0 ��� j40

0
BBBBB@

1
CCCCCA

,

Z2¼

j10 0 ��� 0

0 j10 ��� 0

..

. ..
. ..

.

0 0 ��� j10

0
BBBBB@

1
CCCCCA

, and Z3¼

j5 0 ��� 0

0 j5 ��� 0

..

. ..
. ..

.

0 0 ��� j5

0
BBBBB@

1
CCCCCA
:

17.4 (a) cov(y) ¼ cov
Xm

i¼1

Ziai þ 1

 !

¼
Xm

i¼1

ZiGiZ
0
i þ R:

(b) cov(y) ¼ ZGZ0 þ R:

17.5 Using (5.4),

E½yK0(KSK0)�1KZiZ
0
iK
0(KSK0)�1Ky�

¼ tr½K0(KSK0)�1KZiZ
0
iK
0(KSK0)

�1KS�

þ b0X0K0(KSK0)�1KZiZ
0
iK
0(KSK0)�1KXb

¼ tr½KSK0(KSK0)�1KZiZ
0
iK
0(KSK0)�1� þ 0 (since KX ¼ O)

¼ tr½KZiZ
0
iK
0(KSK0)�1�

¼ tr½K0(KSK0)�1KZiZ
0
i�:
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17.6 q is obvious;

tr½K0(KSK0)�1KZiZ
0
i� ¼ tr½(KSK0)�1KZiZ

0
iK
0�

¼ tr½(KSK0)�1KZiZ
0
iK
0(KSK0)�1KSK0�

¼ tr K0(KSK0)�1KZiZ
0
iK
0(KSK0)�1K

Xm

i¼0

ZiZ
0
is

2
i

" #

¼ m01s, where the jth element of m1 is

tr½K0(KSK0)�1KZiZ
0
iK
0(KSK0)�1KZjZ

0
j�:

17.7 (a) If S ¼ PP0, let v ¼ P21y and W ¼ P21X. Then v is N(Wb, I) and
L(X0S21X)2L0 ¼ L(W0W)2L0. Since L is estimable, L ¼ AX ¼
APP0X ¼ BW. Hence the rows of L also define estimable functions
of v. Thus by Theorem 12.7b, L(X0S21X)2L0 is nonsingular.

(b) Since Lb̂2Lb is N[0, L(W0W)2L0], note that [L(W0W)2L0]21

L(W0W)2L0 ¼ I, which is idempotent of rank g.

17.8 x0
0b̂ is estimable and is N[x0

0b, x0
0(W0W)2x0]. Hence

x00b̂� x00bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x00(W0W)�x0

p is N(0, 1):

Thus a 100(1 2 a)% confidence interval for x0
0b̂ is

x00b̂+ za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x00(W0W)�x0

q
or

x00b̂+ za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x00(X0S�1X)�x0

q
:
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17.9

(X0Ŝ
�1

X)�1 ¼ (I6 I6)

Ŝ
�1

1 O � � � O

O Ŝ
�1

1 � � � O

..

. ..
. ..

.

O O � � � Ŝ
�1

1

0
BBBBBBB@

1
CCCCCCCA

I6

I6

� �

2
66666664

3
77777775

�1

¼ 2

Ŝ
�1

1 O O

O Ŝ
�1

1 O

O O Ŝ
�1

1

0
BBBB@

1
CCCCA

2
66664

3
77775

�1

¼ 1
2

Ŝ1 O O

O Ŝ1 O

O O Ŝ1

0
B@

1
CA:

17.10 Let C ¼ (I6, O) and K ¼ C(I 2 H)¼ 1
2(I6, 2I6). Then K0(KSK0)21 K

¼ 1
2

T �T
�T T

� �
where T ¼

Ŝ
�1

1 O O

O Ŝ
�1

1 O

O O Ŝ
�1

1

0
BB@

1
CCA: Since Z0 ¼ I12 and

Z1 ¼

j2 0 � � � 0
0 j2 � � � 0

..

. ..
. ..

.

0 0 � � � j2

0
BBB@

1
CCCA, the REML equations become

3 tr(S�1) ¼ y0½K0(KSK0)��1KK0(KSK0)K�y, and

3 tr(S�1J2) ¼ y0½K0(KSK0)�1KJ2K0(KSK0)K�y:

Noting that Ŝ�1 ¼ 1
ŝ2(ŝ2þ2ŝ2

1)

ŝ2 þ ŝ2
1 �ŝ2

1
�ŝ2

1 ŝ2 þ ŝ2
1

� �
, the REML equations
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can be written as

6
ŝ2 þ ŝ2

1

ŝ2(ŝ2 þ 2ŝ2
1)
¼ 1

2
y0

T2 �T2

�T2 T2

 !
y, and

6

ŝ2(ŝ2 þ 2ŝ2
1)
¼ 1

2
u

(ŝ2 þ 2ŝ2
1)

2

where u ¼ y0
U �U
�U U

� �
y and U¼

J2 O O
O J2 O
O O J2

0
@

1
A: The second

REML equation can be rearranged ŝ2
1 ¼

u

24
� ŝ2

2
: Substituting this

expression into the first REML equation and then simplifying, we

obtain
u2ŝ2

24
þ uŝ4

2
¼ uŝ4

2
þ u2

288
y0Py where P ¼

R O O �R O O
O R O O �R O
O O R O O �R
�R O O R O O

O �R O O R O
O O �R O O R

0
BBBBBB@

1
CCCCCCA

, which simplifies to ŝ2 ¼
1
12

y0Py.

17.11
X(X0X)�1L0QL(X0X)�1X0S

¼ 1
2

I6

I6

� �
1

3s2

2 �1

�1 2

� �
1
2

(I6 I6)S

¼ 1
12s2

W W

W W

� �
S1 O � � � O

O S1 � � � O

..

. ..
. ..

.

O O � � � S1

0
BBBBB@

1
CCCCCA

where

2 �2 �1 1 �1 1

�2 2 1 �1 1 �1

�1 1 2 �2 �1 1

1 �1 �2 2 1 �1

�1 1 �1 1 2 �2

1 �1 1 �1 �2 2

0
BBBBBBBB@

1
CCCCCCCCA

¼ 1
12

W W

W W

� �
:

ANSWERS AND HINTS TO THE PROBLEMS 645



Now,
1
12

W W

W W

� �
1

12

W W

W W

� �

¼ 1
144

2W2 2W2

2W2 2W2

 !

¼ 1
12

W W

W W

� �
:

17.12 1
12s2

W W

W W

� �
S

1
2

P

¼ 1
24

W W

W W

� � R O O �R O O

O R O O �R O

O O R O O �R

0
B@

1
CA

¼ O:

17.13 ½c0(X0Ŝ
�1

X)�1c��1 ¼ ŝ2 þ 2ŝ2
1 ¼

(ŝ2 þ 2ŝ2
1)=3s2

w=d
:

Using results from the solution to Problem 17.10, v ¼ 1
3s2

( 1
12 y0Pyþ 1

12 u� ŝ2) ¼ 1
36 y0Dy where D is a nonzero square matrix not

involving s2. Hence ( 1
36s2 D)2

=
1

36s2 D:

17.14 (n� k)½c0(X0Ŝ
�1

X)�c�
½c0(X0S�1X)�c�

¼ (n� k)½c0(X0X)�c�s2

½c0(X0X)�c�s2
¼ (n� k)s2

s2
:

17.15 @f(s)

@s2
i

¼ @

@s2
i

½c0(X0S�1X)�c�

¼ �c0(X0S�1X)� @

@s2
i

(X0S�1X)

� �
(X0S�1X)�c

[ by an extension of (2.117)]

¼ c0(X0S�1X)�X0S�1 @

@s2
i

S

� �
S�1X(X0S�1X)�c

¼ c0(X0S�1X)�X0S�1 @

@s2
i

Xm

j¼0

s2
j ZjZ

0
j

 !
S�1X(X0S�1X)�c

¼ c0(X0S�1X)�X0S�1ZiZ
0
iS
�1X(X0S�1X)�c:
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17.16 (a) (Lb̂� Lb)0½L(X0Ŝ
�1

X���1(Lb̂� Lb)

¼ (Lb̂� Lb)0PD�1P0(Lb̂� Lb)

¼ (Lb̂� Lb)0
Xg

i¼1

pip
0
i

li
(Lb̂� Lb)

¼
Xg

i¼1

½p0i(Lb̂� Lb)�2

li
:

(b) note that var½p0i(Lb̂� Lb)� ¼ var(p0iLb̂)

¼ p0iL(X0Ŝ
�1

X)�L0pi

¼ p0iL(X0Ŝ
�1

X)�L0pi

¼ ½P0L(X0Ŝ
�1

X)�L0P�ii
¼ ½P0PDP0P�ii ¼ Dii ¼ li:

(c) cov(p0iLb̂, p0i, Lb̂) ¼ p0iL(X0Ŝ
�1

X)�L0p0i
¼ p0iPDP0pi0

¼ lip
0
ipip

0
i0pi0 ¼ lip

0
iOpi0 ¼ 0:

17.17 (a) We use Theorems 5.2a and 5.2e to obtain

E½a� B(y� Xb)�0½a� B(y� Xb)�
¼ E(a0a)� E½a0B(y� Xb)� E(y� Xb)0B0a�
þ E½(y� Xb)0B0B(y� Xb)�
¼ tr(V)� tr½B cov(y, a)� � tr½B0cov(a, y� þ tr(B0BS)

¼ tr(V)� tr(BZV)0 � tr(B0VZ0)þ tr(BSB0)

¼ tr(V)þ tr(BZV0 � B0VZ0 þ BSB0)

¼ tr(V)þ tr½B� VZ0S�1)S(B� VZ0S�1)0 � VZ0S�1ZV0�:

(b) Since E(a)¼0, E(y 2 Xb)¼0, and cov(a, y)¼VZ0, we have

E½a� B(y� Xb)�½a� B(y� Bb)�0

¼ E(aa0)� E½a(y� Xb)0B0� � E½B(y� Xb)a0�
þ E½B(y� Xb)(y� Xb)0B0�
¼ cov(a)� ½cov(a, y)�B0 � B cov(y, a)þ B cov(y)B0

¼ V� VZ0B0 � BZV0 þ BSB0

¼ Vþ (B� VZ0S�1)S(B� VZ0S�1)0 � VZ0S�1ZV0:
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The first and third terms do not involve B, and the second term is
“minimized” by B¼VZ0S21. By “minimize,” we mean that any
other choice for B adds a positive definite matrix to the result. This
holds because S is positive definite.

17.18 ½I� X(X0S�1X)�X0S�1�S½I� X(X0S�1X)�X0S�1�0

¼ ½S� X(X0S�1X)�X0�½I� S�1X(X0S�1X)�X0�

¼ S� X(X0S�1X)�X0 � X(X0S�1X)�X0

þ X(X0S�1X)�X0S�1X(X0S�1X)�X0

¼ S� X(X0S�1X)�X0:

17.19 (a) Using Problem 17.17, the BLP OF Ua is E(Uajy)¼UE(ajy)¼
UGZ0S21(y 2 Xb).

(b) cov½UGZ0S�1(y� Xb)� ¼ UGZ0S�1SS�1ZGU0 ¼ UGZ0S�1ZGU0:

(c) cov½UGZ0S�1(y� Xb̂ )�

¼ cov{UGZ0S�1½I� X(X0S�1X)�X0S�1�y}

¼ UGZ0S�1½I� X(X0S�1X)�X0S�1�

� S½I� X(X0S�1X)�X0S�1�S�1ZGU0

¼ UGZ0S�1½S� X(X0S�1X)�X0�S�1ZGU0

[using Problem 17.18]

¼ UGZ0½S�1 � S�1X(X0S�1X)�X0S�1�ZGU0:
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17.20 S�1¼ (s2I12þs2
1ZZ0)�1

¼

s2I4þs2
1j4j04 O ��� O

O s2I4þs2
1j4j04 ��� O

..

. ..
. ..

.

O O ��� s2I4þs2
1j4j04

0
BBBBB@

1
CCCCCA

�1

¼

(s2I4þs2
1j4j04)�1 O ��� O

O (s2I4þs2
1j4j04)�1 ��� O

..

. ..
. ..

.

O O ��� (s2I4þs2
1j4j04)�1

0
BBBBB@

1
CCCCCA

½by(2:52)�

¼

1
s2 I4�

s2

s2þ4s2
1

J4

� �
O ��� O

O 1
s2 I4� s2

s2þ4s2
1
J4

� 

��� O

..

. ..
. ..

.

O O ��� 1
s2

I4�
s2

s2þ4s2
1

J4

� �

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

:

½by(2:53)�
17.21

cov½EBLUP(a)�

¼ ĜZ0½Ŝ
�1
� Ŝ

�1
X(X0Ŝ

�1
X)�X0Ŝ

�1
�ZĜ

¼ ŝ4
1

j04 00 00

00 j04 00

00 00 j04

0
B@

1
CA½Ŝ�1

� Ŝ
�1

j12(j012Ŝ
�1

j12)�1j012Ŝ
�1
�

j4 0 0

0 j4 0

0 0 j4

0
B@

1
CA

¼ ŝ4
1

j04 00 00

00 j04 00

00 00 j04

0
B@

1
CA Ŝ

�1
� 12

ŝ2 þ 4ŝ2
1

J12

" # j4 0 0

0 j4 0

0 0 j4

0
B@

1
CA

¼ ŝ4
1

3(ŝ2 þ 4ŝ2
1)

8 �4 �4

�4 8 �4

�4 �4 8

0
B@

1
CA:
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17.22 cov(a, y) ¼cov(a, Xb þ Zaþ1) ¼ cov(a, Za) ¼ GZ0. Hence, cov(ajy) ¼
Saa � SayS

�1
yy Sya ¼ G�GZ0S�1ZG:

17.23 cov(ajy) ¼ s2
1(I10 � s2

1Z0S�1Z) ¼ s2
1I10 � 2s4

1

s2þ2s2
1
I10: Note that the off-

diagonal elements are 0’s.

17.24 Since S21/2 is symmetric, let S21/2¼ a b
b a

� �
: Then

I 20 �H� ¼ I20 � S�1=2X(X0S�1X)�1X0S�1=2

¼ I20 �

a a
a a
..
. ..

.

a �a
a �a

0
BBBB@

1
CCCCA

1
20a2 0
0 1

20a2

 !
a a � � � a a
a a � � � �a �a

� �

¼ I20 �
0:1J10 O

O 0:1J10

� �

The off-diagonal elements are either 0 or 20.1 (corresponding to corre-
lations of either 0 or 20.11).

Chapter 18

18.1 E(yi) ¼ (0)P(yi ¼ 0)þ (1)P(yi ¼ 1) ¼ 1:pi ¼ pi,

var(yi) ¼ E½yi � E(yi)�2

¼ (0� pi)
2P(yi ¼ 0)þ (1� pi)

2P(yi ¼ 1)

¼ p2
i (1� pi)þ (1� pi)

2pi

¼ pi(1� pi)½ pi þ (1� pi)�:

18.2 Let ui ¼ b0 þ b1xi: Then (18.7) becomes pi ¼ eui=(1þ eui ): From this we
obtain

1� pi ¼ 1� eui

1þ eui
¼ 1þ eui � eui

1þ eui
¼ 1

1þ eui ,

pi

1� pi
¼ eui

1þ eui
= 1

1þ eui
¼ eui (1þ eui )

1þ eui
¼ eui ,

ln
pi

1� pi

� �
¼ ui:
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18.3

ln L(b0, b1) ¼ ln
Yn

i¼1

pyi
i (1� pi)

1�yi

" #

¼
Xn

i¼1

[yi ln pi þ (1� yi) ln (1� pi)]

¼
X

i

yi[ ln pi � ln (1� pi)]þ
X

i

ln (1� pi)

¼
X

i

yi ln
pi

1� pi

� �
þ
X

i

ln (1� pi):

By Problem 17.2, this becomes

ln L(b0, b1) ¼
X

i

yi(b0 þ b1xi)þ
X

i

ln (1� pi):

To show that ln (1� pi) ¼ � ln (1þ eb0þb1xi ), let ui ¼ ln[ pi=(1� pi)]: Then

eui ¼ pi

1� pi
:

Solve this no obtain pi ¼ eui=(1þ eui ): Then show that 1� pi ¼ 1=(1þ eui )
and that ln (1� pi) ¼ �ln (1þ eui ) ¼ � ln (1þ eb0þb1xi ):

18.4

@ ln L(b0, b1)
@b0

¼
Xn

i¼1

yi �
Xn

i¼1

eb0þb1xi

1þ eb0þb1xi
:

@ ln L(b0, b1)
@b1

¼
Xn

i¼1

xiyi �
Xn

i¼1

eb0þb1xi

1þ eb0þb1xi
:

18.5 b(ui) ¼ ni ln (1� pi) ¼ �ni ln (1þ eui ), as shown in the answer to Problem
17.3.
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treatments or natural groupings of units, 4
unbalanced data. See Unbalanced data

in ANOVA
Angle between two vectors, 41–42, 136,

163, 238
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Asymptotic inference for large samples,
260–262, 491, 515

Augmented matrix, 29

Bayes’ theorem, 278–279
Bayesian linear model, 279–284, 480
Bayesian linear mixed model, 497
Best linear predictor, 499
Best linear unbiased estimators (BLUE),

147, 165, 313
Best quadratic unbiased estimators, 151,

486
Beta weights, 251
BIC. See Information criterion
BLUE. See Best linear unbiased estimators

Causality, 3, 130–131, 443
Chi-square distribution, 112–114

central chi-square, 112
moment-generating function, 112–113
noncentral chi-square, 112–114
noncentrality parameter, 112, 124

Cluster correlation, 479–480, 481–485
Coefficient of determination

in multiple regression, 161–164
in simple linear regression, 133–134

Coefficient(s), regression, 2, 127
Conditional density, 73, 95–99,

278–284, 498–499
Confidence interval(s)

for b1 in simple linear regression, 133
in Bayesian regression, 278, 285
in linear mixed models, 491, 495
in multiple regression. See Regression,

multiple linear with fixed x’s,
confidence interval(s)

in random-x regression, 261–262
Contrasts, 308, 341, 357–371
Control of output, 3
Correlation

bivariate, 134
Correlation matrix (matrices)

population, 77–78
relationship to covariance matrix, 77–78

sample, 247
relationship to covariance matrix,

247–248
Covariance matrix (matrices)

for b̂, 145
for partitioned random vector, 78
population, 75–76
sample, 156, 246–247
for two random vectors, 82

Data space, 153, 163, 316–317
Dependent variable, 1, 137, 295
Derivative, matrix and vector,

56–59, 91, 109, 142, 158, 495
Determinant, 37–41
Determination, coefficient of.

See Coefficient of determination
Diagnostics, regression,

227–238 also Hat matrix;
Influential observations;
Outliers; Residual(s)

Diagonal matrix, 8
DIC. See Information criterion
Distance

Mahalanobis, 77
standardized, 77

Distribution(s)
chi-square, 112–114
F, 114–116
gamma, 280
inverse gamma, 284
multivariate t, 282–283, 285
normal. See Normal distribution
t, 216, 283

Effect of each variable on R2,
262–265

Eigenvalues. See Matrix, eigenvalues
Eigenvectors. See Matrix, eigenvectors
Empty cells, 432–439
Error sum of squares. See SSE
Error term, 1, 137
Estimated best linear unbiased predictor,

499
Estimated generalized least squares

estimation, 490
Exchangeability, 277
Expected mean squares, 173–174, 179,

182, 312–317, 362–367, 433
Expected value

of bilinear form [E(x0Ay)], 111
of least squares estimators,

131–132
of quadratic form [E(y0Ay)], 107
of R2, 162
of random matrix, 75–76
of random variable [E( y)], 70
of random vector [E( y)], 75–76
of sample covariance [E(sxy)], 112
of sample variance [E(s2)], 108, 131, 150
of sum of random variables, 70
of sum of random vectors, 75–76

Exponential family, 514
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F-Distribution, 114–116
central F, 114
mean of central F, 115
noncentral F, 115
noncentrality parameter, 115
variance of central F, 115

F-Tests. See also Regression, multiple
linear with fixed x’s, tests of hypoth-
eses; Tests of hypotheses

general linear hypothesis test, 198–203
for overall regression, 185
power, 115
subset of the b’s, 189

False discovery rate, 206
First order multivariate Taylor series, 495
Fixed effects models, 480

Gauss-Markov theorem, 146–147, 276. See
also Best linear unbiased estimators

Generalized least squares, 164–169,
285–286, 479, 503

Generalized linear models, 513–516
exponential family, 514
likelihood function, 512
linear predictor, 513–514
link function, 514
model, 514

Generalized inverse, 32–37, 302–303,
343, 384

of symmetric matrix, 33
Generalized variance, 77, 88–89
Geometry of least squares, 151–154, 163,

316–317
angle between two vectors, 163
prediction space, 153–154, 163,

316–317
data space, 153, 163, 316–317
parameter space, 152, 154, 316–317

Gibbs sampling, 289, 291

Hadamard product, 16, 425
Hat matrix, 230–231
Hessian matrix, 495
Highest density interval, 279, 285
Hyperprior distribution, 280, 287
Hypothesis tests. See Tests of hypotheses

Idempotent matrix
for chi-square distribution, 117–118
definition and properties, 54–55
in linear mixed models, 487

Identity matrix, 8

Independence
of contrasts, 358–362
independence and zero covariance,

93–94
of linear functions and quadratic forms,

119–120
of quadratic forms, 120–121
of random variables, 71, 94
of random vectors, 93, 94
of SSR and SSE, 187

Influential observations, 235–238
Cook’s distance, 236–237
leverage, 236

Information criterion, 286
Iterative methods for finding estimates, 490
Invariance

of F, 149, 200
of maximum likelihood estimators,

247–248
of R2, 149
of s2, 149
of t, 149
of ŷ, 148–149

Inverse matrix. See Matrix, inverse

j vector, 8
J matrix, 8

Kenward–Roger adjustment, 496–497

Lagrange multiplier, 60, 68, 179, 201, 220,
223, 429

Least squares, 128, 131, 141, 143,
145–151, 302, 507

properties of estimators, 129–133, 143,
145–147

Likelihood function, 158, 513–514
Likelihood ratio tests, 258–262
Linear estimator, 143. See also Best linear

unbiased estimators
Linear mixed model, 480

randomized blocks, 481–482
subsampling, 482
split plot studies, 483–484, 492–494
one-way random effects, 484, 489
random coefficients, 484–485
heterogeneous variances, 485–486

Linear model, 2, 137
Linear models, generalized. See

Generalized linear models
Logistic regression, 508–511

binary y, 508
estimation, 510
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Logistic regression (Continued )
logit transformation, 509
model, 509–510
polytomous model, 511

categorical, 511
ordinal, 511

several x’s, 510
Logit transformation, 509
Loglinear models, 511–512

contingency table, 511
likelihood ratio test, 512
maximum likelihood estimators, 512

LSD test, 209

Mahalanobis distance, 77
Markov Chain Monte Carlo, 288–289,

291–292
Matrix (matrices), 5–68

addition of, 9–10
algebra of, 5–60
augmented matrix, 29
bilinear form, 16
Cholesky decomposition, 27
conditional inverse, 33
conformable matrices, 9
definition, 5
derivatives, 56–58
determinant, 37–41

of partitioned matrix, 38–40
diagonal of a matrix, 7
diagonal matrix, 8
diagonalizing a matrix, 52
differentiation, 56–57
eigenvalues, 46–53, 496

characteristic equation, 47
and determinant, 51–52
of functions of a matrix, 49–50
of positive definite matrix, 53

square root matrix, 53
of product, 50–53
of symmetric matrix, 51
and trace, 51

eigenvectors, 46–47, 496
equality, 6
generalized inverse, 32–37, 302, 343,

384, 391–395
of symmetric matrix, 36

Hadamard product, 16, 425
idempotent matrix, 54

and eigenvalues, 54
identity matrix, 8
inverse, 21–23

conditional inverse, 33
generalized inverse, 32–37

of partitioned matrix, 23–24
of product, 22

j vector, 8
J matrix, 8
multiplication of, 10

conformal matrices, 10
nonsingular matrix, 21
notation, 5
O (zero matrix), 8
orthogonal matrix, 41–43
partitioned matrix, 16–18

multiplication of, 17
positive definite matrix, 24–28
positive semidefinite matrix, 25–28
product, 10

commutativity, 10
as linear combination of columns, 17
matrix and diagonal matrix, 16
matrix and j, 12
matrix and scalar, 10
product equal to zero, 20
rank of product, 21

quadratic form, 16. See also Quadratic
form(s)

random matrix, 69
rank, 19–21. See also Rank of a matrix
spectral decomposition, 51, 360, 362,

495–496
square root matrix, 53
sum of, 9
symmetric matrix, 7

spectral decomposition, 51
trace, 44–46
transpose, 7

of product, 13
triangular matrix, 8
vector(s). See Vector(s)
zero matrix (O) and zero vector (0), 8

Matrix product. See Matrix, product
Maximum likelihood estimators

for b and s2 in ANOVA, 315
for b and s2 in fixed-x regression,

158–159
properties, 159–161

for b0, b1, and s2 in random-x
regression, 245–248

properties, 248–249
invariance of, 249
in loglinear models, 511
for partial correlation, 266–268

MCMC. See Markov Chain Monte Carlo
Mean. See also Expected value

sample mean. See Sample mean
population mean, 70
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Missing at random, 432
Misspecification of cov(y), 167–169. See

also Generalized least squares
Misspecification of model, 169–174

alias matrix, 170
overfitting, 170–172
underfitting, 170–172

Model diagnostics, 227–238. See also Hat
matrix; Influential observations;
Outliers; Residual(s)

Model, linear, 2, 137
Model validation, 227–238. See also Hat

matrix; Influential observations;
Outliers; Residual(s);

Moment-generating function, 90–92, 96,
99–100, 103–104, 108

Multiple linear regression, 90–92, 108,
112–114, 117–119, 122. See
Regression, multiple linear with
fixed x’s

Multivariate delta method, 495
Multivariate normal distribution, 87–103

conditional distribution, 95–97
density function, 88–89
independence and zero covariance, 93–94
linear functions of, 89
marginal distribution, 93
moment generating-function of, 90–92
partial correlation, 100–101
properties of, 92–100

Noncentrality parameter
for chi-square, 112
for F, 114, 187, 192, 325
for t, 116, 132

Nonlinear regression, 507
confidence intervals, 507
least squares estimators, 507
tests of hypotheses, 507

Nonsingular matrix, 21
Normal distribution

multivariate. See Multivariate normal
distribution

univariate, 87–88
standard normal, 87

Normalizing constant, 278, 281, 284

O (zero matrix), 8
One-way model (balanced), 3, 295–298,

339–376
contrasts, 357–371

and eigenvectors, 360–362
hypothesis test for, 344–351

orthogonal contrasts, 358–371
independence of, 363–364

orthogonal polynomial contrasts,
363–371

partitioning of sum of squares,
360–361

estimable functions, 340–341
contrasts, 341

estimation of s2, 343–344
expected mean squares, 351–357

full-reduced–model method, 352–354
general linear hypothesis method,

354–356
normal equations, 341–344

solution using generalized inverse, 343
solution using side conditions,

342–343
overparameterized model, 297

assumptions, 297–298
parameters not unique, 297
reparameterization, 298
side conditions, 298
SSE, 314
testing the hypothesis H0 : m1 ¼ m2 ¼

... ¼ mk, 344–351
full and reduced model, 344–348
general linear hypothesis, 348–351

Orthogonal matrix, 41–43
Orthogonal polynomials, 363–371
Orthogonal vectors, 40
Orthogonal x’s in regression models, 149,

174–178
Orthogonality of columns of X in balanced

ANOVA models, 333–335
Orthogonality of rows of A in unbalanced

ANOVA models, 293–296
Orthogonalizing the x’s in regression

models, 174–178
and partial regression coefficients,

175–176
Outliers, 232–235

mean shift outlier model, 235
PRESS (prediction sum of squares), 235

Overfitting, 170–172

p-Value
for F-test, 188–189
for t-test, 132

Parameter space, 152, 154, 316–317
Partial correlation(s), 100–101, 266–273

matrix of (population) partial
correlations, 100–101

sample partial correlations, 177–178,
266–173
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Partial interaction constraints, 434
Poisson distribution, 512
Poisson regression, 512–513

likelihood function, 513
model, 513

Polynomials, orthogonal. See Orthogonal
polynomials

Positive definite matrix, 24–28
Positive semidefinite matrix, 25–28
Posterior distribution, 278–284

conditional, 289
marginal, 282

Posterior predictive distribution, 279,
290–292

Prediction, 2–3, 137, 142, 148,
156, 161

Precision, 280
Prediction of a random effect, 497–499
Prediction interval, 213–215
Prediction space, 153–154, 163,

316–317
Prediction sum of squares (PRESS), 235
PRESS (prediction sum of squares), 235
Prior distribution, 278–284

diffuse, 281, 287
informative, 281
conjugate, 281, 289
specification, 280

Projection matrix, 228

Quadratic form(s), 16, 489
distribution of, 117–118
expected value of, 107
idempotent matrix, 106
independence of, 119–121
moment-generating function of, 108
variance of, 108

r2 in simple linear regression, 133–134
R2 (squared multiple correlation),

161–164, 254–257
effect of each variable on R2, 262–265
fixed x’s, 161–164

adjusted R2, 162
angle between two vectors, 163
properties of R2 and R, 162

random x’s, 254–257
population multiple correlation, 254

properties, 255
sample multiple correlation, 256

properties, 256–257
Random matrix, 69
Random model, 480

Random variable(s), 69
correlation, 74
covariance, 71

and independence, 71–74
expected value (mean), 70
independent, 71, 94
mean (expected value), 70
standard deviation, 71
variance, 70

Random vector(s), 69–74
correlation matrix, 77–78
covariance matrix, 75–76, 83
linear functions of, 79–83

mean of, 80
variances and covariances of,

81–83
mean vector, 75–76
partitioned, 78–79

Random x’s in regression. See Regression,
random x’s

Rank of a matrix, 19–21
full rank, 19
rank of product, 20–21

Regression coefficients (b’s), 2,
138, 251

partial regression coefficients, 138
standardized coefficients (beta weights),

251
Regression, logistic. See Logistic regression
Regression, multiple linear with fixed x’s,

2–3, 137–184
assumptions, 138–139
centered x’s, 154–157
coefficients. See Regression coefficients
confidence interval(s)

for b, 209
for E( y), 211–212
for one a0b, 211
for one bj, 210–211
for s2, 215
for several ai

0b’s, 216–217
for several bj’s, 216

design matrix, 138
diagnostics, 227–238. See also

Diagnostics, regression
estimation of b0, b1, . . . , bk, 141–145

with centered x’s, 154–157
least squares, 2, 143–144
maximum likelihood,

158–159
properties of estimators,

145–149
with sample covariances, 157
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estimation of s2

maximum likelihood estimator,
158–159

minimum variance unbiased
estimator, 158–159

unbiased estimator,149–151
best quadratic unbiased estimator,

151
generalized least squares, 164–169
minimum variance estimators,

158–159
misspecification of error structure,

151–153
misspecification of model, 169–174.

See also Misspecification of model
model, 137–140
multiple correlation (R), 161–162
normal equations, 141–142
orthogonal x’s, 149, 174–178
orthogonalizing the x’s, 174–178
outliers, 232–235. See also Outliers
partial regression, 141
prediction. See Prediction
prediction equation, 142
prediction interval, 213–215
properties of estimators, 145–149
purposes of, 2–3
random x’s. See Regression,

random x’s
residuals, 227–230. See also Residuals
sufficient statistics, 159–160
tests of hypotheses

all possible a0b, 193–194
expected mean squares,

173–174
general linear hypothesis test

H0 : Cb ¼ 0, 198–203
estimation under reduced model,

324–326
full and reduced model, 324–326

H0 : Cb ¼ t, 203–204
likelihood ratio tests, 217–221

distribution of likelihood ratio,
218–219

likelihood ratio, 218
for H0 : b ¼ 0, 219–220
for H0 : Cb ¼ 0, 220–221

linear combination a0b,
204–205

one bj, 204–205
F-test, 204–205
t-test, 205

overall regression test, 185–189

in terms of R2, 196–198
several ai

0b’s, 205
several bj’s

Bonferonni method, 206–207
experimentwise error rate, 206
overall a-level, 206
Scheffé method, 207–209

subset of the b’s, 189–196
expected mean squares, 193, 196
full and reduced model, 190
noncentrality parameter, 192–193
quadratic forms, 190–193, 195
in terms of R2, 196

weighted least squares, 168
X matrix, 138–139

Regression, nonlinear. See Nonlinear
regression

Regression, Poisson. See Poisson regression
Regression, random x’s, 243–273

multivariate normal model, 244
confidence intervals, 258–262
estimation of b0, b1, and s2, 245–249

properties of estimators, 249
standardized coefficients (beta

weights), 251
in terms of correlations, 249–154

R2, 254–257. See also R2, random
x’s

effect of each variable on R2,
262–265

tests of hypotheses, 258–262
comparison with tests for fixed x’s,

258
correlations, tests for, 260–261
Fisher’s z-transformation, 261
likelihood ratio tests, 258–260

nonnormal data, 265–266
estimation of b̂0 and b̂1, 266

sample partial correlations, 266–273
maximum likelihood estimators, 268
other estimators, 269–271

Regression, simple linear (one x), 1,
127–136

assumptions, 127
coefficient of determination r2,

133–134
confidence interval for b0, 134
confidence interval for b1, 132–133
correlation r, 133–134

in terms of angle between
vectors, 135

estimation of b0 and b1, 128–129
estimation of s2, 131–132
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Regression, simple linear (Continued )
model, 127
properties of estimators, 131
test of hypothesis for b0, 119
test of hypothesis for b1, 132–133
test of hypothesis for r, 134

Regression sum of squares. See SSR
Regression to the mean, 498
Residual(s), 131, 227–230

deleted residuals, 234
externally studentized residual, 234
hat matrix, 228, 230–232
in linear mixed models, 501–502
plots of, 230
properties of, 237–230
residual sum of squares (SSE), 131,

150–151. See SSE
studentized residual, 233

Response variable, 1, 137, 150
Robust estimation methods, 232

Sample mean
definition, 105–106
independent of sample variance,

119–120
Sample space (data space), 152–153
Sample variance (s2), 107–108

best quadratic unbiased estimator, 151
distribution, 118
expected value, 108, 127
independent of sample mean, 120

Satterthwaite, 494
Scalar, 6
Scientific method, 1
Selection of variables, 2, 172
Serial correlation, 479
Shrinkage estimator, 287, 500
Significance level (a), 132
Simple linear regression. See Regression,

simple linear
Singular matrix, 22
Small sample inference for mixed linear

models, 491–491, 494–497
Span, 153
Spectral decomposition, 51,

495–496
Square root matrix, 53
SSE (error sum of squares)

balanced ANOVA
one-way model, 343–344
two-way model, 385, 390–391

independence of SSR and SSE, 187
multiple regression, 150–156, 179
non-full-rank model, 313–314

simple linear regression, 131–132
unbalanced ANOVA

one-way model, 417
two-way model

constrained, 428
unconstrained, 432

SSH (for general linear hypothesis test)
in ANOVA, 326–329, 348–351,

401–403
in regression, 199, 203

SSR (regression sum of squares), 133–134,
161, 164, 186–189

Standardized distance, 77
Subspace, 153, 317
Sufficient statistics, 159–160
Sum(s) of squares

Analysis of covariance, 449–463,
468–473

ANOVA, balanced
one-way, 345–346, 348–351

contrasts, 358–363, 367–331
two-way, 388–395, 395–403

ANOVA, unbalanced
one-way, 417

contrasts, 417–421
two-way, 426, 431–432

full-and-reduced-model test in ANOVA,
324–326

SSE. See SSE
SSH (for general linear hypothesis test).

See SSH
SSR (for overall regression test). See SSR

as quadratic form, 105–107
test of a subset of b’s, 190–192

Symmetric matrix, 7
Systems of equations, 28–32

consistent and inconsistent, 29
and generalized inverse, 37–39

t-Distribution, 116–117, 123
central t, 117
noncentral t, 116–117, 132
noncentrality parameter, 116–117, 132
p-value. See p-Value

t-Tests, 123, 131–132, 134, 205
p-value. See p-Value

Tests of hypotheses. See also Analysis
of variance, testing hypotheses;
One-way model (balanced), testing
the hypothesis H0 : m1 ¼ m2 ¼ ... ¼
mk; Two-way model (balanced), tests
of hypotheses

for b1 in simple linear regression,
131–132
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in Bayesian regression, 286
F-tests. See F-Tests
general linear hypothesis test, 198–204
for individual b’s or linear combinations.

See Regression, multiple linear with
fixed x’s, tests of hypotheses

likelihood ratio tests, 217–221
in linear mixed models, 491, 495
overall regression test, 185–189, 196
for r in bivariate normal distribution, 134
regression tests in terms of R2,

196–198
significance level (a), 132
subset of the b’s, 189–196
t-tests. See t-Tests

Trace of a matrix, 44–46
Transpose, 7
Treatments, 4, 295, 339, 377
Triangular matrix, 8
Two-way model (balanced), 3,

299–301, 377–408
estimable functions, 378–382

estimates of, 382–384
interaction terms, 380
main effect terms, 380–381

estimation of s2, 384–385
expected mean squares, 403–408

quadratic form approach, 405
sums of squares approach, 403–405

interaction, 301, 377
model, 377–378

assumptions, 378
no-interaction model, 329–335

estimable functions, 330–331
testing a hypothesis, 331–333

normal equations, 382–384
orthogonality of columns of X,

333–335
reparameterization, 299–300
side conditions, 300–301, 381
SSE, 384, 390
tests of hypotheses

interaction
full-and-reduced-model test,

388–391
generalized inverse approach,

391–395
hypothesis, 385–388

main effects
full-and-reduced-model approach,

395–401
general linear hypothesis approach,

401–403
hypothesis, 396

Unbalanced data in ANOVA
cell means model, 414
one-way model, 415–421

contrasts, 417–421
conditions for independence, 418
orthogonal contrasts, 418
weighted orthogonal contrasts, 419

estimation, 415–416
SSE, 416
testing H0 :m1 ¼ m2 ¼ . . . ¼ mk, 416

overparameterized model, 414
serial correlation, 479
two-way model, 421–432

cell means model, 421, 422
constrained model, 428–432

estimation, 430
model, 429
SSE, 431
testing hypotheses, 431–432

type I, II and III sums of squares, 414
unconstrained model, 421–428

contrasts, 424–425
estimator of s2, 423
Hadamard product, 425
SSE, 423
testing hypotheses, 425–428

two-way model with empty
cells, 432–439

estimability of empty cell means, 435
estimation for the partially

constrained model, 434
isolated cells, 432
missing at random, 432
testing the interaction, 433–434
SSE, 433

weighted squares of means, 414
Underfitting, 170–172

Validation of model, 227–238. See also Hat
matrix; Influential observations;
Outliers; Residual(s)

Variable(s)
dependent, 1, 137
independent, 1, 137
predictor, 1, 137
response, 1, 137
selection of variables, 2, 172

Variance
of estimators of l0b, 311
generalized, 77
of least squares estimators, 130–131
population, 70–71
of quadratic form, 107
sample, 95. See also Sample variance
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Variance components, 480
estimating equations, 488
estimation, 486–489

Vector(s)
angle between two vectors, 41–42, 136,

163, 238
column vector, 6
j vector, 8–9
length of, 12
linear independence and dependence, 19
normalized vector, 42
notation, 6

orthogonal vectors, 37
orthonormal vectors, set of, 38
product of, 10–11
random vector. See Random Vectors
row vector, 6
zero vector (0), 8

Weighted least squares, 168

Zero matrix (O), 8
Zero vector (0), 8
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