Practice Problems on Transformations of Random Variables
Math 262

1. Let X have pdf given by fx(z) = ZTH for —1 < x < 1. Find the density of Y = X?2.
Note that 0 <Y < 1. Fix y € [0,1]. Then:

Fy(y)=P(Y <y)=P(X’<y)=P(—/y< X <)

This probability is equal to the shaded area below:

SV AN

The shaded region is a trapezoid with area /y, so Fy(y) = P(—/y < X < /y) = /y. Differentiating, we
d 1
find fy (y) = d—yFy(y) = m for0<y<1.
2. Let Y have pdf given by fy(y) =2(1 —y) for 0 <y < 1.

(a) Find the density of U; = 2Y — 1.

Ui = ¢1(Y), where g1(y) = 2y — 1. Since g1 is monotonic, we can apply the Transformation Theorem.
The inverse of g1 is hi(u1) = “1T+1 for —1 < wu; < 1. The density of U; is then:

for —1 <wu <1.

for (un) = fy (ha(un)) [ (ur)| = 2 <1 _wt 1) H _l-w

2 2 2

(b) Find the density of Uy =1 —2Y.
Uz = g2(Y), where g2(y) = 1 — 2y. Since g2 is monotonic, we can apply the Transformation Theorem.

The inverse of gs is ha(uz) = 52, for —1 < up < 1. The density of Uz is then:

it —1< <1.
3 3 2 for —1<uy <1

Juoa(u2) = fy (ha(uz)) | (uz)| = 2 (1 _1- “) H _ltw

(c) Find the density of Us = Y2
Us = ¢3(Y), where g3(y) = %>, which is monotonic on the interval 0 < y < 1, so we can apply the
Transformation Theorem. The inverse of g3 is hg(us) = y/us, for 0 < uz < 1. The density of Us is then:

1

Fun us) = i (ha(us)) [ (us)| = 2 (1 — vazm) ﬁ' - —=-

1 for 0 <wug < 1.

3. Let X ~ Unif[0, 1]. Find the density of U = v/X.

First, fx(xz) =1 for 0 < 2 < 1. Since U = ¢g(X), where g(z) = y/z, which is monotonic, we can apply the
Transformation Theorem. The inverse of g is h(u) = u* for 0 < u < 1. The density of U is then:

fu(u) = fx (h(uw)) [ (u)| = 1[2u| = 2u for 0 <wu<1.



4. Two sentries are sent to patrol a road that is 1 mile long. The sentries are sent to points
chosen independently and uniformly along the road. Find the probability that the sentries
will be less than % mile apart when they reach their assigned posts.

Let X1 and X2 be the posts of the sentries along the road; X1 and X are iid Unif[0,1]. Thus, their joint
density is f(z1,22) =1 for 0 <21 <1land 0 <axy <1.

Let Y = X1 — X5, We want P (—% <Y < %) Note that we don’t need the density of Y to answer the
question: since the joint density of X; and X2 is constant on the unit square, the probability P (—% <Y < %)
is equal to the area of the shaded region R in the following figure.

T2

Thus, P (-3 <Y < 3) = 2.

5. The joint distribution for the lifetimes of two different types of components operating in a
system is given by
%yle_(yl'i‘y?)/z lf yl > O7 y2 > O’

f(yla y2) = 0 otherwise.

Find the density function for the ratio U = %

Using the (bivariate) distribution function method, first note that U can be any positive number. Fix u > 0,
and note that the set of where U = % = u in the y1ys-plane is the line y2 = uy;.

Y2

Y2 = uy1

Y1

The region where U = % < uis the region in the first quadrant where y2 < uy:, which is the shaded region

Y1
in the figure above.

172 oo uY1 1 7( 4 9 u2 +2u
Then, P(U<u)=P(—=< = hl y1+y2)/ _ ]
en, PU < w) (Y1 - u) /0 ./o ge dy=dy (14 u)?

2
Thus, the density of U is fu(u) = % (Ell :5;) = a fu)3, for u > 0.



6. Suppose X and Y are independent exponential rvs with parameter A\. Find the joint density
of V = % and W = X +Y. Use the joint density to find the marginal distributions.

We will use the bivariate tranformation theorem. Note that the joint density of X and Y is given by f(z,y) =
A2e @) for ¢ > 0 and y > 0.

We must solve for X and Y in terms of V and W. Since V = %, it follows that X = VY, and then

W =X+Y =VY +Y, which we solve for Y to obtain ¥ = VL_H Similarly, we find X = \‘//—_‘C/l Thus, we have
X = ¢(V,W) where ¢(v,w) = 7%, and Y = ¢(V, W) where ¢(v,w) = ;5.
The Jacobian determinant is then:
12 99 w v
M| = |00 ow| [T | _w  ew | w
o oy —w 1 (v+1)3  (v+1)3  (v+1)*
ov ow (v+1)2 v+1

Therefore, the joint density of V and W is given by

2
_ _aze et | W AW
9(0,w) = F(8(0,), (v, w)| M| = N | = Gy ip
for v > 0 and w > 0. Integrate to find the marginal densities:
(v)—/w (v, w) dw = ———
Ty T e

and -
gw (w) = / g(v,w) dv = Awe M,
0

7. Let X and Y have joint density f(z,y). Let (R, ©) be the polar coordinates of (X,Y).

(a) Give a general expression for the joint density of R and ©.
Note that R = v/ X? 4+ Y2, © = arctan (%), X =RcosO, and Y = RsinO.

The Jacobian determinant is then:

M| %rcos@ 6%7"0039 cos) —rsinf 24 20
= = = 7 COS + 7rsin =T
%rsin@ a%rsinﬁ sinf  rcosf

The joint density of R and © is given by:
g(r,0) = f(rcosf,rsin0)| M| = f(rcos@,rsin0)r.

(b) Suppose X and Y are independent with f(z) = 2z for 0 < z < 1 and f(y) = 2y for
0 < y < 1. Use your result to find the probability that (X,Y") lies inside the circle of
radius 1 centered at the origin.

The joint density of X and Y is given by f(z,y) =4dzyfor0 <z <land 0 <y < 1.
By the previous result, the joint density of R and © is given by

g(r,0) = f(rcos,rsin@)r = 4(r cos 0)(r sin 0)r = 4r° cos O sin 6.
The point (X,Y) lies within the unit circle if and only if R < 1. Since both X and Y are positive,
0 < © < 7, so the probability that R < 1 is given by

/2 1 1
P(R<1)= / / 41® cos O sin 0 drdf = 3
0 0



8. Let X, Xo,...,X, denote a random sample from the uniform distribution on [0,1]. Let Y3
and Y, be the smallest and largest, respectively, among the X;. Find the pdf for the range
R=Y, Y.

Hint: The joint pdf for Y3 and Yy, is g(y1,9n) = n(n — 1) (yp —y1)" 2 for 0 < y1 < gy, < 1.
(See exercise 141 in Chapter 4 of Carlton and Devore.)

Since 0 < R < 1, fixr € [0,1]. Then R =Y,,—Y1 = r along the line y,, = y1 47 in the y1y,-plane. Furthermore,
R < r in the region below this line, which is the shaded region in the following diagram.

Yn

1

Y1
Thus, the cdf of R is:
1 pryn—r
Fr(r)=P(R<r)=1-— / / n(n —1)(yn —y1)" > dyrdyn = (1 — n)r™ +nr™ ",
L4 0
Differentiate to find the pdf of R:

fr(r) = %FR('r) = dir [(A=n)yr™ +nr" ] =nn—1) ("2 =" for 0 <r <1.



Example 23-1

Suppose X; and X, are independent exponential random variables with parameter A = 1 so that

fx,(z1) =™ 0<a <0
x,(z2) =€ 2 0< 2y <0
The joint pdf is given by
f(z1,@2) = fx,(z1) fx,(72) = ™7™ 0<z; <00,0 <y <00

Consider the transformation: Y7 = Xy — X5, Y5 = X + X5. We wish to find the joint distribution of ¥; and Y.

We have
" =y1+y2 " _Y¥2-un
1 2 y£L2 2
OR
Y1+ Y2 Y2 — Y1
‘Ul(yl,y2) = ) ,”2(191,92) = T

The Jacobian, J is

o(ri)  of2i2)

o) o)
8’122'/1 8!'12_2V1_2
1 2
_lz 3|1
_% % 2

So,
(v yz) = e—vx(yn,m)—uz(ywz)lll
’ 2
_ -]
2

e 2

2

Now, we determine the support of (¥7,Y3). Since 0 < 1 < 00,0 < 23 < 00, we have
0< 8 00,0 < LU < ooor0 <y +y2 < 00,0 <ys —y; < oo. This may be rewritten as
—Y2 < Y1 <‘y2,0 < y2 < 00.

Using the joint pdf, we may find the marginal pdf of Y, as

a(y2) /_ " 9(y1,y2)dyy

/‘U: 1 g
5€ U1
—yp 2

1 =
E[e y;yl Y1=y2 ]

n=-v2

1
=3¢ (2 +4)
=we ®, 0<y<o

Similarly, we may find the marginal pdf of Y; as

9(y1) {fozl geVdy; = ze —00 <y <0
l —

o 1 _ 1
f!/l 7€ "’dyg—7e no0<y; <0

Equivalently,
1 —luil
g(yl)zie 0<y <00

This pdf is known as the double exponential or Laplace pdf.



WEEK 5

5. Transformations of Random Variables

We know that a random variable is a function from the sample space to the real number. That is, if
X is arandom variable it is a function from Q to R (X :QQ — R ). The range of a random variable is

a subset of the real numbers. As we know, if the range of the random variable Dy is a countable

subset of the real number then it is called a discrete random variable and it is continuous otherwise.

Now, consider a function g from R to R (g:R—>R). The composite function go X is also a
function from sample space to real numbers (g° X :QQ — R ) and therefore g o X is also a random

variable (see Figure 1).

Figure 1. Transformation of random variable

The composite function g o X is sometimes denoted as g(X) and it is defined as for any we Q,

(g °X)(w)=g(X(w)). Moreover, the range of Y = g(X) isalso a subsetof R, Dy c R.

If the random variable X is continuous, the transformed random variable g(X) (say Y ) may be
either continous or discrete. Similarly, when X is discrete g(X) may be discrete or continuous. In our
study, if X iscontinuous g(X) will be continuous andif X isdiscrete g(X) will be discrete otherwise

citeted.

In this part of the class, our goal is to find the distribution of the transformed random variable.

Later, we are going to investigate the multivariate version of the transformations.

A) Discrete Case:

In discrete case, the easiest way to find the distribution of the transformed random variable is to

calculate the probabilities directly.



Example: a) Let X be a random variable with the following probability function:

x=-2,-1,0,1,2

elsewhere.

p— C 2
fx)= 0

b

Note that from the range of X is Dy ={-2,-1, 0,1, 2}. Note that since
2
1= Z fx)= Z c=5c
xeDy x==2

we have ¢ =1/5 because 5c=1=c=1/5. That is the probability distribution of X is

1/5 , x=-2,-1,0,1,2

0 , elsewhere.

f(X)={

Now, we want to find the probability distribution of the random variable Y = X2 . Note that the

range of Y is Dy ={0, 1, 4} and the corresponding probabilities are calculated as

P(Y=O)=P(X=0)=%

P(Y=l)=P(X2 =)=P(X=-1lor X=1)=P(X=-1)+P(X =1)=%+%=%
b 1 1 2
PY=4)=P(X“=4)=P(X=-"2o0r X=2)=P(X=-2)+P(X :2):§+§_§
and therefore the probabilithy function of X and Y are given below:

X =x ‘_2 -1 0 ] 2 Y=y ‘0 ] 2

P(X=x)‘1/5 1/5 1/5 1/5 1/5 P(Y:y)‘ 1/5  2/5  2/5

b) Now let X be a random variable with the following probability function.

X:x‘—3 0 ] 2 3

P(X:x)‘3/8 1/8 1/8 1/8 2/8

Suppose we want to find the distribution of ¥ = X2 as before. Note that the range of the random

variables are Dy ={-3, 0,1,2,3} and Dy ={0,1,4,9}. Note that the probabilities of Y are

calculated as

P(Y=0)=P(X2:0):P(X=O)=%, P(Y=1):P(X2=1):P(X=1)=é
2 1 2 3 25
P =4)=P(X? =4)=P(X =2)=2, PV =9)=P(X*=9)=P(X ==3)+ PX =3)=_+2=1

and the probability distribution can be written as



Yzy‘O 1 4 9

PY=y) | 1/8 1/8 1/8 5/8.

¢) Now consider the random variable given in part (b) and find the probability distribution of
Y =2X +1. Note that the range of the random variables are
Dy ={-3,0,1,2,3}and Dy ={-5,1,3,5,7}.

Similarly, the probabilities can be calculated as

P(Y=—5)=P(2X+1=—5)=P(X:—3)=§, P(Y=1):P(2X+1=1)=P(X:o)zé
P(Y=3)=P(2X+1=3)=P(X=1):é, P(Y=5)=P(2X+1=5)=P(X=2)=%
P(Y=7)=P(2X+1=7)=P(X=3)=§

and therefore the probability distribution can be written as

Y=y ’ s 1 3 5 7

P(Y:y)’3/8 1/8 1/8 1/8 2/8.

B) Continuous Case:

Remember that the probability density function of a continuous ramdom variable is the derivative
of the cummulative distribution function. Thus, if we can find the distribution of the transformed
random variable, we can derivate it to find the probability density function of the transformen random
variable.

Let X be a continuous random variable with probability density function f(x), cummulative
distribution function F'(x) with the range Dy . Consider a transformed random variable Y = g(X) . At
this moment we assume that the function g is differentiable. The cummulative distribution function

of Y can be calculated forall ye Dy as
Fy(y)=P(Y <y)=P(g(X)<y)=P(X <g ' () =Fx (g~ () .

Thus, the probability density function of the transformed random variable Y is the derivative of

Fy(y) whichis

dFy(y) _d
dy  dy

()= e o At o0 6700

Note that the derivative of g_l(y) may be negative and the probability can not be a negative number.

For example if g is a decreasing function the derivative is negative. Therefore, we take the absolute



value of the derivative (this derivative is known as the jacobien) and thus the probability density

function of the transformed random variable can be written as

Hr0=Fx (&) ‘ Sl ‘ (1

Example 1: Let X be a random variable with the following probability density function

F) cx , O<x<l
X)=
0 , elsewhere.

a) The constant ¢ can be determined from

1 L

1

1= j f(x)dx =c I xdx =c

2
x=0 x=0

x=0
b) Let us find the probability density function of ¥ =2X +1. Obviously, since Dy =(0,1) the range

of Y is Dy=(1,3). Thus, Fy(y)=0 for y<I and Fy(y)=1 for y=3. Now, for 1<y <3 the

cummulative distribution function

(y-D/2

Fy(»)=PY <y)=PQX +1<y)=P(X <(y-1)/2)= | 2xdv=x"
x=0

002 (y-1Y _ (p-1)?
x=0 2 4

That is, the cummulative distribution function and the probability density function of Y =2X +1 are

<
T, Oy
Fy(y)=1(y-D7/4 , 0<y<3 , fY(y)=d—FY()’)= 2
1 , y=23 Y 0 , elsewhere.

This is a probability density function because

}
y=1

3
fy(y)d _lj'( ~)dy = y_z_l
y J’—zyZI)’ y= R

9 3) (1 1) 3 1
S R 0 [ .
(4 2) (4 2) 4 4

The same probability density function can be found by using the equation (1). Note that

y=1

y=g(x)=2x+1=x=(y—-1)/2. That is, g’l(y):(y—l)/z and the derivative of this inverse

function is

slok505

and using the equation (1) we write the probability density function of Y for 1<y <3 as

- dr - -1 1 -1
H )= fx (' ) | d—y[g '] |=z(YTN 1 ‘ -l

which is the same as above.



c) Now, let us try to find the probability density function of ¥ =-2X +1. Note that the range of Y

is Dy =(—1,1). Note also that the function g(x)=-2x+1 is decreasing and g_l(y) =(1-y)/2 and

the derivative of the inverse function is negative (which is —1/2). Thus the probability density function

of Y=-2X+1for -1<y<lis

_ -1 dr _ y—1 1| 1I-y
fr (0= (870 | L] |—2[— [
That is,
-y
— -1 1
frn=1"2 7Y%
0 , elsewhere.

and it is a probability density function because

5 1
J fy(y)dy—— J (1-) y—l[y—y—J -1,

y=—1 y—*l 2 y=-1

Example 2.: Let X be a random variable with the following probability density function

f (x):Le"‘z/2 for xe R (2)
X \/ﬁ

and let us try to find the probability density function of Y = X2 . Note that the function fx (x) isan
even function ( fy (x)= fx (—x)). Moreover Dy =R and Dy, =R" and therefore, Fy(y)=0 for
¥y <0 .For y>0 the cummulative distribution function is

Fy(y)=PY <y)=P(X?<y)=P(—[y < X < \[y)=Fx (Jy)~Fx (/).

Thus, the probability density function of ¥ for y >0 is

fY(y)— FY(Y)— [FX(\/_) Fx (- \/_)] \/—[fx(\/_)Jer( \/—)]

o2 1 (1-2)/2 =y/2 _ 1 (1-2)/2 -y/2

:ﬁfX(\/;):ﬁﬁ RN T r(/2)2"?

Therefore the probability density function pf the transformed random variable Y is

1 (1-2)/2 ,=y/2 y>0
fr(»)={r(1/2) 2" (3)
0 , elsewhere.

In general the probability density function can be written for p =1 as

1 (p=2)12 ,=y/2
fy(=1T(p/2)27"?
0 , elsewhere.

, y>0



and known as the probability density function of chi-square distribution with p degrees of freedom.

A note on these probability distributions (will be discussed later in details):

The random variable X with the probability density function given in (2) is known to be the

standard normal random variable and denoted by X ~ N(0,1) and the random variable Y with the

probability density function in (3) is the chi-square random variable with 1 degrees of freedom.
Similarly, if a random variable (say W ) has a probability density function given in (4) we say that W s
distributed as chi-square with p degrees of freedom.

In statistics, almost all statistical inferences depend on the normality assumption. If the data do not
satisfy the normality assumption we use some techniques (usually trnasformations) to achieve the
normality assumption. The chi-square distribution is also very important distribution in statistics which
is obtained by the squares of normally distributed random variables. These distributions are also

known as the sample distributions which will be discussed later.

C) Mutivariate Transformations:

In this part of the notes, we are going to investigate multivariate transformations. If X and Y are

two random variables with joint probability (or probability density) function f(x, y) we will try to find
the probability (or probability density) function of U = g{(X,Y) and V = g,(X,Y). A generalization is

also possible for k variate random vectors and k variate transformations. for simplicity we will only

consider bivariate transformations.

Let X, X5,..., X be the random variables with joint probabity (or probabilkity density) function
f(x1,%y,...,x;) and consider the following transformations
Yi=81(X1,--. Xp), Yo=80(X1,-- 0, Xp) o Y = 84 (Xq5-, X))
Assume that the functions g;’s are invertiable and differentiable with respect to their components.

We can write the Jacoien matrix as

[ ohi(Y,...,Y)  Ohy(Y,...,Y}) ohy(Yy,....Y,) |
oY, oY, o oY,
Ohy (Y, Vi) Ohy(Xy,....Y,) Ohy (Y., Yy)
oY, oY, o oYy
J=
Oh (Y, Y)  Ohp(Y,e 1) Oh(Yy,....Y5)
oY, oY, o oYy




and denote | J | as the absolute value of the determinant of J (thatis, |J |=|det(J)| ) then the joint

probability density function of 1,Y5,...,Y} is given by

Iy, Ot ) = Uy x O Yi)s Bo (01500 Vs B (9155 V1)) (5)

where X =hi(Y},....Y,), Xo=hy(1],....Y;) .. X =y (Y},...,Y}) . For simplicity we will use
k=2.
Example1:Llet X and Y be two independent random variables with the same probability density

function given below.

2
F)=——e ™2 xeR.

or

a) Let us consider the transformationsas U =X +Y and V=X —-Y and try to find the joint
probability density function of U and V. The inverse transformations are obtained as

X=U+V)/2veY =(U-V)/2 and thelacobien matrix with its determinant are

ox ox )1 1

J = ou oV _\2 and det(])=—l.
av ov M1 1 2
ou oV 2 2

Note that since the random variables X and Y are independent the joint probability density

function can be written forall x,y e R as

1 2 1 ) |
ex/Z e yo/2 (x“+y )/2‘

f(x,y)=fx(X)fy(y)=ﬁ or =€

therefore the joint probability density function of U and V forall u,v € R is written as

11 1{(u+v 2 u—v 2
fov@v)=|J|fx y(x@,v),yu,v)) = ——exp| - +

22x 2 2 2
1 1[ 2 Z:U
= —exp| ——|u+v) +(u—-v
py p( 2 (u+v) +@-v)
2 2
=LeXp(—l[2u2 +2V2D= 1 e WA
A 8 A

That is, the joint probability function of U and V is

1 2,2
JoyW,v)= e (W +voy/a u,veR.
T



Since joint probability density function can be written as

RN N SV B

_L _ L —1/2/4=
fU,V(uaV)_ A € me me fU(u) fV(V)

the random variables U ve V are independent.

b) Now let us try to find the probability density function of the transformed random variable
U = X /Y .Inorder to use the equation (5) we need to define an auxiliary transformation. Let V =Y
. First we find the joint probability density function of U =X /Y and V =Y and using this joint
probability density function we can find the marginal probability density function of U . The inverse

transformationsare X =UV ve Y =V and the Jacobien matrix with its determinant are calculated

as
ox ox
J=| U OV det(J) = .
o ov|Tlo
oU  ov

therefore the joint probability density function of U and V can be written as for all u,v e DU,V

fu oy @v) = | fx oy (x(,v), y(u,v)) = % exp(—%[(uv)2 +v2)]]

|v] v
=— exp| —[u” +1] |
. p 2[ ]

Note that we want to find the probability density functiion of U . Remember that a function A(x) is

even if i(—x) = h(x) and if A(x) is an even function we have forall a e R™,

T h(x)dx = ZTh(x) dx .
—a 0

Therefore the joint probability density function of U and V is an even function of v. In order to find

the marginal probability density function of U we integrate the joint probability density function over

the range of V, Dy, . The integral is obtained as ( saying a = u? +1 ),

_ i _ 1 K —av*/2 _ 2 T —av*/2
fy ()= j fU’V(u,v)dV—Z__[O|v|e dv_gjve dv

—o0 O
17 2
=—Ie “tqr,  used 1=
7y 2
1 _at| ® 1 1 1
= — —e [ —
arr t=0 ar T 1+u2




and therefore the probability density function of U is

1

,uelk.
MZ

fy ="+

T 1+

Example 2. Let X and Y be two independent random variables with the following probability

density function
—X

f(x)={e , x>0
0 , dy.

a) Let us define the transformationsas U = X +Y and V =X /(X +Y) and try to find the joint
probability density function of U and V . Note that the back transformations are X =UV and

Y =U(1-V) and the Jacobien matrix with its determinant are calculated as

oX 0ox

J=| U VLV g det() = —uv—u(l—v) = —u.
oy oy | [(-v) -u
oU oV

Since the random variables X and Y are independent the joint probability density function can

be written as,

e x>0,y>0

J(x, y)={
0 , d.y.

and therefore using the equation in (5) we can write the joint probability density function of U and

V forO<v<land u>0 as

Tuy @) =T | fx y (x(u,v), y@,v)=lu|e (w4 u(1=0)) _y pu.

That is the joint probability density function is

ue” , 0<v<Lu>0
fU,V(u,V)=
0 , d.y.

Now, it is easy to find the marginal probability density functions of U and V by using the following

integrations:

1 o0

1 )
J‘fU’V(u,v)dv: I ue "dv=ue™ and I fuy @,v)du= I ue "du=1.
v=0 v=0 u=0 u=0

Thus the marginal probability density functions are



ue™ . u>0

be)Z{ o . dy

andsince fi;y (u,v) = fyy (u) fy (v) the random variables U are V' independent.

O<v<l

1,
fr () 2{0 ’ dy.

b) let X and Y be two independent random variables with the same probability density function

given below:
1 , O<xx<l
f(X)ny(x)Z{O ’ dy.
Let us try to find the probability density function of U = X Y . In order to use equation (5) we need
to define an auxiliary transformation. Let V = X and the back transformations turnouttobe X =V

and Y =U /V and the Jacobien matrix and its determinat is calculated as

oX 0X

90X 90X rg
oU oV 1
J= -  det(J)=——.
ov or || -5 T
ou ov| W vV

Therefor the joint probability density function of U and V can be written as (equation in (5)) as,

1
-, O<u<v«l
fU,V(M,V)Z v

0 , d.y.

and the marginal probability density function of U is calculated from the integral as

1
dv
| fuy@vav= | —==-In(.
veDy, v=u v

Therefore the probability density function of U is

_J=In(w) , O<u<l
Ju )= 0 dy.

c) Let X, X,, X3 be three random variables with the joint probability density function

0<x <xy<x3<o0
d.y.
Suppose we want to find the joint probability density function of U; =X, , U, = X, — X, and

6e N2 ,
Ix,. %5, (X1 X0, X3) = 0
b

U; = X3 — X, . Note that the back transformations are found to be
X1:U1 X2:U]+U2, X3:U1+U2+U2

and the Jacobien matrix ant its determinant are calculated as

10



60X, 00X, 0X]
oU, oU, oUs
0X, 80X, 0X,
oU, 0U, oUs
0X; 0X; 0X,
oU, oU, oUs

, det(J)=1.

—_— = O
- o O

therefore the joint probability density function of Uy, U,, Ujy is

6 ey 50,i=1,2,3

Ju,u,.0, (1, u3) =
, d.y.

Note that eventhogh the random variables X, X,, X5 are not independent since
Ju,u,0, Wrsuy,u3) = fy, () fy, () fu, (u3)
the random bvariables U}, U,, U3 are independent.

d) Let X,,X>,...,X,, be independent random variables with the same probability density function

1 , O<x<@
fx)=16
0o , d.y.

Now we want to find the probability density function of U = max{X;, X,,..., X, }. Note that we can

not use the formula in the equation in (5). Therefore, we need to calculate its cumulative distribution
function. Note that the range of U is the same as the range of X ’s. Therefore, F;;(u)=0 for u<0
and Fy;(u)=1foru>6. For O<u<@
Fy(u)=PU <u)=Pmax{X|,X,,..X,} Su)=P(X|<u,X,<u,..,X, <u)
n
n n “ol 1
=HP(XiSu):(P(XISu)) = —dx | =—u".
i=1 x=0 0 0"
Thus, the cumulative distribution function and probability density function (which is the derivative of

the cumulative distribution) of U are

0 , u<o0
! S O<u<6
Fy(u)= u—n , O<u<@ and fU(u):M: en” ’ u
0 du
1 >0 0 , elsewhere.
, U=

e)Let X ve Y be two independent random variables with the same probability density function
given below:
—X

e , x>0
fx(x)—{o dy

11



Suppose we want to calculate the probability density functions of U =max(X,Y) and
V =min(X,Y). Here, we are going to calculate the distribution functions of both random variables.

First let us find the cumulative distribution function of U . Note that Fy; (1) =0 for u <0 and for
uz0,

Fy(u)=PU <u)=Pmax(X,Y)<u)=P(X <u,Y <u)
= P(X <u)P(Y <u)=[P(X <u)]* =(1-e )%

thus, the cumualtive distribution function and the probability density function (derivative of Fy; (1))
of U are
0 , u<o0

A-e™)? , u>0

2¢ “(1-e™) , u>0

F = d =
v @) { and  fy(u) {0 dy.

In a similar way, we can calculate the cumulative distribution function of V . Note that Fy, (v) =0

for v<0 andforv=0
Fy(v)=P(V <v)=P(min(X,Y)<v)=1-P(min(X,Y) >v)
=1-P(X >v,Y >v)=1-P(X >v)P(Y >v)=1-[P(X >v)]* =1-¢ "
and thus the cumulative distribution function and probability density function of V are given below:

nin dagihm fonksiyonu da

0 , v<O0
FV(V): —2v

2072 , v>0

d -
nd Fr0) {0 . dy.

l—e , v=0

Discrete case: For discrete case, the probability function of a transformed random variable can be
found directly by calculating the related probabilities. There is also an easier way (generating function
technique) the we are going to study next. here is an example how to find the probability distribution

of a transformed random variables for discrete case.

Example: Let X and Y be two independent random variables with the following probability
distribution function:
P(X=x)=P(Y =x)=¢*2%/x! ,x=0,1,2,...and A >0.
Suppose we want to find the probability distribution of U = X +Y . Obviously the range of U is

the same as the range of X (or Y ). Therefore, the probability distribution of U can be calculated as

foru=0,1,2,3,...

12



PU=u)=P(X+Y=u)= iP(X+Y:u|Y:y)P(Y=y): iP(X+y=u)P(Y:y)

y=0 y=0

u u —Aqu=y -Aaqy u g A u=y —Aay
:ZP(X:M—y)P(Y:y):Z e A e "4 :Zu_ e "4 e "4

y=0 =0 (u—y)! y! y:()u! (u—y)! y!

21 u ' 21 u =22 =21 u

e u! _y € u _y e e 24
=— Z[ : ')ﬂy,’tuy: ' Z[}ﬂyﬁu y '(ﬁ+/1)u= (' )

ul 370 yl(u—y)! ul S\ u! u!

Note that the probability function of U is similar to the probability function of X (or Y ). The only

difference we have 24 instead of A and therefore the probability distribution of U is

PU=u)=e2*Q1)" /u! , u=0,1,2,....

Generating Function Technique: We have studied some of generating functions in the previous

sections. If X isarandom variable with probability (or probability density) function f(x), the moment

generating function of X can be calculated as My (t):E(etX). Moreover, X and Y are two
independent random variables with moment generating functions My (1) and My () respectively,
the moment generating function of U =aX +bY s
t(aX +bY taX tbY
My (1) = My 4y () = E( X 1)) = E(¢) (™)) = My (ar)My (bt)
If the moment generating function is similar to a moment generating function of a special random

variable then their distributions are similar.

Example: a) Let X and Y be two independent random variables with the same probability
function given below:
P(X=x)=e 2 /x! , x=0,1,2,..., 1>0.
The moment genarating function of X (or Y )is
X S o ix —Agx PR (let)x A I ()
My (t)=E(e ):Ze P(X:x):Ze e A/ xl=e Z—':e e’ =e .
x=0 x=0 x=0 %
Suppose we want to find the distribution of U = X +Y . Since X and Y two independent random

A -D)

variables with the same moment generating function My (f)=e the moment genarating

function of U can be written as
A(e' =)y A€ -1 22(e' -1
My (6)= My .y (1) = Mx ()My (1) = (7 D) (eH D) = 247D
which is the same moment generating function of X (or Y ) except we have 21 instead of A.

Therefore their probability distributions (U and X ) are similar. All we need to do is to put 24 for 4.

That is, the probability distribution of U is

13



PU=u)=e Q)" /u! ,u=0,1,2,...

Note that this is the same probability function as we have calculated directly.

b) Let X and Y be two independent random variables with the same probability function given
below:

P(X :x):P(Y:x):pqu_x,xzo,l;0<p<1andq:1—p
Since, their probability functions are the same their moment generating functions are also the same.
the moment generating function of X is calculated as

1
MX(t):E(etX): S e *P(X =x)=q+pe.
x=0

Now, we want to find the distribution of U = X +Y . Since they are independent random variables,

the moment generating function of U is calculated as

My (t)=My,y()=My )My (1) =(q+pe')g+pe)=(qg+pe)?.

Now, consider a random variable Z with the probability function
2 x 2—x
P(Z=x)= pq " ,x=012,0<p<landg=1-p
X
and the moment generating function of Z is

2 2 2(2

tZ t 2— t 2— 1\2

My (1)=E(“)= Y e x( ]p"q t= Z( j(pe Y g~ =(q+ pe')
x=0 X x=0\ ¥

which is the same function as My, () and therefore their distributions are similar. That is, the

probability function of U is

2
PU=u)= (ujp”qz_” ,u=0,12.

c)let X and Y be two independent random variables with the following probability density

functions. The probability distributions are given as for Hys My € R and o, >0, oy > 0,

fx(x)=;zexp[—%(x—,ux)2 , xeR

2r oy 20%

1 1 2
fr()=——exp| ~——5 (-1, | . yeR.
1/27[0'y 20,

Their moment generating functions are calculated as

o2

2 2
xJ and My (t)=exp t,uy+Ty .

t
My (1) = exp[wx -

The moment generating function of U = X +7Y is calculated as
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2 2 2 2
t“o ‘o
MU(t):MX+Y(t):MX(t)MY(t):exp(t,ux+ Zx]exp(t,ux+ 2)‘}

2, 2 2 2 2
t
=exp[t(’ux +ﬂy)+wJ= exp(tﬂ+%j

where = i, + uy, and o’ = O')% + 0'5 . As it is seen the moment generatin function of U is similar

to the moment generating function of X (or Y ) and therefore their probability density functions are
also similar. That is, the probability density functionof U = X +Y is
1

1
fu@w) =W6Xp(— - (u—,u)zj , ueR

where s =, + 1y, and o’ 20')%+0'§.
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