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Preface

This book has several aspects that I want to let you know about up front. If
you’re already comfortable with terminology and concepts such as
Hamiltonian Monte Carlo sampling, conjugate pairs, and posterior
distributions, then this book is probably not for you. You already know a lot
about those topics, and if you need more you know where to find it.

On the other hand, if you don’t feel quite at home with the purpose of random
samples, R’s user interface, and why you might want to work with mean-
corrected instead of with raw values, then it’s just possible that this book
offers something that you might want to know about. And if you feel as
though you could use some refresher work in traditional statistical analysis,
Pearson is making available to you for download an e-book titled Statistical
Analysis Using Excel. You’ll find details on obtaining that book at the end of
this Preface.

You’re experienced. You probably have something close to the background
in Bayesian analysis that I had in mind when I laid out the topics that I
wanted this book to cover. It seemed to me that the world already has plenty
of books about statistics and experimental methodology: one more isn’t going
to help much. Something similar can be said about using syntax and diction
that R recognizes: we already have as many elementary to intermediate texts
on R as we need.

What we did need, I thought, was a source of information that connected the
simplistic capabilities of VBA (the programming language historically
offered by Microsoft Excel to give the user more control over the application)
with the more sophisticated capabilities of programming languages such as R
and C.

Similarly, we were missing information about three basic types of sampling
that range from the simplistic, univariate sort of categorical analysis that you
find in undergraduate texts to the complex sampling methods used by



techniques such as quadratic approximation and Markov Chain Monte Carlo
(MCMC). Richard McElreath has written, and has supplied to R, helper
functions that ease the task of designing, writing, and installing the code that
does the heavy lifting for you.

I have done what I can in this book to leverage the Excel skills that you have
already developed in the areas of managing functions, handling data, and
designing graphs and plots. The point will come that you see that Excel too
handles the necessary tools of calculus in the form of function arguments—
albeit more slowly and awkwardly. Shortly thereafter you’ll see how the three
fundamental approaches to building posterior distributions by sampling are in
fact wonderfully creative solutions to the same problem.

Now let’s see how I propose to get us there.

Chapter 1: Bayesian Analysis and R: An Overview
When I first approached Pearson about writing this book, I came away from
the discussions just a little discouraged. The editors and their advisors were
polite and really good at listening, but I didn’t think that I heard much in the
way of encouragement. In particular, they wanted to know why I would want
to write this book.

Good question. I had several reasons in mind, but it wasn’t easy to articulate
them. Still, I did so, and apparently I did so successfully because, well, look
at what you’re holding. And those reasons made sense as a place to start out,
but I’ll keep it to the first two that occurred to me:

• Why would you want to read it? There are several reasons, but if you are
like most of us you use Microsoft Excel for most numeric purposes,
even though Excel was designed as a general-purpose calculation
engine. You might have stayed away from Bayesian analysis because
you heard that Excel is comparatively slow. And you’re right: because
of both software problems and hardware issues, there was a time when
you had to wait and wait for a solution to the problem that you posed to
Bayesian software. No longer. Now you can get an answer in a
reasonable length of time, and without making assumptions that you
don’t feel quite comfortable with.



• People I work with were using familiar words in unfamiliar ways. They
were using terms like prior, likelihood, and parameter in contexts that
they did not seem to fit. I wanted to find out more about what they were
saying. But I needed a starting point, and because I was quite familiar
with Excel’s numeric capabilities, I decided to work from the platform
of Excel and toward a platform based on R. It’s true that Excel is
comparatively slow and doesn’t have many functions that you would
like to have in a Bayesian-oriented platform. But for certain problems,
Excel works great and returns accurate results in a short timeframe.
Fine; I can work from there.

That’s what’s going on in Chapter 1. Let’s move ahead.

Chapter 2: Generating Posterior Distributions with
the Binomial Distribution
The basic idea behind a Bayesian analysis is to create a posterior distribution
that informs you about the parameters that bring about the results of the
simulation. You do not want to start a sequence with one family of
distributions and then try to finish the sequence in another family, so you
should aim for a situation in which the prior and the likelihood are from the
same family.

That, of course, implies that you select the distributional family from which
the product will stem. You have several families from which to choose, but
your choice will almost inevitably depend on the specific questions that you
want to answer, which in turn depend on the nature of the data that you want
to analyze.

One basic family of distributions is the binomial distribution. The term
binomial itself implies the nature of a binomial distribution: two names, such
as win and loss, buys and doesn’t buy, survives and fails to survive, and so
on. Consider your lifetime experience with coins. You have almost surely
come to expect that when you pull a coin at random from your pocket and
flip it, the probability is 50% that it will come up heads and 50% that it will
come up tails. That’s a binomial distribution: two names, two outcomes, two
results.



The distinctive feature of a binomial distribution is that its values are discrete
rather than continuous. When you flip the coin, you do not anticipate that the
flip could come up with any of an infinite number of results. You anticipate
two and only two outcomes, heads and tails.

This can be a very different situation from that of a person’s height or weight.
Then, each measurement is just one of an infinite number of possible heights
or weights. The beta distribution, discussed in Chapter 3, is an example of a
continuous distribution as distinct from a discrete one, such as the binomial.
When you set up your analysis using R, for example, you can specify that a
given parameter should be distributed as binomial, or any of R’s
distributional families. This flexibility is one characteristic that makes R’s
structure, and its design, so useful in Bayesian analysis.

Right here’s a good spot to stress that it’s important to specify the
distributional characteristics of the parameters you use in an analysis, but
don’t let them blind you to other aspects—aspects that you might well ignore
if you were to ignore all the good reasons for adding Bayes to your toolkit.

It’s all too easy to forget that one of the key assumptions underlying a
binomial test is that any two tests in your experiment are independent of one
another. Suppose that you are studying the distribution of political party
membership; one of the questions you ask is therefore which party, if any, a
respondent belongs to.

To make a valid inference regarding the probability of a participant’s
response, you must be sure that the response is independent of any other
response in your survey. So, the value of George’s response must be
unaffected by the value of Ellen’s response. If that is the case, you’re able to
add and subtract subtotals directly (for, example, to derive cumulative totals)
without having to adjust for some probably unknowable dependency in the
data.

Chapter 2 discusses this sort of concern in greater detail.

Chapter 3: Understanding the Beta Distribution
The principal difference between the binomial and the beta distribution is the
degree of granularity with which variables are measured. Both distributions



show how numeric variables are distributed across a span of values, much
like the normal curve shows how a y-variable is distributed across a range of
x-values.

But a variable that follows a beta distribution does so in a continuous rather
than an interrupted fashion. The heads and tails left by coin flips follow a
binomial pattern. Sorted by their actual values (heads, tails on a coin; 1, 2,
3,..., 6 on a die), the values that you see are not distributed continuously but
discretely. We do not act as though a third of a head is a legitimate coin flip
value, any more than we do that 2 1/2 is a legitimate value for the roll of a
die.

But both those values would be legitimate if the variable, instead of being a
coin flip or the roll of dice, were a plant’s weight or height. Weight and
height are both legitimately continuous variables, and each can take on an
infinite number of values. That’s the distinction between the distributions: if
a distribution can take on any number of numeric values it’s a beta, whereas a
binomial distribution is limited typically to a much smaller number of values,
such as 2 for a coin flip, 11 for a dice roll, and 2 if an item is judged defective
or acceptable in a quality control context.

Both R and Excel have functions used to explore and manipulate the
binomial and the beta distributions. It’s useful to keep in mind that there are
times when it’s more convenient and just as quick to use Excel and VBA for
generating frequency distributions as it is to use R. Chapter 4 has more to say
about this matter.

Keep in mind that both Bayesian and frequentist approaches often return
results that are either very close to one another (due to rounding errors
induced by nearly all applications of calculus) or identical.

Chapter 4: Grid Approximation and the Beta
Distribution
At this point, the discussion has centered on frequency distributions, both
discrete (binomial) and continuous (beta). It moves now to the use of
approximation techniques with frequency distributions.

Bayesian methods depend on approximations of distributions. We can,



literally by fiat, declare that there exists a frequency distribution that is
defined by its location (its mean) and its spread (variance or standard
deviation). We can pass those attributes—the mean and the variance—to
software that with adequate speed and efficiency builds the distribution we’re
after, with the required location and spread.

VBA can do that. We can use VBA to structure an array of values that, when
populated with enough values, looks and behaves like a beta distribution or a
binomial distribution or a normal distribution, or any other recognizable
distribution of data. So how is it that VBA has acquired a reputation for slow
and clumsy code?

An important part of the answer is that VBA is only partly compiled at
runtime. It’s an interpreted language, which means the same code must be
compiled repeatedly, again slowing matters down. Furthermore, VBA is not
optimized for array management; newer languages such as Python manage
arrays much more effectively by converting multi-row, multi-column arrays
to single-row vectors, which some insist speeds up processing dramatically.

This chapter demonstrates how a posterior distribution changes in response to
the act of modifying the likelihood. It’s a useful place to provide that
demonstration because it shows how the grid approximation technique results
in simple modifications to the frequency distribution’s structure—and the
rationale for terming it a grid approximation.

Chapter 5: Grid Approximation with Multiple
Parameters
Issues such as the speed with which hardware executes instructions, the
efficiency with which code fills a distribution with simulated data, whether
the computer in use is an vector machine, and other considerations are
unquestionably important to the speed with which an analysis runs. But
generally, a more important issue is the number of parameters and quantiles
you ask the analysis to deal with.

When you expect to analyze only one parameter, even if it has as many as
seven or eight meaningful levels, you could push likelihoods through a
Bayesian analysis and have plenty of time left over. It might seem obvious,



but as soon as you add a parameter to the design, you aren’t just adding but
multiplying design cells.

Start with six levels of a parameter, which even BASIC code could analyze
before you finish your coffee. Now add another parameter that has five
levels, and you’re not simulating record counts for just 6 + 5 = 11, but 6 * 5 =
30 design cells. You might never have to put a simulated record in one of
those multiple parameter cells, depending on matters such as size of the
standard deviation, but your grid approximation code will need to attend to
every one of them, when a quadratic approximation or a Markov Chain
Monte Carlo instead could go flying past them.

Chapter 5 will give you a sense of how much time is spent needlessly dealing
with design cells just because grid approximation requires that they be there.

Chapter 6: Regression Using Bayesian Methods
Most of us are familiar with the regression approach to solving problems that
are presented in the context of the general linear model. We’re familiar, even
comfortable, with a page or two of printed output that includes figures such
as

• Traditional correlation coefficients and regression constants

• Regression summaries such as R2

• Inferential statistics such as F ratios and standard errors of estimate

This chapter begins to tie together concepts and techniques that in previous
chapters have remained largely isolated from one another. In particular,
difficulties imposed by the grid approximation method can be painful,
especially when multiple predictor variables are involved. There are various
reasons for this, particularly when the experimenter wants to assess the
simultaneous effect of multiple variables. If one can’t evaluate the combined
effects of water and fertilization on a crop, it’s at least that difficult to
evaluate their separate effects. But just when the experiment becomes really
interesting due to the addition of variables, the analysis starts to groan under
the weight of that addition.



Chapter 6 starts to replace the use of grid approximation with that of an R
function named quap, or quadratic approximation. The reason that so much
ink is spent on discussing grid approximation is that it forms the basis for
more sophisticated techniques such as speeding up the structuring and
populating of posterior distributions, faster methods of approximating
posterior distributions than grid approximation. Furthermore, the extra speed
of quadratic approximation enables us to use multiple predictor variables
simultaneously—and without that capability, grid approximation falls short.

Like grid approximation, quap approximates the posterior distribution density
of the parameters we want to know about. To do so, the software uses a
quadratic function, so we term it a quadratic approximation.

Chapter 7: Handling Nominal Variables
Often you’ll have a variable whose values have been saved as numeric values
but that should be analyzed as though the numeric values were in fact text
values. This chapter discusses ways to handle them so that text values are
managed as though they were in fact numeric. The opposite approach, in
which numeric values are handled as though they were text, also exists.
Dummy coding and index variables are discussed here, as is the use of the
quap function to make conversion more straightforward.

Chapter 8: MCMC Sampling Methods
The final chapter in this book moves to a technique that for several years has
been the gold standard for Bayesian sampling: Markov Chain Monte Carlo,
or MCMC. Other and older approaches tend to get stuck in particular thickets
of the posterior distribution, often because of autocorrelation built into the
sampling logic. But MCMC manages to avoid that trap, and to
simultaneously maintain its execution speed.

That characteristic—maintaining speed while increasing design complexity—
is what allows MCMC to simulate large posterior distributions without
slowing down unduly. In turn, that positions you to code predictor variables
so that they behave in the best ways of both continuous and discrete
variables, and in ways that ease their interpretation when it comes time to



evaluate the results.

Who Are Those Guys?
Right about now you might well be asking yourself, “Why should I read this?
What kind of statistical analysis is the author pushing, Bayesian or
frequentist?” The best I can do by way of an answer to those questions is to
tell you a little bit about my education and experience.

I took my first course in statistical analysis at a small, well regarded liberal
arts college in the Midwest. It was a miserable experience, And that might
well have been due to the fact that it was taught out of the psychology
department. I still have the textbook that was used in that course, and in the
fashion of the day (this was in the 1970s) it told its readers what to do with a
bunch of numbers and almost nothing about why it made sense to do that.

Nevertheless, I finished that course in statistics and took a couple more just
for good measure. They were a bit better than the one I took from the psych
department. After my undergrad degree I enrolled in grad school and started
out under a professor who I knew I wanted to study with. He was a
frequentist and was first author on a basic statistics text that broke new
ground: It explained to the reader why it was desirable to include certain
calculations in a given statistical analysis.

His book, as well as his classes, stressed the rationale for the kinds of
analysis that were de rigueur during the late 1970s. You followed up
carefully designed experiments with tests of statistical significance. You used
t-tests (Gossett) to calculate that statistical significance with two groups. You
used the analysis of variance (Fisher) to calculate that statistical significance
with more than two groups. You used the product-moment correlation
coefficient (Pearson) to measure the strength of the relationship between two
ratio variables. You used factor analysis and multivariate analysis of variance
(Green; Wilks) to reduce a data overload down to a few manageable factors
and to test differences between groups measured on more than one outcome
variable. You used multiple comparisons (Tukey) to pinpoint the location of
statistically significant differences between group means.

Every one of these techniques belongs in the frequentist toolkit. I used each
of them, in combination with an ad hoc technique called exponential



smoothing, at a large telecommunications firm during the 1980s. We were
able to reduce a bloated resale inventory from more than $14 million to less
than $7 million in under a year, without write downs. (This was back when
$14 million was a lot of money.)

So I have every possible reason in my educational and professional
background to be grateful for the tools that frequentist statistics has offered
me. And I am grateful. But...

I start to feel uneasy every time I read about a finding by the Reproducibility
Project that contradicts the finding of another published study. That can
happen, and does, for reasons that range from mis-specifying a design so that
it treats a random factor as fixed, to something as commonplace as p-hacking.

I worry when I find that someone has applied Welch’s correction or
something similar in a situation where sample sizes are unequal and so are
population variances: the Behrens-Fisher problem. There’s something wrong
with a scientific approach that allows such a problem to exist so long without
a satisfactory solution.

The analysis of variance (ANOVA) has the principal purpose of determining
whether any two population means are equal in an experiment consisting of
at least three groups. There are at least six distinct procedures, collectively
called multiple comparisons, intended to pinpoint which groups are
responsible for a significant ANOVA outcome. One of them requires a
standardized score difference of 7.5 for two means to be considered
significantly different at the .05 level, and another requires a difference of 15.
It is true that our choice of multiple comparison procedure differs according
to the situation under which the data were collected and given the inferences
we want to make. Still, we should be able to come up with methods that agree
more closely than do the Scheffé and planned orthogonal contrasts.

Then there’s multicollinearity, an issue that crops up in regression analysis. It
can pose other problems for statistical analysis, and I touch on them briefly in
Chapter 6. There are plenty of other similar issues, I promise you that. Some
are solved by recourse to Bayesian methods, and some just aren’t. My point
is that I have no special reason to prefer frequentist methods to Bayesian or
vice versa. I have tried in this book to avoid any bias toward frequentist
methods, and I hope and think that I have succeeded.



Where to Find It
I suspect that you are someone who uses the R application with some level of
experience. As such, I assume that you have probably installed R software on
your computer, following the instructions provided by the CRAN website
(cran.r-project.org). When you do so, quite a bit of default code and simple
straightforward functions such as max and read.csv are automatically
installed on your computer.

Other code takes the form of packages, and here there’s nothing automatic
about the installation. If you want to install a package, and you almost
certainly will, the standard procedure is to identify a mirror site from the
drop-down list that appears when you select the Set CRAN mirror item in R’s
Packages menu. After you have identified a mirror site, you can select one of
the roughly 15,000 packages that CRAN offers in a drop-down.

Even though the packages are presented in alphabetical order, selecting one
of 15,000 is more than most users look forward to doing. So you’ll be glad to
know that you do not need to go through that tedious process more than once
in order to install the code discussed in this book.

Note

The R application, without any special assistance, recognizes most of
the code discussed in this book. There are a few functions (notably,
quap and ulam) that require you to install a package named
rethinking. You do not use R’s Packages menu to install rethinking.
See Appendix A for detailed instructions on installing the rethinking
package on a Windows machine.

And speaking of platforms, at the time that I’m writing this book, no
provision is made to install rethinking on a Mac. For the time being, as far as
we know, there is no version of rethinking that is compatible with the Mac.

At this point you should be good to go. Chapter 1, “Bayesian Analysis and R:
An Overview,” is coming right up.



1. Bayesian Analysis and R: An
Overview

When I first started reading what some people have to say about Bayesian
analysis—and what others have to say about traditional statistical inference—
I couldn’t help recalling what Will Rogers had to say about partisan politics:
“I’m not a member of any organized political party. I’m a Democrat.”

Certainly, those who favor the Bayesian approach can marshal some strong
arguments on their own behalf, as can their counterparts, the frequentists.
And yet the statistician Sir Ronald Fisher, who is thought of as the premier
frequentist, intemperately wrote that Bayesian theory “ … is founded upon an
error and must be wholly rejected.”

Note

Writers often refer to those who use and applaud Bayesian
techniques as Bayesians, and to those who have developed and
supported techniques such as Fisher (ANOVA), Gossett (t-tests), and
Pearson (the Pearson correlation coefficient) as frequentists. I’ll
follow that approach in this book.

The strange thing is that many of the thought patterns and the analysis
techniques that we think of today as frequentist are rooted in Bayesian theory.
Some 500 years ago, gamblers were seeking an edge in casinos by using
methods that today we would tend to think of more as Bayesian than
frequentist. Around the year 1900, techniques stressing the differences
between means, the use of standard deviations, correlations, and z-scores
were getting emphasis.

Bayes Comes Back



Then, toward the end of the twentieth century, Bayesian methods made a
comeback. Improvements in Bayesian theory helped, but what really moved
things along was the development of relatively cheap computing power on
the desktop. Bayesian techniques that are required include the assembly of
frequency distributions that show the number of people (or orioles, or
catalytic converters) that have a given characteristic (such as particular
cholesterol levels, or pink feathers, or costs of goods sold).

Designing and structuring those frequency distributions takes time—both
elapsed and inside the computer—but you need them if you are to make
comparisons between samples and theoretical populations. That’s just one
way that frequentist and Bayesian analysis share strategies. The frequentist
analysis of variance, for example, asks you to imagine a population that is
distributed according to the assumptions made by the null hypothesis—and
imagining such distributions takes just a moment or two.

Bayesians share that strategy, but only to a degree. Bayesian analyses ask you
not only to imagine distributions but also to actually build them, so that you
can count the number of cases who are male, who have registered as
Democrats, whose annual income is $70,000, who are married, who live in
Oregon, who have never tested positive for COVID-19—you get the idea. By
the time you have accounted for the percent of the population of interest that
occupies all the intersections of interest (e.g., sex by political party by income
by marital status by state of residence by pandemic status), you already have
to budget for thousands of design cells in the joint probability distribution
(one cell for male Democrats who are unmarried and make between $25,000
and $30,000 who live in Missouri and have never been exposed to COVID,
another cell for female Democrats who ... again, you get the idea).

That’s no big deal when you’re interested in studying only a couple of
variables—say, sex and political preference. Depending on how you define
your variables, you might have just six cells in the joint distribution: two
sexes across three political parties. But if you’re going to build a full
simulation, with all the variables that might rationally impact a political
preference, you need to account for each intersection of each variable in the
design. And to do so in a reasonable amount of time takes coding strategies
and chip speeds that simply weren’t available before, say, the 1990s.

Coding languages such as R’s help a lot, although you can give them an assist



by putting faster chips to work on your desktop. And for some univariate
problems, the simpler approaches work just fine: when there are only a few
design cells to fill, you can complete the simulation in a flash. This book
describes one of those simpler methods, grid approximation, in its earlier
chapters, particularly Chapter 4, “Grid Approximation and the Beta
Distribution.” The idea is not to sell you on grid approximation as a means of
generating a frequency distribution but rather to introduce you to some of the
ideas and strategies that underlie Bayesian analysis.

Another, somewhat more sophisticated, approach called quadratic
approximation is designed to cope with more complex simulations. You’ll
find a more detailed discussion of the Bayesian approach to regression
analysis in Chapter 6, “Regression Using Bayesian Methods,” which relies
heavily on simulation via quadratic approximation in preference to grid
approximation. When the design of the analysis is at all complicated, you’ll
find that approximating a posterior distribution via quadratic approximation
is meaningfully faster than grid approximation. (The reason for the term
quadratic is also in Chapter 6.) Quadratic approximation tends to result in
posterior distributions that are very nearly Gaussian in shape. That’s great if
you’re studying variables that tend to shape into normal curves when plotted.
It turns out that most things that we care about, that we measure and count,
are distributed in just that way.

Note

A posterior distribution occurs when you combine a prior distribution
with a “likelihood” or “the data.”

Yet a third method of deriving a posterior distribution is Markov Chain
Monte Carlo (MCMC), which is not limited to small designs, as is grid
approximation, nor is MCMC as insistently normal in its posteriors as are
quadratic distributions. This book’s final chapter takes a look at R’s ulam
function, which, with a little preparation on your behalf, creates code in R’s
language that enables R’s Rsta`n code to carry out the sampling and returns
to you the posterior findings that you’re after.

The question remains: “Why bother?” If we’re still in the third decade of the
21st century, then you presumably have already studied how to tell whether
the difference between two or more sample averages is a reliable one. You



know what multiple regression is about, why standard deviations and
variances matter, and how to manage regression when the dependent variable
counts occurrences rather than comparing averages. Both Bayesian and
frequentist approaches often return the same results. Why should you bother
with approximations and Monte Carlo simulations when you already have the
tools you need close at hand? Just click the Data Analysis button on Excel’s
Data tab.

Well, part of the reason is that some datasets just don’t comply with some
analysis techniques. A good example is the problem of multicollinearity. That
comes about in, for example, multiple regression analysis, when two or more
predictor variables are perfectly correlated with one another, or very nearly
so. Then the techniques of matrix algebra, which was in extensive use for
years, failed because certain matrices could not be inverted. The result was
that you would get nonsense such as negative R2 values.

So software developers virtually abandoned this approach to multiple
regression in favor of a technique termed QR decomposition. This helped a
little, but not enough, because the resolution of the problem relied on
artificially setting the coefficient for one or more predictor variables to the
constant value of zero. Or you could just throw your hands in the air and give
up.

The Bayesian approach gets you past this obstacle because it does not rely on
matrix algebra to compute its solution. But that obstacle doesn’t come about
all that often, so by itself it’s a poor reason to discard least squares
regression. A much sounder rationale is that frequentist approaches ask you
to imagine the appearance of the population distributions from which the
samples are taken. It’s conceivable that you could wind up with samples that
are normally distributed but taken from populations that are highly skewed.

In contrast, Bayesian approaches do not ask you to imagine the shape of
population distributions, but rather ask you to build those distributions by
means of sophisticated sampling methods.

Now that we have tools such as MCMC on the desktop, there is little reason
not to run both a frequentist and a Bayesian analysis on the same datasets. If
you do so, you get the benefits of radically different approaches to solving
the problems of comparing means, evaluating variances, and assessing



correlations. You get the benefits of confirmation without having to wait
forever for the software to draw sensible samples.

But I admit that the most compelling personal reason I’ve come across to
adopt Bayesian techniques results from a phone conversation I once had with
a consultant. The topic of the Analysis of Covariance came up and he pointed
out that grad schools weren’t teaching ANCOVA any longer—everyone was
teaching multi-level modeling instead. You don’t have to hit me over the
head with a sledgehammer.

About Structuring Priors
One of the difficulties involved with Bayesian analysis, whether in R or
elsewhere, is sampling from the posterior—after you’ve designed and
populated it—but also from large, strong, complex priors. (I’ll get further into
the distinctions between prior, likelihood, and posterior distributions in
Chapters 2 and 3.) Several algorithms to drive the sampling inputs have been
developed, all with particular strengths and defects. Their strengths are
generally clear, but their defects can be fairly subtle. One such is
autocorrelation, which tends to get the sampling algorithm stuck in a
particular corner of the sampling space—a drawback of quadratic
approximation. Most are derivations of older (but far from inferior) methods
such as Metropolis sampling, and their abbreviated names suggest it; for
example, the Gibbs sampler gave rise to BUGS (Bayes Using Gibbs
Sampling) and JAGS (Just Another Gibbs Sampler).

The field is changing so rapidly that I don’t propose to go into all the details
and differences among the samplers. At present, the most generally sound
and speediest method is Hamiltonian Monte Carlo (HMC), and we’ll let ulam
(an R function that helps structure HMC samples) do its work in optimizing
the inputs so that the best sampling method available is chosen.

Watching the Jargon
When I first started reading about Bayesian analysis I was disconcerted to
find that the written sources used some terms as though everyone would
know what they meant. But I didn’t know. Perhaps it was just my relentlessly



frequentist upbringing. (More likely, I didn’t bring the degree of discipline to
my learning that I should have.) But whatever the reason, I got myself tied up
in knots until I found a text that, in straightforward terms, explained the
distinction between probability density and probability mass (or just density
and mass). The authors of all the other texts apparently assumed that their
readers already understood the distinction, or that its meaning was perfectly
obvious.

At any rate, I promised myself that if I ever got a chance to explain those
terms up front I’d do so. And it turns out that they’re not as arcane as they
might be. Figure 1.1 shows an example, one that will be familiar to anyone
with more than a smattering of the basics of traditional statistics.





Figure 1.1 Mass represents an area. Density represents a distance.

Figure 1.1 illustrates two different ways to conceptualize the amount of area
under the curve. The horizontal arrows each point at a wedge that’s at one tail
of the curve. Together, the wedges account for 5% of the curve’s area.
Between the two wedges, and extending up from the curve’s baseline, falls
the remaining 95% of the curve’s area. The probability is 95% that a
randomly selected item will occupy a portion of the area between the two
wedges. That area is termed the mass. R has functions such as dbeta and
dbinom that make it quick and reasonably easy to assemble and analyze
distributions based on both continuous (e.g., height) and discrete (e.g., dice)
data.

Now have a look at Figure 1.2.

Figure 1.2 This curve has one mass: the entire region below the curve.

The underlying data is different from Figure 1.1, but the important point is
that both figures illustrate mass measurements. Figure 1.1 has three areas
with mass: 2.5%, 95%, and 2.5%; Figure 1.2 displays one mass, accounting
for 100% of the distribution. A plot with different underlying data, such as a
histogram with several columns of different sizes, could have several mass
measurements, one for each column.

But in Figure 1.3, although there are 26 individual data points, the probability
of the occurrence of any individual data point is initially unclear.



Figure 1.3 This curve has one mass: the entire region below the curve.

We do not have a value that tells us the width of each column, and
consequently we can’t determine the area covered by each column. Bayesian
analysis often refers to Figure 1.3 as a density distribution. The density will
usually tell you the height of each column relative to the heights of the other
columns and, in turn, that can help you explore the full distribution’s mode.
(The mode rather than the median or mean, because the mode will often—not
always, but often, as you’ll see—represent the maximum a priori estimate in
the distribution.) Figures 1.4 and 1.5 illustrate that you get the same results
from dbeta and dbinom when probabilities are the same, in which the second
and third arguments set the function’s alpha and beta. The more equally
spaced x-values you have in a binomial distribution, the more closely its
shape conforms to a beta distribution that has the same probabilities. There
are 501 values in both Figure 1.4 and Figure 1.5, and it’s nearly impossible to
distinguish them visually.



Figure 1.4 This distribution is drawn using the beta function.

Figure 1.5 This distribution is drawn using the binom function.

The analogous worksheet functions in Excel are BINOM.DIST, BINOM.INV,
BETA.DIST, and BETA.INV. I suggest that you experiment with both the R
versions and the Excel versions to see the effect of the probabilities and
shapes on the distributions. Sample R code for the binomial chart is as
follows:

xvals <- seq (0.005,0.01,by=0.00001)
plot(xvals,dbinom(300,40000,xvals),type=’l’,lwd=3)

and for the beta chart the sample code is

xvals <- seq (0.005,0.01,by=0.00001)
plot(xvals,dbeta(xvals,300,40000),type=’l’,lwd=3)



You’ll learn more about this in subsequent chapters, but for now keep in
mind that you can derive the relative density of each x value shown in a
density distribution by totaling the x values and then dividing each by their
total. This process is termed standardizing (occasionally, normalizing), and
it’s really no more than determining the percentage of total density that’s
accounted for by each x value.

Priors, Likelihoods, and Posteriors
Most basic Bayesian analyses, such as those discussed in this book,
manipulate data that is found in three distributions:

• The prior distribution

• The likelihood

• The posterior distribution

As you’ll see, these three distributions follow one another, both logically and
on the clock.

The Prior
Typically, you specify the prior distribution’s number of observations, their
mean, and their variance. You combine the prior’s data with the data that you
collect from the likelihood, and that combination determines the posterior
distribution. The posterior distribution can become, then, the prior
distribution for the next cycle.

You might run through that cycle several times. It’s helpful to remember that
you do not need to supply raw data, case by case, to the software that carries
out the analysis. R provides functions that enable you to specify the summary
statistics such as count, mean, and variance as of any iteration in the process.

A prior distribution (or more usually just a prior) is a data set that has come
about through standard operating procedures that might, or might not, be
generally known. For example, a company might decide to determine the
type of operating system in use when a potential customer logs onto its site. If



there are three popular operating systems, the company’s website might
decide to mark up a particular product by 5%, another part by 10%, and one
by 15%, depending on the user’s operating system. It would not necessarily
be clear to you, or to anyone for that matter, that the company’s retail prices
were being set in that fashion.

In that case, you or anyone might be entirely justified in assuming that
differences in product performance had everything to do with market forces,
and little or nothing to do with market or sales management. But if you can
get your hands on generally accepted information regarding the products’
performance in light of their revenues, that might be a good place to start
with your prior.

Priors come in different forms. The acquisition of the data in a prior is
normally followed by another acquisition of data, usually termed likelihood.
If a prior has so much information in it that the addition of more data, in the
form of a likelihood, will make little difference to the way the data is
distributed, that’s a strong prior.

If a prior has relatively little data in it—relative, that is, to the amount of data
in the likelihood—that’s a weak prior. For example, the strong prior usually
has so much raw data in it that subsequent data in the form of the likelihood
is swallowed up. The reverse can of course occur.

Both frequentists and many Bayesians have long and fiercely objected to the
apparent subjectivity involved in specifying priors. Mathematicians and
scientists have disagreed, often contentiously, about whether it is appropriate
for an analyst to get directly involved in their specification. This book will
not settle arguments between, for example, Laplace and Keynes. But you
should be aware that theorists have found plenty here to disagree on.

Another aspect of priors to bear in mind is whether a prior is in the same
distribution family as the posterior distribution. If so, the prior is called the
conjugate prior to the likelihood. It’s difficult to complete the Bayesian cycle
of events when the prior and the likelihood belong to different distributional
families and the prior and the posterior are therefore not conjugates.

The noninformative prior also has a place in this structure. Suppose that you
were confronted by a problem that has no generally accepted solution. You
would like to establish a prior before collecting data concerning the problem,



but because there is no generally accepted solution, you want to avoid a
solution based on one. The usual way to do so is to place a constant 1 in the
prior across its range, and that results in a density chart of the prior that
consists only of a straight line. You cannot design a weaker prior than that. It
may well be that the prior doesn’t conform to the way that the world works,
and in fact you wind up choosing an outcome willy-nilly when that’s exactly
what you want to avoid doing.

Some problems are best left alone.

The Likelihood
The second of the three standard, conceptual steps that you take in carrying
out a Bayesian analysis is most frequently termed the likelihood or the data
(although neither term is well-suited to the term step). The data step is taken
after the prior has been defined and structured, and, quite likely, populated.

The rationale for using the term likelihood in this context is a little weak, but
here it is. After outset of the analysis, when the prior has been specified, you
have at least two possibilities: that the prior is true and that the prior is false.
The likelihood gets into matters when you take the prior into account.

Suppose that the prior is true. Then there is a probability of observing an
outcome when the prior is true as well as a probability that applies when the
prior is false. This is where the notion of likelihood comes in. Suppose the
prior has it that a condition is true 90% of the time. Then the probability that
the second step is true is termed the likelihood.

Furthermore, the prior might also have it that the condition is true 80% of the
time. You can calculate the probability that the second step is true, and
what’s more, you can compare those two probabilities to determine which
probability is greater—that is, the maximum likelihood. Hence the term
“likelihood” to specify the likelihood of that second step.

That chain of etymological logic is a little trappy, and plenty of Bayesians
prefer to use the term data rather than likelihood. The posterior distribution is
the result of combining the prior with the likelihood. It’s possible—even
typical—to simply add the prior distribution to the likelihood. The posterior
distribution is often the end point of the three-step process, but not



necessarily.

For example, you might have arrived at a posterior distribution but you
haven’t yet finished the process of data acquisition and compilation. It’s easy
enough to treat the existing posterior distribution as a new prior, and then to
compile that new prior with a new likelihood to generate a new posterior. In
Chapter 4, Figures 4.1 through 4.7 provide an example of that process.

This is an example of the desirability of conjugate pairs, which I discuss in no
great detail in Chapter 4 as part of the beta distribution. Suppose that you
started out with a prior from a normal distribution. If you subsequently found
yourself trying to combine that prior with a likelihood from the uniform
distribution, you might find yourself in trouble. A uniform distribution cannot
successfully be combined as discussed earlier in this chapter with a normal
distribution: they are not from the same family of distributions.

Contrasting a Frequentist Analysis with a Bayesian
Let’s take a look at a fairly straightforward example of how a frequentist and
a Bayesian might go about analyzing the prospects of an election to the U.S.
Senate. The idea here is to give you a sense of the differences between how
they think about the problem as well as differences in the tools that they bring
to bear on it. It’s surprising how complicated a frequentist analysis can be,
even when the research question itself is simple.

This election is not fraught with problems such as tie breaks and hanging
chads; there are only two candidates. The question boils down to which
candidate attracted more votes than the other candidate. A poll of 100 eligible
voters finds that 20% of respondents favor Candidate A—a clear minority.
But is the sample of 100 voters large enough, and is Candidate A trailing by
so much that they might just as well withdraw today?

The Frequentist Approach
This section is not intended to discuss all the procedural niceties associated
with testing a sample mean against a hypothetical mean. That will come later.
(In the meantime, you might want to check out what the e-book made
available by the publisher has to say about t-tests and z-tests.) For now, I just



want to make you aware of some of the differences between the frequentist
and the Bayesian approaches.

Here is how a frequentist might think. The result of the poll, 20% in favor of
Candidate A, represents a sample of the electorate, and as long as the
approved voting procedures are followed, each vote is independent of every
other vote in this sample. In that case, the central limit theorem applies, and
we can regard the sample mean as an observation from an imaginary
distribution: a normal curve.

With that set of data and some assumptions, we can construct a confidence
interval around the 20% poll result. That confidence interval might extend
from, say, a lower boundary of 5% and an upper boundary of 35%, with a
midpoint of 20%. Because of the central limit theorem, we know that if we
conducted the poll many times, Candidate A’s support could range anywhere
from 0% to 100% on all those imaginary polls. But our best estimate of
Candidate A’s support is 20%: the amount returned by the poll that was
actually taken. So let’s build a confidence interval around that 20% point.

The breadth of that confidence interval is a function of two other figures: the
value of Candidate A’s score, 20%, and how confident the analyst wants to
be that the interval captures some criterion value, say, 95%. In other words,
we want to know the frequency of the imaginary sample means that surround
the 20% point and that fall between the lower and the upper limits of the
confidence interval. To get the limits of the confidence interval, we first need
the standard error of the candidate’s poll score, 20%:

Standard error = p / √ π(1 − π) / n

where:

p, in this example, is the proportion of votes forecast by the poll

π is the minimum proportion needed to win

n is the number of sample respondents

And in this case, the standard error equals 0.04.

Now multiply the standard error by the z-scores that represent the 2.5% and
97.5% percentile points in the normal curve. Note that this tells us the
number of standard errors below and above 20% where the limits of the 95%



confidence interval are located. In z-score units, the limits of the confidence
interval are +/− 1.96. When you multiply the standard error by the z-score
units, you get a confidence interval of 0.12 to 0.28. Specifically, 0.20 − 0.8 =
0.12 and 0.20 + 0.8 = 0.28.

So, if Candidate A is the choice of 20% of the voting population (and on the
basis of a single poll that’s our best estimate), he or she should probably pull
out of the race immediately. We are 95% confident that between 12% and
28% of the electorate will wind up voting for Candidate A. Somehow, he or
she would have to boost that 28% up to 50%, and that’s not an easy task.

You can test all this with Excel’s Data Analysis add-in, using its Descriptive
Statistics tool (even though confidence intervals are inferential, rather than
descriptive, tools).

Bear in mind that a test such as the one described in this section is among the
easiest in the frequentist’s inferential toolkit to carry out. But I have not even
mentioned issues such as whether you know the population variance or
whether this sample is large enough to sensibly choose between a t-test and a
z-test, choosing between a directional and a non-directional test, interpreting
the probabilities associated with confidence intervals, and the joint effects of
sample sizes and variances on the resulting probabilities.

And yet it’s the easiest inferential statistical test around. Let’s move on to the
Bayesian version.

The Bayesian Approach
Now, what would a Bayesian analyst do when faced with the same problem
that the frequentist faced at the start of this section? The Bayesian would call
on the R application to run code like the following:

library(rethinking)
grid <- seq( from=0 , to=1 , length.out=1000 )
prior <- rep(1,1000)
likelihood <- dbinom( x = 20 , size = 100 , prob = grid )
posterior <- likelihood * prior
posterior <- posterior / sum(posterior)
poll_means <- sample( grid , size = 1000 , replace = TRUE , prob  = posterior )
PI( poll_means , prob=0.95 )



The code consists of six functions, as follows:

The library function draws R’s attention to the rethinking package, which
contains the code needed to run the PI (percentile intervals) function.

The seq function establishes a sequence of 1000 numbers ranging from zero
to 1, with each number 1 one-thousandth greater than the preceding number.
When populated, this grid will contain the number of sample means that
equal a particular value in the grid.

The rep function establishes a vector of 1000 instances of the numeral 1.

The dbinom function returns to likelihood the probability of (in this example)
observing a value of 1 in a vector of 100 votes that contains 20 ones, with an
intrinsic probability defined by the sequence in grid.

The posterior is initiated by multiplying likelihood by prior.

The posterior is standardized by dividing each likelihood value by the sum of
its values.

The sample function draws 1000 sample means from grid, replacing each
value after it has been sampled, with a probability found in the posterior.

The PI function establishes a 95% confidence interval around the poll’s mean
of 0.2. (Notice that although Excel’s Data Analysis add-in reports half the
width of the confidence interval, the PI function reports the PI limits
themselves.)

When you run the sequence of instructions just given, R responds with the
limits of a 95% percentile interval around the value of x (here, 0.2). With
these data, the percentile interval extends from 0.13 to 0.29, very close to
those produced with the help of Excel, 0.12 and 0.28.

Although the results of the two analyses just given are very close to one
another, they were obtained by two very different methods. Both approaches
require us to deal with an imaginary distribution, but the frequentist’s
distribution is entirely imaginary, whereas the Bayesian distribution is not: it
is a simulation.

The frequentist method relies on the central limit theorem to justify
comparing a sample poll mean with a wholly made-up sampling distribution.



It uses the standard error in that sampling distribution to calculate the size of
the confidence interval. We don’t measure the standard error directly. These
statistics and concepts (the central limit theorem, the standard error of the
mean, and so forth) are frequently shown to be valid, albeit usually by
demonstration rather than by means of formal proof.

It is true that the results of a frequentist analysis are seldom precisely equal to
those returned via a Bayesian analysis, although it is also true that the two
forms of analysis generally return similar results. This outcome is often due
to minor differences in the way that calculus is deployed. (But bear in mind
that no part of this book requires the use of calculus: it’s hidden inside the
black box.) Those differences can also be due to the fact that the analysis
requires sampling in order to create simulated distributions. Frequentist or
Bayesian, much depends on how the sample is taken.

Summary
This chapter has several purposes. First and most important, I wanted to
discuss some terminology that is probably unfamiliar, even in the familiar
context of frequentist statistics. It’s just not feasible to discuss these concepts
without clarifying their meanings in a Bayesian context.

I also wanted to start applying those concepts around a rationale for using
Bayesian statistics. It’s not reasonable to ask you to use a largely new way of
thinking without explaining its purpose. I’m by no means up to that. But now
that we’ve cleared some terminological underbrush out of the way, we can
move on to discussing how concepts such as priors and likelihoods interact
with distributions to bring about useful results.

We’ll take a look at how the prior, the likelihood, and the posterior
distribution work in concert with the binomial distribution in Chapter 2.



2. Generating Posterior
Distributions with the Binomial
Distribution

Bayesian analysis makes use of a variety of tools that are needed for special
situations; for example, the Metropolis algorithm and a type of Metropolis
algorithm called Gibbs sampling. But you can count on most instances of
Bayesian analysis to depend on three structures: the prior distribution, the
data (also termed likelihood), and the posterior distribution. This chapter
discusses how you can make use of the binomial distribution to generate
these structures.

Unfortunately, more than one name is used for each of these structures. I call
the situation “unfortunate” because it complicates already complicated
concepts. For example, data is a term used in Bayesian analysis that is also
often called the likelihood. The prior distribution is often known simply as
the prior, and you’ll also see terms such as beliefs and conjectures used as
synonyms for the prior distribution. In this book I try to keep to the three
terms used in the preceding paragraph: prior, likelihood, and posterior.

Bayesian analysis combines the prior with the likelihood so as to result in a
posterior. It does so by applying Bayes’ theorem:

P(A | B) = P(A) P(B | A) / P(B)

of which both this chapter and the entire book have more to say. For now
though, it’s enough to know this:

• P(A) is the probability that event A occurs

• P(B) is the probability that event B occurs



• P(A | B) is the probability that event A occurs, conditioned on event B

• P(B | A) is the probability that event B occurs, conditioned on event A

This symbol:

|

(often termed a “pipe symbol”) is used in the context of probability analysis
to mean “conditioned on” or “given that” or some similar phrase that alters
the context of the event. For example, you could refer to the event that a
particular person is a registered Democrat as event A, and the event that a
particular person is male as event B. In that case, P(A) might be 40% and
P(B) might be 45%. And P(A | B) would mean the probability that a person is
a Democrat, given that the person is male.

Bayesian analysis usually involves the combination of probabilities in this
fashion, and because probabilities are based on counts of event occurrences,
the analysis is often concerned with the combinations of those counts. That’s
what it means to combine the prior with the data. The prior is a distribution of
counts across different categories. That distribution is frequently a raw
estimate of counts within categories, or the probabilities that arise from those
counts, and is frequently no better than a guess. It’s particularly likely to be a
guess if you are just starting to investigate a particular phenomenon.

Suppose that the year is 2020, and you’re starting to investigate the
prevalence of the COVID-19 virus in the United States. With nothing to go
on but some educated guesses, you might define a prior for the United States’
daily cases as 30,000 existing cases.

When the next count becomes available, you could add to the existing prior
the new cases (the likelihood) to arrive at a posterior. Or if you were working
with percentages you could combine the prior with the data by multiplying
them together—again, reaching a new posterior. When new data becomes
available, that posterior might well become the new prior.

Either way, when you’re basing your analysis on a simple grid
approximation, you’re likely to be working with the binomial distribution—
gets sick versus stays well, wears a mask versus doesn’t, is versus isn’t
hospitalized. (Chapter 4 discusses grid approximation in more detail.) So it
helps to be comfortable with the binomial distribution and the analytic tools



for dealing with it.

Understanding the Binomial Distribution
Several different kinds of distributions, such as the normal distribution—
that’s the familiar bell curve—show the proportion of a population that has
an amount of some attribute, such as height, blood pressure, and miles
traveled in a car for each gallon of gasoline used. For example, “34% of
United States males are between 70 and 72 inches tall. Another 34% are
between 72 and 74 inches.” Both these statements make use of our
knowledge of the normal distribution.

Both Excel and R, along with various other applications, support the use of
several types of distribution, including the normal and the binomial
distributions.

Excel offers support for the use of the binomial distribution mostly by means
of two worksheet functions, BINOM.DIST and BINOM.INV. Their syntax is as
follows:

BINOM.DIST(number_s,trials,probability_s,cumulative)
BINOM.INV(trials,probability_s,alpha)

The BINOM.DIST function returns what’s usually called the distribution’s
probability mass function, or PMF. It’s characterized by the use of a given
number of trials and a given probability of an event, such as 50% for a fair
coin flip. You’ll meet the PMF’s close cousin, the probability density
function, in the next chapter.

Note

Several other distributions, such as the beta, the Poisson, and the
uniform distribution, are important in both Bayesian analysis and in
traditional frequentist methods. This chapter and the next discuss the
binomial and beta distributions, and this book describes additional
distributions as they come up in an analysis.



Figure 2.1 Ten flips of a fair coin don’t necessarily result in five heads
and five tails.

Figure 2.1 shows the binomial distribution in practice. You have a fair coin,
which means that it is as likely to come up heads as tails on a given flip. The
probability of heads (and tails, for that matter) is therefore a constant, shown
in cell B2 of Figure 2.1. (That’s the reason for the use of the term binomial,
by the way. The bi prefix means “two” and the suffix nomial refers to
“names,” and here we have two names: heads and tails.)

And although you’re using a fair coin, that doesn’t necessarily mean that
every set of ten flips results in five heads and five tails. Just sheer luck, or
differences in how you strike the coin with your thumbnail, or how long you
let the coin hang in the air before you catch it, or any of many other
unmeasured variables, can result in a set of ten flips with more or fewer than
five heads.

So there are 11 possible outcomes in this demonstration, ranging from 10
heads (and thus zero tails) to zero heads (and thus 10 tails). The laws of
probability tell us how often you’ll get 10 heads in 10 flips of a fair coin, 6
heads in 10 flips, 2 heads in 10 flips, and so forth. Excel has a function that
tells you what those frequencies are: Excel supplies the logic, and you supply



the specifics.

The function is BINOM.DIST, and the function’s syntax is as follows:

BINOM.DIST(number_s,trials,probability_s,cumulative)

where:

• number_s is the number of successes: here, the number of times the coin
comes up heads

• trials is the number of instances: here, the number of flips, or 10

• probability_s is the underlying probability of success: here, with a fair
coin, that’s 50%

• cumulative, if FALSE, tells Excel to return the probability of the
associated number of heads only. If TRUE, it embraces all the
probabilities of smaller numbers of successes, plus the current instance.
So, if cumulative is TRUE, BINOM.DIST returns the cumulative
probability of three heads as that of zero heads plus that of one head plus
that of two heads plus that of three heads.

Notice in Figure 2.1 that cell E5 contains this formula:

=BINOM.DIST(B5,$B$1,$B$2,$B$3)

So:

• The number of successes—that is, the number of heads—is in cell B5

• The trials (here, the number of flips) is in cell $B$1

• The probability of getting heads on any given flip of the coin is in cell
$B$2

• The value that determines whether to return the cumulative probability is
in cell $B$3

Cell B5 is shown with a relative address so that when you copy from E5 into
the range E6:E15, the address B5 will adjust its row accordingly, from 5 to 6,



from 6 to 7, and so on. Cells B1 through B3 are shown with absolute
addressing so that the addresses will not change as the formula is copied and
pasted into E6:E15.

In Figure 2.2, notice that cell B3 contains FALSE, and therefore cells E5:E15
do not show cumulative probabilities but instead show the probability
associated with each outcome.

Figure 2.2 BINOM.DIST’s fourth, cumulative argument is not optional but
required.

For example, in Figure 2.2, cell D9 shows the value 1.07. Allowing for a
small amount of rounding error due to the display format, that value is the
total of the values in cells C8:C9 in Figure 2.2. That is, it’s a cumulative
probability for the zero-heads instance of 0.01% and the one-heads instance
of 0.98%.

Keep in mind that the results discussed in this section are not determined
solely by coin flips. You would get the same results by pulling a card at



random from a new deck and scoring a win if it’s from a black suit and a loss
if it’s from a red suit. In each case there are two possible outcomes, a heads
or a tails, a black card or a red card. There are 11 possible combinations: ten
of red and zero of black, nine of red and one of black,…, zero of red and ten
of black. Each combination has a particular long-term expected probability.

It is the latter probability that BINOM.DIST returns: in Figure 2.2, that’s 4.39%
in cell C10 for eight heads in ten flips (and also in cell C16, because this is a
symmetric distribution—so, the probability of eight heads in ten is the same
as the probability of two heads in ten). BINOM.DIST does not ask you how
many sets of ten flips each you want to simulate. That’s because its results
are long-term expectations. You might repeat your ten flips hundreds of times
without getting exactly 4.39% overall for eight out of ten, but you’ll start to
get very close once the total number of sets, of perhaps ten flips each, gets
large enough to achieve a stable outcome.

For a meaningful number of reasons it’s useful to know the cumulative
percentage of successes: for example, the percentage of flips with zero heads,
plus the percentage of flips with one head, with two heads, and so on. You
can get the cumulative probability by setting BINOM.DIST’s fourth argument to
TRUE. You can also use a running total. If you have the raw percentages on
the worksheet, as in cells C8:C18 in Figure 2.2, then you might add this
formula in D8:

=SUM($C$8:$C18)

and drag it down through D9:D18. Figure 2.3 shows the results in charted
form, with the raw percentages in the Column format and the cumulative
percentages in the Line format.



Figure 2.3 The cumulative probabilities are more useful when they’re
charted.

Understanding Some Related Functions
Excel has some functions that are closely related to BINOM.DIST. I’ll mention
them here, even though the concepts I’ve discussed in this chapter have
largely the same effect as they do when used with those other functions.

Excel offers a function named BINOM.INV, which returns the inverse of the
BINOM.DIST) function. BINOM.INV is useful in acceptance sampling, helping
both a buyer and a seller decide whether a full lot of goods falls below a
negotiated criterion for percentage of defects. Compare the syntax of these
two Excel functions:

BINOM.DIST(number_s,trials,probability_s,cumulative)

BINOM.INV(trials,probability_s,alpha)



If you compare the argument list for BINOM.DIST to that for BINOM.INV, you’ll
notice that:

• You need to supply both functions with the number of trials (trials)
and the long-term probability of the event (probability_s). In the
example that this chapter has discussed, trials is 10 coin flips and
probability_s is 0.5 or 50% because our assumption has been that you’re
using a fair coin.

• You also need to supply the cumulative argument to BINOM.DIST.

• The main differences between the two functions are as follows:

• You supply number_s to BINOM.DIST—that’s the number of successes
in trials—and it returns alpha, the probability associated with
number_s, given the other arguments.

• You supply alpha to BINOM.INV and it returns number_s, again given
the other arguments.

So:

=BINOM.DIST(4, 10, 0.5, FALSE)

returns 0.2051, and

=BINOM.INV(10, 0.5, 0.2051)

returns 4.

You’ll find that functions that deal with several other distributions, including
the beta, gamma, chi squared, t, F, log-normal and normal, have similar
distinctions between their DIST and INV forms in Excel.

Note

It makes sense that you would need to specify a cumulative argument
for the BINOM.DIST function, because you might want either the
probability of a particular number of successes (set cumulative to
FALSE) or the sum of the probabilities for a range of successes (set



cumulative to TRUE). It does not make sense that you would want a
cumulative total of the numbers of successes—at least, not in the
context of a probability analysis. There are much easier ways in
Excel to find the total of consecutive integers, such as = 1 + 2 + 3 +
4.

You also might notice that Excel offers a BINOMDIST function (note the
absence of the period in the function name) and a CRITBINOM function. These
are legacy functions from early versions of Excel. The Help documentation
states that the current versions might be more accurate than the functions’
legacy counterparts.

Let’s take a closer look at the results in E5:E15 in Figure 2.3. Cell E11 shows
that the probability of getting four heads in ten flips of a fair coin is 20.51%.
Suppose that you tried out this example in reality and got 20.51% for five
heads in ten flips and 24.61% for four flips of ten. That’s the reverse of what
you expect: with a fair coin, you expect four heads in 20.51% of ten flips and
five heads in 24.61% of ten flips (see cells E9:E10).

Does that mean that you don’t really have a fair coin? That the long-run
average for heads with this coin is less than 24.61%?

Most reasonable people would disagree with that. For them, the evidence
simply wouldn’t be strong enough to reject the hypothesis that it’s a fair, 50%
coin. Both intuitively and mathematically, you expect to get three, four, six,
or seven tails in 64.45% of ten-flip tests. You’d likely be more comfortable
chalking up the extra tails flips (or the extra heads flips) to random chance
than to suspect the coin of being a ringer.

But you might reach a different conclusion. What if your trial results favored
not four or five heads in ten flips but three heads in ten? A fair coin will
behave that way only 11.72% of the time (see cell E12 in Figure 2.3). To you,
that might make a difference. A result that’s two flips away from a fair coin’s
long-term expectation might be good enough for you to suspect that someone
had laid hands on a counterfeit coin.

You might decide that a difference of two flips out of ten, three heads instead
of five heads in ten flips, is plenty big enough to make you doubt the coin’s
fairness. If you prefer to think in terms of percentages rather than raw
numbers, you might decide that a difference of 12.89% (that is, 24.61% less



11.72%) deserves closer attention than 4.10% (that is, 24.61% less 20.51%).

If there were something at issue more consequential than a coin flip—for
example, whether a vaccine is safe or toxic—then you would doubtless want
to buttress the evidence with related empirical research and cost/benefit
analyses. But at root, the decision is subjective and rests on how you regard
the costs of a bad choice in light of the benefits of a good one. I’ll return to
this issue later when we look at A/B tests in Bayesian analysis.

But first it’s necessary to show how to run binomial tests in R rather than in
Excel. That will ease the subsequent transitions when we reach the point of
quadratic approximations and Markov Chain Monte Carlo (MCMC).

Working with R’s Binomial Functions
For consistency with functions that work with distributions other than the
binomial, R tends to build more functionality into its binomial analyses more
finely than does Excel. Recall that Excel has two primary binomial functions:
BINOM.DIST, which returns the probability associated with different numbers
of successes, and BINOM.INV, which returns the number of successes
associated with different probabilities.

In contrast, R offers these binomial functions:

• dbinom(x, size, prob, log = FALSE)—R’s version of BINOM.DIST. The
“d” in dbinom stands for “density.” The first, or x, argument to dbinom
can be a single value; then, dbinom returns the probability of successes
associated with that grouping—say, four heads of ten flips. If x is
instead a vector, as shown in the next section, then dbinom returns a
vector of probabilities, each associated with a value in x.

• pbinom(q, size, prob, lower.tail = TRUE, log.p = FALSE)—R’s
version of BINOM.DIST, but the probabilities returned are cumulative
sums. Whereas BINOM.DIST might return 3%, 4%, and 5% as the
probabilities of Event 1, Event 2, and Event 3, pbinom might return 3%,
7%, and 12%, respectively. In contrast, Excel relies on you to use
worksheet functions to convert BINOM.DIST’s event-specific probabilities
to cumulative sums of probabilities. BINOM.DIST’s cumulative argument
is not optional. pbinom has a lower.tail argument that enables you to



accumulate from the top down instead of from the bottom up.

• qbinom(p, size, prob, lower.tail = TRUE, log.p = FALSE)—R’s
version of BINOM.INV. You supply p, a probability or vector of
probabilities. That is qbinom’s first argument. You also supply size (the
number of trials, such as ten flips) and prob (the probability of an event,
here .5 for a heads). R returns the cumulative number of successes such
as [0, 1, 2] and so on, associated with the success rate represented by
each quantile. (Yes, this is confusing. I discuss it further in later sections
of this chapter.)

• rbinom(n, size, prob)—Excel has no built-in version of this function.
It returns random values from a binomial distribution

Using R’s dbinom Function
To use dbinom effectively, you must be able to prepare and pass a vector of
values to the dbinom function. Each value represents some number of
successes: that is, zero heads in ten flips, one head in ten flips, and so on. The
dbinom function uses this vector, in conjunction with two more arguments, to
return the probability associated with each number of successes.

For example, enter this command in R’s console, just right of the > command
prompt:

successes = seq(0, 10, by = 1)

That command establishes the vector of the number of successes or flips that
result in a heads. R responds by showing another command prompt on the
next blank line in the console. Enter this command to see the vector you just
created:

successes

R responds with the contents of the vector successes:

[1] 0 1 2 3 4 5 6 7 8 9 10

In this case, the seq function created the vector with eleven values, because it



starts with zero as its first value and ends at 10. The number in square
brackets at the left end of the output indicates the index of the value in the
vector immediately to its right. So, if R had room for only five values in the
first row of the output, the second line would begin with [6]. If you’re
displaying the output in the R console rather than writing it to a file, the room
that R has available is dictated by the width of the console as you’ve set it on
the screen.

Now, enter this command in the console:

probabilities=dbinom(successes,size=10,.5)

This command passes the contents of the vector successes to the dbinom
function’s first argument. The size argument is set to 10 in the argument list:
it sets the number of trials to 10—in our example, a trial is a coin flip, so ten
trials or flips. And the third argument gives the long-term expectation that the
probability of a flip of this coin returns heads is 0.5, or 50%.

You can return the probability of each number of heads (that is, the number
of successes) by entering this command in the console:

probabilities

You’ll get these results:

 [1] 0.0009765625
 [2] 0.0097656250
 [3] 0.0439453125
 [4] 0.1171875000
 [5] 0.2050781250
 [6] 0.2460937500
 [7] 0.2050781250
 [8] 0.1171875000
 [9] 0.0439453125
[10] 0.0097656250
[11] 0.0009765625

If you copy and paste these figures from the console and into an Excel
worksheet, you can compare them with the results of the BINOM.DIST function
that we looked at earlier in this chapter.



Tip

You will probably find it convenient to use Excel’s Text-to-Columns
command (on the Ribbon’s Data tab) to remove the bracketed indices
and convert the text format used on R’s console to a Percent format
provided by Excel.

If you have followed the instructions given in this chapter closely, you will
see that R’s dbinom function returns the same probabilities for different
indices as does Excel’s BINOM.DIST function.

Note

You might find it easier to use R’s write.csv function to send the
results of the dbinom function to a CSV file, and open that in Excel.
This avoids the problems associated with converting R’s text output
to percentage values in Excel.

R’s dbinom function also recognizes a log argument. By default, its value is
FALSE. So, both these versions return 0.2051, the actual long-term
percentage:

dbinom(4, 10, .5, log = FALSE)
dbinom(4, 10, .5)

If you set it to TRUE, the function returns −1.584364:

dbinom(4, 10, .5, log = TRUE)

Using R’s pbinom Function
If you use the same arguments as above but with pbinom rather than dbinom,
you get cumulative probabilities. If you establish a vector named successes,
as in the previous section, then this function:

pbinom(successes,10,.5)

returns this vector:

 [1] 0.0009765625



 [2] 0.0107421875
 [3] 0.0546875000
 [4] 0.1718750000
 [5] 0.3769531250
 [6] 0.6230468750
 [7] 0.8281250000
 [8] 0.9453125000
 [9] 0.9892578125
[10] 0.9990234375
[11] 1.0000000000

Note that if you keep a running total of the values returned by dbinom, you get
the values returned by pbinom.

Cumulative probabilities are important in the field of acceptance sampling,
where you often want to know the probability of one defective unit, plus the
probability of two such units, plus the probability of three, and so on through
the limit of the trials. Earlier in this chapter I noted that pbinom takes an
argument called lower.tail. Here’s the rationale. Conventionally, the first
argument to both dbinom and pbinom is termed, and thought of, as the number
of successful trials—for example, only three heads out of ten flips.

But when you’re interested in the number of failed trials in a production lot,
you’re therefore also interested not in the cumulative instances of 1, 2, 3, etc.
successes, but in the cumulative instances of 10, 9, 8, etc. failures.

Visualize the vector of probabilities returned by pbinom. In the normal state of
affairs, you’re interested in counts of successes, and you start accumulating
the probabilities with the count of instances at zero successes and end
(perhaps, as in our example) at ten. You start accumulating at the lower end
of the distribution, and the lower.tail argument is (and defaults to) TRUE.

But when you’re interested in the failures, it’s convenient to accumulate
counts of failures, and you accomplish that by changing the value of
lower.tail to FALSE from its default value of TRUE. Then, the
accumulation begins at the upper end rather than the lower end of the
distribution.

And there’s one more argument to pbinom, log.p. Setting it to TRUE causes
pbinom to return the log of the probabilities rather than the raw values, so that
they can be added rather than multiplied—among other conveniences.



Using R’s qbinom Function
The qbinom function uses this syntax:

qbinom(p, size, prob, lower.tail = TRUE, log.p = FALSE)

Its equivalent in Excel is

=BINOM.INV(size, prob, p)

where

• p is the probability associated with a given number of successes (for
example, the probability of scoring eight heads in ten flips)

• size is the number of trials (for example, the number of coin flips in one
set of flips)

• prob is the probability inherent in the event (for example, 0.5 for the flip
of a fair coin)

Figure 2.4 illustrates the relationship between the number of defective items
found in a sample of 100 items and the percent defective to be expected in a
full lot of the items.



Figure 2.4 The result of R’s qbinom function is interpreted by Excel
documentation as the smallest value larger than a criterion. Here the
criterion could be the maximum number of defects in a sample before
the entire lot is rejected.

The vertical axis in Figure 2.4 represents the number defective items found in
the sample. The horizontal axis represents the proportion of items in the full
lot that you can expect to be defective. Again, this sort of analysis is more
frequently seen in acceptance sampling than other procedures. Let’s have a
look at how that might work.

Using R and qbinom in Quality Testing
I want to explore the topic of acceptance sampling and the qbinom function in
more detail here because many people, myself included, find its logic a little



circuitous at first. Looking at the function and its results from outside the
Bayesian framework can help clarify that logic.

Consider this situation: You have negotiated the purchase of a complex piece
of machinery to be installed in your own product as part of the final assembly
process. The company that will manufacture the component for you has a
reputation for quality merchandise, but this will be its first experience making
the component in question. The principals agree that you may return the first
shipment as defective if, using conventional acceptance sampling tools, you
find that the first shipment of 100 units contains 5% or more that are
defective.

Those tools mean that you will draw a unit at random from the shipment and
test it. You’ll repeat that process until the maximum acceptable number of
defectives is reached. At that point, if it comes about, testing stops. You don’t
want to test all 100 units if you don’t have to because it’s a time-consuming,
expensive process. Furthermore, you’re in the business of assembling end-
user products, not shipping a carton of 100 units back to their manufacturer
because one unit too many was defective.

Using qbinom
How do you know if you have reached that testing criterion and should stop
testing? You could test the entire shipment, but that can cost time and money,
and is self-defeating if you must use destructive testing. Instead, use R and
qbinom, or use Excel and BINOM.INV. Establish the boundaries of the
probabilities in R using this code:

> p = seq(0, .15, by = .01)

You can see the contents of the vector simply by entering its name:

> p
 [1] 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
  [9] 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15

Then run these commands in R:

> size = 100



> prob = .05
> qbinom(p,size,prob)

Using the syntax in R’s documentation helps make the R code more self-
documenting, but of course you could employ this command if you’d rather
use the actual numbers for size (that is, the number of components sampled)
and prob (that is, the hypothetical probability that will cause you to return the
shipment to its manufacturer):

> qbinom(p,100,.05)

And R responds with these results:

[1] 0 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3

These are the values of the binomial distribution that are associated with the
probabilities you stored in the vector named p. As you’ll see in the next
section, in Figure 2.4, Excel returns the same results via its BINOM.INV
function.

Using Excel and BINOM.INV in Quality Testing
In Figure 2.4, notice that the second through fourth values returned by
BINOM.INV in B3:B5 each equal 1, and the fifth in B6 equals 2. That means
that if you observe even one defective unit in the first four you test, you can
conclude that the full lot has at least 5% defective units.

If you proceed to test the fifth unit, the rejection criterion increases from one
to two. The criterion remains at two until the result of BINOM.DIST reaches
0.258 in cell A14. The rationale is that when the result of BINOM.DIST in
column A is greater than the criterion in column C, the normal, expected
proportion of defective units is greater than the comparison in column C. In
the third row, for example, 0.037 in column A is greater than the 0.01 in
column C. In that case, the criterion in column B does not change (here, from
B3 to B4).

But in row 5, the 0.037 in A5 is greater than the comparison value 0.03 in C5,
and so the criterion value in column B increments, from B5 to B6.

It’s important to realize that the value returned by both BINOM.INV and qbinom



depends on three numbers: the sample size (Excel calls this trials; R calls it
size), the hypothesized proportion of successes (Excel calls this
probability_s; R calls it prob), and the vector of probabilities that represent
your range of interest (Excel calls this alpha; R calls it p).

Here are the steps to run the analysis in Excel. Enter this sequence in, say,
C2:C17:

0.00, 0.01, 0.02 … 0.15

This is the same vector that you assigned to the variable p in the previous
section.

In Excel, you can get the same results as using qbinom, with this formula
entered in cell B2:

=BINOM.INV($D$2,$E$2, C2)

Copy and paste it down into B3:B17. It assumes that the number 100 is in
cell E2 and the number 0.05 in cell D2. Notice that the results of the
BINOM.INV function are the same as those returned by qbinom in the previous
section.

To reconcile the arguments as they’re used in this example:

• R’s documentation refers to the number of components to test as size.
Excel’s documentation uses the term trials. In this example, its value is
100.

• R’s documentation refers to the value that you’re testing for as prob.
Excel’s term is probability_s. In this example, its value is 0.05.

• R’s documentation refers to the vector of probabilities as p. Excel’s term
is alpha. In this example, it’s a vector held in R’s memory, and in Excel
the same sequence of decimal fractions might be in C2:C17, as in Figure
2.4.

Using R’s rbinom Function
You can use R’s rbinom function to establish a vector of random values based



on a binomial distribution. You need to supply a specific number of random
values (n), the number of instances of trials in each set (size), and the success
probability of an individual trial (prob), leading to this syntax:

rbinom(n, size, prob)

The rbinom function is useful when you are establishing priors by means of
more complex methods than those that use a simple binomial distribution.

Grappling with the Math
To this point, this book has discussed the distribution of values of variables
that are usually described as “nominal” or “categorical.” The principal issue
to bear in mind is that categories have firm boundaries. The quantity of
defective items in a sample is a good example: If a sample contains five
defective items, two of those items might contain one or more true defects
and one item with defects that don’t matter very much. You still have three
defective items, not two-and-a-quarter defective items. If you have a carton
of items with defects, it might contain 12 items. The carton won’t be thought
of as containing 11 truly defective items and an item that’s only half
defective. (But a branch of acceptance sampling does concern itself with
types of defects, some of which might be cause for rejection and some not.)

Continuous variables are another story entirely. A continuous variable can
have a distribution with values, and those values can have frequencies of
occurrence and therefore percentages of occurrence. Temperature, height, and
cholesterol level are continuous variables. Seventy-two and a half inches is a
perfectly acceptable value for human height. Seventy-two and a half
defective items is not an acceptable value for a count of defects in a
production lot: that half-a-defect spoils the count. One item with a partial
defect counts as a defective item, not half a defective item.

Although this distinction restricts the range within which categorical
variables are appropriate for analysis, the distinction makes them easier to
analyze. The frequency of items in a category is merely a count of its items.
To get its probability of occurrence, just divide the category count by the size
of the full sample.



Matters are different with continuous variables. Figure 2.5 shows the
distribution of a normal curve, from −1.0 to +1.0 z-scores.

Figure 2.5 Somewhere along the line, calculus must come into play in
the analysis of the distribution of a continuous variable.

If each column represented the frequency of occurrence of a value in a
categorical variable, the line between the top of each column and an adjacent
one would be straight, and the count of each category would be exactly
proportional to the column’s height plus the triangular area at its top.

But if Figure 2.5 represents a continuous variable, then the line between the
tops of adjacent columns is an arc, not a straight line. That amount of
curvature in a segment of that line depends on its location along the range of
the values of the continuous variable, as well as on the distance between
columns. To get an accurate estimate of the proportion or frequency of cases
anywhere along the distribution of a continuous variable, we need to apply



integral calculus. Fortunately, that calculus is hidden inside functions that are
analogous to the BINOM functions in Excel and the binom functions in R. I’ll
explore that issue in greater detail (without resorting to an integral symbol or
a differential) when we take up the beta distribution in Chapter 8.

In the meantime, nominal variables enable us to avoid calculus entirely,
whether hidden inside other functions or not. It’s occasionally useful to be
able to calculate the binomial distribution without resorting to R’s dbinom or
Excel’s BINOM.DIST function. (“That’s a ridiculous figure I’m getting from
BINOM.DIST; I’d better take it apart and see what’s going on.”) Figure 2.6
shows how that’s done, without resorting to anything more complicated than
an exponent.

Figure 2.6 The “nCr” calculation is at the heart of the binomial
distribution.

The “nCr” formula is usually spoken as “n things taken r at a time, or as “n



choose r.” It returns the number of ways to combine n things into groups of
size r. So, three people—Alice, Bob, and Carol—can be paired up in three
ways: Alice and Bob, Bob and Carol, Alice and Carol. You can get that count
using the nCr formula:

nCr = n! / ((n − r)! r!)

where we want to know the number of combinations of size r can be made of
n elements. The exclamation point in that formula means factorial, by the
way. The expression 4! means 4 × 3 × 2 × 1. (The exclamation point is
usually pronounced “bang,” as in “four bang.”)

So, with three elements and groups of size 2, we have:

3! / ((3 − 2)! × 2!

or 6 / (1 × 2), or 3. That’s not yet what we’re after, though. As Figure 2.6
shows, we have to put three more quantities into the picture:

• p, the probability of a given event. If you’re working with coin flips, the
probability of getting a named side of the coin is 0.5; if a deck of cards,
1/52; if a six-sided die, it’s 16.67%. On Figure 2.6, p is in cell B2.

• n, the number of events, in cell B1. Suppose that you want to assess
whether a coin is fair. You decide that an experiment with the coin will
consist of ten flips, after which you will record the number of times the
coin comes up heads. You repeat the experiment with another ten flips,
and yet again. The number of events is ten—ten flips of the coin.

• r, the number of successful events. If you flip a coin ten times and get
six heads, r equals 6.

Summary
Let’s move on to the beta distribution. As you’ll see, the beta has both crucial
similarities and crucial differences vis-à-vis the binomial. The binomial, as
you’ve seen in this chapter, is characterized by what tend to be naturally
occurring boundaries between a variable’s values.

A beta distribution does not have boundaries of that sort: it is continuous



rather than discrete. This aspect of a beta distribution has implications for the
functions that you choose (pbeta instead of pbinom, for example) as well as
the inferences that you can draw from their use. You’ll find that most of the
capabilities that you can find in the binomial family are replicated, bearing in
mind the differences between the two types of distribution, in the beta family.



3. Understanding the Beta
Distribution

The previous chapter discussed the binomial distribution and how to use
Excel’s worksheet functions, as well as R’s family of binomial functions, to
explore the inferences that you can make from those functions.

This chapter explores some of the reasons why you might decide to use a
distribution other than the binomial distribution as your point of reference.
That’s the beta distribution.

In a variety of ways, the beta distribution resembles the binomial. For
example, both distributions lend themselves well to the analysis of events that
can take on one of two values, such as heads or tails, true or false, survives or
fails to survive. One consequence of analyzing that sort of event is that you
wind up with discrete categories—categories that you can easily count.

For example, you might want to analyze the fairness of a coin—that is,
whether the coin is as likely to come up heads as it is to come up tails.
Simply as a consequence of the way that the event is measured, you
inevitably wind up with outcome categories, such as zero heads in ten flips,
one head in ten flips, two heads, and so on. It’s unusual even to take account
of a flipped coin landing and staying on its edge, so your categories would
not include five and a half heads in ten flips.

And yet, if you were recording LDL cholesterol measures instead of coin
flips, you would want to record them with as fine-grained a metric as
possible, in order to take advantage of the fact that your measuring
instrument is much more sensitive than a coin. You expect to learn more if
you can record and study a record that measures a subject’s LDL as 80.55
rather than between 80 and 85.

But so fine-grained a metric isn’t of much use if your software can’t handle



it. While the binomial distribution usually can’t, the beta distribution can, and
this chapter goes about the business of explaining how.

Establishing the Beta Distribution in Excel
Let’s start, as the prior chapter did, by inventorying the pertinent worksheet
functions in Excel.

Note

I make that suggestion because it’s hard to find a computer that
doesn’t have Excel installed, and because so many users got their
first taste of discrete distributions using Excel’s functions.
Familiarity breeds confidence.

Just two functions in Excel have to do with the binomial distribution (setting
aside legacy functions): BINOM.DIST, which returns information about the area
under the distribution’s curve, and BINOM.INV, which returns information
about the categories that comprise the curve.

The pattern that Excel uses for the beta distribution is similar. Excel offers a
BETA.DIST function, which returns an area associated with a quantile, and a
BETA.INV function, which returns information about the quantile associated
with an area.

Note

A quantile is a point along a scale that divides a probability—such as
an area under a curve—into equal quantities. Familiar quantiles
include percentiles and quartiles. Assuming that the values are sorted
in ascending order, the first percentile is the point on a scale below
which you find the lowest 1% of the values. The second percentile
captures an additional 1% of the values. The first quartile separates
the lower 25% of the values from the upper 75%. The median divides
the area into two 50% halves.

BETA.DIST and BETA.INV are inverses of one another, in a manner that’s
similar to how BINOM.DIST and BINOM.INV are inverses of one another. So, to
illustrate, consider this formula:



=BETA.DIST(0.47,18,31,TRUE)

which specifies the probability of an event at 0.47 (that is, 47%): the long-
term expected probability of the event at 47%, the number of observed
successes for that event at 18, and the number of observed failures at 31, and
requests the total of all probabilities from quantiles of 0.0 to 0.47 (that is, the
function’s fourth, cumulative argument is TRUE). The function’s result is
0.9292. The cumulative probability of 0 to 14 successful events is 92.9%.

Now consider the inverse of the previous formula:

=BETA.INV(0.9292,18,31)

which supplies as arguments to the BETA.INV function the cumulative
probability of 0.9292 and the number of successes and failures (18 and 31). It
returns 0.47. So the relationship between BETA.DIST and BETA.INV is inverse.
You supply a quantile to BETA.DIST and it returns the associated probability.
You supply a probability to BETA.INV and it returns the associated quantile.

Despite the close relationship between the BETA.DIST and the BETA.INV
functions, the analogy isn’t perfect. BETA.INV does not take a cumulative
argument. BETA.DIST does, and it is required: there’s no default value for
cumulative in BETA.DIST.

Furthermore, both the BETA.DIST and the BETA.INV functions take the number
of successes (e.g., heads) and the number of failures (e.g., tails) as arguments.
But both BINOM.DIST and BINOM.INV take the number of successes (e.g.,
heads) and the number of trials (e.g., heads plus tails) as arguments. It’s hard
to see how it makes a difference, and Microsoft could have chosen to use the
same pair in each function if only for consistency, but it didn’t and now you
know.

Comparing the Beta Distribution with the Binomial
Distribution
Perhaps the most salient distinction between the binomial and the beta
distributions is the nature of the quantiles that divide the total area under the
curve into sectors. In a binomial distribution the sectors are discrete and



range in relative size from relatively large (quartiles segment the total area
into fourths and the median—or 50th percentile—divides it in half) to
relatively small (percentiles segment the total area into one-hundredths). A
beta distribution, in contrast, can be established, in theory, by dividing an
infinite number of quantiles so that they define an infinite number of
segments.

That’s bad news and it’s good news. The good news about the beta
distribution is that you can pinpoint exactly where in the distribution any
given value falls, down to the most minute degree of accuracy that your
measuring stick provides you. In contrast, the binomial distribution doesn’t
necessarily tell you the particular quantile that a given value belongs to.

For example, refer to Figure 2.4. There you can see that a sample with only
one defective unit might belong to the 0.01, the 0.02, or the 0.03 quantile.
You can use the beta distribution to pinpoint an event’s quantile to whatever
degree of accuracy you want. More accuracy isn’t always necessary, of
course, but it’s good to have it available when it’s needed.

The bad news—and it’s really not so bad—about the continuous nature of the
beta distribution’s quantiles is that a little extra computing is needed. Let’s
have a look at some of the math behind each distribution. First, a review of
what Chapter 2 has to say about how the binomial is calculated.

Two figures are particularly important in considering any probability
distribution, whether binomial, beta, normal, Poisson, whatever: the
probability density function (PDF) and the probability mass function (PMF).

As Figure 2.6 shows, the formula for the binomial distribution’s PDF is

nCr,  *  p ^ r * [(1 – p) ^ (n - r)]

where:

• n might be the number of times you flip a coin.

• p might be the probability of getting a heads.

• r might be the number of times you actually get a heads in n flips.

• nCr is the number of combinations of n events, taken r events at a time.



Excel provides this with a convenient function: =COMBIN(n,r).

So the first factor in the equation, nCr, determines the number of ways that n
events can be combined into groups of events each of size r. For example,
there are 1,330 ways to combine 21 coins into groups of three heads each:
=COMBIN(21,3). And the second and third factors in the equation, p ^ r and
[(1 – p) ^ (n - r)], determine the probability (p) of the occurrence of
several events and the probability of the non-occurrence (1 – p) of the same
number of events. Because it’s assumed that the events are independent of
one another, their joint probability is equal to their product. So, p ^ 3 = p *
p * p and, for their probability of non-occurrence, (1 – p) ^ 3 = (1 – p) *
(1 – p) * (1 – p).

Note

Bear in mind that all the events in a given quantile have, by
definition, the same probability of occurrence; therefore, the sets of
coin flips that comprise the 0.3 quantile have the same probability of
heads—that is, 30%.

Now compare the formula for the binomial distribution with the formula for
the beta distribution’s PDF, which is given here:

PDF = [p ^ (α - 1) * (1 – p) ^ (β - 1)] / beta(α, β)

I hate to do this to you but it can’t be helped. I’ve put it off as long as
possible, but at this point we have to face the fact that this sort of analysis has
some serious terminological deficiencies. They won’t get in your way when
you want to analyze data, but they are roadblocks to understanding what’s
going on inside the black box. Just keep in mind that Excel and R take care of
this sort of thing for you.

First: The PDF formula just given returns a beta distribution. It tells you the
quantity of observations you can expect when your trial results fail to follow
the long-term expectation perfectly—for example, how frequently you can
expect twelve tosses of a fair coin to come up with four heads and eight tails
instead of six of each.

Fair enough, but the beta distribution uses something called the beta function,



which is the final part—that is, the denominator—of the formula for the PDF:

beta(α, β)

So not only is the distribution named beta, the function is named beta and one
of its two arguments is named beta. The two arguments to the beta function, α
and β, are as they appear in the PDF function’s numerator. That is, α is the
number of successes and β is the number of failures. If you were analyzing
the rolls of a single six-sided die, you would expect it in the long run to come
up three 1/6 (that is, α) of the time and some other value 5/6 (that is, β) of the
time.

And what is the beta function? It uses the gamma function. Gamma is
represented by the Greek letter Γ in this formula:

beta(α, β)= Γ( α ) * Γ( β ) / Γ( α + β )

The binomial distribution’s PDF uses the nCr formula to determine the
number of combinations of successes in a series of trials. The nCr formula
does so by making use of simple factorials, but simple factorials are defined
only for integers, whereas the hallmark of the beta distribution is that its
quantiles can represent fractional quantities. The Γ function gets us past that
hurdle. (The Γ function is part of Excel’s toolkit in the form of the GAMMA
function.)

Figure 3.1 shows that the raw number formula for the beta distribution’s PDF
is equivalent to Excel’s BETA.DIST function.



Figure 3.1 It’s a lot easier to use Excel’s BETA.DIST function than to
build the analysis from scratch.

Figure 3.1 requires some explanation. The main point is that the beta
distribution’s PDF, as calculated by Excel’s BETA.DIST function, returns
precisely the same results as does the formula for the PDF. Compare the
function’s results shown in the range B5:B15 with those in F5 to F15: they
are identical.

I have named some important cells in the worksheet shown in Figure 3.1 to
make the function and the formula a little easier to follow. The names and
their references are

• Wins: Cell B1. This gives one of two values in a binomial distribution. I
have labeled it Wins but it could just as easily be Survives or Defective.
The value in cell B1 in Figure 3.1 is 10.

• Losses: Cell B2. This gives another of two values in a binomial
distribution. I have labeled it Losses but it could just as easily be Fails to
Survive or Acceptable. The value in cell B2 in Figure 3.1 is 7.



• Quantiles: Range A5:A15. This range contains a series of quantiles, in
this case each representing one tenth of the area under the curve,
boundaries between two adjacent areas that represent areas of equal
sizes. Other quantiles that you might see or use are quartiles, quintiles
(somewhat rarely), and percentiles. The values in the range A5:A15 are
0, 0.1, 0.2, … , 0.9, 1.0.

• Betadist: Range B5:B15. This range contains Excel’s principal function
to return the PDF, BETA.DIST0. There are 11 instances of the following
function in B5:B15:

= BETA.DIST(@Quantiles,Wins,Losses,FALSE)

• Numerator: Range D5:D15. The values in this range are analogous to
those in the binomial distribution’s PDF. The numerator values help
quantify the count of cases at each possible point in the horizontal axis
of the distribution—for the binomial distribution, those are finite and
measurable values, such as rolling a 3 on a single, six-sided die; for the
beta distribution, they are a theoretically infinite number of continuous
values. There are 11 instances of the following function in D5:D15:

=@Quantiles^(Wins-1)*(1-@Quantiles)^(Losses-1)

• Beta_function: Range E5:E15. The beta function is defined in the
previous section. Its purpose in the ratio that returns the beta PDF is to
help normalize the ratio: that is, to cause the individual probabilities to
total to 1, or 100%. The beta function is a ratio of values for the gamma
function (represented here as Γ), which applies the factorial calculation
to complex numbers. Recall that the binomial PDF calculates the
factorials of counts of events, which are integers and therefore discrete.
There are 11 instances of just one formula for the beta function in this
range:

Γ( Wins ) * Γ( Losses ) / Γ( Wins + Losses )

• You will obtain the proportions shown in B5:B15 if, after dividing the
numerator by the beta function, you divide the result by the number of
quantiles, minus 1. You’ll find that latter calculation in H5:H15 of
Figure 3.1.



The @ Sign and the Implicit Intersection
Notice in Figure 3.1 that the values in B5:B15 are identical to those in
F5:F15 (allowing for the differences between decimal versus percent
formatting). The values in B5:B15 are calculated by means of Excel’s
BETA.DIST function: that is, a multiple selection is made, encompassing
the range B5:B15, and the following formula is entered via Ctrl + Enter:

=BETA.DIST(@Quantiles,Wins,Losses,FALSE)

If you have been using the same version of Excel for quite some time,
you might not have seen the @ operator as it’s used in the previous
function. You use that operator (here, @) to inform Excel that the
following name or reference (here, Quantiles) intersects the function or
formula that makes reference to it.

So in this case the range named Quantiles in A5:A15 occupies the same
rows as does the function BETA.DIST in B5:B15. This enables Excel to use
the first row of Quantiles as an argument in the first row of BETA.DIST, the
second row of Quantiles as an argument in the second row of BETA.DIST,
and so on from worksheet row 5 through worksheet row 15. This
arrangement ensures that Excel will use the proper value in Quantiles
with the proper row occupied by BETA.DIST.

At one time you didn’t need to do anything special (other than lining up
the ranges properly) to invoke this feature. Excel was expected to know
what to do when ranges occupied the same rows or columns and one
range made use of another. The feature was then termed the implicit
intersection. However, other changes that Microsoft has made to Excel’s
formula language have necessitated bringing the @ out from behind the
bushes and showing itself in the formula or function where it’s used, just
as is done in the previous function described in this sidebar.

Figure 3.2 retains the quantiles in A5:A15 shown in Figure 3.1 and repeats
the results returned by Excel’s BETA.DIST function in B5:B15. Those results
are divided by 10 (to normalize) and formatted as percentages in D5:D15.



Figure 3.2 Arranging for the percentages returned by BINOM.DIST or
BETA.DIST is termed normalizing the data.

Notice that when the values in B5:B15 are divided by 9.99975 and formatted
as percents, they total to 100%. (The difference between 9.99975 and 10.0 is
due to very small errors of rounding in the calculus computations.) This is a
useful characteristic, because when we’re talking about event probabilities
and the events are mutually exclusive and exhaustive, we want their
percentages of occurrence to total to 1 (equivalently, to 100%).

Excel’s BINOM.DIST and BETA.DIST functions, and the dbinom and dbeta
functions in R, maintain the relative sizes of the values in each quantile (see
Figure 3.3).



Figure 3.3 The results in column D have been normalized.

In Figure 3.3, notice that I have reduced the number of quantiles from 11 to
5, creating an inclusive range that shows both its lower and upper limits. The
values returned by BETA.DIST in B5:B9 now total to 3.9662. If you divide the
results of BETA.DIST in B5:B9 by that total, or by 4, you’ll get the normalized
results shown in D5:D9: results that once again total to 100%. Normalizing
the results of BINOM.DIST or BETA.DIST is usually helpful because then you
have a better understanding of what is meant by, say, “Scores between 40 and
50 were between the first and second quantiles,” than when you don’t know
the proportion of values that are within that range.

On the topic of quantiles, keep in mind that it’s usually helpful to chart the
results of BETA.DIST and BINOM.DIST, if only to understand the nature of the
distribution better. There’s usually little cost involved in increasing the
number of quantiles if all you need to do is tell your software to run its
calculations on 100 instead of five quantiles. Figure 3.4 shows the same beta
distribution as in Figure 3.3.



Figure 3.4 The chart can be misleading if it shows too few quantiles.

The chart in Figure 3.4 is suggestive but inaccurate. Compare it with the chart
in Figure 3.5, which is based on 100 quantiles, so each quantile is one percent
further into the distribution. The chart in Figure 3.5 presents a much more
accurate picture than does the chart in Figure 3.4.



Figure 3.5 This chart is a much better depiction of what the beta
distribution with 10 successes in 17 trials looks like.

The chart in Figure 3.5 shows the 100 quantiles in column A as a curved line.
It also shows the five quantiles from Figure 3.4 as individual squares that fall
directly on the curve. If all you saw were the squares, your mind’s eye might
well fill in the missing data very differently.

Decoding Excel’s Help Documentation for BETA.DIST
Here’s what Excel’s Help has to say about the second and third arguments to
the BETA.DIST function:

• Alpha: Required. A parameter of the distribution.

• Beta: Required. A parameter of the distribution.

When I first read that, I couldn’t tell what it was talking about. Granted that



alpha and beta are parameters of the beta distribution, which ones are they?
The mean and the variance? The median and the skewness? P-bar and theta?
Now I ask you.

After some experimenting (and an unenlightening tour of Google) I figured
out that alpha and beta are related to the mean, dispersion, and other
descriptive measures, but only just barely. With the binomial distribution,
we’re still working with two values, A and Not-A, so True and False, Win
and Loss, Sale and No Sale. In the beta distribution, Alpha refers to one of
those values and Beta to the other, so it’s 10 True and 7 False, or 10 Wins
and 7 Losses, or 10 Sales and 7 No Sales.

Note

The mean of a beta distribution is α / (α + β). Its variance is α β / [ ( α
+ β)2 ( α + β +1)].

Excel’s A and B arguments (the fifth and sixth arguments to the BETA.DIST
function) can also seem a little mysterious at first. They are optional, and you
can use them to restrict the analysis to a subset of quantiles. For example,
consider the analysis in Figure 3.5. The formulas in column B are

=BETA.DIST(@Quantiles,Wins,Losses,FALSE)

Notice that the A and B arguments are missing; in that case, they default to
0.0 and 1.0. To restrict the analysis to the quantiles from .01 to .10, use these
formulas on the same rows as the quantiles of interest:

=BETA.DIST(@Quantiles,Wins,Losses,FALSE,0.01,0.10)

Excel returns the #NUM! error value whenever the associated quantile is
outside the range bracketed by the A and B arguments (see Figure 3.6).



Figure 3.6 This analysis has been deliberately limited to the first few
quantiles.

Replicating the Analysis in R
R has several functions that pertain to the beta distribution, analogous to
those that pertain to the binomial distribution discussed in Chapter 2. The
beta distribution functions in R include dbeta, pbeta, qbeta, and rbeta.

Using R, you can enter many statements directly in the Console window,
where they are executed immediately. Sometimes, though, R will wait to do
anything until you have finished a multi-line entry, such as a For loop. So,
you might decide to enter your code in R’s script window. From there, you
can choose to execute your code one line at a time or the entire set of
commands immediately.

To make that choice, take one of these steps:

• To execute one or more lines of code, click the line (or select the lines)



in the script window and choose Edit, Run Line Or Selection.

• To execute all the lines of code in the script window, begin by making
sure that the script window is active. (That’s to ensure that the necessary
commands are available in R’s menu.) Then choose Run All. You
needn’t start by selecting the entire set of statements or the first
statement in a block of code.

Understanding dbeta
The dbeta function returns the probability density function (PDF) for the
quantile of a continuous variable. As such, it is analogous to the dbinom
function, which is used with a discrete variable to return the probability mass
function (PMF). The characteristic that most clearly distinguishes the PMF
from the PDF is that it’s necessary to use integration with a PDF to measure
the difference in probability between two quantiles. Nothing more
sophisticated than middle-school arithmetic is needed to quantify the
difference in probability between two quantiles on a discrete scale.

The argument list for dbeta is similar to that for dbinom. From Chapter 2:

dbinom(x, size, prob, log = FALSE)

where x is a quantile such as 0.1666, distinguishable and discrete as a side on
a six-sided die, size is some number of trials, prob is the theoretical
probability for a single trial (say, 50% for a coin flip or 16.67% for the roll of
a single die), and log, if FALSE or omitted, returns the resulting number of
successes in size trials, or the log of that number if TRUE.

You could then enter the following commands into R’s script window. When
you start R, the console window appears. Choose File, New Script to display
a fresh script window, and enter the following code there (see Figure 3.7).



Figure 3.7 Choose File, New Script to open a fresh R Editor window.

Click in the R Editor window to make sure it’s active, and then choose Run
All from R’s Edit menu. The commands you typed will be repeated, along
with any system messages, in the Console. If all goes well, a new file named
beta_density.csv is written to your working directory. It contains the results
of the dbeta functions. You can open a csv file using Excel (just double-click
it), or you can use a text editor such as Notepad to open it.

The file is shown (with a chart added in Excel) in Figure 3.8.

Figure 3.8 I used Excel’s Text To Columns command to convert R’s
output in the beta.density.csv file to figures that could be charted.

Understanding pbeta
You may recall from Chapter 2 that you can get the cumulative binomial
distribution for a discrete variable by using the pbinom function. Let’s revisit
an example from Chapter 2. Begin by opening a fresh script window and
entering into it these commands:

successes = seq(0, 10, by = 1)



probabilities = dbinom(successes, size=10,.5)
write.csv(probabilities,"dbinom_out.csv")

Then, choose Edit, Run All to execute those commands. A new csv file is
written to your working directory.

Now edit your code in the script window so that it reads as follows (I’ve
shown the two changes in boldface):

successes = seq(0, 10, by = 1)
probabilities = pbinom(successes, size=10,.5)
write.csv(probabilities,"pbinom_out.csv”

If you open the two csv files, dbinom_out.csv and pbinom_out.csv, you’ll see
what’s shown in Figure 3.9. (I have combined the two result files into one
worksheet to make it easier to compare them in one figure.) The results of
using R’s dbinom function are in the range B3:B13. They show the expected
proportion of the trials that will have the same number of successes as the
associated quantile in A3:A13. So, for example, you would expect that
0.2051 of the trials to have five occurrences of events with a 50% probability
(Figure 3.9, A7:B7).

Figure 3.9 Differences between dbinom and pbinom.

The results of using R’s pbinom function are in the range E3:E13. The values
there are cumulative sums: in other words, the value 0.1719 in cell E6 is the



sum of the first four quantiles, from x = 1 to x = 4 in B3:B6.

You can verify this easily enough by examining the cells in the range G3:G13
in Figure 3.9. There, the cumulative probability sums are obtained by adding
the prior sum to the probability of the current quantile. So, the formula
=G5+B6 in cell G6 is the prior sum in G5 plus the probability for quantile 4
in cell B6. You can save yourself the trouble of accumulating probability
totals, as in column G, by using pbinom to begin with, before leaving R.

That said, you might use an analogous procedure—pbeta rather than pbinom
—if you were working with a continuous variable instead of a discrete
variable. Have a look at Figure 3.10.

Figure 3.10 To get a cumulative sum of probabilities using a continuous
—not a discrete—variable, use integration instead of simple addition.

In Figure 3.10, the range B5:B15 shows the breakdown of the total
probability of 17 events (ten successes and seven failures) according to R’s
dbeta function. The range D5:D15 contains the sum of the probabilities in
previous quantiles plus the probability of the current quantile—sometimes
termed a running sum. This is just how we calculated the cumulative
probabilities for a discrete variable, using dbinom and pbinom in Figure 3.9.

The problem is that the running sums in D5:D15 don’t match the results of



pbeta in F5:F15. But the documentation says that pbeta returns the
cumulative probability density values.

And so it does. What the running sum approach to accumulation omits is all
those quantiles in between the ten used in the present example. Bear in mind
that you can divide a continuous variable into a theoretically infinite number
of values. Each quantile that we add to the analysis makes the running sum a
little more accurate, but the arithmetic can never make it a perfectly accurate
accumulation. There’s always another quantile you can add to a continuum of
an infinite number of values. It’s a variation of Achilles Paradox.

The pbeta function in R is highly accurate (no calculus is perfectly accurate),
and the running sum method starts as fairly inaccurate but becomes more
accurate as more quantiles are added to the problem. To demonstrate this,
you can run a simple set of statements in R, which I’ve used to calculate the
values shown in H5:H15 of Figure 3.10. Note that they are identical to the
values produced by pbeta in F5:F15. For the example in Figure 3.10, the code
used is as follows:

p <- seq(0, 1, length=11)
for(i in 1:11) {
  x=integrate(function(p) dbeta(p, 10, 7),  0, p[i])
  print (x)
}

The code instructs R to calculate the integral that measures the area under the
beta distribution’s curve between zero and each quantile stored in p—that is,
the quantiles 0.0, 0.1, 0.2, and so on. These areas are the total probability
associated with events occurring between zero and each of the processed
quantiles. After each integral is computed and stored temporarily in x, the
integral is printed to R’s console, along with an estimate of the (usually tiny)
error associated with the calculation of each integral.

But it’s easier to use pbeta.

Understanding qbeta
The qbeta function, like the corresponding qbinom function for discrete
variables, returns a quantile when you supply a probability. For example, this
command:



qbeta(.6, 10, 7)

returns a quantile of 0.622. In words: With alpha equal to 10 and beta equal
to 7, a probability of 0.6 is associated with a quantile of 0.622 in the beta
distribution.

You could try checking that by means of the dbeta function with 0.622 as the
quantile:

dbeta(0.622,10,7)

but that returns a (normalized) value of 0.326, not the 0.6 that qbeta might
have led you to expect. But keep in mind that while dbeta returns
probabilities, they are point estimates rather than cumulative probabilities,
and therefore not additive across quantiles. In contrast, if you entered the
function for a cumulative probability:

pbeta(.622,10,7)

it would return 0.6 as expected. Figure 3.11 charts the PDF for the beta
distribution with an alpha of 10 and a beta of 7.



Figure 3.11 Notice that the raw probability exceeds the cumulative
probability until the mean α / (α + β) of the distribution is reached.

About Confidence Intervals
It’s about time to start discussing the use of Bayesian techniques on statistical
problems. R’s qbeta function is a good place to start because of its
relationship to confidence intervals. A confidence interval is a subset of a
scale that expresses both the variability of individual values and the location
of a statistic (such as the mean) along that scale.

Frequentists and Bayesians have slightly different conceptions of the
meaning of a confidence interval, and these differences are reflected in the
use of alternative terms such as “credible interval” and “compatibility
interval.” I’ll touch on those differences, rather briefly, in the remainder of
this chapter.



The traditional, frequentist interpretation goes like this: You have a mean
value of, say, systolic blood pressure measurements taken from a sample of
actual observations. That sample also provides you with a standard deviation
of those observations.

Of course, errors of various sorts get in your way. Sampling error, equipment
malfunctions, poor procedure on the part of the people who take the readings,
high anxiety experienced by the subjects, your own errors in transcribing the
data—each of these contributes somehow to an erroneous estimate of the
population’s mean systolic pressure by way of the sample’s mean systolic
pressure.

So you decide to put a confidence interval around your sample mean. This
interval is a segment of the systolic scale—say, from 115 to 125—within
which may or may not be hidden the population mean, along with the sample
mean. The population mean is unencumbered by the sources of random error
to which your real-life sample is susceptible; their cumulative effect accounts
for any difference that might exist between the sample mean and the
population mean.

It would improve matters if you could get your hands on a batch of samples
—say, 99 of them—each sample comprising subjects equivalent to those
you’ve already sampled. You could calculate the mean of each sample and
calculate the standard deviation of those means, a statistic called the standard
error of the mean. Then, you could put the lower bracket of your confidence
interval one standard error below your sample mean, and the upper bracket
one standard error above your sample mean. If the standard error turned out
to be five points on the systolic scale, your confidence interval would run
from 115 (lower bracket) through 120 (sample mean) to 125 (upper bracket).

If you did all this, you’d wind up with a 68% confidence interval. Sixty-eight
of the hypothetical confidence intervals would capture the population mean
of 124. Why 68%? Because the distribution of sample means approximates a
normal curve (this is called the central limit theorem), and we know that 68%
of the area of a normal curve is found between one standard deviation below
the mean and one standard deviation above the mean.

It turns out that you do not need to collect those additional 99 samples,
calculate each mean value, and then obtain the standard deviation of those



means—that is, you don’t need to get the standard error of the mean by brute
force. You can estimate that standard error by means of this formula:

Standard Error = Standard Deviation / ( N ^ 0.5 )

In English, that says that the standard error of the mean equals the sample’s
standard deviation divided by the square root of the sample size, N.

You can tinker with the confidence interval’s attributes, and most statisticians
do so. For example, you could change the original 68% confidence interval to
a 95% confidence interval by multiplying the size of the standard error by
1.96. Accumulating probabilities from 1.96 standard errors below the mean to
1.96 standard errors above the mean accounts for 95% of the area under a
normal curve.

Frequentists also have a particular way of defining what a confidence interval
returns. Suppose that you have calculated a 95% confidence interval around
your sample mean of 120, and that the interval extends from 115 to 125. Is
the probability therefore 95% that the population mean is captured in the 115
to 125 interval?

No. The probability is either 100% or 0% that a population mean is captured
by a confidence interval constructed around a given sample mean. Either it’s
within the brackets or it isn’t. What is true is that 95 of 100 of those 95%
confidence intervals—imaginary as 99 of them may be—capture the true
population mean. It simply makes sense to decide that your sample and its
interval comprise one of the 95 intervals that capture the population mean,
rather than one of the 5 that don’t.

Confidence intervals aren’t perfect. But as John Tukey wrote, they help to
“make clear the essential ’smudginess’ of experimental knowledge.”

Applying qbeta to Confidence Intervals
R’s qbeta function is almost perfectly suited to calculating basic confidence
intervals. There’s no need to calculate the standard error, nor to multiply the
standard error to get the probability you want for the confidence interval, nor
to appeal to the central limit theorem to justify the use of the normal curve as
a reference distribution. There is some preparation that Bayes requires of you,



but it’s pretty quick and easy.

Suppose that you take a random sample of 1,000 registered voters in a
particular voting district and asked each subject, among other things, who
they will vote for in the next election to the House of Representatives. Four
hundred seventy say they’ll vote for the Republican and 530 for another
party’s candidate.

You want to put a 90% confidence interval around the sample mean of 47%
Republican votes, to see whether the confidence interval’s upper boundary
falls below 50%. In that case, the Republican candidate would be unlikely to
win a majority but might win a plurality. R can give you the points that
bracket a 90% confidence interval given your sample data. Because you want
a 90% interval, and a symmetric one at that, you want the interval to start at
5% and end at 95%. On the basis of the data from your survey, the sample
value of 47% that say they’ll vote Republican is expected to come in below
the lower bracket of the 90% confidence interval 5% of the time, and above
the upper bracket 5% of the time.

That accounts for 5% plus 5% of the total probability of 100%, leaving 90%
accounted for within the confidence interval. The lower and upper brackets
are calculated using qbeta as shown in Figure 3.12.

Figure 3.12 You can also use the lower.tail and log.p arguments to
control the location and spread of the function’s results.

So with these data, the lower and upper bounds of the 90% confidence
interval are 0.4441 and 0.4960. The 90% confidence interval fails to span the
0.5000 criterion, and therefore only the plurality remains plausible. Only if
the lower bound of a confidence interval exceeded 0.5000 could you
conclude with 90% confidence that the Republican has a majority in the



population of voters.

The other side of the coin is that the 90% interval does not span 0.5000, so
you can’t expect an outright win based on these data—not on the basis of a
90% confidence interval.

Applying BETA.INV to Confidence Intervals
Excel also makes it straightforward to calculate confidence intervals based on
Bayesian methods. In R, you submit a probability to qbeta and get a quantile
back. In Excel, you submit a probability to BETA.INV and get a quantile back.
Figure 3.13 shows the basic data in row 3, the lower boundary (result and
function) in row 8, and the upper boundary (result and function) in row 10.

Figure 3.13 The lower and upper bounds of the confidence interval are
in cells B8 and B10.

Compare the results shown for R in Figure 3.12 with the results for Excel in
Figure 3.13. They are identical, despite the major differences in the routes
taken to reach the results.

Summary
In Bayesian analysis, you’re responsible for defining the distributional nature
of the various sources of information, whether prior or likelihood. This means
that you are in a position to tell the software that the numbers are distributed



normally or binomially, or discretely or continuously, and so on. You’re also
able to specify the point to which the numbers tend centrally and their degree
of spread.

All this means is that you need to choose the functions you use in your
analysis with due care. You’ll want to be sure of the type of distribution—
discrete or continuous, for example—in use as you decide whether to use a
function that assumes a beta distribution or one that assumes a binomial
distribution. This is critical information for defining the grid.

The intent of Chapter 3 is to establish the distinction between continuous
variables and discrete variables, along with the consequences for how the
variables might be distributed if they are continuous rather than discrete.
There are also consequences for the pertinent distributional functions, such as
dbinom and dbeta, pbinom and pbeta, and so on. These issues are critical in the
process of deriving a useful posterior distribution, which will often inform
you of the most accurate result.

Grid approximation is the first step in the simplest method of computing
posterior distributions, and is the step taken up in Chapter 4.



4. Grid Approximation and the Beta
Distribution

Prior chapters have discussed, if just briefly, the method sometimes termed
grid approximation and the numeric structures usually termed binomial and
beta distributions. As useful as these tools and methods are, it’s hard to see
how useful grid approximation can be in the absence of a binomial or beta
distribution, or a binomial distribution in the absence of a grid approximation.
I’ll try to start joining these concepts in this chapter.

More on Grid Approximation
In many applications of the methods collectively known as Bayesian
techniques, the formal workflow often begins with one or more assumptions
about the data. These assumptions might be well-founded conjectures, such
as “A random sample of 13 cards from a new deck, excluding jokers, will
include exactly four honor cards: an ace, a king, a queen, or a jack.”

Or they might be little more than shots in the dark. Without initial data to
work with, you sometimes must assign the same probability (often 1 or 0) to
each of your prior estimates. In keeping with the Bayesian tradition of
coining several terms for the same concept, this results in a noninformative or
uniform or flat prior, such as the one shown in Figure 4.1. Then your starting
assumptions are virtually certain to be wrong, but at least you won’t be
deliberately backing the wrong horse.



Figure 4.1 Using grid approximation, this is how the initial prior might
appear on an Excel worksheet.

Figure 4.1 shows a grid. It is defined by the quantiles in column A and by the
values in column B that the analyst has selected. It’s called a grid because it
looks like one: if you rotated column A and column B counterclockwise by
90 degrees, things would appear a little clearer. It would look similar to a
frequency distribution, with the quantiles across the bottom and the frequency
of the observations defining the height of each column. The point is that in
this configuration, the grid approximates a frequency distribution.

In Figure 4.1, the value 1 is assigned to each quantile in the grid. As it
happens, you can obtain that sequence of 1s as your grid’s initial prior by
setting both alpha and beta in the Beta distribution to 1. That is, in R, you
might use the dbeta function in this way:



dbeta(quantiles, 1, 1)

in which the second and third arguments set the function’s alpha and beta
arguments, respectively, to 1. Or if you were using Excel, you could use this
function:

=BETA.DIST(@quantiles, 1, 1, FALSE)

In either case, the function will return a sequence of 1s to your grid.
(However, because it’s your initial prior, you could just as well set each
quantile’s prior value to 1 using a less sophisticated procedure, such as
selecting a worksheet cell and entering 1.)

Setting the Prior
Still, there will often be some basis, other than a random scattering of 1s, for
the initial values of the first prior in a Bayesian analysis. The results of exit
polling, mortality rates for different surgical procedures, the probability of
arrest on a moving violation by driver ethnicity—if a research question is
worth investigating at all, then it’s likely that you can find some sort of
preliminary information, wrong though it may be, regarding the frequency of
occurrence of different outcomes.

I have set up the analyses in Figures 4.1 through 4.7 in the same way. Each
figure shows an Excel chart of the beta distribution as the values for alpha
and beta are incremented. In each figure:

• Cell B1 contains a value for alpha. The cell itself is named Alpha, and
the name’s scope is limited to that particular worksheet.

• Cell E1 contains a value for beta. The cell itself is named Beta, and
again the name’s scope is limited to that particular worksheet.

• The range A4:A24 contains the values of the quantiles. The range itself
is named Quantiles, and the name’s scope is again the worksheet that
contains it. In some cases the number of rows in the range varies
because the beta distribution cannot always deal with arguments of 0.0
or 1.0.



• Each row in column B contains the following formula, which makes use
of the defined names scoped to the worksheet that contains the names
(in other words, there are no workbook-level names):

=BETA.DIST(@Quantiles,Alpha,Beta,FALSE)

The implicit intersection operator, @, shows that the value in Quantiles,
found in the same row as each BETA.DIST function, is used as that
function’s first argument. See the sidebar in Chapter 3 for more detailed
information about the implicit intersection operator.

• The FALSE value, which is the fourth of four required arguments to the
BETA.DIST function, merely tells the function whether to return the
cumulative area (the total of all quantiles up to and including the present
one) or the probability density function (PDF—the area associated with
the current quantile only).

When you work with either dbeta, dbinom, BETA.DIST, or BINOM.DIST, keep in
mind that the functions return the distribution of successes and failures (alpha
and beta) across a range of probabilities defined by the quantiles. For
example, when you’re working with these functions, there is no need to
multiply a likelihood estimate by the new prior to get a new posterior. Simply
by submitting a probability from the prior grid, Alpha, Beta, and a cumulative
argument if necessary, you get those posterior values directly from the beta or
binomial function, whether from R or Excel.

Using the Results of the Beta Function
What do the results of the beta function tell you? They tell you the relative
size of an effect (such as the probability of contracting a disease or of a
successful ad campaign on a product’s market share) on different outcomes.
For example, an ad campaign might change the probability of a prospect
being below the first quartile from 15% to 10%.

Note

It’s easy to get confused by the prevalence of the percentages in this
sort of analysis. The quantiles that structure your grid (the 8th



percentile, the 3rd quartile, the median) are only indirectly related to
the proportion of area under the curve and between two quantiles.
The quantiles divide the horizontal axis of a curve into equally
spaced boundaries, so the miles a car has been driven in a week
might be divided into 100-mile segments: 100 to 200, 200 to 300,
and so on. But the number of measures that populate each segment
can vary wildly from sample to sample, even though the quantiles
remain exactly the same.

As you’ll see, as you iterate through the steps in a Bayesian procedure, errors
in the initial prior are fairly quickly corrected. This is likely to occur when
the number of cases in the likelihood is substantially greater than the number
of cases in the prior—in that event, you have what’s termed a weak prior, as
distinct from a strong prior, which could easily have more cases than the
likelihood.

To start, define a grid to hold the data as it comes in. You would typically do
that by structuring an array, in a range of Excel worksheet cells or in a vector
in R’s workspace. In this example, these locations will hold the results of the
initial prior and the cumulative results of subsequent sampling. (This grid
doesn’t necessarily do that sort of double duty, but it can be convenient for it
to do so, particularly if you’re writing code that will perform the analysis
rather than keeping all the calculations on a worksheet.)

Figure 4.1 shows one way that a simple grid might appear in an Excel
worksheet, including the quantiles that give structure to the grid, the initial
prior values assigned to it, and the posterior values. (I’m omitting the
likelihood modification here to emphasize other aspects of the grid. You’ll
see how likelihood fits in with priors and posteriors a little later in this
chapter.)

Figures 4.1 through 4.7 show how the shape of the beta distribution can
change along with increments to the alpha and beta parameters. In Figure
4.1, the range A4:A22 contains the quantiles that divide the beta distribution
into, in this example, 20 segments: 0 to .05, .05 to .10, .10 to .15, and so on
through .95 to 1.0. The choice of how many quantiles to call for is largely
subjective.



Tracking the Shape and Location of the
Distribution
Typically, each quantile is represented on a chart by its own point. You want
enough quantiles to depict a chart of the beta distribution accurately. But,
particularly with an analysis such as this one that calls for just one parameter,
you can afford to specify plenty of quantiles: such an analysis completes
within a few seconds at most. I called for 20 quantiles in this example.

Figure 4.1 is not a useful depiction of how a Bayesian analysis can help you
understand an event, or a sequence of events. The values assigned to alpha
and beta are simply too small, at 1.0 each, for the charted distribution to be at
all informative. But you still need a starting point, if only to see how a change
in alpha or beta can alter the appearance of the chart and the information it
conveys. Compare the chart in Figure 4.1 with the one in Figure 4.2.



Figure 4.2 As soon as you move off a non-informative prior (such as
alpha = beta = 1) the resulting chart begins to communicate useful
information.

As you view the data and charts in Figures 4.1 through 4.7, keep these points
in mind:

• From one figure to the next, the values of alpha or beta are incremented,
and therefore the appearance of the chart changes from one figure to the
next. Compare Figure 4.1 with Figure 4.2. Incrementing alpha results in
the mode of the curve moving to the right, and incrementing beta moves
the mode to the left. It helps to remember that alpha is usually construed
as a measure of successes and beta as a measure of failures.

• The value of the curve’s mode increases whenever either alpha or beta
is incremented. Diminishing returns from increasing either alpha or beta
have an effect: the greater the total of alpha and beta, the smaller the
effect that adding to either parameter has on the shape and location of
the curve.

• The more data that enters the function via either alpha or beta, the more
closely the curve centers around the population value that you’re trying
to identify.

Inventorying the Necessary Functions
Let’s start, as the previous chapter did, with a brief review of the pertinent
worksheet functions in Excel and R. Just two functions in Excel have to do
with the binomial distribution (apart from legacy functions): BINOM.DIST,
which returns information about the area under the distribution’s curve, and
BINOM.INV, which returns information about the categories—or quantiles—
that comprise the curve. Analogous functions in R include (but are not
limited to) dbinom and qbinom.

The pattern that Excel uses for the beta distribution is similar to that of R’s
dbeta function. Excel offers a BETA.DIST function, which returns an area
associated with a quantile, and a BETA.INV function, which returns
information about the quantile associated with an area.



The underlying difference between the distributions is that the binomial
functions, whether Excel’s, R’s, Python’s, or some other source of binomial
analysis, are intended for use with distributions that are built with variables
that take on one of two values. Each value is discrete. Curious about a six-
sided die, you roll it 10 times, counting the number of times it comes up 6
and the number of times it comes up some other value. You run the number
of sixes and the number of “not-sixes” through a binomial function.

On the other hand, your interest might focus on a continuous variable such as
body weight rather than on a discrete variable such as rolling boxcars. That
calls for a beta function, not a binomial. Anything that weighs 105 pounds
has more weight than something that weighs 104 pounds. But a coin flip of
heads is just the other side of one of tails. The same is true of boxcars and
snake eyes. Blood pressure is a continuous variable, and a systolic blood
pressure of 129.5 has as much inherent meaning as either 129 or 130. Use a
beta function.

Compare Figure 4.2 with Figure 4.3.



Figure 4.3 The total of alpha and beta, while still very small, is now
large enough to convey some useful information.

The pattern that Excel uses for the beta distribution is similar to that for the
binomial. Excel offers a BETA.DIST function, which returns an area associated
with a quantile, and a BETA.INV function, which returns information about the
quantile associated with an area.

Figure 4.4, compared with Figure 4.3, shows how a chart can provide a better
sense of the distribution as the number of cases increases.



Figure 4.4 With an alpha that’s larger than beta and a total that’s
greater than 2, the curve starts to lean to the right.

As the amount of available data increases, the curve starts to gain accuracy
about the proportion of trials that you can expect to be successful or
unsuccessful. Figures 4.4 and 4.5 show that, although you can’t be certain of
it yet, the distribution is likely to be negatively skewed (or skewed left).



Figure 4.5 alpha continues to increase and the curve bends further
right. The total of alpha plus beta continues to increase and the curve
grows taller.

Adding more and more data to the model is like squeezing an open tube of
toothpaste. The pressure pushes more of the available area toward the center
and, to make room, the curve’s height increases.

In contrast to prior figures, Figure 4.6 shows that incrementing beta nudges
the curve to the left.



Figure 4.6 The value of beta increases by 1 from Figure 4.5, and the
curve shifts left.

The curve’s height increases, but only slightly because the leftward shift
results in a fatter left tail.

Figure 4.7 shows how the curve’s central tendency has started to assert itself.



Figure 4.7 Notice how much more closely the data clusters around its
mode compared to a model with fewer observations, such as Figure 4.4.

All we’ve really done in moving from the chart in Figure 4.1 to Figure 4.7 is
to increase either alpha or beta by 1 in each figure. Still, hidden inside that
process and inside the BETA.DIST functions are the classic steps in a Bayesian
analysis:

1. Get a prior, either an initial prior or the previous step’s posterior. This is
what happens when you decide to add new data to an existing model;
specifically, in this example when you add 1 to the current value of
either alpha or beta.

2. Combine the new with the existing data. When you add 1 to either
alpha or beta, you are updating the likelihood.

3. Calculate the new model (or, if you prefer, the new posterior



distribution) based on the prior and the likelihood. The preceding
example doesn’t show this happen directly, but you can see the results
in the new values that BETA.DIST or dbeta return to the grid.

Looking Behind the Curtains
I want to provide a couple of demonstrations of processes used in grid
approximations that don’t usually get the attention they deserve. The first
concerns rescaling the posterior distribution so that its elements sum to 1.00
(or if you prefer, 100%).

The second concerns the combination of distributions, in particular the
combination of the prior with the likelihood to bring about a posterior
distribution, and the rescaling of a raw posterior distribution so that the
probability of the quantiles sums to 1.0.

Standardizing the Grid
Let’s start with a demonstration in R. I’ll use a small data set, and if you wish
to replicate it using a larger one, it’s pretty easy to do so.

Neither the library function nor the tibble function at the end of the code is
strictly necessary, but I—along with a lot of other users—find them useful. If
you wish to use them in following this demonstration, you should first install
the tibble package using the Install package(s) item in R’s Packages menu.

    library(tibble)

# Establish quantiles for a grid
grid_qs <- seq(0, 1, by = 0.25)
grid_qs
# Get the prior density for each value on the grid
prior <- dbeta(grid_qs, 31, 27)
prior
# Get the likelihood for each value on the grid
likelihood <- dbinom(8, 20, prob = grid_qs)
likelihood
# Multiply to get the posterior
raw_posterior <- prior * likelihood
raw_posterior
# Note that raw_posterior sums to 0.632, not 1.00
sum(raw_posterior)



# Rescale posterior so that its sum is 1.00
rescaled_posterior <- raw_posterior / sum(raw_posterior)
rescaled_posterior
sum(rescaled_posterior)
# Prepare a data frame with pertinent values
grid_app_df <- data.frame(grid_qs, prior, likelihood,
raw_posterior, rescaled_posterior)
grid_app_df
# Prepare a table with pertinent values
grid_data <- tibble(grid = grid_qs,
prior = prior,
likelihood = likelihood,
`prior x likelihood` = raw_posterior,
posterior = rescaled_posterior)
grid_data

The code is in a text file named R code for grid approximation.txt. You can
run the code in R by copying it, switching to R, choosing File, New Script,
and pasting the code into R’s Untitled – R Editor window. If you are typing
the code rather than using a copy-and-paste procedure, be sure to omit the
line continuation characters toward the end of the code. Then, choose Run
All from R’s Edit menu. Here’s what shows up in the console. (Because it
shows up in the console, each executable or comment statement begins with a
> symbol. Results returned by functions do not begin with the > symbol.)

    > library(tibble)

> # Establish quantiles for a grid
> grid_qs <- seq(0, 1, by = 0.25)
> grid_qs
[1] 0.00 0.25 0.50 0.75 1.00
> # Get the prior density for each value on the grid
> prior <- dbeta(grid_qs, 31, 27 )
> prior
[1] 0.0000000000 0.0001854631 5.2575660200 0.0150225141 0.0000000000
> # Get the likelihood for each value on the grid
> likelihood <- dbinom(8, 20, prob = grid_qs)
> likelihood
[1] 0.0000000000 0.0608866892 0.1201343536 0.0007516875 0.0000000000
> # Multiply to get the posterior
> raw_posterior <- prior * likelihood
> raw_posterior
[1] 0.000000e+00 1.129224e-05 6.316143e-01 1.129224e-05 0.000000e+00
> # Note that raw_posterior sums to 0.576, not 1.00
> sum(raw_posterior)
[1] 0.6316369
> # Rescale posterior so that its sum is 1.00



> rescaled_posterior <- raw_posterior / sum(raw_posterior)
> rescaled_posterior
[1] 0.000000e+00 1.787773e-05 9.999642e-01 1.787773e-05 0.000000e+00
> sum(rescaled_posterior)
[1] 1
> # Prepare a data frame with pertinent values
> grid_app_df <- data.frame(grid_qs, prior, likelihood,
+  raw_posterior, rescaled_posterior)
> grid_app_df
  grid_qs        prior   likelihood raw_posterior rescaled_posterior
1    0.00 0.0000000000 0.0000000000  0.000000e+00       0.000000e+00
2    0.25 0.0001854631 0.0608866892  1.129224e-05       1.787773e-05
3    0.50 5.2575660200 0.1201343536  6.316143e-01       9.999642e-01
4    0.75 0.0150225141 0.0007516875  1.129224e-05       1.787773e-05
5    1.00 0.0000000000 0.0000000000  0.000000e+00       0.000000e+00
> # Prepare a table with pertinent values
> grid_data <- tibble(grid = grid_qs,
+ prior = prior,
+ likelihood = likelihood,
+ `prior x likelihood` = raw_posterior,
+ posterior = rescaled_posterior)
> grid_data
# A tibble: 5 x 5
   grid    prior likelihood `prior x likelihood` posterior
  <dbl>    <dbl>      <dbl>                <dbl>     <dbl>
1  0    0          0                   0         0
2  0.25 0.000185   0.0609              0.0000113 0.0000179
3  0.5  5.26       0.120               0.632     1.00
4  0.75 0.0150     0.000752            0.0000113 0.0000179
5  1    0          0                   0         0
>

Tip

If you don’t find a Run All command in R’s Edit menu, make sure
that the Untitled – R Editor window is active by clicking in it.

R executes the code it finds in the Untitled – R Editor window and displays
the results in the Console.

There are several points to note about the code just given. One is that it
calculates two versions of the posterior. The version that the code terms
raw_posterior in the data frame named grid_app_df (and that it names `prior
x likelihood` in the tibble) totals to 0.632. The tibble contains six columns,
and the fifth displays the five raw_posterior values that, down the grid, again



total to 0.632.

That total is inconvenient. The values that comprise the posterior are
supposed to be proportions, or percentages, that total to 1.0 or 100%. That’s
why the code totals the raw values returned by the product of the prior and
the likelihood, and then divides that total into each raw posterior value. The
result is a vector that the code names rescaled_posterior, or simply posterior.

The rescaled values in that vector do sum to 1.0, and the individual values
bear the same relationship to one another as do the values in the
raw_posterior. For example, the ratio of the third element in the
raw_posterior to its second element is 55929.20 to 1, and the same ratio for
the rescaled_posterior is 55865.92 to 1. (The vanishingly small difference is
due to the errors of rounding that one inevitably encounters with integral
calculus.)

You will probably find that plenty of sources of material on Bayesian
methods refer to the process of rescaling a raw_posterior in this fashion as
“standardizing” or as “normalizing.” In most cases, you can avoid having to
go through the extra steps of standardizing by setting the quantiles to
percentiles. That is, use code similar to the following when you’re structuring
the grid:

grid_qs <- seq(0, 1, by = 0.01)

In most cases, this will cause the elements of the grid to total to 1.00 or
100%, and you won’t have to go through the extra steps of converting a raw
posterior to a standardized posterior. You generally want a standardized
posterior, and one good way to ensure that is to arrange 100 quantiles. Any
other number of quantiles results in a grid that sums to a total other than 1.00,
but you can always fix that by standardizing the posterior.

Combining Distributions
Nearly any book on Bayesian analysis stresses that one of its steps is to
multiply a prior by a likelihood. This is just one way in which distributions
can be combined, but it’s a critical approach in Bayesian analysis.

You need two distributions of data, with each distribution organized by the
variable that defines the quantiles. For example, the prior distribution might



have eight records in the segment that runs from 0% to 10%. It might have
another four records in the segment that runs from 10% to 20%, and so on.

You should have the likelihood data arranged in the same fashion, with the
same quantiles that you used on the prior distribution and sorted in the same
way that the prior distribution is sorted.

One way to proceed at this point it is to multiply the percent in each quantile
of the prior by the percent in the associated quantile of the likelihood
distribution. The resulting product of the two distributions has the same
quantiles as the prior and the likelihood. The contents of each quantile is the
product of the value in the prior for that quantile and the value in the
likelihood for the same quantile.

Figure 4.8 demonstrates this.

Figure 4.8 The prior, likelihood, and (raw) posterior distributions taken
from R, and the multiplication as done in Excel.

Each distribution is divided into five areas, established by the four equidistant
quantiles of 0.25, 0.50, 0.75, and 1.00. The contents of each area are found in
columns B through F. To get the raw posterior distribution, multiply the
prior’s area by the corresponding area in the likelihood distribution. For
example, to get the second area in the raw posterior distribution, multiply the
second area from the prior by the second area from the likelihood, as follows:



0.0001854631 × 0.06088669

to get 0.0000112922. In R of course, you can get not just the single result but
the full one much more simply and quickly by telling R to multiply the prior
distribution by the likelihood:

> raw_posterior <- prior * likelihood

However, both Excel and R provide an alternative method for getting the
product of two distributions. Even if you never employ this method, you
should understand what it does so you can properly follow some code that
does use it. It’s mainly a matter of carefully managing the arguments to the
functions BETA.DIST and BINOM.DIST, or dbeta and dbinom.

Suppose that you want to multiply a prior by a likelihood using R. You might
find it convenient to use R’s dbeta function to do so. Recall from earlier
chapters that the dbeta function takes, among other arguments, one that the R
documentation refers to as shape1 and another called shape2. The same
documentation states that both shape1 and shape2 are non-negative
parameters of the beta distribution. (Microsoft Excel’s documentation refers
to these two arguments as alpha and beta, and defines them only as required
parameters of the distribution. No help there either.)

You can think of them, quite literally, as two sides of the same coin. You
could treat the number of coin flips that come up heads as alpha (or as
shape1), and the number of flips that come up tails as beta (or as shape2).
Wins and losses. Gets sick, stays well. Systolic higher than 125.2, lower than
or equal to 125.2.

There’s an alternative to multiplying the prior times the likelihood, that is
available in both R and in Excel. Suppose first that you are using R, not
Excel. Your prior is defined by an object that you have named prior_approx,
and the likelihoods associated with each quantile in the grid are collectively
named like_approx. Both prior_approx and like_approx have been
established using dbeta. (That’s certainly no requirement, however. It
wouldn’t be at all unusual to use dbeta to establish the prior and dbinom to
establish the likelihood due to their conjugate families.)

Your goal is to combine prior_approx with like_approx without actually
multiplying them together. To do so, you need to add the value of shape1 in



prior_approx to the value of shape1 in like_approx. You also need to add the
value of shape2 in prior_approx to the value of shape2 in like_approx. Then
call dbeta again, this time with the sums of the two parameters.

For example, suppose that you defined prior_approx in this way:

prior_approx <- dbeta(x = quantiles, shape1 = 7, shape2 = 9)

and like_approx as follows:

like_approx <- dbeta(x = quantiles, shape1 = 10, shape2 = 12)

Then the posterior is given by:

raw_posterior <- dbeta(x = quantiles, shape1 = 7 + 10, shape2 = 9 + 12)

or simply:

raw_posterior <- dbeta(x = quantiles, shape1 = 17, shape2 = 21)

Note that if you are using Excel instead of R, it’s a very easy transition from
one language to the other. In Excel, you simply use the BETA.DIST function
instead of the dbeta function. So, these formulas are equivalent
(conceptually, if not necessarily syntactically):

    raw_posterior <- dbeta(quantiles, shape1 = 7 + 10, shape2 = 9 + 12)

raw_posterior <- BETA.DIST(quantiles, shape1 = 7 + 10, shape2 = 9 + 12)
raw_posterior <- dbeta(quantiles, shape1 = 17, shape2 = 21)
raw_posterior <- BETA.DIST(quantiles, shape1 = 17, shape2 = 21)

The following shows much of the code given in the previous section, but it
adds, simply for comparison, the code that incorporates the dbeta function to
calculate the posterior—both the raw version termed alt_posterior and the
standardized version termed dbeta_posterior.

    >  # Establish quantiles for a grid
 >  grid_qs <- seq(0, 1, by = 0.25)
 >  grid_qs
 [1] 0.00 0.25 0.50 0.75 1.00



 >
 >  # Get the prior density for each value on the grid
 >  prior <- dbeta(grid_qs, shape1 = 31, shape2 = 27)
 >  prior
 [1] 0.0000000000 0.0001854631 5.2575660200 0.0150225141 0.0000000000
 >
 >  # Get the likelihood for each value on the grid
 > likelihood <- dbinom(x = 8, size  = 20, prob = grid_qs)
 >  likelihood
 [1] 0.0000000000 0.0608866892 0.1201343536 0.0007516875 0.0000000000
 >
 >  # Multiply to get the posterior
 >  raw_posterior <- prior * likelihood
 >  raw_posterior
 [1] 0.000000e+00 1.129224e-05 6.316143e-01 1.129224e-05 0.000000e+00
 >
 >  # Standardize the posterior
 >  rescaled_posterior <- raw_posterior/sum(raw_posterior)
 >  rescaled_posterior
 [1] 0.000000e+00 1.787773e-05 9.999642e-01 1.787773e-05 0.000000e+00
 >
 >  # Calculate the posterior using dbeta
 >  alt_posterior <- dbeta(grid_qs, shape1 = 31 + 8, shape2 = 27 + 12)
 >  alt_posterior
 [1] 0.0000000000 0.0001255809 7.0241767538 0.0001255809 0.0000000000
 >
 >  # Standardize dbeta’s version of posterior
 >  dbeta_posterior <- alt_posterior/sum(alt_posterior)
 >  dbeta_posterior
[1] 0.000000e+00 1.787773e-05 9.999642e-01 1.787773e-05 0.000000e+00

The important comparison to make here is between the variable named
rescaled_posterior and the one named dbeta_posterior. Each of the
elements in the former variable is precisely equal to the corresponding
element in the latter variable. For example, comparing the second element in
both variables, 1.787773e-05 equals 1.787773e-05.

The point is that you can obtain the raw posterior in two ways:

• By multiplying the prior by the likelihood: above, to get raw_posterior

• By using dbeta on the total number of “wins” (shape1) and “losses”
(shape2): above, to get alt_posterior

The raw density values that result will be different for the two procedures, but
the density values should be identical in either version of the standardized



posterior.

Combining Distributions in Excel
Figure 4.9 shows the results of a similar analysis in more compact form,
along with the formulas and functions for Excel. Compare the results in
Figure 4.8, derived from R, with those in Figure 4.9, derived from Excel.

Figure 4.9 The prior, likelihood, and both the raw and the standardized
distributions taken from Excel.

In Figure 4.9, row 3 shows the formulas, entered in row 4, that represent the
conjugate prior for the analysis. Conforming to the syntax for the BETA.DIST
function, the formula specifies B1:F1 as the range that contains the quantiles;
31 and 27 as the values for alpha and beta, and the keyword FALSE to indicate
that we do not want a cumulative result. That formula is array-entered in row



4, which then returns the values for the prior distribution.

Row 7 displays the formula that returns the binomial distribution for the
likelihood that’s associated with the prior in row 4. We have already
discussed that the syntax is somewhat different for the BETA.DIST and the
BINOM.DIST functions in Excel.

In this BINOM.DIST function, we start out with alpha, the number of successes,
and 20, the total number of trials. As before, the quantiles are in the range
B1:F1. Once again we do not want a cumulative distribution, so we use
FALSE as the fourth argument to BINOM.DIST.

In row 10, we have the result of multiplying the individual values in B4:F4
by the individual values in B7:F7. For example, C4 times C7 equals the value
shown in C10. As the product of the prior and the likelihood, row 10 contains
the raw posterior for this step in the analysis.

Row 13 contains the formula that divides the values in B10 through F10—
that is, the raw posterior—by the sum of those values. The result is the
standardized version of the raw posterior, one that can be compared with
another method of deriving the standardized posterior. (More importantly, the
standardized posterior maintains the relative size of the values in the raw
version of the posterior.)

Avoiding a Trap
Now, there is a danger hidden in the use of dbeta—and of BETA.DIST, for that
matter—to combine distributions as shown above. Here is how the R code
calculates the prior:

prior <- dbeta(grid_qs, shape1 = 31, shape2 = 27)

Notice that the code uses this dbinom function to calculate the likelihood:

likelihood <- dbinom(x = 8, size = 20, prob = grid_qs)

The final two arguments to the dbeta function are the number of successes
(31) and the number of failures (27). But the corresponding two arguments to
the dbinom function are the number of successes (8) and the total number of
trials (20), not the number of failures. The dbeta function expects you to



provide the total number of successes (here, 31 + 8, or 39) and the total
number of failures (here, 27 plus 20 minus 8, or 39—that is, 27 prior failures
plus the total number of likelihood trials minus the number of likelihood
successes).

Note

Another way to bear this issue in mind is as follows.

When a developer designs a function in R, the developer usually supplies a
list of arguments that the function can accept and use to complete the
function’s purpose. When a user employs that function, the user must
normally supply values that the code will treat as the function’s arguments.
The user can supply those values in one of three general ways. Let’s consider
the dbinom function, for example, where R’s documentation gives the density
of a discrete event as

dbinom(x, size, prob, log = FALSE)

where x is the number of successes, size is the number of trials, prob is the
probability of success on any given trial, and log specifies whether
probabilities are specified in logarithmic form. The first of the three general
methods of supplying the values of the arguments is the exact form:

1. Full, exact name. The user can specify an argument’s value by
supplying the argument’s full name and value anywhere in the
argument list. Here is a typical example:

(I have deferred discussion of this issue until now to avoid mixing
distributional concepts such as discrete versus continuous distributions with
typing techniques such as abbreviations of function names.)

2. Partial match. The user supplies argument names that are abbreviations
of the argument’s formal, exact name. For example, the example given
for the full name method could use the partial match method as follows:

dbinom(x = 5, size = 10, prob = .5, log = FALSE)

Notice that the arguments are given with the same exact names as specified in
the documentation. In this case, the arguments can be supplied in any



3. Argument order. The user can dispense entirely with the argument
names and simply supply their values, as long as the order of the values
in the call to the function matches the order of the arguments in the
function’s definition.

order, such as x, log, prob, and size.

dbinom(x = 5, s = 10, prob = .5, log = FALSE)

The letter s is a partial match with size.

Continuing the present example:

dbinom(5, 10, .5,  FALSE)

All three usages, employed properly, return the same result, and usages may
be mixed in the same function call. The full, exact name approach is the
safest, and the most tedious of the three. The argument-only approach can be
a lot quicker from the keyboard, but it is also most susceptible to problems
with the argument list. That’s especially the case when the formal names
given by the documentation provide little clue as to the meaning of each
argument. A good example is the documentation for dbeta, where two of the
arguments are named shape1 and shape2.

Still in Figure 4.9, row 16 shows the formula that is entered in row 17,
making use of the BETA.DIST function to avoid having to multiply the prior
times the likelihood explicitly. Instead of the multiplication, shown in row
10, we will use BETA.DIST directly but accumulate the records from the
likelihood into the arguments for the beta function. So, alpha in row 17 is 39,
which is the sum of alpha for the prior, 31, plus alpha for the likelihood, 8.
And the value of beta in row 17 is 38, because as you’ll see shortly, we do
not arrive at the value of beta of 38 in the same fashion that we arrived at the
alpha of 39.

The BINOM.DIST function, used in row 7, calls for the number 8 as alpha, the
number of successes, and the number 20, not as the number of failures but as
the total number of trials. But the BETA.DIST function, which we’re about to
use to calculate the posterior, expects not the total number of trials but the
number of failures to go along with the number of successes. In consequence,
the third argument to BETA.DIST, row 17, is 26 + 12 or 38, not 57 + 20 or 77.



Notice that row 13 returns precisely the same values as row 20,
demonstrating that the standardized version of the posterior created by
multiplying the prior times the likelihood is equal to the standardized
posterior created by the use of the BETA.DIST function.

I can tell you from bitter personal experience how easy it is to forget to
change the number of trials used in the dbinom function to the number of
failures implied by the combination of the number of successes with the total
number of trials.

Moving from the Underlying Formulas to the
Functions
Here’s how the numbers work. Figure 4.10 shows how the complete grid
moves from the underlying formula to the current prior.

Figure 4.10 How the prior and the likelihood values of alpha and beta



are “added” to reach the posterior.

First, the formula for the conjugate prior is assembled in columns A through
E of Figure 4.10. (This chapter discusses the notion of conjugate priors a little
later on.)

where:

• π is a quantile such as 0.01, 0.10, or 0.25 that segments the total
probability area.

• a is the number of successes.

• b is the number of failures.

• β is the beta function, defined as follows:

β(a, b) = Γ (a) * Γ (b) / Γ (a + b)

• Γ is the gamma function. Both Excel and R provide the gamma function.

The next step is to multiply the prior and the likelihood. Figure 4.11 shows
how the prior and the likelihood are combined to result in the standardized
posterior, which may be destined to act as the next prior.



Figure 4.11 Reaching an updated posterior with grid approximation.

The formula for the likelihood is the familiar binomial distribution:

where:



• π is as described just above, a quantile or vector of quantiles.

• f is the number of successes in the likelihood sample. If this were a prior
rather than a likelihood, the symbol f would be replaced by the symbol
a.

• g is the number of failures in the likelihood sample. If this were a prior
rather than a likelihood, the symbol g would be replaced by the symbol
b.

So, in Figure 4.11:

• A3:A13 contains the quantiles.

• B3:B13 contains the prior, calculated in Figure 4.10.

• C3:C13 contains the likelihood, based on π, f and g as just described.

• D3:D13 contains the raw product of the prior and the likelihood.

• E3:E13 contains the standardized product, obtained by dividing each
raw product in D3:D13 by the sum of the raw product values.

• F3:F13 contains the raw posterior, calculated by passing alpha, beta, and
π to BETA.DIST or, as we’ve seen, to the dbeta function in R.

• G3:G13 contains the standardized posterior, calculated by dividing each
raw posterior value by their sum.

Let’s take a closer look at the effect of multiplying the prior times the
likelihood. Here’s how it lays out, as a formula, rather than as either an R or
an Excel function:



Or, simplifying:

What has happened in the simplification is as follows:

The two shape parameters for the likelihood, f and g, have indeed been added



to the prior (as you’re likely to read in other sources). However, f and g have
been added to the exponents in the equations. Therefore, the effect of
including the likelihood data via multiplication is to extend the number of
times that the probability π (or 1 minus the probability) is multiplied by itself.
All we are doing is increasing the size of the exponents.

This makes perfect sense when you consider that the probability of two
independent events is simply their product. If X is the probability of an event
occurring, then X2 is the probability of X occurring, independently, twice.
And in that case, the probability of X occurring independently a third time
increases from X2 to X3.

Comparing Built-in Functions with Underlying
Formulas
If you’d like to verify the relationship between calculating the prior from
scratch using the underlying formula and calculating it using BETA.DIST or the
dbeta function, that’s easily done. With reference to Figure 4.11, pick a
quantile such as the 0.6 for π in cell A9. The prior for this quantile is given by
the following formula:

where the values of a and b used in Figure 4.11 are 5 and 8, respectively. The
denominator in the formula is the beta function, defined earlier as:

β (a, b) = Γ (a) * Γ (b) / Γ (a + b)



or, in pseudo-syntax:

β(a, b) = GAMMA(a) * GAMMA (b) / GAMMA (a + b)

to return 0.8409, the prior for p = 0.6 with a and b equal to 5 and 8. Compare
the result with that returned in cell B9 by this function:

BETA.DIST(A9,a,b,FALSE)

You can proceed by checking the raw posterior shown in, say, cell D9 as
0.0015. The underlying formula is simply the prior times the likelihood: in
the case of the 0.6 quantile, this is the result of B9*C9.

In a blank cell on Figure 4.11 or 4.12, where the names a, b, f, and g are
scoped, enter this formula:

=(0.6^(a+f-1))*((1-A9)^(b+g-1))/(GAMMA(5)*GAMMA(8)/GAMMA(5+8))

which returns 0.0015, the same value as the product of the prior and the
likelihood, B9*C9.

The equivalencies between the underlying formulas and the functions such as
BETA.DIST or dbeta are summarized in Figure 4.12.



Figure 4.12 Test the equality with formulas such as =E16=D9.

Understanding Conjugate Priors
When you multiply a distribution such as a prior by another distribution such
as a likelihood, the result in Bayesian analysis might not be of the same type
or family as the prior.

A family of distributions comprises distributions that share similar
characteristics; for example, distributions of discrete variables such as the
outcome of flipping a coin where there can be only two results, heads and
tails. Other families of distributions include those that provide for an infinity
of permissible outcomes and those that do not, and those that provide for both
discrete and continuous measures.

In Bayesian analysis, you often find yourself multiplying a prior distribution



by a likelihood. It turns out that is desirable for the result of the
multiplication, the posterior, to belong to the same family as does the prior
distribution. When this is the case, the prior and the posterior are termed
conjugates, and the prior is frequently termed a conjugate prior.

That is a desirable state of affairs. When you have gathered more data as you
iterate through the phases of the analysis, you might well want to use the
posterior distribution as the prior to the next phase.

However, it is relatively difficult to find interesting problems that result in
priors that follow a beta distribution. Historically, that situation limited the
use of Bayesian analysis until an alternative to grid approximation could be
found: one that did not necessitate the use of the beta distribution to describe
the way that data span the distribution’s range. In recent years, other methods
such as Markov Chain Monte Carlo (MCMC) have been employed in place
of reliance on conjugate priors, and the result has been considerably more use
of Bayesian analysis than had earlier been the case.

Summary
When you multiply a distribution such as a prior by a likelihood, the result, in
Bayesian analysis, might not be of the same type or family as the prior.

Matters become much simpler when the prior and the posterior are of the
same distributional family. In that case, you do not need to jump through
mathematical hoops to use the posterior distribution as the next prior. Those
hoops, often termed open-form expressions, entail operations such as
integration and differentiation, which can be expensive not only of computer
time but of real time as well.

When a prior and its posterior do not belong to the same distributional
family, when they are not conjugates, it might be necessary to resort to an
open form of the distribution’s equation. Closed-form expressions tend to be
limited to equations that use straightforward arithmetic and trigonometry
rather than more complex operations such as those employed in calculus.

One of the pairs of distributions that result in conjugate distributions is the
beta combined with the binomial. When you multiply a beta by a binomial
distribution the result is a conjugate prior: the posterior distribution is itself a



beta distribution. That makes the coding and the math considerably less
difficult.

This is not to say that the method of grid approximation does not have a place
in Bayesian analysis. It does. It is well suited to straightforward problems that
do not entail multiple variables, because grid approximation does not scale
well. It becomes a relatively cumbersome tool when it’s used in that sort of
situation: when it is asked to provide an analysis of a design that calls for
many variables. So, keep it in your toolkit, but be aware there can be stronger
alternatives.

We’ll start examining these alternatives to grid approximation in the next
chapters.



5. Grid Approximation with
Multiple Parameters

This is not meant to be a treatise on the use of VBA code—or R code for that
matter—but if you are to understand what the code is doing it’s necessary to
get at least an overview of it. I’m presenting this coding example using a
combination of an Excel worksheet and Visual Basic for Applications
(VBA). Here’s why:

It’s generally acknowledged that VBA is not optimized for statistical
analysis. Certainly, it’s possible to carry out certain statistical procedures
using VBA, but it’s also true that many of those procedures require 10, 20,
even 50 lines of code to accomplish something that a language such as R can
accomplish in one or two statements.

Furthermore, the default installation of R on your computer provides you
with a library of compiled functions. Compile-time errors have already been
found and fixed. And VBA must often interpret statements that are executed
repeatedly and that must be evaluated in each repeated instance. All this often
requires much longer development time, and results in slower execution
speed in VBA than is required in a language such as R’s.

Note

I don’t want to unduly alarm you. The code and data in this chapter
run to completion in about 15 seconds on an HP laptop with an i5
core.

I could have made the VBA code that I discuss in this chapter much briefer.
For example, there are two procedures that establish arrays of factor levels. I
could have made do with just one procedure and arranged for the two arrays
by means of arguments passed through that procedure.



However, that would have tended to focus your attention on trivialities such
as arguments passed by reference versus those passed by value. The reason to
spend time on this VBA code is that it tends to illuminate the rationale behind
the analysis. Better that than to spend time and effort learning the niceties of
a moribund coding language.

And there are several places in the code where I could have displayed user
forms to pick up user input. Instead, that input was hard-coded, and you must
modify the code in order to accommodate changes such as the location of
information that you want to use. Again, though, I think it’s more important
to focus on the logic and the flow of the analysis than on the preparation of
user-cordial code.

On the other hand, there must be 10 people who are familiar with VBA for
every one person who is familiar with R’s coding language. It’s a lot easier to
comprehend the purpose of a nested loop in VBA than it is to comprehend
the purpose and result of R’s SSA function—elegant as that function might be.

So, the reason that I include the following discussion of a parameter, one
used by Bayesian analysis but written in VBA, is not to recommend that you
adopt VBA in place of R or Python for statistical programming. The reason is
that it’s a lot easier to see what’s going on in the code when you’re familiar
with that code’s conventions and functions than otherwise. It’s also handy
that you can check the meaning of code that you have written for a
complicated calculation by entering it as a formula in its own worksheet cell
—that’s a good way to check the correspondence between a known formula
and a yet-to-be-tested snippet of code. That sort of development check is
much easier to carry out in Excel than it is in R.

With that as rationale, let’s take a look at a two-parameter Bayesian analysis
using grid approximation written in VBA. Earlier chapters have focused on
single-parameter analyses. One-parameter grid approximation is often much
more straightforward to carry out, and just as accurate, as other methods,
such as quadratic approximations and MCMC. My hope is that this will
convince you to use quadratic approximations or, better, MCMC when your
analysis is complicated enough to call for it.

Setting the Stage



Many variables of interest to scientists and statisticians are distributed as a
normal or “bell” curve. (You are also likely to see such curves referred to in
the literature as Gaussian.) These curves tend to be symmetric rather than
skewed. It is also possible to specify their distributions with two numbers: a
measure of central tendency (that is, a mean, median, or mode) and a measure
of the spread of the distribution around that central tendency (often by means
of a standard deviation or quantile).

One such variable is the cholesterol level in humans. For a variety of reasons,
you might find it important and interesting to determine the central tendency
and the standard deviation of cholesterol in a sample, with the intent of
generalizing your findings to a population. We can use an extension of the
techniques discussed in earlier chapters to distill data from that sample into a
statement of the central tendency and measure of spread for that variable in
the sample itself. We can also describe the population itself, to the degree that
the sample is an accurate representation of its population.

Certainly, it’s true that you do not need to use Bayesian techniques to
accomplish this sort of analysis. Frequentist techniques of various types have
for decades dealt with just this sort of problem. But Bayesian approaches
often provide different perspectives than do frequentist approaches, and those
differences and approaches often illuminate in ways that frequentist methods
don’t.

That said, let’s take up the code.

Global Options
The first two statements in the code, both Option statements, tell VBA to

• Start new vectors with 1 as their base element rather than zero.

• Require that all variables be explicitly declared rather than created on
the fly simply by using them. I’ve found through bitter experience that
I’m much better off with these option settings than otherwise.

These options apply throughout the code that they initiate.

Option Base 1
Option Explicit



Local Variables
Then several variables are declared using the Dim (short for dimension)
statement. And the subroutines or functions, collectively termed procedures,
that follow these dimension statements can use any variable declared there.
Other procedures can specify their own variables, which are declared in the
procedure itself and which can be used only in that procedure. This
characteristic is often termed the variable’s scope.

Dim MuCount As Integer, SigmaCount As Integer
Dim LowSigma As Double, HighSigma As Double
Dim LowMu As Double, HighMu As Double
Dim MuArray() As Double
Dim SigmaArray() As Double
Dim FactorCombs() As Double
Dim PostProduct() As Double
Dim SumLogLike() As Double
Dim ObservedCounts As Integer
Dim ValCount As Integer
Dim LogLikeMatrix() As Double

Specifying the Order of Execution
The first procedure is the Driver subroutine, which in this case simply names
the other procedures that are to be executed and provides the order in which
to execute them. The user is expected to start things off, whether directly or
indirectly, by telling the Driver procedure to run.

I turn off screen updating at the outset. Although the code writes no formulas
to the output sheet, you might want to see one formula or more and enter
them yourself. Because normal screen updating slows things down
considerably due to the need to update any formulas whenever a change
occurs on the worksheet, I turn updating off at the start. I turn it back on at
the end of the code. Obviously, you can override this behavior if you want.

Sub Driver()

Application.ScreenUpdating = False
Mu
Sigma



PopulateFactorArrays
LoadData
LogLike
PostProbs
Application.ScreenUpdating = True

End Sub

Grid approximations, whether they use one parameter or more, specify the
levels of each factor that the grid is intended to represent. So, if an analysis
were intended to break down an outcome variable according to the subjects’
sex and age range, you might have a design cell for males under or equal to
18, males over 18, females under or equal to 18, females over 18, and so on.
Two levels of sex times two levels of age result in four combined levels.

Normal Curves, Mu and Sigma
In this case we want to work with two parameters, termed Mu and Sigma,
that are needed to describe a Gaussian distribution, also termed a “normal
curve.” Notice that the names used for these parameters are Greek letters, the
traditional frequentist convention for identifying quantities that summarize
their population rather than a sample, and which therefore cannot be
calculated directly. (By the time you’re finished calculating, the population
has changed.)

The idea used here is to break both the Mu parameter and the Sigma
parameter down into 100 levels each. Then the code will pair up each Mu
value with each Sigma value, creating 10,000 records, each with a unique
pair of Mu and Sigma values.

Breaking up the parameters in two levels is easy. The range of values is built
into the code, which assigns the value 198.6 as the bottom of the Mu range
and 208.6 as its top. Per the previous paragraph, we want both the Mu and the
Sigma ranges to have 100 levels each. So for Mu, it’s just a matter of
dividing the range by the number of levels:

(208.6 − 198.6) / 100

or 0.10, so each range in the Mu parameter is 0.10 apart from its adjacent
ranges. The code refers to that distance by the name of MuIncrement.



Sub Mu()

Dim MuIncrement As Double, i As Integer

LowMu = 198.6
HighMu = 208.6
MuCount = 100

MuIncrement = (HighMu - LowMu) / (MuCount - 1)

The code redimensions an array called MuArray so that it has MuCount rows
and two columns. (By convention, the first argument is the number of rows
and the second is the number of columns.) Then the code loops through
MuArray, assigning a subsequent value of Mu to each row in the array’s first
column.

ReDim MuArray(MuCount, 1)
MuArray(1, 1) = LowMu

For i = 2 To MuCount
    MuArray(i, 1) = MuArray(i - 1, 1) + MuIncrement
Next i

End Sub

The same process takes place with the Sigma array, but in that case we want
Sigma to range across 100 values from a low value of 39.7 to a high value of
41.7. Here’s the code:

Sub Sigma()

Dim SigmaIncrement As Double
Dim i As Integer

LowSigma = 39.7
HighSigma = 41.7
SigmaCount = 100

SigmaIncrement = (HighSigma - LowSigma) / (SigmaCount - 1)

ReDim SigmaArray(SigmaCount, 1)
SigmaArray(1, 1) = LowSigma

For i = 2 To SigmaCount
    SigmaArray(i, 1) = SigmaArray(i - 1, 1) + SigmaIncrement
Next i



End Sub

Note

MuArray and SigmaArray each consist of two columns and a few
hundred rows. In each case, the array’s first column contains the
levels of the factor that’s specified in the array. Why not declare an
array as, for example, SigmaArray(SigmaCount) instead of
SigmaArray(SigmaCount,1)? The reason is that in VBA, when you
declare an array with one argument, that first argument in the
declaration is interpreted as the array’s number of columns in its first
and only row.

For consistency, and to avoid driving myself nuts, it’s my habit to
declare one-dimensional arrays as two-dimensional, with any number
of rows and one column. The first argument then shows the number
of rows I want the array to contain, and the second argument
establishes a column: a valid element of the array that nevertheless
forces a particular arrangement of the array’s dimensions, so that it
causes the first argument to establish rows rather than columns.

If you want to run the code as it is given here, and as it is stored on
the publisher’s website, you can run it without edits. Or, if the
presence of a dummy dimension irks you, simply change, for
example, references such as SigmaArray(SigmaCount, 1) to
SigmaArray(SigmaCount).

Note

If you disagree with me on this point, experiment with one array
declared via Dim Horizontal (5) and another declared via Dim
Vertical (5,1). Populate both arrays, switch to a worksheet, and
choose a range with five rows and one column. Switch back to the
VBE, enter Selection = Horizontal() in the Immediate window,
and switch back to the worksheet to see what has happened to the
selection. Experiment with different combinations of the orientation
of the selection (i.e., five columns and one row) and which version of
the array to write there.



Visualizing the Arrays
At this point, we have two arrays, named MuArray and SigmaArray, that each
contain 100 rows. Each array’s first and only column, on each of 100 rows,
contains a level for the array’s factor. For example, here are the array named
MuArray’s first five rows:

and here are the first five rows of SigmaArray:

For convenience in coding and in tracing the code, we want to combine these
two rays into one. When we’re done with that task, the first five rows of the
resulting two-column, ten-thousand-row array will look like this:



And the final five rows of the resulting array look like this:

Don’t lose sight of the purpose of all this. Among other things, we’re looking
for a combination of the parameter Mu and the parameter Sigma that together
produce the optimum value of the outcome variable. In order to do that, we
need to associate an observed outcome with the different combinations of the
two parameters, Mu and Sigma, and the present code is preparing to make
that association.

Combining Mu and Sigma
The following procedure combines MuArray with SigmaArray into a new array
named FactorCombs:

Sub PopulateFactorArrays()

Dim RowNum As Integer, i As Integer, j As Integer

ValCount = MuCount * SigmaCount
ReDim FactorCombs(ValCount + 1, 2)
RowNum = 1



For i = 1 To SigmaCount
    For j = 1 To MuCount
        FactorCombs(RowNum, 1) = MuArray(j, 1)
        FactorCombs(RowNum, 2) = SigmaArray(i, 1)
        RowNum = RowNum + 1
    Next j
Next i

End Sub

The subroutine named PopulateFactorArrays makes use of a nested loop.
The outer loop cycles through all the levels of the Sigma parameter. Within
each level of the Sigma parameter, the inner loop cycles through all the levels
of the Mu parameter. (In this case, it doesn’t matter which parameter is in the
inner loop and which is in the outer.)

We wind up with MuCount * SigmaCount rows in FactorCombs. Because we
called for 100 levels of Mu and 100 levels of Sigma, the FactorCombs array
contains 10,000 rows, accounting for all the ways that the 100 levels of Mu
can be combined with the 100 levels of Sigma.

Putting the Data Together
The next procedure, LoadData, combines the factor values in FactorCombs
with the observations saved as a list in a csv or Excel workbook file. The
address occupied by the observations is hard-coded as A2:A301. Note that
you can replicate this analysis with another data set by adjusting, in the code,
the rows and column that contain the observed data and by making the
worksheet that contains the data the active sheet before starting the code.

It would be unusual to find a set of observations whose count would divide
evenly into the number of combined levels of Mu and Sigma that the code
has postulated (10,000). In this case, we have 300 observations and 10,000
combined levels. That means that we can associate those 300 observations
with factor levels 33 times, with room for 100 more:

33 * 300 = 9900, and 10,000 − 9900 = 100.

VBA’s mod function helps out here. Declare a few variables, including an
object variable. The variable Repeat will store the number of times that the



observed data can be evenly added to a matrix named LogLikeMatrix: in this
case, that’s 33 times, as shown above. The variable Remain will store the
number of cases left over: in this case that’s 100, also as above.

Sub LoadData()
Dim Obs As Range
Dim Repeat As Integer, Remain As Integer
Dim i As Integer, j As Integer, k As Integer

Now assign the range A2:A301 to the object variable Obs. This counts the
number of rows in that range to determine the total number of cases in the
worksheet range.

Set Obs = ActiveSheet.Range(Cells(2, 1), Cells(301, 1))
ObservedCounts = Obs.Rows.Count

Redimension the matrix named LogLikeMatrix with the total number of factor
levels as its number of rows, and with five columns. When you redimension a
matrix that you have already declared in the code, and the number of
elements in a dimension such as rows or columns is another variable (as it is
here using ValCount as the number of rows) you must redimension the array.
You cannot use, say, Dim Obs (ValCount) when, as is usually the case, you
have declared an array without specifying its dimensions. It is usually
necessary to use the ReDim statement, but using it tends to slow execution
speed. (There are some other restrictions that apply to the use of ReDim.)

ReDim LogLikeMatrix(ValCount, 5)
ReDim SumLogLike(ValCount)

Remain = ValCount Mod ObservedCounts
Repeat = (ValCount - Remain) / ObservedCounts

Move the contents of the FactorCombs array into columns 2 and 3 of
LogLikeMatrix:

For i = 1 To ValCount

    LogLikeMatrix(i, 2) = FactorCombs(i, 1)
    LogLikeMatrix(i, 3) = FactorCombs(i, 2)

Next



Now enter the 300 values from ObservedCounts into LogLikeMatrix. Do so 33
times (that is, the number of times specified by the variable Repeat).

k = 1
For i = 1 To Repeat
    For j = 1 To ObservedCounts
        LogLikeMatrix(k, 1) = Obs(j)
        k = k + 1
    Next j
Next i

Finish populating LogLikeMatrix with the remaining 100 data observations:

k = 1
For i = Repeat * ObservedCounts + 1 To ValCount
    LogLikeMatrix(i, 1) = Obs(k)
    k = k + 1
Next i

End Sub

You now have an array named LogLikeMatrix that contains the observed data
set repeated 33 times, plus an additional 100 values from the observed data to
fill out the 10,000 rows in LogLikeMatrix. Each value in the observed data set
is repeated 33 times in LogLikeMatrix, plus an additional 100 instances of the
observed records which are therefore repeated 34 times.

Calculating the Probabilities
The idea is to calculate the likelihood of each observation across each value
of the Mu and the Sigma parameters. This is accomplished by using Excel
VBA’s NORM_DIST function. The calculations are shown in the code for the
LogLike procedure.

Sub LogLike()

Dim i As Integer, j As Integer, k As Integer
Dim CurrentMean As Double, CurrentSigma As Double

Write the contents of LogLikeMatrix to the output sheet starting in row 2 and
occupying columns A, B, and C. This gives you each combination of factor
levels and each observed value. Writing out the contents is not a necessary



step for the analysis, but I want you to be able to compare the code with its
results.

Workbooks.Add
ActiveSheet.Name = “Output"

For i = 1 To ValCount
    ActiveSheet.Cells(i + 1, 1) = LogLikeMatrix(i, 1)
    ActiveSheet.Cells(i + 1, 2) = LogLikeMatrix(i, 2)
    ActiveSheet.Cells(i + 1, 3) = LogLikeMatrix(i, 3)
Next i

Supply column headers for the output:

ActiveSheet.Cells(1, 1) = “Height"
ActiveSheet.Cells(1, 2) = “Mu"
ActiveSheet.Cells(1, 3) = “Sigma"
ActiveSheet.Cells(1, 4) = “LL"
ActiveSheet.Cells(1, 5) = “Prod"
ActiveSheet.Cells(1, 6) = “Prob”

Now the code enters another nested loop. The outer loop runs from 1 to
10,000 (that is, the value of ValCount). The inner loop runs from 1 to 300
(that is, the number of fully observed counts). The idea is to hold constant
Mu and Sigma from the current record in LogLikeMatrix—these are the
values computed in the PopulateFactorArrays subroutine earlier in the code.
For those particular values of Mu and Sigma, the code picks up each of 300
values in the observed data set. The code uses NORM_DIST to calculate the
probability of the observed datum given the CurrentMu and CurrentSigma: that
is, how far above or below Mu is the observation, in Sigma units? The code
then accumulates the log of the resulting probabilities for each observed
value in the array named SumLogLike. That array will eventually hold the sum
of the logarithms of the record’s likelihoods.

Note

There’s nothing especially mysterious about the use of logarithms in
conjunction with the probabilities. Something that you get used to in
Bayesian analysis is that you’re working with very, very small
numbers. Frequently, you’re working with numbers that are so small
the computer cannot distinguish between them, and you wind up with



a bunch of zeros. By converting those numbers to their logs you wind
up with numbers that can be manipulated arithmetically, including
totaling the logs, which is equivalent to multiplying the numbers on
which the logs are based. Here we don’t need to convert them back
via antilogs because what we’re really interested in is the relative
sizes of the sums of the logs, which is what we have at the end of the
next procedure in the guise of products of probabilities.

Notice that in the following loop, we are totaling the logs of each observed
probability every time it appears with a different combination of factor levels,
defined by CurrentMean and CurrentSigma. (Bear in mind that there are just
300 observed values, so we expect each to appear 33 times in the expanded
grid.) Here is what happens in the nested loops:

1. The outer loop runs through the entire 10,000 records, picking up on the
way each record’s CurrentMean and its CurrentSigma from
LogLikeMatrix.

For j = 1 To ValCount
    CurrentMean = LogLikeMatrix(j, 2)
    CurrentSigma = LogLikeMatrix(j, 3)

2. The inner loop then runs through the 300 observed records and
calculates for each one the probability of observing that record’s
cholesterol measure, given the CurrentMean and CurrentSigma. The
False argument specifies that the probability measure should not be
cumulative.

Again, totaling the logs is equivalent to multiplying the numbers on which
they’re based.

For i = 1 To ObservedCounts

    LogLikeMatrix(i, 4) = Application.WorksheetFunction.Norm_Dist
    (LogLikeMatrix(i, 1), CurrentMean, CurrentSigma, False)

The log of the current probability is taken and is used to increment the
running total of the logs for the current observed cholesterol measure.

        SumLogLike(j) = SumLogLike(j) + Log(LogLikeMatrix(i, 4))



    Next i
    ActiveSheet.Cells(j + 1, 4) = SumLogLike(j)

Next j
End Sub

At the end of the nested loop—and therefore of the procedure—we have a
vector of values, one for each of the observed data points. Each value in the
vector is the sum of the logs of the probabilities of observing each data point,
conditioned on the values of each level of CurrentMu and CurrentSigma.

Folding in the Prior
We are at the point now where we have a likelihood. We still need a prior so
that under the procedures used in grid approximation we can conflate the
likelihood with the prior to create a new posterior. I’ve chosen to use
published norms of cholesterol measures to construct the prior. You’ll see
how that’s done using Excel’s NORM.DIST function in a procedure that follows
shortly, PostProbs.

The prior can be any rational set of values that you want. If you have no idea
as to how the prior should be distributed, you could start with a very weak
prior, such as a prior that assigns one case to each category in the
distribution. Because we have empirically collected data to work with here,
we might as well start with that data as our prior. (A weak prior is one whose
effect on the posterior is overcome by the much stronger effects of the
likelihood.)

Note

The data comes from a 2013 report by the National Institutes of
Health (NIH). The mean and standard deviation of plasma total
cholesterol levels were 203.6 and 40.7 mg/dl. An article in the
journal Circulation reports a correlation of 0.30 between age and
total cholesterol level.

Sub PostProds()

Dim i As Integer
Dim UniformSigma As Double



Dim PostProbs() As Double
Dim MaxProd As Double

ReDim PostProduct(ValCount)
ReDim PostProbs(ValCount)

UniformSigma = Log(1 / 50)

The code just shown begins the process of multiplying the prior by the
likelihood to obtain the posterior distribution by declaring and dimensioning
several necessary variables. The variable UniformSigma is also declared and
calculated to give it a constant value. I’ll discuss the use of UniformSigma in
more detail shortly.

The code now enters a loop that executes once for every combination we
have calculated—so, 10,000 times, or ValCount. The code calculates 10,000
values for the variable named PostProduct. That variable turns out to be the
product of the prior and the likelihood. And that, with one small
modification, turns out to be the posterior distribution in this analysis.

Each value of PostProduct is a combination of three components:

• SumLogLike(i)

This is the sum of the logs of the likelihoods of each observed value at
the various combinations of MuArray and SigmaArray. These sums are
calculated in the procedure named LogLike and constitute the likelihood
part of the addition.

• Log(Application.WorksheetFunction.Norm_Dist (FactorCombs(i, 1),
204, 41, False))

This is the value of the prior. It provides the probability of observing a
particular cholesterol value (in this case) in a distribution whose mean is
204, whose standard deviation is 41, and which is not a cumulative
probability but rather is the relative probability of a specific point.
Notice that the code adds the log of that probability—the prior—to the
current value of SumLogLike—the likelihood, also a log (see below for
this operation).

• UniformSigma



This acts much like the beta function discussed in Chapter 3. Its purpose
is to scale the probabilities to 1.0, or 100%. Chapter 3 discusses that
process in the context of an analysis with just one parameter. In the
present case, we can declare a range for Sigma while saving some CPU
time. The density of a uniform distribution is given, in R’s language, by
a function such as dunif (post$sigma , 0 , 50 , TRUE), where Sigma
is a posterior value for the standard deviation parameter, and 0 and 50
are the minima and maxima, respectively, that you allow for the prior
Sigma. The VBA code calculates the min – max range (here, 50), and
supplies its reciprocal (1 / 50).

Its log is taken, so when it’s used in the calculation of the likelihood
from the prior, you add it instead of multiplying it. Finally, it’s an
addition of logs (or a product of probabilities) because the code supplies
the reciprocal—you add logs to multiply probabilities, and you add the
reciprocals of logs to divide them.

Here, we set the prior to a mean of 198.6 and a standard deviation of 41,
yielding a different likelihood density for each (unique) combination of factor
levels.

For i = 1 To ValCount
    PostProduct(i) = SumLogLike(i) +
    Log(Application.WorksheetFunction.Norm_Dist
       (FactorCombs(i, 1), 198.6, 41, False)) + UniformSigma
    ActiveSheet.Cells(i + 1, 5) = PostProduct(i)
Next i

Next, the code calculates the maximum value in the PostProduct array (that
is, the array of products yielded by multiplying the priors and the
likelihoods):

MaxProd = WorksheetFunction.Max(PostProduct)

Then the code subtracts the maximum value in the PostProduct array from
each value in that array, and converts the result from the log scale back to the
probability scale using Excel’s EXP worksheet function.

The resulting value is not a true density figure but the relative probability for
that combination of the outcome value and the pairing of each factor level. It



is in that sense a relative posterior probability, arrived at in the log scale by
subtracting the maximum product from each product—equivalent to using
antilogs to divide the product by the maximum product and then taking the
antilog of the result.

This process is analogous to dividing each likelihood by the maximum
likelihood, but instead of getting a batch of zeroes you get likelihoods
expressed as proportions of the maximum product.

For i = 1 To ValCount
    PostProbs(i) = Exp(PostProduct(i) - MaxProd)
    ActiveSheet.Cells(i + 1, 6) = PostProbs(i)
Next i

End Sub

Inventorying the Results
So, you now have a posterior distribution described by these columns on the
output worksheet:

• Cholesterol

• Mu: The unobserved mean of the cholesterol levels in the population.

• Sigma: The unobserved standard deviation of the cholesterol levels in
the population.

• LL: The log likelihood of obtaining a particular cholesterol observation
in a distribution with a given mean and standard deviation. The value is
the total of the log likelihoods for that observation across a given
number of sample means and standard deviations.

• Prod: The total of a given observation, the value in the prior for that
observation, and the inverse of the constant value for the standard
deviation. That total is a logarithm, so using the inverse Exp converts the
total to a product on a probability scale (rather than on a logarithmic
scale).

• Prob: the probability associated with a given cholesterol level, a level of



Mu and a level of Sigma. The values shown are not actual probabilities
but are, rather, deviations of the calculated probability from the
maximum probability in the data set. This is done to avoid values caused
by lack of complete precision in the computer that is used.

Now, what can you do with this data? I’ll revert here to R’s formula syntax.
You could, if you wished, run all the calculations described in this chapter
using VBA and Excel, or you could translate them from VBA into R’s
programming language. Again, I have provided the analysis using VBA and
the Excel worksheet because that approach provides a much clearer set of
examples than do the R functions. Once you’ve mastered the rationale I urge
you to use R as a much more effective software tool for statistical analysis.

Viewing the Results from Different Perspectives
R has an extensive variety of statistical capabilities that are well suited to
Bayesian analysis. You can explore them, if you wish, by saving the output
from the analysis provided in this chapter to a csv file, and then using R’s
read.csv function to pull the resulting data into a data frame, which provides
a convenient way to present the data to R’s statistical functions.

Suppose that you wanted to find the maximum probability value in the final
column of the posterior described here. One way to do so might be as
follows:

1. Save the worksheet in csv format with a name such as grid.csv.

2. Switch to R.

3. Use File, Change dir to change the working directory to the location
where you saved the csv file.

4. Enter this formula:

example <- read.csv("grid.csv")

(Remember that R syntax is case sensitive, and many R functions must be
entered entirely in lower case.) R not only reads the contents of the file
named grid.csv but stores the contents in a data frame named, here, example.



Now, to get the maximum value found in, say, the prob column of the
example data frame, you could use this function:

max(example$prob)

which with this data set and this analysis, returns this response:

[1] 1

which means that 1.0, or 100%, is the maximum probability value found in
that variable. Only one instance of that value is found, and that instance is
identified as [1]. If you then wanted to locate the full record, you could use
this function:

which.max(example$prob)

and R responds:

[1] 9988

which tells you that the 9,988th record contains the maximum value of prob.
That way, you could tell that a particular member of the distribution, with the
9,988th value of Mu and Sigma, has the greatest probability of being
observed. Again, just one record has the maximum value and it’s identified as
[1] in the function’s results.

Knowing as you do that the data frame has 10,000 records, you could view
the final 15 records (which therefore must include the 9,988th) with this:

tail(example,15)

Here’s a five-record sample of what R would show you:

9996   9996 208.1960  41.7 -1545.883 -1554.432 0.9430137
9997   9997 208.2970  41.7 -1545.898 -1554.448 0.9287113
9998   9998 208.3980  41.7 -1545.914 -1554.465 0.9130118
9999   9999 208.4990  41.7 -1545.933 -1554.483 0.8959936
10000 10000 208.6000  41.7 -1545.953 -1554.504 0.8777409

Use head instead of tail to get the first few records.



If you want to visualize a particular variable, one way is with the curve
function, which draws a particular type of chart. The one shown in Figure 5.1
shows the prior for Mu, based on a random sample of 10,000 records with a
mean of 204 and a standard deviation of 41. That curve is overlaid by a
calculated normal curve—so, the code to create the chart is as follows:

random_mu <- rnorm( 10000 , 204, 41 )
random_sigma<-runif(10000, 20,100)
prior_choles <- rnorm( 10000 , random_mu , random_sigma )
dens( prior_choles, norm.comp = TRUE )
title("Random sample of Mu from Prior")

Figure 5.1 Samples for the Sigma parameter, which has a
characteristically skewed right tail.

A few comments about Figure 5.1:



• If you decide to run the code that creates the plot in Figure 5.1, be
careful when you run it step by step using the Ctrl+R sequence. That
keyboard sequence calls for R to execute the line of code indicated by
the flashing I-beam in the active window. The problem is that as soon as
the line of code that creates the plot executes, the chart becomes the
active window, not the window that contains the script. So, if you want
to execute the commands one by one, be careful to reactivate the code
window before you execute, say, the title command.

• Similarly, if you decide to use the Run all command instead of the Run
line or selection command, be sure to activate the script window
before you choose Run all. Otherwise, R will not know where to look
for the script.

• The N = 10000 entry on the X axis label is self-explanatory: each plot is
based on 10,000 records. The Bandwidth entry is a little more
complicated. It is a measure of the degree of spread in the data set that is
plotted. It’s a nonintuitive combination of the standard deviation and the
interquartile range.

• The critical reason for plotting a prior at all is to check that your
assumptions are consistent with reality. So, if your plot looks like a
straight line while you expect a plot of the posterior distribution to
resemble the standard normal distribution, it may well be that
something’s wrong. Of course, all may be fine if you posited a weak
prior to begin with—but you have been alerted to the possibility.

• Notice that there are actually two plots in Figure 5.1. One is the slightly
jagged one, which represents random samples from a normal
distribution with mean 204 and standard deviation 4.1. The other plot is
a much smoother one and represents a normal curve, calculated rather
than observed. The idea is to give you a touchstone that suggests how
accurately, or how poorly, your sample resembles the ideal that you’re
assuming. You call for that comparison curve by including the
norm.comp argument in the dens function.

Not all variables in this type of analysis resemble normal curves. If you move
a curve to the right or left on its x axis, the mean rises or falls accordingly.
The same is not true of the variance or standard deviation. They are fixed by



constraints such as being positive values and constant wherever you move the
mean. Figure 5.2 shows Sigma plotted against a range of values for Mu.

Figure 5.2 Density plot for constant standard deviation: Over the range
of possible values for the mean, the standard deviation is a constant.

If you’re interested in summary statistics, you might want to trot out the PI
and precis functions. Listing 5.1 shows the precis function, which provides
a quick summary of the variables in your data frame (here named post). The
code to call for the information is pretty simple, given a data frame such as
post:

precis(post)

and R responds with Listing 5.1.



Listing 5.1 Summary statistics for a posterior data frame.

’data.frame’: 10000 obs. of 5 variables:
          mean   sd     5.5%    94.5%
mu      203.60 2.92   199.11   208.09
sigma    40.70 0.58    39.80    41.60
LL    -1548.19 2.14 -1552.33 -1545.93
prod  -1556.74 2.14 -1560.88 -1554.48
prob      0.32 0.32     0.00     0.90

Depending on the hardware and software your computer is running, you
might also see miniaturized histograms to the right of the upper confidence
level of each variable.

Listing 5.2 shows a univariate statistical inference, based on PI(post$prob).
The default interval is 89% rather than the more usual 90% or 95%,
apparently due to the developer’s distaste for the (largely arbitrary and
conventional) limits such as 5% and 95% or 2.5% and 97.5%.

Listing 5.2 Confidence interval for a posterior data frame’s probability.

5%         94%
0.00149278 0.89731833

It’s also a good idea to take a look at the posterior distribution of the
parameters. One good way to do that is to sample (with replacement) from
the posterior, plot the results, and examine them. I switch back to R for that
purpose, because R has a slick way for you to control how the sampling takes
place.

If you choose to use R to run the analysis I’ve discussed in this chapter,
you’ll have the various analytic components in variables that belong to a data
frame. That frame might be named something like Posterior. Then, among
the variables that belong to Posterior would be one perhaps named
Probability. At the point that the VBA code completes, Probability plays
no role in whether any of the 10,000 records belong with the other 9,999. The
code just lined up the first cholesterol record with the first mu and the first
sigma records, the second with the second, and so on.

R (but not VBA) has a function that not only samples records from a larger



sample (or a population) but selects a record based on its probability of
occurrence in the larger sample. You need R to have access to the data frame
that this chapter has discussed. If you use R code to construct the data frame,
R will automatically have access to it.

If, instead, you use VBA code to construct a data frame, you’ll need to
arrange for R to pull the data frame into its workspace. The VBA code
automatically opens an Excel workbook that contains a single worksheet
named Output. That worksheet contains the data frame, which comprises
10,000 rows and 6 columns. Save it as a csv file in R’s working directory.
You can name the workbook whatever you want when you save it, but for
present purposes I will name it choles output.csv.

Then, you can use R’s read.csv function to pull the data into a data frame in
R. I’ll name that data frame posterior.

posterior <- read.csv("choles output.csv”,header = TRUE)

The code then pulls a sample of 10,000 records from the data frame named
posterior. This is a 100% sampling, but it’s virtually certain that quite a few
records will be pulled more than once out of the data frame, and some won’t
be selected at all. The term for this is sampling with replacement. Once you
pulled, say, record 123 from the source, you replace it in the source so that
it’s available subsequently for repeated sampling.

The replace argument to the sample function specifies that the probability
assigned to the record in the main code is to be used as the probability that
the record will be sampled. That means that a record with a prob value of
.0000001 will be much less likely to be sampled than a record with a prob
value of .0001.

sample.rows <- sample(1:nrow(posterior), size=1e4, replace=TRUE ,
prob=posterior$Prob )

The vector named sample.rows now contains the index numbers of 10,000
records that have been sampled. We use samples.rows as an argument for the
sample function that actually pulls the records out of the data frame.

sample.mu <- posterior$Mu[sample.rows]
hist(sample.mu)



Finally, we tell R to show the variable sample.mu in a histogram (see Figure
5.3).

Figure 5.3 The distribution of total cholesterol in adults after combining
the effects of the prior with the effects of the likelihood.

For comparison, Figure 5.4 shows a histogram of the observed cholesterol
levels that together make up the likelihood used in this analysis. The addition
of likelihood to the analysis clearly pulls the distribution toward a classic
normal curve.



Figure 5.4 A slight skewness in the raw cholesterol measures.

Summary
This chapter has two primary purposes: one is to show how complex the code
for a grid approximation can become when you add parameters. The added
complexity slows down the processing to a point that analysis loses its
effectiveness, and that makes alternative strategies, such as quadratic
approximation and MCMC, that much more attractive. I’ll be discussing
those strategies in the remainder of this book.

The other principal purpose of this chapter is to give you a sense of how



approximation and posterior distributions work together. I’ve always found
that the more ways you have to address a problem, the easier it is to solve.
There’s no better way to get different viewpoints on Bayesian analysis than
to compare R against Excel.



6 Regression Using Bayesian
Methods

Statisticians use the term regression pretty loosely.

At its simplest, the term refers to the average of the products of the
corresponding z-scores—a.k.a., the Pearson correlation coefficient. At its
oldest, the term refers to the tendency of sons’ heights to regress toward the
mean of their fathers’ heights. When applied to categories such as method of
transportation, brand of car, or the presence of a defect in a manufactured
product, it’s usually called logistic regression. When particular types of
coding schemes are applied to independent variables, which are manipulated
by the researcher and not merely observed, it’s often termed the general
linear model. And in a true experimental design, the purpose of regression
analysis is not simply to predict but, more typically, to explain. Depending on
the context, then, regression can imply a variety of statistical and
methodological purposes.

Regression a la Bayes
So it shouldn’t be at all surprising that the Bayesian approach to regression
looks very different from the frequentist approach. Suppose that you want to
better understand the relationship between the amount of fat consumed by
adults during a year and the amount of low density lipoproteins (LDL)
cholesterol found in blood samples from similar adults at the year’s end.

Assuming that you have no insurmountable difficulties with the acquisition
of good data, you’re set up to quantify the relationship between LDL and fat
consumption. Just about any application designed to return numeric analyses
will provide you with the summary statistics you’re after:

• Correlation coefficient. A number between –1.0 and +1.0 that



expresses the direction and the strength of relationship between two
variables. A correlation of 1.0 describes a perfect and positive
relationship, such as height in inches with height in centimeters. A
correlation of –1.0 describes a perfect negative relationship. An example
of a perfect negative relationship is the correlation between the number
of correct answers on a test with the number of incorrect answers on that
same test.

• R2. The square of the correlation between a predicted variable and one
or more predictor variables. I believe that usage calls for the
abbreviation to be capitalized (R2) with more than one predictor, and
lowercase (r2) with just one predictor.

• Slope or regression coefficient. The gradient of a line that shows where
x-values, such as golf score, connect with predicted y-values, such as
years playing golf (see Figure 6.1). You may recall this concept as
taught in middle school as “the rise over the run.”

Figure 6.1 A regression line slopes up when the correlation is positive,
such as calories consumed and weight. It slopes down, as here, when the
correlation is negative, such as number of years playing golf and
average golf score.



All of the just-named statistics—and more—are returned by any credible
statistics package, certainly various packages supplied by R and even the
venerable BMD and Lotus 1-2-3. What distinguishes the Bayesian approach
to regression analysis is that it does not maximize or minimize the value of
some function such as R2 to arrive at a solution; that is the goal of frequentist
approaches. Bayesian methods seek to maximize the probabilities of
particular outcomes.

One of the names for frequentist regression is least squares analysis. The
frequentist algorithms calculate the combination of predictors that minimizes
the squared deviations of the observed predictor variable’s values from the
predicted values. The values of the remaining statistics flow from that
finding: R2, the F ratio, the standard errors of the intercept and the
coefficients, the standard error of estimate, and so on.

The least squares approach to regression analysis works with one, two, three,
or more predictor variables. Regression’s job is to combine those predictors
to create a new variable. They are combined by multiplying each predictor by
its own coefficient, then summing the products of the predictors and their
coefficients. Regression does the heavy lifting when it optimizes those
coefficients.

Then, regression calculates the correlation between, on one hand, the
observed or outcome variable, and on the other hand, the combined predictor
variables. Make one tiny change to the value of one of the predictor variables
—say, change it from 5.00 to 5.01—and typically all the other variables
change in response: their regression coefficients, the standard errors of the
regression coefficients, R2, then F ratio, the sums of squares—anything
except the degrees of freedom.

Figure 6.2 shows an example.



Figure 6.2 The values in the range B2:D6 are identical to those in
B8:D12 with one exception: the value in C2 has been changed from
0.4099 to 0.4100 in cell C8. But the regression statistics in F2:H6 are
all different from those in F8:H12, with the exception of the degrees of
freedom regression.

Sample Regression Analysis
To lay the groundwork for a comparison of Bayesian regression analysis with
traditional least squares, Figure 6.2 shows the basics of a very small analysis,
rendered in Excel. It includes

• Values in B2:D6, which are used as inputs to Excel’s LINEST function.

• Values in the range C2:D6, which contains two predictor variables in
columns C and D.

• Values in cells B2:B6, which contain a predicted variable.

• The LINEST function, in the range F2:H6, which contains and displays
the results of the function. For example, the contents of each cell in
F2:H6 are computed with the dynamic formula that’s repeated here:

=LINEST(B2:B6,C2:D6,,TRUE)



Note

That formula is known as a dynamic array formula in more recent
versions of Excel, released in the 2021 timeframe. Earlier versions of
Excel use a legacy array formula, which requires that the user begin
by selecting the entire range to be occupied by the array formula, and
to enter the formula via Ctrl+Shift+Enter rather than via Enter alone.
One of the results of the changes made to the way that Excel handles
formulas is that you can now enter a LINEST formula without either
having to begin by selecting the full target range or having to enter
the formula via Ctrl+Shift+Enter. If you prefer, you can start by
selecting a single cell and end with Enter instead of Ctrl+Shift+Enter.
The legacy array formula appears on the worksheet surrounded by
curly braces. The dynamic array formula appears on the worksheet
without those braces.

• After entering the formula in F2:H6 of Figure 6.2, I copied and saved it
as the result values in F8:H12. That is because I want you to be able to
use Excel’s Solver, or to change the regression coefficients manually, so
you can compare the results of that change with the original results. By
doing so, you can demonstrate for yourself what happens when you try
to maximize regression’s accuracy by adjusting the returned coefficients
and intercept. (You cannot change just part of an array formula; it’s all
or nothing at all. But if you have saved the results of LINEST as values,
you are free to change any of those values as you please.)

• The regression equation’s predicted value for the first of the five records
is shown in cell L2 of Figure 6.3. It is calculated with this equation:

=$H$2+$G$2*C2+$F$2*D2

which is then copied and pasted into L3:L6 of Figure 6.3.



Figure 6.3 A slight change in the input data or in a regression
coefficient can result in a dramatic change in the results.

TIP

You can get the same effect using Excel’s TREND function. I used the
LINEST approach because I wanted to show the steps explicitly.

• I also entered the formulas in L2:L6 as values in J2:J6 by first copying
the formulas, and then pasting them into J2:J6, choosing one of the Paste
Values options.

• Finally, I entered formulas for the sum of the squared deviations in
J8:J12 and L8:L12, and their sums in J14:L14.

Open the Excel workbook for this chapter and activate the worksheet named
Fig 6.3. Verify that the sums of the squared deviations are both 0.415.

Now, change the value of one or both the regression coefficients in cells F2,
G2, or H2. Make your entry a numeric value. Notice that the values displayed
in cells J14 and L14 no longer equal one another. While you’re at it, you
might note that the value in L14 is now larger than the value shown in cell
J14.

The value in cell J14 is unchanged from its original value. That’s why I saved
the results of the LINEST function in F2:H6—so that it would be unaffected by
your selection of a different value for the regression coefficient in cell F2,
G2, or H2. Either way, the sum of the squared deviations in L14 has
increased above its value when the LINEST results were undisturbed. And that



means the regression equation is not doing as accurate a job of forecasting
outcomes as when you left its coefficients alone.

What’s the point of all this? It’s that traditional, least squares techniques for
regression analysis do not necessarily tell you what you need or want to know
about the relationship between an outcome variable and one or more
predictor variables. Of course, you don’t want to ignore the traditional point
estimate that’s returned by the traditional R2 calculations, but neither should
you ignore the results of calculations that return an R2—and associated
statistics—that don’t quite meet or exceed the criterion of maximized R2.

To keep some flexibility in your analytic tools, it’s a good idea to view the
results of a regression analysis through both a frequentist and a Bayesian
lens. I’ve already discussed some of the issues surrounding the frequentist
approach in this chapter—in particular, the worksheet function LINEST—so
let’s now take a look first at regression methods that rely heavily on matrix
algebra, and then on one alternative from the Bayesian toolbox, R’s quap
function.

Matrix Algebra Methods
Suppose that you took regression’s job as your own, in a situation that called
for you to predict the value of an outcome variable given knowledge of three
predictor variables, named Var 1, Var 2, and Var 3. You decide to declare, by
fiat, that each predictor variable should be multiplied by a regression
coefficient of 1. Then the regression equation would look like this:

(1 * Var 1) + (1 * Var 2) + (1 * Var 3) = Predicted variable

There is nothing to prevent you from doing that, but it’s wildly unlikely that
the regression coefficients you chose, a sequence of 1s, will work better than
any other coefficients that you might choose. Nevertheless, you will have
completed a basic requirement of regression analysis: a sequence of
variables, each multiplied by its regression coefficient and added together to
create a new, composite variable.

Note



This is the meaning of the term multiple regression. You have
multiple predictor variables and one outcome variable. Other kinds of
analysis, such as multivariate ANOVA, employ multiple outcome
variables. But in the case of regression, the word multiple belongs to
the predictor variables, not the predicted variable. This leads to
confusion in many basic to intermediate statistics classes.

For years, statistical packages such as Systat, and even more generalized
applications such as Excel, used matrix algebra to solve regression’s normal
equations. These processes failed to operate successfully when they were
presented with data sets that involved severe multicollinearity.
Multicollinearity comes about when two or more predictor variables in a
regression equation are strongly or even perfectly correlated.

When this situation occurs, it can throw the results of the matrix algebra off
course. Taking apart the matrix components of a multiple regression, you find
that the process involves calculating the sums of squares and cross products
matrix (SSCP). Then the inverse of the SSCP is calculated. If the values of
one of the fields in the original data matrix is a linear function of another one
of those fields, then the inverse of the SSCP cannot be calculated. (This is
usually because the determinant of the SSCP is zero.)

This problem was known in the waning years of the previous century, but it
went unfixed, largely because it took an unusual sequence of events for the
problem to arise. Furthermore, the user who encountered the problem got an
error warning, sometimes in the form of a lengthy text message, sometimes in
the form such as Excel’s #NUM! cell value. So an opportunity existed for the
user to recognize that an infrequent error had occurred, and to fix it in the
data file.

But users did not like knowing of a remaining problem, however unusual, in
their software, so developers applied an approach called QR decomposition in
place of the existing matrix algebra. It’s the approach that you find in Excel
and other numeric analysis packages even as late as this book’s publication in
2022.

However, QR decomposition does not truly fix the multicollinearity problem,
which is not a strictly either/or situation. When one field is a nearly perfect
linear function of another, problems can arise with rounding errors, and those



errors can reduce the accuracy of the analysis results.

Some software publishers have adopted the reasonable solution of displaying
a zero instead of a calculated regression coefficient when QR decomposition
detects the presence of multicollinearity. This has the effect—possibly useful,
possibly disastrous—of eliminating the associated field from the regression
equation. Depending on the nature of the linear function, the regression
software might set both the regression coefficient and its standard error to
zero.

For the time being, though, let’s shift our attention to some of the critical
elements of the quap function.

Understanding quap
R’s quap function occupies a position between the simpler (but often
awkward) grid approximation and the more sophisticated (but often murky)
MCMC. We might as well begin with the function’s name: quap is an
abbreviation of quadratic approximation. (The functionality is also referred to
as Laplace approximation.)

Behind the scenes, the software makes an approximation of the posterior
distribution density (the product of the priors and the observations) of the
parameter we want to know about; for example, a regression coefficient in a
multiple regression equation. To do so, the software uses a quadratic
function; hence the term quadratic approximation.

The quap function is capable of returning a variety of analyses that support
Bayesian methods. However, its principal purpose is to build a posterior
distribution from samples that conform to requirements that you supply.
These often include the location and spread of Gaussian distributions from
which priors are assembled. Another purpose that the quap function serves is
to define the relationships among the variables in your analysis.

Let’s take a look at how those processes might support a quap function that
supports the Bayesian version of simple (that is, single-predictor) regression
analysis. We start with a little housekeeping:

library(rethinking)
setwd("C:/Users/Smith/Documents")



PropTaxes <- read.csv("Assessments.csv")

The quap function is part of the rethinking package, so begin by loading
rethinking. You’ll need to install rethinking first, if you haven’t done so
already.

You don’t need to set the working directory by means of the setwd function if
your data file is already stored there; otherwise, use setwd to point R in the
right direction, or copy the file into the current working directory.

The third line of R code above assumes that your data is in a csv file named
Assessments.csv, so read the data into R’s workspace from that file and
assign it the name PropTaxes. Keep in mind that the read.csv function results
in a data frame, so you now have a data frame named PropTaxes. (Don’t
forget that names in R, including file names, are case sensitive.)

Here’s the next line in the R code:

MeanValue <- mean(PropTaxes$Value)

This statement establishes a new variable named MeanValue from the variable
named Value. It is the arithmetic mean of the variable for all the cases in the
PropTaxes data frame. The code goes on to subtract that mean value from
each observed value, changing the nature of the variable from a raw
observation to a mean-corrected value. At that point, MeanValue is no longer
an assessment measured in dollars but a deviation from the mean assessment,
measured in dollars. There are some good analytic reasons to shift the
meaning of the Value variable in this way, but the principal purpose here is to
clarify the meaning of the resulting regression coefficient.

We’ll take a look at that shortly. In the meantime, notice that when the setwd
function creates the new data frame from the Assessments.csv data file, it
attaches the Value field as a variable. You can address that variable directly
by providing the data frame’s name, followed by the dollar sign $, followed
by the variable’s name. For example:

PropTaxes$Value

Housekeeping’s over, and now it’s time to build the model for the analysis.
The first step is to name the model, which here will have the name



AssessModel. The specifications that follow the function name in the code
will be used to structure AssessModel. Those specifications are assigned to the
model by means of the assignment operator, which in R is indicated by the
less-than symbol followed by a dash: <-. (Sometimes, although rarely, the
equal sign is used instead of <-.)

AssessModel <- quap(
  alist( . . .

Here, the result returned by the quap function is saved to a new object (a
model) named AssessModel. The model is made in the form of a list created
by the alist function. The elements that belong to the list are formulas and as
such might include references to variables and parameters that aren’t yet
ready for use. For example:

Tax ~ dnorm( mu , sigma ) ,

This is a model formula, and it can be used as a component of the list
assembled by the alist function. A list created by alist has some important
differences from a list that results from the c or the list function; for
example, elements of the list are not necessarily evaluated immediately. In
the prior example, the value of Tax can be read as dependent on the purpose
of the dnorm function and the parameters mu and sigma. If we don’t yet know
what values to use for mu and sigma, we can’t yet evaluate dnorm or its results.
But no worries: we’ll get around to evaluating them shortly.

So, that’s the first component of the list. Here’s where we left off:

Tax ~ dnorm( mu , sigma ) ,

That tilde operator is used frequently in quap formulas, and its effect can
depend on the context. Here, it means roughly that Tax will be distributed as
a normal curve with mu and sigma as its parameters. In English, Tax depends
on the result returned by dnorm when it gets mu and sigma as its arguments.

As I just noted, the code doesn’t have those values yet. While waiting for
them, let’s get a handle on dnorm. That’s an abbreviation of density normal. It
tells R to look in the normal curve and return the density (in this context,
density means probability) when values have been assigned to both mu and



sigma.

Inventorying Types of Distribution
R provides support for 17 types of distribution (plus several less common
ones), including the beta, binomial, chi-squared, F, gamma, log-normal,
Poisson, t, and uniform.

Each type of distribution can be accessed to return that distribution’s
probability, cumulative probability, quantiles, and random values. The
first letter of the function denotes the type of information to return. The
four letters used are d, i, p, and q.

So, for example:

• The letter d, prepended to norm to produce dnorm, returns the
probability (density) of the normal distribution at a given x-value.

• Prepending r to binom returns random numbers from the binomial
distribution via rbinom.

• The function pf returns the cumulative probability from the F
distribution.

• The function qlnorm returns quantiles from the log-normal
distribution.

Continuing the Code
The R statement that I was about to discuss before introducing the topic of
R’s distributional function syntax is

Tax ~ dnorm( mu , sigma ) ,

That statement establishes that Tax comprises the parameters mu and sigma,
but we don’t yet know how they are involved. For all we know, Tax could be
the sum of mu and sigma, or their difference, or their ratio—it’s just too soon
to know. But we do know that you can specify the normal, Gaussian



distribution with only two parameters:

• The mean of the distribution, usually termed mu. The mu parameter
locates the distribution along the horizontal axis. So, the mean of a
population’s IQ scores might be 100; the mean of a population’s HDL
cholesterol score might be 65 mg/dl. It is the normal curve’s central
tendency.

• The standard deviation of the distribution, usually termed sigma. In a
Gaussian distribution, about 34% of the cases fall between the mean and
one sigma above the mean, and another below it; another 13.6% falls
between one and two sigmas above (and another below) the mean; and
2.1% falls 3 sigmas above and below the mean. It’s a measure of the
distribution’s spread: the width of the distribution, relative to its height.

Software that actually performs Bayesian statistical analysis needs some way
of knowing what the underlying distributions look like, and the arguments to
the quap function in R provide that capability. Because the Gaussian
distribution requires so little information to structure—that is, the mean and
the standard deviation—it’s straightforward to code.

Furthermore, many topics of interest to all life forms follow the template of a
standard normal distribution, and they do so intrinsically. Consequently it’s
not usually necessary to provide code that takes into account anomalous
distributions, such as bimodal curves, highly skewed shapes, and fits that
require some grappling.

A Full Example
Let’s put some meat on these bones. Suppose that you’re interested in the
relationship between body weight and LDL cholesterol levels. You have a
simple, straightforward hypothesis that, other things being equal, there is a
direct relationship between a person’s body weight and his or her LDL level.
To take advantage of the tools that quap gives you, you’ll need an alist, one
that looks something like the following code:

library(rethinking)
adult.weight <- read.csv("Sample Weight Data.csv")



The read.csv statement attempts to open the file named Sample Weight
Data.csv in the working directory. You can include the file’s path in the
argument to read.csv; if you handle it that way, keep in mind that R uses
forward slashes, not back slashes, to delimit folder names in file addresses.
Or, you could save the data file in what you know to be R’s current working
directory.

sample.mean.wt <- mean(adult.weight$Weight)
  ldl.model <- quap(
    alist(
        LDL ~ dnorm( mu , st.dev.wt ) ,
        mu <- alpha + beta *( adult.weight$Weight - sample.mean.wt ) ,

I have given these two variables in mu’s definition the names of alpha and
beta, because that’s how they are normally referred to in the literature on
simple (i.e., not multiple: only one predictor) regression: alpha is the
intercept and beta is the regression coefficient.

Now we need to establish the central tendency and the spread of the alpha
and beta priors. We can tell quap that alpha, the equation’s intercept, has a
mean of 20 and a standard deviation of 20:

alpha ~ dnorm( 20 , 20 ) ,

and that beta, the regression coefficient, has a mean of 0 and a standard
deviation of 1:

beta ~ dnorm( 0 , 1 ) ,

and that the standard deviation of body weight follows a uniform distribution
with a mean of 0 and its own standard deviation of 50:

        st.dev.wt ~ dunif( 0 , 50 )
    ) , data = adult.weight)
precis(ldl.model)

And you’ll need a set of observations that are stored in the csv file Sample
Weight Data.csv. They are temporarily stored by R in the structure named
adult.weight. Here are the first few observations in adult.weight. Note that
the first row of the csv file contains field names. The read.csv’s header



argument is set to True when the table’s first row contains one fewer field
name than the table’s number of columns. (This is often true when the first
column contains row numbers but is not the case here.)

And here are the results of running the code, shown in precis form:

You can compare R’s results to Excel’s by running LINEST. The LINEST
function (entered normally in current Excel versions, by selecting a single
cell and using Enter rather than Ctrl+Shift+Enter) is

=LINEST(B2:B51,A2:A51-AVERAGE(A2:A51),,TRUE)

Here are the results of running the Excel LINEST function:



The LINEST results require some mapping:

• The value in LINEST’s first row and rightmost column (here, 58.52) is
always the equation’s intercept. Notice that the quap model returns a
value of 58.27 (second row, second column of the precis summary).
The two values are quite close, and the difference is easily attributable to
sampling error in the quap model.

• The value in LINEST’s first row and leftmost column (here, 0.064) is
always the final regression coefficient. In this case, because we have
called for one coefficient only, it is also the equation’s first and only
coefficient.

• The value in LINEST’s second row and rightmost column (here, 1.655) is
the standard error of the intercept. It is always in that cell, of LINEST’s
results, directly below the intercept. Its value is quite close to that
returned by precis in its third column, second row, 1.63.

• The value in LINEST’s second row and leftmost column (here, 0.071) is
the standard error of the regression coefficient. Values in the second row
of LINEST results are always the standard error of the statistic in the same
column, first row.

• The value in LINEST’s third row and rightmost column (here, 11.7) is the
standard error of estimate, and it is quite close to the precis estimate of
11.53. Suppose that you took all the observations at a given value of the
predictor and found the standard deviation of the difference between
their actual and the predicted values on the predicted variable. That’s the
standard error of estimate, and it helps you decide whether the
prediction equation is more accurate at some levels of the predictor than



at others.

Compare the results of the regression analysis as returned by Excel with
those returned by quap via precis. It’s clear that where the two approaches
return the same analyses (e.g., intercepts, coefficients, standard errors), the
Bayesian approach and then frequentist approach are either identical or very
nearly so.

And you can get those results without risking the slippery slope of
multicollinearity. Which makes this a good point to go further into multiple
regression.

Designing the Multiple Regression
Suppose that you have data on 50 cars, including each car’s weight in
pounds, mean speed at which it has been driven, and mean miles per gallon.
(MPG) You’re interested in the effect that a car’s weight, and the effect of the
car’s average speed, have on the miles per gallon of fuel that the car achieves.

One way to approach the problem is with one analysis using Weight as the
sole predictor variable and another using Speed as the sole predictor. You
could choose the analysis that returns the greater R2 value as the one to use in
assessing a car’s predicted MPG.

One problem with running and comparing the two analyses is that the two
predictor variables, Speed and Weight, might not be independent of one
another; that is, they might be correlated and therefore share variance. In that
case, you can’t tell how much of the shared variance is shared by Speed and
MPG and how much is shared by Weight and MPG. But it’s very likely that
running two analyses and summing the R2 values will double count some
amount of the variance (because it’s shared by the two predictor variables)
and therefore mislead you as to the strength of the relationships.

Only in the limiting cases in which the predictor variables share no variance
with one another (so they’re independent) or in which they’re perfectly
correlated (so they share all their own variance) can you tell what’s going on.
Of course, that sort of complete independence or dependence appears only in
samples handed out in stats class. (An exception occurs when regression is
used in preference to the analysis of variance and the categorical predictor



variables are designed to be independent of one another.)

Whether your primary interest is in the total variance in the outcome variable
that’s associated with variance in both the predictor variables, or the total
amount that’s shared with each of the predictors, you’re going to need to
arrange things to combine the predictors without double counting the
variance shared with the outcome. Multiple regression does that for you,
whether by means of matrix algebra or by means of QR decomposition, and I
wouldn’t have spent so much ink on the topic if Bayesian methods didn’t do
it too.

Arranging a Bayesian Multiple Regression
Earlier in this chapter I described how to provide arguments to a quap
function that support a single-predictor regression. I’ll review it briefly here.
You supply these arguments:

• A variable that represents the outcome for each case, such as a car’s
MPG, usually the name of the outcome variable. For example:

MPG <- dnorm ( mu, sigma)

specifies that MPG’s density is normally distributed (dnorm) with a mean
of mu and a standard deviation of sigma. This outcome variable is usually
input in a data frame along with the predictor (see below).

• A parameter, often but not necessarily termed mu, represents the result of
the regression equation. For example:

mu <- alpha + beta ( predictor )

• Parameters, usually but not necessarily named alpha and beta, that
represent the constant (or the intercept) and the coefficient (or the slope)
in the regression equation.

• A parameter, often but not necessarily termed sigma, which represents
the standard deviation of the outcome variable. This determines the
spread of the outcome variable’s distribution across its x-axis.



• A data frame that contains, at a minimum, the values for the outcome
variable (in this example, MPG) and for a predictor variable such as Speed.
The data frame might be named CarData.

Here’s how the quap function might appear for an analysis of MPG given a
single predictor variable, Speed:

CarQuap <- quap(
       alist(
               MPG ~ dnorm ( mu, sigma )
               mu <- alpha + beta ( Speed )
               alpha ~ dnorm ( 0, 1 )
               beta ~ dnorm ( 0, 1 )
               sigma ~ dexp (1)
       ), data = CarData )

A few comments about the arguments to the quap function:

• As I mentioned earlier in this chapter, it’s usually a good idea to
standardize the values that you supply for the outcome variable and the
predictor variable(s) before passing them along to quap. Doing so
minimizes the effects that numeric overflows can have on the results of
the analysis. You can use an R function, standardize, to handle this for
you, or you can subtract the mean value of a variable from each actual
value and divide each result by the variable’s standard deviation. (The
results are often termed z-scores.)

• One result of this standardization is that the z-scores will have a mean of
0 and a standard deviation of 1. It often works out well, especially if you
have standardized the predictors and the outcome variable, to use 0 and
1 as the mean and sigma of the dnorm arguments that describe the
distributions of alpha and beta.

• Notice the use of the tilde instead of an assignment operator in several
lines of the quap code. This simply indicates that a parameter is to be
distributed as the density of, in this case, a normal curve.

• In this example, sigma is specified as sigma ~ dexp(1). The dexp
function returns the density of the exponential distribution, which is the
parent for a variety of other continuous distributions such as the
Gaussian-normal, the Gamma, the Poisson, and the Binomial.



The exponential distribution has one parameter, rate (or lambda); by
contrast, the Gaussian distribution has two: the mean and the standard
deviation. In R syntax, the exponential distribution’s rate parameter is 1
by default, and the dexp function returns the density probability for
associated quantile, x (or 1 as here). Among other reasons, the
exponential distribution is handy for specifying sigma, because the
exponential is constrained to positive returns, and the standard deviation
is, by definition, a positive quantity.

That’s all you need for a simple regression of one outcome variable on one
predictor. To add a predictor and analyze the simultaneous effect of two on
one outcome variable, you need four items omitted from the single-predictor
analysis:

1. The additional predictor named Weight should be added to the input
data frame named CarData above.

2. The additional regression coefficient, for Weight, must be specified by
the addition of this line of code:

Weight_beta ~ dnorm ( 0, 1 )

3. In addition, for clarity it makes sense to edit the existing specification
for the Speed coefficient to this:

Speed_beta ~ dnorm ( 0, 1 )

4. The Weight predictor and its coefficient should be added to the
regression equation. In the single variable example, that equation looks
like this:

mu <- alpha + beta ( Speed )

In the two-variable example the equation looks like this:

mu <- alpha + Speed_beta ( Speed ) + Weight_beta (Weight)

The full code example might look like this:

library(rethinking)
setwd("C:/Users/conra/Documents/Pearson Bayes/Drafts/Ch 6")
CarDataFrame <- read.csv("Cars.csv")



#You may need to adjust the path to the .csv file on your computer
#The three variables are named Spd, Wt and Mileage
#in the csv file. They are saved as newly standardized data
#with new names (Speed, Weight, and MPG) in the
#same steps that standardize them.
CarDataFrame$Speed <- standardize( CarDataFrame$Spd )
CarDataFrame$Weight <- standardize( CarDataFrame$Wt )
CarDataFrame$MPG <- standardize( CarDataFrame$Mileage )
regmodel <- quap(
alist(
MPG ~ dnorm( mu , sigma ) ,
mu <- a + ( Speed_beta * Speed ) + ( Weight_beta * Weight ) ,
a ~ dnorm( 0 , 1 ) ,
Weight_beta ~ dnorm ( 0, 1 ) ,
Speed_beta ~ dnorm ( 0, 1 ) ,
sigma ~ dexp( 1 )
) , data = CarDataFrame )

You can get a smattering of summary information using the rethinking
library’s precis function. Simply supply it with the name of the quap model
you just created, and specify the number of significant figures if you wish:

precis(regmodel, digits=6)

Here’s what precis returns:

(The 5.50% and 94.50% limits are how the developer of the rethinking
package chooses to protest the conventional and arbitrary criteria of, for
example, 5% and 95% confidence intervals.)

To check your work, consider running a true regression package on the data
that this section has analyzed. One convenient way, using continuous
predictors and an outcome as here, is to use the lm package. If you do so after
running your Bayesian analysis you can take advantage of the data frame you



just created. For example, you can get quite a bit of summary information
from these two statements, which return the results shown in Figure 6.4:

Car_lm <- lm (CarDataFrame$MPG ~ CarDataFrame$Speed + CarDataFrame$Weight)
summary(Car_lm)

Figure 6.4 The lm function performs a traditional multiple regression
analysis.

Notice first that the intercept and coefficients returned by lm are close to the a
(alpha) and Speed and Weight (betas) returned by quap and precis, but do not
duplicate them precisely. This is largely due to traditional regression’s use of
the maximum R2 as its criterion that a solution has been reached.

Note

In making your comparisons, bear in mind that lm and precis might
each display the regression coefficients differently than the other.

Furthermore, lm by default returns only three significant figures, but you can
choose the number of digits with quap’s digits argument. You might want to
compare as many as, say, eight digits in the regression coefficients. One way
to do so is via the options function. For example, these functions:

options(digits=4)
coef(Car_lm)



return these results:

(Intercept)  CarDataFrame$Speed CarDataFrame$Weight
 -3.036e-16          -2.005e-02          -3.066e-01

but these functions:

options(digits=6)
coef(Car_lm)

return these results:

(Intercept)  CarDataFrame$Speed CarDataFrame$Weight
 -3.03642e-16        -2.00472e-02        -3.06564e-01

(In the latter two examples I’ve used the coef function instead of the summary
function to save space by showing only the coefficients.)

There are lots of ways to specify numeric formats in R. The options
statement, just discussed, belongs to R’s base functions, whereas the digits
specification belongs, among many others, to the quap function. This situation
tends to make matters more confused rather than less.

Summary
And that’s the main point of this chapter: to clarify the aspects of Bayesian
analysis without confusing you with abstruse details such as the physics of
sampling in an MCMC context. It’s my intention, and I believe the intention
of quap’s author, Richard McElreath, to provide a steppingstone from an
oversimplified discussion of grid approximation to an over-complex essay on
multilevel regression. It’s important to understand how and why Bayesian
techniques require a definition of your variables’ distribution. Then, you’re
much better placed to also understand the workings of nominal variables and
MCMC, the topics of the final two chapters in this book.



7. Handling Nominal Variables

In the last few chapters we’ve spent quite a bit of time, paper, and ink on
some theoretical and background topics. I think that those are resources well
spent, because it’s difficult to understand how and why Bayesian analysis
works without understanding how those topics come into play. But now that
we’ve covered such issues as beta and binomial distributions, as well as the
Bayesian versions of simple and multiple regression analysis, it’s definitely
time to look through the other end of the telescope.

One of the first, if not the very first, inferential technique that is taught in
college-level statistics classes is the t-test. The purpose of a fundamental,
basic t-test is to determine whether the mean values for two groups, on a
continuous variable, are reliably different. (T-tests are not limited, however,
to testing a difference between mean values. They can be used to test the
difference between a regression coefficient and zero. But the calculation
procedures are very different for means than for regression coefficients.)

For example, a researcher might randomly select a group of women and
another group of men and measure the heights of each individual in each
group. The researcher could then use a t-test to determine whether the
difference in the mean height of the two groups is statistically reliable—that
is, if the experiment were repeated, what is the probability that the same
outcome would be observed?

Or, a researcher might randomly select two groups of patients to see whether
a vaccine has the same impact on males as it does on females, as measured by
a count of antibodies. This approach, in which the researcher uses random
selection to assign subjects to either a treatment or a no-treatment group,
often terms the group assignment as an independent variable and the antibody
count as the dependent variable. The hypothesis is that any difference in the
groups’ antibody count depends on the group assignment, and the groups are
otherwise equivalent due to the random assignment.



The t-test makes a few assumptions, and in some cases you can get away with
violating them:

• Normal distribution. The t-test assumes that the dependent variable is
distributed in the populations as a normal, Gaussian variable. Although
this assumption was made when the t-test was under development it
turns out to have a negligible effect on the results of the t-test.

• Homogeneity of variance. The variances of the dependent variable are
assumed to be equal in the populations. Again, violating this assumption
can be regarded as negligible if the samples have the same size—that is,
if n1 = n2.

• Independence of observations. This assumption is critically important:
Violating it has serious consequences for the accuracy of the
probabilities associated with experimental outcomes. You can avoid this
sort of error by careful random selection and assignment, as opposed to
a “grab” or “convenience” sample of subjects. You want to be confident
that one subject’s selection and assignment to a given group does not
affect another subject’s selection and assignment. This can occur if, for
example, one of your samples comprised several members of the same
family because you selected them as a matter of convenience.
Particularly with softer measures such as political attitudes, the married
couple Charlie and Susan do not contribute independent observations,
and this throws off your estimate of the probabilities. The couple might
well respond differently if they were not acquainted.

A further point to keep in mind is that it is important to avoid multiple t-tests.
Suppose you randomly select 30 subjects from a population, and then
randomly assign those subjects to three separate groups. You then perform
three t-tests to see whether zero, one, or two group means differ significantly
from the other means at, say, the 0.05 confidence level. Even if you have
taken care to ensure the groups’ equivalence via random assignment, the tests
themselves will not be statistically independent of one another. The
probability is greater than 0.05 that the statistical “significance” of at least
one of the comparisons will be in error. I discuss this problem in greater
detail later in the chapter. (The problem is that each subsequent t-test uses up
some if the original probability space, and the t-test has no fully acceptable



method of correcting for that. And that’s just one more reason to consider a
Bayesian approach.)

Note

Several procedures have been designed to prevent the problem of
unequal variances and group sizes, among them the Scheffe method,
Tukey’s Honestly Significant Different test, and the Bonferroni and
the Newman-Keuls tests. I bring up the multiple t-test method here
because it is an apparently sensible test—but not if more than two
groups are involved.

Viewed from a Bayesian perspective, multilevel models address
these problems using tools such as partial pooling, which improves
the accuracy of estimates by shifting their positioning. In-depth
discussion of these methods is beyond the scope of this book, but the
use of nominal variables in linear regression models is well within it.

Using Dummy Coding
The term dummy coding usually means that you use 1s and 0s to signify
membership, or lack thereof, in the relevant groups. The choice of 1s and 0s
is entirely arbitrary as long as it is internally consistent. You could use omelet
to represent a man, as long as you used it to represent all men in the study.

You might have 10 males and 10 females, for example, with the data laid out
as in Figure 7.1.



Figure 7.1 The 1s in the Group vector indicate which cases belong to
the Republican party.

Suppose again that you took a random sample of 10 prospective voters from a
group of high school students. You have each of them read a list of talking
points prepared by two local candidates for a school board race. Dummy
coding, as shown in Figure 7.1, is one way to lay out the results of the study
for statistical analysis. Using that approach, the five subjects in the range
A2:C6 of Figure 7.1 are identified as Republicans by the 1s in column C. The
remaining subjects in rows 7 through 11 occupy the range A7:C11.

Still in Figure 7.1, notice the two group means on the outcome variable—
perhaps the number of financial contributions made during a single year—
shown in cells B14 and B15. The value of the mean for the Democrats, who
were assigned 0s in the Group vector, is identical to the intercept shown in
cell F14. Also note that the regression coefficient (in this case, the only
regression coefficient in the regression equation) is equal to that for the group
identified with 1s and the group with 0s throughout. The characteristics of
regression analysis combined with dummy coding will prove useful when we
look at how R does regression with a continuous outcome and nominal
independent variables.

Back when people routinely used hand calculators to perform multiple



regression, coding systems such as dummy coding and effect coding were
popular in part because they made some ancillary computations much easier.
For example:

• Note in Figure 7.2 that the group of independent voters is assigned 0s in
both columns C and D, which contain the vectors that encode
membership preference. If you were to run a multiple regression
analysis of the data in Figure 7.2, you would find that the regression
equations intercept is equal to the mean of the group assigned 0s
throughout.

Figure 7.2 An additional column is needed when you add another
group.

• A group’s regression coefficient is equal to the difference between the
mean of that group and the mean of the group that is assigned 0s
throughout.



Other such shortcuts are available from dummy coding and similar schemes,
but the use of personal computers, and software that once required
mainframes to run, have done away with their necessity.

Let’s complicate matters just a bit by examining the same data set with a third
political party added. Notice that the single vector in column C of Figure 7.1
is all that is necessary to identify the membership in each group. That is
generally true. With dummy coding, you require as many vectors as you have
groups, minus one. For example, compare Figure 7.1 with Figure 7.2, where
we need another column to accommodate a third political preference.

Notice that the subjects with a political preference for Republicans still have
1s in the original group vector but now have 0s in the new (second) group
vector. That second group vector in column D assigns 0s to the Republicans
and 1s to the Democrats. But the newly added third political group,
Independent, is now assigned 0s in both group columns, C and D.

Notice what happens to the analysis in Figure 7.3 when we run Excel’s
regression routine on the three-group data in Figure 7.2.



Figure 7.3 The regression results shown are produced by Excel’s Data
Analysis add-in. For clarity, most of the results have been suppressed.

Again, and just as in Figure 7.2, the regression equation’s intercept (4.6 in
cell G12) is identical to the mean of the Independent group, assigned 0s
throughout (cell B21).

And the coefficient associated with Group Vector A is 0.0 (cell G13) for
Republicans (cells C2:C6). The Republicans’ mean is 4.6 (cell B19); so is the
mean for Independents (cell B21). The pattern of these equalities continues as
additional factor levels (e.g., Green Party, Socialist Party) are added.

From a frequentist viewpoint, bear in mind that each time a level is added to
an existing factor (or another factor, or a covariate), another vector is added
to the design matrix. Then the result is that one additional degree of freedom
is taken from the residual sum of squares and added to the regression sum of
squares. In extreme cases this might cause you to run out of residual degrees



of freedom. And at the very least your statistical analysis loses statistical
power because the residual mean square will shrink for every degree of
freedom it loses. But you won’t run into this particular problem when you use
R and quap().

Note

Degrees of Freedom

The concept of degrees of freedom is a complex one. You use
degrees of freedom to correct bias in a statistic that provides an
estimate of a population value. The value of the degrees of freedom
for a statistic is often (by no means always) the number of cases that
comprise the statistic, minus 1. I go into a much lengthier discussion
of degrees of freedom in Statistical Analysis: Microsoft Excel 2016,
Que, 2018.

You aren’t required to use dummy coding explicitly. If you were, you might
substitute 0s and 1s in additional vectors in place of the name of another
factor level such as Green or Socialist. Most commercial software, such as
SAS, Stata, and SPSS, accepts factor level names as part of their input data
and automatically generate the needed vectors and 0s and 1s (including
vectors that represent interactions between factors and between factors and
covariates).

Historically, commercial software has used the 0 or 1 dummy coding
approach (even when it takes place behind the scenes, so that you supply the
group labels and the software provides the vectors and codes). However,
dummy coding is not the only useful method of coding nominal variables
such as sex and political party. For example, effect coding uses −1s instead of
0s throughout all vectors for a particular group. The result of this system is
that each group’s coefficient equals the difference between the group’s mean
and the grand mean of the dependent variable, hence the term “effect
coding”: each group’s regression coefficient represents the effect of being in
that group, vis-à-vis the grand mean. Figures 7.4 and 7.5 exemplify the
difference between dummy and effect coding.



Figure 7.4 An example of dummy coding. The two design vectors have
0s only in the range B12:C16.

Notice that the summary regression statistics are identical in the two figures.
Changing from dummy coding to effect coding results in no change to R2,
standard error, and associated summary values.

But in Figure 7.4, the coefficient for each vector is equal to the difference
between the mean for that vector’s group and the group assigned 0s
throughout. So, in Figure 7.4, the coefficient 2.4 in F20 equals 2.4, the
difference between 9.6 and 7.2 in cells C19 and C21.

Equivalently, and still in Figure 7.4, the coefficient 4.2 in F21 equals 4.2, the
difference between 11.4 and 7.2 in cells C20 and C21. Compare these
outcomes with those shown in Figure 7.5.



Figure 7.5 The only change to the data inputs is the change from 0s to
−1s in the cases belonging to the third group (compare B12:C16 in
Figure 7.4 with Figure 7.5).

In Figure 7.5, the coefficient for each vector is equal to the difference
between the mean for that vector’s group and the group assigned −1s
throughout. So, in Figure 7.5, the coefficient 2.4 in F20 equals 2.4, the
difference between 9.6 and 7.2 in cells C19 and C21.

Equivalently, and still in Figure 7.5, the coefficient 0.2 in F21 equals 0.2, the
difference between 9.6 and 9.4 in cells C19 and C22. Compare these
outcomes with those shown in Figure 7.4.

In summary:

• You can switch between dummy and effect coding without changing
any of the summary regression values such as R2 or the standard error of



estimate. Changing the coding scheme does not make the regression
equation any more or less precise.

• You can compare any of the available regression coefficients with
another coefficient by using dummy coding and selecting which group is
identified by 0s throughout the design matrix.

• You can contrast any group mean with the grand mean by using effect
coding. For example, the mean of Group 1 is 9.6 and the grand mean is
9.4. The difference between the two means is 0.2, which is also the
regression coefficient for Group 1.

Your choice of contrast—a selected group or the grand mean—might be
dictated by the type of effect you are calculating in a meta-analysis.
Sometimes you want to contrast a treatment group with another specific
comparison group, or sometimes you want a contrast with the grand mean.
We’ll see how this can work out graphically by the end of this chapter.

Supplying Text Labels in Place of Codes
At the outset of this chapter I noted that one of the first inferential statistical
techniques taught in higher education classes is the t-test. One typical use of
the t-test is to quantify the probability that an experimental outcome for a
treatment group differs reliably from the outcome from a group that does not
receive the treatment. The comparison can also be made with some
hypothesized criterion: for example, “What is the probability that after
treatment, a randomly selected group will have a mean cholesterol level
below 80?”

A characteristic of the t-test (which the t-test shares with various other
inferential techniques such as the analysis of variance) is its use of the null
hypothesis. Typically, this hypothesis states that nothing happened as a result
of an experimental treatment. Your aim, as an experimenter, might be to
show that two otherwise equivalent groups, a treatment group and a control
group, have very different cholesterol levels at the end of treatment.

You conduct your treatment and find, sure enough, that each group began
with a mean cholesterol level of 80 but, at the end of treatment, the treatment
group had a mean level of 60 while the comparison group’s mean didn’t



budge. If the null hypothesis is true—if nothing happened as a result of the
treatment—is the actual outcome likely enough to reject the null hypothesis?

Put another way, how surprised would you be if a treatment group’s mean
cholesterol level dropped 20 points while an equivalent group’s mean stayed
stuck at 80?

The answer to that question is at the heart of statistical theory, at least as
promulgated by frequentists. You often hear people summarize the results of
experiments such as the one we’re discussing in terms like these: “The
experiment rejected the null at the 5% confidence level.” This terminology
lends a spurious air of objectivity to what is an essentially arbitrary decision.

And in fairness, lots of frequentists, including me, object to the confusion of
what’s arbitrary and what’s objective. Let’s see how this works, very briefly,
in Figure 7.6.

Figure 7.6 Distributions of two assumed populations: a treatment



population and a comparison population.

Suppose you acted as a subject in an experiment whose results are depicted in
Figure 7.6, and your treatment group exited the experiment with a post-
treatment mean score of 42. That would put your group’s mean right in the
middle of the shaded area in the left leg of the right-hand curve.

Put the results into a frequentist context. If the null hypothesis is true, then
there is no difference between the treatment mean and the control mean in the
populations from which the groups were sampled. Five percent of the means
sampled from the control population could fall below 46, even if the
treatment had no effect, perhaps due entirely to sampling error, measurement
error, or some other source of error. You would be betting against odds of 19
to 1 (5% of the control group shown in Figure 7.6) if you concluded
nonetheless that the treatment had an effect. If the null hypothesis is true,
your risk of a Type I error would be 5%. (A Type I error occurs when you
decide that a treatment has an effect when in fact it doesn’t. In contrast, a
Type II error occurs when you decide a treatment had no effect when in fact
it did.)

In Figure 7.6, the point represented by 46 on the horizontal axis is often
termed the critical value. If the results are as described here, with the actual
result falling as it does with respect to the critical value, frequentist logic
requires that—in its somewhat baroque wording—the researcher continue to
entertain the null hypothesis of no difference between groups on the outcome
variable.

Now, there’s nothing especially objective about the decision rules I’ve just
outlined. One researcher might have decided that a 5% rate is too restrictive
for this sort of error; that researcher might allow an error rate of, say, 10%
before concluding that a Type I error is too likely a criterion. Another
researcher might set the Type 1 error rate at 1%. Yet another might decide
that 2.5% is just right.

The point is that there is no rock solid, empirically derived principle that we
can use as a decision rule for establishing this sort of error rate. There’s
always some point in the chain of logic that renders the choice subjective, so
it’s pointless to say of Bayesian approaches, as has occasionally been done,
that they’re weaker than frequentist approaches because they don’t calculate



Type I error rates. No one does, at least not objectively.

Contrasting Group Means with quap()
An issue that is closely related to the probability of Type I errors—that is,
deciding that an experimental outcome is due to a treatment effect or to
chance—is that of multiple comparisons. Earlier, this chapter discussed the
topic of coding in the context of three or more political parties. You might
want to investigate whether three (or more) parties would disagree on some
political scale or whether two would agree with one another but not with a
third.

And which differences can be viewed as “statistically significant”? That is,
which differences, if any, can be relied on to show up again if the experiment
were replicated with similar subjects under similar conditions? To attempt an
answer to that, we need to make multiple comparisons, comparing
Republicans to Democrats, Republicans to Independents, and Democrats to
Independents.

At the same time, we would like to make probability statements about the
group differences, something along the lines of “We can say that Republicans
differ, with 99% probability, from Democrats on this issue, but not from
Independents.” The difficulty here is that with each sequential test, the
available probability drops by 5% of the current probability space.

Table 7.1 The probability of committing a Type I error increases
beyond its nominal value with every additional multiple comparison you
run.



So, with each sequential test, you lose an additional 5% of what’s left over
from the immediately prior test. If you run all three possible independent
party-to-party comparisons for the present example, each comparison may
well carry a 5% error rate, but the cumulative rate for the three comparisons
will be 14% (that is, 100% − 86%), not the 5% that the tables might lead you
to expect.

It might not seem like a serious drawback to statistical inference, but it is.
Suppose that in reality there was a difference between how men and women
respond to a given vaccine. Using either Bayesian or frequentist methods,
how could you possibly disentangle the effect of sex from that of the vaccine
by running two separate experiments, one comparing men’s responses with
women’s, and another contrasting the vaccine with its absence?

Furthermore, the combined effects of more than one factor can often be
studied together, saving expenses that otherwise might have to be committed
more than once.

Note

The analysis of variance (ANOVA) has traditionally been used to



cope with one of these problems, that of inflated error rates for
multiple comparisons. ANOVA compares multiple combinations of
group means, but because it does so with one test only there is no
opportunity for error rates to compound the way that they do under
multiple t-tests. However, although ANOVA tells you whether there
is a group mean difference somewhere, it doesn’t tell you where to
find it.

The frequentist approach to resolving these difficulties has traditionally been
to modify the probability of a Type I error or, what’s the same thing, altering
the width of the pertinent confidence intervals. The Bonferroni correction, for
example, divides the overall error rate among the available multiple
comparisons.

Certainly, doing so makes it less likely to erroneously declare a true null
hypothesis as false. However, it’s also true that doing so reduces the available
statistical power—the probability of correctly rejecting a false null
hypothesis, also known as rejecting a false negative. So the Bonferroni
correction is not an unmixed blessing.

Bayesian techniques take a different approach, often termed partial pooling,
to deal with this difficulty. First, it’s necessary to discuss calculating the
means of groups—in effect, associating the means of continuous outcome
variables with membership in nominal groups such as treatment versus
control, male versus female, or survives versus fails to survive.

Treating a Grouping Variable as Categories
Look at Table 7.2, which associates a variable named LDL with one named
Weight. We’ll use it twice in this chapter, once to review the procedures
involved in running simple linear regression in a Bayesian context and once
to calculate and compare group means. (I’ll adjust the variable names
accordingly.)

Table 7.2 The X variable can be treated as either a covariate or as a
grouping variable.



You can tell R to analyze the relationship between the X and the Y variable
as if they were both continuous variables. For example, X might represent
how conservative a respondent might regard himself on some politically
sensitive topic. Then you might treat X as a covariate and regress the Y
variable against the X variable. This assumes, among other things, that Y
values represented some continuous variable such as dollars contributed to
political campaigns. Okay, it’s a possible topic, not necessarily a good one.

Here is how Chapter 6 suggests that you might run that regression analysis.
The data is in Table 7.2. The R code might be

library(rethinking)
setwd("C:/Users/myfiles/Documents/PoliSci")



The setwd() function specifies the location where you have saved the file
shown in Table 7.2. It’s not needed if you have saved the data file in R’s
working directory: that’s one of the first places that R will look for it.

Note

Keep in mind that in R you might have to use forward slashes instead
of backslashes to separate folder names in statements giving the path
to a particular file.

responses  <- read.csv("three groups as integers.csv")

The prior two statements set the file path and the file name, respectively. Of
course, you can also use any supported file format besides .csv, such as .R,
.RData, or .txt.

str(responses)

just so you can check the file’s contents. You should get something like this:

’data.frame’:   15 obs. of  2 variables:
 $ Y: int  6 7 11 12 12 11 9 10 12 15 ...
 $ X: int  1 1 1 1 1 0 0 0 0 0 ...

Notice that we haven’t told R to do otherwise, so both the X and Y variables
are treated as integers. Also, R is treating responses as a data frame: that’s
the default action for the read.csv() function.

PoliSciModel <- quap(alist(

Assign the results of the quap() function to a model named PoliSciModel.
Feed quap() with the list in alist(). The elements that comprise the alist()
list define (not assume, define) the distributional and formulaic characteristics
of the parameters and the observed data.

Y ~ dnorm( mu , sigma ) ,

One interpretation of the tilde in this formulation is “is distributed as.” The
data that make up the observed Y variable come from a normal distribution



(dnorm) with mean mu and standard deviation sigma. The “d” in dnorm stands
for “density” and represents the relative frequency of an observation of that
value from that distribution; that is, from the distribution that has mu as its
measure of central tendency and sigma as its standard deviation. For example,
maximum density is another way of thinking about the mode of a distribution.

mu <- a + ( b * X ) ,

This is quap()’s rendition of the classic regression equation, perhaps more
easily recognized as

Y = a + bX

In quap(), mu is the predicted value, a is the intercept, b is the regression
coefficient, and X is the predictor value.

a ~ dnorm( 1 , .2 ) ,

The intercept a is defined as normally distributed with a mean of 1 and a
standard deviation of .2. These figures could well be based on the history of
similar research.

b ~ dnorm( -.3 , .2 ) ,

The intercept b is defined as normally distributed with a mean of −.3 and a
standard deviation of .2.

sigma ~ dunif( 0 , 10 )

The parameter sigma is distributed as a uniform distribution with a mean of 0
and a standard deviation of 10. The standard deviation (and its parent, the
variance, for that matter) is constrained to be positive or zero. It is taken to be
constant across the range of values for mu.

) , data = responses )

The data frame responses is the source of the data values Y and X.

The definition of the model provided by quap() ends here, and the function
precis is called to calculate the posterior distribution based on the priors



from quap() as well as the observed data from responses.

precis( PoliSciModel )

Here are the summary results provided by precis, for the data given in Table
7.2 and the distributional characteristics given in the code cited above:

Try standardizing the Y values by subtracting the grand mean and dividing
the result by the overall standard deviation. Then run a simple linear
regression routine from a package such as R or Excel or Stata, and compare
the results as returned by precis. You’ll find that the mean and sd returned by
precis for the a and b parameters are quite close to the values returned by the
standard regression.

Here’s the full code:

library(rethinking)
setwd("C:/Users/conra/Documents/Pearson Edits/Ch 7/Ch 7 examples")
responses  <- read.csv("three groups as integers.csv")
str(responses)
responses$Ystd <- standardize( responses$Y )
PoliSciModel <- quap(alist(
Y ~ dnorm( mu , sigma ) ,
mu <- a + ( b * X ) ,
a ~ dnorm( 1 , .2 ) ,
b ~ dnorm( -.3 , .2 ) ,
sigma ~ dunif( 0 , 10 )
) , data = responses )
precis( PoliSciModel )

Comparing Group Means
Depending on how you obtained the data and the use you intend to put it to,



you might want to treat the X values in Table 7.2 as belonging to three
groups, which the table labels as Y. From a purely descriptive viewpoint, you
might want to calculate the mean of the five X values that are associated with
a Y value of 0, those that are associated with a Y value of 1, and those
associated with a Y of 2.

With those three means in hand, you might want to know which is the largest
and which the smallest. Moving closer to inferential thinking, you might want
to know the degree to which the standard deviations (or the ranges) of the
three groups overlap one another. If there is considerable overlap, it’s
possible that the three groups actually share the same mean value, and any
differences among the observed means are due solely to sampling error.

The changes required for the R code aren’t extensive. Here they are:

library(rethinking)
setwd("C:/Users/conra/Documents/Pearson Bayes/Drafts/Ch 7/Chap 7 section
material")
d <- data.frame(read.csv("Party codes.csv"))

The only change I’ve made to the first three statements is the name of the
data file. It is typical to supply a label rather than a label’s code in data files,
and to maintain a semblance to reality I have associated, in the file Party
codes.csv, party names in place of codes 1, 2, and 3.

d$Party <- as.factor(d$Party)
d$Party_id <- as.integer( d$Party )

The prior two statements have been added to modify a variable and create a
new one. The Party variable started life as a character (Republican,
Democrat, Independent) variable, but the as.factor() function gives it the
intelligence that we expect of a factor.

The as.integer() function creates a new variable that has a unique integer
value for each unique character value in the Party variable. So, in this case, a
Party value of Democrat has the Party_id value of 1, Independent has the
value of 2, and Republican has value of 3. The as.integer() function has
various applications, but here it is used principally to trace which factor value
is which in the resulting precis table and chart.



Then quap() is used to assemble a model that I’ve called PartyModel. The
alist() function calls out the needed parameters and variables on quap()’s
behalf:

PartyModel <- quap(alist(
        d$Rating ~ dnorm( mu , sigma ),

The Rating variable, which belongs to the d data frame, belongs to a
Gaussian distribution with central tendency mu and standard deviation sigma.

In contrast with the use of the parameter a in this chapter’s simple regression
example, here a assumes a different value depending on which level of the
factor is being analyzed. In the regression example, we used only one
intercept (and one regression coefficient). Here, we allow the a and sigma
parameters to vary as the Party_id changes from 1 to 3—notice the index
[Party_id] changes from 0 to 2—and sigma is distributed in the exponential
distribution as in Chapter 6’s example.

    mu <- a[Party_id],
    a[Party_id] ~ dnorm( 9.4 , 3 ),
    sigma ~ dexp( 1 )
) , data=d )

A vector for a chart’s vertical axis labels is established by conflating the
Party_id and the party name:

labels <- paste( “a[” , 1:3 , “]:” , levels(d$Party) , sep="” )

Preparations for a chart are made, calling on both the plot and the precis
functions. The preparations specify the model to be used (here, PartyModel)
as well as two arguments we haven’t used before, depth() and pars():

plot( precis( PartyModel , depth=2 , pars="a” ) , labels=labels
,xlab="expected Rating “ )

• When the depth argument to precis is set equal to 2, as here, it displays
all the model’s parameters.

• When the pars argument to precis is set equal to a character vector, as
here, it displays the vector of parameter names.



precis( PartyModel , depth=2 , pars = “a” )

The precis function displays the precis table and the plot function displays
the chart. Both are shown below.

Figure 7.7 The location of the notches in the horizontal bars show the
location of each group’s mean.



Figure 7.8 The table summarizes each parameter’s location.

Summary
Next we take up Markov Chain Monte Carlo (MCMC), as well as some of
the reasons why MCMC is faster than grid approximation and more flexible
than quadratic approximation.

Earlier chapters have shown you how to use Bayesian analysis to replicate
ordinary linear regression, in both a simple and a multiple context. This is
what the earlier chapters have been leading up to. It’s difficult to see why
quadratic approximation and MCMC are superior to grid approximation until
you have seen some of the reasons why grid approximation can be so clumsy.
And it can be difficult to see how MCMC can be faster than quadratic
approximation until you have seen how autocorrelation can stick you in some
corner of a posterior distribution and take an unreasonably long time to let
you out.

And yet, there are times and reasons to use those older algorithms.
Sometimes you have only one parameter to worry about. Sometimes you
were already convinced that your prior, likelihood, and posterior distributions
are each Gaussian.

We can give MCMC its own chapter here. By the time this book gets to your
bookcase it will probably have been superseded by something even more
modern. But it’ll look a lot like MCMC.



8. MCMC Sampling Methods

The preceding chapters have stressed that a project involving Bayesian
analysis should take account of the methods available for generating posterior
distributions by means of sampling techniques. This chapter reviews two
basic techniques, grid approximation and quadratic approximation, and
discusses how a third technique, Markov Chain Monte Carlo (MCMC),
improves upon them.

Quick Review of Bayesian Sampling
Frequentist statistical methods such as t-tests and the analysis of variance
make use of sampling assumptions, but not in the same fashion as Bayesian
methods. A traditional t-test makes three assumptions about two populations:

• The cases in each population follow a normal distribution. This
assumption has been shown to be unnecessary: The t-test is robust with
respect to the violation of the assumption of normality. That’s the
statistician’s way of saying it’s no big deal. The t-test can be run on
populations that violate the assumption without returning a result that
isn’t valid. Nevertheless, the assumption stands, largely because the
test’s development would have been hampered without making it.

• The variances in the two populations are equal. Again, this assumption
can be safely ignored if the test is based on equal sample sizes. The t-test
is robust with respect to violation of the assumption of equal variances
with equal sample sizes. (Frequency theorists have never developed a
fully satisfactory means of correcting for violation of this assumption.)

• The members of the sample are assumed to be—and must be—
independent of one another. Brothers and sisters or any other sort of
non-independence can upend the probability statements that assume



independence of observations (unless special design and analysis
arrangements are made, such as the t-test for dependent groups).

Bayesian analysis too makes some assumptions, but none as fundamental as
those used by frequentist methods. Instead of assuming that an underlying
population has a given shape (normal, binomial, beta, and so on), Bayes
methods generate a distribution of the type that frequentist methods merely
assume. Bayesian methods do so by means of efficient sampling techniques.
You’ve seen how grid approximation defines that distribution by specifying
its quantiles and how quadratic approximation manages it by randomly
selecting values consistent with their probability of occurrence in a given
density distribution.

After reviewing the alternatives and how they differ, this chapter examines
the method of choice for current sampling approaches, the Hamiltonian
Monte Carlo version of MCMC sampling.

Grid Approximation
Grid approximation is a perfectly sound method of generating posterior
distributions. But “sound” does not necessarily mean “acceptable.” With one
or, possibly, two parameters to deal with, and if the parameters do not have a
substantial number of values for you to simulate in the posterior distribution,
you can simulate the posterior distribution in a flash. But with potentially
thousands of cells in a posterior distribution to account for, you probably
have a model that’s unacceptable for grid approximation.

Suppose that you’re designing a new solitaire game, something similar to
popular versions such as Klondike or Free Cell. For what seems like a good
reason, you want to know the probability of being dealt exactly four honor
cards in the player’s hand. At the beginning of play, the player’s hand
consists of 13 cards, so each hand is a 13-card sample from a 52-card pack,
one that is dealt without replacement. This test is run 24 times and the results
noted, so you have 24 instances of the number of honor cards dealt to each
player’s hand.

You can get an answer to your question about the expected number of honor
cards using grid approximation: that is, you can approximate those
probabilities in a posterior distribution by creating and then analyzing the



values in a grid. We’ve looked at this process in earlier chapters but here is
one more brief incarnation:

1. Establish a grid. You will need to know how many values the grid will
contain, and whether the quantiles will be equidistant (generally they
are).

grid <- seq( from=0 , to=1 , length.out=24 )

This creates a vector, or grid, with 24 available slots but with nothing in
those slots yet (column A). (There’s nothing magic about the number
24; I simply selected it as one that’s neither too small nor too
unwieldly.)

2. Establish a prior. The prior will normally have as many slots as the
grid. In this case, you presumably have very little information at your
disposal regarding how cards get distributed among four hands, and you
solve the problem conveniently (if not ideally) by establishing a flat
prior. That is, you assign the number 1 to each of the 24 slots in the
prior and give the name prior to the result (column B):

prior <- rep( 1 , 24 )

3. Establish a likelihood. Get the likelihood for each slot in grid with the
dbinom function (column C). Here’s the R code:

likely <- dbinom(  4 , size = 13 , prob = grid )

Here, the dbinom function is run 24 times, once for each value in the
grid. It tells R to return the probability of getting 4 honor cards out of
13 dealt cards, as the probabilities in grid increase in value. The results
are stored in a new vector named likely (for likelihood).

Here are the calculated values in the vector named likely (see column
C in Figure 8.1).





Figure 8.1 Because we are using a flat prior of 1, we get a raw
posterior equal to the likelihood.

4. Fold the likelihood in with the prior. Multiply the corresponding
elements of the prior and the likelihood, and store the products in a new
vector, here termed raw_posterior (column D).

raw_posterior <- likely * prior

5. Standardize the likelihood. Divide each member of the raw posterior
by the sum of all its members (column E).

std_posterior <- raw_posterior / sum(raw_posterior)

This example is intended primarily as a reminder of what steps are needed to
carry out a grid approximation. As such, its purpose is limited. It’s what’s
termed an analytic exercise in that the parameter values, combined with
density calculations, are used, rather than actual in the field observations. For
those, review earlier chapters on grid approximation in this book.

Quadratic Approximation
The second alternative in Bayesian sampling is quadratic approximation.
You’ll find a couple examples of this approach to building up a posterior
distribution in Chapter 6. Here I’ll review quadratic approximation and try to
highlight what distinguishes quadratic approximation from both grid
approximation and MCMC.

The name quadratic approximation deserves some explanation. The approach
makes the assumption that the posterior distribution is a normal, Gaussian
curve. The logarithms of the values making up that curve closely resemble a
parabola. Because a parabola is a quadratic function, it has become
customary to refer to the approximation that’s based on a parabola as a
quadratic approximation.

The assumption that a posterior distribution constitutes a normal curve is a
strong one, but it’s well founded. Many distributions that occur naturally,
such as the height and weight of animals and the temperature and blood
pressure of humans, follow normal curves. This characteristic of naturally
occurring variables buys us something: it buys us time. In particular, it buys



us the time needed to do the sampling that approximates the assumed, normal
curve of a posterior distribution.

A normal curve has a variety of useful attributes. Among them are the fact
that any true normal curve can be drawn if you have values for its mean and
its standard deviation (or spread). You can place the mean by simply finding
the value of the mean on the X or horizontal axis.

If you know the standard deviation as well as the mean, you can complete the
creation of the entire normal curve. The standard deviation is constant
throughout with the curve; that’s why it’s a standard deviation. Your
computer applies the relationship between the standard deviation and the
amount that the curve drops as you move further and further from the mean.
Your computer can use this amount as calculated near the top of the curve to
derive this slope at any point on the remainder of the curve.

You can see the time savings that this affords you compared with grid
approximation. Using a grid, you must calculate the likelihood for every
point in your data set. Given that you can convert your raw probabilities to
first a raw, then a standardized posterior. Your computer can do that for you
in a flash if you have only one or two parameters to estimate—say, sex and
political party affiliation. But that flash can easily turn into what seems like
forever if you have 10 or 20 parameters and 10 or 20 meaningful values of
each parameter.

But if all you have to do is (1) assume that the posterior is a normal
distribution and (2) tell the computer where to find the priors and the data so
that it can calculate means and standard deviations, then forever is going to
start to feel more like a flash.

So that’s where the quadratic approximation gets its deserved reputation for
sampling speed. It’s an important step in the right direction, but for years,
taking that step required an equally strong assumption: that the posterior
distribution constituted a normal curve. This is the sort of thing that
Bayesians took some pride in avoiding. The assumption of normal
distributions is bedrock frequentist theory. That’s so even if, as it turns out,
frequentists were violating the assumption all the time and the robustness
studies showed that it didn’t seem to matter.

One of the reasons that I wanted to discuss all three general approaches (grid



approximation, quadratic approximation, and MCMC) to generating a
posterior distribution in this final chapter is that all three approaches can
return close to the same findings. A priori, it’s unlikely that all three would
return exactly the same value because they do not use precisely equivalent
computations. And yet, the values that they return tend to be very close to
one another. So your choice of method should be based on issues such as
speed of execution and complexity of design. And after all, speed is an
important criterion for choosing a method that will run to completion in a few
seconds versus one that is likely to complete overnight.

Let’s take a look at an example, one that contrasts grid approximation with
quadratic approximation. Figure 8.2 shows the results of a grid
approximation in which the grid itself contains exactly 100 slots.



Figure 8.2 Notice that the maximum standardized posterior value in this
case is 0.233 and it’s associated with a grid probability of 0.320. With
these data, the maximum standardized posterior value of 0.233 is
attained when the probability of dealing four honors is 0.320.

I’ll continue with the solitaire card game example discussed earlier in this
chapter. In Figure 8.2, I have created a grid that contains 100 levels of
probability. I used a flat prior consisting entirely of 1s, so it has no effect



when the prior is first multiplied by the likelihood. So column A in the figure
consists of the probabilities that I want to see, and column B contains the
likelihoods determined by using the dbinom function in conjunction with the 4
wins (4 honor cards) out of 13 cards dealt to the solitaire player.

I put the contents of Figure 8.2 together using Excel rather than R, principally
because Excel makes it much more straightforward to show lists such as
those in columns A and B along with charts, as shown to the right of columns
A and B in Figure 8.2.

The standardized posterior values in Figure 8.2’s chart (and in column B) are
all calculated using the Excel worksheet function BINOM.DIST. For example,
the formula in cell B2 is:=BINOM.DIST(4,13,A2,FALSE).

And it is copied down to the end of the data in column B.

The chart shows you that the maximum value in the posterior distribution is
0.233. That value is paired with the 0.320 value as the probability of four
honors in any given 13-card hand. In other words, the grid approximation
tells you that the maximum probability of 0.320 comes about when the
maximum value of the posterior distribution is 0.233.

Note

As always in Bayesian analysis, don’t be greatly concerned if you
run the same analysis twice and notice very small differences in the
two sets of results. This can easily come about because of slight
differences in the samples. For example, when I was preparing this
example, R returned a posterior distribution of 0.234. On a second
trial, R returned a posterior distribution of value of 0.233. I have
learned to double check these things and refuse to lose sleep over
them.

Now let’s take a look at what a quadratic approximation tells us and compare
it to the results returned by the grid approximation (see Listing 8.1).

Listing 8.1 Bear in mind that when you are using R’s dbinom function, you
supply wins and losses as arguments, but when you were using the dbeta
function you supply wins and total trials as arguments.



library(rethinking)
cards <- quap(
    alist(
        honors ~ dbinom( honors + plain ,p) ,  # likelihood
        p ~ dunif(0,1)                         # flat prior
    ) ,
    data=list(honors=4, plain=9) )

# summarize quadratic approximation
precis( cards , digits = 5)
   mean      sd    5.5%   94.5%
p 0.30769 0.12801 0.10311 0.51227

Listing 8.1 displays all that’s necessary to execute a quap function with these
data. The quap function is also known as a helper function. It takes the
information that you supply to it and translates that information into syntax
recognized by R (specifically, by RStan). For example, see the arguments to
alist in Listing 8.1. In this case you would be telling quap that honors
follows a binomial distribution with parameters honors plus plain, and p. A
couple of lines later, on the data line, we tell R that the value of honors is 4
(that’s for honor cards) and the value of plain is 9 (9 plain cards per suit),
while p is distributed as a uniform prior.

The model that results from these definitions is saved with the name cards.
The final command in the code assigns the model’s results to a table showing
the mean of the posterior distribution, which is the maximum value of that
distribution. In this case, that’s 0.308, a result which is quite close to the
result of 0.320, the value that is returned by grid approximation and the
slight degree of error that we come to expect from Bayesian methods.

MCMC Gets Up To Speed
Quadratic approximation is not a complete solution to the difficulties
presented by grid approximation. Quadratic approximation is definitely faster
than grid approximation, but that comes with a price. As discussed earlier in
this chapter, to use a function such as quap, you have to make the fairly strong
assumption that the posterior distribution is normal—that is, Gaussian—and
many problems cannot be satisfactorily addressed using software that
demands that assumption.

Therefore, statisticians started to experiment with alternatives to quadratic



approximation—alternatives that did not impose the straitjacket of normal
distributions on their data set or their experimental designs. The methods that
they arrived at, collectively termed Metropolis algorithms, were much more
liberal in their acceptance of other shapes for their posterior distributions.
Gibbs sampling is one such.

However, it turned out that Metropolis algorithms were comparatively slow.
The gains that were provided by the ability to deal with other-than-Gaussian
posteriors were seriously outweighed by the lengthy time required to
complete the analysis of a reasonably detailed design. Two issues tended to
cause the problem: leapfrogging and step sizes. Leapfrogging refers to the
number of steps that separate two consecutive data points in the posterior.
Step size, of course, refers to the size of each step that makes the path
between two points. Certain combinations of leapfrogging and step size tend
to cause autocorrelation between consecutive points.

And when those points are autocorrelated, you wind up with lots of points in
a particular area of the distribution, and you seem not to get anywhere. The
result is that it can seem like forever to fill in any portion of the posterior that
is not favored by the autocorrelation between points. MCMC sampling
algorithms use what are called a warm up phase to choose leapfrog steps and
step sizes in such a fashion that the autocorrelation is minimized. You will
often see output that details the amount of time spent in that warm-up phase
as distinct from actual sampling.

A Sample MCMC Analysis
Let’s take a look at how you might use the ulam function to analyze a design
that contains one factor and an additional variable to put us in a position to
examine interaction. The discussion in most of the remainder of this chapter
focuses on how interaction can be assessed when the interacting variables are
numeric rather than nominal.

I’ll use ulam rather than quap in this chapter partly because ulam can execute
much faster than quap, even though you are not restricted to quadratic
posteriors as you are with quap. You should have the option of running
MCMC code when your design calls for it. The ulam function tends to build
on the quap function, so although there is some learning to do regarding



ulam’s capabilities, you need not start from scratch.

I’ll use data on 40 patients from two hospitals:

• A 0/1 variable, Hospital, that identifies which hospital a patient’s data
came from—this is the factor in this design.

• Two numeric variables, named outcome and history, which are factor
scores on medical test batteries given to each patient. You can think of
Factor 2 as a battery of predictive tests.

Note

Statistics has two very different meanings for the term factor. One
meaning is a variable that expresses a nominal scale; for example, the
factor Car might have values that include Ford, Toyota, and Nissan.
Your intent might be to compare the average miles per gallon for
each of those makes.

Another meaning for the word factor is an unobservable
characteristic that multivariate techniques employ to combine many
observable characteristics into one, or just a very few, variables. The
result of that combination is also termed a factor. You can usually tell
from the context which meaning is intended. Here, I’m using both.

We would like to determine whether an interaction exists between History
and Hospital. You’ll find that although most statistics textbooks definitely
cover the topic of interaction, they do so only to the extent of interactions
between factors, rather than between a factor and a numeric variable. MCMC
generally, and Hamiltonian Monte Carlo in particular, are perfectly capable
of performing this sort of analysis.

The layout of the data for input to the software is partially shown in Figure
8.3. You’ll find a csv file containing all the data on this book’s website. (I say
“partially” because there is not enough room to show all the cases.)



Figure 8.3 Notice that the value of hospital changes from 0 to 1 at case
number 22.

We would like to know whether the regression line between the outcome
variable and the predictor variable depends on which hospital the patient
occupies. In particular, we would like to know whether the regression lines
intercept or their slopes change depending on whether patients are in Hospital
0 or Hospital 1.

There aren’t many differences between the user’s view of the quap function
and the ulam function, but those that exist are important. Interestingly, some
of the most important differences you find will come in the nature of advice
rather than as an inviolable rule:

• If you need to make any changes such as log transformations or
standardizations such as mean differences, do so in the code prior to
invoking the ulam function. You could easily and unintentionally slow



things down if you wait to apply your transformations until ulam is
working.

If you plan to submit data that is at present stored in a data frame,
convert that data frame to a list before calling ulam. Here’s the rationale:
Data frames in R are not permitted to have a different number of records
in each variable. A value such as NA might stand in for a missing value
on any given record, but that’s in the normal course of events.

If the Stan code (which you won’t see unless you specifically call for it)
encounters an NA value in the data that you pass along to it, the code will
respond with an error message (and not a clear one, either) and terminate
processing. The recommendation to avoid this situation is for you to supply
the data as a list, not as a data frame. The R coding syntax specifically
permits NA values when they are part of a list. If you pass along the data as a
list, you dodge the problem presented by an NA value in a data frame.

Four different columns contain data in Figure 8.3:

• Column A contains numbers that serve only to specify which row
contains information on which case. They have nothing to do with the
analysis itself. Cell A1 typically is left empty in a csv file that you read
into an R data frame.

• Column B, labeled outcome in cell B1, contains another set of factor
scores on the same patients as in column B. The outcome scores simply
represent whether patients had a more or less favorable outcome at the
hospital where they were treated.

• Column C is labeled history in cell C1. The data in column B are factor
scores resulting from a factor analysis of patient histories at two
different hospitals.

• Column D, labeled hospital in cell D1, simply indicates whether a
patient attended Hospital 0 or Hospital 1.

The question arises as to whether these data indicate that there is an
interaction between one predictor variable, History, and the other predictor
variable, Hospital. For example, does the regression line between history and
outcome vary its slope, or its intercept, according to which hospital a patient



attended? It’s more typical to see interactions reported between two
categorical variables such as sex and political preference. But interactions
between a categorical variable and a continuous variable, or between two
continuous variables, are by no means rare (they’re often tested in the
analysis of covariance, for example, for a common regression coefficient).
They can be even more important than those between two categorical
variables.

Listing 8.2 shows how you might address the question using the ulam()
function. There’s not a lot of code involved in this example.

Listing 8.2 ulam() code as it might appear in R’s script window. The code
can be found in Listing 8-2.txt.

library(rethinking)
#Here you’ll want to use the setwd function to tell R where on your
#computer to find the csv file with the input data. For example:#setwd
("C:/Users/Documents/Edits/Ch 8/TestDataSet")
data_in <-read.csv("ulam example.csv")
model <- ulam(
               alist(
                      outcome ~ dnorm( mu , sigma ) ,
                      mu <- a[hospital] + b[hospital]* history  ,
                      a[hospital] ~ dnorm( 1 , 0.1 ) ,
                      b[hospital] ~ dnorm( 0 , 0.3 ) ,
                      sigma ~ dexp( 1 )
                      ) , data=data_in , chains=1 )

precis( model , depth=2 )

The code starts with the library() command, which in this case loads a
library named rethinking. This command is needed because later on the code
is going to invoke the ulam() function, and R needs to know where to look
for it.

The second line of executable code makes use of the function setwd(). It’s
not strictly part of this example, but it’s a very useful command nevertheless.
I like to keep different projects separate from one another, and when I
continue work on a project, its setwd() function automatically tells R to open
and save files to the proper folder.



Then the code reads the csv file shown in Figure 8.3. By default, the function
places the data that it reads into an R data frame. That may cause a problem,
one that we’ll deal with shortly.

Note

You’ll need to alter the path and/or the file name of the csv file in the
code so that it matches your own local setup. A sample data file is
supplied for this chapter, named ulam example.csv, that provides the
data for the analyses in Figures 8.4 and 8.6.

Next we arrive at the definition of the model that we’re after. I have given the
name model to the model, and indicated that the model should be generated
by the function named ulam. The alist function returns a special sort of list
in R, one that can take on a variety of argument types. Here, it passes the
following along to RStan by way of ulam:

• outcome ~ dnorm( mu , sigma )

outcome is distributed as the density of the normal distribution, with
mean mu and standard deviation sigma.

• mu <- a[hospital] + b[hospital]*(history)

mu is the result of the regression equation, where a is the intercept and b
is the coefficient for history. hospital varies between one and two,
depending on which hospital is chosen.

• a[hospital] ~ dnorm( 1 , 0.1 )

a, the intercept for each hospital, is distributed as the density of a normal
curve, with mean 1 and standard deviation 0.1.

• b[hospital] ~ dnorm( 0 , 0.3 )

b, the regression coefficient for history at each hospital, is distributed as
the density of a normal curve, with mean 0 and standard deviation 0.3.

• sigma ~ dexp( 1 )

sigma is distributed as the density of the exponential distribution, with



mean 1.

You can tell from glancing at the list of the ulam arguments that you are in a
position to define the shape and distribution family of the parameters: the
tilde is used in the definition of outcome, sigma, a, and b. Using ulam rather
than quap, you need not assume that the posterior distribution constitutes a
normal Gaussian curve.

Finally, the precis function provides the intercept and the regression
coefficient for each of two regression equations (shown as the mean) as well
as the coefficient’s standard error (shown as the sd) (see Figure 8.4).

Figure 8.4 The n_eff and Rhat4 tell you how well your sampling is
working given your model and data.

ulam’s Output
When you run the ulam code as given earlier in this chapter, you will see that
it takes somewhat longer for R to deal with the rethinking library than you
might expect. On a multicore HP laptop, I might have to wait a little while
before I can proceed after executing the library command, but the wait time
does not strain my patience. Up to the ulam function, the code moves very
fast. It takes about 30 seconds to run the ulam function—that’s not out of line.

The output can be lengthier than you might suppose. There is considerable
diagnostic information at the outset, well before you get to the summary
information provided by the precis function. Figure 8.5 shows you the
beginning of what you can expect to see displayed in R’s console if you have
entered both the data and the code correctly.



Figure 8.5 The warmup phase is time that the Stan code takes to
optimize the step size and number of leapfrogs for designing its
sampling plan.

And referring back to Figure 8.4, it shows you what HMC (or, if you prefer,
MCMC) has to say about the empirical issues addressed by the sample study
we’ve discussed here.

As discussed in previous chapters, the precis function returns the most
probable values for each variable in the model, as determined by the
sampling process. In this case, precis finds that the most probable value for,
say, a regression coefficient (labeled the mean in this example) in the
posterior distribution and displays it in the precis table. Again in this
example, the precis function also returns the standard error associated with
each regression coefficient (labeled the sd).

Validating the Results
By comparing the results returned by the ulam function with the results



returned by functions that are designed specifically for regression analysis,
it’s possible to determine the degree to which the Bayesian results agree with
frequentist results.

Figure 8.6 shows the results of Excel’s LINEST() worksheet function, run on
the same data used for ulam to produce the results shown in Figure 8.4. I’ve
displayed the results in that way because it’s more straightforward to identify
specific entries using Excel’s row-and-column convention than in an R table.
Furthermore, you can compare the results of a traditional analysis in Figure
8.6 with the ulam results in Figure 8.4. The Excel array formulas for the
traditional analysis are as follows:

=LINEST(B2:B21,C2:D21,,TRUE)

and

=LINEST(B22:B41,C22:D41,,TRUE)

Compare the figures shown in Figure 8.4 with those shown in Figure 8.6.

Figure 8.6 LINEST results based on data from Hospital 1 and Hospital
2.

The LINEST worksheet function is not designed to return a regression
analysis that accounts for multiple intercepts; therefore, it’s necessary to run
LINEST once for each hospital in the data set. The two sets of LINEST
results are shown in A1:C5 and A7:C11 of Figure 8.6. It’s not necessary to
adopt the same approach when you’re analyzing data using ulam because the



code provides for an intercept and a regression coefficient for each hospital.

The results of the LINEST analyses are very close to those returned by the
ulam function combined with the precis function. For example, compare the
values shown in cells B2:C2 of Figure 8.4 with those shown in cells C1:C2 of
Figure 8.6. When you do so, you will be comparing LINEST’s calculation of
the regression coefficient in Hospital 1 (Figure 8.6, cell C1) with ulam’s
calculation of the same coefficient, also in Hospital 1 (Figure 8.4, cell B2).
You can also compare the standard errors of the same two regression
coefficients by comparing cell C2 of Figure 8.4 with cell C2 of Figure 8.6.

In each case, the two numbers that you compare are very close to one
another, and the minor discrepancies that you find are easily explained by the
difference between standard arithmetic and calculus, especially when the
calculations are based on sample sizes as few as 20 per sample.

There are three other comparisons that you should make between the results
in Figure 8.4 and Figure 8.6:

• Figure 8.4, cells B4 and C4 with Figure 8.6, cells B1 and B2

• Figure 8.4, cells B3 and C3 with Figure 8.6, cells C7 and C8

• Figure 8.4, cells B5 and C5 with Figure 8.6, cells B7 and B8

It’s reassuring to see that two very different methods, when they are supposed
to do so, agree as closely as results from a Bayesian approach agree with
those from a frequentist approach.

Getting traceplot Charts
There are several popular methods of diagnosing problems with Markov
chains, and one of the most useful is the trace plot chart (see Figure 8.7). You
call for a trace plot using a single, simple function:

traceplot(model_name)

where model_name is the name of the model to which the ulam results were
assigned.



Figure 8.7 Traceplot of chains for parameters in the model.

Notice that each traceplot shows the value of a parameter for a different
sample. These are reasonably good-looking traceplots. Following the line
from left to right, you can see that the line occupies roughly the same area of
central tendency across all samples. Although the line rapidly moves across
the vertical dimension without getting stuck somewhere, it returns quickly to
the central tendency area.

If your trace plot looks very different from those shown here, you could



probably get a better sample from ulam. A good place to start is the priors,
particularly if you do not have a substantial amount of data in the likelihood.
Consider replacing your priors with weakly informative values.

Summary and Concluding Thoughts
Bear in mind that you can use the ulam function in place of the other two
approaches to Bayesian statistics discussed in this book: grid approximation
and quadratic approximation. Those two approaches have drawbacks not
shared by MCMC sampling. I spent as much time as I did on them because,
conceptually, quap builds on grid approximation just as MCMC builds on
quap.

Most important, you could skip all the material in this book pertaining to
distributional features in the data, such as the shape of posterior distributions.
You could certainly go directly to R’s vignettes, which are well-conceived,
and avoid learning about, for example, conjugate priors. But in that case you
would not necessarily come away knowing why MCMC works. And if you
don’t know why it works, you won’t know how to fix it when it doesn’t.

Way back in the preface to this book, I mentioned that I thought it important
for you to know something about the author—particularly so when the book’s
main topic is subject to considerable contention. The relative merit of two
very different approaches to the issue of statistical analysis is bound to result
in argument when statisticians discuss it.

It’s next door to pointless for me to just tell you, in the context of this book,
that I am a frequentist by background and experience. I could promise that I
have done my best to treat those two approaches, frequentist and Bayesian,
with an even hand, but I know what my promise is worth and you don’t. So
let’s try a different touchstone.

When I was in grad school, my advisor, Gene Glass, was one of the best-
known statisticians in the United States. He is responsible for many of the
most important advances in frequentist analysis during the second half of the
twentieth century. Take the topic of meta-analysis, for example. The basic
technique is to restate the means of two or more groups as the difference
between those means, divided by the standard deviation of the outcome
measure. The result is termed an effect size. Across many empirical studies of



the same cause, the effect size can be averaged to estimate the effect of that
cause. The basic technique had been around and in sporadic use for some
time prior to the 1970s. One analyst, in fact, termed a meta-analysis a “study
of studies.”

But I can still recall seminars, sitting with several other students at Gene’s
dinner table, watching and listening to him sketch the basics of a formal
meta-analysis, its concepts, methods, and terminology (such as “effect size”
and the term “meta-analysis” itself). He explained why it was inane to omit
primary research that showed “no significant result.” It was only a year or so
later that his first book on meta-analysis was published, a study of research
on different modes of psychotherapy. More books followed, one a meta-
analysis of the impact of class size on student achievement and then another
on time series analysis.

You couldn’t ask for a more thoroughgoing frequentist than Gene was in the
1970s. Then in 1978 Gene attended a colloquium along with other luminaries
such as Lee Cronbach, Robert Stake, and Ernest House. (Gene describes this
experience in an abbreviated memoir titled Ghosts and Reminiscences: My
Last Day on Earth as a Quantoid. It can be found in various locations on the
Internet.)

Gene writes:
When questions were being asked I sought to clarify the boundaries that contained Bob’s curious
thoughts. I asked, “Just to clarify, Bob, between an experimentalist and a person with intimate
knowledge of the program in question, who would you trust to produce the most reliable knowledge
of the program’s efficacy?”

Bob chose the program maven, stunning Gene:
I insisted that causes could only be known (discovered, found, verified) by randomized, controlled
experiments with double-blinding and followed up with statistical significance tests. Ernie and Bob
argued that even if you could bring off such an improbable event as the experiment I described, you
still wouldn’t know what caused a desirable outcome in a particular venue.

Bob and Ernie eventually convinced Gene that their viewpoint was correct:
They—Bob and Ernie—saw the experimenter as not trained, not capable of the most important step
in the chain: conveying to others a sense of what works and how to bring it about.

Carlberg again. I convinced myself somehow that I needed to supplement my
bag of frequentist tricks with Bayesian techniques. There are just too many
holes in traditional frequentist statistical theory to dismiss the Bayesian



approach with a nonchalant wave of the hand. Gene showed that he is
capable of reversing his entire point of view as to the value of empirical
research. Surely I can reverse my own entire point of view as to a few
statistical functions. Can’t we all?
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Glossary

absolute address

In Excel, the use of a $ prior to a row number and a column letter to lock a
formula to that row and column. $C$5 is an absolute address, and if used in a
formula it will not change if the formula is copied to a different row or
column. C5 is a relative address, and both $C5 and C$5 are mixed addresses.

alist

A list in R that serves as a kind of placeholder. Elements in an alist are not
necessarily evaluated immediately but can wait until other elements in the list
with a higher priority have been evaluated.

Analysis of Covariance (ANCOVA)

Similar to the Analysis of Variance, ANCOVA adds to the design a numeric
variable called a covariate. Before the group means are tested for differences,
the correlation between the covariate and the outcome variable is used to
adjust the values of the outcome variable.

Analysis of Variance

A test to determine the “statistical significance” of the difference between
two (or usually more) group means. The variance between groups is divided
by the variance within groups. If this ratio is improbably large, it is concluded
that at least two of the group means differ from one another.

autocorrelation

A type of correlation in which, for example, the second value is paired with
the first, the third value is paired with the second, the fourth value is paired
with the third, and so on. Autocorrelation plays a part in many types of
statistical analysis but is particularly useful in time series analysis.

Bayesian



A collection of statistical tests that depend for their validity on a theorem
articulated by Thomas Bayes, which defines the relationship between the
prior distribution, the likelihood, and the posterior distribution.
BETA.DIST

An Excel function that returns the relative probability of an event when that
event is distributed as a continuous variable, given that event’s number of
successes and failures. Compare with BETA.INV.
BETA.INV

An Excel function that returns the frequency of an event when that event is
distributed as a continuous variable, given that event’s observed successes
and failures. Compare with BETA.DIST.
BINOM.DIST

An Excel function that returns the relative probability of an event when that
event is distributed as a discrete variable, given that event’s number of
successes and failures. Compare with BINOM.INV.
BINOM.INV

An Excel function that returns the frequency of an event when that event is
distributed as a discrete variable, given that event’s observed successes and
failures. Compare with BINOM.DIST.

binomial distribution

A distribution that can take on one of only two values; for example, heads
and tails for coins, sixes and “not sixes” for dice.

Central Limit Theorem

The expectation that the mean values of many samples will themselves form
a normal, Gaussian curve, regardless of the shape of the populations from
which the samples were taken.
COMBIN

An Excel function that returns the number of ways to get some number of
items from a larger set. Use COMBIN to return the value when you ask it how
many ways there are to get 5 clubs from a set of 13 clubs. Often shown as
nCr.



compile time error

A software error induced by a mistake in the code itself, such as, in some
languages, the use of a variable name without first declaring it.
complete.cases

An R function that returns only the cases in a data frame that have no missing
values throughout the data frame’s variables.

confidence interval

A range of values of a numeric variable within which a specified portion of
cases can be found. The width of the interval is within the analyst’s control;
for example, a 90% confidence interval on systolic blood pressure might
extend from 120 to 130, whereas a 95% confidence interval on the same
variable might extend from 110 to 140.

conjugate prior to the likelihood

When a prior and a posterior distribution are of the same distributional
family, the prior and the posterior distributions together are termed a
conjugate pair. The prior itself can be termed a conjugate prior to the
likelihood. When this condition exists, closed form expressions for the
posterior become possible, and calculation of integrals may become
unnecessary.

continuous variable

A numeric variable whose values bear a meaningful quantitative relationship
to one another; for example, degrees Fahrenheit. Compare with discrete
variable.

correlation

An expression of the relationship between two variables, usually one that
requires an observation of one variable to be tied to an observation from the
other variable.

correlation coefficient

A measure of the direction and strength of the relationship between variables.
it can range from −1 (strong, indirect relationship) to +1 (strong, direct
relationship).



critical value

A value of a distribution, such as an F, t, or q distribution, that tells the
analyst that an observed statistic is improbable at or beyond that value. The
critical value is associated with a probability level selected by the analyst.

data (as a step)

Quantitative information acquired with the intention of combining it with
prior information of the same type. Also termed likelihood.

data frame

In R, a two-dimensional data structure similar to a table in Excel, subject to
various rules (for example, each column should have the same number of
data items).
dbeta

An R function that returns the density of a beta distribution, given arguments
shape1 and shape2, often construed as successes and failures.

degrees of freedom

The number of values in a set that are themselves free to change without
changing a characteristic of the set. If the numbers 1 through 5 constitute a
set, then four of those five numbers could change without restriction and the
mean of the set would remain the same. The fifth value would of course have
to change in order to maintain the mean, but the value of the fifth item would
be constrained by the combination of the values of the first four items and the
mean itself. The concept of degrees of freedom occurs throughout statistical
inference and is one of the most difficult to grasp of the basic inferential
concepts.

density

A measure of the relative frequency of a value in a distribution. Compare
with mass.

determinant

A property of a square matrix that enables tasks such as finding the inverse of
a matrix and solving systems of linear equations.



dexp

An R function that returns the density of a value in the exponential
distribution.

discrete variable

A variable whose values bear no quantitative relationship to one another. For
example, make of car includes Ford and Toyota as values, but Ford does not
imply a greater amount of “car-ness” than does Toyota. Compare with
continuous variable.
dnorm

An R function that returns the density of a value in the normal distribution.

dummy coding

A method of identifying group membership by assigning 1s and 0s to groups,
resulting in the convenient interpretation of regression coefficients in a
multiple regression analysis.

dynamic array formula

A type of array formula in Excel, dating from 2021, that selects on the user’s
behalf the range that the formula will occupy. Like regular formulas, it is
initiated by pressing the Enter key rather than the Ctrl+Shift+Enter sequence.

exponential smoothing

A technique, principally used in time series analysis, that forecasts a new
value in a series by means of the relationship between any value in the series
and all the preceding values in that series. The influence of each prior value is
reduced exponentially as a function of number of intervening observations.

F ratio

The ratio of one variance to another. Most often used in the analysis of
variance, where a very large F ratio is taken as evidence of a reliable
difference between group means.

factor

(1) A variable, typically measured on a nominal scale, that serves to divide
cases according to membership. For example, make-of-car is a possible



factor; its values include Ford, Toyota, BMW, and various others. You might
want to compare the mean MPG for each value of the make-of-car factor. (2)
An unobserved variable that is a composite of observed variables, used in
such statistical treatments as factor analysis.

factorial

A sequence of products of consecutive integers in a series. For example, the
expression 3 factorial evaluates to 3 * 2 * 1. The factorial operation is
signified by the ! symbol; for example, 3! is shorthand for three factorial.

fixed factor

A fixed factor comprises only those levels of the factor that are of interest to
the experimenter, or the only levels that exist. The classification of a factor as
fixed or random has implications for how methods such as the analysis of
variance are carried out. Compare with random factor.

flat prior

A prior that contains a constant value throughout each of its quantiles. See
also, noninformative prior.

frequency distribution

A distribution of values, often shown as a histogram, that has quantiles (or
raw counts) on its horizontal axis and a count of the number of observations
associated with each particular quantile as its vertical axis.

frequentist

A statistician who makes comparisons between samples and hypothetical
populations, using group means as a measure of comparison. By contrast, a
Bayesian makes comparisons between samples and populations generated by
computer, using probabilities in the appropriate distributions as a measure of
comparison.

Gamma function (Γ)

The Gamma function extends the factorial capability, normally used only
with integers, to complex numbers.

Gaussian



Pertaining to the normal curve. Named after the contributions made by Carl
Gauss to the theory of the normal curve.

homogeneity of variance

An assumption made by certain inferential statistical tests. The assumption is
that samples represent populations whose variances are equivalent. The
assumption is thought to be largely, if not completely, robust with respect to
its violation.

implicit intersection

In Excel, an intersection between two worksheet ranges that do not actually
overlap. The intersection is implied by rows or by columns that two ranges
have in common. Changes to Excel’s formula diction and syntax, made in
2018, enabled this enhancement, along with others such as dynamic array
formulas.

index variable

A type of dummy variable.

interaction

In the analysis of variance, it is typical to evaluate two or more factors
simultaneously. In a design that evaluates annual income, a researcher might
calculate the mean income for males and females, as well as for Republicans
and Democrats. Then there would be a main effect for sex and another main
effect for political party. There would also be an interaction effect with four
cells: female Democrats, female Republicans, male Democrats, and male
Republicans. Interactions are not limited to two factors, however. Interactions
between continuous variables, particularly in Bayesian statistics, are plausible
and useful.

intercept

(Often referred to as the constant.) The intercept is the point where the
regression line crosses a chart’s Y axis, and therefore where the products of
the regression coefficients and their associated predictor variables are zero.

inverse (of a matrix)

In matrix algebra, when Matrix A is pre- or post-multiplied by Matrix B, if



the resulting matrix has the numeral 1 in each main diagonal cell and 0
elsewhere, Matrix A and Matrix B are inverses of one another.

leapfrogging

Steps that a sampler takes to most effectively cover a posterior distribution
are termed leapfrog steps.

least squares regression

A method of quantifying the relationship between a predicted variable and
one or more predictor variables, in which the criterion is met when the sum of
the squared deviations between the predicted and actual values is minimized.

library function

An R function that instructs R to make available an installed package of
functions that together achieve a particular quantitative purpose.

Likelihood

The acquisition of new data subsequent to the establishment of a prior and
before the calculation of a new posterior.
LINEST

An Excel function that carries out least squares regression.
lm

An R function that carries out least squares regression.

logarithm (log)

The power to which a base is raised to result in a particular number.

Markov Chain Monte Carlo (MCMC)

A relatively fast method of generating samples from a posterior distribution
via sampling methods that employ user-specified distributional
characteristics, such as measures of central tendency and spread.

mass

A measure of the area (usually expressed as a percentage) under a curve and
delimited by two points on the horizontal axis. Compare with density.



matrix algebra

A collection of tools that enable the manipulation of matrices in much the
same way that simple arithmetic manipulates individual numbers. Typical
operations in matrix algebra include matrix multiplication, matrix inversion,
matrix transposition, and the calculation of determinants.

mean

The arithmetical average. The total of a set of values divided by the number
of such values.

multicollinearity

A condition in which two or more predictor variables in a regression equation
are perfectly or very closely correlated. Using traditional matrix algebra
techniques, this condition results in nonsensical regression results, such as
negative values for R2.

multiple comparisons

Several techniques, usually employed after an ANOVA, designed to identify
which group means in the ANOVA are significantly different from one
another.

multiple regression

Linear regression using two or more independent variables and a single
dependent variable.

nCr

Formulaic shorthand for a function that returns the number of ways to
combine N things, R things at a time.

noninformative prior

See flat prior.
NORM.S.INV

An Excel function that returns a quantile from the standard normal curve,
given a probability level supplied by the user.

normal (or Gaussian) distribution



The so-called bell curve, characterized by a single measure of central
tendency (the mean) and a single measure of spread (the standard deviation
or variance). The normal distribution describes many different variables,
including the mean values of several other distributional shapes.

null hypothesis

A hypothesis that assumes there is no post-treatment difference, other than a
design flaw such as sampling error, between two or more groups when they
have been initially equated by random selection and assignment.

parameter

In traditional frequentist statistics, a parameter is calculated on a population,
whereas a statistic is calculated on a sample. The parameter cannot be
observed directly, if only because the population has changed during the data
acquisition. In Bayesian statistics the parameter still cannot be observed but
it’s identified as the value with the maximum posterior probability.
pbinom

An R function that returns a cumulative probability from the binomial
distribution, given a quantile or a vector of quantiles, the number of trials,
and the probability of success on any given trial.

p-hacking

The disreputable practice of selecting a particular data analysis technique, or
a particular subset of the available data, in order to artificially inflate the
apparent statistical significance of the findings.

PI function

A rethinking function that returns the highest probability mass for a given
percentile interval in a sample.

pipe symbol

A vertical bar |, used principally in R as a separator in an argument list.

planned orthogonal contrasts

A multiple comparison technique, characterized by the specification of
variable coefficients prior to the collection of data, such that the coefficients



are uncorrelated to one another. More statistically powerful than the
alternatives but still not especially powerful.

posterior distribution

A distribution of values returned by R, the result of combining a prior
distribution with a likelihood distribution.
precis

A function in the rethinking package that creates a summary table of
estimates, standard deviations, and correlations between parameters in a
given model, often one produced by the quap or the ulam functions.

predictor variable

A variable in a regression equation that bears a quantifiable relationship to
the equation’s outcome variable and that contributes to the accuracy of the
predictive equation.

prior

A Bayesian analysis must include an initial estimate of the probability of each
value of each parameter. These estimates are collectively termed “the prior.”

probability density function (PDF)

A measurement that expresses the height of a curve at a given quantile
relative to the height of the curve at other quantiles.

probability mass function (PMF)

A measurement that expresses the amount of area under a curve as a percent
of the total area under the curve.
qbinom

An R function that returns a vector of quantiles when it is supplied with a
vector of probabilities, number of trials, the size of each trial, and the
probability of success on each trial.

quadratic approximation

A posterior distribution that resembles a normal or Gaussian curve.

quantile



A method of dividing a distribution into equally spaced components. A
quantile is a general-purpose term for percentiles, deciles, and quartiles.
quap

A rethinking function that returns a Gaussian posterior distribution according
to specifications supplied by the user.

R2

A method of calculating the best relationship between a predicted variable
and one or more predictor variables that minimizes the total of the squared
deviations between the predicted and the actual observations.

random factor

A factor whose levels are selected at random from a larger population of
factor levels. The factor hospital and the factor patient would normally be
considered random factors. An experiment might include both fixed and
random factors, and the statistical treatment of the data from such an
experiment would differ from a treatment that uses only fixed factors.

ratio variables

Continuous variables that have a true zero point, such as degrees kelvin.
rbinom

An R function that returns random values from a binomial distribution.

regression

A type of statistical analysis that depends heavily on the use of correlations
between predictor variables and predicted variables. Regression is a standard
method used with the general linear model, and it can be used in place of
other well-known types of analysis, such as the t-test and the analysis of
variance.

regression coefficient

A coefficient for a predictor variable in a regression equation that helps the
full equation minimize the squared deviations between the observed and the
predicted values.

relative address



A means of addressing a cell in an Excel worksheet. If the cell is copied and
pasted to a different cell in the worksheet, any cells addressed by means of a
relative address adjust their row and/or column accordingly. Compare with
absolute address.

rep function

An R function that returns a user-supplied number of replicates of a given
value.

rethinking package

A collection of functions that can be installed and executed on a personal
computer. The functions are designed to bridge the gap between an analyst’s
knowledge of the distributional and relational characteristics of the variables
of interest, and the syntax of functions defined and recognized in the Rstan
programming language. As such, many of these functions can be thought of
as “helper” or “wrapper” functions. Designed and written by Richard
McElreath.
sample

An R function that returns random samples from a vector such as a
probability grid.

Scheffé

A multiple comparisons method, capable of post hoc comparisons and
complex contrasts such as the mean of two groups against the meaning of
three other groups. The most conservative of the recognized multiple contrast
procedures.

scope

In Excel, a name can refer to a cell or a range of cells on a worksheet. The
name can be defined as belonging to a particular worksheet or to a workbook
as a whole. That is the name’s scope. In VBA, variables can be defined at the
module level or at the procedure level. The location at which the variable is
declared determines the variable’s scope.

seq function

An R function that generates an equidistant sequence of numeric values,



given a start value, a stop value, and the number of values to generate.

setwd function

An R function that specifies the working directory that R will use to read data
files and to write output.

skewed

A variable whose distribution is asymmetric is said to be skewed.

slope

The gradient of a regression line. The degree of change in the regression
line’s vertical position for every unit of change in its horizontal position. In a
multiple regression context it is probably more accurate to refer to a
predictor’s coefficient than to its slope.

Solver

A VBA utility for Excel that derives the minimum, maximum, or specified
value of a precedent, given the desired value of a consequence. Similar to but
more complex than Excel’s Goal Seek tool.

standard deviation

The square root of the average squared deviation between each value in the
set and the mean of those values. It is a convenient and standard measure of a
value’s location in a distribution, particularly a Gaussian distribution, which
is completely defined by its mean and degree of spread.

standard error of estimate

The standard deviation of the difference between observed values and the
values that are predicted by a regression equation.

standard error of intercept

The standard deviation associated with a regression equation’s intercept or
constant. Useful in evaluating the distance between the reported intercept and
0.

standard error of the mean

The standard deviation of group means. In frequentist methods, the standard



error of the mean is often estimated from one group mean by dividing a
sample standard deviation by the square root of the sample size.
Str

An R function that summarizes structural information about individual
variables in an R object, such as a data frame.

strong prior

A prior distribution based on so many cases that a likelihood is unlikely to
move the posterior distribution far from the prior.

sum of squares and cross products (SSCP)

A matrix used in matrix algebra that shows sums of squares in the main
diagonal and sums of cross products in the off diagonal cells.

Tibble

An R utility that reformats a summary of results into a table that is more
visually attractive and informative than a standard results summary.

trace plot

A line chart that shows the samples produced by, for example, a Markov
chain, plotted in sequential order. Trace plots are useful in diagnosing
problems with Markov chains.

t-test

A statistical test, often but by no means always of the difference between two
mean values. Typically, a t-test divides a statistic such as the difference
between two means by the standard error of that statistic. If the variability
between group means is improbably large compared to the variability
between individual cases, the analyst may conclude that the difference
between the means is a reliable one. A t-test may also be used as a test of the
difference between a regression coefficient and zero.

Type I error

A Type I error causes the analyst to conclude that a treatment has had an
effect when in fact it has not. A false positive.

Type II error



A Type II error causes the analyst to conclude that a treatment has had no
effect when in fact it has had one. A false negative.
ulam

A helper function in the rethinking package that provides the necessary
information for Rstan to generate a model and draw samples from that model.
Stan Ulam was an Austrian mathematician who contributed much to the
development of MCMC models.

uniform (rectangular) distribution

A uniform distribution has a constant value in all its quantiles. This makes it
particularly useful for designating the spread of a parameter: standard
deviations are constant across quantiles.

uniform prior

A uniform prior assigns the same value to all the quantiles in a prior.

variance

The average squared difference between the mean of a set of values and each
individual value in that set. The square root of the variance is the standard
deviation. With small sample sizes, bias in the variance is removed by
dividing by the mean minus one, rather than by the mean exactly. In this
context, the quantity “mean minus one” is referred to as “degrees of
freedom.”

warm up

An early phase of the work done by a sampler to determine the step size
needed to cover the posterior most efficiently.

weak prior

A weak prior has so few values in its quantiles that the prior has virtually no
effect on a posterior distribution, because of the effect of combining the prior
with a much larger likelihood.

z-score

A z-score, or standard score, subtracts the mean of a set of scores from an
observed score and divides that difference by the set’s standard deviation. It



tells you immediately whether a given score is above or below the mean and
the number of standard deviations separating that score from the mean.
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